

Ricardo Dória Loyola-Camorim

Análise de sensibilidade de variáveis de reservatório em simulador de escoamento em meio poroso de dupla porosidade e permeabilidade

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós–Graduação em Engenharia Mecânica, do Departamento de Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Ivan Fábio Mota de Menezes Coorientador: Dr. Marcos Vitor Barbosa Machado

Rio de Janeiro Julho de 2020

Ricardo Dória Loyola-Camorim

Análise de sensibilidade de variáveis de reservatório em simulador de escoamento em meio poroso de dupla porosidade e permeabilidade

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós–Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo:

Prof. Ivan Fábio Mota de Menezes Orientador Departamento de Engenharia Mecânica – PUC-Rio

> Dr. Marcos Vitor Barbosa Machado Coorientador

Petróleo Brasileiro S/A – Petrobras

Prof. Arthur Martins Barbosa Braga

Departamento de Engenharia Mecânica - PUC-Rio

Dr. Daniel Nunes de Miranda Filho

Petróleo Brasileiro S/A – Petrobras

Dr. José Sérgio de Araújo Cavalcante Filho

Petróleo Brasileiro S/A - Petrobras

Rio de Janeiro, 31 de julho de 2020

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ricardo Dória Loyola-Camorim

Graduou-se em Engenharia Eletrônica e de Computação em 2010 pela Universidade Federal do Rio de Janeiro (UFRJ). Ingressou na Petrobras no mesmo ano como engenheiro de petróleo e, desde então, concentra sua atuação na área de engenharia de reservatórios. Desde o início de sua trajetória na companhia, trabalha com modelagem de campos de petróleo do pré-sal.

Ficha Catalográfica

Loyola-Camorim, Ricardo Dória

Análise de sensibilidade de variáveis de reservatório em simulador de escoamento em meio poroso de dupla porosidade e permeabilidade / Ricardo Dória Loyola-Camorim ; orientador: Ivan Fábio Mota de Menezes ; coorientador: Marcos Vitor Barbosa Machado. – 2020.

155 f. : il. color. ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2020.

Inclui bibliografia

1. Engenharia Mecânica - Teses. 2. Dupla permeabilidade. 3. Reservatório. 4. Carste. 5. Fratura. 6. Vug. I. Menezes, Ivan Fábio Mota de. II. Machado, Marcos Vitor Barbosa. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

PUC-Rio - Certificação Digital Nº 1712563/CA

Dedico esse trabalho a meu pai e a minha mãe que sempre me deram a base para eu atingir meus objetivos.

Agradecimentos

Gostaria de agradecer aos meus orientadores Ivan Menezes e Marcos Machado pelo apoio na elaboração dessa dissertação.

Também agradeço à PUC-Rio, à CAPES e à Petrobras por terem permitido meu desenvolvimento.

Aos meus pais e família por sempre terem me incentivado na busca pelo conhecimento.

À minha esposa Ilana pelo apoio incondicional, mesmo em uma época difícil como a quarentena devido ao COVID-19.

E a todos os meus amigos, colegas e professores que de alguma forma contribuíram para o término desse trabalho.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

Resumo

Dória Loyola-Camorim, Ricardo; Mota de Menezes, Ivan Fábio; Barbosa Machado, Marcos Vitor. Análise de sensibilidade de variáveis de reservatório em simulador de escoamento em meio poroso de dupla porosidade e permeabilidade. Rio de Janeiro, 2020. 155p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

Os reservatórios de petróleo do pré-sal brasileiro são encontrados em rochas carbonáticas localizadas em ambiente *offshore* na borda da plataforma continental. Com o fim de explorar essas jazidas de forma mais segura e rentável, é essencial representá-las corretamente nos modelos de simulação de escoamento. Entretanto, esta não é uma tarefa simples. Essas rochas carbonáticas recorrentemente apresentam fraturas e carstes nos quais o escoamento se comporta de forma diferente da simulação tradicional utilizando porosidade única. Para solucionar o problema, existem técnicas que representam o escoamento através dos diversos meios porosos. No entanto, essas modelagens inserem diversas complexidades para a correta caracterização das formações geológicas e da previsão da produção. Nesse trabalho são analisados os impactos que algumas das características das fraturas, da matriz e da malha de poços têm no resultado das simulações com dupla porosidade e permeabilidade.

Palavras-chave

Dupla permeabilidade;

Reservatório;

Carste;

Fratura; Vug.

Abstract

Dória Loyola-Camorim, Ricardo; Mota de Menezes, Ivan Fábio (Advisor); Barbosa Machado, Marcos Vitor (Co-Advisor). **Sensitivity analysis of reservoir variables on a dual porosity and permeability simulator.** Rio de Janeiro, 2020. 155p. Dissertação de mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Petroleum reservoirs of the Brazilian pre-salt are found in carbonate rocks located offshore at the edge of the continental shelf. To optimize the exploitation of these reservoirs, it is of paramount importance to properly represent them in the flow simulation models. Nevertheless, this is not a straightforward task. Carbonate rocks usually present fractures and karsts, where flow differs from what is traditionally represented by single porosity reservoir simulators. With the purpose of better modelling the fluid flow behavior through multiple media, alternative techniques exist. However, these alternatives require additional complexities and variables for the adequate characterization of the geologic formations and production forecast. In this work, the impact that some of the fracture and matrix characteristics and the well positioning have on the results of dual-porosity and dual-permeability simulations is addressed.

Keywords

Dual Permeability;

y; Reservoir;

Karsts; Fracture;

Vug.

Sumário

1	Introdução	21
1.1	Contexto Geológico	21
1.2	Contexto de Simulação	24
1.3	Motivação	26
1.4	Objetivos	27
1.5	Estrutura do Trabalho	28
2	Revisão Bibliográfica	29
2.1	Reservatórios Naturalmente Fraturados	29
2.1.1	Classificação	30
2.1.2	Modelagem de Escoamento	31
3	Fundamentação Teórica	38
3.1	Conceitos e Definições	38
3.1.1	Conceitos Básicos	38
3.1.2	Reservatórios Fraturados	39
3.1.3	Função Logística	41
3.2	Simulador de Escoamento	42
3.2.1	Simulação Numérica de Reservatórios	42
3.2.2	Simulação Composicional	45
3.2.3	Simulação de Dupla Porosidade e Dupla Permeabilidade	54
4	Metodologia	58
4.1	Organização do Trabalho	58
4.1.1	Simulação	58
4.1.2	Variáveis Estudadas	59
4.1.2.	1 Homogeneidade/Heterogeneidade da Matriz da Rocha	60
4.1.2.	2 Posicionamento dos Poços	61

4.1.2.	3 Corredor de Fraturas	62
4.1.2.	4 Permeabilidade Efetiva das Fraturas	63
4.1.3	Resultados Avaliados	64
4.1.3.	1 Previsão de Produção	64
4.1.3.	2 Resultados Numéricos	66
4.2	Modelo de Reservatório	70
4.2.1	Condições Iniciais do Modelo	70
4.2.2	Estrutural	71
4.2.3	Fluido	73
4.2.4	Distribuição das Propriedades	74
4.2.5	Fraturas	75
4.2.6	Permeabilidade Relativa	76
5	Resultados e Análises	78
5.1	Simulações sem Injeção	79
5.1.1	Controle de Qualidade da Solução Numérica	80
5.1.2	Homogeneidade da Matriz	82
5.1.3	Aspectos Geométricos do Corredor de Fraturas	83
5.2	Simulações com Injeção	87
5.2.1	Controle de Qualidade da Solução Numérica	88
5.2.2	Homogeneidade da Matriz	88
5.2.3	Direção da Malha de Poços em Relação à Malha do Modelo	95
5.2.4	Aspectos Geométricos do Corredor de Fraturas	97
5.2.5	Comportamento das Previsões de Produção em Relação à Permeab	ilidade
	Efetiva de Fraturas	104
6	Conclusões	110
6.1	Ajuste dos Parâmetros Numéricos	110
6.2	Cenários sem Injeção	111
6.3	Cenários com Injeção	111
6.4	Sugestões para Trabalhos Futuros	112

Referências Bibliográficas	114
Apêndice A. Tabelas com os Resultados das Simulações	120
Apêndice B. Tabelas com os Ajustes da Curva Logística	154

Lista de Figuras

Figura 1.1: Província do Pré-sal.	22
Figura 1.2: Exemplos de lâmina petrográfica de rocha do pré-sal: (a) com	
polarizadores paralelos e (b) com polarizadores cruzados. Porosidade	
em azul; seta vermelha aponta para esférulas de calcita; seta branca,	
<i>shrub</i> ; seta verde, argila.	23
Figura 1.3: Lâminas petrográficas com (a)fratura e (b)vug e imagem de raio-X de	
plugue de rocha com (c)matriz, (d)fratura e (e) <i>vug</i> .	23
Figura 1.4: (a) e (b) Rochas carbonáticas no afloramento da Formação Yacoraite,	
Salta, Argentina; (c) visão lateral das fraturas com aberturas métricas	
entre blocos carbonáticos no afloramento da Formação Salitre, Bahia,	
Brasil (d) vista de cima de carbonatos carstificados no afloramento da	
Formação Jandaíra, Rio Grande do Norte, Brasil.	24
Figura 1.5: Esquemático do escoamento unidirecional em um simulador de	
porosidade simples, dupla porosidade e dupla permeabilidade.	26
Figura 2.1: Classificação de reservatórios fraturados.	31
Figura 2.2: Modelo de reservatório fraturado.	33
Figura 3.1: Esquemático de uma falha geológica apresentando a zona de dano.	40
Figura 3.2: Função Logística P(z).	41
Figura 3.3: Esquemáticos das formulações (a) explícita e (b) implícita.	43
Figura 3.4: Exemplo de modelo unidimensional de três células.	52
Figura 3.5: Esquema da sobreposição de malhas na simulação de dupla porosida	de
e dupla permeabilidade.	54
Figura 4.1: (a) Porosidade do modelo e (b) permeabilidade horizontal do modelo.	60

Figura 4.2: Mapas com o coeficiente de Dykstra-Parsons: (a) modelo utilizado e (b) ajuste à curva log-normal. 61

Figura 4.3: Localização dos poços.	62
Figura 4.4: Exemplos de corredores de fraturas com diferentes geometrias.	63
Figura 4.5: Histogramas do erro de balanço de massa acumulado dos cenários	com
controle numérico default a) com injeção e b) sem injeção.	67
Figura 4.6: Histogramas do erro de balanço de massa acumulado dos cenários	com
controle numérico final a) com injeção e b) sem injeção	69
Figura 4.7: Modelo proxy original - $H \times \varphi \times S_o(m)$.	71
Figura 4.8: Modelo final - $H imes arphi imes \mathcal{S}_{o}\left(m ight)$ após multiplicação por NTG.	72
Figura 4.9: Modelo final - NTG	72
Figura 4.10: Envelope de Fases do Fluido Utilizado com Pressão Original do	
Reservatório (P0); Pressão de Saturação do Reservatório (Psat) e P	onto
Crítico do Fluido (Pc).	74
Figura 4.11: Histogramas de propriedades da rocha: (a) porosidade efetiva e (b)
permeabilidade absoluta horizontal.	75
Figura 4.12: Curvas de permeabilidade relativa da matriz e da fratura.	77
Figura 5.1: Exemplo de curva de produção de óleo e gás sem manutenção da	
pressão por injeção de água.	80
Figura 5.2: (a) Fator de recuperação e (b) t_{Dpb} das simulações sem injeção, com	ı
matriz heterogênea e corredor de fraturas com largura=2 e distância	=0.
	81
Figura 5.3: (a) Tempo de simulação, (b) número de <i>timesteps</i> , de (c) iterações o	ot
<i>solver</i> e de (d) ciclos newtonianos das simulações sem injeção, com	
matriz heterogênea e corredor de fraturas com largura=2 e distância	=0.
	81
Figura 5.4: (a) Erro de balanço de materiais e (b) implicitude média das simulaç	ões
sem injeção, com matriz heterogênea e corredor de fraturas com	
largura=2 e distância=0.	82
Figura 5.5: Fator de recuperação das simulações sem injeção e corredor de frat	uras
com largura=1 e distância=1.	83
Figura 5.6: Implicitude média das simulações sem injeção e corredor de fraturas	3
com largura=3 e distância=0.	83

Figura 5.7: Tempo de simulação dos cenários sem injeção, matriz heterogênea e	
com largura=2.	85
Figura 5.8: Tempo de simulação dos cenários sem injeção, matriz heterogênea e	
com distância=0.	85
Figura 5.9: (a) Fator de recuperação e (b) <i>t_{Dpb}</i> nos cenários sem injeção e com	
matriz heterogênea.	86
Figura 5.10: Exemplo de curva de produção com injeção.	87
Figura 5.11: (a) Tempo de simulação, (b) número de <i>timesteps</i> , (c) número de	
iterações do <i>solver</i> e (d) número de ciclos newtonianos das simulaçõe	S
com malha paralela à grade, com injeção e corredor de fraturas com	
largura=1 e distância=0.	89
Figura 5.12: Implicitude média das simulações com malha paralela à grade, com	
injeção e corredor de fraturas com largura=1 e distância=0.	90
Figura 5.13: (a) Fator de recuperação e (b) t_{Dw} das simulações com injeção em	
malha paralela à grade, distância=0 e com largura=1.	91
Figura 5.14: t_{Dw} versus FR, colorido pela homogeneidade da matriz e com pontos	de
tamanho proporcional a <i>K_{frat}.</i>	92
Figura 5.15: Corte de água para os cenários com distância = 1, largura = 2 e K_{frat}	=
1.000 <i>mD</i> .	93
Figura 5.16: Resultados de produção das simulações com injeção em malha	
paralela à grade, distância=5 e com largura=3: (a) FR; (b) <i>t_{Dw}.</i>	94
Figura 5.17: Seção na direção dos poços comparando a saturação de água nos	
casos de matriz heterogênea e homogênea.	95
Figura 5.18: Representação esquemática de escoamento não alinhado com um d	os
eixos coordenados da malha de simulação.	96
Figura 5.19: <i>t_{Dw}</i> das simulações com injeção em matriz homogênea, distância=0 e	Э
com: (a) largura=2; (b) largura=1.	97
Figura 5.20: Mapa das células fraturadas no caso poços diagonais à grade,	
distância=0 e largura=1.	97
Figura 5.21: Média do tempo de simulação por $log_{10}(K_{frat})$ e distância do corredor	de
fraturas.	99
Figura 5.22: Implicitude média das simulações com injeção em matriz heterogêne	₽a,
malha paralela à grade e com largura=1.	100

Figura 5.23: Resultados de produção das simulações com injeção em matriz heterogênea, malha paralela à grade e com largura=1: (a) FR; (b) *t*_{Dw}.101

- Figura 5.24: Mapas de S_w na matriz da camada k=10 no instante t=3.000 dias, do cenário de malha paralela, matriz heterogênea, L=1 e *K*_{frat} = 32.000 *mD*, comparando os cenários
- Figura 5.25: Número de cortes de *timestep* das simulações com injeção em matriz heterogênea, malha paralela à grade e com D=1. 102
- Figura 5.26: (a)Tempo de simulação, (b) número de *timesteps*, (c) de iterações do *solver* e (d) de ciclos newtonianos das simulações com injeção em matriz heterogênea, malha paralela à grade e com D=0.
- Figura 5.27: (a)FR e (b) t_{Dw} das simulações com injeção em matriz heterogênea, malha paralela à grade e com D=0. 104 Figura 5.28: FR médio x log₁₀(K_{frat}). 105
- Figura 5.29: t_{Dw} médio x log₁₀(K_{frat}). 105
- Figura 5.30: Exemplos de ajustes de t_{DW} e de *FR* por K_{frat} . 108
- Figura 5.31: xa de *t*_{Dw} por xa de *FR* colorido pela distância entre poços e fraturas.109

Lista de Tabelas

Tabela 4.1: Parâmetros Numéricos Finais	68
Tabela 4.2: Características dos fluidos utilizados.	73
Tabela 4.3: Percentuais molares dos pseudo-componentes.	73
Tabela 4.4: Características das distribuições de φ e de K_{matriz} do modelo.	74
Tabela 4.5: Parâmetros das curvas de permeabilidade relativa da matriz.	76
Tabela 5.1: Resumo das características dos modelos de reservatório a serem	
combinadas	78
Tabela 5.2: Convergência da equação logística ($lpha$ x eta)	107
Tabela A.1: Resultados das simulações - numérico 1	120
Tabela A.2: Resultados das simulações - numérico 2	131
Tabela A.3: Resultados de Simulaçao - Produção	142
Tabela B.1: Ajustes da curva logística do <i>FR</i> .	154
Tabela B.2: Ajustes da curva logística do <i>t_{Dw}.</i>	155

Lista de Abreviaturas

- ADTSC Adaptative Time Step Control AIM – Adaptative Implicit Method CBM - Coal-Bed Methane CFL - Courant-Friedrichs-Lewy CMG – Computer Modelling Group EBM - Erro de Balanço de Materiais EOR – Enhanced Oil Recovery FIP – Fluid In Place FR – Fator de Recuperação **IMPECS – Implicit Pressure, Explicit Compositions and Saturations** IMPES – Implicit Pressure, Explicit Saturations MINC - Multiple Interacting Continua NTG - Net-To-Gross PC - Pseudo-Componente RC – Reservoir Conditions RGO – Razão Gás-Óleo STD - Standard Conditions
 - VOIP Volume de Óleo In Place
 - WAG Water Alternating Gas

Lista de Símbolos

Letras latinas

- $A_{x,y,z}$ área transversal ao fluxo
- $A_{w,q}$ matriz dos termos de pressão capilar
- $B_{o,q,w}$ fator volume de formação
- C compressibilidade
- D distância entre o corredor de fraturas e os poços
- f fugacidade
- F função genérica
- h inclinação da curva logística no ponto de inflexão
- H espessura
- i, j, k três direções no espaço discretizado
- [J] matriz Jacobiana
- k permeabilidade
- K_{frat} permeabilidade efetiva da fratura
- Kmatriz permeabilidade efetiva da matriz
- l largura da célula
- L largura do corredor de fraturas em número de células
- n_c número de componentes
- N concentração molar do componente
- N_p volume acumulado de óleo produzido
- p pressão
- p_i ponto de inflexão da curva logística
- P₀ pressão inicial do reservatório
- q vazão volumétrica
- r resíduo
- R_s razão de solubilidade
- S saturação
- t tempo
- T transmissibilidade
- Δt passo de tempo (*timestep*)

- v velocidade
- V_b volume total da célula
- V_p volume poroso do reservatório
- x, y, z três direções no espaço contínuo
- x fração molar do componente na fase oleica
- x_a valor de permeabilidade em que se atinge a assintocidade
- X matriz dos termos gravitacionais
- y fração molar do componente na fase gasosa
- y_{min} valor mínimo da curva logística
- ymáx valor máximo da curva logística
- Z profundidade do ponto no espaço

Letras Gregas

- γ peso específico
- μ viscosidade
- ν identificador do ciclo newtoniano
- $[\delta\xi]$ vetor de variação das incógnitas
- ρ volume específico
- σ fator de forma
- τ termo de transferência matriz-fratura
- φ porosidade
- Φ potencial
- $[\psi]$ vetor dos resíduos

Subscrito

- c capilar
- D-adimensional
- f fratura
- g-gás
- h horizontal
- i identificador da célula
- m matriz
- m identificador do componente
- o óleo

- p-pressão
- pb- pressão de bolha
- r relativa
- v vertical
- w água

Sobrescrito

- L líquido
- n identificador do *timestep*
- V vapor
- ν identificador do ciclo newtoniano

PUC-Rio - Certificação Digital Nº 1712563/CA

Ora et labora.

São Bento, Regula Benedicti.

1 Introdução

Os reservatórios de petróleo do pré-sal são importantes fontes de produção de hidrocarbonetos do Brasil. Para desenvolver esse polo de produção offshore foi necessário superar diversos desafios, tais como ambiente em águas ultraprofundas (acima de 1500 *m* de profundidade), presença de CO₂ no gás associado, problemas de garantia de escoamento e perfuração de poços atravessando camadas espessas de sal (DA COSTA FRAGA et al., 2015).

Desde as primeiras descobertas da área até a atualidade, um dos principais desafios que se enfrenta é o novo contexto de modelagem de reservatório. Antes dos anos 2000, os grandes campos produtores brasileiros eram compostos por rochas siliciclásticas. Todavia, os prospectos descobertos no polo pré-sal foram formados em um contexto geológico diferente, resultando em formações de natureza carbonática. As repercussões dessa origem diversa não recaem apenas na modelagem geológica. O modelo de escoamento em meio poroso deve ser capaz de representar corretamente as características dessas rochas.

1.1 Contexto Geológico

As formações carbonáticas do pré-sal se originaram em um ambiente criado pela separação das placas tectônicas da América do Sul e África. Esse evento ocorreu durante o período geológico denominado Cretáceo (145 a 66 milhões de anos atrás) (CHABOUREAU, 2013). Com essa cisão, se formou uma bacia sedimentar (*rift*) paralela à costa brasileira, a qual foi preenchida inicialmente por rochas sedimentares siliciclásticas finas com variável teor de matéria orgânica. Posteriormente, essas rochas se tornariam a fonte para a geração dos hidrocarbonetos presentes nessa região.

Em seguida, as condições climáticas áridas favoreceram a formação de um lago alcalino. Nesse ambiente, as rochas carbonáticas foram precipitadas e, cerca de 120 milhões de anos depois (MOREIRA et al., 2007), se tornariam os principais reservatórios do pré-sal. Subsequentemente, inicia-se uma conexão entre esse lago e o mar. A consequente entrada de águas salinas na bacia, até então isolada, favoreceu a deposição de extensa e espessa camada de sal, seguida pela formação de folhelhos e turbiditos marinhos (MOREIRA et al., 2007). O depósito de sal serve como selo para os reservatórios que são o foco desse trabalho.

Nesse contexto, já existem diversas descobertas dentro do que é conhecido como a província do pré-sal. A Figura 1.1 apresenta os campos descobertos nessa área.

Figura 1.1: Província do Pré-sal. Fonte: PIZARRO et al. (2017).

É importante ressaltar que não há um análogo conhecido para as rochas reservatório do pré-sal (MOCZYDLOWER et al., 2012). Elas foram formadas durante o Aptiano (125 a 113 milhões de anos atrás) em um grande lago (MOREIRA et al., 2007). Todavia, diferem em vários aspectos dos depósitos clássicos de lagos com predomínio de fácies microbianas (LIMA e DE ROS, 2019). Estas rochas são compostas pela combinação de diferentes proporções de três componentes gerados *in situ* (GOMES et al., 2020): lama (micrita e argila); calcita em formato de esférulas (*spherulite*); e calcita fascicular em forma de arbusto (*shrub*). A Figura 1.2 apresenta alguns exemplos em imagens de lâminas petrográficas. Além dos componentes que são precipitados, os mesmos podem ser quebrados e deslocados lateralmente, formando os calcarenitos.

Logicamente, cada reservatório tem suas particularidades. Porém, há uma característica que está presente em todos os casos do pré-sal, que é uma intensa heterogeneidade vertical das formações devido à complexa geração dos elementos citados. Além disso, devido às propriedades congênitas dos carbonatos, é praticamente inevitável o surgimento de fraturas, *vugs* e outros tipos de carstes. A carstificação é um fenômeno que ocorre em um momento posterior à gênese da rocha, ou seja, um processo diagenético. Através de atuação química e/ou mecânica, a diagênese altera as propriedades permoporosas da formação. *Vugs* são poros de dimensão macroscópica que funcionam como armazenadores de fluido com grande permeabilidade. Fraturas são canais de pequena porosidade, mas altas permeabilidades que permitem um rápido escoamento. A Figura 1.3 exemplifica essas duas estruturas.

Figura 1.2: Exemplos de lâmina petrográfica de rocha do pré-sal: (a) com polarizadores paralelos e (b) com polarizadores cruzados. Porosidade em azul; seta vermelha aponta para esférulas de calcita; seta branca, *shrub*; seta verde, argila. Fonte: Modificado de GOMES et al. (2020).

Figura 1.3: Lâminas petrográficas com (a)fratura e (b)*vug* e imagem de raio-X de plugue de rocha com (c)matriz, (d)fratura e (e)*vug*. Fonte: Modificado de WANG et al. (2015).

As características descritas são bastante discrepantes daquelas dos arenitos que compõem os principais campos brasileiros nas décadas anteriores. Portanto, faz-se necessária uma modelagem também diferente para se atingir resultados confiáveis.

Na Figura 1.4, são apresentados alguns exemplos de rochas carbonáticas e de carstificação. Observam-se: (a) complexidades das formações de estromatólitos; (b) continuidade lateral contrastando com a heterogeneidade vertical; (c) geração de caminhos preferenciais através de carstificação; e (d) intenso fraturamento comum nessas rochas que pode ser intensificado pelos processos diagenéticos.

Figura 1.4: (a) e (b) Rochas carbonáticas no afloramento da Formação Yacoraite, Salta, Argentina; (c) visão lateral das fraturas com aberturas métricas entre blocos carbonáticos no afloramento da Formação Salitre, Bahia, Brasil (d) vista de cima de carbonatos carstificados no afloramento da Formação Jandaíra, Rio Grande do Norte, Brasil. Fonte: Do autor (arquivo pessoal).

1.2 Contexto de Simulação

SALOMÃO et al. (2015) abordam as estratégias que são adotadas para a melhor explotação de um campo de petróleo como os do pré-sal. Todas essas avaliações apresentadas tomam como base resultados de simulações numéricas. Para se obter um plano de drenagem verdadeiramente robusto, uma modelagem confiável é imprescindível.

Em reservatórios siliciclásticos não fraturados, típicos dos campos brasileiros explotados previamente ao pré-sal, a simulação de escoamento normalmente adota a modelagem de porosidade simples. Nesse caso, se assume que os fluidos são transportados através de um mesmo meio, discretizado espacialmente para contemplar as heterogeneidades e anisotropia. Normalmente, devido às grandes dimensões dos reservatórios, essa metodologia não incorre em erros relevantes, sobretudo no cenário de rochas siliciclásticas. Entretanto, em casos de reservatórios com presença relevante de outros tipos de porosidade, essa modelagem passa a se mostrar equivocada. Reservatórios carstificados, como os observados

no pré-sal, não respeitam as premissas do modelo de porosidade simples uma vez que, devido às suas severas heterogeneidades, a representação do escoamento pela lei de Darcy não pode ser aplicada com alto grau de confiabilidade.

O principal impacto dessas discrepâncias ocorre quando é considerada a injeção de água ou gás. Nos projetos do pré-sal, a injeção é utilizada tanto para fins de recuperação secundária como para descarte de gás e CO₂ (ALMEIDA et al., 2010). Dentro de um escopo de EOR (*Enhanced Oil Recovery*), são encontrados casos de injeção de água e, também, de injeção WAG (*Water Alternating Gas*) (PIZARRO e BRANCO, 2012). A depender de regulações ambientais futuras, é possível, inclusive, que a reinjeção de água produzida venha a se tornar mandatória (BARRETO e SCHIOZER, 2012).

O escoamento do óleo em meios porosos pode ser drasticamente afetado por canalizações que prejudiquem o deslocamento do óleo em direção aos poços produtores. As heterogeneidades naturais das rochas, as fraturas e os *vugs* são estruturas capazes de criar essas canalizações, ou seja, caminhos preferenciais que não são corretamente caracterizados pela modelagem de porosidade simples. Portanto, fez-se necessário mudar a representação do escoamento através de feições carstificadas, passando-se a utilizar modelos de múltiplos meios.

BARENBLATT et al. (1960) já identificam a necessidade de uma formulação específica para o problema de dupla permeabilidade. Desde então, já foram propostas diversas soluções diferentes para a representação dessas formações. Não obstante, poucas são implementadas em simuladores comerciais, dada a complexidade numérica que elas representam. A Figura 1.5 apresenta um esquemático unidimensional das diferenças entre a simulação de porosidade simples, dupla porosidade e dupla permeabilidade mais utilizadas.

Figura 1.5: Esquemático do escoamento unidirecional em um simulador de porosidade simples, dupla porosidade e dupla permeabilidade. Fonte: DEAN e LO (1988).

No contexto de previsão de produção para campos do pré-sal, utiliza-se quase que exclusivamente modelos de dupla porosidade e permeabilidade, também conhecidos como $2\varphi 2k$. Entre os profissionais que trabalham com esses projetos há bastante conhecimento empírico, devido à adoção das melhores práticas de simulação. Contudo, pouca documentação existe registrando detalhadamente essas práticas. As principais dificuldades estão associadas à confidencialidade e baixa prioridade frente às demais demandas da indústria.

1.3 Motivação

A modelagem do escoamento em reservatórios é uma área da Engenharia de Petróleo que requer a compreensão de diversos fenômenos que ocorrem em ambientes complexos e difíceis de serem reproduzidos em laboratório. Contudo, é uma atividade essencial para a indústria, haja vista que serve de base para todo o dimensionamento dos projetos que serão realizados.

Já foi citado que os principais campos do Brasil, na atualidade, são compostos por carbonatos carstificados. Outrossim, estima-se que mais de 20% das reservas de petróleo do mundo se encontram em reservatórios naturalmente fraturados (FIROOZABADI, 2000). Há avaliações que elevam esse percentual a até 50% (BOURBIAUX, 2010). Logo, uma representação acurada dessas formações é crucial para que elas proporcionem bons projetos.

O primeiro passo para uma boa caracterização é a aquisição de informações. ROSA et al. (2018) ressaltam como os dados adquiridos impactam nas definições dos projetos do campo de Lula. Testes de interferência entre poços, injeção de traçadores e sísmica 4D, entre outros, trazem excelentes informações sobre como os fluidos se comportam no reservatório (PIZARRO et al., 2017). Contudo, a importância dessas informações reside na sua utilização para a modelagem, uma vez que os dados só são valiosos se eles puderem afetar a qualidade das decisões tomadas. Por conseguinte, a motivação para esse estudo é a melhor compreensão dos mecanismos que regem a simulação de reservatórios de múltipla permeabilidade. Assim, consegue-se melhor modelar o comportamento os campos de petróleo estudados. Ou seja, gerar um modelo que, em um tempo computacional razoável, reproduza os padrões de escoamento esperados, dentro de uma faixa de incertezas aceitável. Por fim, com essa representação do reservatório, é possível otimizar projetos de explotação de petróleo e diminuir ou mitigar os riscos inerentes ao processo de produção.

1.4 Objetivos

De forma geral, este trabalho visa a melhor compreensão dos impactos das variáveis do reservatório na simulação de escoamento em meio poroso, em cenários representativos do pré-sal brasileiro, ou seja, reservatórios carbonáticos com alto grau de heterogeneidades.

Assim, serão submetidos diversos cenários a um simulador de escoamento em meio poroso composicional multifásico 3D de dupla porosidade e dupla permeabilidade, variandose os parâmetros de entrada. Os efeitos dos seguintes itens serão avaliados:

- Fraturas no reservatório em cenários de depleção;
- Fraturas no reservatório em cenários de injeção de água;
- Direção das fraturas em relação à grade do modelo;
- Distância dos poços em relação às fraturas;
- Largura dos corredores de fraturas;
- Fraturas em reservatórios com diferentes níveis de heterogeneidade;
- Interação entre o meio fraturado e matriz do modelo.

Ao se analisar os efeitos dessas variáveis, o profissional que desejar realizar simulações de reservatórios fraturados pode construir seu modelo de forma mais otimizada. As características das fraturas modeladas (permeabilidade efetiva, orientação em relação à malha do modelo, largura do corredor) e o posicionamento dos poços em relação a elas

27

poderão ser definidos tal que representem satisfatoriamente o escoamento através desse meio, porém sem aumentar em demasia o custo computacional da simulação.

1.5 Estrutura do Trabalho

Esse trabalho está dividido em cinco seções. A primeira corresponde à presente introdução. A segunda apresenta a revisão bibliográfica, com as motivações e a evolução da modelagem de reservatórios fraturados. Em seguida, na terceira seção, é exposta a fundamentação teórica do simulador utilizado para os estudos desenvolvidos, iniciando com conceitos básicos até chegar nas formulações aplicadas. A metodologia aplicada é mostrada na quarta seção, primeiramente explicando as características do simulador, em seguida, apresentando as variáveis e os resultados que serão avaliados e, por fim, detalhando o modelo utilizado. Os resultados são apresentados na quinta seção, incluindo análises comparativas entre os casos estudados. Finalmente, na sexta seção são relatadas as conclusões da dissertação e propostos trabalhos futuros de aprofundamento no tema pesquisado.

2 Revisão Bibliográfica

A simulação numérica do escoamento em meios porosos constitui importante ferramenta para a concepção de projetos e gerenciamento para a produção de campos de petróleo. Dentre seus objetivos específicos, pode-se citar os principais:

- Estudo de alternativas de projetos;
- Definição de malha de drenagem;
- Ajuste do histórico de produção;
- Gerenciamento da produção;
- Análise de Incertezas;
- Previsão de produção;
- Estimativa de Reservas.

As primeiras formulações da simulação numérica de reservatórios foram propostas nos artigos de COATS et al. (1967) e ODEH (1969). As formulações implementadas em *softwares* comerciais têm origem em teorias consolidadas na indústria do petróleo, tais como a lei de conservação de massa, Equação de Buckley-Leverett, teorema de Stokes, lei de Darcy etc. Vários livros e artigos que descrevem de forma mais detalhada os conceitos e formulações subjacentes. Como bons exemplos, tem-se: PEACEMAN (1977); THOMAS (1981); ROSA et al. (2006); SANTOS (2013). O foco da revisão bibliográfica estará na discussão sobre reservatórios naturalmente fraturados e sua modelagem.

2.1 Reservatórios Naturalmente Fraturados

NELSON (2001) define uma fratura como descontinuidades planares presentes em rochas devido à deformação ou diagênese física. As fraturas naturais ocorrem em praticamente qualquer formação geológica. Há três principais fatores que podem influenciar sua geração (BOURBIAUX, 2010):

- Tectônica: A movimentação da crosta terrestre resulta em dobramentos e falhas;
- Litologia: Formações carbonáticas são mais propícias a fraturamento do que as siliciclásticas;

 Idade: Formações mais antigas e profundas tendem a ser menos porosas e permeáveis, o que aumenta a suscetibilidade ao fraturamento, além de haver mais tempo para os efeitos tectônicos agirem.

Apesar da abundância de reservatórios que sofreram fraturamento, nem sempre eles podem ser classificados como fraturados. Essa denominação compete somente aos casos nos quais as fraturas afetam os padrões de escoamento da formação (NELSON, 2001), ou seja, apenas se ocorrerem anisotropias, canalizações, aumentos de porosidade e/ou permeabilidade decorrentes do fraturamento. Caso o reservatório se comporte conforme uma rocha íntegra, não há necessidade de designá-lo fraturado. Esses efeitos podem ocorrer mesmo em cenários nos quais os dados adquiridos não apresentem fraturas diretamente. Isto é, ainda que não haja indícios comprovando a presença de fraturamento, ele pode existir e ser atuante.

2.1.1 Classificação

NELSON (2001) categorizou os reservatórios fraturados em quatro grupos. Sua classificação foi elaborada segundo as relações da porosidade e da permeabilidade da matriz e das fraturas.

• Tipo 1: Matriz sem Porosidade:

São reservatórios fechados em que os hidrocarbonetos estão todos localizados nas fraturas e o escoamento também ocorre por elas. Um caso seriam rochas ígneas, sem porosidade, que sofrem fraturamento e, eventualmente, se tornam reservatórios. Exemplos: Amal (Líbia), Edison (EUA).

• Tipo 2: Matriz Porosa, mas sem Permeabilidade:

Essas formações possuem boas porosidades, mas, devido ao tipo de porosidade pouco interconectada, o fluido não escoa com facilidade. As fraturas auxiliam esse aspecto. Exemplos: Agha Jari (Irã), Mara (Venezuela).

