
3
Membrane Material Models

Membrane structures have a lot of material possibiliti es. Some membrane

materialsarereported in Krishna[48]: reinforced fiber with glassor plastic, wooden

board, concrete plate and a vast variety of fabrics. Lewis[49] shows in his work

that the materials most used are: PVC coated with polyester, teflon coated with

glass fiber and canvas. Elias [50] adds to this list the materials: kevlar R©(para-

aramid synthetic fiber), nylon, polytetrafluoretileno (PTFE) and sili con. A material

that recently finds application specifically to pneumatic structures is the ethylene

tetrafluoroethylene(ETFE).

To comprehend the huge variety of materials available for membrane and

pneumatic structures, several models for material behavior are presented in this

chapter. All the material model formulations presented here were implemented in

theresearch program CARAT++ [51]. Validationexamplesof thesemodelsare also

presented.

3.1
Small strains — Elastop lasticity

Small strains or infinitesimal strains theory deals with infinitesimal deforma-

tions of a body. Elastoplastic and elastoviscoplastic material models considering

small strainswill bedescribed.

The formulation used for the elastoplastic material is classic and it is pre-

sented for instancein the studies of Simo and Taylor [52], Simo and Hughes [39],

andSouzaNeto et al.[40].

The total strain E splits into a elastic strain Ee and aplastic strain Ep:

E = Ee + Ep (3-1)

The elastic constitutive law considering linear elasticity is given by the

relation:

S = D : (E − Ep) (3-2)

where D is the elastic moduli tensor. Theyield condition isgiven by the function:

f (S, q) = φ(S) + q(σy,K) ≤ 0 (3-3)
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where σy is the yield stressand K is the hardening modulus. If K < 0, one

speaksof asoftening response.

The flow rule and the hardening law in associative plasticity models is given

respectively by:

Ėp = γ
∂ f
∂S

(3-4)

α̇ = γ
∂ f
∂q

(3-5)

where γ is the consistency parameter, ∂ f
∂S is a function that defines the direction of

plastic flow, and ∂ f
∂q is a function that describes thehardening evolution.

The actual state (S, q) of stress and hardening force is a solution to the

followingconstrained optimization problem:

maximise S : Ė − q · α̇ (3-6)

sub ject to f (S, q) ≤ 0

Solutionfor theproblem 3-6 satisfies theKuhn-Tucker optimality conditions,

theso called loading/unloadingcondition.

γ ≥ 0, f (S, q) ≤ 0, γ f (S, q) = 0 (3-7)

3.1.1
Plane Stress

In the present work membrane structures are analyzed, therefore all material

modelsare implemented considering planestressconditions.

Figure 3.1 shows the plane stress state, where the stresses S 13, S 23, and S 33

are zero. Thestresstensor isgiven by

S =



























S 11 S 12 0

S 21 S 22 0

0 0 0



























(3-8)

Thestresstensor can bewritten in voigt-notationas:

S =
[

S 11 S 22 S 12

]

(3-9)

The components Ei j of the total strain tensor E are correspondingly:

E = [E11 E22 2E12]
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Figure 3.1: Plane stress state (source: SouzaNeto et al. [40])

3.1.2
Von Mises y ield criteria - Plane Stress

Figure 3.2 presents the experimental data from uniaxial and biaxial test of

ETFE from works of Moritz [15], Galli ot and Luchsinger [53], and DuPONTT M

Tefzel R© [54] and an adjusted von Mises yield curve. This yield surface was

generated considering an yield stress of 16MPa. Figure 3.2 shows that the von

Mises criteria is a good approximation for the experimental data for the ETFE

material.
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Figure 3.2: Experimental data from uniaxial and biaxial test of ETFE and adjusted von
Misesyield curve
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ThevonMisesyieldcriteriasuggeststhat yielding beginswhen J2, thesecond

invariant of thedeviatoric stress, reaches a criti cal value (k) [55].

f (J2) =
√

J2− k = 0 ↔ f (J2) = J2− k2 = 0 (3-10)

In vector notation thedeviatoric stresss iswritten:

s = [s11 s22 s12] (3-11)

which can beobtained by theprojection of thestresstensor on thedeviatoric plane.

s = dev[S] = P̄S P̄ =
1
3



























2 −1 0

−1 2 0

0 0 3



























(3-12)

J2 is calculated through:

J2 = SPS (3-13)

Similarly the elastic and plastic strain tensors (Ee, Ep) are collected in vector form

as:

Ee =
[

Ee
11 Ee

22 2Ee
12

]

Ep =
[

E p
11 E p

22 2E p
12

]

and thedeviatoric strain isgiven by:

e = dev[E] = PE P =
1
3



























2 −1 0

−1 2 0

0 0 6



























(3-14)

Linear isotropic hardening isconsidered, for which thescalar hardeningstate

variable is:

q = σy + Kα (3-15)

whereα is the amount of plastic flow and K is ahardeningmaterial parameter.

