
4
Material model based on NURBS

NonUniform Rational BasisSplines (NURBS) isamathematical representa-

tion of a geometry in 3D used for curves and surfaces.

NURBS representation is widely used in Computer-aided design (CAD) to

create and modify designs offering smooth surfaces. Due to the successof the use

of NURBS in CAD, it hasbeen suggested in other applications. An exampleof this

istheisogeometric analysisintroduced byHugheset al. [69], which isanew method

to solveproblems governed by partial differential equations such as, structures and

fluids. This method has many features in common with the finite element method

and some in common with meshlessmethods. However, it i s more geometrically

based and takes inspiration from Computer Aided Design (CAD).

Kiendl et al. [70] reports that in isogeometric analysis the functions from the

geometry descriptionareused asbasis functionsfor the analysis. Thus, the analysis

works on a geometrically exact model and nomeshing is necessary. This offers a

possibilit y to close the existing gap between design and analysis as both use the

samegeometry model.

Another application of NURBS in numerical analysis is the NURBS-

enhanced finite element method(NEFEM). Sevill a et al. [71] reports that the NE-

FEM uses NURBS to accurately describe the boundary of the computational do-

main, but it differs from isogeometric methods in two main facts. First, NURBS

are used to describe the boundary of the computational domain, not the entire do-

main as done in isogeometric methods. Second, the solution is approximated using

polynomials and the approximation is defined with Cartesian coordinates, directly

in the physical space. From a practical point of view, NEFEM considers efficient

strategies for numerical integration onelementsaffected bycurved boundaries.

The proposed NURBS application is for constitutive material modeling.

NURBS surfaces are used to represent the interaction between stresses and strains,

i.e., the NURBS surfaces are used here as response surfaces. These NURBS sur-

faces are based on two axes of strain and one axis of stress. NURBS curves can

also beused with one axisof strain and one axisof stress. The constitutivematerial

tensor iscalculated with thederivativesfrom theNURBS surfaces andcurves.

To the author knowledge, theonly referenceto theuseof NURBSasresponse

surfacefor the proposed material model is the linear elastic plane stressmaterial

model based onNURBS(LE-NURBS) implemented in CARAT++ by A. Widham-

mer [51]. Thismaterial model consistsof two NURBS surfaces and one curve.
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The material model based onNURBS for principal directions (PD-NURBS)

isamodel for materialsusingstressand strain in principal directions.

4.1
Nonun iform rational B-Spline curves and surfaces

The concept of NURBS curve and surfaceused in the present study refers to

theworks of Piegl and Till er [72] and L. Piegl [73].

The definition of NURBS curve/surfaceis the rational generalization of the

tensor-product nonrational B-spline curve/surface. Thereforethe conceptsof tensor-

product surfaces and B-spline curve/surfacewill be introduced.

According to Rogers [74], technically, a NURBS surfaceis a special case of

a general rational B-spline surfacethat uses a particular form of knot vector. For a

NURBS surface, the knot vector has multiplicity of duplicate knot values equal to

the order of the basis function at the ends. The knot vector may or may not have

uniform internal knot values.

4.1.1
Tensor produ ct surfaces

The curve C(u) is a vector-valued function of one parameter. It is a mapping

of a straight line segment into Euclidean three-dimensional space. A surfaceis a

vector-valued function of two parameters, u and v, and represents a mapping of a

region, of theuv plane into Euclidean three-dimensional space. Thus it hastheform

S (u, v) = (x(u, v), y(u, v), z(u, v)).

The tensor product method is basically a bidirectional curve scheme. It

uses basis functions and geometric coefficients. The basis functions are bivariate

functionsof u andv, which are constructed asproductsof univariatebasisfunctions.

Thegeometric coefficients are arranged in abidirectional, n x m net. Thus, a tensor

product surfacehas the form:

S (u, v) = (x(u, v), y(u, v), z(u, v)) =
n∑

i=0

m∑

j=0

fi(u)g j(v)bi, j (4-1)

where bi, j = (xi, j, yi, j, zi, j), 0 ≤ u, and v ≤ 1

S (u, v) can be rewritten in matrix form:

S (u, v) = [ fi(u)]T [bi, j][g j(v)] (4-2)
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where [ fi(u)]T is a (1) x (n+1) row vector, [g j(v)] is a (m+1) x (1) column vector,

and [bi, j] isa (n+1) x (m+1) matrix of three-dimensional points.

