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3
Membrane Material Models

Membrane structures have alot of material posshiliti es. Some membrane
materials are reported in Krishna[48]: reinforced fiber with glassor plastic, wooden
board, concrete plate and a vast variety of fabrics. Lewig49] shows in his work
that the materials most used are: PVC coated with pdyester, teflon coated with
glass fiber and canvas. Elias [50] adds to this list the materials. kevlar®(para-
aramid synthetic fiber), nylon, paytetrafluoretileno (PTFE) and sili con. A material
that recently finds applicaion spedficdly to preumatic structures is the ehylene
tetrafluoroethylene (ETFE).

To comprehend the huge variety of materias available for membrane and
pneumatic structures, severa models for material behavior are presented in this
chapter. All the material model formulations presented here were implemented in
thereseach program CARAT++ [51]. Vali dation examples of these modelsare dso
presented.

3.1
Small strains — Elastoplasticity

Small strains or infinitesimal strains theory deds with infinitesimal deforma-
tions of a body Elastoplastic and elastoviscoplastic material models considering
small strainswill be described.

The formulation used for the dastoplastic material is classc and it is pre-
sented for instancein the studies of Simo and Taylor [52], Simo and Hughes [39],
and SouzaNeto et al.[40].

The total strain E splitsinto a dastic strain E® and a plastic strain EP:

E=E°+EP (3-1)

The dastic constitutive law considering linea elasticity is given by the
relation:
S=D:(E-EP) (3-2)

where D isthe dastic modui tensor. Theyield condtionis given by the function:

f(S.a) = ¢(9 +0q(oy.K) <0 (3-3)
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where o isthe yield stressand K is the hardening moduus. If K < 0, one
spedks of a softening resporse.

The flow rule and the hardening law in asociative plasticity modelsis given
respedively by:

. of
Ep= YG_S (3-4)
) of

=y— 3-5
“=75 (35)

where y is the consistency parameter, Z—; is afunction that defines the diredion o

plastic flow, and % isafunction that describes the hardening evolution.
The adual state (S,q) of stress and hardening force is a solution to the
foll owing constrained optimizaion problem:

maximise S:E-q-a (3-6)
subjectto f(S,9) <0

Solutionfor the problem 3-6 satisfies the KuhnTucker optimality condtions,
the so cdl ed loading/unloading condtion.

3.1.1
Plane Stress

In the present work membrane structures are analyzed, therefore dl material
models are implemented considering dane stresscondtions.

Figure 3.1 shows the plane stress sate, where the stresses S;3, S,3, and Sas
are zeo. The stresstensor is given by

Suu S12 0
S=|Sa S2 0 (3-8)
O 0 O

The stresstensor can be written in voigt-notation as:
S= [ Si1 S22 Si2 ] (3-9)
The comporents E;; of the total strain tensor E are correspondngly:

E = [E11 Ex 2E;7]
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Figure 3.1: Plane dress sate (source SouzaNeto et al. [40])

3.1.2
Von Mises yield criteria - Plane Stress

Figure 3.2 presents the experimental data from uniaxial and haxial test of
ETFE from works of Moritz [15], Galli ot and Luchsinger [53], and DUPONT™
Tefzd® [54] and an adjusted von Mises yield curve. This yield surface was
generated considering an yield stress of 16MPa. Figure 3.2 shows that the von
Mises criteria is a good approximation for the experimental data for the ETFE
material.

20

/_\
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A\
. \
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Stress

L
24— B Experimental data /

—von Mises /
0 =

Stress

Figure 3.2: Experimental data from uniaxial and baxial teg of ETFE and adjusted von
Misesyield curve
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ThevonMisesyield criteriasuggeststhat yielding beginswhen J2, the seand
invariant of the deviatoric stress reades a aiticd value (k) [55].

f(J2)= VI2-k=0 o fJ2)=J2-kK*=0 (3-10)
In vedor notation the deviatoric stresssis written:

S=[S11 2 S17 (3-11)

which can be obtained by the projedion o the stresstensor on the deviatoric plane.