ThevonMisesyield function for planestressfollowing3-10 is:

f (S, α) =
√

ST PS −
√

2
3

q(α) ↔ f (S, α) =
1
2

ST PS −
1
3

(q(α))2 (3-16)

f (S, α) = SPS −
√

2
3
·
√

ST PS · q(α)

From the above expression, equations3-4 and 3-5 result in:

Ėp
= γ
∂ f
∂S
= γPS (3-17)
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α̇ = γ
∂ f
∂q
= γ

√

2
3

ST PS (3-18)

With these equations the J2 plasticity model with isotropic hardening for

planestresscondition is summarized:

E = Ee + Ep

S = DEe

Ė = γPS

f = 1
2SPS − 1

3(Kα)2

α̇ = γ

√

2
3ST PS

(3-19)

where D is the linear elastic constitutivematrix for planestressdefined as:

D =
E

1− ν2



























1 ν 0

ν 1 0

0 0 1−ν
2



























(3-20)

whereν is thePoisson ratio and E is the elastic modulus.

The updating scheme for integration of the corresponding rate constitutive

equations requires the formulation of a numerical algorithm. The implicit Euler or

backward scheme is used to discretizethe incremental constitutiveproblem. Based

in equations3-19 the resultingequationswith the implicit Euler follow:

fn+1(∆γ) =
1
2

f̄ −
1
3

R2 (3-21)

f̄ =
1
6

(

S trial
11 + S trial

22

)2

(

1+ E∆γ
3−3ν

)2
+

1
2

(

S trial
11 − S trial

22

)2
+ (S trial

21 )2

(

1+ E∆γ
1+ν

)2
(3-22)

R2 =
(

σy + αn+1K
)2
=















σy +















αn + ∆γ

√

2
3

√

ST
n+1PSn+1















K















2

(3-23)

Ep
n+1 = Ep

n + ∆γPSn+1 (3-24)

αn+1 = αn + ∆γ

√

2
3

√

ST
n+1PSn+1 (3-25)

Strial
n+1 = D[En+1 − Ep

n ] (3-26)

Sn+1 = Ξ(∆γ)D−1Strial
n+1 (3-27)

Ξ(∆γ) =
[

D−1 + ∆γP
]−1

(3-28)

The consistent elastoplastic tangent moduli i s obtained with equations 3-29

and3-30. For moredetailsof the computation of the consistent elastoplastic tangent
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moduli we refer to Simo andHughes [39].

dS
dE

∣

∣

∣

∣

∣

n+1
= Ξ −

[ΞPSn+1][ΞPSn+1]
Sn+1PΞPSn+1 + βn+1

(3-29)

βn+1 =
2
3

(

KST
n+1PSn+1

)

(

1− 2
3K∆γ

) (3-30)

The return mapping is the closest point projection (Simo and Hughes [39]).

This return mapping considers a two-step algorithm called the elastic predic-

tor/plastic corrector algorithm. This algorithm assumes that the first step is elastic,

which is called as the elastic trial solution (Strial
n+1 ). If this elastic trial stress vio-

lates the yield function (equation 3-16) a new solution must be obtained with the

plastic corrector step. The elastic predictor/plastic corrector algorithm has a geo-

metric interpretationascan beseen in Figure3.3. Theplastic corrector step and the

implementation of the return mappingarepresented in boxes3.1 and3.2. These al-

gorithmsarebased in theworksof Simo andTaylor[52] andSouzaNeto et. ali .[40].
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Figure 3.3: General return mapping schemes. Geometric interpretation: (a) hardening
plasticity and (b) perfect plasticity (source: SouzaNeto et al.[40])

The plastic multiplier (∆(γ)) is solved using the Newton-Raphson procedure

because of the nonlinear equations in ∆(γ). The Newton-Raphson procedure is

presented in box3.2.
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1. Update the deformation tensor and compute the trial elastic stressand yield
function for trial state.

