Analysis of pneumatic structures considering nonlinear material models and pressure–volume coupling

TESE DE DOUTORADO

DEPARTAMENTO DE ENGENHARIA CIVIL

Programa de Pós-Graduação em Engenharia Civil

Rio de Janeiro July 2012

Analysis of pneumatic structures considering nonlinear material models and pressure–volume coupling

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em Engenharia Civil of the Departamento de Engenharia Civil, PUC-Rio as partial fulfillment of the requirements for the degree of Doutor em Engenharia Civil.

> Advisor: Prof. Deane de Mesquita Roehl Co–Advisor: Prof. Kai-Uwe Bletzinger

> > Rio de Janeiro July 2012

Analysis of pneumatic structures considering nonlinear material models and pressure–volume coupling

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em Engenharia Civil of the Departamento de Engenharia Civil, PUC-Rio as partial fulfillment of the requirements for the degree of Doutor em Engenharia Civil.

Prof. Deane de Mesquita Roehl Advisor Departamento de Engenharia Civil — PUC-Rio

Prof. Kai-Uwe Bletzinger

Co-Advisor Lehrstuhl für Statik — Technishe Universität München

Prof. Ruy Marcelo de Oliveira Pauletti

Departamento de Engenharia de Estruturas e Fundações - USP

Prof. Luiz Eloy Vaz Departamento de Engenharia Civil — UFF

Prof. Paulo Batista Gonçalves Departamento de Engenharia Civil — PUC-Rio

Prof. Raul Rosas e Silva Departamento de Engenharia Civil — PUC-Rio

Prof. José Eugenio Leal

Coordinator of the Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 6th July 2012

The author is graduated in Civil Engineering from Universidade Estadual do Oeste do Paraná – UNIOESTE in 2005, she obtained the degree of Mestre in Civil Engineering at PUC-Rio in 2007.

Bibliographic data

Coelho, Marianna Ansiliero de Oliveira
Analysis of pneumatic structures considering nonlinear material
models and pressure-volume coupling/ Marianna Ansiliero de
Oliveira Coelho; advisor: Deane de Mesquita Roehl; co-advisor:
Kai-Uwe Bletzinger – 2012.
142 f. il. (color.); 30 cm
Tese (Doutorado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2012. Inclui bibliografia.
 Engenharia Civil - Tese. 2. Estruturas pneumáticas. 3. Modelos de material. 4. Método dos elementos finitos. 5. Acoplamento pressão-volume. 6. Grandes deformações. 7. Material NURBS. Roehl, Deane de Mesquita. II. Kai-Uwe Bletzinger. III. Pontifícia Universidade Catôlica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

Acknowledgements

I would like to thank my mother Lourdes, my father Eduardo, my siblings Anna Carolina, Edson and Daniele to be always on my side giving me support, tenderness and love.

I especially thank my husband Alvaro, for patience, care, support, love and for accepting the challenge to live in Germany.

Furthermore I would like to acknowledge my advisor Deane for the dedication, incentive, patience, friendship during the development of my thesis and specially the support for me to do the sandwich Ph.D. in Germany.

I also would like to express my gratitude to my co-advisor Herr Bletzinger for the support and wonderful reception in the Lehrstuhl für Statik at Technische Universität München.

I would like to express my acknowledgement to the professors and employees of the Department of Civil Engineering of the Pontifícia Universidade Católica do Rio de janeiro for the support and help.

I also thank the colleagues of the Lehrstuhl für Statik for the pleasant living and help, and the friendships made during my stay in Germany.

Sincere thanks to my friends in Brazil that however distant they were, they gave me strength and support.

Finally I would like to thank DAAD, CNPq and CAPES for the financial support and specially DAAD for the welcome in Germany.

Abstract

Coelho, Marianna Ansiliero de Oliveira; Roehl, Deane de Mesquita; Bletzinger, Kai-Uwe. **Analysis of pneumatic structures considering nonlinear material models and pressure–volume coupling**. Tese de Doutorado — Departamento de Engenharia Civil, Pontifícia Universidade Catôlica do Rio de Janeiro.

