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Material model based on NURBS

Non Uniform Rational Basis Splines (NURBS) is a mathematicd representa-
tion o ageometry in 3D used for curves and surfaces.

NURBS representation is widely used in Computer-aided design (CAD) to
creae and modify designs offering smoath surfaces. Due to the successof the use
of NURBSin CAD, it has been suggested in ather applicaions. An example of this
istheisogeometric analysisintroduced by Hugheset al. [69], which isanew method
to solve problems governed by pertial differential equations such as, structures and
fluids. This method has many feaures in common with the finite dement method
and some in common with meshless methods. However, it is more geometricdly
based and takes inspiration from Computer Aided Design (CAD).

Kiend et a. [70] reports that in isogeometric analysis the functions from the
geometry description are used as basisfunctionsfor the analysis. Thus, the analysis
works on a geometricdly exad model and nomeshing is necessary. This offers a
posshility to close the existing gap between design and analysis as both use the
same geometry model.

Ancther applicaion o NURBS in numericd anaysis is the NURBS-
enhanced finite dement method (NEFEM). Sevilla & al. [71] reports that the NE-
FEM uses NURBS to acarately describe the boundry of the computational do-
main, but it differs from isogeometric methods in two main fads. First, NURBS
are used to describe the boundxry of the computational domain, not the entire do-
main as dore in isogeometric methods. Seand the solutionis approximated using
polynomials and the gpproximationis defined with Cartesian coordinates, diredly
in the physicd space From a pradicd point of view, NEFEM considers efficient
strategies for numericd integration onelements affeded by curved boundiries.

The proposed NURBS application is for constitutive material modeling.
NURBS surfaces are used to represent the interadion between stresses and strains,
I.e., the NURBS surfaces are used here as response surfaces. These NURBS sur-
faces are based ontwo axes of strain and ore ais of stress NURBS curves can
also be used with one axis of strain and ore ais of stress The cnstitutive material
tensor is cdculated with the derivatives from the NURBS surfaces and curves.

To the author knowledge, the only referenceto the use of NURBS as resporse
surfacefor the proposed material model is the linea elastic plane stress material
model based onNURBS (LE-NURBS) implemented in CARAT ++ by A. Widham-
mer [51]. Thismaterial model consists of two NURBS surfaces and ore aurve.
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The material model based onNURBS for principal diredions (PD-NURBYS)
isamodel for materials using stressand strain in principal diredions.

4.1
Nonun iform rational B-Spline curves and surfaces

The concept of NURBS curve and surfaceused in the present study refers to
theworks of Piegl and Tiller [72] and L. Piegl [73].

The definition d NURBS curve/surfaceis the rational generalizaion o the
tensor-product norrational B-spline aurve/surface Therefore the concepts of tensor-
product surfaces and B-spline aurve/surfacewill be introduced.

According to Rogers [74], technicdly, a NURBS surfaceis a speda case of
agenera rational B-spline surfacethat uses a particular form of knot vedor. For a
NURBS surface the knat vedor has multiplicity of dugicae knot values equal to
the order of the basis function at the ends. The knot vedor may or may not have
uniform internal knot values.

4.1.1
Tensor product surfaces

The aurve C(u) is avedor-valued function o one parameter. It isamapping
of a straight line segment into Euclidean threedimensional space A surfaceis a
vedor-valued function o two parameters, u and v, and represents a mapping o a
region, of the uv planeinto Euclidean three dimensional space Thusit hastheform
S(u,v) = (X(u, V), y(u, Vv), z(u, v)).

The tensor product method is basicdly a bidiredional curve scheme. It
uses basis functions and geometric coefficients. The basis functions are bivariate
functionsof u andv, which are constructed as products of univariate basisfunctions.
The geometric coefficients are aranged in abidiredional, n x m net. Thus, atensor
product surfacehas the form:

n m
S(UV) = (XU, V), Y(U, V), 2, V) = > > fi(U)g (Wb (4-1)
i=0 j=0
whereb; j = (X}, Vi, Z,j), 0<uandv<1
S(u, v) can be rewritten in matrix form:

S(u,v) = [fi(u]"[bi 1[g;(v)] (4-2)
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where [fi(u)]" isa (1) x (n+1) row vedor, [g;(V)] isa (m+1) x (1) column vedor,
and[b; ;] isa(n+1) x (m+1) matrix of three-dimensional points.