En+1 = En + ▽
S u

Strial
n+1 = D[En+1 − Ep

n ]

f (∆γ) =
1
2

f̄ −
1
3

R2 ∆γ = 0

2. If f (∆γ) ≤ 0
then set (.)n+1 = (.)trial

n+1 andexit

3. Solve f (∆γ) = 0 for ∆γ using theNewton-Raphsonmethod- go to box3.2

4. Compute the algorithmic tangent moduli

Ξ =
[

D−1 + ∆γP
]−1

5. Update thestressand plastic strain in tn+1

Sn+1 = Ξ(∆γ)D−1Strial
n+1

αn+1 = αn + ∆γ

√

2
3

√

ST
n+1PSn+1

Ep
n+1 = Ep

n + ∆γPSn+1

6. Compute the consistent elastoplastic tangent moduli

dS
dE

∣

∣

∣

∣

∣

n+1
= Ξ −

[ΞPSn+1][ΞPSn+1]
Sn+1PΞPSn+1 + βn+1

βn+1 =
2
3

(

KST
n+1PSn+1

)

(

1− 2
3K∆γ

)

7. UpdateE33

E33n+1 = −
ν

E
(S 11n+1 + S 22n+1) − (E p

11n+1 + E p
22n+1)

Box 3.1: Algorithm for the elastoplastic material
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1. Set initial guessfor ∆γ
∆γ = 0

f (∆γ) =
1
2
· f̄ (∆γ) −

1
3

R2(∆γ) = 0

2. Perform Newton-Raphson iteration

f̄
′
= −

1
3

(

S trial
11 + S trial

22

)2
E

(

1+ E∆γ
3−3ν

)3
(3− 3ν)

−

(

(

S trial
11 − S trial

22

)2
+ 4S trial

21
2
)

E
(

1+ E∆γ
1+ν

)3
(1+ ν)

R2
′

= 2σy















αn + ∆γ

√

2
3

f̄















K

√

2
3















√

f̄ +
∆γ f̄

′

2
√

f̄















f
′
=

1
2

f̄
′ −

1
3

R2
′

∆γn+1 = ∆γn −
f
f ′

3. Check for convergenceif ∆γn+1−∆γn ≤ tol then return to box3.1 elsegoto 1

Box 3.2: Newton–Raphson algorithm to solve∆γ

3.1.3
Benchmark Example

The stretching of a perforated rectangular membrane along the longitudinal

axis ispresented asabenchmark exampleto evaluate the implementation described

above. This example is taken from Simo and Hughes [39], Simo and Taylor [56],

and Souza Neto et al. [40] and is modeled in CARAT++ for plane stress with

membrane elements. Thematerial is elastoplastic with isotropic hardeningand von

Misesyield criteria.

Themembranematerial propertiesare: E = 70GPa (membranemodulus), ν =

0.2 (Poisson ratio), K = 0.2GPa (hardening modulus), σy = 0.243GPa (yielding

stress), and membrane thicknessof 1 mm. Thedimensionand boundary conditions

are shown in figure 3.4. The static analysis was carried out with cylindrical arc-

length control of the free edge. The mesh is composed of 531 nodes and 480

quadrilateral li near membrane elements as shown in figure 3.4. Due to symmetry

aquarter of thegeometry ismodeled.

Figure 3.5 presents the results for the total applied forceversus displacement

on the membrane free edge. The results are in accordance with Souza Neto et

al. [40].
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Figure3.4: Mesh, geometry and boundary conditions of aperforated rectangular membrane

Figure 3.5: Load versus edge displacement

3.2
Small strains — Elastoviscoplasticity

The elastoviscoplastic material model reflects the plastic deformation depen-

dencewith time. The temperature is often related with thisphenomena.

According to Souza Neto et al. [40], materials such as metals, rubbers,

geomaterials in general, concrete and composites may all present substantial time-

dependent mechanical behavior.

Thephenomenological aspects for elastoviscoplasticity are: strain ratedepen-

dence, creep and relaxation.

The strain rate dependence is observed when a material is subjected to

tests carried out under different prescribed strain rates. According to Souza Neto

et al. [40], the elasticity modulus is mostly independent of the rate of loading
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but, the initial yield limit as well as the hardening curve depend strongly on

the rate of straining. This rate-dependence is also observed at low temperatures,

but usually becomes significant only at higher temperatures. In figure 3.6(a) the

phenomenological aspectsof thestrain ratedependenceis presented.

Creep is the phenomenon by which that at a constant stress condition the

strain increases. For different levelsof stresstheresponsefor strain isalso different.