4.1.2
Defin ition o f B-spline basis functions

Let U = {u0, ..., um} be a nondecreasing sequence of real numbers, i.e.,

ui ≤ ui+1, i = 0, ...,m − 1. The ui are called knots, and U is the knot vector. The

ith B-splinebasis functionsof p-degree(order p+1), denoted by Ni,p(u), aredefined

as

Ni,0(u) =






1 i f ui ≥ u < ui+1

0 otherwise
(4-3)

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (4-4)

Ni,p iswritten instead of Ni,p(u) for brevity.

Thederivativeof B-splinebasis functions is given by:

N
′

i,p =
p

ui+p − ui
Ni,p−1(u) −

p
ui+p+1 − ui+1

Ni+1,p−1(u) (4-5)

Theproof of equation4-5 ispresented in Piegl andTill er [72].

4.1.3
Defin ition o f B-spline curves

A ph-degreeB-spline isdefined by

C(u) =
n∑

i=0

Ni,p(u)CPi a ≤ u ≤ b (4-6)

wheretheCPi arethe control pointsandtheNi,p(u) arethepth-degreeB-splinebasis

functions(equation 4-3) defined onthenonperiodic and nonuniform knot vector

U = {a, ..., a
︸ ︷︷ ︸

p+1

, up+1, ..., um−p−1, b, ..., b
︸ ︷︷ ︸

p+1

} (4-7)

with n + 1 number of control pointsandm + 1 number of knotsare related by:

m = n + p + 1 (4-8)
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Thederivativeof B-spline curve is given by:

C
′

(u) =
n∑

i=0

N
′

i,p(u)CPi (4-9)

Substitutingequation4-5 in equation4-9

C
′

(u) =
∑n

i=0

(
p

ui+p−ui
Ni,p−1(u) − p

ui+p+1−ui+1
Ni+1,p−1(u)

)

CPi (4-10)

= p
∑n−1

i=−1 Ni+1,p−1(u) CPi+1
ui+p+1−ui+1

− p
∑n

i=0 Ni+1,p−1(u) CPi
ui+p+1−ui+1

= p N0,p−1(u)CP0

up−u0
+ p

∑n−1
i=0 Ni+1,p−1(u) CPi+1−CPi

ui+p+1−ui+1
− p Nn+1,p−1(u)CPn

un+p+1−un+1

The first and last terms yield the quotient 0
0, which is here set zero. Thus

equation4-10 results:

C
′

(u) =
n−1∑

i=0

Ni+1,p−1(u)
CPi+1 − CPi

ui+p+1 − ui+1
=

n−1∑

i=0

Ni+1,p−1(u)Qi (4-11)

where Qi =
CPi+1−CPi

ui+p+1−ui+1
.

ConsideringU
′

theknot obtained by droppingthefirst and last knots from U:

U
′

= {a, ..., a
︸ ︷︷ ︸

p

, up+1, ..., um−p−1, b, ..., b
︸ ︷︷ ︸

p

} (4-12)

it has m − 1 knots. Then it is easy to check that the function Ni+1,p−1(u), computed

onU, isequal to Ni,p−1(u) computed onU
′

. Thus

C
′

(u) =
n−1∑

i=0

Ni,p−1(u)Qi (4-13)

andC
′

(u) isa p − 1th-degreeB-spline curve.

4.1.4
Defin ition o f B-spline surfaces

Takingabidirectional net of control points, two knot vectors, andtheproducts

of theunivariateB-spline functionsaB-splinesurfaceisdefined as:

S (u, v) =
n∑

i=0

m∑

j=0

Ni,p(u)N j,q(v)CPi, j (4-14)

with

U = {0, ..., 0
︸ ︷︷ ︸

p+1

, up+1, ..., ur−p−1, 1, ..., 1
︸ ︷︷ ︸

p+1

}
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V = {0, ..., 0
︸ ︷︷ ︸

q+1

, uq+1, ..., us−q−1, 1, ..., 1
︸ ︷︷ ︸

q+1

}

Theknot vector U has r + 1 knots, and knot vector V has s + 1 knots. Equation4-8

takes the form

r = n + p + 1 and s = m + q + 1 (4-15)

Figure4.1 showsan exampleof a B-splinesurface.