In this work a study of pneumatic structures considering pressure-volume coupling under plastic and viscoplastic material behavior is developed. Pneumatic structures are membrane structures acted on by air or gases stabilized by tension. These structures are lighter than conventional structures resulting in economic structural solutions. They present also some characteristics that contribute to the sustainable development, such as the utilization of natural lighting and ventilation and its possibility of reuse. When pneumatic structures are subjected to external loads these structures present both internal pressure and volume variation. This coupling is one of the objects of the present work. Analytical solutions are developed to describe this coupling. In conventional finite element systems this coupling is not considered. A formulation for pressure-volume coupling by closed chambers is included in the framework of a finite element large strain model. The variety of material models implemented has the purpose to cover the behavior of the many kinds of membrane materials used in pneumatic structures. In the literature the study of the membrane materials for pneumatic structures focuses on experimental analysis. Membrane material models are incorporated in the finite element model for small and large strains. The constitutive material models considered in this work are hyperelastic, elastoplastic and elastoviscoplastic. The onset of large strains is enclosed. A new material model based on NURBS surfaces is proposed an validated on hand of experimental results and classic material models. In this work emphasis is given to the material ETFE (Ethylene tetrafluoroethylene), which is widely used in pneumatic structures. The models developed here, such as the pressurevolume coupling and the material models, are implemented in finite elements on the program used in the Static Chair at TUM (Technische Universität München), which is called CARAT++ (Computer Aided Research Analysis Tool).

Keywords

Pneumatic structures; Material models; Finite element method; Pressure–volume coupling; Large strains; NURBS material

Resumo

Coelho, Marianna Ansiliero de Oliveira; Roehl, Deane de Mesquita; Bletzinger, Kai-Uwe. **Análise de estruturas pneumáticas considerando modelos não lineares do material e o acoplamento pressão–volume.** Tese de Doutorado — Departamento de Engenharia Civil, Pontifícia Universidade Catôlica do Rio de Janeiro.

Neste trabalho um estudo de estruturas pneumáticas considerando acoplamento pressão-volume e modelos constitutivos plásticos e viscoplásticos são desenvolvidos. Estruturas pneumáticas são estruturas de membrana sobre as quais atuam pressão de gases estabilizadas por tensões de tração. Essas estruturas são mais leves que estruturas convencionais resultando em soluções mais econômicas. Elas possuem ainda algumas características que contribuem para um desenvolvimento sustentável, como a utilização de luz natural e ventilação e a possibilidade de reutilização. Quando as estruturas pneumáticas são submetidas a cargas externas, essas estruturas apresentam variação da pressão internal e do volume. Este acoplamento é um dos objetos de estudo do presente trabalho. Soluções analíticas são desenvolvidas para descrever este acoplamento. Em programas convencionais de elementos finitos esse acoplamento não é considerado. Uma formulação para o acoplamento pressão-volume para câmaras fechadas é incluído no modelo de elementos finitos com grandes deformações. A variedade de modelos de material implementados tem a finalidade de abranger o comportamento de muitos tipos de materiais de membrana usados em estruturas pneumáticas. Na literatura o estudo dos materiais de membrana para estruturas pneumáticas tem foco na análise experimental. Modelos para material de membrana são incorporados no modelo de elementos finitos para pequenas e grandes deformações. Os modelos constitutivos considerados neste trabalho são hiperelástico, elastoplástico e elastoviscoplástico. A ocorrência de grandes deformações é incluída. Um novo material baseado em superfícies NURBS é proposto e validado com base em resultados experimentais e modelos clássicos de materiais. Neste trabalho ênfase é dada ao material ETFE (Etileno tetrafluoretileno), o qual é amplamente usado em estruturas pneumáticas. Os modelos desenvolvidos aqui, como o acoplamento pressão-volume e os modelos de materiais são implementados em elementos finitos no programa usado na cadeira de estática das construções da TUM (Technische Universität München), chamado CARAT++ (Computer Aided Research Analysis Tool).

Palavras-chave

Estruturas pneumáticas; Modelo de material; Método dos elementos finitos; Acoplamento pressão-volume; Grandes deformações; Material NURBS

Contents

1 I	ntroduction	15
1.1	Membrane structures	15
1.2	Pneumatic structures	16
1.3	Formfinding	24
1.4	Cutting patterns	26
1.5	Wrinkling in membranes	27
1.6	Objective	28
1.7	Thesis outline	29
2 1	Mechanics of membranes	30
2.1	Kinematics	30
2.2	Strain measure	31
2.3	Stress measure	33
2.4	Membrane formulation	33
3 N	Membrane Material Models	43
3.1	Small strains — Elastoplasticity	43
3.2	Small strains — Elastoviscoplasticity	51
3.3	Large strains — Hyperelasticity	56
3.4	Large strains — Elastoplasticity	60
3.5	Large strains — Elastoviscoplasticity	65
4 N	Material model based on NURBS	66
4.1	Nonuniform rational B-Spline curves and surfaces	67
4.2	Linear elastic material model based on NURBS (LE–NURBS)	75
4.3	Material model based on NURBS for principal directions (PD–NURBS)	76
4.4	Data fitting	79
4.5	Validation examples	80
5 F	Pressure-Volume Coupling	88
5.1	Numerical analysis model for one chamber	88
5.2	Multichambers structures	93
5.3	Analytical solution for a circular inflated membrane	93
5.4	Comparison of analytical and numerical analysis	103