This is shown in figure 3.6(b). SouzaNeto et al. [40] reports that high strain rates

shown towardsthe end of theschematic curvesfor highandmoderatestressesis the

phenomenon known astertiary creep. Tertiary creep leads to thefinal ruptureof the

material and isassociated with the evolution of internal damage.

e

s

e1

.
e2

.
e3

.

(a)

�

����

��������
	���		


��

	���		

����������

(b)

s

time

constant strain

(c)

Figure 3.6: Phenomenological aspects: uniaxial tensile tests at high temperature (a) Strain
rate dependence, (b) Creep, and (c) Relaxation (source: SouzaNeto et al. [40])

Relaxation occurs when by a constant strain stress decays in time. This

phenomenonis depicted in figure 3.6(c)

Theviscoplastic flow rule is defined as:

Ėvp = γ
∂ f
∂S

(3-31)

The explicit function for γ models how the rate of plastic straining varies

with the level of stress. There are many models to describe γ. Souza Neto et al.

[40] reports that a particular choice should be dictated by its abilit y to model the

dependence of the plastic strain rate on the state of stress for the material under

consideration.

Somemodels for theviscoplastic strain aredescribed next.
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3.2.1
Perzyna Model

This model was introduced by Perzyna (apudSouzaNeto et al. [40])) and is

widely used in computational applicationsof viscoplasticity. It isdefined by:

γ(S , σy) =
< fn+1 >

µ
(3-32)

< fn+1 >=



















[

J2(S )
q − 1

]1/ǫ
i f f (S , σy) ≥ 0

0 i f f (S , σy) < 0
(3-33)

where µ is the viscosity–related parameter, whose dimension is time and the rate-

sensitivity ǫ is a non-dimensional parameter. Both parameters are strictly positive

and temperature dependent. According to SouzaNeto et al. [40], as a general rule,

as temperature increases (decreases) µ and ǫ increases (decreases).

3.2.2
Perić Model

This form has been introduced by Peric (apudSouzaNeto et al. [40]) and is

given by:

< fn+1 >=























[

(

J2(S )
q

)1/ǫ
− 1

]

i f f (S , σy) ≥ 0

0 i f f (S , σy) < 0
(3-34)

Souza Neto et al. [40] reports that in spite of its similarity to Perzyna’s def-

initions, as the rate-independent limit is approached with vanishing rate-sensitivity

ǫ → 0, the Perzyna model does not reproduce the uniaxial stress-strain curve of

the correspondingrate–independent model with yield stressσy. As shown byPerić,

in this limit, the Perzyna model produces a curve with S = 2σy instead. How-

ever, for vanishing viscosity (µ→ 0) or vanishingstrain rates, the responseof both

Perzyna and Perić models coincide with the standard rate-independent model with

yield stressσy.

The implementation of the present elastoviscoplastic material model follows

the algorithm presented in section 3.1 (see boxes 3.1 and 3.2), modifying ∆γ to

include the timeparameter:

∆γ = ∆t · γ =< fn+1 >
∆t
µ
, µ ∈ (0,∞) (3-35)

where∆t is time increment.
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1. Update thedeformation tensor and compute the trial elastic stress.

En+1 = En + ▽
S u (3-36)

Strial
n+1 = D[En+1 − Evp

n ] (3-37)

f (∆γ) =
1
2

f̄ −
1
3

R2 (3-38)

2. Solve f (∆γ) = 0 for ∆γ using theNewton–Raphsonmethod— go to box3.4

3. Compute the algorithm tangent moduli

Ξ =

[

D−1 + ∆γP +
∂∆γ

∂Sn+1
⊗ PSn+1

]−1

(3-39)

4. Update thestressand plastic strain in tn+1

Sn+1 = Ξ(∆γ)D−1Strial
n+1 (3-40)

αn+1 = αn + ∆γ

√

2
3

√

Sn+1PSn+1 (3-41)

Evp
n+1 = Evp

n + ∆γPSn+1 (3-42)

5. Compute the consistent elastoviscoplastic tangent moduli

Θ =















1
K
−

√

2
3
∂∆γ

∂q

(

χSn+1P − f̄
)















−1

(3-43)

χ =

(

∆γ

f̄
Sn+1P + f̄

∂∆γ

∂Sn+1

)

Ξ (3-44)

dS
dE

∣

∣

∣

∣

∣

n+1
= Ξ + Ξ

∂∆γ

∂q
Sn+1P















Θ

√

2
3
χ















(3-45)