• Tipo 3: Qualidade Permoporosa da Matriz Comparável à das Fraturas:

São bons reservatórios que sofrem alterações no seu comportamento dinâmico devido ao fraturamento. Podem ocorrer canalizações, forte anisotropia e/ou aumento de permeabilidade localizado. Exemplos: Kirkuk (Iraque), Sapinhoá (Brasil).

• Tipo 4: Qualidade Permoporosa da Matriz Superior à das Fraturas:

Ocorrem quando a presença de fraturas é discreta e as formações são de boa qualidade. Assim, o impacto é restrito a anisotropias e barreiras.

BRATTON et al. (2006) adicionam duas subclassificações: os tipos M e G. O primeiro (M) são reservatórios semelhantes ao tipo 4. Contudo, as fraturas obliteradas atrapalham o escoamento na forma de barreiras e compartimentação. O segundo subgrupo (G) é similar ao tipo 2. É composto de reservatórios não convencionais como metano de carvão (CBMcoal-bed methane) e reservatórios fraturados de gás condensado. A Figura 2.1 resume a classificação apresentada.

A importância dessa classificação é determinar quais são os parâmetros das fraturas que são relevantes para determinado reservatório. Uma segunda vantagem é saber quais são os comportamentos típicos que o campo deve apresentar. O foco dessa dissertação está centrado em reservatórios semelhantes aos do pré-sal brasileiro, os quais são classificados como do tipo 3.

Figura 2.1: Classificação de reservatórios fraturados. Fonte: Modificado de BRATTON et al. (2006).

2.1.2 Modelagem de Escoamento

A caracterização dos reservatórios fraturados apresenta numerosos desafios. A complexidade decorre da representação do escoamento na matriz e nas fraturas, além da interação entre os meios (BAKER e KUPPE, 2000). No entanto, não é simples obter dados diretos da formação. Portanto, são necessárias medidas indiretas das propriedades do meio poroso.

A primeira formulação para um meio fraturado é feita por BARENBLATT et al. (1960). Eles assumem que em rochas fraturadas, o escoamento ocorre majoritariamente pelas fraturas, desprezando, por conseguinte, o escoamento entre poros. Então, considera-se que o sistema de fraturas, respeita as condições de escoamento da lei de Darcy, chegando à Equação 2-1, que representa a velocidade de escoamento nas fraturas.

$$v_f = \frac{k_f}{\mu} \operatorname{grad} p_f, \tag{2-1}$$

onde o subscrito f representa as propriedades da fratura.

Em seguida, para calcular o escoamento entre os poros e as fraturas, faz-se uma análise dimensional, chegando na Equação 2-2:

$$v = \frac{\alpha}{\mu} (p_m - p_f), \qquad (2-2)$$

onde α é alguma característica adimensional da rocha fraturada e o subscrito m se refere às propriedades da matriz. Por fim, para se chegar à vazão entre a matriz e as fraturas, dividese a Equação 2-2 pelo volume específico do líquido, resultando em:

$$q = \frac{\rho \alpha}{\mu} (p_m - p_f). \tag{2-3}$$

Nesse ponto é pertinente observar que o termo adimensional α representa a transferência de fluidos entre matriz e fratura. Seu equacionamento será tema de diversos trabalhos posteriores ao de BARENBLATT et al. (1960). Através de análise dimensional, chega-se à Equação 2-4.

$$\alpha \propto k_m \sigma^2$$
, (2-4)

onde σ é um fator geométrico correspondente ao inverso da largura do bloco:

$$\sigma = \frac{1}{l}.$$
 (2-5)

Esse conceito é utilizado por WARREN e ROOT (1963). Eles propõem um modelo unidimensional radial para fins de testes de formação. Entretanto, esse exemplo serve de base para as simulações realizadas atualmente. Nele, é idealizado um volume de reservatório composto por paralelepípedos de matriz separados por corredores planares e ortogonais de fraturas, conforme apresentado na Figura 2.2.

Figura 2.2: Modelo de reservatório fraturado. Fonte: Modificado de WARREN e ROOT (1963).

A porosidade primária, composta pela matriz, é caracterizada por blocos homogêneos e isotrópicos do modelo. A porosidade secundária, constituída por todas as demais estruturas da rocha, é representada no sistema ortogonal de fraturas entre os blocos. É previsto escoamento de fluidos entre os dois meios, mas não entre os blocos de matriz.

A partir dessas premissas, Warren e Root se propõem a desenvolver métodos para determinar a porosidade secundária e o fator de forma, parâmetro que controla a comunicação entre os dois meios.

Primeiramente, são definidas duas pressões em um determinado ponto, segundo as Equações 2-6 e 2-7.

$$p_m(x, y, z, t) = \frac{\int_V p(x, y, z, t) g_m(V) dV}{\int_V g_m(V) dV};$$
(2-6)

$$p_f(x, y, z, t) = \frac{\int_V p(x, y, z, t) g_f(V) dV}{\int_V g_f(V) dV},$$
(2-7)

onde

 $g_m(V) = 1 \ para \ porosidade \ primária \ e \ g_m(V) = 0 \ para \ porosidade \ secundária e$ e

 $g_f(V) = 0$ para porosidade primária e $g_f(V) = 1$ para porosidade secundária

Então, assumindo volumes de dimensões muito menores do que o do reservatório, mas maiores do que as estruturas da matriz da rocha e desprezando a saturação de água conata presente na porosidade secundária, aplicou-se o teorema de Green no volume *V*, chegando-se à Equação 2-8.

$$\frac{k_{fx}}{\mu} \cdot \frac{\partial^2 p_f}{\partial x^2} + \frac{k_{fy}}{\mu} \cdot \frac{\partial^2 p_f}{\partial y^2} - \varphi_m C_m \cdot \frac{\partial p_m}{\partial t} = \varphi_f C_f \cdot \frac{\partial p_f}{\partial t}, \quad (2-8)$$

onde os eixos $x \in y$ são os eixos de maior permeabilidade e $C_m \in C_f$ são a compressibilidade total do meio da matriz e da fratura, respectivamente.

Assume-se, em seguida, que as regiões dos dois meios são independentes (φ_f independe de p_m e φ_m independe de p_f), a variação de φ_f em relação a p_f é desprezível e que as forças externas são constantes. Também se faz a aproximação de um estado semi-estacionário, chegando à Equação 2-9.

$$\varphi_m C_m \cdot \frac{\partial p_m}{\partial t} = \frac{\alpha k_m}{\mu} \cdot (p_f - p_m), \qquad (2-9)$$

onde α é o fator de forma que reflete a geometria dos elementos do modelo e controla o escoamento entre os meios. A formulação sugerida por Warren e Root para o caso de fraturas espaçadas uniformemente é:

$$\alpha = \frac{4n.(n+2)}{l^2},$$
 (2-10)

onde n é o número de direções do eixo com fraturas ($1 \le n \le 3$) e l é dado pela Equação 2-11, no caso tridimensional:

$$l = \frac{3l_x l_y l_z}{l_x l_y + l_x l_z + l_y l_z'}$$
(2-11)

sendo l_i o espaçamento das fraturas na direção i.

A partir dessas premissas, alguns avanços foram feitos no estudo de escoamento em meios fraturados. ODEH (1965) desenvolve equações matemáticas para modelar o comportamento de reservatórios fraturados em estado transiente. KAZEMI et al. (1969) apresentam soluções numéricas e analíticas para interpretar testes de interferência. BRAESTER (1972) proporciona uma solução analítica para o escoamento bifásico.

KAZEMI et al. (1976) são os primeiros a desenvolver um simulador numérico capaz de modelar escoamento bifásico em dupla porosidade e dupla permeabilidade. Com isso, permitem que o problema possa ser tratado em escala de reservatório. Adicionalmente, introduzem uma nova proposta para o fator de forma, apresentado na Equação 2-12:

$$\sigma = 4\left(\frac{1}{l_x^2} + \frac{1}{l_y^2} + \frac{1}{l_z^2}\right).$$
 (2-12)

Essa é a formulação mais utilizada em simuladores comerciais e, também, a que será aplicada no presente trabalho.

DEAN e LO (1988) descreveram um simulador *black-oil* tridimensional, trifásico para modelos de dupla porosidade e dupla permeabilidade. As equações utilizadas foram:

• Para a fratura:

$$\Delta_{x,y,z} \left[T_{of} (\Delta p_{of} - \gamma_{of} \Delta Z) \right] + T_{om} \left(p_{om} - p_{of} \right) + q_{of} = \frac{V_b}{\Delta t} \Delta_t \left(\frac{\varphi_f S_{of}}{B_{of}} \right);$$
(2-13)

$$\Delta_{x,y,z} \left[T_{wf} (\Delta p_{wf} - \gamma_{wf} \Delta Z) \right] + T_{wm} \left(p_{wm} - p_{wf} \right) + q_{wf} = \frac{V_b}{\Delta t} \Delta_t \left(\frac{\varphi_f S_{wf}}{B_{wf}} \right);$$
(2-14)

$$\Delta_{x,y,z} \left[T_{gf} (\Delta p_{gf} - \gamma_{gf} \Delta Z) \right] + \Delta_{x,y,z} \left[R_{sf} T_{of} (\Delta p_{of} - \gamma_{of} \Delta Z) \right] + T_{gm} \left(p_{gm} - p_{gf} \right) + R_{sm} T_{om} \left(p_{om} - p_{of} \right) + q_{gf} = \frac{V_b}{\Delta t} \Delta_t \left(\frac{\varphi_f S_{gf}}{B_{gf}} \right) \left(\frac{R_{sf} \varphi_f S_{of}}{B_{of}} \right).$$
(2-15)

• Para a matriz:

$$\Delta_{x,y,z} [T_{om}(\Delta p_{om} - \gamma_{om}\Delta Z)] - T_{om}(p_{om} - p_{of}) = \frac{V_b}{\Delta t} \Delta_t \left(\frac{\varphi_m S_{om}}{B_{om}}\right);$$
(2-16)

$$\Delta_{x,y,z} [T_{wm}(\Delta p - \gamma_{wm}\Delta Z)] - T_{wm}(p_{wm} - p_{wf}) = \frac{V_b}{\Delta t} \Delta_t \left(\frac{\varphi_m S_{wm}}{B_{wm}}\right);$$
(2-17)

$$\Delta_{x,y,z} \left[T_{gm} (\Delta p_{gm} - \gamma_{gm} \Delta Z) \right] + \Delta_{x,y,z} \left[R_{sm} T_{om} (\Delta p_{om} - \gamma_{om} \Delta Z) \right] - T_{gm} \left(p_{gm} - p_{gf} \right) - R_{sm} T_{om} \left(p_{om} - p_{of} \right) = \frac{V_b}{\Delta t} \Delta_t \left(\frac{\varphi_m S_{gm}}{B_{gm}} \right) \left(\frac{R_{sm} \varphi_m S_{om}}{B_{om}} \right).$$
(2-18)

Para as Equações 2-13 a 2-18, tem-se:

T é a transmissibilidade do meio

 γ é o gradiente do fluido;

p é a pressão;

Z é a profundidade do bloco;

V é o volume do bloco;

 Δt é o timestep;

S é a saturação do fluido;

B é o fator volume de formação do fluido;
φ é a porosidade; R_s é a razão de solubilidade; $\Delta_{x,y,z}$ é o operador de diferenças finitas no espaço; Δ_t é o operador de diferenças finitas no tempo.

Além dessas formulações apresentadas, diversos outros autores já propuseram melhorias e alternativas a esses modelos. SONLER et al. (1988) incluem o efeito gravitacional no fluxo entre matriz e fratura. GILMAN e KAZEMI (1988) propõem novas considerações sobre o fator de forma, corrigindo efeitos gravitacionais e de deslocamento viscoso. Por fim, WU et al. (2004) propõem uma formulação de tripla porosidade e YAN et al. (2016) desenvolvem uma generalização para modelos de múltiplas porosidades. Esses trabalhos vão além do escopo aqui estudado. No entanto, dão uma perspectiva sobre novas teses a serem produzidas futuramente.

Academicamente foram obtidos diversos avanços na teoria de simulação de reservatórios fraturados. Assim, atualmente, tem-se uma boa fundamentação teórica implementada em diversos simuladores comerciais. No presente trabalho, foi utilizado o *software* GEM da *Computer Modelling Group* (CMG), cujas especificações e formulação serão apresentadas no capítulo 3.

3 Fundamentação Teórica

Nesse capítulo, são apresentados e definidos os termos e variáveis necessários para a compreensão da metodologia, resultados e conclusões. Também são apresentados os conceitos teóricos de simulação numérica de reservatórios e a formulação utilizada no simulador escolhido para os estudos que são o tema desse trabalho.

3.1 Conceitos e Definições

3.1.1 Conceitos Básicos

Antes de apresentar formulações do simulador e iniciar discussões sobre os estudos, é necessário definir alguns conceitos que são utilizados no decorrer do trabalho.

O petróleo é uma mistura de hidrocarbonetos e impurezas complexa de forma que são necessárias algumas simplificações para modelá-lo. A formulação *black-oil* supõe que a mistura de hidrocarbonetos é composta somente pelos componentes denominados óleo e gás, correspondentes às fases oleica e gasosa, respectivamente. Logo, considera-se que, em condições de reservatório, o componente gás se encontra solubilizado no componente óleo, se a mistura estiver subsaturada. Ao levar o petróleo para as condições denominadas *standard* (temperatura de 15,6°C e pressão de 1atm), esse gás é liberado. A razão de solubilidade (R_s) de um fluido é a relação entre os volumes de gás e de óleo nessas condições. Ao ser levado para a superfície, o volume dos fluidos é alterado. A relação entre o volume do fluido no reservatório e na superfície é o fator volume de formação (B_o para óleo e B_w para água).

Muitas vezes o óleo encontrado nos reservatórios está subsaturado. Ou seja, há menos gás solubilizado do que poderia haver em solução. Todavia, a capacidade de solubilização diminui conforme a pressão também diminui, pressupondo uma temperatura constante. Assim, há um valor de pressão no reservatório no qual a capacidade de solubilização do gás no óleo chega ao limite. Esse valor é denominado pressão de saturação (P_{sat}) ou ponto de bolha. Esse valor é de extrema importância pois, abaixo dessa pressão, começa a se formar a fase gasosa dentro do reservatório, o que pode ser indesejável para a produção de óleo.

A explotação de um campo de petróleo é feita através de poços produtores e injetores de água ou de gás. Os primeiros têm o objetivo de extrair o óleo enquanto os outros visam aumentar a recuperação de hidrocarbonetos através do deslocamento viscoso e da manutenção da pressão, além de outros efeitos benéficos. Infelizmente, os produtores não

extraem apenas óleo do reservatório. Eles podem também produzir água injetada ou originalmente existente no reservatório. A produção de gás sempre ocorre, seja decorrente de gás em solução, gás livre no reservatório ou gás injetado. Para medir esses fluidos produzidos, utilizam-se as seguintes taxas de produção: corte de água (*wcut*) que é a relação entre a vazão de água e a de líquidos (óleo e água) produzidos; razão gás-óleo (RGO) que é a relação entre a vazão de gás e de óleo produzidos. Normalmente, o corte de água inicial de um poço é próximo de zero, enquanto a RGO é igual a R_s. O aumento dessas taxas de produção decorre da irrupção (*breakthrough*) de água ou de gás, respectivamente.

Conforme foi explicado, uma das formas dos poços injetores auxiliarem no aumento da produção de um campo é através da manutenção de pressão. Isso é feito por meio da manutenção do balanço de massa. Esse balanço é uma consequência do princípio de conservação de massa. Ou seja, o volume de fluido produzido deve ser igual ao volume injetado, considerando a redução do volume poroso da rocha, em uma mesma condição de pressão e temperatura do reservatório. Como o volume poroso do reservatório é diretamente relacionado com a pressão, o balanço de massa em condições de reservatório permite produzir o reservatório em condição controlada de pressão.

Por fim, a quantificação da produção de um campo é comumente feita através do fator de recuperação (*FR*). Esse parâmetro é a relação entre o volume de óleo produzido e o volume original da jazida, ambos em condições *standard*.

3.1.2 Reservatórios Fraturados

A modelagem do escoamento em meio poroso fraturado possui dois principais obstáculos: (i) não há ferramenta capaz de especificar as descontinuidades presentes no reservatório; e (ii) mesmo que houvesse essa especificação, não há modelos capazes de simular a produção de um campo em tempo computacional aceitável, levando em consideração estruturas tão pequenas como as fraturas e *vugs*. Portanto, faz-se necessária a simplificação da modelagem a fim de se considerar os efeitos dessas estruturas de forma viável.

Os modelos de dupla porosidade e de dupla permeabilidade levam em consideração três premissas:

- As fraturas possuem permeabilidades muito maiores do que a matriz;
- As fraturas possuem porosidade muito menores do que a matriz;
- Há troca de fluidos entre fratura e matriz.

Como corolário das duas primeiras premissas, assume-se que o escoamento no meio fraturado é muito mais intenso do que na matriz.

As fraturas podem ser caracterizadas pelos seguintes parâmetros (BAKER e KUPPE, 2000):

- Espaçamento: indica, em média, qual é a distância entre duas fraturas. Seu inverso equivale à densidade de fraturas.
- Orientação: demonstra a direção majoritária das fraturas. É importante para representar a anisotropia durante a modelagem.
- Altura, Comprimento e Abertura: são as características geométricas das fraturas.
 Esses são os dados utilizados para se estimar a porosidade e a permeabilidade que serão utilizadas durante a simulação de fluxo.

Após a determinação dessas propriedades, é necessário fazer a sua distribuição pelo reservatório. Para isso, há diversas técnicas que fazem esse mapeamento (TRAN, 2004). No entanto, para esse trabalho, foi assumida uma simplificação que tem como base a zona de dano, que é a região próxima ao plano de falha onde ocorre o fraturamento mecânico da rocha. A Figura 3.1 mostra que as falhas geológicas não ocorrem simplesmente com um deslizamento da estrutura por uma superfície. O que ocorre é uma série de pequenas rupturas, que provocam um deslocamento da camada geológica. Essas pequenas rupturas geram as fraturas que formam a zona de dano.

Figura 3.1: Esquemático de uma falha geológica apresentando a zona de dano. Fonte: TORABI (2020).

3.1.3 Função Logística

A função logística não é normalmente utilizada em estudos de reservatório. Essa função foi primeiramente proposta por Pierre François Verhulst em 1838 (CRAMER, 2002). Ele tinha por objetivo modelar o crescimento populacional de alguns países europeus. A escolha do nome não é bem explicada, mas acredita-se que foi uma tentativa de se fazer uma referência ao termo logarítmico uma vez que tem relação com o crescimento aritmético e geométrico. Assim, no idioma original francês, os termos seriam *arithmétique, géométrique* e *logistique*. Atualmente, a função é utilizada em diversas áreas, tais como redes neurais, modelagem de pandemias, linguística etc.

A Equação 3-1 apresenta sua fórmula e a Figura 3.2 mostra um exemplo.

$$P(z) = \frac{e^z}{1 + e^z}.$$
 (3-1)

Figura 3.2: Função Logistica P(z). Fonte: CRAMER (2002).

Nesse trabalho, será utilizada uma versão generalizada da fórmula:

$$y(x) = y_{min} + \frac{y_{mix} - y_{min}}{1 + (10^{h(p_i - x)})'}$$
(3-2)

onde y_{min} e y_{max} são os limites inferior e superior da função; h é a inclinação da curva no ponto de inflexão, representado por p_i .

3.2 Simulador de Escoamento

O GEM é um simulador de escoamento composicional desenvolvido pela CMG. No presente trabalho, foi utilizada a versão 2019.10. Além de simulações de reservatórios com porosidade simples, o GEM também possui soluções de múltiplas porosidades e permeabilidades implementadas.

3.2.1 Simulação Numérica de Reservatórios

Os simuladores de escoamento são modelos numéricos que, para resolver a equação da difusividade hidráulica em reservatórios complexos, utiliza discretizações temporal e espacial.

A discretização espacial consiste em selecionar uma malha capaz de subdividir o reservatório em pequenas células e, dessa forma, simplificar o equacionamento do balanço de massa em cada célula de simulação. Em contrapartida, o aumento do número de células na malha faz crescer o sistema de equações para a solução simultânea do balanço de massa em cada célula do reservatório a ser modelado. É possível realizar discretização unidimensional, bidimensional ou tridimensional. Usualmente, as direções espaciais nos eixos contínuos são denominadas x, y e z enquanto nos eixos discretos são i, j e k.

A discretização temporal consiste no método de diferenças finitas para resolver as derivadas presentes no equacionamento. Com isso, segmenta-se o tempo em períodos denominados de *timesteps* (Δt). Tradicionalmente, há duas formas de implementar a discretização temporal: formulação explícita ou implícita. Para se explicar a diferença entre as duas, é importante ressaltar que as equações que estão sendo solucionadas possuem não linearidades no tempo e, por conseguinte, as variáveis que as compõem não são constantes.

A formulação explícita assume que as variáveis calculadas em t_i se mantém constantes até o próximo *timestep* ($t_i + \Delta t$). Assim, para não incorrer em grandes erros, são necessários passos de tempo pequenos. Caso contrário, a simulação se torna instável.

A formulação implícita calcula o valor das variáveis no tempo futuro através de aproximação por série de Taylor. Essa aproximação gera um erro que será abordado posteriormente. Todavia, esse método é incondicionalmente estável, de forma que se torna possível aumentar a dimensão dos *timesteps*.

Na Figura 3.3 encontra-se um desenho esquemático demonstrando a diferença entre as duas formulações: dado que se tem as propriedades em t_i e se deseja calculá-las em t_{i+1}, ambas utilizam propriedades de t_i. Mas a implícita também utiliza propriedades em t_{i+1}.

Figura 3.3: Esquemáticos das formulações (a) explícita e (b) implícita.

Devido à maior complexidade inerente à formulação implícita, é necessário significativo esforço computacional para chegar à convergência das equações. A fim de acelerar esse processo, utiliza-se o método denominado totalmente implícito que, através de iterações de Newton-Raphson, lineariza as equações, acelerando a convergência. Cada iteração desse processo é nomeada iteração newtoniana.

O algoritmo que modela as equações linearizadas é denominado *solver* linear enquanto o *solver* não-linear é o que lineariza as equações por Newton-Raphson ao longo de um *timestep*.

Há ainda outros métodos que buscam diminuir o tempo de simulação. Um deles é o IMPES (*Implicit Pressure, Explicit Saturations*), cuja formulação foi apresentada por SHELDON et al. (1959) e STONE e GARGNER (1961). Essa metodologia consiste em se calcular os valores de pressão de forma implícita e os de saturação de forma explícita. Para isso, se reduz o sistema de equações implícitas, excluindo as incógnitas de saturação. Em seguida, calcula-se a pressão de forma implícita. Com esse dado, o cálculo das saturações é feito de forma explícita. Segue um esquemático de um caso com modelagem *black-oil* para facilitar a compreensão do método (MACHADO, 2019):

$$F_o(p_o^{n+1}, S_w^{n+1}, S_g^{n+1}) = 0; (3-3)$$

$$F_w(p_o^{n+1}, S_w^{n+1}, S_g^{n+1}) = 0; (3-4)$$

$$F_g(p_o^{n+1}, S_w^{n+1}, S_g^{n+1}) = 0, (3-5)$$

onde $F_{o,w,g}$ são as equações que modelam o escoamento no reservatório.

Explicitando S_a^{n+1} da Equação 3-5, tem-se:

$$F_{g_2}(p_o^{n+1}, S_w^{n+1},) = S_g^{n+1}.$$
(3-6)

Substituindo S_g^{n+1} por F_{g_2} nas outras equações, chega-se a:

$$F_{o_2}(p_o^{n+1}, S_w^{n+1}) = 0; (3-7)$$

$$F_{w_2}(p_o^{n+1}, S_w^{n+1}) = 0. (3-8)$$

Repetindo por fim, o procedimento para S_w^{n+1} o resultado é:

$$F_{o_3}(p_o^{n+1}) = 0. (3-9)$$

Logo, através do método IMPES, se calcula p_o^{n+1} implicitamente para, em seguida, as saturações serem calculadas de forma explícita.

O IMPES é aplicado em formulações *black-oil*. Para o caso composicional, utiliza-se o método análogo, chamado de IMPECS (*Implicit Pressure, Explicit Compositions and Saturations*). De forma semelhante que explicado para o IMPES, são isoladas as variáveis relativas aos pseudo-componentes globais da mistura e a pressão para solução implícita. Em seguida, as saturações e as composições de cada pseudo-componente em cada fase são avaliadas de forma explícita.

Ambas as metodologias (IMPES e IMPECS) ainda podem gerar instabilidade na simulação. Para mitigar esse problema, utiliza-se a técnica conhecida como AIM (*Adaptative Implicit Method*). Esse método identifica os blocos do modelo cujas variações são expressivas e lhes aplica a formulação totalmente implícita. Para as demais células, nas quais o risco de instabilidade é reduzido, a solução é obtida através do IMPES ou IMPECS, mais rápidos. Há algumas técnicas para determinar o critério de estabilidade. Nesse trabalho, foi utilizado o critério combinado CFL (Courant–Friedrichs–Lewy) e de limite (*threshold*).

Diversos parâmetros são necessários para controlar a convergência das soluções e o tamanho dos *timesteps* utilizados durante a simulação. Destacam-se as tolerâncias para a convergência dos *solvers* linear e não-linear; variações típicas e máximas de pressão, saturação e composição molar; valores máximo e mínimo de *timestep*.

O simulador busca adaptar o tamanho do *timestep* para respeitar os parâmetros determinados pelo usuário. Uma técnica comumente usada para isso é a seleção automática de *timestep* (TODD, 1972).

Nesse caso utiliza-se, para n=0:

$$\Delta t^{n+1} = \Delta t_{min},\tag{3-10}$$

e para n>0:

$$\Delta t^{n+1} = \min\left(\Delta t^n \cdot \left(\frac{\Delta t^{n+1}}{\Delta t^n}\right)_{m \acute{a}x}, \Delta t^{n+1}_p, \Delta t^{n+1}_S, \Delta t^{n+1}_{R_s}\right), \quad (3-11)$$

onde:

 $\Delta t_p^{n+1} = \Delta t^n \frac{\Delta p_{m\acute{a}x}}{m\acute{a}x_{i,j,k} \left(\left| p_{i,j,k}^{n+1} - p_{i,j,k}^n \right| \right)}; \tag{3-12}$

$$\Delta t_{S}^{n+1} = \Delta t^{n} \frac{\Delta S_{m \acute{a} x}}{m \acute{a} x_{i,j,k} \left(\left| S_{o_{i,j,k}}^{n+1} - S_{o_{i,j,k}}^{n} \right|, \left| S_{g_{i,j,k}}^{n+1} - S_{g_{i,j,k}}^{n} \right|, \left| S_{w_{i,j,k}}^{n+1} - S_{w_{i,j,k}}^{n} \right| \right)};$$
(3-13)

$$\Delta t_{R_s}^{n+1} = \Delta t^n \frac{\Delta R_{s_{máx}}}{m \Delta x_{i,j,k} \left(\left| R_{s_{i,j,k}}^{n+1} - R_{s_{i,j,k}}^n \right| \right)},$$
(3-14)

e o usuário determina os valores máximos de variação $\left(\frac{\Delta t^{n+1}}{\Delta t^n}\right)_{máx}$, $\Delta p_{máx}$, $\Delta S_{máx} \in \Delta R_{s_{máx}}$. Caso o *solver* não convirja com o *timestep* determinado, ele é reduzido e inicia-se o processo de solução das equações novamente. No entanto, se o *solver* chegar à solução rapidamente e as restrições impostas permitirem, o *timestep* é aumentado.

Normalmente, esses parâmetros são definidos no início da simulação e se mantém constantes até o final. Todavia, foi implementado no GEM o ADTSC (*Adaptative Time Step Control*). Esse algoritmo permite a otimização automática desses parâmetros de controle de forma iterativa, a fim de se acelerar a simulação.

3.2.2 Simulação Composicional

A simulação composicional procura modelar o comportamento dos componentes dos hidrocarbonetos e demais fluidos presentes no reservatório. Através de equações de estado,

o simulador é capaz de determinar as propriedades e fases dos fluidos resultantes, necessárias para os equacionamentos relativos ao escoamento. Logo, difere das simulações *black-oil* que assumem uma simplificação, na qual o petróleo é representado apenas por um componente óleo e um componente gás, correspondendo às respectivas fases, e cujas características são determinadas por tabelas relacionando as propriedades desses componentes à pressão. A formulação composicional aumenta a complexidade do sistema de equações a serem resolvidas, uma vez que, para cada componente utilizado, é necessária uma equação extra, em cada bloco da malha. Como os fluidos do pré-sal brasileiro são majoritariamente modelados com formulação composicional, faz-se necessário descrevê-la nesse trabalho.

SANTOS et al. (2015) apresentam detalhadamente a formulação de um simulador composicional de porosidade simples. São assumidas as seguintes premissas:

- Sistema isotérmico;
- Não há interação entre a rocha e os fluidos;
- Não há reação entre os fluidos injetados e os fluidos do reservatório;
- Meio poroso pouco compressível;
- Não há transferência de massa entre a água e os hidrocarbonetos;
- A viscosidade da água é constante;
- O efeito de pressão capilar é desprezível;
- Não há barreiras para o escoamento.

Para cada componente de hidrocarboneto tem-se a seguinte equação de balanço de massa:

$$\frac{\partial}{\partial x} \left(\frac{A_x k_x k_{ro}}{\mu_o} \cdot \rho_o \boldsymbol{x}_m \cdot \frac{\partial \Phi_o}{\partial x} + \frac{A_x k_x k_{rg}}{\mu_g} \cdot \rho_g \boldsymbol{y}_m \cdot \frac{\partial \Phi_g}{\partial x} \right) \Delta x$$

$$+ \frac{\partial}{\partial y} \left(\frac{A_y k_y k_{ro}}{\mu_o} \cdot \rho_o \boldsymbol{x}_m \cdot \frac{\partial \Phi_o}{\partial y} + \frac{A_y k_y k_{rg}}{\mu_g} \cdot \rho_g \boldsymbol{y}_m \cdot \frac{\partial \Phi_g}{\partial y} \right) \Delta y$$

$$+ \frac{\partial}{\partial z} \left(\frac{A_z k_z k_{ro}}{\mu_o} \cdot \rho_o \boldsymbol{x}_m \cdot \frac{\partial \Phi_o}{\partial z} + \frac{A_z k_z k_{rg}}{\mu_g} \cdot \rho_g \boldsymbol{y}_m \cdot \frac{\partial \Phi_g}{\partial z} \right) \Delta z + q_m$$

$$= V_b \frac{\partial}{\partial t} \left(\varphi \rho_o \boldsymbol{x}_m S_o + \varphi \rho_g \boldsymbol{y}_m S_g \right), \quad (3-15)$$

onde A representa a área transversal ao escoamento, k é a permeabilidade absoluta em determinada direção, k_r é a permeabilidade relativa ao fluido, μ é a viscosidade do fluido, ρ

corresponde à densidade molar do fluido, x_m e y_m representam as frações molares do componente m na fase líquida e gasosa, respectivamente, Φ é o potencial do fluido, q é o termo sumidouro de cada componente, V_b é o volume total da célula, φ é a porosidade da célula, S é a saturação da fase, t representa o tempo e x, y e z representam as três direções do espaço. Os índices $o \in g$ representam as fases óleo e gás, respectivamente enquanto mrepresenta o componente, que pode ir de 1 até n_c (número de componentes).

Para a fase água, o balanço de massa é representado pela Equação 3-16:

$$\frac{\partial}{\partial x} \left(\frac{A_x k_x k_{rw}}{\mu_w} \cdot \rho_w \cdot \frac{\partial \Phi_w}{\partial x} \right) \Delta x$$

$$+ \frac{\partial}{\partial y} \left(\frac{A_y k_y k_{rw}}{\mu_w} \cdot \rho_w \cdot \frac{\partial \Phi_w}{\partial y} \right) \Delta y$$

$$+ \frac{\partial}{\partial z} \left(\frac{A_z k_z k_{rw}}{\mu_w} \cdot \rho_w \cdot \frac{\partial \Phi_w}{\partial z} \right) \Delta z + q_w$$

$$= V_b \frac{\partial}{\partial t} (\varphi \rho_w S_w).$$
(3-16)

Para simplificar a escrita, adota-se o conceito de transmissibilidade:

$$T_{ox} = \frac{A_x k_x k_{ro}}{\mu_o \Delta x}.$$
(3-17)

Nesse exemplo, a transmissibilidade está definida em relação à direção x e à fase óleo. Contudo, a mesma formulação se aplica às demais direções e fases.

Também é adotada a simplificação das equações 3-18 e 3-19.

$$N_m = \varphi (\rho_o \boldsymbol{x}_m S_o + \rho_g \boldsymbol{y}_m S_g), \qquad (3-18)$$

$$N_w = \varphi \rho_w S_w. \tag{3-19}$$

Por fim, os potenciais são descritos como:

$$\Phi_o = p_o - \gamma_o Z; \tag{3-20}$$

$$\Phi_g = p_o - p_{cog} - \gamma_g Z; \tag{3-21}$$

$$\Phi_w = p_o - p_{cow} - \gamma_w Z, \qquad (3-22)$$

onde o índice w se refere à água, P_o representa a pressão da fase óleo, P_{cow} é a pressão capilar óleo-água, P_{cog} é a pressão capilar óleo-gás, γ corresponde ao peso específico da fase e Z, à profundidade do ponto no espaço.

Dessa forma, as equações 3-15 e 3-16 são reescritas:

$$\frac{\partial}{\partial x} \left(T_{ox} \cdot \Delta x \rho_o \boldsymbol{x}_m \cdot \left(\frac{\partial p_o}{\partial x} - \gamma_o \frac{\partial Z}{\partial x} \right) \right) + T_{gx} \cdot \Delta x \rho_g \boldsymbol{y}_m \cdot \left(\frac{\partial p_o}{\partial x} - \frac{\partial p_{cog}}{\partial x} - \gamma_g \frac{\partial Z}{\partial x} \right) \right) \Delta x \\
+ \frac{\partial}{\partial y} \left(T_{oy} \cdot \Delta y \rho_o \boldsymbol{x}_m \cdot \left(\frac{\partial p_o}{\partial y} - \gamma_o \frac{\partial Z}{\partial y} \right) \right) \\
+ T_{gy} \cdot \Delta y \rho_g \boldsymbol{y}_m \cdot \left(\frac{\partial p_o}{\partial y} - \frac{\partial p_{cog}}{\partial y} - \gamma_g \frac{\partial Z}{\partial y} \right) \right) \Delta y \\
+ \frac{\partial}{\partial z} \left(T_{oz} \cdot \Delta z \rho_o \boldsymbol{x}_m \cdot \left(\frac{\partial p_o}{\partial z} - \gamma_o \frac{\partial Z}{\partial z} \right) \right) \\
+ T_{gz} \cdot \Delta z \rho_g \boldsymbol{y}_m \cdot \left(\frac{\partial p_o}{\partial z} - \frac{\partial p_{cog}}{\partial z} - \gamma_g \frac{\partial Z}{\partial z} \right) \right) \Delta z + q_m \\
= V_b \frac{\partial N_m}{\partial t};$$
(3-23)

$$\frac{\partial}{\partial x} \left[T_{wx} \cdot \Delta x \rho_{w} \left(\frac{\partial p_{o}}{\partial x} - \frac{\partial p_{cow}}{\partial x} - \gamma_{w} \frac{\partial Z}{\partial x} \right) \right] \Delta x \\ + \frac{\partial}{\partial y} \left[T_{wy} \cdot \Delta y \rho_{w} \left(\frac{\partial p_{o}}{\partial y} - \frac{\partial p_{cow}}{\partial y} - \gamma_{w} \frac{\partial Z}{\partial y} \right) \right] \Delta y \\ + \frac{\partial}{\partial z} \left[T_{wz} \cdot \Delta z \rho_{w} \left(\frac{\partial p_{o}}{\partial z} - \frac{\partial p_{cow}}{\partial z} - \gamma_{w} \frac{\partial Z}{\partial z} \right) \right] \Delta z + q_{w} \\ = V_{b} \frac{\partial N_{w}}{\partial t}.$$
(3-24)

Dessa forma, totalizam-se $n_c + 1$ equações. A elas, se adicionam $n_c + 3$ restrições do sistema, que são apresentadas nas Equações 3-25 a 3-28.

$$S_o + S_g + S_w = 1;$$
 (3-25)

$$\sum_{i=1}^{n_c} x_m = 1; (3-26)$$

$$\sum_{i=1}^{n_c} y_m = 1; (3-27)$$

$$f_m^L = f_m^V, (3-28)$$

onde f_m^L e f_m^V representam as fugacidades de cada componente m nas fases líquido e vapor, respectivamente.