4.1.2
Definition of B-spline basis functions

Let U = {Up,...,Un} be anonckeaeaing sequence of red numbers, i.e.,
U < Uyl = 0,...,m—-1. The uy; are cdled knas, and U is the knot vedor. The
ith B-spline basis functions of p-degree(order p+1), denoted by N; ,(u), are defined
as

1 if uy>u<uy
Ni’Q(U) = . (4-3)
0 otherwise
u-—u Uispia — U
Nip(u) = —Ni p-2(U) + LNi+1,p—1(U) (4-4)
i+p — Ui i+p+1 — Ui+l

N; p iswritten instead of N; ,(u) for brevity.
The derivative of B-spline basis functionsis given by:.

Ni’,p - P 5 Ni p-1(U) — P

ui+p — Ui ui+p+l — Ui+1

Niy1,p-1(U) (4-5)

The proof of equation4-5 is presented in Piegl and Tiller [72].

413
Definition of B-spline curves

A ph-degreeB-spline is defined by
C(u) = Z Nip(L)CP; a<u<b (4-6)
i=0

wherethe CP; arethe control pointsandthe N; (u) are the pth-degreeB-spline basis
functions (equation 4-3) defined onthe nongeriodic and nonumform knat veaor

U={a..aUp1, ... Unp1Db, ..., 0 (4-7)
N—— e
p+1 p+1

with n + 1 number of control pointsand m+ 1 number of knots are related by.

m=n+p+1 (4-8)
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The derivative of B-spline aurveis given by.
n
C'(W) = > N, (UCP, (4-9)
i=0
Substituting equation 4-5 in equation 4-9

C'(U) = 2o (525 Nup 1 (W) — 52 .+1p_1(u))cp- (4-10)
- pZi——l i+1, p—l( )& pz” =0 I+l p—l( )

Uitp+1—Ui+1
No,p-1(U)CPo

= pu—uo + pzizo i+1,p—1( )CP|+1 CP D

Uitp+1—Ui+1

u|+p-¢-1 u|+1
Nn+1,p-1(U)CPp
Un+p+1—Un+1

The first and last terms yield the quatient 2, which is here set zero. Thus
equation 4-10 results:

n-1 CP - 1
C, u) = N: g i+ WO, .
( ) ; i+1,p 1( )U|+p+1 — U|+1 ; i+1,p 1( )Q, ( )
where Q; = %

ConsideringU’ the knot obtained by droppngthe first and last knots from U:
{a~9 as Up+1, seey um—p—l, ba eeey b} (4-12)
p P

it hasm— 1 knds. Then it is easy to ched that the function Ni,q p-1(u), computed
onU, isequal to N, ,_1(u) computed onU’. Thus

n-1
C'(w) =) Nip1(UQ (4-13)
i=0

and C'(u) isa p — 1th-degreeB-spline aurve.

4.1.4
Definition of B-spline surfaces

Takingabidiredional net of control paints, two kna vedors, andthe products
of the univariate B-spline functions a B-spli ne surfaceis defined as:

n m
S(UV) = > > Nip(UN;g(VCP, (4-14)
i=0 j=0
with
U = {O, ceey O, UP+1, ceey Ur_p_l, 1, ceey 1}
S~—— S~——
p+1 p+1
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V = {O, ey O, Uq+l, ceey uS_q_]_, 1, ceey 1}
e N——
g+l o+1

Theknat vedor U hasr + 1 knas, and knd vedor V has s+ 1 knas. Equation 4-8
takes the form
r=n+p+1 and s=m+q+1 (4-15)

Figure 4.1 shows an example of a B-spline surface

Ny 3(u) Na2(v)

Figure 4.1: Example of a B-spline surface(source Piegl and Till er [73])