6. Update E33

E33n+1 = −
ν

E
(S 11n+1 + S 22n+1) − (Evp

11n+1 + Evp
22n+1) (3-46)

Box 3.3: Algorithm for the elastoviscoplastic material

In the present work the Perić model is used to describe < fn+1 > (equa-

tion 3-34). This equation was rewritten in a more stable form, according to Perić

apudSouzaNeto et al. [40] as:

φ(∆γ) =

(

∆t
∆γµ + ∆t

)ǫ

·
(

1
2

f̄ 2

)

−
1
3

R2 = 0 (3-47)
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Changes in the algorithm of the elastoplastic model, more precisely in equa-

tions 4 to 6, are introduced. Due to internal variables integration in time and to the

viscoplastic parameter. Thismodified algorithm has thework of Simo and Govind-

jee[57] as basisand it is shown in box3.3.

1. Set initial guessfor ∆γ
∆γ = 0

φ(∆γ) =

(

∆t
∆γµ + ∆t

)ǫ

·
(

1
2

f̄ 2

)

−
1
3

R2 = 0 (3-48)

2. Perform Newton-Raphson iteration

f̄
′
= −

1
3

(

S trial
11 + S trial

22

)2
E

(

1+ E∆γ
3−3ν

)3
(3− 3ν)

−

(

(

S trial
11 − S trial

22

)2
+ 4S trial

21
2
)

E
(

1+ E∆γ
1+ν

)3
(1+ ν)

(3-49)

R2
′

= 2σy















αn + ∆γ

√

2
3

f̄















K

√

2
3















√

f̄ +
∆γ f̄

′

2
√

f̄















(3-50)

φ
′
(∆γ) = −

ǫµ

∆γµ + ∆t

(

∆t
∆γµ + ∆t

)ǫ

·
1
2

f̄ 2 (3-51)

+

(

∆t
∆γµ + ∆t

)ǫ

·
(

1
2

f̄
′
)

−
1
3

R2
′

∆γn+1 = ∆γn −
φ

φ
′ (3-52)

3. Check for convergenceif ∆γn+1−∆γn ≤ tol then return to box3.3 elsegoto 1

Box 3.4: Newton–Raphson algorithm to solve∆γ including Perić model

3.2.3
Benchmark Example

The benchmark example of the viscoplastic material model implementation

is the same presented in section 3.1.3 to validate the implementation of the elasto-

plastic material model. The problem consists of axial stretching at constant rate of

a perforated rectangular strip with the same geometry, mesh, boundary conditions

and the elastic and plastic material properties as in section 3.1.3. The viscosity pa-

rameter is µ = 500s and two values for the rate sensitivity are adopted ǫ = 1 and

0.1.

The results for rate sensitivity of 1.0 and 0.1 are shown in figures 3.7(a) and

3.7(b), respectively.

DBD
PUC-Rio - Certificação Digital Nº 0721425/CA



MembraneMaterial Models 56

Thedeformation rate isdefined by:

v
L

(3-53)

where v is the stretching velocity imposed on the free edge and L is the length of

thestrip, which is18 (seefigure3.4).

(a)

(b)

Figure 3.7: Force versus displacement curve of a perforated rectangular membrane:
(a) ǫ = 1.0 and (b) ǫ = 0.1.

3.3
Large strains — Hyperelasticity

The theory of large strains or finite strains considers that both rotations and

strains of a body are large. As the material of membranes usually present large
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strains, some material models with finite strains are implemented and presented in

this section.

The hyperelasticity theory considers that a material has a nonlinear elastic

responsewith large strains. A hyperelastic material is defined througha Helmholtz

free-energy function (W), often named strain energy.

Somemodelswith their respectivestrain energy functions follow.

3.3.1
Moon ey–Rivlin model

Thestrain-energy function for theMooney-Rivlin model is expressed by:

W(I1, I2) = C1(I1 − 3) +C2(I2 − 3) (3-54)

where C1 and C2 are material constants and I1 and I2 are the first and the second

stretch invariantsgiven by:

I1 = det(F)−2/3
(

λ2
1 + λ

2
2 + λ

2
3

)

(3-55)

I2 = det(F)−4/3
(

λ2
1λ

2
2 + λ

2
2λ

2
3 + λ

2
3λ

2
1

)

(3-56)

3.3.2
Neo–Hookean model

The strain-energy function for the Neo-Hookean model is obtained from the

Mooney-Rivlin model by settingC2 = 0

W(I1, I2) = C1(I1 − 3) (3-57)