Figure 4.1: Example of aB-spline surface(source: Piegl and Till er [73])

Thederivativeof aB-splinesurfacew.r.t. u is given by

S u(u, v) =
∂S (u, v)
∂u

=

m∑

j=0

N j,q(v)
∂
∑n

i=0 Ni,p(u)CPi, j

∂u
(4-16)

=

m∑

j=0

N j,q(v)
∂C j(u)

∂u

where C j(u) =
∑n

i=0 Ni,p(u)CPi, j j = 0, ...,m are B-spline curves. Applying equa-

tion4-13 into equation4-16 gives

S u(u, v) =
n−1∑

i=0

m∑

j=0

Ni,p−1(u)N j,q(v)CP(1,0)
i, j (4-17)

where

CP(1,0)
i, j =

CPi+1, j − CPi, j

ui+p+1 − ui+1

U(1) = {a, ..., a
︸ ︷︷ ︸

p

, up+1, ..., ur−p−1, b, ..., b
︸ ︷︷ ︸

p

}

V (0) = V
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Analogously S v(u, v) is given by:

S v(u, v) =
n∑

i=0

m−1∑

j=0

Ni,p(u)N j,q−1(v)CP(0,1)
i, j (4-18)

where

CP(0,1)
i, j =

CPi, j+1 − CPi, j

v j+q+1 − v j+1

U(0) = U

V (1) = {a, ..., a
︸ ︷︷ ︸

q

, vq+1, ..., vs−q−1, b, ..., b
︸ ︷︷ ︸

q

}

4.1.5
Defin ition o f NURBS curves

Based in thepreviousdefinitions, a pth-degreeNURBS curve isdefined by:

CNURBS (u) =

n∑

i=0
wiCPiNi,p(u)

n∑

i=0
wiNi,p(u)

a ≤ u ≤ b (4-19)

where wi are the weights, CPi are the control points that form a control

polygon, andNi,p(u) arethenormalized B-splinesof degreep in u direction, defined

over theknot vector UNURBS .

UNURBS = [a, ..., a
︸ ︷︷ ︸

p+1

, up+1, ..., um−p−1, b, ..., b
︸ ︷︷ ︸

p+1

] (4-20)

We assumethat a = 0, b = 1, and wi > 0 for all i. Setting:

Ri,p(u) =
Ni,p(u)wi

n∑

j=0
N j,p(u)w j

(4-21)

equation4-19 is rewritten in the form:

CNURBS (u) =
n∑

i=0

Ri,p(u)CPi (4-22)

Ri,p(u) are therational basis functions.

For thepropertiesof NURBScurves, we refer to Piegl andTill er [72]. Figure

4.2 ill ustrates the construction of a NURBS curve.
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Figure 4.2: Geometry construction of aNURBScurve (source: Piegl and Till er [73])

4.1.6
Derivatives of a NURBS curve

Thederivativesof NURBS curve are computed with thederivativesof nonra-

tional B-spline curves. ConsideringCNURBS (u) as follows:

CNURBS (u) =
w(u)CNURBS (u)

w(u)
=

A(u)
w(u)

(4-23)

whereA(u) isthenumerator of equation4-19. Differentiatingequation4-23, results:

CNURBS
′

(u) =
w(u)A

′

(u) − w
′

(u)A(u)
w(u)2

(4-24)

=
w(u)A

′

(u) − w
′

(u)w(u)C(u)
w(u)2

=
A
′

(u) − w
′

(u)C(u)
w(u)

where

A
′

(u) =
n∑

i=0

wiCPiN
′

i,p(u) (4-25)

w
′

i(u) =
n∑

i=0

wiN
′

i,p(u) (4-26)

and N
′

i,p(u) isgiven by equation4-5

4.1.7
Defin ition o f NURBS surfaces

A NURBS surfaceis a bivariate vector-valued piecewise rational function of

the form
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S NURBS (u, v) =

n∑

i=0

m∑

j=0
wi, jCPi, jNi,p(u)N j,q(v)

n∑

i=0

m∑

j=0
wi, jNi,p(u)N j,q(v)

0 ≤ u, v ≤ 1 (4-27)

wherewi, j are theweights, CPi, j are the control points that form a control net,

and Ni,p(u) and Ni,q(v) are the nonrational B-spline basis functions of degreep and

q in theu and v directions, respectively, defined over theknot vectors:

UNURBS = [0, ..., 0,
︸ ︷︷ ︸

p+1

up+1, ..., ur−p−1, 1, ..., 1
︸ ︷︷ ︸

p+1

] (4-28)

VNURBS = [0, ..., 0,
︸ ︷︷ ︸

q+1

uq+1, ..., us−q−1, 1, ..., 1
︸ ︷︷ ︸

q+1

] (4-29)

where r = n + p + 1 and s = m + q + 1.