The derivative of a B-spline surfacew.r.t. uisgiven by

sy = BUY_ gy 22N WCP g
j=0
4 oC;(u)
= ) NigW—;
; )q ou

where Cj(u) = YLy Nip,(WCP;; j = O,...,mare B-spline aurves. Applying equa-
tion4-13into equation 4-16 gives

n-1

m
Su(u,v) = Nip-1(U)N; o(v)CPO (4-17)
j=0

i=0 j

where
’ Uitp+1 — Uit
U(l) = {a'9 seey aa Up+l, seey Ur—p—l, b’ cee b}
~—— ~——
p p

vO =v


DBD
PUC-Rio - Certificação Digital Nº 0721425/CA


PUC-RIo - Certificacdo Digital N° 0721425/CA

Material model based onNURBS 71

Anaogously S,(u, v) isgiven by.

n m-1
SuUY) = > > Nip(UN; -1 (V)CPG? (4-18)
i=0 j=0
where
’ Vitg+1 — Vj41
u@=u
VO ={a, ..., Vg1, - Vs q-1, D, ..., D}
———— ——
q q
4.1.5

Definition of NURBS curves
Based in the previous definiti ons, a pth-degreeNURBS curve is defined by.
n
> WiCP;iN; p(u)

CNURBS () = =2 a<u<b (4-19)
i;)wi Ni,p(u)

where w; are the weights, CP; are the control points that form a control
polygon and N; ,(u) are the normali zed B-spli nes of degreep in u diredion, defined
over the knot vedor UNVURES,

UNYRES = Ta, .8 Upets oo Ump1, D, B (4-20)

p+1 p+1
We ssaumethata=0,b =1, andw; > Ofor al i. Setting:

Ni p (U)W
Ri,p(u) = n (4-21)
Z Nj’p(U)Wj
j=0
equation 4-19is rewritten in the form:
CNURBS(U) _ Z R.p(U)CP; (4-22)
i=0

R p(u) are therational basis functions.
For the properties of NURBS curves, we refer to Piegl and Till er [72]. Figure
4.2 ill ustrates the aonstruction d a NURBS curve.
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w
CP1q
CVI‘JIURES(U) CP;V

CPo

<CP,
Ef'CNURE%(.u)

X

Figure 4.2: Geometry construction o aNURBS curve (source Piegl and Till er [73])
4.1.6
Derivatives of a NURBS curve

The derivatives of NURBS curve ae computed with the derivatives of norra-
tional B-spline aurves. Considering CNYRBS(u) as foll ows:

w(u)CNURBS(U)  A(u)
w(u) — w(u)

CNURBS(U) — (4_23)
where A(u) isthe numerator of equation4-19. Differentiating equation4-23, results:

W(U)A (U) — W (U)A(U)

CNURBS, (U) — W(u)2 (4_24)
_ WA (U) - W (uw(u)C(u)  A'(u) —w (u)C(u)
- w(u)? - w(u)
where .
A(U) = > WCPN; ,(u) (4-25)
i=0
w(u) = iwiN{,p(u) (4-26)
i=0

and N (u) is given by equation 4-5

4.1.7
Definition of NURBS surfaces

A NURBS surfaceis a bivariate vedor-valued piecevise rational function of
theform
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Wi jCP; jNi p(U)N;j (V)

Inas
M=

T.
o

SNURBS(U’ V) = O<uv<l (4-27)

Ms
M3

Wi jNi p(U)N; g(V)

I
o
Iy
o

where w; ; are the weights, CP; ; are the control points that form a control net,
and N; p(u) and N; 4(v) are the norrational B-spline basis functions of degree p and
gintheuandv diredions, respedively, defined over the knot vedors:

UNURBS _ [0,...,0,Ups1, ooy Ur—p1, 1, ., 1 (4-28)
p+1 p+l

VNURBS = [O’ ceey 0, uq+l$ LR uS—q_Jd 1’ R 1 (4-29)
a+l q+1

wherer =n+p+lands=m+q+ 1
Introducing the pieceavise rational basis functions:

Nip(UN; (V)W

Rj(u,v) = (4-30)

i g Nic p(U)N g (U)W
k=01=0

Figure 4.3: NURBS surface (@) Control points net (b) biquadratic NURBS surface(source
Piegl and Tiller [72])

Equation4-27 is rewritten as

SRS Y) = ] D Rj(UVCP, (4-31)
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A NURBS surface gampleis shownin figure 4.3

4.1.8
Derivatives of a NURBS surface

The derivatives of aNURBS surface ae computed analogously to the deriva-
tives of aNURBS curve. Considering SNYRBS(u, v) as foll ows:

w(u, )SNUFES(u,v)  A(u, V)
w(u, V) — w(u, V)

SNURBS(y,v) = (4-32)

where A(u, v) isthe numerator of equation4-27, the derivativesof aNURBS surface
are cdculated:

A, (U, v) — W, (u, v)SNURBS(y, v)

NURBS
= 4-
SNURES(y,v) TR (4-33)
and « dencotes either u or v. In the &ove expresson A, (u, V) is given by.
0 NURBS
A (uv) = wu,vV) o S (u,v) (4-34)
(04

a m n
w(uv) | =~ D Njg) > N p(U)CP,
i=0 i=0

The final expressons for the derivatives of a NURBS surfacein diredionu
foll ow:

g n n-1
% Z Ni’p(U)CPi’j = Z Ni’p_l(U)CPi(’]j’O)
i=0 i=0

n-1 m
SIUESN) = 3, > Nipa(WNjo(v)CP(S” (439
i=0 j=0
where CP,,1j— CP
i1 —
CPI(’];O) — p .|+ ] — 1]
u|+p+l Ui+l
U NURBS(l) = [O, ey O,, Up+l, ceey Ur_p_l, 1, ey 1]
~—— ~——
p p

v\ RBSO — \yNURBS

Anaogously for diredionv:

n m1

SYURBS(U,V) = > > Nip(U)N; -1 (V)CPS? (4-36)
i=0 j=0
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where CP CP
(01 _ ij+1 — i,j
CP" =0———————
Vj+q+1 - Vj+l
UNURBS(O) — YNURBS
@
VNURBS™ — [0, ..., 0,, Vi1, oor Vs 15 1, o0y 1
q q
4.2

Linear elastic material model based on NURBS (LE-NURBS)

This material model was developed by A. Widhammer [51].
Considering the plane stresscondtion the stressand strain tensors are given
by equations 4-37 and 4-38, respedively.

S= [ Sll 822 812 ] (4'37)
E = [ Ell E22 2E12 ] (4'38)

Two NURBS surfaces are defined: one for the stressS;; and the other for the
stressS,, with the commonstrain axes E;; and E;,. Additionally the NURBS curve
is defined with the shea strain (E;») in ore ais and the shea stress(S;,) in the
other. lllustration o the LE-NURBS surfaces and curve ae presented in figure 4.4.
Because of the model li neaity, the surfaces are flat and the aurveislinea.

0
E12(-)

(©

Figure 4.4: NURBS surfacesfor stresses iad strains for LE-NURBS material: () stresses
in diredion 11and strains in diredions 11 and 22 (b) stressesn diredion 22and strains
in diredions 11 and 22 and, (c) NURBS curve for stressesn diredion 12and strains in
diredion 12
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For given strain inpu values the correspondng stresses are obtained onthe
NURBS surfaces.
The LE-NURBS constitutive material tensor presented in equation 4-39 is

given by the derivatives: {31, $21, $322, 22 and 5212, which are the derivatives

dE11’ dEp,’ dEi;’ dEp
of the NURBS surfaces and curve. These derivatives are cdculated following the

NURBS theory presented in sedion4.1.

s |21 &
- = 22 22 4_
dE dE;1  dEx 0 ( 39)
0 0 4
2dE;»
where
[ dSi1 | [ dEi;r  dEx ] Tor dS11
dEin | — du du | Tdu )
dsll - dE]_]_ dE22 dSll (4 40)
L dEy, L dv dv J L dv
[ dSgp ] [ dEi;r  dEx ] Tor dS,,
dEin | — du du | Tdu )
dSZZ - dE]_]_ dE22 dSzz (4 41)
L dEy, L dv dv J L dv |
-1
dE12 du du

The derivatives of the NURBS surfacefor S;; in diredionsu andv are given

by

S EE R (449

SAVEIE S +49

and analogously for the derivatives of the NURBS surfacefor Sy, in diredions u
andv.