1 2 -10
s=dev[S|=PS P= 3 -1 2 0 (3-12
0O 0 3
J2 iscdculated through
J2 = SPS (3-13

Similarly the dastic and pastic strain tensors (E®, EP) are wlleded in vedor form
as:
E® = [Ef; B3, 2E7) EP = [Efl Egz 2Efz]

and the deviatoric strain is given by.

|2 to
e=deE]=PE P=3|-1 2 0 (3-14)
0O 0 6

Linea isotropic hardeningis considered, for which the scdar hardening state
variableis:
gq=oy+Ka (3-15)

where a isthe amourt of plastic flow and K is ahardening material parameter.
The vonMisesyield functionfor plane stressfollowing 3-10is:

f(S @)= VS'PS- \Eq(a) o f(Sa)= %STPS— %(q(a))z (3-16)
f(S,a) = SPS- \E VS'PS- q(a)

From the &ove expresson, equations 3-4 and 3-5 result in:

EP = 'yg—; =yPS (3-17)
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@ = y% = y,/gsTPs (3-18)

With these equations the J2 plasticity model with isotropic hardening for
plane stresscondtionis summarized:

E=E°*+EP
S=DE®
E=9yPS (3-19)

f = ZSPS - 2(Ka)?
@ =7y,/2S'PS

where D isthe linea elastic constitutive matrix for plane stressdefined as:

o O

= -2
1-42 ) (3-20

2

o <
o - <

where v isthe Poisnratio and E is the dastic moduus.

The updating scheme for integration o the correspondng rate constitutive
equations requires the formulation of a numericd agorithm. The implicit Euler or
badkward scheme is used to discretize the incremental constitutive problem. Based
in equations 3-19 the resulting equations with the impli cit Euler foll ow:

1—- 1

fria(Ay) = zf - §R2 (3-21)

. . N2 . . N2 .
Coa(SEesE) a(SE-SE) + (SEY 322

@ 2 2 2 -
6 (1 + 3E_A37V) (1 + %)
2
2 2
R2 = (0'y + Clm_lK) =|0oy+ [Qn + A’)/\/; S;1r+lPS~|+1) K] (3-23)
EP = EP+ AyPS,4 (3-249)
2

Ans1 = @ + A)/\/; \/S,LlPSml (3-25)
i = D[En.1 — Ef] (3-26)
Sw1 = E(Ay)D 'S (3-27)
=(Ay) = [0+ ayP| (3-29)

The consistent elastoplastic tangent moddi i s obtained with equations 3-29
and 3-30. For more detail s of the computation of the consistent el astopl astic tangent
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modui we refer to Simo and Hughes [39].

dS —_ [EPSn+1][E‘PSn+l]
@ _=_ 3-29
dE n+1 S‘|+1PEPSH+1 +ﬁn+l ( )
2 KS—rl1-+ PSﬂ+
Bne1 = 5(;—1) (3-30)
(1-2KAy)

The return mapping is the dosest paint projedion (Simo and Hughes [39)).
This return mapping considers a two-step algorithm cdled the dastic predic-
tor/plastic corredor agorithm. This algorithm assumes that the first step is elastic,
which is cdled as the dastic tria solution (S'@). If this elastic trial stress vio-
lates the yield function (equation 3-16) a new solution must be obtained with the
plastic corredor step. The dastic predictor/plastic corredor algorithm has a geo-
metric interpretation as can be seen in Figure 3.3. The plastic corredor step and the
implementation d the return mapping are presented in boxes 3.1 and 3.2. These d-
gorithmsare based in the works of Simo and Taylor[52] and SouzaNeto et. ali.[40].

trial

trial n+l

On+1

plastic plastic
corrector corrector

elastic elastic
predictor On+1 predictor

f(0,4p1) =0

elastic
domain at t,

elastic
domain at t,

f(0.9,) =0

@ (b)