A solução das equações de equilíbrio de fases é uma tarefa já demasiado complexa, denominada, comumente de *flash* (COLLINS et al., 1992). Por conseguinte, é sugerido que as Equações 3-26, 3-27 e 3-28 sejam resolvidas separadamente das Equações 3-23, 3-24 e 3-25. Ou seja, que as equações de fluxo sejam tratadas de forma isolada das de equilíbrio de fases. Logo, primeiramente, o simulador calcula as pressões e frações molares de cada componente em cada célula do modelo. Em seguida, as frações molares de cada componente em cada fase é calculada. Esse processo é feito em cada iteração newtoniana.

O próximo passo é realizar a discretização geométrica e temporal das equações. Para isso, utilizou-se a mesma técnica de MACHADO (2019), adaptando-se a formulação para o caso composicional.

Primeiramente, apresenta-se a transmissibilidade entre células, que segue a Equação 3-29.

$$T_{i+1/2} = \frac{2k_i k_{i+1} A_i A_{i+1}}{\mu_i \Delta x_i k_{xi+1} A_{i+1} + \mu_{i+1} \Delta x_{i+1} k_i A_i'}$$
(3-29)

onde o conceito pode ser levado para outras direções e para o outro sentido ($T_{i-1/2}$).

Também é necessário simplificar os termos gravitacionais com as Equações 3-30 a 3-32 e de pressão capilar com as Equações 3-33 e 3-34.

$$X_{o} = \frac{\partial}{\partial x} \left(T_{ox} \cdot \Delta x \cdot \boldsymbol{x}_{m} \cdot \boldsymbol{\gamma}_{o} \cdot \frac{\partial Z}{\partial x} \right) \cdot \Delta x + \frac{\partial}{\partial y} \left(T_{oy} \cdot \Delta y \cdot \boldsymbol{x}_{m} \cdot \boldsymbol{\gamma}_{o} \cdot \frac{\partial Z}{\partial y} \right) \cdot \Delta y + \frac{\partial}{\partial z} \left(T_{oz} \cdot \Delta z \cdot \boldsymbol{x}_{m} \cdot \boldsymbol{\gamma}_{o} \cdot \frac{\partial Z}{\partial z} \right) \cdot \Delta z;$$
(3-30)

$$X_{g} = \frac{\partial}{\partial x} \left(T_{gx} \cdot \Delta x \cdot \boldsymbol{y}_{m} \cdot \boldsymbol{\gamma}_{g} \cdot \frac{\partial Z}{\partial x} \right) \cdot \Delta x + \frac{\partial}{\partial y} \left(T_{gy} \cdot \Delta y \cdot \boldsymbol{y}_{m} \cdot \boldsymbol{\gamma}_{g} \cdot \frac{\partial Z}{\partial y} \right) \cdot \Delta y + \frac{\partial}{\partial z} \left(T_{gz} \cdot \Delta z \cdot \boldsymbol{y}_{m} \cdot \boldsymbol{\gamma}_{g} \cdot \frac{\partial Z}{\partial z} \right) \cdot \Delta z;$$

$$X_{w} = \frac{\partial}{\partial x} \left(T_{wx} \cdot \Delta x \cdot \boldsymbol{\gamma}_{w} \cdot \frac{\partial Z}{\partial x} \right) \cdot \Delta x + \frac{\partial}{\partial y} \left(T_{wy} \cdot \Delta y \cdot \boldsymbol{\gamma}_{w} \cdot \frac{\partial Z}{\partial y} \right) \cdot \Delta y + \frac{\partial}{\partial z} \left(T_{wz} \cdot \Delta z \cdot \boldsymbol{\gamma}_{w} \cdot \frac{\partial Z}{\partial z} \right) \cdot \Delta z;$$

$$(3-31)$$

$$(3-32)$$

$$A_{g} = \frac{\partial}{\partial x} \left(T_{gx} \cdot \Delta x \cdot \boldsymbol{y}_{m} \cdot \frac{\partial p_{cog}}{\partial x} \right) \cdot \Delta x + \frac{\partial}{\partial y} \left(T_{gy} \cdot \Delta y \cdot \boldsymbol{y}_{m} \cdot \frac{\partial p_{cog}}{\partial y} \right) \cdot \Delta y + \frac{\partial}{\partial z} \left(T_{gz} \cdot \Delta z \cdot \boldsymbol{y}_{m} \cdot \frac{\partial p_{cog}}{\partial z} \right) \cdot \Delta z;$$
(3-33)

$$A_{w} = \frac{\partial}{\partial x} \left(T_{wx} \cdot \Delta x \cdot \frac{\partial p_{cow}}{\partial x} \right) \cdot \Delta x + \frac{\partial}{\partial y} \left(T_{wy} \cdot \Delta y \cdot \frac{\partial p_{cow}}{\partial y} \right) \cdot \Delta y + \frac{\partial}{\partial z} \left(T_{wz} \cdot \Delta z \cdot \frac{\partial p_{cow}}{\partial z} \right) \cdot \Delta z.$$
(3-34)

Realizando as discretizações, as fórmulas resultantes para os hidrocarbonetos e para a água são, respectivamente:

$$T_{ox_{(i+\frac{1}{2})}^{n+1}} \rho_{o_{(i+\frac{1}{2})}^{n+1}}^{n+1} \mathbf{x}_{m_{(i+\frac{1}{2})}^{n+1}}^{n+1} (p_{i+1} - p_i)^{n+1} -T_{ox_{(i-\frac{1}{2})}^{n+1}} \rho_{o_{(i-\frac{1}{2})}^{n+1}}^{n+1} \mathbf{x}_{m_{(i-\frac{1}{2})}^{n+1}}^{n+1} (p_i - p_{i-1})^{n+1} +T_{gx_{(i+\frac{1}{2})}^{n+1}} \rho_{g_{(i+\frac{1}{2})}^{n+1}}^{n+1} \mathbf{y}_{m_{(i+\frac{1}{2})}^{n+1}}^{n+1} (p_i - p_i)^{n+1} -T_{gx_{(i-\frac{1}{2})}^{n+1}} \rho_{g_{(i-\frac{1}{2})}^{n+1}}^{n+1} \mathbf{y}_{m_{(i-\frac{1}{2})}^{n+1}}^{n+1} (p_i - p_{i-1})^{n+1} +q_{o_i}^{n+1} + q_{g_i}^{n+1} = \frac{V_b}{\Delta t} (N_m^{n+1} - N_m^n) - T_{ox_i}^{n+1} + X_o^{n+1} + X_g^{n+1} - A_g^{n+1};$$
(3-35)

$$T_{wx_{(i+\frac{1}{2})}}^{n+1} \rho_{w_{(i+\frac{1}{2})}}^{n+1} (p_{i+1} - p_i)^{n+1} - T_{wx_{(i-\frac{1}{2})}}^{n+1} \rho_{w_{(i-\frac{1}{2})}}^{n+1} (p_i - p_{i-1})^{n+1} + q_{w_i}^{n+1} = \frac{V_{bi}}{\Delta t} (N_w^{n+1} - N_w^n) + X_w^{n+1} + A_w^{n+1},$$
(3-36)

onde os subscritos *i* se referem à cada célula da discretização geométrica, o *n* corresponde ao *timestep* da discretização temporal e as demais direções podem ser descritas analogamente.

Conforme comentado na seção 3.2.1, a linearização dessas equações é feita através do método totalmente implícito que utiliza um termo denominado resíduo para realizar as iterações newtonianas. Logo, as formulações podem ser reescritas em formato desse resíduo r:

$$\begin{aligned} r_{i_{m}}^{n+1} &= T_{ox_{\left(i+\frac{1}{2}\right)}}^{n+1} \rho_{o_{\left(i+\frac{1}{2}\right)}}^{n+1} \boldsymbol{x}_{m_{\left(i+\frac{1}{2}\right)}}^{n+1} (p_{i+1} - p_{i})^{n+1} \\ &- T_{ox_{\left(i-\frac{1}{2}\right)}}^{n+1} \rho_{o_{\left(i-\frac{1}{2}\right)}}^{n+1} \boldsymbol{x}_{m_{\left(i-\frac{1}{2}\right)}}^{n+1} (p_{i} - p_{i-1})^{n+1} \\ &+ T_{gx_{\left(i+\frac{1}{2}\right)}}^{n+1} \rho_{g_{\left(i+\frac{1}{2}\right)}}^{n+1} \boldsymbol{y}_{m_{\left(i+\frac{1}{2}\right)}}^{n+1} (p_{i+1} - p_{i})^{n+1} \\ &- T_{gx_{\left(i-\frac{1}{2}\right)}}^{n+1} \rho_{g_{\left(i-\frac{1}{2}\right)}}^{n+1} \boldsymbol{y}_{m_{\left(i-\frac{1}{2}\right)}}^{n+1} (p_{i} - p_{i-1})^{n+1} \\ &+ q_{o_{i}}^{n+1} + q_{g_{i}}^{n+1} + X_{m}^{n+1} + A_{m}^{n+1} - \frac{V_{b}}{\Delta t} (N_{m}^{n+1} - N_{m}^{n}), \end{aligned}$$
(3-37)

e o sistema de equações pode ser reescrito com a seguinte equação, repetida para cada componente, incluindo a água e para cada célula da malha:

$$\left(\frac{\partial r_{i_m}}{\partial p_{i+1}}\right)^{n+1^{\nu}} \delta p_{i+1}^{n+1^{\nu+1}} + \left(\frac{\partial r_{i_m}}{\partial p_i}\right)^{n+1^{\nu}} \delta p_i^{n+1^{\nu+1}} + \left(\frac{\partial r_{i_m}}{\partial p_{i-1}}\right)^{n+1^{\nu}} \delta p_{i-1}^{n+1^{\nu+1}} + \sum_{m=1}^{n_c+1} \left(\frac{\partial r_{i_m}}{\partial N_{i_m}}\right)^{n+1^{\nu}} \delta N_{i_m}^{n+1^{\nu+1}} = -r_{i_m}^{n+1^{\nu}},$$
(3-38)

onde o sobrescrito ν ou $\nu + 1$ representam a iteração newtoniana atual ou subsequente, respectivamente e o componente $n_c + 1$ representa a água.

Com isso, são obtidos $n_c + 1$ equações. No entanto, estamos buscando resolver $n_c + 2$ incógnitas: $p, N_w, N_1, N_2, ..., N_{n_c}$. Logo é necessária mais uma equação que é chamada de equação de consistência de volume, a qual consiste na equação de soma das saturações igual a unidade, reorganizada.

$$r_p^{n+1} = \frac{N_o^{n+1}}{\rho_o^{n+1}} + \frac{N_g^{n+1}}{\rho_g^{n+1}} + \frac{N_w^{n+1}}{\rho_w^{n+1}} - \varphi^{n+1}.$$
(3-39)

Reescrevendo o sistema de equações no formato matricial, chega-se à Equação 3-40.

$$[J]^{n+1^{\nu}}[\delta\xi]^{n+1^{\nu+1}} = -[\psi]^{n+1^{\nu}}, \tag{3-40}$$

onde [J] é a matriz Jacobiana que consiste nas derivadas dos resíduos (3-37) e (3-39) para cada bloco da malha, $[\delta\xi]$ indica o vetor das variações das incógnitas, composto pelos termos infinitesimais relativos à pressão de cada bloco e aos componentes, inclusive a água, e o vetor $[\psi]$ representa os resíduos de cada componente mais r_p .

Para deixar mais claro o entendimento da formação desse sistema matricial, segue um exemplo, para um caso unidimensional, com dois componentes de hidrocarbonetos mais a água e composto por apenas três células, conforme mostrado na Figura 3.4:

|--|

Figura 3.4: Exemplo de modelo unidimensional de três células.

$$\begin{split} & \frac{\partial \tilde{\sigma}_{p,-1}}{\partial p_{p,-1}} & \frac{\partial \tilde{\sigma}_{p,-1}}{\partial \tilde{\sigma}_{p,-1}} & \frac{\partial \tilde{\sigma}_{p,-1}}}{\partial \tilde{\sigma}_{p,-1}} & \frac$$

Na metodologia adotada pelo GEM, esse sistema é resolvido para as incógnitas denominadas variáveis primárias (N_m 's, N_w e p) para cada bloco e, em cada iteração newtoniana, é realizado um cálculo *flash* para se determinar o equilíbrio de fases (termos x_m e y_m). SANTOS (2013) descreve algumas das metodologias utilizadas para se solucionar as equações de estado.

Por fim, as diversas aproximações foram feitas, de forma que há um erro cumulativo que ocorre em cada iteração do simulador. Portanto, uma das formas de se fazer um controle de qualidade dos resultados é realizar o balanço de materiais. Esse método consiste, simplesmente, em calcular a massa presente no início da simulação e compará-la com a presente no final, subtraindo os fluidos produzidos e somando os injetados. Portanto, o erro de balanço de materiais (*EBM*) é definido por:

$$EBM = \frac{FIP_t}{FIP_0 - F_p + F_i},$$
(3-42)

onde FIP_t é o volume de fluido no tempo t no reservatório, FIP_0 é o volume de fluido inicialmente no reservatório, F_p é o volume de fluido produzido e F_i é o volume de fluido injetado.

3.2.3 Simulação de Dupla Porosidade e Dupla Permeabilidade

Para representar o meio fraturado são necessárias algumas adaptações em relação ao que foi apresentado anteriormente. A primeira alteração ocorre na malha de simulação. São utilizadas duas malhas idênticas sobrepostas, uma representando a matriz e a outra, o meio fraturado, conforme apresentado na Figura 3.5.

Figura 3.5: Esquema da sobreposição de malhas na simulação de dupla porosidade e dupla permeabilidade. Fonte: Modificado de LEMONNIER e BOURBIAUX (2010).

O acoplamento entre as duas malhas é feito através do termo de transferência matrizfratura τ_{mf} . Inserindo esse fator na equação de balanço de massa apresentada anteriormente, temos as Equações 3-43 e 3-44 relativas às células de matriz (NGHIEM e LI, 1988 apud CMG, 2019).

$$\frac{\partial}{\partial x} \left(T_{ox} \cdot \Delta x \rho_o \boldsymbol{x}_m \cdot \left(\frac{\partial p_o}{\partial x} - \gamma_o \frac{\partial Z}{\partial x} \right) \right) \\
+ T_{gx} \cdot \Delta x \rho_g \boldsymbol{y}_m \cdot \left(\frac{\partial p_o}{\partial x} - \frac{\partial p_{cog}}{\partial x} - \gamma_g \frac{\partial Z}{\partial x} \right) \right) \Delta x \\
+ \frac{\partial}{\partial y} \left(T_{oy} \cdot \Delta y \rho_o \boldsymbol{x}_m \cdot \left(\frac{\partial p_o}{\partial y} - \gamma_o \frac{\partial Z}{\partial y} \right) \right) \\
+ T_{gy} \cdot \Delta y \rho_g \boldsymbol{y}_m \cdot \left(\frac{\partial p_o}{\partial y} - \frac{\partial p_{cog}}{\partial y} - \gamma_g \frac{\partial Z}{\partial y} \right) \right) \Delta y \\
+ \frac{\partial}{\partial z} \left(T_{oz} \cdot \Delta z \rho_o \boldsymbol{x}_m \cdot \left(\frac{\partial p_o}{\partial z} - \gamma_o \frac{\partial Z}{\partial z} \right) \right) \\
+ T_{gz} \cdot \Delta z \rho_g \boldsymbol{y}_m \cdot \left(\frac{\partial p_o}{\partial z} - \frac{\partial p_{cog}}{\partial z} - \gamma_g \frac{\partial Z}{\partial z} \right) \right) \Delta z + q_m \\
- \tau_{mf_o} - \tau_{mf_g} = V_b \frac{\partial N_m}{\partial t};$$
(3-43)

$$\frac{\partial}{\partial x} \left[T_{wx} \cdot \Delta x \rho_{w} \left(\frac{\partial p_{o}}{\partial x} - \frac{\partial p_{cow}}{\partial x} - \gamma_{w} \frac{\partial Z}{\partial x} \right) \right] \Delta x
+ \frac{\partial}{\partial y} \left[T_{wy} \cdot \Delta y \rho_{w} \left(\frac{\partial p_{o}}{\partial y} - \frac{\partial p_{cow}}{\partial y} - \gamma_{w} \frac{\partial Z}{\partial y} \right) \right] \Delta y
+ \frac{\partial}{\partial z} \left[T_{wz} \cdot \Delta z \rho_{w} \left(\frac{\partial p_{o}}{\partial z} - \frac{\partial p_{cow}}{\partial z} - \gamma_{w} \frac{\partial Z}{\partial z} \right) \right] \Delta z + q_{w}
- \tau_{mf_{w}} = V_{b} \frac{\partial N_{w}}{\partial t}.$$
(3-44)

Nota-se que caso os coeficientes τ_{mf} sejam nulos, as equações são iguais às Equações 3-10 e 3-11.

A formulação das células de fratura é feita de forma semelhante, substituindo-se o sinal do termo de transferência matriz-fratura, conforme as Equações 3-45 e 3-46.

-

$$\frac{\partial}{\partial x} \left(T_{ox} \cdot \Delta x \rho_o \boldsymbol{x}_m \cdot \left(\frac{\partial p_o}{\partial x} - \gamma_o \frac{\partial Z}{\partial x} \right) \right) \\
+ T_{gx} \cdot \Delta x \rho_g \boldsymbol{y}_m \cdot \left(\frac{\partial p_o}{\partial x} - \frac{\partial p_{cog}}{\partial x} - \gamma_g \frac{\partial Z}{\partial x} \right) \right) \Delta x \\
+ \frac{\partial}{\partial y} \left(T_{oy} \cdot \Delta y \rho_o \boldsymbol{x}_m \cdot \left(\frac{\partial p_o}{\partial y} - \gamma_o \frac{\partial Z}{\partial y} \right) \right) \\
+ T_{gy} \cdot \Delta y \rho_g \boldsymbol{y}_m \cdot \left(\frac{\partial p_o}{\partial y} - \frac{\partial p_{cog}}{\partial y} - \gamma_g \frac{\partial Z}{\partial y} \right) \right) \Delta y \\
+ \frac{\partial}{\partial z} \left(T_{oz} \cdot \Delta z \rho_o \boldsymbol{x}_m \cdot \left(\frac{\partial p_o}{\partial z} - \gamma_o \frac{\partial Z}{\partial z} \right) \right) \\
+ T_{gz} \cdot \Delta z \rho_g \boldsymbol{y}_m \cdot \left(\frac{\partial p_o}{\partial z} - \frac{\partial p_{cog}}{\partial z} - \gamma_g \frac{\partial Z}{\partial z} \right) \right) \Delta z + q_m \\
+ \tau_{mf_o} + \tau_{mf_g} = V_b \frac{\partial N_m}{\partial t};$$
(3-45)

$$\frac{\partial}{\partial x} \left[T_{wx} \cdot \Delta x \rho_{w} \left(\frac{\partial p_{o}}{\partial x} - \frac{\partial p_{cow}}{\partial x} - \gamma_{w} \frac{\partial Z}{\partial x} \right) \right] \Delta x \\ + \frac{\partial}{\partial y} \left[T_{wy} \cdot \Delta y \rho_{w} \left(\frac{\partial p_{o}}{\partial y} - \frac{\partial p_{cow}}{\partial y} - \gamma_{w} \frac{\partial Z}{\partial y} \right) \right] \Delta y \\ + \frac{\partial}{\partial z} \left[T_{wz} \cdot \Delta z \rho_{w} \left(\frac{\partial p_{o}}{\partial z} - \frac{\partial p_{cow}}{\partial z} - \gamma_{w} \frac{\partial Z}{\partial z} \right) \right] \Delta z + q_{w} \\ + \tau_{mf_{w}} = V_{b} \frac{\partial N_{w}}{\partial t}.$$
(3-46)

O termo de transferência matriz-fratura pode ser calculado através da Equação 3-47 (KAZEMI,1976).

$$\tau_{mf_j} = \sigma. V_b. \frac{k_{r_j} \rho_j}{\mu_j} \cdot \left(p_{m_j} - p_{f_j} \right), \tag{3-47}$$

onde j representa a fase óleo, gás ou água.

Conforme explicado no Capítulo 2, há diversas formas de calcular o fator de forma. Nesse trabalho foi utilizada a formulação de GILMAN e KAZEMI (1983), apresentada na Equação 3-48.

$$\sigma = 4. \left(\frac{k_{mx}}{l_x^2} + \frac{k_{my}}{l_y^2} + \frac{k_{mz}}{l_z^2} \right).$$
(3-48)

4 Metodologia

A descrição da metodologia consiste em duas partes. Inicialmente são descritos os experimentos realizados e os parâmetros considerados. Posteriormente, o modelo utilizado é detalhado.

4.1 Organização do Trabalho

O presente trabalho abrange uma análise do impacto de diversos parâmetros de simulação de reservatórios. As premissas adotadas para os casos simulados são descritas, juntamente com as características de reservatório a ser utilizado. Também são indicados os parâmetros avaliados, após uma análise de sensibilidade.

4.1.1 Simulação

A simulação foi realizada utilizando o *software* GEM, versão 2019.10, da empresa CMG (*Computer Modelling Group*). Trata-se de um simulador composicional de escoamento utilizado na modelagem de reservatórios de petróleo que permite avaliar os balanços de massa e energia baseados em cada pseudo-componente utilizado na caracterização dos fluidos. A escolha do simulador também levou em conta que o GEM é amplamente utilizado na indústria do petróleo especialmente para simulações de campos que possuam fluidos compressíveis como óleos voláteis e gases retrógrados. Sua robustez numérica e rigor das formulações tornam o GEM também vastamente utilizado em campos nos quais são aplicados métodos químicos de recuperação, com especial destaque para processos miscíveis.

O uso de simulação composicional não é mandatório para essa pesquisa, haja vista que não serão estudados cenários que alterem significativamente a composição dos hidrocarbonetos. Simulações com formulação *black-oil* chegariam a resultados similares. Não obstante, como os fluidos do pré-sal são tipicamente caracterizados através de modelos composicionais, esse trabalho foi realizado com esse tipo de simulador, realizando apenas balanços de massa.

Para simplificar a análise dos resultados, foram considerados casos apenas com um poço produtor e, nos casos com injeção, também foi acrescentado um poço injetor de água para fins de criação de cenários operando sob manutenção de pressão. Essa simplificação auxilia a análise, mas difere largamente da prática de campos reais em que são utilizados diversos poços para a otimização da produção, além da aplicação de injeção dos fluidos água e/ou gás

(com distintas composições) para recuperação suplementar. Os poços possuem geometria vertical e são canhoneados em toda a extensão do modelo na direção k, incluindo células de fratura, caso possível (i.e., os poços são multicompletados em todas as células atravessadas, inclusive as de fraturas). Por 12 mil dias, cerca de 33 anos, os poços são abertos com vazões fixadas em 5 mil m^3/d , nas condições de fundo de poço. Como a pressão de fundo dos dois poços não são iguais, há uma pequena diferença entre o volume produzido e o injetado. Não obstante, a pressão média do reservatório se mantém praticamente constante durante todo o período dos experimentos. Nenhum dano à produtividade ou injetividade dos poços foi considerada, sendo estabelecido um fator de película (*skin*) nulo.

Não foi considerada a presença nem de aquífero, nem de capa de gás. No instante inicial da simulação, a água presente no modelo é apenas a correspondente à saturação irredutível. Portanto, a água eventualmente produzida corresponde essencialmente à água injetada. Da mesma forma, não há gás livre inicialmente no campo. O gás produzido advém da porção solubilizada no óleo produzido ou do declínio da pressão no reservatório abaixo do ponto de bolha do fluido (P_{sat}). Esse segundo caso só ocorre quando não há injeção para manter a pressão do reservatório acima da pressão de saturação.

4.1.2 Variáveis Estudadas

Foram escolhidos cinco parâmetros independentes para a análise de sensibilidade realizada:

- 1. Homogeneidade/heterogeneidade da matriz;
- 2. Posição dos poços em relação à malha do modelo;
- 3. Posição do corredor de fraturas em relação aos poços;
- 4. Largura do corredor de fraturas;
- 5. Permeabilidade absoluta das células de fratura.

Para todos os casos submetidos à simulação nesse estudo, os demais parâmetros de entrada do simulador são constantes, tanto na parte da caracterização do reservatório, como nos controles numéricos. Assim, as comparações dos resultados podem ser realizadas.

A análise de sensibilidade utiliza valores discretos de forma combinatória. Foram selecionados (i) dois para a homogeneidade/heterogeneidade da matriz; (ii) três posições de poços; (iii) três posições de corredor de fratura; (iv) três larguras para o corredor de fraturas; e (v) oito valores de permeabilidade de fraturas. Portanto, foram submetidos 432 (2 x 3 x 3 x 3 x 8) casos ao simulador.

Na próxima seção serão apresentadas as variáveis selecionadas e os respectivos valores adotados.

4.1.2.1 Homogeneidade/Heterogeneidade da Matriz da Rocha

A distribuição das características permoporosas nas células da matriz do modelo reflete as heterogeneidades características de rochas carbonáticas. Essa heterogeneidade ocasiona um escoamento não uniforme pelo reservatório, que afeta a produção do campo, com reflexo no desempenho numérico das simulações. Inicialmente foram construídos modelos com porosidade e permeabilidade horizontal médias da rocha de 17,3% e 680 *mD*, respectivamente. Apenas as células da matriz são heterogêneas. As fraturas sempre possuem valores constantes de porosidade e de permeabilidade. A heterogeneidade presente na matriz do modelo pode ser observada na seção transversal (Figura 4.1) que corta o modelo ao meio na direção Leste-Oeste.

Figura 4.1: (a) Porosidade do modelo e (b) permeabilidade horizontal do modelo.

O grau de heterogeneidade da permeabilidade é representado pelo coeficiente de Dykstra-Parsons (ν) (LAKE e JENSEN, 1991). O valor desse parâmetro tende a zero para

permeabilidades homogêneas e aumenta com o crescimento da heterogeneidade. Seu valor pode ser expresso da seguinte forma:

$$\nu = \frac{k_{84} - k_{50}}{k_{50}},\tag{4-1}$$

onde k é a permeabilidade e o subscrito representa o percentil do valor da permeabilidade.

Com o objetivo de analisar a heterogeneidade vertical, as células do modelo foram agrupadas nessa direção e, para cada grupo, foi calculado esse coeficiente. Para fins de comparação, foi realizado um ajuste considerando uma distribuição log-normal e calculado o coeficiente de correlação. Os mapas obtidos são apresentados na Figura 4.2.

Figura 4.2: Mapas com o coeficiente de Dykstra-Parsons: (a) modelo utilizado e (b) ajuste à curva log-normal.

4.1.2.2 Posicionamento dos Poços

Nesse estudo são propostas três configurações de posicionamento de poços. A primeira, mais simples, utiliza apenas um poço produtor. Essa configuração reflete o comportamento de produção por depleção, quando não há suporte de pressão. As outras duas configurações são compostas de um par de poços produtor-injetor. Eles estão dispostos a 1.700 *m* de distância em ambos os casos. Essas duas configurações diferem quanto à orientação da malha com relação ao posicionamento dos poços. Em um caso, o par de poços forma um ângulo de 45° em relação à grade do modelo enquanto, no outro, eles estão alinhados na mesma direção. O efeito de orientação de malha pode vir a ser relevante em alguns modelos. Em ambos os casos, apenas a injeção de água foi avaliada. A Figura 4.3 apresenta as posições das três malhas.

Figura 4.3: Localização dos poços.

Ressalta-se que, para o cenário com apenas um poço produtor, foi adicionada a restrição de pressão de fundo mínima de 40.000 *kPa*. Isso é necessário para evitar operar o modelo muito abaixo da pressão de bolha, resultando em elevada saturação de gás com aumento do esforço computacional. Contudo, a pressão ligeiramente abaixo da pressão de saturação permite que ocorra o aumento da RGO o que indica o atingimento da pressão mínima definida.

Por fim, destaca-se que os poços são todos sempre canhoneados tanto nas células da grade de matriz como nas células da grade de fraturas e em toda a extensão vertical do reservatório.

4.1.2.3 Corredor de Fraturas

As fraturas foram representadas por meio de corredores no modelo. Essa metodologia está baseada no conceito de zona de dano, apresentado no Capítulo 3. Portanto, considerouse uma falha de rejeito desprezível, atravessando o modelo na mesma direção do par produtor-injetor, ou, no caso sem injeção, na direção leste-oeste. Essa falha cria uma zona de dano cujas fraturas são as únicas presentes no modelo.

Há duas variáveis geométricas desses corredores a serem avaliadas na análise de sensibilidade: (i) a largura (L) do corredor; e (ii) a distância (D) entre o corredor e os poços.

Foram adotados três valores para cada um desses atributos. A largura foi considerada de uma, duas ou três células. Para a distância da fratura aos poços, foram definidos os

seguintes casos: (i) zero, que significa que o corredor passa nas células canhoneadas pelos poços; (ii) um, no qual a primeira célula do corredor de fratura é adjacente aos poços; e (iii) cinco, em que a primeira célula do corredor de fratura dista cinco células dos poços.

A Figura 4.4 exemplifica alguns casos considerados. É interessante observar o caso particular no qual a direção do par produtor-injetor não é paralela à grade e o corredor de fraturas possui a largura de apenas uma célula. Nesse cenário, os blocos fraturados não estão conectados entre si. O efeito dessa falta de continuidade será tema de análise no Capítulo 5.

Figura 4.4: Exemplos de corredores de fraturas com diferentes geometrias.

4.1.2.4 Permeabilidade Efetiva das Fraturas

A influência da permeabilidade efetiva das fraturas (K_{frat}) nos resultados de produção do campo requer avaliação. Esse parâmetro será variado de forma que a classificação do reservatório varie desde o tipo 3 (qualidade permoporosa da matriz comparável à das fraturas) até o tipo 4 (qualidade permoporosa da matriz superior à das fraturas). Ou seja, com permeabilidades baixas, as fraturas não devem ter impacto relevante na produção. Conforme o valor da variável aumenta, o corredor passa a dominar o escoamento com relação à matriz.

Os resultados de diversos experimentos numéricos (KAZEMI et al., 1976; SONLER et al., 1988; BAKER e KUPPE, 2000; WU et al., 2011) mostram que o aumento da permeabilidade das fraturas gera uma aceleração na frente de água e, consequentemente, uma antecipação na chegada dos fluidos injetados aos poços produtores, além de uma piora na eficiência de varrido. Esse trabalho visa confirmar esse comportamento no modelo utilizado.

Para essa análise, as permeabilidades efetivas das fraturas são constantes e iguais nas três direções. Serão gerados casos em que os valores das permeabilidades variam de $10^{1,5}$ a $10^{5,0}$ mD. A variação ocorreu em escala logarítmica, com passos de $10^{0,5}$ mD. Consequentemente, oito valores de permeabilidade efetiva de fratura foram analisados.

Os valores de permeabilidade horizontal da matriz (K_{matriz}) variam de aproximadamente 1 *mD* a 4000 *mD*, e a média é de 680 *mD*. Logo, a relação K_{frat}/K_{matriz} varia de 20 até cerca de 0,01.

4.1.3 Resultados Avaliados

As análises são feitas em duas etapas. A primeira foca na malha com apenas um poço produtor. A segunda considera os casos com injeção de água. Essa divisão é necessária pois, no primeiro caso, a variável que controla a produção de petróleo é o aumento da razão gásóleo (RGO), enquanto o corte de água se mantém nulo. Em contrapartida, no segundo cenário, a RGO se mantém constante, já que a pressão do reservatório é constante e a evolução do corte de água (*wcut*) controla a produção de petróleo.

Para cada um desses casos, as variáveis que são analisadas também são divididas em duas categorias: parâmetros de produção e de controle numérico da simulação.

4.1.3.1 Previsão de Produção

Os dados de produção a serem avaliados consistem na produção acumulada de óleo ao longo do tempo e o tempo de chegada da frente de água (*breakthrough*).

O volume de óleo produzido decorre de duas variáveis calculadas do simulador a cada *timestep*: vazão de óleo (q_o) e tamanho do *timestep*. Ao se multiplicar essas duas variáveis, obtém-se o volume de óleo produzido durante aquele *timestep*. Somando-se os volumes de todos os *timesteps*, chega-se ao volume de óleo total produzido (N_p), conforme apresentado na Equação 4-2.

$$N_p = \sum_{n=0}^{n_t} q_o * \Delta t_n, \tag{4-2}$$

onde n_t representa o último *timestep* da simulação.

Para determinar o tempo de chegada da frente de água, foi necessário, primeiramente, arbitrar um valor de referência. O corte de água superior ao valor referenciado é considerado o início do *breakthrough*. Não é recomendável utilizar o valor intuitivo de zero. Caso isso seja feito, possivelmente haverá casos nos quais um aumento marginal no percentual de água produzido (*i.e.*, água cognata que se tornou móvel pela compressibilidade do meio poroso) mascare o momento correto da chegada da frente de água injetada. Portanto, nesse estudo foi adotado o valor de corte de água superior a 1%.

De forma semelhante, o tempo até o atingimento da pressão de bolha do fluido foi medido utilizando-se também um valor de referência. No entanto, essa medição foi feita indiretamente, por meio do aumento da razão gás óleo (RGO) do campo. Foi escolhido um

valor referente ao aumento aproximado de 1% da RGO. Como o valor original é de 206,8 m^3 std/ m^3 std, o limite de RGO, acima do qual foi considerado que se atingiu a pressão de bolha foi 208,8 m^3 std/ m^3 std.

Com a finalidade de tornar o estudo mais genérico, são utilizadas três variáveis adimensionais: (1) Fator de Recuperação (*FR*); (2) Tempo Adimensional até a Chegada da Frente de Água (t_{Dw}); (3) Tempo Adimensional até a Pressão do Reservatório Chegar ao Ponto de Bolha (t_{Dpb}).

$$FR = \frac{N_p}{VOIP}; \tag{4-3}$$

$$t_{DW} = \frac{q_{wi}(RC)}{V_p} \cdot t_{bt};$$
 (4-4)

$$t_{Dpb} = \frac{q_{oi}(RC)}{V_p} \cdot t_{pb}, \tag{4-5}$$

onde N_p é a produção de óleo acumulada, *VOIP* é o volume de óleo inicial no modelo em condições de superfície, $q_{wi}(RC)$ é a vazão de água injetada em condições de reservatório, $q_{oi}(RC)$ é a vazão de óleo produzido em condições de reservatório, t_{bt} é o tempo decorrido até o *breakthrough* de água, t_{pb} é o tempo decorrido até atingir a pressão de bolha e V_p é o volume poroso do reservatório. Ressalta-se que, para esse estudo, as vazões de produção de óleo e de injeção de água em condições de reservatório são constantes e iguais a 5 mil m^3/d em condições de reservatório.