NURBS _ dE11 dE22 dS22
ShoR®S(u,v) = | L dezz dszz | (4-49)

Sy = 5 g2 | (449

The derivative of the NURBS curve for stressS;, in diredionuis

SR (4

4.3
Material model based on NURBS for principal directions (PD—-NURBS)

The proposed material model coversisotropic norlinea materialsunder plane
stress condtions, consequently the LE-NURBS is aso included. The principal
difference between this model and the LE-NURBS material model is that the PD—
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NURBS is based on gincipa diredions of stressand strain. Therefore only one
surfaceis required for its definition.

PD-NURBS isvalid for isotropic materials becaise of the use of orthogoral
transformation to cdculate the resporse of the stress According to Gruttmann and
Taylor [60], for isotropic material resporse the contravariant comporents of the
SewndPiola—Kirchhof stresstensor are recvered by an orthogoral transformation
of the principal stresses.

The second Piola—Kirchhaof stresses and the Green-Lagrange strainsin prin-
cipa diredions are given by.

é: [ S]_ Sz élz ] (4'48)

A

E = [ El Ez é]_z ] (4_49)

where S;, = 0and E;, = 0.
The oonstitutive material tensor in general diredions is obtained with the
rotation matrix cdculated as foll ows:

dSy1 dSq1 dSy1

d d d C
E = ﬁ @ ZdSEzlz2 =TT. E T (4-50)
dE - dEyr dEzx  2dEjpp - dé

dSi12  dSio dS1o
dEq1 dE»» 2dE1»

where g—g isthe constitutive material tensor in principal diredions

as;  dS;  dS ds, ds, g
d é dE; dE;  2dEp; dE; dE,
S| 8 d dS, || 4 45, g (4-51)
d E d/l\El d?z 2dE;|_2 d E1 d Ez ~

dS1;  dS;p  dSp 0O 0 U2

dE; dE;  2dEp, 2dE;2

and the rotation matrix T is the same matrix introduced for the Ogden material in
chapter 3 sedion 3.3.3.

cos2¢ Sirte cospsing
T= sintg cop  —Ccospsing (4-52)
—2C0SpSing 2C0SspSing COS’p — Sinfe

The cnstitutive material tensor in principa diredionsis computed with the
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NURBS surfacederivativesintroduced in seadion4.1.8:

-T

s [=|| e & || | s (4-53
L dE, L dv dv | L dv
s =@ @ || | (4-54)
L dE, L dv dv L dv
The derivative zd—f‘E% is cdculated as foll ows:
1, 1
E:E(F F—I):E(C—I)
C=T-C (4-55)
where C and C are in vedor form:
é = [ éll 622 2612 ] (4'56)
C= [ Cll C22 2C12 ] (4'57)
Equation 4-55 gives the constraint:
~ ~ 1 .
Cio=Cy = 3 (C11— Cy) Sin(2¢) + Cyoc08(2¢4) = 0 (4-58)
S=T'-S (4-59)

Finaly the derivative zd—f‘E% is cdculated with the derivatives ddi(;z and %STZ

obtained with equation 4-59 and 4-58:;

dSy, B dSy, ~_dg  —(Sz—Sy)cos2¢

— = — = 4-60
2d E12 d¢ 2dE12 Cll - C22 ( )
where ~
dslz .
e SiNgcosp(S11 — Sz) = S, — Sy

dp  dp = —cos2¢
2dE;, N dCy, ~ Cy1—Cyp
andC,; and, C,, arethe comporents of theright stretch tensor C introduced in chap-
ter 2in sedion 2.2. The aosine cosy is cdculated with the spedral decompasition
presented in equations 2-10and 2-11.
The dgorithm of the material model based onNURBS for principa diredions
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ispresented in box4.1