Introducing thepiecewise rational basis functions:

Ri, j(u, v) =
Ni,p(u)N j,q(v)wi, j

n∑

k=0

m∑

l=0
Nk,p(u)Nl,q(u)wk,l

(4-30)

(a) (b)

Figure4.3: NURBSsurface: (a) Control pointsnet (b) biquadratic NURBSsurface(source:
Piegl and Till er [72])

Equation4-27 is rewritten as

S NURBS (u, v) =
n∑

i=0

m∑

j=0

Ri, j(u, v)CPi, j (4-31)
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A NURBS surface example is shown in figure4.3

4.1.8
Derivatives of a NURBS surface

Thederivativesof aNURBS surface are computed analogously to thederiva-

tivesof aNURBS curve. ConsideringS NURBS (u, v) as follows:

S NURBS (u, v) =
w(u, v)S NURBS (u, v)

w(u, v)
=

A(u, v)
w(u, v)

(4-32)

whereA(u, v) isthenumerator of equation4-27, thederivativesof aNURBSsurface

are calculated:

S NURBS
α (u, v) =

Aα(u, v) − wα(u, v)S NURBS (u, v)
w(u, v)

(4-33)

andα denotes either u or v. In the above expression Aα(u, v) isgiven by:

Aα(u, v) = w(u, v)
∂

∂α
S NURBS (u, v) (4-34)

= w(u, v)





∂

∂α

m∑

j=0

N j,q(v)
n∑

i=0

Ni,p(u)CPi, j





The final expressions for the derivatives of a NURBS surfacein direction u

follow:
∂

∂u

n∑

i=0

Ni,p(u)CPi, j =

n−1∑

i=0

Ni,p−1(u)CP(1,0)
i, j

S NURBS
u (u, v) =

n−1∑

i=0

m∑

j=0

Ni,p−1(u)N j,q(v)CP(1,0)
i, j (4-35)

where

CP(1,0)
i, j = p

CPi+1, j − CPi, j

ui+p+1 − ui+1

UNURBS (1)
= [0, ..., 0,

︸ ︷︷ ︸

p

, up+1, ..., ur−p−1, 1, ..., 1
︸ ︷︷ ︸

p

]

VNURBS (0)
= VNURBS

Analogously for directionv:

S NURBS
v (u, v) =

n∑

i=0

m−1∑

j=0

Ni,p(u)N j,q−1(v)CP(0,1)
i, j (4-36)

DBD
PUC-Rio - Certificação Digital Nº 0721425/CA



Material model based onNURBS 75

where

CP(0,1)
i, j = q

CPi, j+1 − CPi, j

v j+q+1 − v j+1

UNURBS (0)
= UNURBS

VNURBS (1)
= [0, ..., 0,

︸ ︷︷ ︸

q

, vq+1, ..., vs−q−1, 1, ..., 1
︸ ︷︷ ︸

q

]

4.2
Linear elastic material model based on NURBS (LE–NURBS)

Thismaterial model was developed by A. Widhammer [51].

Considering the plane stresscondition the stressand strain tensors are given

by equations4-37and 4-38, respectively.

S =
[

S 11 S 22 S 12

]

(4-37)

E =
[

E11 E22 2E12

]

(4-38)

Two NURBS surfaces are defined: one for thestressS 11 and theother for the

stressS 22 with the commonstrain axesE11 andE22. Additionally theNURBScurve

is defined with the shear strain (E12) in one axis and the shear stress(S 12) in the

other. Illustration of theLE–NURBSsurfaces andcurve arepresented in figure4.4.

Because of themodel li nearity, thesurfaces are flat and the curve is linear.

(a) (b)

(c)

Figure 4.4: NURBS surfacesfor stresses and strains for LE–NURBS material: (a) stresses
in direction 11and strains in directions 11 and 22, (b) stressesin direction 22and strains
in directions 11 and 22and, (c) NURBS curve for stressesin direction 12and strains in
direction 12.
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For given strain input values the corresponding stresses are obtained on the

NURBS surfaces.