O FR (fator de recuperação) representa a fração de óleo recuperada do reservatório até a data final da simulação. O tempo adimensional de água é a razão entre vazão de injeção e volume poroso do reservatório, multiplicada pelo tempo decorrido até o *breakthrough* e equivale ao volume de água injetada em relação ao volume poroso da rocha até a data da chegada de água no poço produtor. Por sua vez, o tempo adimensional de gás é a relação entre vazão de produção e o volume poroso do reservatório, multiplicada pelo tempo até se chegar à pressão de saturação do fluido do reservatório e representa a fração de óleo extraído do campo até o atingimento da pressão de saturação do fluido.

Para esse modelo, foram utilizados os seguintes valores:

- $VOIP = 302,166 \times 106 m^3;$
- $V_p = 453,892 \times 106 \, m^3$;
- $q_{wi}(RC) = q_{oi}(RC) = 5000m^3/d.$

Portanto, as equações, para esse trabalho, são:

$$FR = \frac{N_p}{302,166} * 10^{-6}; \tag{4-6}$$

$$t_{DW} = \frac{5000 * t_{bt}}{453,892} * 10^{-6}; \tag{4-7}$$

$$t_{Dpb} = \frac{5000 * t_{pb}}{453,892} * 10^{-6}.$$
 (4-8)

4.1.3.2 Resultados Numéricos

As vazões de fluidos produzidos e injetados, juntamente com as taxas de produção (*wcut* e RGO) são importantes informações para a análise do desempenho dinâmico dos reservatórios. Todavia, a avaliação numérica nos permite averiguar se os resultados são confiáveis e, também, se é possível otimizar o tempo necessário para a simulação dos casos considerados. Portanto, esse aspecto deve ser avaliado de forma criteriosa com os demais resultados. O controle de qualidade serviu de base para a definição dos controles numéricos utilizados nas simulações desse trabalho.

Não existe uma parametrização numérica única que otimize individualmente todos os modelos que sejam submetidos ao simulador. Cada caso apresenta diferentes complexidades a serem solucionadas e descobrir cada especificação que dê bons resultados é um trabalho oneroso. Não obstante, buscou-se uma configuração numérica que apresente resultados aceitáveis de forma a viabilizar a análise dos resultados.

Nesse trabalho, foi usada uma parametrização única para facilitar a comparação na análise de sensibilidade nos resultados numéricos. Contudo, seria possível selecionar apenas as simulações com respostas não-satisfatórias e ajustá-las individualmente, de forma que todos os casos fossem confiáveis.

A definição de controles numéricos padrão (*default*) em um simulador que lida com uma variada gama de não-linearidades, exige um foco em determinadas classes de problemas mais usuais. Mesmo assim, optou-se por testar as simulações desse trabalho de pesquisa com o controle numérico padrão do simulador. Esse primeiro grupo de resultados deixou claro que parte dos casos sem injeção requer tratamento numérico melhorado. Entre as simulações com injeção de água para manutenção de pressão, 14% não chegaram até o final pois, devido à parametrização numérica inadequada para o caso, não foi possível convergir para a solução. Para os casos com produção por depleção, que apresentam maiores complexidades devido

ao aparecimento da fase gás, 61% das simulações não chegaram ao final. A Figura 4.5 apresenta o histograma do erro de balanço de massa acumulado dos casos submetidos

Figura 4.5: Histogramas do erro de balanço de massa acumulado dos cenários com controle numérico default a) com injeção e b) sem injeção.

O erro de balanço de materiais acumulado nas simulações permite avaliar o quanto de massa não foi preservada no final de todo o tempo de simulação coberto pelo somatório dos passos de tempo. As dificuldades numéricas para os casos sem injeção de água decorrem da depleção do reservatório abaixo da pressão de bolha. Nesse contexto, ocorre o aparecimento da fase gasosa que impõe dificuldades de convergência para o tipo de fluido utilizado nos modelos. Nos casos com injeção de água, ocorre a manutenção da pressão do reservatório acima da pressão de saturação que permite o escoamento ocorrer sem a presença de uma fase gasosa. Na medida que as dificuldades numéricas específicas do problema investigado ocorrem, aumenta o número de vezes que o *solver* linear não consegue alcançar a convergência. Esse resultado tem impacto no controle do método adaptativo implícito, que

aloca um maior número de células para solução totalmente implícita, por ser mais estável numericamente. Também o número elevado de falhas de convergência do *solver* linear faz com que a simulação avance acumulando a cada passo de tempo um erro de balanço de massa mais elevado que resulta num valor de erro final mais elevado para o caso de aparecimento da fase gasosa.

Foi realizada uma análise de sensibilidade de diversos parâmetros numéricos do simulador. Entre eles estão os seguintes: os critérios de convergência do *solver* linear e não-linear, o critério de alocação das equações mais não-lineares para tratamento totalmente implícito do método adaptativo implícito e a otimização através do ADTSC. Ao final, o conjunto de controles numéricos adotados para as simulações está apresentado na Tabela 4.1 e o respectivo histograma de erro de balanço de materiais está na Figura 4.6.

Parâmetro	Palavra-chave	Valor
Tolerância para convergência do solver linear	PRECC	10 ⁻⁵
Tolerância do AIM	AIM STAB AND-THRESH	10-2
Tolerância para convergência do <i>solver</i> não linear	CONVERGE MAXRES	10-4
Parâmetro de auxílio de convergência do solver não-linear	UNDERRELAX	0,2
Adaptative Time Step Control	ADTSC	OFF

Tabela 4.1: Parâmetros Numéricos Finais

Figura 4.6: Histogramas do erro de balanço de massa acumulado dos cenários com controle numérico final a) com injeção e b) sem injeção

Com essa nova configuração dos controles numéricos, o número de casos que não chegaram ao final da simulação foi drasticamente reduzido. Nos cenários com injeção de água foi de 14% para 0% e nos sem injeção foi de 61% para 10%. Além dessa melhora, também houve diminuição no erro de balanço de massa. Nota-se que os casos com injeção não possuem mais nenhuma simulação com erro superior a 0,2%. As simulações por depleção, conforme explicitado anteriormente, são de solução mais complexas e, apesar de apresentarem uma redução do EBM, particularmente dos casos acima de 2%, ainda não apresentam bons resultados. Nada obstante, seria necessária uma análise mais aprofundada sobre as simulações com problemas para se buscar a parametrização numérica correta de cada caso específico. Essa necessidade decorre da imposição de não-linearidades elevadas que exigem ajustes nos controles numéricos os quais permitam alcançar a convergência sem perda da precisão dos resultados. Como esse trabalho utilizará os mesmos parâmetros numéricos em todos os casos, a configuração adotada foi considerada satisfatória.

Serão analisados oito parâmetros relacionados com o desempenho numérico, conforme indicado a seguir. O primeiro é o (1) erro de balanço de materiais (EBM) total ao final da simulação. O crescimento dessa variável indica uma menor confiabilidade nos resultados de previsão do comportamento do reservatório. Também será avaliada a (2) implicitude média. Através dela será possível observar a forma como o simulador altera a metodologia de cálculo em cenários com maior complexidade.

Há casos em que ocorrem grandes alterações nas variáveis analisadas pelo simulador, o que gera falhas no *solver* linear e a necessidade de cortes no tamanho do *timestep*. Portanto, outros dois fatores analisados são o (3) número de falhas do *solver* e o (4) número de cortes de *timesteps*. Naturalmente, simulações mais complexas exigirão *timesteps* de dimensão reduzidas. Como o período simulado é constante, serão necessários mais *timesteps*, mais iterações do *solver* e mais ciclos newtonianos para se chegar ao final. Consequentemente, também serão avaliados o (5) número de *timesteps*, o (6) número de ciclos newtonianos e o (7) número de iterações do *solver*. Por fim, sabe-se que é possível obter resultados extremamente confiáveis, ajustando alguns parâmetros numéricos. Todavia, muitas vezes o profissional de simulação se vê obrigado a abrir mão dessa confiabilidade para que o tempo da rodada não inviabilize a utilização do modelo. Portanto, foi incluída como parâmetro a ser analisado o (8) tempo de simulação.

4.2 Modelo de Reservatório

O modelo de reservatório adotado para as análises dessa pesquisa é representativo de alguns reservatórios carbonáticos do pré-sal brasileiro. Esses campos possuem dimensões quilométricas, resultando em malhas de simulação com milhões de células ativas e, por conseguinte, podem demandar horas para serem simulados. Portanto, foi necessário utilizar um modelo que tivesse dimensões significativamente menores, mas cujas características fossem representativas das rochas carbonáticas de campos do pré-sal. Partindo de um modelo *proxy* desses campos, foi construído o modelo a ser utilizado nos exercícios numéricos desse trabalho de pesquisa.

4.2.1 Condições Iniciais do Modelo

Estimou-se uma profundidade de 5380 *m* para a localização do topo do modelo estudado. Dessa forma, foi calculada uma pressão inicial de 52.760 *kPa* a essa profundidade, utilizando um gradiente de pressão igual ao da água (9,8 *kPa/m*). O valor de 5×10^{-7} (1/*kPa*) foi aplicado para a compressibilidade da rocha, a uma pressão de 50.000 *kPa*. O modelo não possui capa de gás, nem aquífero presentes. O reservatório encontra-se inicialmente em equilíbrio, pois os contatos entre fluidos estão fora da área de interesse. Não ocorre gradação

composicional, sendo a composição do óleo subsaturado constante em todo o reservatório. Por simplicidade, o modelo considerado para os exercícios numéricos dessa pesquisa possui fronteiras fechadas. A temperatura inicial do reservatório é de 80 °C e a água injetada possui a mesma temperatura, permitindo uma modelagem isotérmica.

4.2.2 Estrutural

O arcabouço estrutural e estratigráfico do reservatório está capturado no modelo geocelular apresentado na Figura 4.7.

Figura 4.7: Modelo proxy original - $H \times \varphi \times S_o(m)$.

Todavia, a variação estrutural do reservatório acrescenta características que não estão sendo analisados nesse trabalho. Caso esse modelo original fosse adotado, seria necessário avaliar a posição relativa dos poços, além de espessura de células que fogem do foco dessa dissertação. Algumas análises poderiam ser influenciadas por esses fatores e, possivelmente, gerar resultados inconclusivos. Para evitar a influência do efeito da topografia do modelo, adotou-se uma malha regular de 51 x 51 x 20 células. Cada célula da malha possui dimensões de 100 m x 100 m x 9 m, totalizando um meio poroso total com dimensões de 5100 m x 5100 m x 180 m. A Figura 4.8 mostra a geometria final do modelo tridimensional.

A alteração da espessura do bloco, com a manutenção dos valores de porosidade e permeabilidade, modifica a capacidade ao fluxo e seu volume poroso. Para compatibilizar os modelos original e final, aplicou-se um fator multiplicador na porosidade e na permeabilidade,

igual à relação da espessura da célula no modelo original e a espessura da célula no modelo regular. Os multiplicadores refletem a relação *net-to-gross,* como mostrados no mapa da Figura 4.9.

Figura 4.8: Modelo final - $H \times \varphi \times S_o(m)$ após multiplicação por NTG.

Figura 4.9: Modelo final - NTG
4.2.3 Fluido

A caracterização da mistura de hidrocarbonetos no modelo de escoamento utiliza a equação de Peng-Robinson ajustada a fluidos representativos de campos do pré-sal brasileiro. A composição do fluido utilizada foi agrupada em oito pseudo-componentes preservando a representatividade do fluido original. Sem gradação composicional, o estado dessa mistura fica determinado pela pressão de cada célula do modelo e a temperatura constante estabelecida para o meio poroso. As características mais relevantes dos fluidos são descritas na Tabela 4.2. Os pseudo-componentes da mistura com os respectivos percentuais molares constam na Tabela 4.3. Por fim, a Figura 4.10 apresenta o envelope de fases indicando a pressão inicial (P₀) subsaturada acima da pressão de saturação (P_{sat}).

Característica	Unidade	Valor
Viscosidade do Óleo na P ₀	сР	1,039
Rs	m³ std/m³ std	207
Boi	m³ RC/m³ std	1,503
Densidade do Óleo na P ₀	-	0,734
Teor original de CO ₂	%	10
Pressão de Bolha	kPa	40011
Viscosidade da Água na P ₀	сР	0,500
B _{wi}	-	0,998

Tabela 4.2: Características dos fluidos utilizados.

Tabela 4.3: Percentuais molares dos pseudo-componentes.

Pseudo-Componente	Percentual Molar (%)	Peso Molecular(g/gmol)
PC1	10	44
PC2	50	16.5
PC3	12	35.9
PC4	6	61.7
PC5	7	153
PC6	6	233
PC7	6	362
PC8	3	818

Figura 4.10: Envelope de Fases do Fluido Utilizado com Pressão Original do Reservatório (P0); Pressão de Saturação do Reservatório (Psat) e Ponto Crítico do Fluido (Pc).

4.2.4 Distribuição das Propriedades

As propriedades das células foram distribuídas segundo a estrutura deposicional original do reservatório, de forma que as regiões mais altas possuem melhor qualidade permoporosa. Não foi determinada anisotropia areal, de forma que a permeabilidade absoluta horizontal de cada célula é especificada e a permeabilidade vertical é estimada como sendo $1/_{10}$ da permeabilidade horizontal. Na Tabela 4.4 são apresentadas as características das distribuições da porosidade e da permeabilidade horizontal finais e na Figura 4.11, os seus histogramas.

Característica	φ (%)	K _{matriz} (mD)
Média	17,3	683,5
Máximo	25,0	3995,0
Mínimo	2,0	1,0
Desvio Padrão	4,4	604,3
Mediana	17,0	492,5

Tabela 4.4: Características das distribuições de φ e de K_{matriz} do modelo.

Figura 4.11: Histogramas de propriedades da rocha: (a) porosidade efetiva e (b) permeabilidade absoluta horizontal.

4.2.5 Fraturas

Para se modelar as fraturas, foram utilizados corredores retos, atravessando todo o reservatório. Assim, foi possível emular casos práticos com corredores acompanhando falhas geológicas. Deste modo, as células com fraturas são determinadas com base na especificação da direção, distância dos poços e largura do corredor. Para o cálculo do fator de forma, foi escolhida a formulação de GILMAN e KAZEMI (1988), conforme especificada na Equação 3-48. Esse cálculo está disponível na maioria dos simuladores comerciais.

O volume de fluido inicial do modelo é constante em todos os casos simulados. Desse modo, a energia interna associada ao volume de óleo inicial que satura o meio poroso é mantida constante de modo a permitir uma comparação adequada dos modelos simulados. Para isso, as células do corredor de fraturas tiveram a porosidade da matriz reduzida para compensar os volumes atribuídos às fraturas. Para a porosidade das fraturas, foi especificado o valor de 1%. Porosidades muito menores, apesar de representarem mais corretamente o volume presente nessas estruturas, podem inviabilizar a simulação. As grandes variações de saturação de fluidos geradas nessas células podem levar a tempos de simulação impeditivos ou a falhas, uma vez que a velocidade do escoamento pode atingir valores muito altos, causando variações demasiado abruptas nas variáveis primárias. Esse aumento de volume de óleo nas fraturas é compensado por um alto S_{or}, buscando limitar o óleo móvel, conforme será mostrado.

As permeabilidades das fraturas com variação de 32 a 100000 *mD* permitem avaliar o contraste com a permeabilidade absoluta do meio poroso, cuja média é de cerca de 680 *mD*. Assim, pode-se investigar o impacto da preponderância do escoamento pelo meio poroso versus sistema de fraturas.

O espaçamento entre as fraturas utilizado na modelagem de dupla porosidade e dupla permeabilidade foi de 5 *m*. Como as células possuem dimensão areal de 100 *m* x 100 *m*, foi considerada a presença de 20 fraturas nas direções i e j. Na direção k, considerou-se o mesmo espaçamento e a mesma permeabilidade das direções horizontais.

4.2.6 Permeabilidade Relativa

Os carbonatos do pré-sal brasileiro possuem uma vasta gama de possíveis curvas de permeabilidade relativa. Contudo, nesse trabalho foi utilizada somente um conjunto de curvas de permeabilidade relativa água-óleo e gás-líquido para o meio poroso e outro para o sistema de fraturas. Essas curvas são consideradas representativas para os reservatórios estudados.

As curvas de permeabilidade relativa para o meio poroso foram geradas pela correlação de COREY (1954). Na Tabela 4.5 encontram-se os parâmetros para a geração das curvas e a Figura 4.12 mostra os resultados.

Parâmetro	Matriz	Fratura
no	2,0	1,0
n _w	4,0	1,0
Swi	0,2	0,2
Sor	0,3	0,5
K _{ro} @ S _{wi}	1,0	1,0
K _{rw} @ 1-S _{or}	0,5	1,0

Tabela 4.5: Parâmetros	das curvas de r	permeabilidade	relativa da matriz.

Figura 4.12: Curvas de permeabilidade relativa da matriz e da fratura.

Para o sistema de fraturas, foram adotadas curvas com o formato de X, tipicamente utilizadas em simulações comerciais (ROSSEN e KUMAR, 1994) e podem ser observadas no mesmo gráfico da Figura 4.12. O óleo residual das fraturas, normalmente é estimado como nulo. Todavia, para compensar a maior porosidade de fraturas, necessária para garantir a estabilidade das simulações, aumenta-se o S_{or}, uma vez que as fraturas causam uma menor recuperação de óleo da matriz adjacente (LIAN et al., 2012).

5 Resultados e Análises

Nesse trabalho de pesquisa foi necessário realizar 432 simulações decorrentes da combinação das variáveis apresentadas no Capítulo 4 e cujo resumo encontra-se na Tabela 5.1.

Malha	arphi e k da Matriz	Distância (D)	Largura (L)	K _{frat} (mD)
1 Produtor	Homogêneo	0 células	1 célula	32
Prod-Inj Paralelo	Heterogêneo	1 célula	2 células	100
Prod-Inj 45°	-	5 células	3 células	320
-	-	-	-	1.000
-	-	-	-	3.200
-	-	-	-	10.000
-	-	-	-	32.000
-	-	-	-	100.000

Tabela 5.1: Resumo das características dos modelos de reservatório a serem combinadas

A apresentação dos resultados obtidos com as simulações será realizada em duas etapas. Na primeira, são mostrados os casos sem injeção de água, investigando as peculiaridades de reservatórios submetidos a depleção. A segunda etapa envolve os casos com injeção de água com o objetivo de manutenção da pressão e deslocamento do óleo pela água.

Um resumo dos parâmetros analisados é apresentado a seguir:

Parâmetros de Produção:

- 1. FR: Fator de recuperação;
- 2. *t_{Dw}*: Tempo adimensional até o *breakthrough* de água;
- 3. *t_{Dpb}*: Tempo adimensional até se atingir a pressão de bolha no reservatório.

Parâmetros Numéricos:

- 1. Erro de balanço de materiais;
- 2. Implicitude média;

- 3. Número de falhas do solver;
- 4. Número de cortes de timesteps;
- 5. Número de timesteps;
- 6. Número de ciclos newtonianos;
- 7. Número de iterações do solver;
- 8. Tempo de simulação.

5.1 Simulações sem Injeção

A Figura 5.1 exemplifica os parâmetros de produção obtidos das simulações de escoamento para os casos sem injeção. Nela podemos observar a vazão de óleo, a razão gásóleo (RGO) e a pressão média do reservatório. Nesse caso, pode-se ressaltar alguns fatores relevantes. Primeiramente, nota-se que ocorre uma leve diminuição na RGO, precedendo o aumento brusco dessa taxa de produção. Isso se deve à necessidade do estabelecimento de uma saturação mínima do gás para que haja mobilidade. Portanto, as primeiras bolhas de gás decorrentes da mudança de fases ainda não formam uma fase contínua no meio poroso, permanecendo imóveis. Assim, o óleo produzido nesse primeiro momento abaixo da pressão de bolha tem menos gás em solução do que havia originalmente. Outro fator relevante é a ligeira queda na produção de óleo com o decorrer do tempo. Isso ocorre devido à alteração do fator volume de formação do óleo (*B*₀) com a diminuição da pressão média do campo submetido a depleção. A vazão de produção do óleo no fundo do poço se mantém constante, enquanto for possível reduzir a pressão no fundo do poço de forma continuada.

Figura 5.1: Exemplo de curva de produção de óleo e gás sem manutenção da pressão por injeção de água.

5.1.1 Controle de Qualidade da Solução Numérica

O controle de qualidade de um modelo de simulação considera a escolha de um conjunto de parâmetros de controle numérico que permita alcançar a precisão necessária dos resultados da simulação no menor tempo de execução possível. Conforme detalhado na Seção 4.1.3.2, para essa pesquisa foi adotado um conjunto de controles numéricos a ser utilizado para todas as análises. Isso permite uma análise crítica dos resultados filtrando-se as simulações que requerem outro conjunto de parâmetros numéricos, conforme exemplificado a seguir.

A necessidade de um tratamento dos resultados antes da avaliação pode ser demonstrada ao se avaliar um caso como o da Figura 5.2, que apresenta o *FR* e o t_{Dpb} do cenário heterogêneo com D=0 e L=2. Nela, nota-se uma mudança abrupta no comportamento de ambos os parâmetros analisados entre as permeabilidades de fratura de $10^{4,0}$ e $10^{4,5}$ *mD*. Também cabe avaliar as variáveis apresentadas na Figura 5.3. O tempo de simulação, número de timesteps, iterações do *solver* e ciclos newtonianos apresentam a tendência esperada de crescimento até se atingir K_{frat} = $10^{4,5}$ *mD*, valor no qual todas essas variáveis decrescem bruscamente. Não obstante, a explicação encontra-se na Figura 5.4. O erro de balanço de materiais que cresce paulatinamente com o aumento da permeabilidade das fraturas, quando

chega a K_{frat} =10^{4,5} mD, irrompe para cerca de 8%, que é um valor muito acima do aceitável em termos de qualidade de simulação, ressaltando a baixa credibilidade dos valores de *FR* e t_{Dpb} obtidos.

Figura 5.2: (a) Fator de recuperação e (b) t_{Dpb} das simulações sem injeção, com matriz heterogênea e corredor de fraturas com largura=2 e distância=0.

Figura 5.3: (a) Tempo de simulação, (b) número de *timesteps*, de (c) iterações do *solver* e de (d) ciclos newtonianos das simulações sem injeção, com matriz heterogênea e corredor de fraturas com largura=2 e distância=0.

Figura 5.4: (a) Erro de balanço de materiais e (b) implicitude média das simulações sem injeção, com matriz heterogênea e corredor de fraturas com largura=2 e distância=0.

Percebe-se que a implicitude continuou decrescendo com o aumento da permeabilidade de fraturas. Portanto, o simulador detectou menos células que atendem aos critérios de estabilidade numérica, permitindo seu cálculo como IMPECS. Isso é esperado, uma vez que o escoamento passa a se concentrar nas células de fratura, fazendo com que os blocos de matriz contribuam com uma variação de pressão e de concentrações molares menores, tornando-se mais estáveis. Todavia, os resultados atingidos pelos *solvers* provocaram erros que se acumularam e geraram distorções nos resultados.

Para se mitigar esse problema, fez-se um filtro para excluir as simulações cujos resultados de EBM excedam 1%. Portanto, eventualmente, não constarão todos os pontos em alguns dos gráficos apresentados sem, contudo, comprometer as análises realizadas.

5.1.2 Homogeneidade da Matriz

Inicialmente, será feita a análise do impacto das características de homogeneidade da matriz. Ou seja, serão comparadas simulações com as mesmas características, exceto que, em um caso, as porosidades (φ) e permeabilidades (K) de cada célula são iguais, enquanto no outro, essas propriedades são distribuídas heterogeneamente. Não obstante, a média de φ e de K em todo o modelo são as mesmas em ambos os cenários.

Casos de depleção, sem aquífero ou capa de gás, não demostram serem afetados pelos caminhos mais permeáveis criados por meios heterogêneos. A produção é resultante do efeito das compressibilidades de fluido e rocha que compõem o sistema em depleção e menos sujeita a efeitos hidrodinâmicos. Em todos os cenários simulados, a diferença entre a matriz homogênea ou heterogênea é pouco significativa, conforme é exemplificado na Figura 5.5.

Figura 5.5: Fator de recuperação das simulações sem injeção e corredor de fraturas com largura=1 e distância=1.

Em geral, os aspectos numéricos também se comportam de forma similar entre os casos. O único ponto digno de nota é a implicitude média que consistentemente apresenta valores menores para os cenários de matriz homogênea (Figura 5.6). Portanto, nesse caso, o algoritmo AIM categoriza um número maior de equações de células do caso heterogêneo como pouco estáveis, dando-lhes um tratamento totalmente implícito. A dispersão dos valores de permeabilidade e porosidade em torno das médias do caso homogêneo tornam a simulação desse caso computacionalmente mais onerosa.

Figura 5.6: Implicitude média das simulações sem injeção e corredor de fraturas com largura=3 e distância=0.

5.1.3 Aspectos Geométricos do Corredor de Fraturas

Após a análise da homogeneidade da matriz, procurou-se investigar a influência da geometria do corredor de fraturas nas saídas da simulação. Ou seja, a sua largura e a distância dos corredores até os poços.

A expectativa é de um aumento de tempo de simulação para células fraturadas mais próximas ao poço. Afinal, os maiores diferenciais de pressão e velocidade de escoamento ocorrem na vizinhança dos poços. Por conseguinte, caso as maiores permeabilidades também se encontrem nessa região, as variações de pressão e de percentual molar dos componentes também aumentará. Como consequência, haverá um maior número falhas do solver, de cortes de timestep, de número de timesteps e, por fim, um maior tempo de simulação. Já a largura do corredor é um ponto mais complexo de se avaliar. Ao aumentá-la, tem-se mais células com dupla permeabilidade. Por conseguinte, aumenta-se a capacidade ao fluxo, melhorando a comunicação entre as células. No entanto, um corredor mais largo pode causar um escoamento menos veloz através das fraturas, uma vez que o diferencial de pressão é o mesmo, mas a área aberta ao fluxo no meio fraturado é maior. Menores velocidades geram simulações mais rápidas, pois a definição do tamanho do passo de tempo é controlada pelas alterações nas variáveis primárias. Todavia, isso se obtém devido a um maior número de células fraturadas, o que dificulta as soluções computacionais. Logo, há um efeito ambíguo que pode levar os resultados numéricos para lados opostos, dependendo do contraste de propriedades do meio poroso versus sistema de fraturas.

Os resultados das simulações, entretanto, mostrou que a distância (D) entre fraturas e poços tem pouca influência nos parâmetros monitorados nos casos analisados, como é exemplificado na Figura 5.7. O tempo de simulação não decresce com o aumento de D. Isso é um indício de que as velocidades de escoamento dos fluidos, impostas pelo poço nas células fraturadas, não foram suficientemente altas para provocar uma diminuição significativa dos gerar dificuldades timesteps, nem para a convergência do simulador. para Consequentemente, o tempo de simulação sofre pouca influência da distância entre poços e corredor de fraturas, para essas simulações avaliadas.

Figura 5.7: Tempo de simulação dos cenários sem injeção, matriz heterogênea e com largura=2.

Os casos com maiores valores de *K*_{frat} apresentaram erros de balanço de materiais acima do limite estabelecido de 1%. Para que a análise pudesse incluir esses casos, seria necessário encontrar uma parametrização numérica mais adequada à simulação de escoamento de gás em meios de dupla permeabilidade.

A largura, em contrapartida, mostrou influência quando seu valor era unitário. Nesses cenários, foi possível notar menores tempos de simulação e melhores resultados numéricos, para variadas permeabilidades. Na Figura 5.8 é mostrado o comportamento do tempo de simulação para o caso de D=0.

Figura 5.8: Tempo de simulação dos cenários sem injeção, matriz heterogênea e com distância=0.

Esses resultados apontam a uma maior dificuldade de convergência com o maior número de células fraturadas. Ou seja, o efeito esperado de diminuição da velocidade do fluxo com o aumento da largura do corredor de fraturas não teve impacto significativo na parte computacional da simulação nos casos testados. As menores variações de pressão e de composição não compensaram o maior número de cálculos necessários para se resolver o escoamento nas fraturas. Portanto, nesse cenário estudado de depleção, corredores mais largos têm desempenho numérico inferior.

Conforme esperado, o aumento de K_{frat} causa um maior tempo de simulação, pois aumenta o contraste de permeabilidade entre o sistema de fraturas e o meio poroso. Os demais resultados numéricos também acompanham esse padrão. Entretanto, esse aumento não é consistente para todos os valores de permeabilidade.

Quanto ao fator de recuperação e tempo de atingimento da P_{sat}, ao contrário do esperado, os gráficos apresentados mostram pequena influência da geometria das fraturas (Figura 5.9). Mesmo as pequenas diferenças obtidas não podem ser avaliadas com precisão, pois alguns desses cenários com resultados mais elevados, também apresentaram EBM um pouco mais alto, apesar de ser abaixo do limite de 1%. Logo, essas variações não chegam a ser conclusivas.

Figura 5.9: (a) Fator de recuperação e (b) t_{Dpb} nos cenários sem injeção e com matriz heterogênea.

Note-se que a produção do caso com depleção, assim como na análise sobre a homogeneidade da matriz, não sofre influência significativa de heterogeneidades, mesmo que de altas permeabilidades, o que pode estar também relacionado ao efeito da descompressão do sistema como mecanismo principal de produção. Também é importante ressaltar, contudo, que esse resultado foi observado apenas nesses casos muito específicos que estão sendo simulados nesse trabalho. Cenários diversos dos considerados nessa pesquisa requerem a análise de outras variáveis que podem influenciar os resultados, tais como presença de aquífero ou de capa de gás, presença de outros poços, dimensão do modelo, entre outras.

5.2 Simulações com Injeção

A Figura 5.10 exemplifica o comportamento de produção de simulação de escoamento para os casos de manutenção de pressão com injeção de água. Nela podemos observar a vazão de óleo, o corte de água (*wcut*) e a pressão média do reservatório. Nota-se que a pressão no reservatório se mantém constante devido à reposição de fluido produzido por fluido injetado no meio poroso. Também se observa a influência direta entre o corte de água e a produção de óleo. A produção de líquido se mantém constante. Logo, quanto mais cedo a água injetada chega no poço produtor, menor será a produção acumulada de óleo (N_p).

Figura 5.10: Exemplo de curva de produção com injeção.

5.2.1 Controle de Qualidade da Solução Numérica

Da mesma forma que para as simulações por depleção do reservatório, o primeiro passo da análise é realizar um controle de qualidade da solução numérica decorrente do grau de dificuldade para a solução do sistema de equações imposta ao simulador pelo profissional de simulação. Caso o erro de balanço de massa não seja aceitável para a precisão desejada ou houver desperdício de esforço computacional, seja por número de cortes de *timestep* elevados, descompasso nos critérios de convergência dos *solvers* linear e não-linear ou número excessivo de falhas de convergência, há a necessidade de rever os parâmetros de controle numérico para a busca do melhor tempo de simulação que permita alcançar a precisão desejada. Em situações mais extremas, especialmente quando há grande contraste de mobilidade (K/μ) de fluidos, há necessidade de busca de equilíbrio entre o tempo computacional e erro de balanço de massa toleráveis.

Para os cenários com injeção de água, nos quais não há a presença de gás no meio poroso, as simulações se mostraram muito mais estáveis. Nesses casos, devido à manutenção da pressão, as alterações das variáveis primárias são mais modestas e, sempre que a produção ocorre acima da pressão de saturação, não há o aparecimento de uma fase gasosa no meio poroso, diminuindo a necessidade de um esforço computacional mais intenso. O maior erro de balanço de materiais foi de 0,19% e a média de todos os casos foi de 0,005%. Esses valores estão dentro do aceitável para se considerar todas as estimativas de produção resultantes como válidas.

Ao contrário do que acontece nos cenários sem injeção, nenhum dos casos com injeção foi interrompido por causa de não-convergência do *solver*. Portanto, todos os casos submetidos a simulação foram avaliados nos itens subsequentes.

5.2.2 Homogeneidade da Matriz

Nessa seção, volta-se a investigar a influência da heterogeneidade das propriedades da matriz nos resultados da simulação. Avaliando-se o aspecto computacional, a heterogeneidade aumenta a complexidade da simulação. Assim, espera-se um aumento do tempo de simulação e das variáveis correlatas em sistemas heterogêneos. De fato, é o que foi observado: um maior número de ciclos newtonianos e de iterações do *solver* além de uma maior quantidade de *timesteps* são necessários para resolver o equacionamento dos cenários heterogêneos devido às maiores variações das pressões e composições molares nas células decorrentes das maiores permeabilidades encontradas nos modelos heterogêneos. A soma desses fatores implica em um maior tempo de simulação nesses casos (Figura 5.11).

Figura 5.11: (a) Tempo de simulação, (b) número de *timesteps*, (c) número de iterações do *solver* e (d) número de ciclos newtonianos das simulações com malha paralela à grade, com injeção e corredor de fraturas com largura=1 e distância=0.

É possível notar, também, que as diferenças entre os casos de matriz homogênea e heterogênea não são constantes. Para permeabilidades de fratura até $10^{3,5}$ mD, as variáveis se apresentam muito semelhantes. Conforme se aumenta K_{frat} acima desse valor, a diferença entre os casos também aumenta. Isso decorre em função da preponderância do transporte de massa pelas fraturas causando maior dificuldade de convergência das equações relativas ao meio poroso.

Isso mostra que nos cenários em que para esse modelo simplificado de um reservatório e para os valores de porosidade e permeabilidades usados nesse trabalho, apenas a diferença de heterogeneidade não é suficiente para impor dificuldades de convergência ao simulador ou a necessidade de diminuição do valor dos *timesteps*. Contudo, quando se adiciona ao equacionamento permeabilidades significativas no meio fraturado, as variações de pressão e concentração molar nesse meio, aliado com as maiores variações do meio da matriz heterogênea, geram a necessidade de menores *timesteps* e uma maior dificuldade de se encontrar as soluções das equações.

Outra análise digna de nota é a da implicitude média, apresentada na Figura 5.12. Observa-se que para menores valores de K_{frat} , os cenários homogêneos apresentam implicitude média menores do que os heterogêneos. Conforme a permeabilidade do meio fraturado aumenta, a implicitude média das simulações diminui, assim como a diferença entre os casos comparados. O primeiro efeito é indício de que a matriz heterogênea gera frentes de escoamento mais instáveis, obrigando à resolução de um maior número de células através do método totalmente implícito. Como visto anteriormente, essa diferença não é suficiente para gerar um aumento no tempo de simulação nos casos estudados. Contudo, em modelos maiores, com um maior número de poços, grande contraste de permeabilidade do meio poroso ou estratificações severas, pode ocorrer um aumento do esforço computacional para a solução numérica. O segundo fenômeno reforça que quando o escoamento passa a ser majoritariamente através das fraturas, há um maior número de células na matriz cuja equações alcançam os critérios de convergência com baixo esforço computacional, de forma a permitir uma diminuição da implicitude.

Figura 5.12: Implicitude média das simulações com malha paralela à grade, com injeção e corredor de fraturas com largura=1 e distância=0.

Em relação aos resultados de produção, em cenários com injeção, a heterogeneidade da matriz deveria se mostrar um fator determinante para a chegada de água. Cenários heterogêneos geram canais preferenciais por onde o fluido injetado percola até o poço produtor. Entretanto, a dupla permeabilidade também funciona como um caminho preferencial para o escoamento. Por conseguinte, é importante investigar a partir de qual valor de *K*_{frat} as fraturas passam a dominar o escoamento, de forma que a heterogeneidade da matriz passa a ter pouco impacto na produção.

Conforme esperado, ao contrário do que foi constatado no caso sem injeção, a homogeneidade da matriz da rocha impacta os resultados de produção. Pode-se observar na Figura 5.13 que, para permeabilidades de fratura menores, apesar de fatores de recuperação semelhantes, os tempos para a chegada de água nos modelos homogêneos é menor. Não obstante, com o aumento da permeabilidade do corredor de fraturas, os tempos de chegada de água se equiparam, enquanto os fatores de recuperação dos casos heterogêneos se tornam relativamente menores.