1. Update the strain tensor.
En = En + voU

2. Cdculatethe strainsin principal diredions

I,én+1 = TTEn+1

3. Cdculatethelocd parameter u and v from the strains.
4. Obtain the stressvalues S;(u, v), S,(u, v).

5. ACr%Ig;JIaIe the derivatives §2¢, $2¢, 52, 22, and 3—2 (equations 4-53, 4-54 and

6. Constitutive material tensor is obtained:

ds, ds,

ds
aE =T | & @& O [T
0 o0 e

7. Calculate the stresstensor.

Box 4.1: Algorithm of the material model basel onNURBS

4.4
Data fitting

Data fitting based onleast-squares aproximation is used to generate NURBS
surfacesfor the experimental data. This processis briefly described below. For more
detail s the reference ae the work of Piegl and Tiller [73] and L. Piegl [73]. An
aternative goproad for the generation o NURBS surfaces is the use of a CAD
software.

44.1
Curve fitting

Acoordingto L. Piegl [73] equation4-22 can be written in matrix form as

CNURES — RCP (4-61)
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where CNYRBS gnd CP are (n + 1) x 1 matricesand R isan (n + 1) x (n + 1) matrix.
If there ae more data points than control points, equation 4-61 is overdetermined
and can be solved approximately as foll ows:

CNURES' = (RTR)'RCP (4-62)

Asdgning initia parameters to the data points, as the p-th degree and the
control paints, aleast-squares fit is generated using equation 4-62.

4.4.2
Surface fitting

The aurve-fitting technique can be eaily generalized for surfaces yielding:

SNURES' — (RTR)!RTCP (4-63)

4.5
Validation examples

The PD-NURBS material model is applied to examples with different mate-
rial resporses to vali date the proposed material model. Attentionis given to materi-
aswith large strains.

45.1
Hyperelasticity — NeoHookean

The hyperelastic example is a quadrilateral membrane with dimensions
1m x 1m and the materia properties are shown in table 4.1. For this membrane
a finite dement model was built for which the mesh, boundary condtions and,
loading are presented in figure 4.5. The mesh is composed by 143 noés and 100
quadril ateral li nea elements with 2 x 2 Gaussintegration. The load was risen upto
89.44 MN.

Table 4.1: Materia propertiesof quadrilateral membrane example

Youngsmoduus (E) | 250MPa
Poisonratio (v) 0.3
thickness 1 mm

The validation was caried ou comparing the solution with a conventional
formulation for hyperelastic materials and the noninea material model based on
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N>
P>

A A A

L A o

Figure 4.5: Mesh, boundary condtions and applied load for the quadril ateral example

NURBS surfaces. The conventional NeoHookean formulation is obtained with the
Ogden material model presented in sedion 3.3.3 setting: r = 1, a; = 2 and
u =G= 2(1—E+V)

Sinceno experimental datawas avail able for thisapplication, the PD-NURBS
surfaces were generated with data points from NeoHookean formulation. The
NeoHookean NURBS surfaces are presented in figure 4.6 with stresses and strains
in the principal diredions. These surfaces are compaosed by a cntrol point net

25(u) x 25(v) and degree3 (p = 3and g = 3).

S1(MPa) !

S2(MPa) ‘4 )

(b)

Figure 4.6: NURBS surfacesof stresses lad strains in principal diredions for NeoHookean
material: (a) stressesn diredion 1and (b) stressesn diredion 2
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4511
Results

Displacement results in diredion y are presented in figure 4.7. The results
demonstrate that the solution with the proposed material model is in acordance
with the conventional NeoHookean material model formulation.

Y-Displacement
 0.4237

0.42363

0.37656 0.37662
0.32949 0.32954
0.28242 0.28246

+ 0.23535 | 0.23539
0.18828 0.18831
0.14121 -0.14123
0.09414 - 0.094155

Y-Displacement

0.04707 - 0.047077
> X 0 o

@ (b) (©

Figure4.7: Displacament realltsin y diredion: (a) undeformed membrane, (b) conventional
material model, and (¢) PD-NURBS material model.

