

Daria Kravtsova

Estudo experimental de bambu da espécie "Phyllostachys Pubescens" sob torção e flexão

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Khosrow Ghavami

Rio de Janeiro, setembro de 2011

Daria Kravtsova

Estudo experimental de bambu da espécie "Phyllostachys Pubescens" sob torção e flexão

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Khosrow Ghavami Orientador Pontifícia Universidade Católica do Rio de Janeiro

> Raul Rosas e Silva Pontifícia Universidade Católica do Rio de Janeiro

> Djenane Cordeiro Pamplona Pontifícia Universidade Católica do Rio de Janeiro

> > Flávio de Andrade Silva Universidade Federal do Rio de Janeiro

> > > Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 9 de setembro de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Daria Kravtsova

Graduou-se em Engenharia Civil pela Universidade Russa de Amizade dos Povos em 2008. Em 2009 começou o mestrado, onde em conjunto com o Professor K. Ghavami participou da Semana Nacional de Ciência e Tecnologia como expositora no projeto "Bambu e compósitos reforçados com fibras naturais".

Ficha Catalográfica

Kravtsova, Daria

Estudo experimental de bambu da espécie "*Phyllostachys Pubescens*" sob torção e flexão / Daria Kravtsova; orientador: Khosrow Ghavami. – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2011.

141 f. : il. (color.) ; 29,7 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

 Engenharia civil – Teses. 2. Bambu. 3. Torção.
Flexão. 5. Seção aberta. 6. Elementos finitos. 7. Materiais não convencionais. I. Ghavami, Khosrow. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

Agradecimentos

Aos meus pais pelo apoio e fé em mim.

Ao meu orientador Professor Khosrow Ghavami pela possibilidade de desenvolver esta pesquisa.

Ao meu amigo Carlos G. P. Malqui pela imensa ajuda na preparação e realização dos ensaios.

Aos colegas da PUC-Rio pelas trocas de idéias e informações.

Aos professores que participaram da Comissão examinadora.

A todos os professores e funcionários do Departamento pelos ensinamentos e pela ajuda.

Aos técnicos do LEM-Dec da PUC-Rio pelo auxílio na preparação e realização dos ensaios.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Kravtsova, Daria; Ghavami, Khosrow. **Estudo experimental de bambu da espécie** "*Phyllostachys Pubescens*" sob torção e flexão. Rio de Janeiro, 2011. 141 p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

Entre materiais renováveis de baixo impacto ambiental o bambu se destaca devido ao seu crescimento rápido, alta resistência à tração, baixo peso específico e flexibilidade. É um material compósito natural com fibras longas alinhadas unidirecionalmente, anisotrópico, que não está sendo usado amplamente nas construções civis por razão de falta de informações técnico-científicas. O bambu é um material inteligente com a distribuição das fibras longitudinais como functionally graded composite material (FGM). O objetivo deste trabalho é continuação dos estudos sobre o comportamento de bambu para aplicação nas obras de engenharia, que inicio na PUC-Rio em 1979. Neste estudo específico foi observado comportamento de bambu da espécie Phyllostachys pubescens (Mosô) (através dos ensaios experimentais) sujeito a carga de torção e flexão pura (realizados com utilização do sistema de reconhecimento de imagem) e simulações computacionais em programa de elementos finitos Abaqus. Os ensaios foram feitos para os corpos de prova inteiros (de 1 metro de comprimento) e os mesmos corpos de prova foram posteriormente fissurados no meio, alargando a fissura para cada ensaio até a ruptura.

Palavras-chave

Bambu; Torção; Flexão; Seção aberta; Elementos finitos; Materiais não convencionais.

Abstract

Kravtsova, Daria; Ghavami, Khosrow (Advisor). **Experimental analysis of bamboo species** *"Phyllostachys Pubescens"* **subjected to torsion and bending.** Rio de Janeiro, 2011. 141 p. MSc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Among renewable materials with low environmental impact bamboo stands out because of rapid growth, high tensile strength, low specific weight and flexibility. It is a natural composite anisotropic material with unidirectionally aligned long fibers, which is not widely used in civil construction yet due to lack of technical and scientific information. Bamboo is an intelligent material with the distribution of longitudinal fibers as functionally graded composite material (FGM). The objective of this work is to continue the study the behavior of bamboo for application to engineering works, which started at PUC-Rio in 1979. In this specific study was observed the behavior of Moso bamboo (*Phyllostachys pubescens*) through the experimental observation of pure torsion and bending (realized with utilization of image recognition system) and computer simulations in finite element program Abaqus. The tests were done for the whole bamboo specimens (1 meter long) and the same specimens were subsequently cracked in the middle extending the crack for each test until failure.