Figure 3.3: Genera return mapping schemes Geometric interpretation: (a) hardening
plagicity and (b) perfed pladicity (source SouzaNeto et al.[40])

The plastic multiplier (A(y)) is olved using the Newton-Raphson procedure
becaise of the nonlinea equations in A(y). The Newton-Raphson procedure is
presented in box3.2.
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=

. Update the deformation tensor and compute the trial elastic stressand yield
functionfor trial state.
E,.i=E,+vou

trjjj = D[En+l - Eﬁ]
1-1

If f(Ay) <0
then set (i1 = (1)"18 and exit

Solve f(Ay) = 0 for Ay using the Newton-Raphson method- goto box3.2

Compute the dgorithmic tangent modui
==[Dt+ayP|
Update the stressand gastic strainin ty,, 1

Sh1 = E(Ay)D 'S

2 |
nt1l = Qp + A)’\/; SI+1P31+1

EP., = EP + AyPSy1
Compute the consistent elastoplastic tangent modui
dS| o _ [EPSual[=PS,.i]
dElni1 Sh+1PEPSq1 + Bnit
2 (KS,1PSha)

ﬁn+l = 3 (l— %KA')/)

UpdaIe Eas

4
Easni1 = _E(Sllml + S22n+1) - (Efln+l + E§2n+l)

Box 3.1: Algorithm for the dagopladic material
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1. Setinitia guessfor Ay

Ay =0
1
2
2. Perform Newton-Raphsoniteration

() = 5+ 1(4) - SR(A7) = 0

1 (smesge  ((H-sw) sy

f=-2

31+ £2)(3-3y) (1+52) @ +v)
: 2 2( = Ayf
R =20, |, A,/—fK\/j fp 2L
o'y(oz +Av43 3 \/7+2 f

’ 1_/ 1 4

f=3f-3R

f

AYni1 = Ayn — —

f
3. Ched for convergenceif Ay,.1 — Ay < tol thenreturnto box3.1 elsegoto 1

Box 3.2: Newton-Raphson algorithm to solve Ay

3.1.3
Benchmark Example

The stretching o a perforated redanguar membrane dong the longtudinal
axisis presented as a benchmark example to evaluate the implementation described
abowe. This example is taken from Simo and Hughes [39], Simo and Taylor [56],
and Souza Neto et al. [40] and is modeled in CARAT++ for plane stress with
membrane dements. The materia i s elastoplastic with isotropic hardening and von
Misesyield criteria

The membrane material propertiesare: E = 70GPa (membrane moduus), v =
0.2 (Poisonratio), K = 0.2GPa (hardening moduus), oy = 0.243GPa (yielding
stress, and membrane thicknessof 1 mm. The dimension and boundry condtions
are shown in figure 3.4. The static analysis was caried ou with cylindricd arc-
length control of the free @lge. The mesh is composed of 531 nocks and 480
quadril ateral li nea membrane dements as shown in figure 3.4. Due to symmetry
aquarter of the geometry is modeled.

Figure 3.5 presents the results for the total applied force versus displacenent
on the membrane free @lge. The results are in acordance with Souza Neto et
al. [40].



DBD
PUC-Rio - Certificação Digital Nº 0721425/CA


PUC-RIo - Certificacdo Digital N° 0721425/CA

Membrane Material Models 51

Figure 3.4: Medh, geometry and boundry condtions of aperforated redangudar membrane

2.5

1.61

load (kN)

0.5

# Souza Neto et ali.
-+Present

0 0.04 0.08 012 0.16

edge displacement (mm)

Figure 3.5: Load versus edge displacement

3.2
Small strains — Elastoviscoplasticity

The dastoviscoplastic material model refleds the plastic deformation depen-
dencewith time. The temperature is often related with this phenomena.

According to Souza Neto et al. [40], materids such as metals, rubkbers,
geomaterialsin general, concrete and compasites may all present substantial time-
dependent mechanicd behavior.