The LE-NURBS constitutive material tensor presented in equation 4-39 is

given by the derivatives: dS 11
dE11

, dS 11
dE22

, dS 22
dE11

, dS 22
dE22

and dS 12
2dE12

, which are the derivatives

of the NURBS surfaces and curve. These derivatives are calculated following the

NURBS theory presented in section4.1.

dS
dE
=





dS 11
dE11

dS 11
dE22

0
dS 22
dE11

dS 22
dE22

0

0 0 dS 12
2dE12





(4-39)

where




dS 11
dE11
dS 11
dE22



 =









dE11
du

dE22
du

dE11
dv

dE22
dv









−T

·





dS 11
du

dS 11
dv



 (4-40)





dS 22
dE11
dS 22
dE22



 =









dE11
du

dE22
du

dE11
dv

dE22
dv









−T

·





dS 22
du

dS 22
dv



 (4-41)

dS 12

dE12
=

dS 12

du
·

(

dE12

du

)−1

(4-42)

The derivativesof the NURBS surfacefor S 11 in directions u and v are given

by

S NURBS
u11

(u, v) =
[

dE11
du

dE22
du

dS 11
du

]

(4-43)

S NURBS
v11

(u, v) =
[

dE11
dv

dE22
dv

dS 11
dv

]

(4-44)

and analogously for the derivatives of the NURBS surfacefor S 22 in directions u

andv.

S NURBS
u22

(u, v) =
[

dE11
du

dE22
du

dS 22
du

]

(4-45)

S NURBS
v22

(u, v) =
[

dE11
dv

dE22
dv

dS 22
dv

]

(4-46)

Thederivativeof theNURBS curve for stressS 12 in directionu is

CNURBS
′

(u) =
[

dE12
du

dS 12
du

]

(4-47)

4.3
Material model based on NURBS for principal directions (PD–NURBS)

Theproposed material model coversisotropicnonlinear materialsunder plane

stress conditions, consequently the LE–NURBS is also included. The principal

differencebetween this model and the LE–NURBS material model is that the PD–
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NURBS is based on principal directions of stressand strain. Therefore only one

surfaceis required for its definition.

PD–NURBS is valid for isotropic materials because of the use of orthogonal

transformation to calculate the response of the stress. According to Gruttmann and

Taylor [60], for isotropic material response the contravariant components of the

SecondPiola–Kirchhoff stresstensor arerecovered byan orthogonal transformation

of theprincipal stresses.

ThesecondPiola–Kirchhoff stresses and theGreen–Lagrange strains in prin-

cipal directionsare given by:

Ŝ =
[

S 1 S 2 Ŝ 12

]

(4-48)

Ê =
[

E1 E2 Ê12

]

(4-49)

where Ŝ 12 = 0 and Ê12 = 0.

The constitutive material tensor in general directions is obtained with the

rotationmatrix calculated as follows:

dS
dE
=





dS 11
dE11

dS 11
dE22

dS 11
2dE12

dS 22
dE11

dS 22
dE22

dS 22
2dE12

dS 12
dE11

dS 12
dE22

dS 12
2dE12





= TT ·
dŜ

dÊ
· T (4-50)

where dŜ
dÊ

is the constitutivematerial tensor in principal directions

dŜ

dÊ
=





dS 1
dE1

dS 1
dE2

dS 1

2dÊ12
dS 2
dE1

dS 2
dE2

dS 2

2dÊ12
dŜ 12
dE1

dŜ 12
dE2

dŜ 12

2dÊ12





=





dS 1
dE1

dS 1
dE2

0
dS 2
dE1

dS 2
dE2

0

0 0 dŜ 12

2dÊ12





(4-51)

and the rotation matrix T is the same matrix introduced for the Ogden material in

chapter 3 section 3.3.3.