Figura 5.13: (a) Fator de recuperação e (b) t_{Dw} das simulações com injeção em malha paralela à grade, distância=0 e com largura=1.

Também é possível observar padrões relevantes em gráficos de t_{Dw} versus *FR* como o da Figura 5.14. Nele, os pontos são coloridos segundo a característica da matriz e o tamanho de cada um é proporcional ao valor de K_{frat} . Nos cenários de matriz homogênea, ocorre uma maior concentração dos casos em valores intermediários de recuperação. Apesar do tempo até o *breakthrough* chegar a ser nulo para valores maiores de K_{frat} , não são atingidas produções tão baixas. Ou seja, as fraturas reduzem t_{Dw} ao menor nível possível, porém os fatores de recuperação continuam maiores do que no caso heterogêneo. Todavia, no lado direito do gráfico, os cenários homogêneos não prevalecem. Os casos em que a água leva mais dias para chegar ao produtor, gerando maiores fatores de recuperação, são, igualmente, os de matriz heterogênea.

Figura 5.14: t_{Dw} versus FR, colorido pela homogeneidade da matriz e com pontos de tamanho proporcional a K_{frat} .

Ora, se foi estabelecido que a produção acumulada depende de dois fatores, sendo um deles o t_{Dw} , o que explica esse FR menor para t_{Dw} semelhantes só pode ser um crescimento mais rápido do corte de água nos cenários heterogêneos. De fato, vemos um exemplo na Figura 5.15 de como o seu avanço é mais agressivo, resultando em um menor valor de produção acumulada de óleo (N_p).

O modelo homogêneo possui apenas dois caminhos entre os poços. Um de alta permeabilidade e outro de baixa. Assim, a injeção é concentrada no meio mais permeável, e pouco volume de água vai para a matriz. O resultado é uma chegada mais rápida da água, mas com vazão relativamente controlada pela capacidade de escoamento no corredor de fratura.

Por outro lado, o modelo heterogêneo dispõe de diversos canais comunicando os poços. Consequentemente, o volume injetado é distribuído por esses caminhos, retardando a chegada de água. Não obstante, quando ela atinge o poço produtor, ela não advém exclusivamente do meio fraturado. Assim, a vazão de água cresce de forma mais acentuada.

Figura 5.15: Corte de água para os cenários com distância = 1, largura = 2 e K_{frat} = 1.000 mD.

Esse efeito, entretanto, não se deve exclusivamente às fraturas. Na Figura 5.16 constam os resultados de produção dos casos em que o corredor é afastado. Nota-se, primeiramente, que a dupla permeabilidade não tem grande impacto. O aumento de várias ordens de grandeza em *K*_{frat} causa apenas uma diminuição discreta no tempo até o *breakthrough* de água. Não obstante, os casos homogêneos apresentam resultados piores na comparação.

Figura 5.16: Resultados de produção das simulações com injeção em malha paralela à grade, distância=5 e com largura=3: (a) FR; (b) *t*_{Dw}.

Há, portanto, outro fator influenciando as variáveis de produção. Na Figura 5.17 é possível observar um padrão que explica o fenômeno. Aqui, são apresentadas seções comparativas de saturação de água (*S*_w). Vê-se como o efeito gravitacional se torna dominante no caso homogêneo. O escoamento do injetor para o produtor se dá pela base do reservatório. Em contrapartida, no outro cenário, há permeabilidades maiores em células mais próximas ao topo do reservatório. Por conseguinte, a frente de água fica mais distribuída, verticalmente. A consequência é um *t*_{Dw} menor no caso homogêneo, mas um crescimento mais abrupto no caso heterogêneo devido à homogeneização da frente de água injetada causada pela heterogeneidade da rocha.

Outra justificativa é a posição dos poços e a distribuição de volume de óleo causada pelo modelo homogêneo. A referência para o presente trabalho foi um modelo aproximado de um reservatório real, no qual as regiões de topo estrutural mais alto concentram melhores qualidades permoporosas e, portanto, maior volume de óleo. É nesses locais que estão posicionados os poços. Quando o modelo é homogeneizado, esse volume de hidrocarbonetos que está originalmente concentrado próximo aos poços é distribuído por todas as células do modelo de forma uniforme. Como resultado, as áreas próximas aos poços ficam com menor volume de óleo a ser drenado. Por conseguinte, os fatores de recuperação no caso heterogêneo ficam melhores, caso não haja impacto da dupla permeabilidade.

Figura 5.17: Seção na direção dos poços comparando a saturação de água nos casos de matriz heterogênea e homogênea.

5.2.3 Direção da Malha de Poços em Relação à Malha do Modelo

O objeto da análise dessa seção será a influência da direção do escoamento em relação à malha de simulação. Assim sendo, serão apresentados resultados de simulações com os mesmos parâmetros e matriz homogênea, nas quais é alterada a malha de poços. Em um caso, o par produtor-injetor está alinhado com um dos eixos cartesianos do modelo. Para representar um caso extremo, no outro caso, foi especificado um ângulo de 45° com relação aos eixos x e y. A distância entre os dois poços, contudo, se mantém constante em ambos os casos.

A análise em questão não apresentou impactos numéricos relevantes. No entanto, é esperado que o caso com malha não alinhada com um dos eixos horizontais retarde a chegada de água, haja vista a discretização espacial das equações de transporte de massa de 5 pontos em 2D e 7 pontos em 3D. O efeito de orientação de malha, como é denominado, resulta em um deslocamento afetado pela discretização, já que os termos cruzados da discretização espacial foram desconsiderados. Um exemplo de escoamento com 45° em relação aos eixos coordenados horizontais é apresentado na Figura 5.18. Ou seja, embora a solução das equações de todas as células seja simultânea, pode haver uma discrepância de resultados com respeito à conformidade, ou não, do escoamento com relação um dos eixos horizontais do sistema coordenado. Há propostas para se realizar ajustes na permeabilidade que

compensem esse efeito (CAVALCANTE FILHO, 2016), mas nenhum tratamento foi realizado no presente trabalho.

Figura 5.18: Representação esquemática de escoamento não alinhado com um dos eixos coordenados da malha de simulação.

As previsões de produção têm um comportamento dentro da expectativa para valores pequenos de *K*_{frat}. Contudo, com maiores permeabilidades de fratura, a transferência de massa passa a ser dominada pelas fraturas, fazendo com que o efeito de orientação de malha passe a ter menor influência. A Figura 5.19 apresenta os fatores de recuperação dos cenários com distância zero e larguras três e um. Com L=3, ambos os casos apresentam uma redução de *t*_{Dw} com o aumento de *K*_{frat}. Todavia, para L=1, os cenários de orientação de malha diagonal são pouco impactados pela permeabilidade das fraturas enquanto os com malha paralela apresentam o comportamento dentro do esperado.

A falta de continuidade direta das células que compõem o corredor de fraturas prejudica a representação das zonas fraturadas. Na Figura 5.20, o mapa mostra um exemplo de como as células de um corredor de fraturas não se conectam diretamente. Ou seja, o termo da equação que modela o escoamento de uma célula de fratura para a adjacente se torna nulo, havendo somente a transferência indireta pelo meio poroso. Assim, a água injetada entra no meio fraturado, uma vez que o termo de transferência matriz-fratura continua existindo. Contudo, os fluidos contidos nas fraturas não escoam para as células adjacentes, fazendo com que não haja o efeito esperado de um corredor de fraturas.

Figura 5.19: t_{Dw} das simulações com injeção em matriz homogênea, distância=0 e com: (a) largura=2; (b) largura=1.

Figura 5.20: Mapa das células fraturadas no caso poços diagonais à grade, distância=0 e largura=1.

5.2.4 Aspectos Geométricos do Corredor de Fraturas

Nesta seção, o impacto dos aspectos geométricos referentes ao corredor de fraturas será analisado: (i) distância entre os poços e o corredor (D); e (ii) largura do corredor (L).

O aumento da distância entre as células de dupla permeabilidade e os poços têm, normalmente, impacto positivo nos aspectos computacionais, reduzindo o tempo de simulação pois facilita a convergência. Os maiores diferenciais de pressão e, consequentemente, as maiores velocidades de escoamento ocorrem próximo aos poços. Portanto, ao se distanciar as células fraturadas dessas posições, as não-linearidades tendem a diminuir. Entretanto, os poços que atravessam células fraturadas são canhoneados tanto no meio poroso como no sistema de fraturas. Ou seja, no equacionamento, os blocos fraturados recebem um aporte ou retirada adicional de massa caso o poço seja produtor ou injetor, respectivamente. Portanto, esse termo gera maiores variações de pressão e de concentração molar dos componentes, o que causa a necessidade de menores *timesteps* e maiores dificuldades de convergência durante a simulação.

Para os valores de *K*_{frat} iguais e superiores a 10.000 *mD*, é possível observar como os cenários em que as fraturas cruzam os poços (D=0) aumentam em algumas ordens de grandeza o tempo de simulação, número de *timesteps*, número de iterações do *solver* e quantidade de ciclos newtonianos. Isso é decorrente das altas velocidades impostas por uma permeabilidade muito elevada nas células canhoneadas. Esse excessivo contraste de permeabilidade nas células completadas em relação às células da matriz adjacentes à falha causa dificuldades de convergência que oneram excessivamente o tempo de simulação. Se as fraturas são deslocadas, seja para células adjacentes (D=1) ou para mais distante (D=5), o efeito da distância, atenua significativamente as dificuldades de convergência nos casos testados.

A Figura 5.21 expõe esse fenômeno de forma clara. Nesse gráfico, foram considerados todos os casos com injeção simulados. Para cada combinação de valores de D e K_{frat} , foi feita a média do tempo de simulação em segundos, resultando nesse gráfico de barras. Essa imagem ressalta o aumento de tempo de simulação causado pela distância nula até as células fraturadas. Ao se canhonear células fraturadas, a simulação é altamente onerada computacionalmente. Para o cenário de K_{frat} = 100.000 mD, as simulações demoraram cerca de 40 vezes mais do que os casos com D maior do que zero. Porém, embora haja um aumento do tempo de simulação sistemático com o aumento da permeabilidade da fratura, observase que somente no caso de D=0, o efeito combinado da alta produtividade/injetividade dos poços completados na fratura e comunicação direta com todas as células da região fraturada causa um esforço numérico elevado para a alimentação ou dissipação do produtor ou injetor, respectivamente. Portanto, somente nos casos de K_{frat} maior ou igual a 10.000 mD haveria necessidade de revisão dos controles numéricos para conciliar o equilíbrio entre o tamanho dos *timesteps* e os critérios de convergência em cenários de elevado contraste.

Observa-se que o tempo de simulação também diminui com a diminuição da distância dos poços às células de dupla permeabilidade, mesmo excluindo da análise apenas os casos

com D=0 e K_{frat} maior ou igual a 10.000 *mD*. Portanto, há um efeito provocado exclusivamente pela distância.

Figura 5.21: Média do tempo de simulação por $\log_{10}(K_{frat})$ e distância do corredor de fraturas.

Ao contrário dos demais parâmetros numéricos, a implicitude média não apresenta nenhuma alteração decorrente da mudança de D (Figura 5.22). Da mesma forma que nos casos apresentados anteriormente, ela apenas decresce com o aumento da permeabilidade efetiva das fraturas. Isso indica que, mesmo afastadas dos poços, as células de fraturas mostram-se as mais instáveis computacionalmente enquanto os blocos da matriz se tornam mais estáveis devido à consequente diminuição do tamanho dos *timesteps*. Assim, o número de células cuja formulação é resolvida explicitamente aumenta.

Figura 5.22: Implicitude média das simulações com injeção em matriz heterogênea, malha paralela à grade e com largura=1.

O fator de recuperação e o tempo para o breakthrough de água apresentam padrões similares entre si. Conforme esperado, o distanciamento do corredor de fraturas causa um aumento do FR e uma irrupção de água mais tardia. Afinal, com o afastamento entre fraturas e poços, há uma piora na comunicação direta entre injetor e produtor. Não obstante, a diferença entre D=0 e D=1 não é tão destacada como nos aspectos numéricos (Figura 5.23). Em outras palavras, ao se deslocar a célula fraturada do poço para a célula adjacente, temos uma diferença pequena nas previsões de produção e um custo computacional severamente reduzido. Ressalta-se, entretanto, que as diferenças em FR e t_{Dw} desses casos são pequenas, mas não desprezíveis, sobretudo para maiores valores de K_{frat}. Outro detalhe importante que causa essa diferença entre D=0 e D=1 é o canhoneio nas células fraturadas. Com isso, a água de injeção não passa pelo termo de transferência entre matriz e fratura. Ela entra no sistema diretamente nos blocos fraturados, escoa até o poço produtor e é produzida também diretamente, sem a necessidade de se passar para a matriz o que retardaria um pouco o breakthrough. Esse efeito pode ser observado na comparação dos mapas apresentada na Figura 5.24. O caso com poços canhoneados em células de fratura apresentam S_{wi} nas células de matriz, o que significa que a água injetada escoou preferencialmente pelas fraturas, muito mais permeáveis, chegando rapidamente ao poço produtor. Em contrapartida, no cenário em que as fraturas se encontram na célula adjacente ao poço, observa-se uma área com saturação de água aumentada pois não houve comunicação direta entre o poço e as fraturas. Portanto, parte do volume de água injetado foi disperso, retardando o breakthrough de água no poço produtor.

Figura 5.23: Resultados de produção das simulações com injeção em matriz heterogênea, malha paralela à grade e com largura=1: (a) FR; (b) t_{Dw}.

Figura 5.24: Mapas de S_w na matriz da camada k=10 no instante t=3.000 dias, do cenário de malha paralela, matriz heterogênea, L=1 e K_{frat} = 32.000 mD, comparando os cenários com a) D=0 e b) D=1.

Ao se analisar a largura do corredor de fraturas, espera-se que seu aumento gere dois efeitos opostos na simulação. Por um lado, aumenta-se o número de blocos fraturados. Em compensação, como há uma maior área sendo varrida por essas células e a vazão de injeção e de produção são constantes, a velocidade do escoamento é menor. Investiga-se, pois, se a complexidade inserida pelo maior número de células é compensada pela diminuição das variações de pressão e de composição molar dos componentes nos blocos.

Ao se avaliar o comportamento das variáveis numéricas, com D=5 ou D=1, não se observam alterações relevantes entre os diversos valores de largura do corredor de fraturas. Apenas no número de cortes de *timesteps* se observa alguma alteração (Figura 5.25). Para permeabilidades de fratura acima de 10^{3,5}mD, as menores larguras apresentam um aumento de cortes de *timestep*. Isso é um indício de que em algum momento da simulação, as variações de pressão e de concentração molar dos componentes do fluido se tornaram muito altas, gerando a necessidade de menores *timesteps* para se chegar à convergência do simulador. Essas variações se mostram mais abruptas nos casos de menor largura (L). Esse resultado confirma o efeito esperado de maiores velocidades em corredores menos largos.

Figura 5.25: Número de cortes de *timestep* das simulações com injeção em matriz heterogênea, malha paralela à grade e com D=1.

O cenário de D=O apresentou outros resultados pertinentes. Algumas variáveis numéricas passam a ser afetadas pela largura do corredor de fraturas nessa condição. É o caso do número de ciclos newtonianos, de iterações do *solver*, de *timesteps* e do tempo de simulação. Não obstante, esses itens não são alterados da mesma maneira. Eles estão apresentados na Figura 5.26. Nota-se que o número de *timesteps* se comporta conforme o esperado, uma vez que são necessários passos de tempo menores para se convergir no caso em que os fluidos escoam mais rapidamente. Da mesma forma, são necessários mais ciclos

newtonianos para se linearizar as equações decorrentes desses cenários. No entanto, ao se observar a quantidade de iterações do *solver* linear, nota-se que elas diminuem para o caso de L=1. O cenário que apresenta maior número de iterações é o de L=2, seguido por L=3. Isso se deve ao maior número de células fraturadas nesses dois cenários, que tornam as equações desses casos mais complexas. Assim, a consequência final é um tempo maior de simulação para os cenários de largura maior do corredor de fraturas, a despeito do maior número de *timesteps* do caso com L=1.

Figura 5.26: (a)Tempo de simulação, (b) número de timesteps, (c) de iterações do solver e
(d) de ciclos newtonianos das simulações com injeção em matriz heterogênea, malha
paralela à grade e com D=0.

Por fim, foi observado um impacto modesto na produção (Figura 5.27). Esperava-se que a menor velocidade do escoamento decorrente do aumento de L trouxesse maiores recuperações e maior tempo até a chegada de água no produtor. Isso ocorre, porém de forma pouco relevante. Sobretudo porque para valores muito altos de *K*_{frat}, o *breakthrough* passa a ocorrer com tempos próximos de zero. Logo, apesar de se observar uma velocidade menor dos fluidos, isso não é refletido em termos de produção, para esse caso simplificado que foi estudado. Cenários com mais poços e diferentes associações (malhas de drenagem) poderiam gerar resultados diferentes.

Figura 5.27: (a)*FR* e (b) t_{Dw} das simulações com injeção em matriz heterogênea, malha paralela à grade e com D=0.

5.2.5 Comportamento das Previsões de Produção em Relação à Permeabilidade Efetiva de Fraturas

O objetivo dessa seção é estabelecer um padrão para o comportamento do fator de recuperação e do tempo até o *breakthrough* em relação à permeabilidade do corredor de fraturas.

As Figuras 5.28 e 5.29 mostram a média dos valores de fator de recuperação e de tempo adimensional até o *breakthrough*, de água, respectivamente, para cada valor de permeabilidade do corredor de fraturas. Observa-se a tendência sigmoidal de resposta das variáveis. Ou seja, para permeabilidades de fratura pequenas, os resultados pouco se alteram e o mesmo ocorre para *K*_{frat} muito altos. Todavia, esses dois patamares são diferentes, de forma que em valores intermediários, ocorre uma transição entre eles.

Modelar esse comportamento assintótico é pertinente para o trabalho de simulação de escoamento em reservatórios pois o seu objetivo é representar o comportamento do campo de forma fidedigna com o menor custo computacional possível. Portanto, se for possível estimar um valor de permeabilidade de fraturas a partir do qual incrementá-lo não cause impacto na estimativa de produção, será possível realizar simulações mais simples e rápidas com produtos confiáveis. Consequentemente, optou-se por fazer um ajuste utilizando uma

equação conhecida como função logística (PENG et al., 2002), cuja fórmula foi apresentada na Equação 3-2.

Qualitativamente, pode-se afirmar que os fatores relevantes para essa avaliação são o ponto de inflexão (p_i) e a inclinação da curva no ponto de inflexão (h). Entretanto, é pertinente experimentar buscar uma quantificação para a assintocidade da curva modelada. O ponto de partida, naturalmente, é a derivação da Equação 3-2:

$$\frac{dy}{dx} = \frac{d}{dx} \left(y_{min} + \frac{(y_{mix} - y_{min})}{1 + (10^{h(p_i - x)})} \right)$$
(5-1)

$$\frac{dy}{dx} = (y_{max} - y_{min}) \frac{d}{dx} \left(\frac{1}{1 + (10^{h(p_i - x)})}\right)$$
(5-2)

$$\frac{dy}{dx} = -(y_{mix} - y_{min}) \left(\frac{\frac{d}{dx}(1 + (10^{h(p_i - x)}))}{(1 + (10^{h(p_i - x)}))^2}\right)$$
(5-3)

$$\frac{dy}{dx} = -(y_{m\acute{a}x} - y_{m\acute{n}})\ln(10) \left(\frac{10^{h(p_i - x)} \left(\frac{d(h(p_i - x))}{dx}\right)}{\left(1 + (10^{h(p_i - x)})\right)^2}\right)$$
(5-4)

$$\frac{dy}{dx} = h(y_{m\acute{a}x} - y_{m\acute{n}}) \ln (10) \left(\frac{10^{h(p_i - x)}}{\left(1 + (10^{h(p_i - x)}) \right)^2} \right).$$
(5-5)

Em seguida, é necessário rearranjar a equação para melhor avaliar a assintocidade:

$$\frac{dy}{dx} = h(y_{max} - y_{min}) \ln (10) \left(\frac{10^{h(p_i - x)} + (1 - 1)}{(1 + (10^{h(p_i - x)}))^2} \right)$$
(5-6)

$$\frac{dy}{dx} = h(y_{max} - y_{min}) \ln (10) \left(\frac{10^{h(p_i - x)} + 1}{\left(1 + (10^{h(p_i - x)})\right)^2} - \frac{1}{\left(1 + (10^{h(p_i - x)})\right)^2} \right)$$
(5-7)

$$\frac{dy}{dx} = h(y_{max} - y_{min}) \ln (10) \left(\frac{1}{(1 + (10^{h(p_i - x)}))} - \frac{1}{(1 + (10^{h(p_i - x)}))^2} \right).$$
(5-8)

Por fim, para a função se tornar assintótica, sua derivada deve tender a zero. Consequentemente, tem-se que:

$$\frac{1}{\left(1+(10^{h(p_i-x)})\right)} - \frac{1}{\left(1+(10^{h(p_i-x)})\right)^2} \to 0.$$
(5-9)

Agora, para facilitar a análise da convergência dessa função, são feitas as seguintes substituições:

$$\alpha = h(p_i - x); \tag{5-10}$$

$$\beta = \frac{1}{(1+(10^{\alpha}))} - \frac{1}{(1+(10^{\alpha}))^2} \to 0.$$
(5-11)

E, por fim, apresenta-se a Tabela 5.2 com alguns resultados dessa função.

α	$\frac{1}{(1+(10^{\alpha}))}$	$\frac{1}{(1+(10^{\alpha}))^2}$	β
0	0.50000	0.25000	0.25000
1	0.90909	0.82645	0.08264
2	0.99010	0.98030	0.00980
3	0.99900	0.99800	0.00100
4	0.99990	0.99980	0.00010
5	0.99999	0.99998	0.00001

Tabela 5.2: Convergência da equação logística ($\alpha \times \beta$)

Percebe-se que β converge rapidamente, permitindo definir quando a curva pode ser considerada assintótica. A partir desse valor definido, tem-se um alvo para α , denominado α_a . Portanto, tem-se que:

$$\alpha_a = h(p_i - x_a); \tag{5-12}$$

$$x_a = \frac{\alpha_a}{h} + p_i, \tag{5-13}$$

onde x_a é a permeabilidade de fratura a partir da qual o comportamento da saída é assintótico.

Em seguida, fez-se o exercício de realizar um ajuste automático para cada cenário estudado. Para fins de exemplificação, alguns dos ajustes são apresentados na Figura 5.30.

Figura 5.30: Exemplos de ajustes de t_{Dw} e de *FR* por K_{frat} .

Os resultados obtidos podem ser encontrados no Apêndice B. Nas tabelas, há uma coluna determinada x_a cujos valores foram calculados com $\alpha = 1$. Com esse valor, as derivadas resultantes desses pontos são inferiores a 0.01 para *FR* e 0.1 para t_{Dw} . Para as análises foram excluídos os dados com malha diagonal à grade e L = 1, considerando as distorções que esses casos geram.

O foco desse trabalho está na determinação de x_a . O interesse de se modelar o comportamento das saídas de produção pela permeabilidade efetiva das fraturas é investigar a possibilidade de haver um valor que permita a simplificação das simulações de dupla permeabilidade sem alterar os resultados significativamente.

Na Figura 5.31, observa-se um gráfico que compara os valores de x_a obtidos para as duas saídas de produção ($t_{Dw} \in FR$), ao mesmo tempo que destaca através da cor os casos com valores de D iguais. Nele se observa que as duas variáveis não são facilmente correlacionáveis. Isso é decorrente do tempo até o *breakthrough* possuir um valor mínimo que faz com que esse parâmetro atinja a assintocidade com mais facilidade. Nota-se, portanto, pouca variação do valor de x_a de t_{Dw} quando se faz o agrupamento por D. Para os outros parâmetros, L, posição dos poços e heterogeneidade da matriz, não foi observado nenhum padrão claro de agrupamento.

Figura 5.31: x_a de t_{Dw} por x_a de *FR* colorido pela distância entre poços e fraturas.

Através desse mesmo gráfico, é possível perceber que para os dois parâmetros mostrados, os valores obtidos variam de cerca de $10^3 mD$ a $10^{5,5} mD$. Logo, pode-se afirmar que para alguns dos cenários simulados, seria possível utilizar valores de K_{frat} mais baixos e obter resultados de produção semelhantes.

Outro ponto relevante são os valores mínimos de ambos os x_a . Nota-se que para permeabilidades de fratura abaixo de $10^3 mD$, nenhum caso atinge a assintocidade. Ou seja, para variações abaixo desse valor, espera-se que haja impacto nas saídas de produção em todos os casos estudados.

Como comentário final desse capítulo, relembra-se que as simulações utilizadas nesse trabalho são baseadas em um modelo simplificado. Não há capa de gás, nem aquífero. Outras simplificações estão associadas à utilização de apenas um par de poços produtor-injetor, a estrutura do modelo não possuir variação estrutural e a vazão dos poços ser constante. Por conseguinte, os resultados apresentados nesse capítulo não devem ser extrapolados diretamente para casos reais com todas as complexidades supracitadas. Todavia, os casos apresentados servem de ponto de partida para análises mais aprofundadas dos temas abordados.

6 Conclusões

As conclusões são apresentadas em três partes: a primeira referente ao ajuste dos parâmetros numéricos dos modelos de simulação, seguida dos cenários de depleção com apenas um poço produtor e, finalmente, dos cenários com manutenção de pressão com um par de poços produtor-injetor. Para finalizar, são sugeridos temas de pesquisa para trabalhos futuros.

6.1 Ajuste dos Parâmetros Numéricos

O simulador de reservatórios composicional GEM mostrou-se bastante robusto e eficiente para a análise de reservatórios de dupla porosidade e permeabilidade. A existência de extenso conjunto de parâmetros de controle numérico e a disponibilidade detalhada dos resultados numéricos obtidos permitiu uma análise rigorosa dos problemas investigados. Portanto, fica confirmada a adequação da escolha do simulador ao qual foram submetidos com êxito vários problemas numericamente desafiadores.

A especificação dos controles numéricos do simulador de reservatórios define o tempo que será gasto na execução e análise, assim como a qualidade dos resultados que serão obtidos das simulações. Logo, é importante que esses parâmetros sejam definidos de forma a minimizar o tempo de simulação, mantendo a precisão dos resultados encontrados.

Devido à maior simplicidade dos casos com injeção de água, em que não há gás livre no reservatório, os parâmetros utilizados foram satisfatórios. Não era de interesse durante esse trabalho, todavia, realizar ajustes específicos para que as simulações obtivessem resultados numéricos melhores também nos casos de depleção, uma vez que isso seria demasiado oneroso e poderia gerar comparações inconclusivas para as análises numéricas.

Não há uma parametrização numérica única que seja adequada para todo e qualquer reservatório que venha a ser simulado com formulação composicional. Nos casos de dupla porosidade e dupla permeabilidade, o problema se agrava. Quando há contrastes significativos nas propriedades permoporosas da matriz e da fratura, a mesma especificação não é capaz de lidar de forma ótima em ambos os contextos. Assim, buscar esses parâmetros pode ser um trabalho árduo. Para trabalhos que envolvam a comparação de muitas simulações, sugere-se rodar todos os casos com uma parametrização que gere resultados minimamente confiáveis. Em seguida, selecionar os cenários mais promissores e realizar um ajuste da especificação numérica apenas para essa menor quantidade de simulações.

6.2 Cenários sem Injeção

Para se realizar as análises dos cenários nos quais se produziu apenas por depleção do reservatório foi necessário utilizar um filtro expurgando os casos de EBM excessivo. Ainda assim, os casos com erro abaixo de 1% foram avaliados, chegando-se a algumas conclusões.

A heterogeneidade da matriz nos casos testados não produz impacto relevante nas simulações, tanto numericamente como nas saídas de produção. Ou seja, mesmo em rochas heterogêneas, as propriedades médias da rocha são os fatores mais determinantes para a produção, no caso de depleção, pois o impacto da compressibilidade da rocha e dos fluidos do reservatório se sobrepõe aos efeitos hidrodinâmicos.

Os aspectos geométricos do corredor de fraturas também não mostram impactos significativos em relação à previsão de produção. Não obstante, apesar dos resultados observados nesse estudo, há casos em que isso pode não ocorrer. Para reservatórios com aquífero ou capa de gás, as fraturas podem comunicá-los com os poços produtores. Consequentemente, haveria uma produção de fluidos indesejada, diminuindo a recuperação de óleo. Portanto, é recomendável ter cautela ao lidar com produção de reservatórios fraturados, mesmo sem injeção de fluidos.

A largura do corredor de fraturas apresentou um efeito no tempo de simulação. Os casos com mais células fraturadas (L maior) acarretou maiores tempos de simulação. Este é um indício de que, dentro dos cenários propostos, um número maior de blocos de fratura torna a solução das equações de escoamento mais demorada e esse efeito não é compensado pelas menores velocidades dos fluidos nas fraturas.

6.3 Cenários com Injeção

Os casos com injeção não apresentaram dificuldades da solução numérica e permitem avaliar de forma clara como as fraturas impactam a produção. Porém, para que isso ocorra, é necessário que haja continuidade no sistema de dupla permeabilidade, ou seja, que as células fraturadas sejam adjacentes.

Casos homogêneos apresentaram tempos menores até o *breakthrough*. Não obstante, o aumento do corte de água se mostra mais suave, quando comparado com os casos heterogêneos. Esse efeito se deve, principalmente, à homogeneização da frente de água injetada causada pela permeabilidade heterogênea da matriz, mitigando a segregação gravitacional que causa o *breakthrough* verificado para os casos homogêneos.

A comparação das duas orientações de malha revelou os efeitos numéricos da discretização espacial. O par produtor-injetor direcionado a 45° em relação à grade de simulação obteve maiores tempos para a irrupção de água e fatores de recuperação mais

elevados, em geral. As exceções ocorrem quando as permeabilidades do corredor de fraturas são demasiadamente altas.

O cenário com a direção dos poços a 45° da orientação da malha do modelo mostrou a importância da continuidade do sistema de fraturas para que ele seja efetivo. No cenário em que a largura do corredor é igual a uma célula, os blocos de fratura não se conectam, e, assim, o aumento de *K*_{frat} não causa efeitos na produção.

A largura do corredor de fraturas apresenta impacto restrito. Seu efeito mais intenso é na qualidade dos resultados da simulação, devido ao maior número de células de dupla permeabilidade. No entanto, a distância aos poços influencia tanto nos aspectos numéricos como nos resultados de produção. O tempo de simulação aumenta em quase duas ordens de grandeza quando as células canhoneadas possuem dupla permeabilidade. Outrossim, precisão das variáveis de produção apresentam uma piora com a diminuição da distância.

O comportamento do fator de recuperação e do tempo até o *breakthrough* de água se mostrou assintótico, com o aumento da permeabilidade das fraturas. Foi possível modelar esse comportamento como uma sigmoide por meio de uma equação logística. Através dessa função, buscou-se estimar um valor denominado x_a que representa a permeabilidade efetiva de fratura a partir da qual não há mais impacto significativo na produção de óleo nem no tempo até o *breakthrough* de água.

Funções logísticas foram definidas com capacidade de modelar os casos estudados. A partir desses resultados, foram calculados os valores de x_a para o *FR* e o t_{Dw} de cada cenário. Esses valores não são diretamente correlacionáveis, sendo que t_{Dw} atinge o padrão assintótico com menores valores de K_{frat} . Por fim, foram apresentados valores que apresentam comportamentos assintóticos em todos os cenários estudados. Entretanto, esse resultado não pode ser extrapolado para outros cenários mais complexos. Para tanto, seriam necessários estudos adicionais levando em consideração diversos parâmetros que foram simplificados nesse trabalho. Todavia, é um indício de que há casos em que é possível utilizar valores menores de permeabilidade de fratura, de forma a acelerar a simulação, sem que haja alteração significativa nos resultados de previsão de produção.

6.4 Sugestões para Trabalhos Futuros

Nesse trabalho foi possível modelar o comportamento sigmoidal das variáveis de produção de um par de poços em meio poroso com equações empíricas. Entretanto, é importante aprofundar a investigação sobre as variáveis que controlam essa modelagem. Dessa forma, seria viável estimar um valor de *K*_{frat}, a partir do qual, não há impacto nas previsões de produção, sem a necessidade de realizar previamente as simulações.

O canhoneio das células de dupla permeabilidade requer pesquisa adicional. Os poços que atravessam fraturas são canhoneados tanto no meio poroso como no sistema de fraturas em todas as simulações aqui apresentadas. A análise dos casos nos quais os poços não se comunicam diretamente com as fraturas pode ampliar o conhecimento sobre os sistemas de dupla permeabilidade.

Existem outros modelos para simular as múltiplas porosidades e permeabilidades, tais como MINC; Brinkman; tripla porosidade e múltiplas porosidades. O estudo apresentado nessa pesquisa pode ser replicado com outras metodologias, utilizando outros simuladores e até mesmo empregando modelos de porosidade simples equivalente, tornando a análise comparativa ainda mais robusta. Como motivação, seguem algumas referências:

- Porosidade Simples Equivalente (SAALFELD, 2016);
- MINC (PRUESS e NARASIMHAN, 1985);
- Brinkman (BRINKMANN, 1942) (HALLACK e CAVALCANTE FILHO, 2019);
- Tripla porosidade (WU et al, 2011) (AL-GHAMDI et al. 2011);
- Múltiplas porosidades (YAN et al., 2016).

Finalmente, há vários aspectos de simulação que não foram abordados nesse trabalho, mas merecem ser analisados em estudos futuros. Dentre as questões de maior impacto na simulação, algumas merecem destaque:

- Dimensão das células;
- Relação K_v/K_h;
- Presença de aquífero;
- Permeabilidade relativa;
- Características do fluido;
- Distribuições das fraturas;
- Porosidade das fraturas;
- Espaçamento das fraturas;
- Injeção de gás;
- Presença de capa de gás.

Referências Bibliográficas

- [AL-GHAMDI et al., 2011] AL-GHAMDI,A., CHEN,B., BEHMANESH,H., QANBARI,F., AGUILERA,R.
 An improved triple-porosity model for evaluation of naturally fractured reservoirs.
 Society of Petroleum Engineers, 14:397–404, 2011.
- [ALMEIDA et al., 2010] ALMEIDA,A.S., LIMA,S.T.C., ROCHA,P.S., ANDRADE, A.M.T., BRANCO, C.C.M., CAPELEIRO PINTO, A.C. CCGS opportunities in the Santos Basin pre-salt development. In: SPE INTERNATIONAL CONFERENCE ON HEALTH, SAFETY AND ENVIRONEMENT IN OIL AND GAS EXPLORATION AND PRODUCTION, Rio de Janeiro (Brasil), 2010.
- [BAKER e KUPPE, 2000] BAKER,R.O., KUPPE, F. Reservoir characterization for naturally fractured reservoirs. In: SPE ANNUAL TECHNICAL CONFERENCE AND EXHIBITION, Dallas (Texas, EUA), 2000.
- [BARENBLATT et al., 1960] BARENBLATT,G.I., ZHELTOV,YU.P., KOCHINA, I.N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. Journal of Applied Mathematics and Mechanics, 24:1286–1303, 1960.
- [BARRETO e SCHIOZER, 2012] BARRETO,C.E., SCHIOZER,D.J. Inclusion of environment assessment in the decision-making process of petroleum fields projects. In: SPE LATIN AMERICA AND CARIBBEAN PETROLEUM ENGINEERING CONFERENCE, Cidade do México (México), 2012.
- [BOURBIAUX, 2010] BOURBIAUX, B. Fractured reservoir simulation: a challenging and rewarding issue. Oil & Gas Science and Technology Revue d'IFP Energies nouvelles, 65:227–238, 2010.
- [BRATTON et al., 2006] BRATTON,T.,CANH,D., QUE,N., DUC,N.V., GILLES-PIE,P., HUNT,D., LI,B., MARCINEW,R., RAY,S., MONTARON,B., NELSON,R., SCHODERBECK,D., SONNERLAND,L. The nature of naturally fractured reservoirs. Oilfield Review, 18:4–23, 2006.
- [BREASTER, 1972] BREASTER,C. Simultaneous flow of immiscible liquids through porous fissured media. Society of Petroleum Engineers, 12:297–305, 1972.