The phenomendlogicd aspedsfor elastoviscoplasticity are: strain rate depen-
dence, creep and relaxation.

The strain rate dependence is observed when a material is subjeded to
tests carried ou under different prescribed strain rates. According to Souza Neto
et a. [40], the dasticity moduus is mostly independent of the rate of loading
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but, the initial yield limit as well as the hardening curve depend strongy on
the rate of straining. This rate-dependence is also observed at low temperatures,
but usually beaomes ggnificant only at higher temperatures. In figure 3.6(a) the
phenomenadogicd aspeds of the strain rate dependenceis presented.

Creq is the phenomenon by which that at a constant stress condtion the
strain increases. For different levels of stresstheresporse for strain isalso different.
Thisis shown in figure 3.6(b). Souza Neto et al. [40] reports that high strain rates
shown towards the end d the schematic curvesfor highand moderate stresesisthe
phenomenon knavn astertiary creep. Tertiary creep leads to the final rupture of the
material andis associated with the evolution d internal damage.

o) N high moderate ()

€s stress stress
€2

€1
constantstrain

low stress

e time time
(@ (b) (c)

Figure 3.6: Phenomendogicd ageds. uniaxia tensile teds & high temperature (a) Strain
rate dependence, (b) Creep, and (c) Relaxation (source SouzaNeto et al. [40])

Relaxation accurs when by a mnstant strain stress decays in time. This
phenomenonis depicted in figure 3.6(C)
The viscoplastic flow rule is defined as:
: of
EYP = Y75 (3-3))
The eplicit function for y models how the rate of plastic straining varies
with the level of stress There ae many models to describe y. Souza Neto et al.
[40] reports that a particular choice shoud be dictated by its ability to model the
dependence of the plastic strain rate on the state of stressfor the material under
consideration.
Some modelsfor the viscoplastic strain are described next.
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3.2.1
Perzyna Model

This model was introduced by Perzyna (apud Souza Neto et al. [40])) andis
widely used in computational applicaions of viscoplasticity. It is defined by:

fos
¥(S,ay) = = (3-32)
(29 1] if #(S,0,)20
< g >=4L @ (3-33
0 it f(S,0y) <0

where u is the viscosity—related parameter, whose dimension is time and the rate-
sengitivity e is a nondimensional parameter. Both parameters are strictly paositive
and temperature dependent. According to Souza Neto et al. [40], as ageneral rule,
as temperature increases (deaeases) u and e increases (deaeases).

3.2.2
Peri¢ Model

This form has been introduced by Peric (apud SouzaNeto et al. [40]) and is
given by.

[(L(S))”‘_l] if f(S,0y)20
< fp1 >= !

0 it f(S,0) <0

(3-34)

Souza Neto et a. [40] reports that in spite of its smilarity to Perzyna's def-
initions, as the rate-independent limit i s approadched with vanishing rate-sensitivity
€ — 0, the Perzyna model does not reproduce the uniaxia stressstrain curve of
the aorrespondng rate-independent model with yield stressoy. As shown by Peric,
in this limit, the Perzyna model produces a aurve with S = 20, instead. How-
ever, for vanishing viscosity (u — 0) or vanishing strain rates, the resporse of both
Perzyna and Peri¢ models coincide with the standard rate-independent model with
yield stressory.

The implementation o the present elastoviscoplastic material model follows
the dgorithm presented in sedion 3.1 (see boxes 3.1 and 3.2), modifying Ay to
include the time parameter:

At
Ay =At-y=<fp1>—, ue(0,) (3-35)
u

where At istime increment.
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1. Update the deformation tensor and compute the trial elastic stress

En = En + voU (3-36)
S'a = D[En, — EY] (3-37)
1- 1

2. Solve f(Ay) = 0for Ay using the Newton-Raphson method— goto box3.4

3. Compute the dgorithm tangent modui

=
—

AA -
DliapP+ 2 g Psm] (3-39)
6Sn+l

4. Update the stressand gdastic strainin t,,

Sh1 = E(AY)DT'S1Y (3-40)