T =





cos2φ sin2φ cosφsinφ

sin2φ cos2φ −cosφsinφ

−2cosφsinφ 2cosφsinφ cos2φ − sin2φ





(4-52)

The constitutive material tensor in principal directions is computed with the
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NURBS surfacederivatives introduced in section4.1.8:





dS 1
dE1
dS 1
dE2



 =









dE1
du

dE2
du

dE1
dv

dE2
dv









−T

·





dS 1
du

dS 1
dv



 (4-53)





dS 2
dE1
dS 2
dE2



 =









dE1
du

dE2
du

dE1
dv

dE2
dv









−T

·





dS 2
du

dS 2
dv



 (4-54)

Thederivative dŜ 12

2dÊ12
is calculated as follows:

E =
1
2

(

FT F − I
)

=
1
2

(C − I)

Ĉ = T · C (4-55)

where Ĉ and C are in vector form:

Ĉ =
[

Ĉ11 Ĉ22 2Ĉ12

]

(4-56)

C =
[

C11 C22 2C12

]

(4-57)

Equation4-55gives the constraint:

Ĉ12 = Ĉ21 = −
1
2

(C11 −C22) sin(2φ) + C12cos(2φ) = 0 (4-58)

S = TT · Ŝ (4-59)

Finally the derivative dŜ 12

2dÊ12
is calculated with the derivatives dŜ 12

dφ and dφ
2dÊ12

obtained with equation4-59and 4-58:

dŜ 12

2dÊ12

=
dŜ 12

dφ
·

dφ

2dÊ12

=
−(S 2 − S 1)cos2φ

C11 − C22
(4-60)

where
dŜ 12

dφ
= sinφcosφ(S 11− S 22) = S 2 − S 1

dφ

2dÊ12

=
dφ

dĈ12

=
−cos2φ

C11 − C22

andC11 and, C22 arethe componentsof theright stretch tensor C introduced inchap-

ter 2 in section 2.2. The cosine cosφ is calculated with the spectral decomposition

presented in equations2-10and 2-11.

The algorithm of thematerial model based onNURBSfor principal directions
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ispresented in box4.1

1. Update thestrain tensor.
En+1 = En + ▽

S u

2. Calculate thestrains in principal directions

Ên+1 = TT En+1

3. Calculate the local parameter u and v from thestrains.

4. Obtain thestressvaluesS 1(u, v), S 2(u, v).

5. Calculate thederivatives dS 1
dE1

, dS 1
dE2

, dS 2
dE1

, dS 2
dE2

, and dŜ 1

dÊ1
(equations 4-53, 4-54 and

4-60).

6. Constitutivematerial tensor is obtained:

dS
dE
= TT ·





dS 1
dE1

dS 1
dE2

0
dS 2
dE1

dS 2
dE2

0

0 0 dŜ 12

2dÊ12





· T

7. Calculate thestresstensor.
S = TT · Ŝ

Box 4.1: Algorithm of the material model based onNURBS

4.4
Data fitt ing

Data fitting based onleast-squares aproximation is used to generate NURBS

surfacesfor the experimental data. Thisprocessisbriefly described below. For more

details the reference are the work of Piegl and Till er [73] and L. Piegl [73]. An

alternative approach for the generation of NURBS surfaces is the use of a CAD

software.

4.4.1
Curve fitt ing

According to L. Piegl [73] equation4-22can bewritten in matrix form as

CNURBS = R CP (4-61)
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whereCNURBS and CP are (n + 1) x 1 matricesand R isan (n + 1) x (n + 1) matrix.

If there are more data points than control points, equation 4-61 is overdetermined

andcan besolved approximately as follows:

CNURBS f
= (RT R)−1RT CP (4-62)

Assigning initial parameters to the data points, as the p-th degree and the

control points, a least-squares fit isgenerated usingequation4-62.

4.4.2
Surface fitt ing

The curve-fitting technique can be easily generalized for surfaces yielding:

S NURBS f
= (RT R)−1RT CP (4-63)

4.5
Validation examples

The PD–NURBS material model is applied to examples with different mate-

rial responses to validate theproposed material model. Attention isgiven to materi-

alswith large strains.

4.5.1
Hyperelasticity — NeoHookean

The hyperelastic example is a quadrilateral membrane with dimensions

1m x 1m and the material properties are shown in table 4.1. For this membrane

a finite element model was built for which the mesh, boundary conditions and,

loading are presented in figure 4.5. The mesh is composed by 143 nodes and 100

quadrilateral li near elementswith 2 x 2Gaussintegration. The load was risen upto

89.44MN.

Table4.1: Material propertiesof quadrilateral membrane example

Young’smodulus(E) 250MPa
Poisson ratio (ν) 0.3

thickness 1 mm

The validation was carried out comparing the solution with a conventional

formulation for hyperelastic materials and the nonlinear material model based on
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Figure 4.5: Mesh, boundary conditions and applied load for the quadrilateral example

NURBS surfaces. The conventional NeoHookean formulation is obtained with the

Ogden material model presented in section 3.3.3 setting: r = 1, α1 = 2 and

µ1 = G = E
2(1+ν) .