Keyword

Bamboo; Torsion; Bending; Open section; Finite elements; Non-Conventional Materials.

Sumário

1. Introdução	18
2. Revisão bibliográfica	19
2.1. Morfologia de bambu	19
2.1.1. Rizomas e raízes	20
2.1.2. Colmos	22
2.1.3. Galhos	24
2.1.4. Folhas	25
2.1.5. Flores e frutos	27
2.2. Micro-estrutura	28
2.3. Características mecânicas	30
2.3.1. Módulo de cisalhamento G	30
2.3.2. Módulo de elasticidade E	31
2.4. Objetivo do trabalho	33
3. Materiais e métodos	35
3.1. Propriedades físicas	35
3.2. Ensaios de Torção	36
3.2.1. Montagem do sistema	36
3.2.2. Formulação teórica utilizada	43
3.3. Ensaios de Flexão	46
3.3.1. Montagem do sistema	46
3.3.2. Formulação teórica utilizada	48
3.4. Simulação em Abaqus	49
4. Resultados e discussão	51
4.1. Análise das deformações dos ensaios de torção pura	51
4.1.1. Análise do colmo 1	51
4.1.2. Análise do colmo 2	63

4.1.3. Análise do colmo 3	71
4.1.4. Comparação dos resultados	79
4.2. Análise dos ângulos de rotação dos ensaio de torção pura	79
4.2.1. Análise do colmo 1	79
4.2.2. Análise do colmo 2	83
4.2.3. Análise do colmo 3	86
4.2.4. Comparação dos resultados	89
4.3. Módulo de cisalhamento G (ensaios de torção pura)	90
4.3.1. Análise dos três colmos	90
4.4. Análise das deformações dos ensaios de flexão pura	91
4.4.1. Análise do colmo 1	91
4.4.2. Análise do colmo 2	94
4.4.3. Análise do colmo 3	98
4.5. Módulo de elasticidade longitudinal E _y (ensaios de flexão	
pura)	102
4.5.1. Seção fechada	102
4.5.2. Seção aberta	105
4.6. Simulação em Abaqus	107
4.6.1. Perfil fechado	107
4.6.2. Perfil aberto	108
5. Conclusões	112
Referências bibliográficas	114
Anexo A	117
Anexo B	119
Anexo C	120

Lista de figuras

Figura 2.1 - Classificação científica de bambu	19
Figura 2.2 - Estrutura de bambu	20
Figura 2.3 - Classificação das ramificações dos rizomas	21
Figura 2.4 - Broto do bambu	21
Figura 2.5 - Estágio de crescimento do colmo do bambu Guadua	
angustifólia	22
Figura 2.6 - Estrutura interna de bambu Mosô	23
Figura 2.7 - Estrutura interna de bambu Mosô	23
Figura 2.8 - Galhos do bambu	24
Figura 2.9 - Folhas de bambu	25
Figura 2.10 - Folhas de bambu	25
Figura 2.11 - Bainha de bambu	26
Figura 2.12 - Bainha de bambu	26
Figura 2.13 - Florescimento de bambu	27
Figura 2.14 - Direções a serem consideradas nos colmos	
de bambu	28
Figura 2.15 - Distribuição das fibras ao longo da espessura da	
parede do colmo (bambu Mosô)	29
Figura 2.16 - Distribuição das fibras ao longo da espessura da	
parede do colmo (direção radial)	29
Figura 2.17 - Conjuntos vasculares de bambu da espécie	
Dendrocalamus giganteus	30
Figura 3.1 - Dimensões do colmo 1	35
Figura 3.2 - Dimensões do colmo 2	35
Figura 3.3 - Dimensões do colmo 3	35
Figura 3.4 - Sistema de ensaio de torção	37
Figura 3.5 - Sistema de ensaio de torção	38
Figura 3.6 - Células de carga (Alfa Instrumentos Z 250)	38