- [BRINKMAN, 1942] BRINKMAN,H.C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Scientific Research, 1:27–34, 1942.
- [CMG, 2019] COMPUTER MODELLING GROUP (CMG). Manual do usuário GEM v2019.10, 2019.
- [CAVALCANTE FILHO, 2016] CAVALCANTE FILHO, J.S.A. Mobility control of gas injection in highly heterogeneous and naturally fractured reservoirs. Tese de doutorado, The University of Texas at Austin, Austin - Texas - EUA, 2016.
- [CHABOUREAU, 2013] CHABOUREAU,A.C., GUILLOCHEAU,F., ROBIN,C., ROHAIS,S., MOULIN,M., ASLANIAN,D. Paleogeographic evolution of the central segment of the South Atlantic during early cretaceous times: Paleotopographic and geodynamic implications. Tectonophysics, 604:191–223, 2013.
- [COATS et al., 1967] COATS,K.H., NIELSEN,R.L., TERHUNE,M.H., WEBER,A.G. Simulation of three-dimensional, two-phase flow in oil and gas reservoirs. Society of Petroleum Engineers Journal, 7:377388, 1967.
- [COLLINS et al., 1992] COLLINS, D.A., LI, L.X., GRABONSTOTTER, J.E. An efficient approach to adaptive-implicit compositional simulation with an equation of state. SPE Reservoir Engineering, 7:259–264, 1967.
- [COREY, 1954] COREY,A.T. The interrelation between gas and oil relative permeabilities. Producers Monthly, 19:38–41, 1954.
- [CRAMER, 2002] CRAMER, J.S. **The origins of logistic regression**. Tinbergen Institute Working Paper, 119/4, 2002.
- [DA COSTA FRAGA et al., 2015] DA COSTA FRAGA,C.T., CAPELEIRO PINTO,A.C., BRANCO,C.C.M., PIZARRO,J.O.S., DA SILVA PAULO,C.A. Brazilian pre-salt: An impressive journey from plans and challenges to concrete results. In: OFFSHORE TECHNOLOGY CONFERENCE, Houston (Texas, EUA), 2015.
- [DEAN e LO, 1988] DEAN,R.H., LO,L.L. Simulations of naturally fractured reservoirs. SPE Reservoir Engineering, 3:638–648, 1988.
- [FIROOZABADI, 2000] FIROOZABADI,A. Recovery mechanisms in fractured reservoirs and field performance. Petroleum Society of Canada, 39:13–17, 2000.

- [GILMAN e KAZEMI, 1983] GILMAN, J.R., E KAZEMI, H. Improvements in simulation of naturally fractured reservoirs. Society of Petroleum Engineers Journal, 23:695–707, 1983.
- [GILMAN e KAZEMI, 1988] GILMAN, J.R., E KAZEMI, H. Improved calculations for viscous and gravity displacement in matrix blocks in dual-porosity simulators. Journal of Petroleum Technology, 40:1:60–70, 1988.
- [GOMES et al., 2020] GOMES, J.P., BUNEVICH, R.B., TEDESCHI, L.R., TUCKER, M.E., WHITAKER, F.F. Facies classification and patterns of lacustrine carbonate deposition of the Barra Velha Formation, Santos Basin, Brazilian pre-salt. Marine and Petroleum Geology, 113, 2020.
- [HALLACK e CAVALCANTE FILHO, 2019] HALLACK, D.M.C., CAVALCANTE FILHO, J.S.A., COUTO, P. Implementation of a two-phase simulator based on the Brinkman's equation for vuggy-karstified reservoirs. In: OFFSHORE TECHNOLOGY CONFERENCE BRASIL, p. 27–34, Rio de Janeiro, Brazil, 2019.
- [KAZEMI et al, 1969] KAZEMI, H., SETH, M.S., THOMAS, G.W. The interpretation of interference tests in naturally fractured reservoirs with uniform fracture distribution. Society of Petroleum Engineers, 9:463–472, 1969.
- [KAZEMI et al, 1976] KAZEMI,H., MERRILL,L.S., PORTERFIELD,K.L., ZEMAN,P.R. Numerical simulation of water-oil flow in naturally fractured reservoirs. Society of Petroleum Engineers, 5719:317–326, 1976.
- [LAKE e JENSEN, 1991] LAKE,L., JENSEN,J. A review of heterogeneity measures used in reservoir characterization. In Situ, 15:409–439, 1991.
- [LEMONIER e BOURBIAUX, 2010] LEMONNIER,P., BOURBIAUX,B. Simulation of naturally fractured reservoirs. state of the art – part 2 - matrix-fracture transfers and typical features of numerical studies. Oil Gas Science Technology - Rev. IFP, 65:263–286, 2010.
- [LIAN et al., 2012] LIAN, P.Q., CHENG, L.S., MA, C.Y. **The characteristics of relative permeability curves in naturally fractured carbonate reservoirs**. Journal of Canadian Petroleum Technology, 51:137–142, 2012.
- [LIMA E DE ROS, 2019] LIMA, B.E AND DE ROS, L.F. Deposition, diagenetic and hydrothermal processes in the Aptian pre-salt lacustrine carbonate reservoirs of the northern Campos Basin, offshore Brazil. Sedimentary Geology, 383:55–81, 2019.

- [MACHADO, 2018] MACHADO, M.V.B. **Modelagem e simulação numérica de reservatórios de petróleo**. Notas de Aula, 2018.
- [MOCZYDLOWER et al., 2012] MOCZYDLOWER,B., SALOMAO,M.C., BRANCO,C.C.M., ROMEU,R.K., HOMEM,T.R., DE FREITAS,L.C., LIMA,H.A.T.S. **Development of the Brazilian pre-salt fields when to pay for information and when to pay for flexibility**. In: SPE LATIN AMERICA AND CARIBBEAN PETROLEUM ENGINEERING CONFERENCE, Cidade do México (México), 2012.
- [MOREIRA et al., 2007] MOREIRA,J.L.P., MADEIRA,C.V., GIL,J.A., MACHADO,M.A.P. Bacia de Santos. Boletim de Geociências da Petrobras, 15:531–549, 2007.
- [NELSON, 2001] NELSON, R. Geological Analysis of Naturally Fractured Reservoirs. Gulf Professional Publishing, Houston, Texas, EUA, 2nd edition, 2001.
- [NGHIEM e LI, 1988] NGHIEM,L.X., LI,Y.-K. Phase-equilibrium calculations for reservoir engineering and compositional simulation. In: FIRST INTERNATIONAL FORUM ON RESERVOIR SIMULATION, Alpbach (Austria), 1988.
- [ODEH, 1965] ODEH,A.S. Unsteady-state behavior of naturally fractured reservoirs. Society of Petroleum Engineers, 5:60–66, 1965.
- [ODEH, 1969] ODEH,A.S. **Reservoir simulation ...what is it?** Journal of Petroleum Technology, 21:1383–1388, 1969.
- [PEACEMAN, 1977] PEACEMAN, D.W. Fundamentals of numerical reservoir simulation. Elsevier Scientific Publishing Company, Amsterdã, Holanda, 1st edition, 1977.
- [PENG et al., 2002] PENG,C.Y.J., LEE,K.L., INGERSOLL,G.M. An introduction to logistic regression analysis and reporting. Journal of Educational Research - J EDUC RES, 96:3– 14, 2002.
- [PIZARRO e BRANCO, 2012] PIZARRO, J.O.S., BRANCO, C.C.M. Challenges in implementing an EOR project in the pre-salt province in deep offshore Brazil. In: SPE EOR AT OIL AND GAS WEST ASIA, Muscat (Oman), 2012.
- [PIZARRO et al., 2017] PIZARRO, J.O.S., POLI, R.E.B., ROSA, M.B., SILVA, V.C., BRANCO, C.C.M., CUNHA, B.M., DORIA, M.A.E, ALES, N., BATELLO, D., PINTO, A.C.C. Optimizing production of Santos Basin pre-salt fields through sound reservoir management practices. In: OFFSHORE TECHNOLOGY CONFERENCE BRASIL, Rio de Janeiro (Brasil), 2017.

- [PRUESS e NARASIMHAN, 1985] PRUESS,K., NARASIMHAN,T.N. A practical method for modeling fluid and heat flow in fractured porous media. Society of Petroleum Engineers, 25:14–26, 1985.
- [ROSA et al., 2006] ROSA,A.J., CARVALHO,R., XAVIER,J.A. Engenharia de reservatórios de petróleo. Editora Interciência, Rio de Janeiro, Brasil, 2ª edition, 2006.
- [ROSA et al., 2018] ROSA,M.B., CAVALCANTE,J.S.A., MIYAKAWA,T.M., FREITAS,L.C.S. **The giant** Lula field: World's largest oil production in ultra-deep water under a fast-track development. In: OFFSHORE TECHNOLOGY CONFERENCE, Houston (Texas, EUA), 2018.
- [ROSSEN e KUMAR, 1994] ROSSEN,W.R., KUMAR,A.T.A. Effect of fracture relative permeabilities on performance of naturally fractured reservoirs. In: INTERNATIONAL PETROLEUM CONFERENCE AND EXHIBITION OF MEXICO, Veracruz (México), 1994.
- [SAALFELD, 2016] SAALFELD,R.Q. Simulação de reservatórios naturalmente fraturados utilizando modelos equivalentes de porosidade simples. Dissertação de mestrado, Universidade Estadual de Campinas - SP, Campinas - SP - Brasil, 2016.
- [SALOMÃO et al., 2015] SALOMÃO,M.C., MARÇON,D.R., ROSA,M.B., PESSOA,T.C.S., CAPELEIRO PINTO, A.C. Broad strategy to face with complex reservoirs: Expressive results of production in pre-salt area, offshore Brazil. In: OFFSHORE TECHNOLOGY CONFERENCE, Houston (Texas, EUA), 2015.
- [SANTOS, 2013] SANTOS, L.O.S. Development of a multi-formulation compositional simulator. Tese de doutorado, The University of Texas at Austin, Austin - Texas - EUA, 2013.
- [SANTOS, 2015] SANTOS, L.O.S. **Fundamentos de simulação de reservatório**. Notas de Aula, 2015.
- [SHELDON e CARDWELL, 1959] SHELDON, J.W., CARDWELL JR.,W.T. **One-dimensional**, **incompressible, noncapillary, two-phase fluid flow in a porous medium**. Transactions of the AIME, 216:290–296, 1959.
- [SONIER et al., 1988] SONIER, F., SUILLARD, P., BLASKOVICH, F.T. Numerical simulation of naturally fractured reservoirs. SPE Reservoir Engineering, 3:1114–1122, 1988.
- [STONE e GARDNER, 1961] STONE,H.L., GARDER JR.,A.O. **Analysis of gas-cap or dissolved-gas drive reservoirs**. Society of Petroleum Engineers Journal 1, 02:92–104, 1961.

- [THOMAS, 1981] THOMAS,G.W. Principles of hydrocarbon reservoir simulation. International Human Resources Development Corporation, Boston, EUA, 2nd edition, 1981.
- [TODD, 1972] TODD,M.R., O'DELL,P.M., HIRASKI,G.J. Methods for increased accuracy in numerical reservoir simulators. Society of Petroleum Engineers Journal, 12:515–530, 1972.
- [TORABI et al., 2020] TORABI,A., ELLINGSEN,T.S.S., JOHANNESSEN,M.U., ALAEI,B., ROTEVATN,A., CHIARELLA,D. Fault zone architecture and its scaling laws: Where does the damage zone start and stop? Geological Society, London, Special Publications, 496:99–124, 2004.
- [TRAN, 2004] TRAN,N.H. Characterization and modelling of naturally fractured reservoirs. University of New South Wales, Sidney, Australia, 1st edition, 2004.
- [WANG et al., 2015] WANG,F., LI,Y., TANG,X., CHEN,J., GAO,W. Petrophysical properties analysis of a carbonate reservoir with natural fractures and vugs using x-ray computed tomography. Journal of Natural Gas Science and Engineering, 28:215–225, 2015.
- [WARREN e ROOT, 1963] WARREN, J.E., ROOT, P.J. The behavior of naturally fractured reservoirs. Society of Petroleum Engineers, 426:245–255, 1963.
- [WU et al, 2004] WU,Y., LIU,H.H., BODVARSSON, G.S. A triple-continuum approach for modeling flow and transport processes in fractured rock. Journal of Contaminant Hydrology, 73:145–179, 2004.
- [WU et al, 2011] WU,Y., DI,Y., KANG,Z., FAKCHAROENPHOL,P. A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs. Journal of Natural Gas Science and Engineering, 78:13–22, 2011.
- [YAN et al., 2016] YAN,B., ALFI,M., AN,C., CAO,Y., WANG,Y., KILLOUGH,J. General multiporosity simulation for fractured reservoir modeling. Journal of Natural Gas Science and Engineering, 33:777–791, 201

Apêndice A. Tabelas com os Resultados das Simulações

Matriz	Malha	D	L	K _{frat}	Timesteps	Ciclos Newtonianos	lterações do <i>Solver</i>	Falhas do <i>Solver</i>
Heterogêneo	Depleção	0	1	0	81	300	13279	68
Heterogêneo	Depleção	0	1	32	116	465	23790	149
Heterogêneo	Depleção	0	1	100	128	505	26516	176
Heterogêneo	Depleção	0	1	320	173	754	39623	236
Heterogêneo	Depleção	0	1	1000	150	688	35565	185
Heterogêneo	Depleção	0	1	3200	139	588	31821	179
Heterogêneo	Depleção	0	1	10000	117	459	25580	172
Heterogêneo	Depleção	0	1	32000	146	583	29172	185
Heterogêneo	Depleção	0	1	100000	255	1200	53803	372
Heterogêneo	Depleção	0	2	0	76	292	13965	80
Heterogêneo	Depleção	0	2	32	139	577	34047	291
Heterogêneo	Depleção	0	2	100	164	683	39398	300
Heterogêneo	Depleção	0	2	320	218	1032	55939	323
Heterogêneo	Depleção	0	2	1000	316	1627	92669	601
Heterogêneo	Depleção	0	2	3200	325	1591	104995	999
Heterogêneo	Depleção	0	2	10000	444	2180	158621	1808
Heterogêneo	Depleção	0	2	32000	206	839	62477	774
Heterogêneo	Depleção	0	2	100000	137	524	37865	467
Heterogêneo	Depleção	0	3	0	84	318	14490	80
Heterogêneo	Depleção	0	3	32	178	768	46346	410
Heterogêneo	Depleção	0	3	100	198	938	54331	441
Heterogêneo	Depleção	0	3	320	407	1985	91607	453
Heterogêneo	Depleção	0	3	1000	351	1759	97810	680
Heterogêneo	Depleção	0	3	3200	348	1729	111264	1018
Heterogêneo	Depleção	0	3	10000	317	1442	99913	1138
Heterogêneo	Depleção	0	3	32000	814	4342	301349	3491
Heterogêneo	Depleção	0	3	100000	138	516	38577	484
Heterogêneo	Depleção	1	1	0	89	336	15812	76
Heterogêneo	Depleção	1	1	32	117	466	23415	123
Heterogêneo	Depleção	1	1	100	125	519	29072	179
Heterogêneo	Depleção	1	1	320	190	873	54625	382
Heterogêneo	Depleção	1	1	1000	196	896	61596	610
Heterogêneo	Depleção	1	1	3200	247	1129	85044	968
Heterogêneo	Depleção	1	1	10000	382	1847	142031	1708

Tabela A.1: Resultados das simulações - numérico 1

Heterogêneo	Depleção	1	1	100000	249	985	73953	918
Heterogêneo	Depleção	1	2	0	79	284	14015	75
Heterogêneo	Depleção	1	2	32	168	686	40993	350
Heterogêneo	Depleção	1	2	100	183	798	46278	356
Heterogêneo	Depleção	1	2	320	494	2299	100207	422
Heterogêneo	Depleção	1	2	1000	375	1961	116141	842
Heterogêneo	Depleção	1	2	3200	324	1557	108822	1147
Heterogêneo	Depleção	1	2	10000	445	2148	158908	1843
Heterogêneo	Depleção	1	2	32000	283	1219	86333	1045
Heterogêneo	Depleção	1	2	100000	181	790	56334	692
Heterogêneo	Depleção	1	3	0	80	329	16333	102
Heterogêneo	Depleção	1	3	32	181	778	46074	384
Heterogêneo	Depleção	1	3	100	196	817	49777	420
Heterogêneo	Depleção	1	3	320	688	3173	121134	402
Heterogêneo	Depleção	1	3	1000	531	2932	154565	947
Heterogêneo	Depleção	1	3	3200	1436	8531	456264	2849
Heterogêneo	Depleção	1	3	10000	582	2899	199197	2172
Heterogêneo	Depleção	1	3	32000	130	475	36318	444
Heterogêneo	Depleção	1	3	100000	136	477	35973	443
Heterogêneo	Depleção	5	1	0	85	313	14932	87
Heterogêneo	Depleção	5	1	32	118	447	23220	144
Heterogêneo	Depleção	5	1	100	125	507	26249	160
Heterogêneo	Depleção	5	1	320	150	705	39334	247
Heterogêneo	Depleção	5	1	1000	237	1112	49002	226
Heterogêneo	Depleção	5	1	3200	152	653	33862	217
Heterogêneo	Depleção	5	1	10000	160	732	38437	253
Heterogêneo	Depleção	5	1	32000	178	771	44024	337
Heterogêneo	Depleção	5	1	100000	250	1203	71826	607
Heterogêneo	Depleção	5	2	0	84	291	14071	82
Heterogêneo	Depleção	5	2	32	161	648	37792	306
Heterogêneo	Depleção	5	2	100	166	692	42938	384
Heterogêneo	Depleção	5	2	320	480	2264	106650	510
Heterogêneo	Depleção	5	2	1000	323	1592	97768	763
Heterogêneo	Depleção	5	2	3200	359	1744	119053	1204
Heterogêneo	Depleção	5	2	10000	130	510	36886	451
Heterogêneo	Depleção	5	2	32000	112	370	27209	334
Heterogêneo	Depleção	5	2	100000	178	750	53290	653
Heterogêneo	Depleção	5	3	0	84	336	16367	107
Heterogêneo	Depleção	5	3	32	177	791	49181	454
Heterogêneo	Depleção	5	3	100	227	1021	57510	463
Heterogêneo	Depleção	5	3	320	243	1179	67059	496
Heterogêneo	Depleção	5	3	1000	1090	5409	219509	781
Heterogêneo	Depleção	5	3	3200	483	2412	157189	1510

Heterogêneo	Depleção	5	3	10000	104	430	32736	399
Heterogêneo	Depleção	5	3	32000	141	563	38965	475
Heterogêneo	Depleção	5	3	100000	141	548	38597	476
Heterogêneo	Par 45°	0	1	0	129	434	16313	61
Heterogêneo	Par 45°	0	1	32	293	1585	65946	168
Heterogêneo	Par 45°	0	1	100	430	2708	95354	53
Heterogêneo	Par 45°	0	1	320	862	7441	200192	37
Heterogêneo	Par 45°	0	1	1000	1623	13423	336877	53
Heterogêneo	Par 45°	0	1	3200	3059	20044	530357	144
Heterogêneo	Par 45°	0	1	10000	15548	84105	2315094	659
Heterogêneo	Par 45°	0	1	32000	25336	141993	3416776	1614
Heterogêneo	Par 45°	0	1	100000	223095	2508036	40268514	1569
Heterogêneo	Par 45°	0	2	0	172	604	22188	75
Heterogêneo	Par 45°	0	2	32	278	1498	73782	260
Heterogêneo	Par 45°	0	2	100	388	2490	102647	107
Heterogêneo	Par 45°	0	2	320	767	6680	210696	12
Heterogêneo	Par 45°	0	2	1000	1351	10979	285748	28
Heterogêneo	Par 45°	0	2	3200	2602	16892	499591	364
Heterogêneo	Par 45°	0	2	10000	60562	287424	9582315	49
Heterogêneo	Par 45°	0	2	32000	93727	441195	18644495	11389
Heterogêneo	Par 45°	0	2	100000	344601	2495099	142365656	425935
Heterogêneo	Par 45°	0	3	0	242	834	28533	84
Heterogêneo	Par 45°	0	3	32	310	1830	96817	422
Heterogêneo	Par 45°	0	3	100	441	2969	126027	284
Heterogêneo	Par 45°	0	3	320	761	6632	212662	131
Heterogêneo	Par 45°	0	3	1000	1460	12378	327454	104
Heterogêneo	Par 45°	0	3	3200	2146	15784	492774	612
Heterogêneo	Par 45°	0	3	10000	47048	218709	8146806	110
Heterogêneo	Par 45°	0	3	32000	68807	325495	14754163	18041
Heterogêneo	Par 45°	0	3	100000	173401	1179737	72542552	470922
Heterogêneo	Par 45°	1	1	0	119	424	16778	64
Heterogêneo	Par 45°	1	1	32	284	1591	63676	156
Heterogêneo	Par 45°	1	1	100	431	2891	102362	77
Heterogêneo	Par 45°	1	1	320	871	7189	194233	35
Heterogêneo	Par 45°	1	1	1000	1644	13641	341396	9
Heterogêneo	Par 45°	1	1	3200	2698	20411	566245	147
Heterogêneo	Par 45°	1	1	10000	3675	27850	860342	1295
Heterogêneo	Par 45°	1	1	32000	5050	42400	1248005	2343
Heterogêneo	Par 45°	1	1	100000	7394	69309	1939965	2767
Heterogêneo	Par 45°	1	2	0	159	545	20731	72
Heterogêneo	Par 45°	1	2	32	293	1682	80379	270
Heterogêneo	Par 45°	1	2	100	423	2760	105645	99
-								
Heterogêneo	Par 45°	1	2	320	773	6579	202232	32

Heterogène Par 45" 1 2 3200 2070 16339 661063 1068 Heterogèneo Par 45" 1 2 32000 3247 25432 75873 2056 Heterogèneo Par 45" 1 2 100000 5134 43748 1304089 3021 Heterogèneo Par 45" 1 3 0 239 622 27495 79 Heterogèneo Par 45" 1 3 100 442 2433 122886 322 Heterogèneo Par 45" 1 3 1000 1275 11005 343859 310 Heterogèneo Par 45" 1 3 10000 2056 18106 59716 175 Heterogèneo Par 45" 1 3 10000 2066 40024 1162879 2038 Heterogèneo Par 45" 5 1 000 378 2370 93381 63 Heterogèneo									
Heterogêneo Par 45' 1 2 10000 3227 25492 97873 2066 Heterogêneo Par 45' 1 2 30000 5134 43748 1304089 2501 Heterogêneo Par 45' 1 3 0 239 822 27495 791 Heterogêneo Par 45' 1 3 100 442 2843 122866 322 Heterogêneo Par 45' 1 3 1000 1275 11006 434889 310 Heterogêneo Par 45' 1 3 10000 2718 2889 878115 1648 Heterogêneo Par 45' 1 3 10000 5066 40924 1162879 2866 Heterogêneo Par 45' 1 3 10000 5066 40924 1162879 2338 Heterogêneo Par 45' 5 1 3200 23012 31049 1076703 2338 Heterogêneo<	Heterogêneo	Par 45°	1	2	3200	2070	16639	661063	1068
Heterogéneo Par 45* 1 2 32000 5947 33655 1149743 2250 Heterogéneo Par 45* 1 2 100000 5134 43748 1304089 3021 Heterogéneo Par 45* 1 3 0 239 822 27495 79 Heterogéneo Par 45* 1 3 100 442 2843 12286 322 Heterogéneo Par 45* 1 3 1000 1475 343859 310 Heterogéneo Par 45* 1 3 10000 1275 1106 399716 775 Heterogéneo Par 45* 1 3 10000 5066 40924 1162879 2866 Heterogéneo Par 45* 5 1 0 127 432 17264 731 Heterogéneo Par 45* 5 1 300 373 1374 34208 844 Heterogéneo Par 45* <t< td=""><td>Heterogêneo</td><td>Par 45°</td><td>1</td><td>2</td><td>10000</td><td>3227</td><td>25492</td><td>975873</td><td>2066</td></t<>	Heterogêneo	Par 45°	1	2	10000	3227	25492	975873	2066
Heterogène Par 45" 1 2 10000 5134 43748 1304089 3021 Heterogène Par 45" 1 3 0 239 822 27495 79 Heterogène Par 45" 1 3 100 442 2843 122866 322 Heterogène Par 45" 1 3 1000 427 5839 23385 347 Heterogène Par 45" 1 3 1000 1275 11066 343859 310 Heterogène Par 45" 1 3 10000 2718 24898 387816 1648 Heterogène Par 45" 1 3 10000 5066 40924 1162879 2866 Heterogène Par 45" 5 1 0 127 432 17264 73 Heterogène Par 45" 5 1 320 750 6154 18694 66 Heterogènee Par 45"	Heterogêneo	Par 45°	1	2	32000	3947	33655	1149743	2950
Heterogêneo Par 45° 1 3 0 239 822 27495 79 Heterogêneo Par 45° 1 3 32 319 1809 93500 408 Heterogêneo Par 45° 1 3 1000 442 2843 122866 332 Heterogêneo Par 45° 1 3 1000 1275 11006 343859 310 Heterogêneo Par 45° 1 3 10000 2718 24898 878116 1648 Heterogêneo Par 45° 1 3 10000 3612 31049 1076203 2938 Heterogêneo Par 45° 5 1 0 127 432 17264 73 Heterogêneo Par 45° 5 1 320 700 16154 1649 1666 Heterogêneo Par 45° 5 1 3200 2201 18518 648209 413 Heterogêneo Par 45°<	Heterogêneo	Par 45°	1	2	100000	5134	43748	1304089	3021
Heterogène Par 45' 1 3 32 319 1809 93550 408 Heterogèneo Par 45' 1 3 100 442 2843 122866 322 Heterogèneo Par 45' 1 3 3200 792 6839 23365 347 Heterogèneo Par 45' 1 3 10000 1275 11005 5434859 310 Heterogèneo Par 45' 1 3 10000 2718 24898 878116 1648 Heterogèneo Par 45' 1 3 10000 5066 40024 1162879 2286 Heterogèneo Par 45' 5 1 320 750 6154 18694 66 Heterogèneo Par 45' 5 1 3200 2201 18518 648209 413 Heterogèneo Par 45' 5 1 32000 22415 878914 4779 Heterogèneo Par 45'	Heterogêneo	Par 45°	1	3	0	239	822	27495	79
Heterogèneo Par 45" 1 3 100 442 2843 12286 322 Heterogèneo Par 45" 1 3 320 792 6839 233355 347 Heterogèneo Par 45" 1 3 1000 1275 11006 343859 310 Heterogèneo Par 45" 1 3 3200 2056 18106 599716 1648 Heterogèneo Par 45" 1 3 32000 3612 31049 1076203 2938 Heterogèneo Par 45" 5 1 0 127 432 1764 73 Heterogèneo Par 45" 5 1 320 750 6154 18664 66 Heterogèneo Par 45" 5 1 1000 1373 11747 342408 84 Heterogèneo Par 45" 5 1 3200 3763 32989 1268014 4779 Heterogèneo Par	Heterogêneo	Par 45°	1	3	32	319	1809	93550	408
Heterogêneo Par 45* 1 3 320 792 6839 23385 347 Heterogêneo Par 45* 1 3 1000 1275 11006 34889 310 Heterogêneo Par 45* 1 3 3200 2056 18106 599716 775 Heterogêneo Par 45* 1 3 32000 3612 31049 1076203 2938 Heterogêneo Par 45* 1 3 100000 5066 40924 1162879 2866 Heterogêneo Par 45* 5 1 0 127 432 17264 73 Heterogêneo Par 45* 5 1 3000 378 2370 91381 63 Heterogêneo Par 45* 5 1 3200 2201 18518 648209 413 Heterogêneo Par 45* 5 1 10000 2786 22415 878976 2921 Heterogêneo	Heterogêneo	Par 45°	1	3	100	442	2843	122886	322
Heterogène Par 45" 1 3 1000 1275 11006 343859 310 Heterogèneo Par 45" 1 3 3200 2056 18106 599716 775 Heterogèneo Par 45" 1 3 10000 2718 24898 878116 1648 Heterogèneo Par 45" 1 3 32000 3612 31049 1076203 2386 Heterogèneo Par 45" 5 1 0 127 432 17264 73 Heterogèneo Par 45" 5 1 100 378 2370 91881 63 Heterogèneo Par 45" 5 1 3200 2201 18518 648209 413 Heterogèneo Par 45" 5 1 3200 2201 18518 648209 413 Heterogèneo Par 45" 5 1 32000 3763 32989 1268014 4779 Heterogèneo	Heterogêneo	Par 45°	1	3	320	792	6839	233365	347
Heterogèneo Par 45" 1 3 3200 2056 18106 599716 775 Heterogèneo Par 45" 1 3 10000 2718 24898 878116 1648 Heterogèneo Par 45" 1 3 32000 3612 31049 1076203 2938 Heterogèneo Par 45" 5 1 0 127 432 17264 73 Heterogèneo Par 45" 5 1 32 260 1406 59493 164 Heterogèneo Par 45" 5 1 320 750 6154 136694 66 Heterogèneo Par 45" 5 1 3200 2201 18518 64209 413 Heterogèneo Par 45" 5 1 32000 3763 32989 1268014 4779 Heterogèneo Par 45" 5 1 100000 5489 53324 2029552 5095 Heterogèneo	Heterogêneo	Par 45°	1	3	1000	1275	11006	343859	310
Heterogène Par 45" 1 3 10000 2718 24898 878116 1648 Heterogèneo Par 45" 1 3 32000 3612 31049 1076203 2938 Heterogèneo Par 45" 1 3 100000 5066 40924 1162879 2866 Heterogèneo Par 45" 5 1 0 127 432 17244 73 Heterogèneo Par 45" 5 1 100 378 2370 91381 63 Heterogèneo Par 45" 5 1 3200 750 6154 186694 66 Heterogèneo Par 45" 5 1 3200 2201 18518 648209 413 Heterogèneo Par 45" 5 1 3200 2765 22415 878976 2921 Heterogèneo Par 45" 5 2 0 233 755 24150 65 Heterogèneo Pa	Heterogêneo	Par 45°	1	3	3200	2056	18106	599716	775
Heterogèneo Par 45* 1 3 32000 3612 31049 1076203 2938 Heterogèneo Par 45* 1 3 100000 5066 40924 1162879 2866 Heterogèneo Par 45* 5 1 0 127 432 17264 73 Heterogèneo Par 45* 5 1 32 260 1406 59493 164 Heterogèneo Par 45* 5 1 320 750 6154 186694 66 Heterogèneo Par 45* 5 1 3200 2201 18518 648209 413 Heterogèneo Par 45* 5 1 10000 2786 22415 878976 2921 Heterogèneo Par 45* 5 1 30000 3763 32989 1266014 4779 Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo	Heterogêneo	Par 45°	1	3	10000	2718	24898	878116	1648
Heterogèneo Par 45* 1 3 100000 5066 40924 1162879 2866 Heterogèneo Par 45* 5 1 0 127 432 17264 73 Heterogèneo Par 45* 5 1 32 260 1406 59493 164 Heterogèneo Par 45* 5 1 320 750 6154 186694 66 Heterogèneo Par 45* 5 1 3200 1271 18518 648209 413 Heterogèneo Par 45* 5 1 3200 2766 22415 878976 2921 Heterogèneo Par 45* 5 1 3200 3763 32989 1268014 4779 Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo Par 45*	Heterogêneo	Par 45°	1	3	32000	3612	31049	1076203	2938
Heterogèneo Par 45* 5 1 0 127 432 17264 73 Heterogèneo Par 45* 5 1 32 260 1406 59493 164 Heterogèneo Par 45* 5 1 100 378 2370 91381 63 Heterogèneo Par 45* 5 1 300 11747 342408 84 Heterogèneo Par 45* 5 1 1000 1373 11747 342408 84 Heterogèneo Par 45* 5 1 10000 2785 22415 878976 2921 Heterogèneo Par 45* 5 1 100000 5489 5324 2029852 5095 Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo Par 45* 5 2 30 365 2247 97820 165 Heterogèneo Par 45* 5	Heterogêneo	Par 45°	1	3	100000	5066	40924	1162879	2866
Heterogèneo Par 45* 5 1 32 260 1406 59493 164 Heterogèneo Par 45* 5 1 100 378 2370 91381 63 Heterogèneo Par 45* 5 1 320 750 6154 186694 66 Heterogèneo Par 45* 5 1 1000 1373 11747 342408 84 Heterogèneo Par 45* 5 1 3200 2201 18518 648209 413 Heterogèneo Par 45* 5 1 32000 3763 32989 1268014 4779 Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo Par 45* 5 2 32 285 1735 82919 299 Heterogèneo Par 45* 5 2 320 682 5895 207785 151 Heterogèneo Par 45*	Heterogêneo	Par 45°	5	1	0	127	432	17264	73
Heterogèneo Par 45* 5 1 100 378 2370 91381 63 Heterogèneo Par 45* 5 1 320 750 6154 186694 66 Heterogèneo Par 45* 5 1 1000 1373 11747 342408 84 Heterogèneo Par 45* 5 1 3200 2201 18518 648209 413 Heterogèneo Par 45* 5 1 10000 2786 22415 878976 2921 Heterogèneo Par 45* 5 1 10000 5489 53324 202852 5095 Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo Par 45* 5 2 32 285 1735 82919 299 Heterogèneo Par 45* 5 2 320 682 5895 207785 151 Heterogèneo Par 45* </td <td>Heterogêneo</td> <td>Par 45°</td> <td>5</td> <td>1</td> <td>32</td> <td>260</td> <td>1406</td> <td>59493</td> <td>164</td>	Heterogêneo	Par 45°	5	1	32	260	1406	59493	164
Heterogèneo Par 45* 5 1 320 750 6154 186694 66 Heterogèneo Par 45* 5 1 1000 1373 11747 342408 84 Heterogèneo Par 45* 5 1 3200 2201 18518 648209 413 Heterogèneo Par 45* 5 1 32000 3763 32989 1268014 4779 Heterogèneo Par 45* 5 1 100000 5489 53324 2029852 5095 Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo Par 45* 5 2 32 285 1735 82919 299 Heterogèneo Par 45* 5 2 100 365 2477 97820 165 Heterogèneo Par 45* 5 2 1000 1145 10387 379496 336 Heterogèneo Pa	Heterogêneo	Par 45°	5	1	100	378	2370	91381	63
Heterogèneo Par 45* 5 1 1000 1373 11747 342408 84 Heterogèneo Par 45* 5 1 3200 2201 18518 648209 413 Heterogèneo Par 45* 5 1 10000 2786 22415 878976 2921 Heterogèneo Par 45* 5 1 10000 5489 53324 2029852 5095 Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo Par 45* 5 2 32 285 1735 82919 299 Heterogèneo Par 45* 5 2 1000 1145 10387 379496 386 Heterogèneo Par 45* 5 2 10000 2743 24050 876352 1709 Heterogèneo Pa	Heterogêneo	Par 45°	5	1	320	750	6154	186694	66
Heterogêneo Par 45* 5 1 3200 2201 18518 648209 413 Heterogêneo Par 45* 5 1 10000 2786 22415 878976 2921 Heterogêneo Par 45* 5 1 32000 3763 32989 1268014 4779 Heterogêneo Par 45* 5 1 100000 5489 53324 2029852 5095 Heterogêneo Par 45* 5 2 0 233 755 24150 65 Heterogêneo Par 45* 5 2 100 365 2247 97820 165 Heterogêneo Par 45* 5 2 320 682 5895 207785 151 Heterogêneo Par 45* 5 2 1000 1145 10387 379496 386 Heterogêneo Par 45* 5 2 10000 2743 24050 876322 1709 Heterogêneo	Heterogêneo	Par 45°	5	1	1000	1373	11747	342408	84
Heterogêneo Par 45* S 1 10000 2786 22415 878976 2921 Heterogêneo Par 45* S 1 32000 3763 32989 1268014 4779 Heterogêneo Par 45* S 1 100000 5489 53324 2029852 5095 Heterogêneo Par 45* S 2 0 233 755 24150 65 Heterogêneo Par 45* S 2 0 233 755 24150 65 Heterogêneo Par 45* S 2 100 365 2247 97820 165 Heterogêneo Par 45* S 2 1000 1145 10387 379496 386 Heterogêneo Par 45* S 2 10000 2743 24050 876322 1709 Heterogêneo Par 45* S 2 10000 5168 43553 1395509 3231 Heterogêneo	Heterogêneo	Par 45°	5	1	3200	2201	18518	648209	413
Heterogênee Par 45° 5 1 32000 3763 32989 1268014 4779 Heterogênee Par 45° 5 1 100000 5489 53324 2029852 5095 Heterogênee Par 45° 5 2 0 233 755 24150 65 Heterogênee Par 45° 5 2 32 285 1735 82919 299 Heterogênee Par 45° 5 2 100 365 2247 97820 165 Heterogênee Par 45° 5 2 1000 1145 10387 379496 386 Heterogênee Par 45° 5 2 10000 2743 24050 876352 1709 Heterogênee Par 45° 5 2 100000 5168 43553 1395509 3231 Heterogênee Par 45° 5 3 0 300 1011 30790 64 Heterogênee <t< td=""><td>Heterogêneo</td><td>Par 45°</td><td>5</td><td>1</td><td>10000</td><td>2786</td><td>22415</td><td>878976</td><td>2921</td></t<>	Heterogêneo	Par 45°	5	1	10000	2786	22415	878976	2921
Heterogêne Par 45* 5 1 100000 5489 53324 2029852 5095 Heterogêne Par 45* 5 2 0 233 755 24150 65 Heterogêne Par 45* 5 2 32 285 1735 82919 299 Heterogêne Par 45* 5 2 100 365 2247 97820 165 Heterogêne Par 45* 5 2 320 682 5895 207785 151 Heterogêne Par 45* 5 2 1000 1145 10387 379496 386 Heterogêne Par 45* 5 2 3200 1864 16256 611691 1189 Heterogêne Par 45* 5 2 32000 3771 31816 1142117 2932 Heterogêne Par 45* 5 3 0 300 1011 30790 64 Heterogêne Par 45*	Heterogêneo	Par 45°	5	1	32000	3763	32989	1268014	4779
Heterogèneo Par 45* 5 2 0 233 755 24150 65 Heterogèneo Par 45* 5 2 32 285 1735 82919 299 Heterogèneo Par 45* 5 2 100 365 2247 97820 165 Heterogèneo Par 45* 5 2 320 682 5895 207785 151 Heterogèneo Par 45* 5 2 3200 1864 16256 611691 1189 Heterogèneo Par 45* 5 2 32000 3771 31816 1142117 2932 Heterogèneo Par 45* 5 2 32000 3771 31816 1142117 2932 Heterogèneo Par 45* 5 2 100000 5168 43553 1395509 3231 Heterogèneo Par 45* 5 3 0 300 1011 30790 64 Heterogèneo Par	Heterogêneo	Par 45°	5	1	100000	5489	53324	2029852	5095
HeterogêneoPar 45°5232285173582919299HeterogêneoPar 45°52100365224797820165HeterogêneoPar 45°523206825895207785151HeterogêneoPar 45°521000114510387379496386HeterogêneoPar 45°5232001864162566116911189HeterogêneoPar 45°523200037713181611421172932HeterogêneoPar 45°523200037713181611421172932HeterogêneoPar 45°521000005168435531395093231HeterogêneoPar 45°53030010113079064HeterogêneoPar 45°53322291173190130436HeterogêneoPar 45°533206585480187613163HeterogêneoPar 45°5332001816160785872411194HeterogêneoPar 45°53320034302895510363773044HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°531	Heterogêneo	Par 45°	5	2	0	233	755	24150	65
HeterogéneoPar 45°52100365224797820165HeterogéneoPar 45°523206825895207785151HeterogéneoPar 45°521000114510387379496386HeterogéneoPar 45°5232001864162566116911189HeterogéneoPar 45°52100002743240508763521709HeterogéneoPar 45°523200037713181611421172932HeterogéneoPar 45°5210000051684355313955093231HeterogéneoPar 45°53030010113079064HeterogéneoPar 45°531003902432107810310HeterogéneoPar 45°5332001816160785872411194HeterogéneoPar 45°5332001816160785872411194HeterogéneoPar 45°533200034302895510363773044HeterogéneoPar 45°531000047173812711478192784HeterogéneoPar 45°531000047173812711478192784HeterogéneoPar 45°531000047173812711478192784HeterogéneoPar 45°5<	Heterogêneo	Par 45°	5	2	32	285	1735	82919	299
HeterogêneoPar 45°523206825895207785151HeterogêneoPar 45°521000114510387379496386HeterogêneoPar 45°5232001864162566116911189HeterogêneoPar 45°52100002743240508763521709HeterogêneoPar 45°523200037713181611421172932HeterogêneoPar 45°5210000051684355313955093231HeterogêneoPar 45°53030010113079064HeterogêneoPar 45°5332291173190130436HeterogêneoPar 45°5310003902432107810310HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°531000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo <td< td=""><td>Heterogêneo</td><td>Par 45°</td><td>5</td><td>2</td><td>100</td><td>365</td><td>2247</td><td>97820</td><td>165</td></td<>	Heterogêneo	Par 45°	5	2	100	365	2247	97820	165
HeterogêneoPar 45°521000114510387379496386HeterogêneoPar 45°5232001864162566116911189HeterogêneoPar 45°52100002743240508763521709HeterogêneoPar 45°523200037713181611421172932HeterogêneoPar 45°5210000051684355313955093231HeterogêneoPar 45°53030010113079064HeterogêneoPar 45°5332291173190130436HeterogêneoPar 45°533206585480187613163HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°5332001816160785872411194HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo <td>Heterogêneo</td> <td>Par 45°</td> <td>5</td> <td>2</td> <td>320</td> <td>682</td> <td>5895</td> <td>207785</td> <td>151</td>	Heterogêneo	Par 45°	5	2	320	682	5895	207785	151
HeterogêneoPar 45°5232001864162566116911189HeterogêneoPar 45°52100002743240508763521709HeterogêneoPar 45°523200037713181611421172932HeterogêneoPar 45°5210000051684355313955093231HeterogêneoPar 45°53030010113079064HeterogêneoPar 45°5332291173190130436HeterogêneoPar 45°531003902432107810310HeterogêneoPar 45°5332006585480187613163HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°5332001816160785872411194HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0101474991831772HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	2	1000	1145	10387	379496	386
HeterogêneoPar 45°52100002743240508763521709HeterogêneoPar 45°523200037713181611421172932HeterogêneoPar 45°5210000051684355313955093231HeterogêneoPar 45°53030010113079064HeterogêneoPar 45°5332291173190130436HeterogêneoPar 45°531003902432107810310HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°5310002515220808038061579HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°531000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0101474991831772HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	2	3200	1864	16256	611691	1189
HeterogêneoPar 45°523200037713181611421172932HeterogêneoPar 45°5210000051684355313955093231HeterogêneoPar 45°53030010113079064HeterogêneoPar 45°53030010113079064HeterogêneoPar 45°5332291173190130436HeterogêneoPar 45°531003902432107810310HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°531000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0101474991831772HeterogêneoPar Paralelo0132066257471851731	Heterogêneo	Par 45°	5	2	10000	2743	24050	876352	1709
HeterogèneoPar 45°5210000051684355313955093231HeterogèneoPar 45°53030010113079064HeterogèneoPar 45°5332291173190130436HeterogèneoPar 45°531003902432107810310HeterogèneoPar 45°531003902432107810310HeterogèneoPar 45°531000116410726366594438HeterogèneoPar 45°5310001816160785872411194HeterogèneoPar 45°53100002515220808038061579HeterogèneoPar 45°5310000047173812711478192784HeterogèneoPar 45°5310000047173812711478192784HeterogèneoPar Paralelo0101474991831772HeterogèneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	2	32000	3771	31816	1142117	2932
HeterogêneoPar 45°53030010113079064HeterogêneoPar 45°5332291173190130436HeterogêneoPar 45°531003902432107810310HeterogêneoPar 45°533206585480187613163HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°5332001816160785872411194HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0132234128154801181HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	2	100000	5168	43553	1395509	3231
HeterogêneoPar 45°5332291173190130436HeterogêneoPar 45°531003902432107810310HeterogêneoPar 45°533206585480187613163HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°5332001816160785872411194HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0132234128154801181HeterogêneoPar Paralelo01300342223318521558HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	3	0	300	1011	30790	64
HeterogêneoPar 45°531003902432107810310HeterogêneoPar 45°533206585480187613163HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°5332001816160785872411194HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0101474991831772HeterogêneoPar Paralelo01322234128154801181HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	3	32	291	1731	90130	436
HeterogêneoPar 45°533206585480187613163HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°5332001816160785872411194HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0132234128154801181HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	3	100	390	2432	107810	310
HeterogêneoPar 45°531000116410726366594438HeterogêneoPar 45°5332001816160785872411194HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0101474991831772HeterogêneoPar Paralelo01322234128154801181HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	3	320	658	5480	187613	163
HeterogêneoPar 45°5332001816160785872411194HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0101474991831772HeterogêneoPar Paralelo0132234128154801181HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	3	1000	1164	10726	366594	438
HeterogêneoPar 45°53100002515220808038061579HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0101474991831772HeterogêneoPar Paralelo0132234128154801181HeterogêneoPar Paralelo0110034223318521558HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	3	3200	1816	16078	587241	1194
HeterogêneoPar 45°533200034302895510363773044HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0101474991831772HeterogêneoPar Paralelo0132234128154801181HeterogêneoPar Paralelo0110034223318521558HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	3	10000	2515	22080	803806	1579
HeterogêneoPar 45°5310000047173812711478192784HeterogêneoPar Paralelo0101474991831772HeterogêneoPar Paralelo0132234128154801181HeterogêneoPar Paralelo0110034223318521558HeterogêneoPar Paralelo01320662574718351731	Heterogêneo	Par 45°	5	3	32000	3430	28955	1036377	3044
Heterogêneo Par Paralelo 0 1 0 147 499 18317 72 Heterogêneo Par Paralelo 0 1 32 234 1281 54801 181 Heterogêneo Par Paralelo 0 1 100 342 2331 85215 58 Heterogêneo Par Paralelo 0 1 320 662 5747 183517 31	Heterogêneo	Par 45°	5	3	100000	4717	38127	1147819	2784
Heterogêneo Par Paralelo 0 1 32 234 1281 54801 181 Heterogêneo Par Paralelo 0 1 100 342 2331 85215 58 Heterogêneo Par Paralelo 0 1 320 662 5747 183517 31	Heterogêneo	Par Paralelo	0	1	0	147	499	18317	72
Heterogêneo Par Paralelo 0 1 100 342 2331 85215 58 Heterogêneo Par Paralelo 0 1 320 662 5747 183517 31	Heterogêneo	Par Paralelo	0	1	32	234	1281	54801	181
Heterogêneo Par Paralelo 0 1 320 662 5747 183517 31	Heterogêneo	Par Paralelo	0	1	100	342	2331	85215	58
	Heterogêneo	Par Paralelo	0	1	320	662	5747	183517	31