3.3.3
Ogden model

Thestrain-energy for theOgden model [58] isdefined as:

W(λγ) =
∑

r

µr

αr
[λαr

1 + λ
αr
2 + (λ1λ2)

−αr − 3], γ = 1, 2 (3-58)

In thepresent work theOgden material model ([59],[58]) is implemented, be-

cause it includes thespecial cases of theNeo-Hookean and theMooney-Rivlin ma-

terials. Thisimplementationisbased onthework of GruttmannandTaylor [60]. The

formulation requires the computation and linearization of the principal stretches,

which are the eigenvaluesof the right stretch tensor C.
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In accordance with the deformation energy equation, the second Piola-

Kirchhoff stresstensor is given by:

Sγ = λ−1
γ

∂W
∂λγ
= λ−2

γ

∑

r

µr[λ
αr
γ − (λ1λ2)

−αr ], γ = 1, 2 (3-59)

The tangent material matrix, is determined:

CT = TT C̄T =



























∂S 11

∂E11

∂S 11

∂E22

∂S 11

∂2E12
∂S 22

∂E11

∂S 22

∂E22

∂S 22

∂2E12
∂S 12

∂E11

∂S 12

∂E22

∂S 12

∂2E12



























(3-60)

where:

C̄ =



























λ−4
1

(

λ1
∂S 1
∂λ1
− 2S 1

)

λ−2
1 λ

−2
2

(

λ2
∂S 1
∂λ2

)

0

λ−2
1 λ
−2
2

(

λ1
∂S 2
∂λ1

)

λ−4
2

(

λ2
∂S 2
∂λ2
− 2S 2

)

0

0 0 (S 1−S 2) cos(2φ)
C11−C22



























(3-61)

T =



























cos2φ sin2φ cosφsinφ

sin2φ cos2φ −cosφsinφ

−2cosφsinφ 2cosφsinφ cos2φ − sin2φ



























(3-62)

S γ = λ
2
γS γ =

∑

r

µr[λ
αr
γ − (λ1λ2)

−αr ], γ = 1, 2 (3-63)

λ1
∂S 1

∂λ1
=

∑

r

µrαr[λ
αr
1 + (λ1λ2)

−αr ] (3-64)

λ2
∂S 2

∂λ2
=

∑

r

µrαr[λ
αr
2 + (λ1λ2)

−αr ] (3-65)

λ2
∂S 1

∂λ2
= λ1
∂S 2

∂λ1
=

∑

r

µrαr[(λ1λ2)
−αr ] (3-66)

3.3.4
Benchmark Example

To validate the implementation of the hyperelastic material model, a bench-

mark example is presented, which consists of the stretching of a square sheet with

a circular hole. This example is foundin Gruttmann and Taylor [60] and in Souza

Neto et al. [40]. The length of the square is 20m, the radius of the circle is 3m and

the thickness is 1m. Due to the symmetry, one quarter of the sheet was analyzed
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and the mesh with 200 linear quadrilateral membrane elements and 231 nodes is

presented in figure 3.8(a). The material used is Mooney-Rivlin with the constant

values of C1 = 25MPa and C2 = 7MPa. Thus the Ogden material constants are

µ1 = 50MPa, µ2 = −14MPa and α1 = 2, α2 = −2. The analysis was performed

under load control conditions in threesteps.

Figure3.9 showsthe load–displacement curveof threepointsonthemesh (A,

B and C highlighted in figure 3.8) compared with the solution of Gruttmann and

Taylor [60].

The results for strains and stresses are shown in figure 3.10. The results

obtained with the present implementation are the same as the results of Gruttmann

andTaylor [60].

�

�

�

�

�

�

(a) (b)

Figure 3.8: Square sheet with a circular hole (a) undeformed sheet mesh with applied load
(b) diplacement result in y direction with deformed sheet in a scale of 1:1.

Figure 3.9: Load–displacement curvesof stretching of a square sheet
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Results of the square sheet with a circular hole: (a) normal stressin x, (b)
normal stressin y, (c) shear stress, (d) normal strain in x, (e) normal strain in y, and(f) shear
strain

3.4
Large strains — Elastop lasticity

The multiplicative decomposition of the deformation gradient F is the main

hypothesis in the finite strain elastoplasticity [38]. This hypothesis was introduced

in chapter 2 in section2.1 and it ishere rewritten:

F = FeFp

The implementation was carried out in this study preserving the return map-

pingschemesof theinfinitesimal theory presented in section3.1. Simo [42] showed

that using Kirchhoff stress and logarithmic strain, the return mapping algorithm
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takes a format identical to the standard return mappingalgorithms for the infinites-

imal theory.