Figura 3.7 - Defletômetros (Gefran TAR 005Y)	39
Figura 3.8 - Software desenvolvido em LabView 2009b	40
Figura 3.9 - Webcam (Clone 10029)	40
Figura 3.10 - Extensômetro de Resistência Elétrica (Strain Gauge)	
Roseta Tripla a 90º colado no corpo de prova	41
Figura 3.11 - Sistema de Aquisição de dados (NI cDAQ-9174)	41
Figura 3.12 - Os colmos ensaiados	42
Figura 3.13 - Esquema de cálculo de momento de inércia	44
Figura 3.14 – Seção com um arco de circunferência	45
Figura 3.15 - Posições dos defletômetros (LVDT) 1 e 2	45
Figura 3.16 - Esquema de rotação dos braços	46
Figura 3.17 - Sistema de ensaio de flexão	47
Figura 3.18 - Lâminas de 1 e 2 kilos para aplicação de carga	47
Figura 3.19 - Criação de modelo em SolidWorks	49
Figura 3.20 - Propriedades do material	50
Figura 3.21 - Tipo de malha escolhida para análise (lado de	
triangulo igual a 1cm)	50
Figura 4.1 - Numeração dos Strain Gauges (Colmo 1, vista	
frontal)	51
Figura 4.2 - Numeração dos Strain Gauges (Colmo 1, vista	
lateral)	51
Figura 4.3 - Numeração dos Strain Gauges (Colmo 1, outra	
vista lateral)	52
Figura 4.4 - Posição dos Strain Gauges (Colmo 1, vista frontal)	52
Figura 4.5 - Posição dos Strain Gauges (Colmo 1, vista lateral)	52
Figura 4.6 - Posição dos Strain Gauges (Colmo 1, outra vista	
lateral)	52
Figura 4.7 - Abertura de fissura (Colmo 1, seção fechada)	53
Figura 4.8 - Torque versus deformação dos Strain Gauges	
(Colmo 1, seção fechada)	53
Figura 4.9 - Abertura de fissura (Colmo1, seção aberta 1)	54
Figura 4.10 - Torque versus deformação dos Strain Gauges	
(Colmo 1, seção aberta 1)	54
Figura 4.11 - Abertura de fissura (Colmo 1, seção aberta 2)	55

Figura 4.12 - Torque versus deformação dos Strain Gauges	
(Colmo 1, seção aberta 2)	55
Figura 4.13 - Abertura de fissura (Colmo 1, seção aberta 3)	56
Figura 4.14 - Torque versus deformação dos Strain Gauges	
(Colmo 1, seção aberta 3)	56
Figura 4.15 - Abertura de fissura (Colmo 1, seção aberta 4)	57
Figura 4.16 - Torque versus deformação dos Strain Gauges	
(Colmo 1, seção aberta 4)	57
Figura 4.17 - Alterações das deformações em todas as faces de	
ensaio de colmo 1 no processo de carga (de colmo inteiro até	
fissurado 4 com torque de 150 kN·mm) (vista frontal)	58
Figura 4.18 - Significado das cores	59
Figura 4.19 - Alterações das deformações em todas as faces de	
ensaio de colmo 1 no processo de carga (de colmo inteiro até	
fissurado 4 com torque de 150 kN⋅mm) (vista lateral)	60
Figura 4.20 - Significado das cores	61
Figura 4.21 - Alterações das deformações em todas as faces de	
ensaio de colmo 1 no processo de carga (de colmo inteiro até	
fissurado 4 com torque de 150 kN·mm) (outra vista lateral)	62
Figura 4.22 - Significado das cores	62
Figura 4.23 - Numeração dos Strain Gauges (Colmo 2, vista	
frontal)	63
Figura 4.24 - Posição dos Strain Gauges (Colmo 2, vista frontal)	64
Figura 4.25 - Abertura de fissura (Colmo 2, seção fechada)	64
Figura 4.26 - Torque versus deformação dos Strain Gauges	
(Colmo 2, seção fechada)	64
Figura 4.27 - Abertura de fissura (Colmo 2, seção aberta 1)	65
Figura 4.28 - Torque versus deformação dos Strain Gauges	
(Colmo 2, seção aberta 1)	65
Figura 4.29 - Abertura de fissura (Colmo 2, seção aberta 2)	66
Figura 4.30 - Torque versus deformação dos Strain Gauges	
(Colmo 2, seção aberta 2)	66