2
U1 = an + Ay \/j VSn+lPSn+1 (3'41)
EP = EY + AyPS, (3-42)

5. Compute the consistent elastoviscoplastic tangent modui

-1

1 20Ay
ot e
% —O0AY |

—|=Ls, P+ f = 3-44
X ( f Sﬂ ! aSr‘|+1) ( )

dS|  _ _dAy \/E
E " =2+ = ﬁq Sh+lp(® 3/\/) (3 45)

6. Update E33

E33n+l = _é(sllml + S22n+1) (E11n+l 22n+1) (3'46)

Box 3.3: Algorithm for the dagovismpladic material

In the present work the Peric model is used to describe < f,1 > (equa
tion 3-34). This equation was rewritten in a more stable form, acmrding to Peric
apud SouzaNeto et al. [40] as:

$(Ay) = (ﬁ)s : (%f_) ~ZR=0 (3-47)



DBD
PUC-Rio - Certificação Digital Nº 0721425/CA


PUC-RIo - Certificacdo Digital N° 0721425/CA

Membrane Material Models 55

Changes in the dgorithm of the dastoplastic model, more predsely in equa-
tions4 to 6, are introduced. Due to internal variables integrationin time and to the
viscoplastic parameter. This modified algorithm has the work of Simo and Govind-
jee[57] asbasisandit is shown in box3.3.

1. Setinitia guessfor Ay

Ay=0
6(Ay) = (ﬁ)s - (%f_) - %RZ _0 (3-49)
2. Perform Newton-Raphsoniteration
o1 (Strial + Stzréal)z E i ((S”‘f’“ = Sg;a‘)z + 4821312) E 349
3(1+ EM) (3- 3v) (1+ EAV) (1+v)
R —ZO'y(an+A7\/7j \/7([ Ayf) (3-50)
¢ (A7) = _Awqi At (AwAi At)E ' %f_z (3-51)
(em) (57)- %
Mo = 870 5 (352

3. Ched for convergenceif Ay,,1 — Ay, < tol thenreturnto box3.3 elsegoto 1

Box 3.4: Newton-Raphson algorithm to solve Ay including Peri¢ model

3.2.3
Benchmark Example

The benchmark example of the viscoplastic material model i mplementation
is the same presented in sedion 3.1.3 to validate the implementation o the dasto-
plastic material model. The problem consists of axial stretching at constant rate of
a perforated redanguar strip with the same geometry, mesh, boundary condtions
and the dastic and pastic material properties asin sedion 3.1.3. The viscosity pa-
rameter is u = 500s and two values for the rate sensitivity are alopted € = 1 and
0.1

The results for rate sensitivity of 1.0 and 0.1 are shown in figures 3.7(a) and
3.7(b), respedively.
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The deformation rate is defined by:

Vv
C (3-53)

where v is the stretching velocity imposed onthe free @lge and L is the length of
the strip, which is 18 (seefigure 3.4).

14

12

—
-

10
/’ Deformation rate (1/s)
. ---Souza Neto et ali. - 0.000555
—Souza Neto et ali. — 0.00555
= Present — 0.000555

- Present — 0.00555 |

load (kN)
N

0 0.1 02 03 04 0.5 0.6
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@
14
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-+ Souza Neto et ali. — 0.00555
12 —Souza Neto etali. — 0.555 [ |
#Present — 0.00555
10 +Present — 0.555 L]
= 8
=
B 6
]

0 0.1 0.2 03 04 05 0.6

edge displacement (mm)
(b)

Figure 3.7: Force versus displacanent curve of a perforated redanguar membrane:
(@ e=10and(b) e =0.1.

3.3
Large strains — Hyperelasticity

The theory of large strains or finite strains considers that both rotations and
strains of a body are large. As the material of membranes usually present large
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strains, some material models with finite strains are implemented and presented in
this sdion.