Sincenoexperimental datawasavailablefor thisapplication, thePD-NURBS

surfaces were generated with data points from NeoHookean formulation. The

NeoHookean NURBS surfaces are presented in figure 4.6 with stresses and strains

in the principal directions. These surfaces are composed by a control point net

25(u) x 25(v) and degree3 (p = 3 and q = 3).

(a)

(b)

Figure 4.6: NURBSsurfacesof stresses and strains in principal directions for NeoHookean
material: (a) stressesin direction 1and (b) stressesin direction 2.
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4.5.1.1
Results

Displacement results in direction y are presented in figure 4.7. The results

demonstrate that the solution with the proposed material model is in accordance

with the conventional NeoHookean material model formulation.

�

�

(a) (b) (c)

Figure4.7: Displacement results in y direction: (a) undeformed membrane, (b) conventional
material model, and (c) PD-NURBSmaterial model.

Themaximum error of theresultsareshown in Table4.2 andthisiscalculated

with equation4-64:

Error =
NURBS result − Conventional result

Conventional result
· 100 (4-64)

Table 4.2: Maximum error of the PD-NURBSfor rectangular membrane

Maximum error
displacement y Stress y

0.0165% 0.15%

4.5.2
Hyperelasticity – Moon ey-Rivlin

Thisexamplewasmodeled in chapter 3 in section3.3.4 consideringa conven-

tional formulation for Mooney-Rivlin material model. The results obtained before

are compared with the nonlinear material model based on NURBS surfaces. Fig-

ure 4.8 shows the NURBS surfaces used in these examples. The degree used in

the NURBS surfaces is 3 (p = 3 and q = 3) and the number of control points is

increased to analyzethe convergence control.
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(a)

(b)

Figure 4.8: NURBS surfaces with stresses and strains in principal directions for the
Mooney-Rivlin material: (a) stressesin direction 1, and (b) stressesin direction 2.

4.5.2.1
Results

NURBS surfaces are generated for different control point nets. The number

of control pointsare: 15x15, 20x20, 40x40, 70x70, and 100x100. Table4.3 presents

the convergencefor each load step comparing thedifferent nets.

For the 15x15 net convergence was achieved by the first step solely. As the

number of control points increases the convergence rate increases as well and the

number of iterations for each step decreases.

Thenumber of iterationschanges substantially for thefirst two stepscompar-

ing the20x20and 40x40 nets.

When the number of control points is increased to the 100x100 net the

convergencerate is improved for the last step andall thesteps have5 iterations.

Table4.4 presents themaximum error for the displacement, stress, and strain

for the analyzed nets. The error is calculated with equation 4-64 presented in the

previousexample.
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Table4.3: Displacement residuum for 15x15to 100x100control point net.

Step it. displacement residuum
15x15 20x20 40x40 70x70 100x100

1 9.97E+00 1.24E+01 1.14E+01 1.14E+01 1.14E+01
2 1.67E+00 1.28E+00 1.06E+00 1.05E+00 1.05E+00
3 1.22E-01 1.21E-01 1.94E-02 2.15E-02 2.14E-02
4 9.07E-03 1.37E-02 3.08E-04 8.55E-06 1.55E-05

1 5 1.43E-03 1.48E-03 4.16E-06 2.23E-09 4.44E-11
6 1.77E-04 1.65E-04 6.45E-08
7 2.81E-05 1.82E-05
8 3.92E-06 2.03E-06
9 6.05E-07 2.25E-07
1 3.18E+01 3.10E+01 7.10E-01 3.10E+01
2 8.87E+00 7.82E+00 7.95E+00 7.94E+00
3 7.14E-01 7.07E-01 7.10E-01 7.14E-01
4 1.67E-01 1.97E-02 2.61E-03 2.13E-03
5 3.37E-02 1.21E-03 6.57E-06 1.03E-06
6 9.84E-03 4.68E-05 2.25E-08 2.69E-09

2 7 N.C. 2.29E-03 2.73E-06
8 6.54E-04 1.17E-07
9 1.64E-04
10 4.54E-05
11 1.18E-05
12 3.20E-06
13 8.44E-07
1 4.69E+01 4.84E+01 4.77E+01 4.77E+01
2 9.71E+00 8.60E+00 8.79E+00 8.78E+00
3 7.40E-01 2.34E-01 2.58E-01 2.63E-01
4 1.95E-02 8.72E-03 2.97E-03 2.02E-04

3 5 1.37E-03 2.85E-04 7.03E-05 1.81E-07
6 8.30E-05 3.10E-05 1.05E-06
7 7.50E-06 1.17E-06 2.55E-08
8 6.27E-07 1.21E-07

The improvement in the convergence rate observed with the increase in the

number of control points, isalso observed by the results for displacements, stresses

andstrains.