The maximum error of theresultsareshown in Table 4.2 andthisis cdculated
with equation 4-64:

NURBS result — Conventional result

Error = -
Conventional result

100 (4-64)

Table 4.2: Maximum error of the PD-NURBS for redanguar membrane

Maximum error
displacement y | Stressy

[ 0016% | 0.15% |

4.5.2
Hyperelasticity — Moon ey-Rivlin

Thisexample was modeled in chapter 3in sedion 3.3.4 consideringa conven-
tional formulation for Moorey-Rivlin material model. The results obtained before
are compared with the norlinea material model based on NURBS surfaces. Fig-
ure 4.8 shows the NURBS surfaces used in these examples. The degree used in
the NURBS surfaces is 3 (p = 3 and g = 3) and the number of control pointsis
increased to analyzethe convergence @ntrol.
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Figure 4.8: NURBS surfaceswith stresses mad strains in principal diredions for the
Moorey-Rivlin material: (a) stressesn diredion 1, and (b) stressesn diredion 2

452.1
Results

NURBS surfaces are generated for different control point nets. The number
of control paintsare: 15x15 20x2Q 40x4Q 70x7Q and 100x100Table 4.3 presents
the conwvergencefor ead load step comparing the different nets.

For the 15x15 ret convergence was achieved by the first step solely. As the
number of control paints increases the mnwvergence rate increases as well and the
number of iterations for eat step deaeases.

The number of iterations changes substantially for thefirst two steps compar-
ing the 20x20and 40x40 m=ts.

When the number of control points is incressed to the 100x100 mt the
convergencerate isimproved for the last step and all the steps have 5 iterations.

Table 4.4 presents the maximum error for the displacement, stress and strain
for the analyzed nets. The aror is cdculated with equation 4-64 presented in the
previous example.


DBD
PUC-Rio - Certificação Digital Nº 0721425/CA


PUC-RIo - Certificacdo Digital N° 0721425/CA

Material model based onNURBS

Table 4.3: Displacament resduum for 15x15to 100x100control point net.

Step

it.

displacement residuum

15x15

20x20

40x40

70x70

100x100

9.97E+00

1.24E+01

1.14E+01

1.14E+01

1.14E+01

1.67E+00

1.28E+00

1.06E+00

1.05E+00

1.05E+00

1.22E-01

1.21E-01

1.94E-02

2.15E-02

2.14E-02

9.07E-03

1.37E-02

3.08E-04

8.55E-06

1.55E-05

1.43E-03

1.48E-03

4.16E-06

2.23E-09

4.44E-11

1.77E-04

1.65E-04

6.45E-08

2.81E-05

1.82E-05

3.92E-06

2.03E-06

6.05E-07

2.25E-07

N.C.

3.18E+01

3.10E+01

7.10E-01

3.10E+01

8.87E+00

7.82E+00

7.95E+00

7.94E+00

7.14E-01

7.07E-01

7.10E-01

7.14E-01

1.67E-01

1.97E-02

2.61E-03

2.13E-03

3.37E-02

1.21E-03

6.57E-06

1.03E-06

9.84E-03

4.68E-05

2.25E-08

2.69E-09

2.29E-03

2.73E-06

6.54E-04

1.17E-07

1.64E-04

4.54E-05

1.18E-05

3.20E-06

8.44E-07

o Nlo| ol b w N R BIGIE B0l o ~jo|o & w ™| ool oo & w| N -

4.69E+01

4.84E+01

4.77E+01

4.77E+01

9.71E+00

8.60E+00

8.79E+00

8.78E+00

7.40E-01

2.34E-01

2.58E-01

2.63E-01

1.95E-02

8.72E-03

2.97E-03

2.02E-04

1.37E-03

2.85E-04

7.03E-05

1.81E-07

8.30E-05

3.10E-05

1.05E-06

7.50E-06

1.17E-06

2.55E-08

6.27E-07

1.21E-07

The improvement in the convergence rate observed with the increase in the
number of control points, isalso observed by the results for displacements, stresses
and strains.