6~ Examples of pneumatic structures and material models for membranes ~108~

6.1	ETFE-Foils	108
6.2	Uniaxial and biaxial test by ETFE–foils	114
6.3	ETFE-Foil modeled with PD-NURBS	116
6.4	Burst test	119
6.5	Air cushion with single and double chamber	123
6.6	Lyon confluence cushion ©seele	127
7	Conclusions and Suggestions for future works	134
7.1	Membrane material models	134
7.2	Pneumatic structures with pressure-volume coupling	135
7.3	Suggestions for future works	136
8	References	142

List of Figures

Figure 1.1 -	Pneumatic structures in man's body: (a) Red blood cells, (b)	
	lung	17
Figure 1.2 -	Calceolaria - Inflated flower	18
Figure 1.3 -	Inflated cushions (a) 3-D overview of irregular shaped ETFE	
	cushions used in facade assembly (source: Watts [10]), (b)	
	Testing of full-scale mock-ups (source: LeCuyer [11]), and	
	(c) Rigid edge detail (source: Watts [10])	20
Figure 1.4 -	Distant Early Warning (DEW) line (source: Canadian mili-	
	tary journal [13])	21
Figure 1.5 -	Allianz Arena in Munich	22
Figure 1.6 -	Distribution of pneumatic structures with inflatable cushions	
	in terms of continent and country (source: Moritz [15])	23
Figure 1.7 -	Cutting patterns of six-point tent (source: Linhard [31])	26
Figure 1.8 -	Building process of six-point tent (source: Linhard [31])	27
Figure 1.9 -	Influence of pattern definition on membrane structures	
	(source: Linhard [31])	27
Figure 1.10 -	Principle states of membranes: (a) reference, (b) taut, (c)	
	and (d) wrinkle, and (e) slack (source: Jarasjarungkiat et al.	
	[36])	28
Figure 1.11 -	Wrinkled membrane (source: Wong and Pellegrino [37])	28
Figure 2.1 -	Successive deformations of a continuous body	30
Figure 2.2 -	Multiplicative decomposition of the deformation gradient	
	(source: Souza Neto et al. [40])	32
Figure 2.3 -	Membrane coordinates	34
Figure 2.4 -	Triangular elements: (a) linear and (b) quadratic	39
Figure 2.5 -	Quadrilateral elements: (a) linear and (b) quadratic	40
Figure 3.1 -	Plane stress state (source: Souza Neto et al. [40])	45
Figure 3.2 -	Experimental data from uniaxial and biaxial test of ETFE	
	and adjusted von Mises yield curve	45
Figure 3.3 -	General return mapping schemes. Geometric interpretation:	
	(a) hardening plasticity and (b) perfect plasticity (source:	
	Souza Neto et al.[40])	48
Figure 3.4 -	Mesh, geometry and boundary conditions of a perforated	
	rectangular membrane	51

Figure 3.5 -	Load versus edge displacement	51
Figure 3.6 -	Phenomenological aspects: uniaxial tensile tests at high	
	temperature (a) Strain rate dependence, (b) Creep, and (c)	
	Relaxation (source: Souza Neto et al. [40])	52
Figure 3.7 -	Force versus displacement curve of a perforated rectangu-	
	lar membrane: (a) ϵ = 1.0 and (b) ϵ = 0.1.	56
Figure 3.8 -	Square sheet with a circular hole (a) undeformed sheet	
	mesh with applied load (b) diplacement result in y direction	
	with deformed sheet in a scale of 1:1.	59
Figure 3.9 -	Load–displacement curves of stretching of a square sheet	59
Figure 3.10 -	Results of the square sheet with a circular hole: (a) normal	
	stress in x, (b) normal stress in y, (c) shear stress, (d) normal	
	strain in x, (e) normal strain in y, and (f) shear strain	60
Figure 3.11 -	Force versus displacement on the free edge of a perforated	
	rectangular membrane	65
Figure 3.12 -	Stress versus strain for numerical analysis with large and	
	small strains	65
Figure 4.1 -	Example of a B-spline surface (source: Piegl and Tiller [73])	70
Figure 4.2 -	Geometry construction of a NURBS curve (source: Piegl	
	and Tiller [73])	72
Figure 4.3 -	NURBS surface: (a) Control points net (b) biquadratic	
	NURBS surface (source: Piegl and Tiller [72])	73
Figure 4.4 -	NURBS surfaces for stresses and strains for LE-NURBS	
	material: (a) stresses in direction 11 and strains in direc-	
	tions 11 and 22, (b) stresses in direction 22 and strains in	
	directions 11 and 22 and, (c) NURBS curve for stresses in	
	direction 12 and strains in direction 12.	75
Figure 4.5 -	Mesh, boundary conditions and applied load for the quadri-	
	lateral example	81
Figure 4.6 -	NURBS surfaces of stresses and strains in principal direc-	
	tions for NeoHookean material: (a) stresses in direction 1	
	and (b) stresses in direction 2.	81
Figure 4.7 -	Displacement results in y direction: (a) undeformed mem-	
	brane, (b) conventional material model, and (c) PD-NURBS	
	material model.	82
Figure 4.8 -	NURBS surfaces with stresses and strains in principal direc-	
	tions for the Mooney-Rivlin material: (a) stresses in direction	
	1, and (b) stresses in direction 2.	83