The maximum error for the stressin direction x–x has an interesting path as

the number of control points increases. The error of 5.558% for the 20x20control

point net, which isquitelarge, decreaseswith thenumber of control pointsreaching

the same results as the conventional material model for the 70x70 control point

net. For the 100x100control point net the value is also the same as the results for

conventional material model or the error isvery small .
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Table4.4: Maximum error of PD-NURBSmaterial with surfacesgenerated bycontrol point
nets 20x20to 100x100for the square perforated example

Maximum error (%)
control points 20x20 40x40 70x70 100x100
displacement x 1.341 0.111 0.012 0.000
displacement y 0.264 0.026 0.000 0.000
stress xx 5.558 0.178 0.000 0.010
stress yy 0.489 0.074 0.074 0.011
stress xy 0.859 0.049 0.012 0.006
strain xx 0.743 0.085 0.065 0.011
strain yy 0.400 0.030 0.023 0.003
strain xy 0.445 0.109 0.016 0.000

4.5.3
Comparison with elastop lastic von Mises material model

The von Mises elastoplastic material is used here to investigate the applica-

bilit y of the PD-NURBS to other stress-strain responses. The example consists in

a monotonic stretching of a perforated rectangular membrane modeled in chapter

3 section 3.1.3. The PD-NURBS material is now employed by the constitutive re-

sponse in thefinite element code as presented in box4.1.

It is worth pointing out that a full elastoplastic stress history can not be

obtained with the proposed PD-NURBS since unloading/reloading cycles are not

represented by theNURBS surfaces herein.

The membrane material properties are rewritten in table 4.5 and the mesh

is composed of 531 nodes and 480 quadrilateral membrane elements with linear

discretization and 2 x 2 gausspoints integration. The mesh, geometry, boundary

conditions, and the applied load areshown in figure 3.4 in section 3.1.3.

Table4.5: Material propertiesof the perforated membrane example

Young’smodulus(E) 70 GPa
Poisson ratio (ν) 0.2
Yield stress(σy) 0.243GPa

Hardeningmodulus(K) 0.2GPa
thickness 1 mm

The elastoplastic material properties of table4.5 are used to producethe data

points for the generation of the NURBS surfaces in principal directions. These

NURBS surfaces are shown in figure 4.9 and they are composed by a control point

net 70(u) x 70(v) and degree2 (p = 2 and q = 2). The number of control points

for theNURBSsurfaces isdefined with help of thepreviousexample, by which the

convergence andmaximum error for different control point nets are compared.
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(b)

Figure 4.9: NURBSsurfacesfor stresses and strains in principal directions for elastoplastic
material: (a) stressesin direction 1, and (b) stressesin direction 2.

The elastic region can be identified in the NURBS surfaces in Figure 4.9 as

theflat elli pseplane. Outsidethis region nonlinear behavior ispresented. Therefore

the corresponding axis S 11(u, v) and S 22(u, v) values fall i n the elastoplastic range

of theplastic model.

The conventional formulation used for the elastoplastic material model was

presented in section3.1.

4.5.3.1
Results

The results obtained with the PD-NURBS material model are compared

with the classical material model. Figures 4.10 and 4.11 show the results for the

conventional elastoplastic and the PD-NURBS material model for displacements

andstressesin direction y, respectively. Themaximum error in theresultsareshown

in table4.6
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(a) (b)

Figure 4.10: Displacements in y direction: (a) conventional material model and (b) PD-
NURBSmaterial model.

�

�

(a) (b)

Figure 4.11: Stressesin y direction: (a) conventional material model and (b) PD-NURBS
material model.

Table 4.6: Maximum error of thePD-NURBSfor perforated membrane

Maximum errors
displacement y stress y

0.032% 0.040%

Althoughthe comparison with the elastoplastic models are promising, appli -

cation of PD-NURBS to path dependent problemsrequires further investigation.
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