The hyperelasticity theory considers that a material has a norinea elastic
resporse with large strains. A hyperelastic material is defined througha Helmholtz
freeenergy function (W), often named strain energy.

Some modelswith their respedive strain energy functions foll ow.

3.3.1
Moon ey—Rivlin model

The strain-energy function for the Mooney-Rivlin model is expressed by.
W(ly, 12) = Cy(l1 = 3) + Cx(l2 - 3) (3-54)

where C; and C, are material constants and |, and I, are the first and the second
stretch invariants given by.

|y = det(F) /(A% + 43 + A3) (3-55)

lo = det(F)~% (1343 + 4323 + 234%) (3-56)

3.3.2
Neo—Hookean model

The strain-energy function for the Neo-Hookean model is obtained from the
Moorey-Rivlin model by settingC, = 0

W(l1, 12) = Cy(l1 - 3) (3-57)

3.3.3
Ogden model

The strain-energy for the Ogden model [58] is defined as.

W(L,) = ;i[ff LA+ () 3], y=1.2 (3-59)
r

In the present work the Ogden material model ([59],[58]) isimplemented, be-
cause it includes the spedal cases of the Neo-Hookean and the Moorey-Rivlin ma-
terials. Thisimplementationisbased onthe work of Gruttmannand Taylor [60]. The
formulation requires the computation and lineaizaion o the principal stretches,
which are the @genvalues of the right stretch tensor C.
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In acordance with the deformation energy equation, the second Piola
Kirchhof stresstensor is given by:.

- oW - o7 -
S=dtay =4 Dl = ()], y =12 (3-59)
r

The tangent material matrix, is determined:

6811 asll 6811
_ 0E11 0Bz  02E1n
_TT _ | 8% 952  9s% _
Cr=TCT= 9En1  0Exp  02E1 (3-60)
9s12 pslz psi?
0E11 0B 02E12

where:
A (2 -28y) 472057 (52 0
C=| 222(15%) /154( 252 — 2S,) 0 (3-61)
0 0 (S1-S3) cos(2¢)
C11—C22
COS%p sin?g COSpSing
T= sin‘g cos’¢p —COSpSiNg (3-62
—-2C0SpSing  2c0spSing CoS’p — Sin‘ep
Sy =48, = Dl ~ (b)) y=1.2 (363
as
e Zurar[a + (o) ™] (3-64)
as
= Zurar[a + (Aad2)™] (3-65)
4S as
Ao = it Zyrar[(am) "] (3-66)
3.34

Benchmark Example

To validate the implementation o the hyperelastic material model, a bench-
mark example is presented, which consists of the stretching o a square shed with
a drcular hde. This example is foundin Gruttmann and Taylor [60] and in Souza
Neto et a. [40]. The length of the square is 20m, the radius of the drcle is 3m and
the thicknessis 1m. Due to the symmetry, one quarter of the shed was analyzed
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and the mesh with 200linea quadrilatera membrane dements and 231 nods is
presented in figure 3.8(a). The material used is Moorey-Rivlin with the constant
values of C1 = 25MPa and C2 = 7MPa. Thus the Ogden material constants are
u1 = 50MPa, u, = —14MPa and a; = 2, ap = —2. The analysis was performed
under load control condtionsin threesteps.

Figure 3.9 shows the load—d splacanent curve of threepoints onthe mesh (A,
B and C highlighted in figure 3.8) compared with the solution o Gruttmann and
Taylor [60].