Takingthe assumptionsdescribed abovetheimplementationfor elastoplastic-

ity with largestrainsare summarized in box3.5.

Souza Neto et al. [40] emphasizes that the simplicity of the integration

algorithm of box 3.5 comes as a result of the assumptions of elastoplastic isotropy

and the particular implicit exponential approximation adopted to discretise the

plastic flow rule.

The present implementation is carried out based onthe works of Perić et al.

[61] and Caminero et al. [62] that present an algorithm for the total Lagrangian

formulation. Caminero et al. [62] developed the large strain theory for anisotropic

elastoplastic material for total and updated Lagrangian formulation. As isotropy

is a particular case of anisotropy, this formulation can be used in the present

implementation. Both works present amodel for finitestrainsbased onlogarithmic

strains.

The logarithmic strain measure and the Kirchhoff stress in Lagrangian de-

scriptionwas introduced in chapter 2 in sections2.2 and 2.3.

The numerical integration of the elastoplastic model is carried out with the

elastic predictor andtheplastic corrector scheme. The elastic predictor iscalculated

based on the multiplicative decomposition presented in equation 2-2 considering

Fp
n+1 = Fp

n , the trial elastic deformation gradient isgiven by:

Fetrial

n+1 = Fn+1Fp−1

n+1 (3-67)

The logarithmic trial strain iscalculated with equation2-12andtheKirchhoff

trial stresswith the relation:

Tetrial

n+1 = DEL
etrial

n+1 (3-68)

where D is the elastic constitutivematrix presented in equation3-20.

With the Kirchhoff trial stress the plastic corrector is calculated with the

algorithmfor small strainspresented in box3.2andtheKirchhoff stressTn+1 andthe

plastic deformation gradient Fp
n+1 are updated. Finally the consistent elastoplastic

tangent moduli i s computed.

Simo [63] and Ibrahimbegović ([64],[65]) computed the elastoplastic tangent

moduli i n spatial description. In the present work the elastoplastic tangent moduli

is considered in material description.

The consistent elastoplastic tangent moduli ∂S
∂E iscomputed from thefollowing

equation:

S = F−1
τF−T = F−1R−T

τR−1F−T (3-69)
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After some rearrangement and the symmetric tensor property U = UT ,

equation3-69 is rewritten:

S = U−1TU−1→ Si j = U−1
im TmnU−1

n j (3-70)

The forth-order tensor dS
dE can bewritten as:

∂S
∂E
=
∂S
∂C
∂C
∂E
= 2
∂S
∂C

E =
1
2

(C − I) (3-71)

Thederivativeof equation3-69w.r.t Ckl is given by:

2
∂Si j

∂Ckl
= 2















∂U−1
im

∂Ckl
TmnU−1

n j + U−1
im

∂Tmn

∂Ckl
U−1

n j + U−1
im Tmn

∂U−1
n j

∂Ckl















(3-72)

The fourth-order tensor
∂U−1

im
∂Ckl

is computed applying the chain rule:

∂U−1
im

∂Ckl
=
∂U−1

im

∂Upq

∂Upq

∂Ckl
(3-73)

where
∂U−1

im
∂Upq

and ∂Upq

∂Ckl
according to Jog [66, 67] aregiven by:

∂U−1

∂U
= −U−1

⊠ U−1 ∂U
∂C
= [(U ⊠ I) + (I ⊠ U)]−1 (3-74)

where A ⊠ B = AikB jl, is defined byJog [66].

The fourth-order tensor ∂Tmn

∂Ckl
isalso computed applying the chain rule:

∂Tmn

∂Ckl
=
∂Tmn

∂EL pq

∂EL pq

∂Ckl
(3-75)

where ∂Tmn
∂EL pq

is the consistent elastoplastic moduli for Kirchhoff stress and

logarithmic strain and
∂EL pq

∂Ckl
is computed with thestudy of Jog [67]:

∂EL

∂C
=

1
2∂ ln(C)

∂C
=

1
2





















k
∑

i=1

1
λi

Pi ⊠ PT
i +

k
∑

i=1

k
∑

j=1 j,i

ln(λi) − ln(λ j)

λi − λ j
Pi ⊠ PT

j





















(3-76)