Figure 4.9 -	NURBS surfaces for stresses and strains in principal direc- tions for elastoplastic material: (a) stresses in direction 1.	
	and (b) stresses in direction 2.	86
Figure 4.10 -	Displacements in y direction: (a) conventional material	
0	model and (b) PD-NURBS material model.	87
Figure 4.11 -	Stresses in y direction: (a) conventional material model and	
	(b) PD-NURBS material model.	87
Figure 5.1 -	Surface under pressure loading.	89
Figure 5.2 -	Radial and circumferential coordinates, vertical deflection,	
	and radial displacement of a circular membrane	94
Figure 5.3 -	Mesh for a circular inflated membrane.	104
Figure 5.4 -	Comparison between a mesh with linear and quadratic el-	
	ements for applied external pressure values of 150kPa and	
	300kPa.	104
Figure 5.5 -	Comparison between Hencky's and Fichter's solution for	
	applied external pressure values of 150kPa and 300kPa.	105
Figure 5.6 -	Fichter's solution and numerical results without pretension	
	and $\kappa = 0$ for applied external pressures values of 150kPa	
	and 300kPa.	105
Figure 5.7 -	Comparison between the numerical solution with a preten-	
	sion of 1kPa for $\kappa = 0$ and $\kappa = 1$ for applied external pressure	
	values of 150kPa and 300kPa.	106
Figure 5.8 -	Analytical and numerical solution with a pretension of 1kPa	
	and $\kappa = 1$ for an applied external pressure values of 150kPa	
	and 300kPa: (a) deformed configuration and (b) pressure	
	volume curve.	106
Figure 5.9 -	Analytical and numerical solution with a pretension of 10kPa	
	and $\kappa = 1$ for the applied external pressure values of 150kPa	
	and 300kPa: (a) deformed configuration and (b) pressure	
	volume curve.	107
Figure 5.10 -	Analytical and numerical large strains solution without pre-	
	tension and κ = 1 for applied external pressure values of	
	150kPa and 300kPa: (a) deformed configuration and (b)	
	pressure volume curve.	107
Figure 6.1 -	Etylene Tetrafluoroetylene chemical structure	108
Figure 6.2 -	Eden Project in the United Kingdom	110