Heterogêneo	Par Paralelo	0	1	1000	1283	9944	249346	33
Heterogêneo	Par Paralelo	0	1	3200	2755	14718	309385	35
Heterogêneo	Par Paralelo	0	1	10000	68576	341204	4802643	0
Heterogêneo	Par Paralelo	0	1	32000	128521	597853	8791514	0
Heterogêneo	Par Paralelo	0	1	100000	282854	1706804	28504236	11
Heterogêneo	Par Paralelo	0	2	0	221	748	23510	52
Heterogêneo	Par Paralelo	0	2	32	284	1571	82311	365
Heterogêneo	Par Paralelo	0	2	100	382	2471	119944	478
Heterogêneo	Par Paralelo	0	2	320	752	6830	235892	375
Heterogêneo	Par Paralelo	0	2	1000	1370	10556	314165	430
Heterogêneo	Par Paralelo	0	2	3200	2184	15951	598760	1321
Heterogêneo	Par Paralelo	0	2	10000	57964	267881	14130217	25984
Heterogêneo	Par Paralelo	0	2	32000	85186	398485	25295430	164125
Heterogêneo	Par Paralelo	0	2	100000	174019	933491	63797647	605115
Heterogêneo	Par Paralelo	0	3	0	377	1271	34479	42
Heterogêneo	Par Paralelo	0	3	32	309	1781	97636	478
Heterogêneo	Par Paralelo	0	3	100	411	2365	121330	552
Heterogêneo	Par Paralelo	0	3	320	803	6421	231583	490
Heterogêneo	Par Paralelo	0	3	1000	1436	11412	351923	851
Heterogêneo	Par Paralelo	0	3	3200	2186	16703	693646	2269
Heterogêneo	Par Paralelo	0	3	10000	44424	207653	10749917	19954
Heterogêneo	Par Paralelo	0	3	32000	75304	354394	22277873	130252
Heterogêneo	Par Paralelo	0	3	100000	134830	693894	46182101	393978
Heterogêneo	Par Paralelo	1	1	0	142	504	18290	73
Heterogêneo	Par Paralelo	1	1	32	244	1399	59462	197
Heterogêneo	Par Paralelo	1	1	100	356	2445	105465	257
Heterogêneo	Par Paralelo	1	1	320	645	5581	216410	297
Heterogêneo	Par Paralelo	1	1	1000	1035	9433	439609	1294
Heterogêneo	Par Paralelo	1	1	3200	1990	15297	753666	3432
Heterogêneo	Par Paralelo	1	1	10000	2707	23522	1129393	4185
Heterogêneo	Par Paralelo	1	1	32000	3591	30660	1319520	3956
Heterogêneo	Par Paralelo	1	1	100000	4684	38517	1497926	5067
Heterogêneo	Par Paralelo	1	2	0	267	874	26098	58
Heterogêneo	Par Paralelo	1	2	32	287	1691	87753	410
Heterogêneo	Par Paralelo	1	2	100	416	2720	122591	443
Heterogêneo	Par Paralelo	1	2	320	740	5817	204010	315
Heterogêneo	Par Paralelo	1	2	1000	1174	10504	382756	820
Heterogêneo	Par Paralelo	1	2	3200	2022	16470	690609	2262
Heterogêneo	Par Paralelo	1	2	10000	2716	22333	952285	3461
Heterogêneo	Par Paralelo	1	2	32000	3392	27930	1051961	2906
Heterogêneo	Par Paralelo	1	2	100000	4149	34114	1197633	3957
Heterogêneo	Par Paralelo	1	3	0	341	1098	28228	38
Heterogêneo	Par Paralelo	1	3	32	316	1851	102080	558
Heterogêneo	Par Paralelo	1	3	100	440	2730	130474	539

Heterogêneo	Par Paralelo	1	3	320	765	6108	225157	494
Heterogêneo	Par Paralelo	1	3	1000	1242	10847	406148	1009
Heterogêneo	Par Paralelo	1	3	3200	1881	17089	750040	2811
Heterogêneo	Par Paralelo	1	3	10000	2559	21910	993515	4262
Heterogêneo	Par Paralelo	1	3	32000	3232	25554	946858	2909
Heterogêneo	Par Paralelo	1	3	100000	3989	31236	1117607	4222
Heterogêneo	Par Paralelo	5	1	0	110	367	13504	59
Heterogêneo	Par Paralelo	5	1	32	233	1331	55828	170
Heterogêneo	Par Paralelo	5	1	100	333	2158	81310	76
Heterogêneo	Par Paralelo	5	1	320	627	5628	168346	11
Heterogêneo	Par Paralelo	5	1	1000	1109	10506	268151	11
Heterogêneo	Par Paralelo	5	1	3200	1663	15207	409425	24
Heterogêneo	Par Paralelo	5	1	10000	2298	19802	444858	13
Heterogêneo	Par Paralelo	5	1	32000	2935	25930	562816	28
Heterogêneo	Par Paralelo	5	1	100000	4106	36467	784188	35
Heterogêneo	Par Paralelo	5	2	0	158	551	19014	67
Heterogêneo	Par Paralelo	5	2	32	250	1470	80185	516
Heterogêneo	Par Paralelo	5	2	100	350	2052	106499	568
Heterogêneo	Par Paralelo	5	2	320	613	5162	252722	1120
Heterogêneo	Par Paralelo	5	2	1000	1050	9986	503266	1368
Heterogêneo	Par Paralelo	5	2	3200	1439	13284	744159	4094
Heterogêneo	Par Paralelo	5	2	10000	1933	16974	921095	5969
Heterogêneo	Par Paralelo	5	2	32000	2515	20672	928020	4432
Heterogêneo	Par Paralelo	5	2	100000	3495	29225	1088218	4627
Heterogêneo	Par Paralelo	5	3	0	217	726	23072	58
Heterogêneo	Par Paralelo	5	3	32	272	1634	86237	516
Heterogêneo	Par Paralelo	5	3	100	354	2178	94328	222
Heterogêneo	Par Paralelo	5	3	320	618	5152	187817	273
Heterogêneo	Par Paralelo	5	3	1000	1003	9150	339208	664
Heterogêneo	Par Paralelo	5	3	3200	1309	11392	480016	1489
Heterogêneo	Par Paralelo	5	3	10000	1768	14543	665913	3445
Heterogêneo	Par Paralelo	5	3	32000	2481	19270	714194	2810
Heterogêneo	Par Paralelo	5	3	100000	3552	27863	974274	4373
Homogêneo	Depleção	0	1	0	81	302	15486	97
Homogêneo	Depleção	0	1	32	222	1028	44475	155
Homogêneo	Depleção	0	1	100	131	540	30425	194
Homogêneo	Depleção	0	1	320	228	1101	51859	255
Homogêneo	Depleção	0	1	1000	156	700	37364	239
Homogêneo	Depleção	0	1	3200	131	570	31605	212
Homogêneo	Depleção	0	1	10000	134	561	30631	219
Homogêneo	Depleção	0	1	32000	149	601	31143	222
Homogêneo	Depleção	0	1	100000	376	1827	63333	381
Homogêneo	Depleção	0	2	0	65	283	14574	92
Homogêneo	Depleção	0	2	32	254	1196	56833	311

Homogêneo	Depleção	0	2	100	414	1932	81239	295
Homogêneo	Depleção	0	2	320	548	2652	108289	360
Homogêneo	Depleção	0	2	1000	333	1734	99678	671
Homogêneo	Depleção	0	2	3200	267	1281	85263	841
Homogêneo	Depleção	0	2	10000	107	366	27904	345
Homogêneo	Depleção	0	2	32000	112	373	27647	341
Homogêneo	Depleção	0	2	100000	136	533	39384	486
Homogêneo	Depleção	0	3	0	76	281	15202	118
Homogêneo	Depleção	0	3	32	417	1857	86263	447
Homogêneo	Depleção	0	3	100	480	2182	87472	353
Homogêneo	Depleção	0	3	320	602	2821	113132	458
Homogêneo	Depleção	0	3	1000	346	1839	101200	636
Homogêneo	Depleção	0	3	3200	319	1606	99473	898
Homogêneo	Depleção	0	3	10000	115	401	29999	373
Homogêneo	Depleção	0	3	32000	116	393	29765	366
Homogêneo	Depleção	0	3	100000	177	703	47511	584
Homogêneo	Depleção	1	1	0	72	290	14233	92
Homogêneo	Depleção	1	1	32	242	1124	43932	141
Homogêneo	Depleção	1	1	100	334	1577	64826	183
Homogêneo	Depleção	1	1	320	509	2408	102353	374
Homogêneo	Depleção	1	1	1000	459	2476	147047	929
Homogêneo	Depleção	1	1	3200	217	1011	75913	878
Homogêneo	Depleção	1	1	10000	128	511	37691	464
Homogêneo	Depleção	1	1	32000	222	940	68290	853
Homogêneo	Depleção	1	1	100000	162	620	43837	563
Homogêneo	Depleção	1	2	0	82	270	14165	93
Homogêneo	Depleção	1	2	32	326	1454	64266	301
Homogêneo	Depleção	1	2	100	495	2163	86305	298
Homogêneo	Depleção	1	2	320	621	2783	108482	353
Homogêneo	Depleção	1	2	1000	287	1423	83867	608
Homogêneo	Depleção	1	2	3200	551	2935	185231	1554
Homogêneo	Depleção	1	2	10000	185	809	52855	600
Homogêneo	Depleção	1	2	32000	158	689	48603	590
Homogêneo	Depleção	1	2	100000	129	451	34125	427
Homogêneo	Depleção	1	3	0	74	288	14176	85
Homogêneo	Depleção	1	3	32	65	125	9311	113
Homogêneo	Depleção	1	3	100	588	2595	105954	408
Homogêneo	Depleção	1	3	320	718	3564	147810	619
Homogêneo	Depleção	1	3	1000	475	2549	138519	838
Homogêneo	Depleção	1	3	3200	524	2819	164423	1304
Homogêneo	Depleção	1	3	10000	566	2999	200199	2099
Homogêneo	Depleção	1	3	32000	99	275	20490	246
Homogêneo	Depleção	1	3	100000	147	552	36690	442
Homogêneo	Depleção	5	1	0	70	284	14504	94

	1					
Homogêneo	Depleção	5	1	32	196	870
Homogêneo	Depleção	5	1	100	119	513
Homogêneo	Depleção	5	1	320	183	849
Homogêneo	Depleção	5	1	1000	191	854
Homogêneo	Depleção	5	1	3200	165	767
Homogêneo	Depleção	5	1	10000	139	582
Homogêneo	Depleção	5	1	32000	176	814
Homogêneo	Depleção	5	1	100000	235	1052
Homogêneo	Depleção	5	2	0	68	277
Homogêneo	Depleção	5	2	32	310	1360
Homogêneo	Depleção	5	2	100	380	1749
Homogêneo	Depleção	5	2	320	642	2979
Homogêneo	Depleção	5	2	1000	812	4383
Homogêneo	Depleção	5	2	3200	93	325
Homogêneo	Depleção	5	2	10000	102	349
Homogêneo	Depleção	5	2	32000	107	357
Homogêneo	Depleção	5	2	100000	165	662
Homogêneo	Depleção	5	3	0	77	288

Homogêneo

Homogêneo Homogêneo

Homogêneo

Homogêneo

Homogêneo

Homogêneo

Homogêneo

Homogêneo

Homogêneo

Homogêneo

Homogêneo

Homogêneo

Homogêneo

Depleção

Depleção

Depleção

Depleção

Depleção

Depleção

Depleção

Depleção

Par 45°

5	1	10000	139	582	
5	1	32000	176	814	
5	1	100000	235	1052	
5	2	0	68	277	
5	2	32	310	1360	
5	2	100	380	1749	
5	2	320	642	2979	
5	2	1000	812	4383	
5	2	3200	93	325	
5	2	10000	102	349	
5	2	32000	107	357	
5	2	100000	165	662	
5	3	0	77	288	
5	3	32	59	85	
5	3	100	397	1752	
5	3	320	684	3155	
5	3	1000	681	3895	
5	3	3200	547	2949	
5	3	10000	103	371	
5	3	32000	127	457	
5	3	100000	180	872	
0	1	0	128	454	
0	1	32	235	1371	
0	1	100	330	2105	
0	1	320	653	5301	
0	1	1000	1268	9616	
0	1	3200	2669	17984	
0	1	10000	31248	156496	
0	1	32000	40922	213637	

Homogêneo	Par 45°	0	3	0	313	1003	26727	36
Homogêneo	Par 45°	0	3	32	229	1174	59672	372
Homogêneo	Par 45°	0	3	100	358	2163	101005	437
Homogêneo	Par 45°	0	3	320	653	5549	208105	278
Homogêneo	Par 45°	0	3	1000	1139	9783	272918	107
Homogêneo	Par 45°	0	3	3200	1765	14207	359976	242
Homogêneo	Par 45°	0	3	10000	37388	172754	5218118	0
Homogêneo	Par 45°	0	3	32000	47418	220649	8630115	9507
Homogêneo	Par 45°	0	3	100000	60680	287359	13785318	31352
Homogêneo	Par 45°	1	1	0	152	499	15372	58
Homogêneo	Par 45°	1	1	32	224	1285	50995	221
Homogêneo	Par 45°	1	1	100	332	1998	74818	160
Homogêneo	Par 45°	1	1	320	650	5370	163435	37
Homogêneo	Par 45°	1	1	1000	1098	8998	253650	22
Homogêneo	Par 45°	1	1	3200	1793	13872	400474	117
Homogêneo	Par 45°	1	1	10000	2564	20494	578617	741
Homogêneo	Par 45°	1	1	32000	3437	28858	809881	2020
Homogêneo	Par 45°	1	1	100000	4848	44029	1241721	3119
Homogêneo	Par 45°	1	2	0	254	776	20290	35
Homogêneo	Par 45°	1	2	32	224	1228	60454	372
Homogêneo	Par 45°	1	2	100	354	2212	97947	382
Homogêneo	Par 45°	1	2	320	626	4865	174099	187
Homogêneo	Par 45°	1	2	1000	1091	9301	284997	40
Homogêneo	Par 45°	1	2	3200	1644	14011	500600	679
Homogêneo	Par 45°	1	2	10000	2222	19155	690677	1191
Homogêneo	Par 45°	1	2	32000	2772	23509	771240	2094
Homogêneo	Par 45°	1	2	100000	3667	29662	814739	2152
Homogêneo	Par 45°	1	3	0	360	1133	27396	30
Homogêneo	Par 45°	1	3	32	229	1260	64755	406
Homogêneo	Par 45°	1	3	100	358	2107	101768	511
Homogêneo	Par 45°	1	3	320	643	5207	187360	275
Homogêneo	Par 45°	1	3	1000	1048	9130	286593	284
Homogêneo	Par 45°	1	3	3200	1561	13883	412328	347
Homogêneo	Par 45°	1	3	10000	1936	16637	551089	607
Homogêneo	Par 45°	1	3	32000	2540	20694	697571	2024
Homogêneo	Par 45°	1	3	100000	3438	26882	673914	1782
Homogêneo	Par 45°	5	1	0	100	353	11437	52
Homogêneo	Par 45°	5	1	32	197	1038	42331	200
Homogêneo	Par 45°	5	1	100	265	1518	61925	196
Homogêneo	Par 45°	5	1	320	481	3586	112759	70
Homogêneo	Par 45°	5	1	1000	810	6789	181117	18
Homogêneo	Par 45°	5	1	3200	1193	9728	290669	56
Homogêneo	Par 45°	5	1	10000	1592	12801	394548	311
Homogêneo	Par 45°	5	1	32000	2072	17249	532112	1141

Homogêneo	Par 45°	5	1	100000	2718	24941	799107	1795
Homogêneo	Par 45°	5	2	0	192	606	17842	52
Homogêneo	Par 45°	5	2	32	193	993	46632	282
Homogêneo	Par 45°	5	2	100	280	1715	76959	340
Homogêneo	Par 45°	5	2	320	464	3562	131555	95
Homogêneo	Par 45°	5	2	1000	837	7529	239649	145
Homogêneo	Par 45°	5	2	3200	1239	11427	384670	402
Homogêneo	Par 45°	5	2	10000	1765	15590	505788	503
Homogêneo	Par 45°	5	2	32000	2455	20689	681977	1647
Homogêneo	Par 45°	5	2	100000	3252	26300	706111	1914
Homogêneo	Par 45°	5	3	0	236	781	23771	68
Homogêneo	Par 45°	5	3	32	218	1207	57898	363
Homogêneo	Par 45°	5	3	100	296	1753	81049	409
Homogêneo	Par 45°	5	3	320	480	3704	154244	286
Homogêneo	Par 45°	5	3	1000	815	7228	258931	448
Homogêneo	Par 45°	5	3	3200	1206	10948	395106	677
Homogêneo	Par 45°	5	3	10000	1666	13808	503236	673
Homogêneo	Par 45°	5	3	32000	2320	18271	618977	1788
Homogêneo	Par 45°	5	3	100000	3097	22857	597466	1780
Homogêneo	Par Paralelo	0	1	0	177	542	15437	32
Homogêneo	Par Paralelo	0	1	32	192	990	42616	249
Homogêneo	Par Paralelo	0	1	100	294	1819	72472	201
Homogêneo	Par Paralelo	0	1	320	605	5072	157531	45
Homogêneo	Par Paralelo	0	1	1000	1137	8896	224871	8
Homogêneo	Par Paralelo	0	1	3200	2265	13552	262326	17
Homogêneo	Par Paralelo	0	1	10000	50937	240609	3513838	0
Homogêneo	Par Paralelo	0	1	32000	65379	306106	4703922	0
Homogêneo	Par Paralelo	0	1	100000	119626	610331	10562744	0
Homogêneo	Par Paralelo	0	2	0	300	956	22276	31
Homogêneo	Par Paralelo	0	2	32	215	1172	58490	355
Homogêneo	Par Paralelo	0	2	100	348	2087	105324	559
Homogêneo	Par Paralelo	0	2	320	658	5496	194976	289
Homogêneo	Par Paralelo	0	2	1000	1152	8893	241911	78
Homogêneo	Par Paralelo	0	2	3200	1836	14244	406366	445
Homogêneo	Par Paralelo	0	2	10000	40284	189050	7678068	4863
Homogêneo	Par Paralelo	0	2	32000	57772	270746	15746753	64915
Homogêneo	Par Paralelo	0	2	100000	81520	408860	25476090	176897
Homogêneo	Par Paralelo	0	3	0	428	1365	28550	24
Homogêneo	Par Paralelo	0	3	32	235	1265	69712	480
Homogêneo	Par Paralelo	0	3	100	365	1961	105896	702
Homogêneo	Par Paralelo	0	3	320	652	5297	200748	327
Homogêneo	Par Paralelo	0	3	1000	1159	9272	278016	274
Homogêneo	Par Paralelo	0	3	3200	1606	13024	419193	671
Homogêneo	Par Paralelo	0	3	10000	32715	152060	6011403	4445
						·		

Homogêneo	Par Paralelo	0	3	32000	48108	227641	12904385	45533
Homogêneo	Par Paralelo	0	3	100000	61189	294435	17454453	100872
Homogêneo	Par Paralelo	1	1	0	190	603	16662	46
Homogêneo	Par Paralelo	1	1	32	201	1131	44974	227
Homogêneo	Par Paralelo	1	1	100	307	1911	89547	467
Homogêneo	Par Paralelo	1	1	320	534	4224	178322	381
Homogêneo	Par Paralelo	1	1	1000	890	7982	315590	64
Homogêneo	Par Paralelo	1	1	3200	1450	13507	560425	703
Homogêneo	Par Paralelo	1	1	10000	2032	17656	667662	1157
Homogêneo	Par Paralelo	1	1	32000	2605	20917	736400	1424
Homogêneo	Par Paralelo	1	1	100000	3422	27480	868043	1957
Homogêneo	Par Paralelo	1	2	0	321	1009	23483	28
Homogêneo	Par Paralelo	1	2	32	227	1287	66018	437
Homogêneo	Par Paralelo	1	2	100	340	1973	93364	423
Homogêneo	Par Paralelo	1	2	320	579	4574	176677	141
Homogêneo	Par Paralelo	1	2	1000	953	8669	277975	136
Homogêneo	Par Paralelo	1	2	3200	1391	12772	443127	606
Homogêneo	Par Paralelo	1	2	10000	1778	14648	484672	1041
Homogêneo	Par Paralelo	1	2	32000	2372	18454	553039	1190
Homogêneo	Par Paralelo	1	2	100000	2963	22632	600583	1309
Homogêneo	Par Paralelo	1	3	0	420	1331	27359	15
Homogêneo	Par Paralelo	1	3	32	240	1273	66538	426
Homogêneo	Par Paralelo	1	3	100	358	1985	98656	482
Homogêneo	Par Paralelo	1	3	320	597	4444	187332	364
Homogêneo	Par Paralelo	1	3	1000	924	7888	277708	386
Homogêneo	Par Paralelo	1	3	3200	1382	12365	469023	777
Homogêneo	Par Paralelo	1	3	10000	1809	14819	581122	1611
Homogêneo	Par Paralelo	1	3	32000	2378	18112	543039	1304
Homogêneo	Par Paralelo	1	3	100000	2792	20258	538099	1599
Homogêneo	Par Paralelo	5	1	0	110	340	10107	37
Homogêneo	Par Paralelo	5	1	32	178	933	40847	244
Homogêneo	Par Paralelo	5	1	100	253	1448	58284	192
Homogêneo	Par Paralelo	5	1	320	430	3241	110673	49
Homogêneo	Par Paralelo	5	1	1000	737	6689	187963	6
Homogêneo	Par Paralelo	5	1	3200	1143	10563	280421	40
Homogêneo	Par Paralelo	5	1	10000	1737	15774	387223	15
Homogêneo	Par Paralelo	5	1	32000	2274	20257	432150	31
Homogêneo	Par Paralelo	5	1	100000	2859	24652	518775	56
Homogêneo	Par Paralelo	5	2	0	126	400	12699	61
Homogêneo	Par Paralelo	5	2	32	200	1127	53392	332
Homogêneo	Par Paralelo	5	2	100	271	1561	72325	284
Homogêneo	Par Paralelo	5	2	320	443	3304	138521	258
Homogêneo	Par Paralelo	5	2	1000	748	6767	261537	310
Homogêneo	Par Paralelo	5	2	3200	1083	9487	390010	954

Homogêneo	Par Paralelo	5	2	10000	1527	12716	566687	2214
Homogêneo	Par Paralelo	5	2	32000	2023	15700	554921	1807
Homogêneo	Par Paralelo	5	2	100000	2311	18104	545721	1647
Homogêneo	Par Paralelo	5	3	0	132	427	13209	56
Homogêneo	Par Paralelo	5	3	32	207	1155	58073	408
Homogêneo	Par Paralelo	5	3	100	282	1630	75991	339
Homogêneo	Par Paralelo	5	3	320	433	3007	129244	315
Homogêneo	Par Paralelo	5	3	1000	713	6194	239366	465
Homogêneo	Par Paralelo	5	3	3200	1059	8650	344666	662
Homogêneo	Par Paralelo	5	3	10000	1468	11551	458237	1197
Homogêneo	Par Paralelo	5	3	32000	1964	14784	485132	1382
Homogêneo	Par Paralelo	5	3	100000	2503	18486	533227	1738