The results for strains and stresses are shown in figure 3.10. The results
obtained with the present implementation are the same &s the results of Gruttmann
and Taylor [6Q].

q
A4‘4\4\4\4\4\4‘4‘4‘4‘

>

[N

|

(b)

Figure 3.8: Square hed with a drcular hoe (a) undeformed shed mesh with applied load
(b) diplacement result in y diredion with deformed shed in a scée of 1:1.
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Figure 3.9: Load—dsplacanent curvesof stretching o a gjuare shed
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Figure 3.10: Reallts of the qquare hed with a drcular hde: (a) normal stressin x, (b)
normal stressin y, (¢) shea stress (d) norma strainin x, (€) normal strain in y, and (f) shea
strain

3.4
Large strains — Elastoplasticity

The multi pli cative decomposition o the deformation gadient F is the main
hypahesisin the finite strain elastoplasticity [38]. This hypahesis was introduced
in chapter 2 in sedion 2.1 andit is here rewritten:

F = FeFP

The implementation was caried ou in this dudy preserving the return map-
ping schemes of the infinitesimal theory presented in sedion 3.1. Simo [42] showed
that using Kirchhof stress and logarithmic strain, the return mapping algorithm
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takes aformat identicd to the standard return mapping algorithms for the infinites-
imal theory.

Taking the asumptions described above the implementationfor elastoplastic-
ity with large strains are summarized in box3.5.

Souza Neto et al. [40] emphasizes that the simplicity of the integration
algorithm of box 3.5 comes as aresult of the assumptions of elastoplastic isotropy
and the particular implicit exporential approximation adopted to discretise the
plastic flow rule.

The present implementation is carried out based onthe works of Peric et al.
[61] and Caminero et a. [62] that present an algorithm for the total Lagrangian
formulation. Caminero et a. [62] developed the large strain theory for anisotropic
elastoplastic materia for total and updited Lagrangian formulation. As isotropy
is a particular case of anisotropy, this formulation can be used in the present
implementation. Both works present amodel for finite strains based onlogarithmic
strains.

The logarithmic strain measure and the Kirchhof stressin Lagrangian de-
scriptionwas introduced in chapter 2 in sedions 2.2 and 2.3.

The numericd integration o the dastoplastic model is caried ou with the
elastic predictor andthe plastic corredor scheme. The dastic predictor is cdculated
based on the multipli cative decomposition presented in equation 2-2 considering
FP . = FP, thetrial elastic deformation gradient is given by:

n+1

ri -1
Fef = FnuaF2, (3-67)
Thelogarithmictria strainis cdculated with equation 2-12 and the Kirchhoff

trial stresswith the relation:
T¢? = DE. & (3-68)

n+l — n+1l

where D isthe dastic constitutive matrix presented in equation 3-20.

With the Kirchhof trial stressthe plastic corredor is cdculated with the
algorithmfor small strains presented in box3.2 andthe Kirchhof stressT,,,; andthe
plastic deformation gradient Fr'?+1 are updated. Finaly the consistent elastoplastic
tangent modui i s computed.

Simo [63] and Ibrahimbegovi€ ([64],[65]) computed the dastoplastic tangent
modudi i n spatial description. In the present work the dastoplastic tangent modui
isconsidered in material description.

The consistent elastoplastic tangent modui 42 iscomputed from thefoll owing
equation:

S=F4FT=F'R TR T (3-69)
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After some rearangement and the symmetric tensor property U = UT,
equation 3-69is rewritten:

S=UTU" > S = U TmU;! (3-70)

The forth-order tensor can be written as:

oS 9SoC 288

1
— =—-(C-I 371
9E ~ 4C 6E oC 2( ) (3-71)

The derivative of equation 3-69w.r.t Cy isgiven by:

9S; 8Um% 10T Tm —1 -1 6U_l
= 2| oy Ut s UMyt gt 3-72
0Cy aCqy ™ "M HCy Hron (372

2

The fourth-order tensor |s computed applying the chain rule:

U,y 0U;p 0Upy

= 3-73
dCy  0Upq 0Cy 373
where ztdm and ‘Zté‘;f acwordingto Jog [66, 67] are given by.
out oU
0 - ~Utrut c " [(Url)+(=U)™ (3-74)

where A ® B = AyBj;, is defined by Jog [66].