Figure 6.3 -	Stress-strain curve of semi-crystalline thermoplastic mate-	
	rial with schematic representation of the tensile specimen in	
	different steps (source: Ehrenstein [83])	110
Figure 6.4 -	Stress-strain curve: (a) tensile stress vs. strain and (b)	
	compressive stress vs. strain (source Properties Handbook	
	of Tefzel®[54])	111
Figure 6.5 -	Stress-strain curves for cyclic test: (a) -25°C, (b) 0° C, (c)	
	+23°C and (d) +35°C (source: Moritz [15])	111
Figure 6.6 -	Yield stress and strain versus temperature performed by	
	Moritz [15]	112
Figure 6.7 -	Test curves from $DuPONT^{TM}$ [54]: (a) tensile strength vs.	
	temperature and (b) ultimate elongation vs. temperature	112
Figure 6.8 -	Creep test in DuPONT TM Tefzel 200 Flexural [54]	113
Figure 6.9 -	Poisson ratio versus stress for different values of tempera-	
	ture (source: Moritz [15])	113
Figure 6.10 -	Mesh, geometry and boundary conditions for the biaxial test	114
Figure 6.11 -	Stress versus strain for small and large strains	115
Figure 6.12 -	Stress versus strain for experimental results and numerical	
	results with small and large strains for the biaxial loading in	
	the proportion of 1:1	116
Figure 6.13 -	Stress versus strain for experimental results and numerical	
	results with small and large strains for the biaxial loading in	
	the proportion of 2:1	116
Figure 6.14 -	NURBS surface with experimental data	117
Figure 6.15 -	NURBS surfaces of stress and strain in principal directions	
	for von Mises material: (a) stresses in direction 1 and (b)	
	stresses in direction 2.	118
Figure 6.16 -	(a) Burst test and (b) deformation process (source: Schie-	
	mann [84])	119
Figure 6.17 -	Geometry, mesh and boundary conditions for the burst test	
	performed by Schiemann	120
Figure 6.18 -	Pressure versus displacement results for the specimen V28	
	[84]; linear (T3) and quadratic (T6) triangular membrane	
	elements.	120
Figure 6.19 -	Pressure versus displacement results for the specimen V28	
	[84]; step length of 60 and 100.	121
Figure 6.20 -	Pressure versus displacement results for the specimen V28	
	[84]; large strain, and small strain material models.	122

Figure 6.21 -	Deformed configuration of the specimen V28 [84] and nu-	
	merical model with large strains for pressure states 1 and 2.	
		122
Figure 6.22 -	Stress versus strain curve in y direction	123
Figure 6.23 -	Deformed inflated circular membrane with the out of plane	
	displacement: (a) point 1 and (b) point 2	123
Figure 6.24 -	Undeformed cushions: (a) upper and lower membranes of	
	single chamber cushion and (b) upper, middle and lower	
	membranes of double chamber cushion	124
Figure 6.25 -	Cushion dimensions and formfinding shape	124
Figure 6.26 -	Single chamber cushion deformation under external load	125
Figure 6.27 -	Volume versus internal pressure for the single chamber	
	structure	125
Figure 6.28 -	Two chambers deformation under external load	126
Figure 6.29 -	Volume versus internal pressure for two chambers	127
Figure 6.30 -	out of plane displacement versus load	127
Figure 6.31 -	Lyon confluence cushion structure: (a) top view and (b)	
	bottom view	128
Figure 6.32 -	Geometry of the triangular cushion	129
Figure 6.33 -	Mesh of the cushion structure: (a) and (c) without cutting	
	patterns (b) and (d) with cutting patterns.	129
Figure 6.34 -	Flat patterns of the triangular cushion.	130
Figure 6.35 -	Von Mises stress distribution on the cushion structure with	
	pressure-volume coupling: (a) without cutting patterns, (b)	
	with cutting patterns.	130
Figure 6.36 -	Strain in principal directions 1 on the cushion structure with	
	pressure-volume coupling: (a) without cutting patterns, (b)	
	with cutting patterns.	130
Figure 6.37 -	Strain in principal directions 2 on the cushion structure with	
	pressure-volume coupling: (a) without cutting patterns, (b)	
	with cutting patterns.	131
Figure 6.38 -	Stress versus strain for triangular cushion with PD–NURBS	
	material.	132
Figure 6.39 -	Stress versus strain for triangular cushion with elastoplastic	
	material with small strains.	132
Figure 6.40 -	Internal pressure versus volume for the triangular cushion.	133

List of Tables

Table 1.1 -	Membrane materials used in pneumatic structures. (source	
	Gómez-González et al. [12])	24
Table 4.1 -	Material properties of quadrilateral membrane example	80
Table 4.2 -	Maximum error of the PD-NURBS for rectangular membrane	82
Table 4.3 -	Displacement residuum for 15x15 to 100x100 control point	
	net.	84
Table 4.4 -	Maximum error of PD-NURBS material with surfaces gener-	
	ated by control point nets 20x20 to 100x100 for the square	
	perforated example	85
Table 4.5 -	Material properties of the perforated membrane example	85
Table 4.6 -	Maximum error of the PD-NURBS for perforated membrane	87
Table 6.1 -	Material properties of ETFE-foils	114
Table 6.2 -	Relative error of biaxial test for the PD–NURBS material	118
Table 6.3 -	Material properties of specimen V28	121
Table 6.4 -	Global convergence of the displacement residuum at the crit-	
	ical pressure for step length values of 60 and 100.	122
Table 6.5 -	Material properties of the ETFE-foil	129
Table 6.6 -	Maximum result values for the triangular cushion	131