The maximum error for the stressin diredion x—x hes an interesting peth as
the number of control paintsincreases. The aror of 5.558% for the 20x20control
point net, which is quite large, deaeases with the number of control points reading
the same results as the mnventional material model for the 70x70 control point
net. For the 100x100control point net the value is aso the same s the results for
conventional material model or the aror isvery small.
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Table 4.4: Maximum error of PD-NURBS material with surfacesgenerated by control paint
nets 20x20to 100x100for the syuare perforated example

Maximum error (%)

control points | 20x20 | 40x40 | 70x70 | 100x100
displacement x | 1.341| 0.111| 0.012 0.000
displacementy | 0.264 | 0.026 | 0.000 0.000
stress xx 5558 | 0.178 | 0.000 0.010
stressyy 0.489 | 0.074| 0.074 0.011
stress xy 0.859 | 0.049| 0.012 0.006
strain xx 0.743 | 0.085| 0.065 0.011
strain yy 0.400| 0.030| 0.023 0.003
strain xy 0.445| 0.109| 0.016 0.000
45.3

Comparison with elastoplastic von Mises material model

The von Mises elastoplastic material is used here to investigate the gplica
bility of the PD-NURBS to cther stressstrain resporses. The example mnsists in
a monaonic stretching o a perforated redanguar membrane modeled in chapter
3 sedion 3.1.3. The PD-NURBS material is now employed by the constitutive re-
sporsein thefinite dement code & presented in box4.1.

It is worth panting ou that a full elastoplastic stress history can na be
obtained with the propased PD-NURBS since unloading/reloading cycles are not
represented by the NURBS surfaces herein.

The membrane material properties are rewritten in table 4.5 and the mesh
is composed of 531 nodks and 480 quadrilateral membrane dements with linea
discretization and 2 x 2 quss points integration. The mesh, geometry, boundary
condtions, and the gpplied load are shown in figure 3.4 in sedion 3.1.3.

Table 4.5: Materia propertiesof the perforated membrane example

Youngsmoduus (E) 70 GPa
Poisonratio (v) 0.2
Yield stress(oy) 0.243GPa

Hardeningmoduus (K) | 0.2GPa
thickness 1 mm

The dastoplastic material properties of table 4.5 are used to producethe data
points for the generation o the NURBS surfaces in principal diredions. These
NURBS surfaces are shown in figure 4.9 and they are composed by a control point
net 70(u) x 70(v) and degree2 (p = 2 and q = 2). The number of control points
for the NURBS surfaces is defined with help of the previous example, by which the
convergence and maximum error for different control point nets are compared.
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Figure 4.9: NURBS surfacesfor stresses iad strains in principa diredions for elagopladic
material: (a) stressesn diredion 1, and (b) stressesn diredion 2

The dastic region can be identified in the NURBS surfaces in Figure 4.9 as
theflat elli pse plane. Outside thisregion norinea behavior is presented. Therefore
the aorrespondng axis S;1(u, v) and S,,(u, v) values fall in the dastoplastic range
of the plastic model.

The conventional formulation used for the dastoplastic material model was
presented in sedion 3.1.

453.1
Results

The results obtained with the PD-NURBS material model are compared
with the dasgcd material model. Figures 4.10 and 4.11 show the results for the
conventional elastoplastic and the PD-NURBS material model for displaceanents
andstressesin diredion y, respedively. The maximum error in the results are shown
intable 4.6
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Figure 4.10: Displacements in y diredion: () conventional material model and (b) PD-
NURBS material mode.
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Figure 4.11: Stressedn y diredion: (a) conventional material model and (b) PD-NURBS
material model.

Table 4.6: Maximum error of the PD-NURBS for perforated membrane

Maximum errors
displacement y | stressy

[ 0032% | 0.040% |

Althoughthe comparison with the dastoplastic models are promising, appli -
caion d PD-NURBS to path dependent problems requires further investigation.
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