Box 3.6 summarizes the algorithm to compute the consistent elastoplastic

moduli with largestrains.
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1. Take theplastic deformation gradient for the last converged step

Fp
n+1 = Fp

n

2. ComputeFe
n+1, Ce

n+1, Uetrial

n+1 , Eetrial

n+1 and Ttrial
n+1 :

Fe
n+1 = Fn+1Fp−1

n+1

Ce
n+1 = FeT

n+1Fe
n+1 Ce =

2
∑

i=0

λ2
i Mi i = 1, 2

Uetrial

n+1 =

2
∑

i=0

λiMi i = 1, 2

EL
etrial

n+1 = ln(Ue
n+1) =

1
2

ln(Betrial

n+1 ) =
2

∑

i=0

ln(λi)Mi i = 1, 2

Ttrial
n+1 = DEL

etrial

n+1

3. Solve f (∆γ) = 0 for ∆γ using theNewton–Raphsonmethod— go to box3.2
for elastoplastic material or 3.4 for elastoviscoplastic material (change S to
T ) and updateTn+1 and EL

e
n+1

EL
e
n+1 =

2
∑

i=0

EL
e
i Mi i = 1, 2

4. ComputeFp
n+1, Ee, and Ep

Fp
n+1 = Fp

n+1exp(∆γPTn+1)

Ee =
1
2

(C − Cp) C = FT F Cp = FpT Fp

Ep
= E − Ee

5. Compute the consistent elastoplastic tangent moduli dSn+1
dEn+1

— go to box3.6

Box 3.5: Algorithm of elastoplastic material with large strain
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1. Compute ∂Tmn
∂EL pq

throught the consistent elastoplastic moduli for small strains
from box3.1(elastoplastic) or 3.3(elastoviscoplastic)

2. Compute ∂U
−1

∂U , ∂U
∂C and 1

2
∂ln(C)
∂

C

∂U−1

∂U
= −U−1

⊠ U−1 ∂U
∂C
= [(U ⊠ I) + (I ⊠ U)]−1

1
2∂ ln(C)

∂C
=

1
2





















k
∑

i=1

1
λi

Pi ⊠ PT
i +

k
∑

i=1

k
∑

j=1 j,i

ln(λi) − ln(λ j)

λi − λ j
Pi ⊠ PT

j





















3. Compute ∂U
−1

∂C and ∂T
∂C

∂U−1

∂C
=
∂U−1

∂U
∂U
∂C

∂T
∂C
=
∂T
∂EL

∂EL

∂C

4. The consistent elastoplastic moduli i s finally obtained

∂Si j

∂Ekl
= 2















∂U−1
im

∂Ckl
TmnU−1

n j + U−1
im

∂Tmn

∂Ckl
U−1

n j + U−1
im Tmn

∂U−1
n j

∂Ckl















Box 3.6: Algorithm for the consistent elastoplastic or elastoviscoplastic moduli

3.4.1
Benchmark Example

The benchmark example to validate the formulation implemented for the

elastoplastic material with large strains is the same example presented in section

3.1.3 for the elastoplastic material with small strains. The problem consists of

axial stretching at constant rate of a perforated rectangular strip whose geometry,

mesh, boundary conditions, and material properties are common for both material

behavior and are shown in section 3.1.3. The results obtained with the present

implemented model, the small strains elastoplastic material model and the results

of the literature (SouzaNeto et al. [40]) areshown in figure3.11.

The results obtained with the elastoplastic material model for large strains

are in accordance with the results of the literature. The results of the elastoplastic

material model for small strains are overestimated when the membrane starts to

present large strains.

Figure 3.12 shows the stressversus strain curve for numerical analysis with

large and small strains.
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Figure 3.11: Forceversus displacement on the free edge of a perforated rectangular mem-
brane
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Figure 3.12: Stressversus strain for numerical analysis with large and small strains

3.5
Large strains — Elastoviscoplasticity

The present implementation of elastoviscoplastic material model with large

strains isbased onthe conceptsof elastoviscoplasticity with small strainspresented

in session 3.2 and the concepts of elastoplasticity with large strains presented in

session 3.4. The implementation for this material is shown in box3.5. The change

for this material algorithm compared with the elastoplastic material model is the

solution of ∆γ which is solved with box 3.4 and the constitutive material tensor
∂Tmn

∂EL pq
which is solved with box3.3.

A reference work of elastoviscoplastic material model implementation with

largestrains is thework of Perić [68].
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