Figura 4.31 - Abertura de fissura (Colmo 2, seção aberta 3)	67
Figura 4.32 - Torque versus deformação dos Strain Gauges	
(Colmo 2, seção aberta 3)	67
Figura 4.33 - Abertura de fissura (Colmo 2, seção aberta 4)	68
Figura 4.34 - Torque versus deformação dos Strain Gauges	
(Colmo 2, seção aberta 4)	68
Figura 4.35 - Alterações das deformações em todas as faces de ensaio de colmo 2 no processo de carga (de colmo inteiro até fissurado 4 com torque de 150 kN·mm) (vista frontal)	69
Figura 4.36 - Significado das cores	70
Figura. 4.37 - Numeração dos Strain Gauges (Colmo 3, vista frontal)	71
Figura. 4.38 - Posição dos Strain Gauges (Colmo 3, vista	
frontal)	71
Figura 4.39 - Abertura de fissura (Colmo 3, seção fechada)	72
Figura 4.40 - Torque versus deformação dos Strain Gauges	
(Colmo 3, seção fechada)	72
Figura 4.41 - Abertura de fissura (Colmo 3, seção aberta 1)	73
Figura 4.42 - Torque versus deformação dos Strain Gauges	
(Colmo 3, seção aberta 1)	73
Figura 4.43 - Abertura de fissura (Colmo 3, seção aberta 2)	74
Figura 4.44 - Torque versus deformação dos Strain Gauges	
(Colmo 3, seção aberta 2)	74
Figura 4.45 - Abertura de fissura (Colmo 3, seção aberta 3)	75
Figura 4.46 - Torque versus deformação dos Strain Gauges	
(Colmo 3, seção aberta 3)	75
Figura 4.47 - Abertura de fissura (Colmo 3, seção aberta 4)	76

Figura 4.48 - Torque versus deformação dos Strain Gauges	
(Colmo 3, seção aberta 4)	76
Figura 4.49 - Alterações das deformações em todas as faces de	
ensaio de colmo 3 no processo de carga (de colmo inteiro até	
fissurado 4 com torque de 150 kN⋅mm) (vista frontal)	77
Figura 4.50 - Significado das cores	78
Figura 4.51 - Posição dos medidores de ângulo B e R (Colmo 1)	80
Figura 4.52 - Ângulo de rotação versus torque (Colmo 1, seção	
fechada)	80
Figura 4.53 - Ângulo de rotação versus torque (Colmo 1,	
Fissurado 1)	81
Figura 4.54 - Ângulo de rotação versus torque (Colmo 1,	
Fissurado 2)	81
Figura 4.55 - Ângulo de rotação versus torque (Colmo 1,	
Fissurado 3)	82
Figura 4.56 - Ângulo de rotação versus torque (Colmo 1,	
Fissurado 4)	82
Figura 4.57 - Posição dos medidores de ângulo B e R (Colmo 2)	83
Figura 4.58 - Ângulo de rotação versus torque (Colmo 2, seção	
fechada)	84
Figura 4.59 - Ângulo de rotação versus torque (Colmo 2,	
Fissurado 1)	84
Figura 4.60 - Ângulo de rotação versus torque (Colmo 2,	
Fissurado 2)	84
Figura 4.61 - Ângulo de rotação versus torque (Colmo 2,	
Fissurado 3)	85
Figura 4.62 - Ângulo de rotação versus torque (Colmo 2,	
Fissurado 4)	85
Figura 4.63 - Posição dos medidores de ângulo B e R (Colmo 3)	86
Figura 4.64 - Ângulo de rotação versus torque (Colmo 3, seção	
fechada)	87
Figura 4.65 - Ângulo de rotação versus torque (Colmo 3,	
Fissurado 1)	87

Figura 4.66 - Ângulo de rotação versus torque (Colmo 3,	
Fissurado 2)	87
Figura 4.67 - Ângulo de rotação versus torque (Colmo 3,	
Fissurado 3)	88
Figura 4.68 - Ângulo de rotação versus torque (Colmo 3,	
Fissurado 4)	88
Figura 4.69 - Deformações versus Carga aplicada,colmo 1 (seção	
aberta)	92
Figura 4.70 - Deformações versus Carga aplicada,colmo 1 (seção	
aberta) (Strain 6)	92
Figura 4.71 - As deformações com a carga de 224 N para colmo 1	
(seção aberta)	93
Figura 4.72 - Deformações versus Carga aplicada, colmo 2	
(seção fechada)	95
Figura 4.73 - Deformações versus Carga aplicada,colmo 2 (seção	
fechada) (Strain 0)	95
Figura 4.74 - Deformações versus Carga aplicada,colmo 2 (seção	
aberta)	96
Figura 4.75 - Deformações versus Carga aplicada,colmo 2 (seção	
aberta) (Strain 0)	96
Figura 4.76 - As deformações do colmo 2 (seção aberta e seção	
fechada) com a carga de 224 e 234 N respectivamente	97
Figura 4.77 - Deformações versus Carga aplicada,colmo 3 (seção	
fechada)	98
Figura 4.78 - Deformações versus Carga aplicada,colmo 3 (seção	
fechada) (Strain 1)	99
Figura 4.79 - Deformações versus Carga aplicada, colmo 3 (seção	
aberta)	100
Figura 4.80 - Deformações versus Carga aplicada, colmo 3 (seção	
aberta) (Strain 1)	100
Figura 4.81 - As deformações do colmo 3 (seção aberta e seção	
fechada) com a carga de 234 N	101
Figura 4.82 - Posições dos LVDT (Colmos 2 e 3 – Seção fechada)	104
Figura 4.83 - Posições dos LVDT (Colmo1, 2 e 3 – Seção	