The fourth-order tensor aTc_H isaso computed applying the dchain rule:

_ 37
0Cq  OEL 0Cx (379

where aTm” is the consistent elastoplastic modui for Kirchhof stress and
logarithmic stram and qu is computed with the study o Jog [67]:

1 k k k
aaECL: $0In(C) _ 1 Z%' iT+ZZ In(/l) |n(ﬂ)p&pjT 376
i=1 i=1 j=1

Box 3.6 summarizes the dgorithm to compute the consistent elastoplastic
modui with large strains.
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1. Takethe plastic deformation gradient for the last converged step

2. Compu‘:e I:n+l! C:(r§+l’ Uﬁ:iji Eﬁ:ij dTngralj

e -1
Fn+1 = I:n+l|:p n+1

Cht = I:§+l m1 C°= Z /12 =12
U = Z AM;  i=12
ial 2
ELﬁ+1 = In(U§+1) | (Bn+l = Z In(/li)Mi i = 1, 2
=0
Thd =DE(;

3. Solve f(Ay) = 0for Ay using the Newton-Raphson method— go to box3.2
for elastoplastic material or 3.4 for elastoviscoplastic material (change S to
T) and updite Tp,1 andE, ;.

2
Eiga=) ELFM; =12
4. Compute F? , E®, and EP
FP  =FP  exp(AyPT 1)

1
E°=5(C-C") C=F'F CP=FPTFP
EP=E-E°

5. Compute the consistent elastopl astic tangent modui ds“*l — goto box3.6

Box 3.5: Algorithm of elagopladic material with large grain
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1. Compute ZI= througtt the mnsistent elastoplastic modui for small strains
from box 3.1(e| astoplastic) or 3.3(elastoviscoplastic)

aln(C
2. Compute 24, U and 1219 ¢
out 4.4 0U i
30 =-U"mU 6—C_[(le)+(llzu)]
18InC K & In() - In(a
i 12 poap ZZ @) - ”pgp}
i=1 =1
3. Compute 2 "U and &
Ut _GUtU T T R
dC ~ 9U oC dC  OE_ oC

4. The consistent elastoplastic modui i sfinally obtained

0S; oU; aT ou,!
= 2| =" TmUp + Upn——= U + Ui T
OEy aCy ™ "M HCy m M SCy

Box 3.6: Algarithm for the consistent eladopladic or elagovismpladic moddi

34.1
Benchmark Example

The benchmark example to validate the formulation implemented for the
elastoplastic material with large strains is the same example presented in sedion
3.1.3 for the dastoplastic material with small strains. The problem consists of
axial stretching at constant rate of a perforated redanguar strip whase geometry,
mesh, boundary condtions, and material properties are common for both material
behavior and are shown in sedion 3.1.3. The results obtained with the present
implemented model, the small strains elastoplastic material model and the results
of the literature (SouzaNeto et a. [40]) are shown in figure 3.11.

The results obtained with the dastoplastic material model for large strains
are in acordance with the results of the literature. The results of the dastoplastic
material model for small strains are overestimated when the membrane starts to
present large strains.

Figure 3.12 shows the stressversus drain curve for numericd anaysis with
large and small strains.
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Figure 3.11: Force versus displacanent on the free @lge of a perforated redanguar mem-
brane
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Figure 3.12: Stressversus drain for numericd analysis with large and small strains

3.5
Large strains — Elastoviscoplasticity

The present implementation o elastoviscoplastic material model with large
strainsis based onthe concepts of elastoviscoplasticity with small strains presented
in sesson 3.2 and the concepts of elastoplasticity with large strains presented in
sesgon 3.4. The implementation for this material is shown in box3.5. The dhange
for this material algorithm compared with the dastoplastic material model is the
solution o Ay which is lved with box 3.4 and the cnstitutive material tensor
gg—L"; which is solved with box3.3.

A reference work of elastoviscoplastic material model i mplementation with
large strainsis the work of Peri¢ [68].
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