aberta)	106
Figura 4.84 - Distribuição das deformações (seção fechada)	107
Figura 4.85 - Significado das cores (seção fechada)	107
Figura 4.86 - Distribuição das deformações (Fissurado 1)	108
Figura 4.87 - Significado das cores (Fissurado1)	108
Figura 4.88 - Distribuição das deformações (Fissurado 2)	109
Figura 4.89 - Significado das cores (Fissurado 2)	109
Figura 4.90 - Distribuição das deformações (Fissurado 3)	110
Figura 4.91 - Significado das cores (Fissurado 3)	110
Figura 4.92 - Distribuição das deformações (Fissurado 4)	110
Figura 4.93 - Significado das cores (Fissurado 4)	111
Figura B.1 - Limpeza dos dados de ruído, utilizando filtro FIR	
em MatLab (colmo 2, seção fechada, ensaio de torção,	
ângulo de giro versus tempo)	119
Figura C.1 - Exemplos das hastes com paredes delgadas	121
Figura C.2 - Geratriz, guia e superfície média da haste	122
Figura C.3 - Eixo arbitrário da haste	124
Figura C.4 - Seção transversal da haste <i>z</i> = <i>const</i>	125
Figura C.5 - Deslocamento de ponto M	127
Figura C.6 - Coordenadas de ponto A	128
Figura C.7 - Deslocamentos tangenciais para quatro pontos:	
<i>M, a, b</i> e <i>c</i>	129
Figura C.8 - Determinação de $d\omega$	130
Figura C.9 - Área setorial	131
Figura C.10 - Seção em forma de arco	132
Figura C.11 - Estado de tensões no caso de flexão	135
Figura C.12 - Estado de tensões no caso da ação do peso	
próprio	136
Figura C.13 - Estado de tensões no caso de torção	136
Figura C.14 - Estado de tensões no caso de flexo-torção	137
Figura C.15 - Diagrama das áreas setoriais principais	137
Figura C.16 - Diagrama dos momentos setoriais estáticos	139
Figura C.17 - Seção transversal do tubo com a espessura da	
parede variável	140

Figura C.18 - O sector *k* da seção transversal

140

Lista de tabelas

Tabela 2.1 - Módulo de cisalhamento G _z para as espécies	
Guádua Angustifólia, Metake e Phyllostachys Pubescens (Mosô)	31
Tabela 2.2 - Valores médios de módulo de elasticidade	
longitudinal Ez	32
Tabela 2.3 - Módulos efetivos a flexão	33
Tabela 3.1 - Características físicas dos colmos	36
Tabela 4.1 - Valores máximos de ângulo de rotação do colmo 1	83
Tabela 4.2 - Valores máximos de ângulo de rotação do colmo 2	86
Tabela 4.3 - Valores máximos de ângulo de rotação do colmo 3	89
Tabela 4.4 - Valores máximos de ângulo de rotação dos três	
colmos	89
Tabela 4.5 - Módulos de cisalhamento G_z (878 mm do engaste)	
(seção fechada)	90
Tabela 4.6 - Esbeltez diametral dos três colmos	102
Tabela 4.7 - Distribuição dos E _y (GPa) pelo comprimento do	
colmo dependendo do razão Diâmetro médio/Espessura	
da parede (seção fechada)	103
Tabela 4.8 - Distribuição dos E _y (GPa) pelo comprimento do	
colmo dependendo do razão Diâmetro médio/Espessura	
da parede (seção aberta)	105
Tabela A.1 - Características físicas de colmo 1	117
Tabela A.2 - Características físicas de colmo 2	117
Tabela A.3 - Características físicas de colmo 3	118
Tabela C.1 - Os valores do ângulo $lpha$	135