Tabela A.2: Resultados das simulações - numérico 2

Matriz	Malha	D	L	Kfrat	Cortes de <i>Timestep</i>	EBM (%)	Implicitude Média (%)	Tempo de Simulação (s)
Heterogêneo	Depleção	0	1	0	2	0.3078	17.3972	125
Heterogêneo	Depleção	0	1	32	17	0.0095	11.2724	175
Heterogêneo	Depleção	0	1	100	25	0.0111	9.5050	173
Heterogêneo	Depleção	0	1	320	55	0.0047	6.2497	224
Heterogêneo	Depleção	0	1	1000	34	0.0043	10.2577	232
Heterogêneo	Depleção	0	1	3200	34	0.0109	11.0344	208
Heterogêneo	Depleção	0	1	10000	22	0.0279	15.9197	212
Heterogêneo	Depleção	0	1	32000	38	0.0070	11.6036	234
Heterogêneo	Depleção	0	1	100000	90	0.0069	5.6462	315
Heterogêneo	Depleção	0	2	0	6	0.2917	20.6338	145
Heterogêneo	Depleção	0	2	32	21	0.0072	8.3905	234
Heterogêneo	Depleção	0	2	100	33	0.0055	7.6797	270
Heterogêneo	Depleção	0	2	320	66	0.0160	6.4531	378
Heterogêneo	Depleção	0	2	1000	113	0.0045	4.6111	542
Heterogêneo	Depleção	0	2	3200	106	0.2608	5.5781	603
Heterogêneo	Depleção	0	2	10000	113	0.4307	4.7286	873
Heterogêneo	Depleção	0	2	32000	44	7.6047	2.5962	297
Heterogêneo	Depleção	0	2	100000	48	8.1895	1.8576	168
Heterogêneo	Depleção	0	3	0	4	0.2435	14.5058	123
Heterogêneo	Depleção	0	3	32	22	0.0054	6.2099	251
Heterogêneo	Depleção	0	3	100	55	0.0035	6.7940	296
Heterogêneo	Depleção	0	3	320	89	0.0170	3.9646	486
Heterogêneo	Depleção	0	3	1000	111	0.0041	5.2350	517
Heterogêneo	Depleção	0	3	3200	83	0.0108	6.2487	614
Heterogêneo	Depleção	0	3	10000	42	6.0113	3.4750	444
Heterogêneo	Depleção	0	3	32000	269	0.4286	5.2343	1498

Heterogêneo	Depleção	0	3	100000	54	8.2383	1.9667	146
Heterogêneo	Depleção	1	1	0	7	0.3065	15.7284	140
Heterogêneo	Depleção	1	1	32	18	0.2005	9.6725	160
Heterogêneo	Depleção	1	1	100	21	0.0366	9.2208	175
Heterogêneo	Depleção	1	1	320	80	0.0119	5.9921	270
Heterogêneo	Depleção	1	1	1000	64	0.0055	7.4733	332
Heterogêneo	Depleção	1	1	3200	62	0.0348	5.3549	376
Heterogêneo	Depleção	1	1	10000	96	0.1027	4.6010	582
Heterogêneo	Depleção	1	1	32000	60	7.6141	1.2805	213
Heterogêneo	Depleção	1	1	100000	47	7.4429	1.5765	250
Heterogêneo	Depleção	1	2	0	4	0.2982	16.3484	128
Heterogêneo	Depleção	1	2	32	28	0.0059	5.9247	212
Heterogêneo	Depleção	1	2	100	44	0.0021	6.3524	260
Heterogêneo	Depleção	1	2	320	105	0.0126	3.0251	526
Heterogêneo	Depleção	1	2	1000	174	0.0034	4.5812	589
Heterogêneo	Depleção	1	2	3200	96	0.0148	5.3966	562
Heterogêneo	Depleção	1	2	10000	112	0.1803	4.5134	791
Heterogêneo	Depleção	1	2	32000	55	7.2326	2.3526	355
Heterogêneo	Depleção	1	2	100000	66	8.0267	1.9676	220
Heterogêneo	Depleção	1	3	0	5	0.2458	21.0077	166
Heterogêneo	Depleção	1	3	32	27	0.0008	5.2387	227
Heterogêneo	Depleção	1	3	100	47	0.0038	7.1312	285
Heterogêneo	Depleção	1	3	320	88	0.0263	2.5723	610
Heterogêneo	Depleção	1	3	1000	213	0.0035	4.6513	819
Heterogêneo	Depleção	1	3	3200	702	0.0108	2.5945	1976
Heterogêneo	Depleção	1	3	10000	204	0.0849	5.1223	1044
Heterogêneo	Depleção	1	3	32000	46	8.2196	1.5452	128
Heterogêneo	Depleção	1	3	100000	57	8.2545	1.8033	137
Heterogêneo	Depleção	5	1	0	9	0.3003	20.1003	146
Heterogêneo	Depleção	5	1	32	12	0.0084	12.6395	170
Heterogêneo	Depleção	5	1	100	28	0.0148	9.2643	174
Heterogêneo	Depleção	5	1	320	52	0.0219	8.9723	240
Heterogêneo	Depleção	5	1	1000	77	0.0088	5.3924	272
Heterogêneo	Depleção	5	1	3200	30	0.0146	12.5523	249
Heterogêneo	Depleção	5	1	10000	45	0.0317	11.2920	282
Heterogêneo	Depleção	5	1	32000	35	0.0142	7.7173	234
Heterogêneo	Depleção	5	1	100000	67	0.0066	4.7252	344
Heterogêneo	Depleção	5	2	0	5	0.3003	19.0468	129
Heterogêneo	Depleção	5	2	32	18	0.0029	6.2867	194
Heterogêneo	Depleção	5	2	100	38	0.0033	7.1811	236
Heterogêneo	Depleção	5	2	320	118	0.0170	2.8890	512
Heterogêneo	Depleção	5	2	1000	136	0.0078	4.9004	490
Heterogêneo	Depleção	5	2	3200	116	0.0179	5.3513	580
Heterogêneo	Depleção	5	2	10000	45	8.0289	1.4220	121

Heterogêneo	Depleção	5	2	32000	37	8.2480	1.4324	101
Heterogêneo	Depleção	5	2	100000	66	8.0903	1.6097	189
Heterogêneo	Depleção	5	3	0	6	0.2448	20.7136	175
Heterogêneo	Depleção	5	3	32	21	0.0043	5.9688	297
Heterogêneo	Depleção	5	3	100	47	0.0074	6.1246	368
Heterogêneo	Depleção	5	3	320	94	0.1604	6.7904	482
Heterogêneo	Depleção	5	3	1000	159	0.3889	2.4273	1195
Heterogêneo	Depleção	5	3	3200	184	0.3039	5.3735	1069
Heterogêneo	Depleção	5	3	10000	34	8.1832	1.7672	143
Heterogêneo	Depleção	5	3	32000	59	8.1518	1.8688	181
Heterogêneo	Depleção	5	3	100000	61	8.2147	2.2778	185
Heterogêneo	Par 45°	0	1	0	30	0.0044	5.2926	100
Heterogêneo	Par 45°	0	1	32	84	0.0005	3.7915	298
Heterogêneo	Par 45°	0	1	100	151	0.0004	3.1091	430
Heterogêneo	Par 45°	0	1	320	539	0.0013	2.5070	851
Heterogêneo	Par 45°	0	1	1000	1251	0.0031	1.6396	1459
Heterogêneo	Par 45°	0	1	3200	2548	0.0022	1.0650	2087
Heterogêneo	Par 45°	0	1	10000	2660	0.0008	0.4762	8418
Heterogêneo	Par 45°	0	1	32000	4750	0.0009	0.5038	13754
Heterogêneo	Par 45°	0	1	100000	196761	0.0811	0.2597	191577
Heterogêneo	Par 45°	0	2	0	72	0.0048	4.6525	130
Heterogêneo	Par 45°	0	2	32	60	0.0007	3.7894	373
Heterogêneo	Par 45°	0	2	100	117	0.0002	3.1600	516
Heterogêneo	Par 45°	0	2	320	460	0.0013	2.3294	1036
Heterogêneo	Par 45°	0	2	1000	1109	0.0037	1.6223	1476
Heterogêneo	Par 45°	0	2	3200	2343	0.0025	0.9736	2392
Heterogêneo	Par 45°	0	2	10000	719	0.0009	0.1950	39509
Heterogêneo	Par 45°	0	2	32000	780	0.0012	0.1788	62089
Heterogêneo	Par 45°	0	2	100000	125208	0.1931	0.1697	417194
Heterogêneo	Par 45°	0	3	0	136	0.0049	3.8810	154
Heterogêneo	Par 45°	0	3	32	82	0.0011	4.0729	522
Heterogêneo	Par 45°	0	3	100	151	0.0003	3.0644	662
Heterogêneo	Par 45°	0	3	320	479	0.0017	2.4733	1087
Heterogêneo	Par 45°	0	3	1000	1238	0.0033	1.6138	1848
Heterogêneo	Par 45°	0	3	3200	1796	0.0022	1.1466	2349
Heterogêneo	Par 45°	0	3	10000	413	0.0005	0.2080	31695
Heterogêneo	Par 45°	0	3	32000	670	0.0026	0.1878	50840
Heterogêneo	Par 45°	0	3	100000	49149	0.1097	0.1841	223464
Heterogêneo	Par 45°	1	1	0	22	0.0039	5.2707	108
Heterogêneo	Par 45°	1	1	32	84	0.0006	3.8393	322
Heterogêneo	Par 45°	1	1	100	170	0.0005	3.2940	464
Heterogêneo	Par 45°	1	1	320	510	0.0015	2.4104	891
Heterogêneo	Par 45°	1	1	1000	1210	0.0027	1.6223	1505
Heterogêneo	Par 45°	1	1	3200	2135	0.0020	1.2041	2284

Heterogêneo	Par 45°	1	1	10000	3089	0.0019	1.1178	3256
Heterogêneo	Par 45°	1	1	32000	4467	0.0021	0.9678	4712
Heterogêneo	Par 45°	1	1	100000	6615	0.0018	0.8628	7170
Heterogêneo	Par 45°	1	2	0	59	0.0044	4.6008	125
Heterogêneo	Par 45°	1	2	32	78	0.0006	3.8489	379
Heterogêneo	Par 45°	1	2	100	135	0.0003	2.9448	479
Heterogêneo	Par 45°	1	2	320	441	0.0014	2.2524	910
Heterogêneo	Par 45°	1	2	1000	968	0.0027	1.7237	1356
Heterogêneo	Par 45°	1	2	3200	1766	0.0025	1.2081	2280
Heterogêneo	Par 45°	1	2	10000	2883	0.0031	0.7573	3268
Heterogêneo	Par 45°	1	2	32000	3164	0.0049	0.5629	3850
Heterogêneo	Par 45°	1	2	100000	3638	0.0057	0.4565	4858
Heterogêneo	Par 45°	1	3	0	132	0.0055	3.7892	162
Heterogêneo	Par 45°	1	3	32	79	0.0011	3.9778	440
Heterogêneo	Par 45°	1	3	100	140	0.0004	2.9073	528
Heterogêneo	Par 45°	1	3	320	457	0.0013	2.3797	1066
Heterogêneo	Par 45°	1	3	1000	951	0.0025	1.7857	1384
Heterogêneo	Par 45°	1	3	3200	1729	0.0023	1.2279	2355
Heterogêneo	Par 45°	1	3	10000	2155	0.0017	0.9110	3161
Heterogêneo	Par 45°	1	3	32000	2518	0.0025	0.6637	3702
Heterogêneo	Par 45°	1	3	100000	3030	0.0082	0.5023	4762
Heterogêneo	Par 45°	5	1	0	23	0.0038	5.3272	110
Heterogêneo	Par 45°	5	1	32	68	0.0006	4.0665	296
Heterogêneo	Par 45°	5	1	100	119	0.0005	3.3693	408
Heterogêneo	Par 45°	5	1	320	413	0.0011	2.6272	786
Heterogêneo	Par 45°	5	1	1000	904	0.0018	1.7810	1345
Heterogêneo	Par 45°	5	1	3200	1711	0.0014	1.3722	2436
Heterogêneo	Par 45°	5	1	10000	2214	0.0014	1.3079	3060
Heterogêneo	Par 45°	5	1	32000	3220	0.0019	1.1995	4193
Heterogêneo	Par 45°	5	1	100000	4939	0.0020	1.0274	6570
Heterogêneo	Par 45°	5	2	0	132	0.0054	3.7439	151
Heterogêneo	Par 45°	5	2	32	91	0.0008	3.8899	394
Heterogêneo	Par 45°	5	2	100	95	0.0005	3.1117	422
Heterogêneo	Par 45°	5	2	320	403	0.0008	2.3876	877
Heterogêneo	Par 45°	5	2	1000	838	0.0014	1.7545	1350
Heterogêneo	Par 45°	5	2	3200	1565	0.0019	1.3125	2174
Heterogêneo	Par 45°	5	2	10000	2354	0.0015	0.9661	3102
Heterogêneo	Par 45°	5	2	32000	2947	0.0023	0.7526	3780
Heterogêneo	Par 45°	5	2	100000	3554	0.0023	0.5814	4862
Heterogêneo	Par 45°	5	3	0	192	0.0050	3.2872	185
Heterogêneo	Par 45°	5	3	32	78	0.0011	4.0149	416
Heterogêneo	Par 45°	5	3	100	103	0.0005	3.0716	480
Heterogêneo	Par 45°	5	3	320	355	0.0008	2.4940	768
Heterogêneo	Par 45°	5	3	1000	855	0.0014	1.8708	1551

Heterogêneo	Par 45°	5	3	3200	1500	0.0017	1.4412	2119
Heterogêneo	Par 45°	5	3	10000	1902	0.0009	1.0785	2819
Heterogêneo	Par 45°	5	3	32000	2354	0.0014	0.8723	3465
Heterogêneo	Par 45°	5	3	100000	2670	0.0036	0.6579	4228
Heterogêneo	Par Paralelo	0	1	0	45	0.0044	4.9103	113
Heterogêneo	Par Paralelo	0	1	32	57	0.0007	4.2648	302
Heterogêneo	Par Paralelo	0	1	100	118	0.0004	3.3282	405
Heterogêneo	Par Paralelo	0	1	320	428	0.0019	2.4929	783
Heterogêneo	Par Paralelo	0	1	1000	1097	0.0045	1.6089	1088
Heterogêneo	Par Paralelo	0	1	3200	2586	0.0036	0.9187	1541
Heterogêneo	Par Paralelo	0	1	10000	3448	0.0001	0.1889	23828
Heterogêneo	Par Paralelo	0	1	32000	589	0.0014	0.1757	46819
Heterogêneo	Par Paralelo	0	1	100000	55440	0.1113	0.1724	132005
Heterogêneo	Par Paralelo	0	2	0	127	0.0056	4.0959	137
Heterogêneo	Par Paralelo	0	2	32	62	0.0011	4.0278	518
Heterogêneo	Par Paralelo	0	2	100	119	0.0003	3.2685	698
Heterogêneo	Par Paralelo	0	2	320	509	0.0021	2.4986	1437
Heterogêneo	Par Paralelo	0	2	1000	1116	0.0026	1.6328	2009
Heterogêneo	Par Paralelo	0	2	3200	1839	0.0015	1.0986	3055
Heterogêneo	Par Paralelo	0	2	10000	516	0.0004	0.2019	54127
Heterogêneo	Par Paralelo	0	2	32000	702	0.0063	0.1910	87198
Heterogêneo	Par Paralelo	0	2	100000	16353	0.0354	0.1962	205593
Heterogêneo	Par Paralelo	0	3	0	278	0.0058	3.0675	196
Heterogêneo	Par Paralelo	0	3	32	71	0.0008	4.3988	721
Heterogêneo	Par Paralelo	0	3	100	84	0.0003	3.1958	795
Heterogêneo	Par Paralelo	0	3	320	426	0.0018	2.5011	1508
Heterogêneo	Par Paralelo	0	3	1000	1152	0.0025	1.6811	2503
Heterogêneo	Par Paralelo	0	3	3200	1802	0.0014	1.1782	3646
Heterogêneo	Par Paralelo	0	3	10000	521	0.0025	0.2197	43727
Heterogêneo	Par Paralelo	0	3	32000	628	0.0036	0.2102	81640
Heterogêneo	Par Paralelo	0	3	100000	7633	0.0321	0.2241	172222
Heterogêneo	Par Paralelo	1	1	0	47	0.0049	4.9805	115
Heterogêneo	Par Paralelo	1	1	32	70	0.0009	4.0423	329
Heterogêneo	Par Paralelo	1	1	100	133	0.0005	3.2850	507
Heterogêneo	Par Paralelo	1	1	320	391	0.0019	2.4551	881
Heterogêneo	Par Paralelo	1	1	1000	790	0.0015	1.8089	1560
Heterogêneo	Par Paralelo	1	1	3200	1777	0.0024	1.1504	2309
Heterogêneo	Par Paralelo	1	1	10000	2390	0.0069	0.7876	3461
Heterogêneo	Par Paralelo	1	1	32000	2913	0.0161	0.5348	3870
Heterogêneo	Par Paralelo	1	1	100000	3473	0.0233	0.4288	4686
Heterogêneo	Par Paralelo	1	2	0	163	0.0057	3.5805	147
Heterogêneo	Par Paralelo	1	2	32	76	0.0009	4.1710	463
Heterogêneo	Par Paralelo	1	2	100	132	0.0004	3.1098	555
Heterogêneo	Par Paralelo	1	2	320	379	0.0019	2.3948	866

Heterogêneo	Par Paralelo	1	2	1000	903	0.0023	1.8232	1474
Heterogêneo	Par Paralelo	1	2	3200	1707	0.0017	1.1973	2220
Heterogêneo	Par Paralelo	1	2	10000	2114	0.0060	0.8306	2948
Heterogêneo	Par Paralelo	1	2	32000	2287	0.0091	0.6180	3214
Heterogêneo	Par Paralelo	1	2	100000	2358	0.0135	0.5383	3961
Heterogêneo	Par Paralelo	1	3	0	231	0.0058	2.8944	175
Heterogêneo	Par Paralelo	1	3	32	77	0.0010	4.3648	539
Heterogêneo	Par Paralelo	1	3	100	115	0.0003	3.1798	577
Heterogêneo	Par Paralelo	1	3	320	392	0.0016	2.4469	905
Heterogêneo	Par Paralelo	1	3	1000	918	0.0019	1.8415	1568
Heterogêneo	Par Paralelo	1	3	3200	1452	0.0014	1.2971	2483
Heterogêneo	Par Paralelo	1	3	10000	1748	0.0038	0.9015	3050
Heterogêneo	Par Paralelo	1	3	32000	1846	0.0082	0.7016	3070
Heterogêneo	Par Paralelo	1	3	100000	1910	0.0131	0.6217	3841
Heterogêneo	Par Paralelo	5	1	0	17	0.0045	5.3207	91
Heterogêneo	Par Paralelo	5	1	32	65	0.0011	4.1013	286
Heterogêneo	Par Paralelo	5	1	100	107	0.0006	3.2996	393
Heterogêneo	Par Paralelo	5	1	320	409	0.0017	2.5043	755
Heterogêneo	Par Paralelo	5	1	1000	904	0.0029	1.7535	1176
Heterogêneo	Par Paralelo	5	1	3200	1446	0.0034	1.3045	1729
Heterogêneo	Par Paralelo	5	1	10000	1927	0.0027	0.9550	1988
Heterogêneo	Par Paralelo	5	1	32000	2196	0.0011	0.7583	2317
Heterogêneo	Par Paralelo	5	1	100000	2859	0.0009	0.5835	3250
Heterogêneo	Par Paralelo	5	2	0	61	0.0051	4.7587	116
Heterogêneo	Par Paralelo	5	2	32	64	0.0017	4.0454	363
Heterogêneo	Par Paralelo	5	2	100	83	0.0010	3.1794	441
Heterogêneo	Par Paralelo	5	2	320	339	0.0009	2.5648	935
Heterogêneo	Par Paralelo	5	2	1000	785	0.0014	1.9116	1713
Heterogêneo	Par Paralelo	5	2	3200	1051	0.0017	1.5011	2333
Heterogêneo	Par Paralelo	5	2	10000	1273	0.0031	1.1028	2920
Heterogêneo	Par Paralelo	5	2	32000	1468	0.0033	0.8527	2933
Heterogêneo	Par Paralelo	5	2	100000	1975	0.0064	0.6870	3495
Heterogêneo	Par Paralelo	5	3	0	113	0.0052	3.7621	137
Heterogêneo	Par Paralelo	5	3	32	75	0.0013	4.2017	457
Heterogêneo	Par Paralelo	5	3	100	93	0.0007	3.2563	444
Heterogêneo	Par Paralelo	5	3	320	333	0.0008	2.6221	886
Heterogêneo	Par Paralelo	5	3	1000	689	0.0012	1.9825	1511
Heterogêneo	Par Paralelo	5	3	3200	769	0.0010	1.6254	2090
Heterogêneo	Par Paralelo	5	3	10000	948	0.0025	1.2008	2324
Heterogêneo	Par Paralelo	5	3	32000	1189	0.0031	0.8719	2764
Heterogêneo	Par Paralelo	5	3	100000	1674	0.0103	0.7466	3574
Homogêneo	Depleção	0	1	0	9	0.2359	20.3685	157
Homogêneo	Depleção	0	1	32	33	0.0361	4.5952	249
Homogêneo	Depleção	0	1	100	39	0.0540	7.0166	173

Homogêneo	Depleção	0	1	320	92	0.0166	4.1032	266
Homogêneo	Depleção	0	1	1000	54	0.0114	9.5552	249
Homogêneo	Depleção	0	1	3200	44	0.0160	11.2343	224
Homogêneo	Depleção	0	1	10000	47	0.0115	11.2851	228
Homogêneo	Depleção	0	1	32000	48	0.0305	9.2857	219
Homogêneo	Depleção	0	1	100000	105	0.0096	2.4005	324
Homogêneo	Depleção	0	2	0	7	0.2339	22.5403	154
Homogêneo	Depleção	0	2	32	54	0.0236	3.6334	333
Homogêneo	Depleção	0	2	100	71	0.0354	2.2901	455
Homogêneo	Depleção	0	2	320	114	0.0384	1.9601	589
Homogêneo	Depleção	0	2	1000	183	0.0482	4.1268	554
Homogêneo	Depleção	0	2	3200	96	0.8148	5.0845	510
Homogêneo	Depleção	0	2	10000	40	8.2866	1.4313	117
Homogêneo	Depleção	0	2	32000	40	8.2806	1.6442	125
Homogêneo	Depleção	0	2	100000	55	8.2710	1.4977	165
Homogêneo	Depleção	0	3	0	7	0.2132	22.1714	155
Homogêneo	Depleção	0	3	32	53	0.0276	2.0117	378
Homogêneo	Depleção	0	3	100	46	2.1751	2.1547	386
Homogêneo	Depleção	0	3	320	113	0.8078	2.4062	548
Homogêneo	Depleção	0	3	1000	173	0.1427	4.4820	489
Homogêneo	Depleção	0	3	3200	116	0.4618	5.5162	503
Homogêneo	Depleção	0	3	10000	42	8.2699	1.5244	105
Homogêneo	Depleção	0	3	32000	43	8.2693	1.6769	107
Homogêneo	Depleção	0	3	100000	49	7.9927	2.6452	201
Homogêneo	Depleção	1	1	0	7	0.2391	21.6048	155
Homogêneo	Depleção	1	1	32	40	0.1717	3.2868	221
Homogêneo	Depleção	1	1	100	65	0.1786	2.4640	291
Homogêneo	Depleção	1	1	320	102	0.1416	2.0255	424
Homogêneo	Depleção	1	1	1000	245	0.0591	2.4386	564
Homogêneo	Depleção	1	1	3200	79	0.3436	5.2013	314
Homogêneo	Depleção	1	1	10000	46	8.0010	1.0775	125
Homogêneo	Depleção	1	1	32000	57	7.3916	1.3542	242
Homogêneo	Depleção	1	1	100000	53	8.0447	1.3391	141
Homogêneo	Depleção	1	2	0	4	0.2335	18.4893	127
Homogêneo	Depleção	1	2	32	24	0.0372	2.8082	309
Homogêneo	Depleção	1	2	100	56	0.0601	1.8147	348
Homogêneo	Depleção	1	2	320	83	0.0508	1.7440	510
Homogêneo	Depleção	1	2	1000	134	0.0403	4.3497	417
Homogêneo	Depleção	1	2	3200	336	0.6423	2.7914	798
Homogêneo	Depleção	1	2	10000	52	7.2421	1.7968	211
Homogêneo	Depleção	1	2	32000	45	7.9512	1.9868	180
Homogêneo	Depleção	1	2	100000	51	8.2426	1.7189	132
Homogêneo	Depleção	1	3	0	4	0.2377	18.0133	132
Homogêneo	Depleção	1	3	32	1	7.6071	0.4232	36

Homogêneo	Depleção	1	3	100	75	0.1133	1.9986	481
Homogêneo	Depleção	1	3	320	173	0.7846	2.2186	687
Homogêneo	Depleção	1	3	1000	246	0.6288	3.4759	691
Homogêneo	Depleção	1	3	3200	270	0.9253	3.9968	843
Homogêneo	Depleção	1	3	10000	247	1.5948	4.8369	982
Homogêneo	Depleção	1	3	32000	35	8.2789	1.7821	81
Homogêneo	Depleção	1	3	100000	42	8.1464	1.9418	147
Homogêneo	Depleção	5	1	0	5	0.2282	18.0804	132
Homogêneo	Depleção	5	1	32	24	0.0398	6.3621	234
Homogêneo	Depleção	5	1	100	32	0.1058	9.7474	186
Homogêneo	Depleção	5	1	320	78	0.0653	5.0382	226
Homogêneo	Depleção	5	1	1000	92	0.0527	5.2703	229
Homogêneo	Depleção	5	1	3200	56	0.0173	6.1989	230
Homogêneo	Depleção	5	1	10000	42	0.0334	9.5169	231
Homogêneo	Depleção	5	1	32000	39	0.0248	7.1697	245
Homogêneo	Depleção	5	1	100000	58	0.0176	4.3568	312
Homogêneo	Depleção	5	2	0	10	0.2285	20.8333	146
Homogêneo	Depleção	5	2	32	33	0.0395	2.6195	301
Homogêneo	Depleção	5	2	100	38	1.3565	1.8961	327
Homogêneo	Depleção	5	2	320	100	0.0515	1.5597	528
Homogêneo	Depleção	5	2	1000	277	0.5152	1.8610	903
Homogêneo	Depleção	5	2	3200	26	8.2072	0.8639	81
Homogêneo	Depleção	5	2	10000	34	8.2229	1.3908	95
Homogêneo	Depleção	5	2	32000	34	8.2593	1.4197	94
Homogêneo	Depleção	5	2	100000	57	8.1374	1.4538	170
Homogêneo	Depleção	5	3	0	7	0.2230	18.2297	140
Homogêneo	Depleção	5	3	32	1	7.8882	0.2307	27
Homogêneo	Depleção	5	3	100	13	5.0110	1.5797	365
Homogêneo	Depleção	5	3	320	101	1.1834	2.1057	697
Homogêneo	Depleção	5	3	1000	343	0.2621	3.2632	1150
Homogêneo	Depleção	5	3	3200	283	1.3336	4.0849	1065
Homogêneo	Depleção	5	3	10000	32	8.2364	1.4350	119
Homogêneo	Depleção	5	3	32000	38	8.1807	1.8260	123
Homogêneo	Depleção	5	3	100000	102	8.2440	2.3352	307
Homogêneo	Par 45°	0	1	0	34	0.0057	3.7345	85
Homogêneo	Par 45°	0	1	32	70	0.0014	3.2409	239
Homogêneo	Par 45°	0	1	100	112	0.0007	2.9547	329
Homogêneo	Par 45°	0	1	320	357	0.0011	2.4884	700
Homogêneo	Par 45°	0	1	1000	890	0.0031	1.7651	1014
Homogêneo	Par 45°	0	1	3200	2190	0.0029	1.1675	1902
Homogêneo	Par 45°	0	1	10000	2286	0.0003	0.2919	13632
Homogêneo	Par 45°	0	1	32000	4708	0.0005	0.3039	18252
Homogêneo	Par 45°	0	1	100000	384444	0.0784	0.2038	348977
Homogêneo	Par 45°	0	2	0	137	0.0061	2.8978	116

Homogêneo	Par 45°	0	2	32	46	0.0023	3.1137	283
Homogêneo	Par 45°	0	2	100	91	0.0005	2.5615	443
Homogêneo	Par 45°	0	2	320	390	0.0014	2.0736	876
Homogêneo	Par 45°	0	2	1000	811	0.0025	1.5686	1265
Homogêneo	Par 45°	0	2	3200	2089	0.0027	0.9913	2035
Homogêneo	Par 45°	0	2	10000	977	0.0005	0.2000	28052
Homogêneo	Par 45°	0	2	32000	815	0.0011	0.1821	41553
Homogêneo	Par 45°	0	2	100000	4007	0.0054	0.1744	73297
Homogêneo	Par 45°	0	3	0	213	0.0060	2.4503	153
Homogêneo	Par 45°	0	3	32	41	0.0032	3.2919	302
Homogêneo	Par 45°	0	3	100	89	0.0007	2.5835	471
Homogêneo	Par 45°	0	3	320	370	0.0012	2.1925	1039
Homogêneo	Par 45°	0	3	1000	838	0.0023	1.6202	1389
Homogêneo	Par 45°	0	3	3200	1322	0.0020	1.1968	1869
Homogêneo	Par 45°	0	3	10000	292	0.0002	0.2155	23671
Homogêneo	Par 45°	0	3	32000	563	0.0007	0.1907	32748
Homogêneo	Par 45°	0	3	100000	844	0.0025	0.1865	47262
Homogêneo	Par 45°	1	1	0	53	0.0055	3.3446	89
Homogêneo	Par 45°	1	1	32	61	0.0014	3.1784	234
Homogêneo	Par 45°	1	1	100	92	0.0007	2.8431	333
Homogêneo	Par 45°	1	1	320	365	0.0013	2.4713	738
Homogêneo	Par 45°	1	1	1000	674	0.0021	1.9211	1085
Homogêneo	Par 45°	1	1	3200	1221	0.0023	1.5297	1586
Homogêneo	Par 45°	1	1	10000	1999	0.0020	1.4012	2132
Homogêneo	Par 45°	1	1	32000	2730	0.0022	1.2745	3242
Homogêneo	Par 45°	1	1	100000	3863	0.0020	1.1328	4788
Homogêneo	Par 45°	1	2	0	151	0.0065	2.6451	119
Homogêneo	Par 45°	1	2	32	56	0.0023	3.2556	272
Homogêneo	Par 45°	1	2	100	100	0.0006	2.4729	408
Homogêneo	Par 45°	1	2	320	302	0.0012	2.0662	674
Homogêneo	Par 45°	1	2	1000	794	0.0024	1.5969	1223
Homogêneo	Par 45°	1	2	3200	1319	0.0024	1.2357	1756
Homogêneo	Par 45°	1	2	10000	1753	0.0016	0.9421	2332
Homogêneo	Par 45°	1	2	32000	1856	0.0056	0.7462	2630
Homogêneo	Par 45°	1	2	100000	2139	0.0068	0.5624	2916
Homogêneo	Par 45°	1	3	0	263	0.0064	2.2049	169
Homogêneo	Par 45°	1	3	32	49	0.0033	3.2368	276
Homogêneo	Par 45°	1	3	100	79	0.0009	2.5325	433
Homogêneo	Par 45°	1	3	320	323	0.0011	2.1382	825
Homogêneo	Par 45°	1	3	1000	723	0.0019	1.7113	1196
Homogêneo	Par 45°	1	3	3200	1173	0.0013	1.3157	1656
Homogêneo	Par 45°	1	3	10000	1284	0.0016	1.0516	2023
Homogêneo	Par 45°	1	3	32000	1397	0.0036	0.8364	2612
Homogêneo	Par 45°	1	3	100000	1639	0.0068	0.6320	2884

Homogêneo	Par 45°	5	1	0	17	0.0061	3.9263	69
Homogêneo	Par 45°	5	1	32	45	0.0017	3.4354	200
Homogêneo	Par 45°	5	1	100	67	0.0009	3.0777	276
Homogêneo	Par 45°	5	1	320	194	0.0011	2.6519	485
Homogêneo	Par 45°	5	1	1000	399	0.0013	2.0574	819
Homogêneo	Par 45°	5	1	3200	641	0.0013	1.8305	1160
Homogêneo	Par 45°	5	1	10000	974	0.0012	1.6794	1497
Homogêneo	Par 45°	5	1	32000	1341	0.0020	1.5078	1967
Homogêneo	Par 45°	5	1	100000	1891	0.0020	1.5110	2870
Homogêneo	Par 45°	5	2	0	85	0.0060	3.0731	104
Homogêneo	Par 45°	5	2	32	35	0.0029	3.1800	212
Homogêneo	Par 45°	5	2	100	77	0.0010	2.6388	312
Homogêneo	Par 45°	5	2	320	198	0.0010	2.1864	512
Homogêneo	Par 45°	5	2	1000	504	0.0008	1.6441	926
Homogêneo	Par 45°	5	2	3200	822	0.0008	1.3735	1379
Homogêneo	Par 45°	5	2	10000	1132	0.0008	1.1166	1781
Homogêneo	Par 45°	5	2	32000	1527	0.0031	0.8765	2425
Homogêneo	Par 45°	5	2	100000	1847	0.0043	0.7071	2562
Homogêneo	Par 45°	5	3	0	125	0.0054	2.7952	135
Homogêneo	Par 45°	5	3	32	55	0.0036	3.1559	268
Homogêneo	Par 45°	5	3	100	74	0.0013	2.5791	346
Homogêneo	Par 45°	5	3	320	210	0.0008	2.2281	630
Homogêneo	Par 45°	5	3	1000	469	0.0008	1.7033	980
Homogêneo	Par 45°	5	3	3200	729	0.0006	1.4444	1404
Homogêneo	Par 45°	5	3	10000	888	0.0007	1.1938	1726
Homogêneo	Par 45°	5	3	32000	1122	0.0024	1.0485	2203
Homogêneo	Par 45°	5	3	100000	1271	0.0037	0.7468	2403
Homogêneo	Par Paralelo	0	1	0	83	0.0064	3.1412	92
Homogêneo	Par Paralelo	0	1	32	37	0.0016	3.1777	210
Homogêneo	Par Paralelo	0	1	100	72	0.0005	2.7248	339
Homogêneo	Par Paralelo	0	1	320	355	0.0014	2.1114	707
Homogêneo	Par Paralelo	0	1	1000	869	0.0031	1.5194	997
Homogêneo	Par Paralelo	0	1	3200	2005	0.0039	1.0407	1385
Homogêneo	Par Paralelo	0	1	10000	755	0.0003	0.1940	17973
Homogêneo	Par Paralelo	0	1	32000	1075	0.0005	0.1785	24135
Homogêneo	Par Paralelo	0	1	100000	5131	0.0101	0.1732	47002
Homogêneo	Par Paralelo	0	2	0	205	0.0069	2.4753	125
Homogêneo	Par Paralelo	0	2	32	49	0.0026	3.4093	391
Homogêneo	Par Paralelo	0	2	100	80	0.0009	2.6570	572
Homogêneo	Par Paralelo	0	2	320	377	0.0015	2.1985	1176
Homogêneo	Par Paralelo	0	2	1000	858	0.0025	1.5992	1556
Homogêneo	Par Paralelo	0	2	3200	1424	0.0026	1.2032	2462
Homogêneo	Par Paralelo	0	2	10000	810	0.0002	0.2095	32742
Homogêneo	Par Paralelo	0	2	32000	670	0.0028	0.1872	54848

Homogêneo	Par Paralelo	0	2	100000	2518	0.0167	0.1924	84343
Homogêneo	Par Paralelo	0	3	0	323	0.0060	2.1145	173
Homogêneo	Par Paralelo	0	3	32	43	0.0028	3.6291	489
Homogêneo	Par Paralelo	0	3	100	57	0.0009	2.6894	639
Homogêneo	Par Paralelo	0	3	320	337	0.0011	2.2838	1230
Homogêneo	Par Paralelo	0	3	1000	864	0.0020	1.6910	1760
Homogêneo	Par Paralelo	0	3	3200	1044	0.0016	1.3028	2474
Homogêneo	Par Paralelo	0	3	10000	421	0.0012	0.2244	29008
Homogêneo	Par Paralelo	0	3	32000	630	0.0047	0.1984	49651
Homogêneo	Par Paralelo	0	3	100000	1286	0.0325	0.2187	64821
Homogêneo	Par Paralelo	1	1	0	90	0.0059	3.0892	104
Homogêneo	Par Paralelo	1	1	32	53	0.0022	3.1394	227
Homogêneo	Par Paralelo	1	1	100	84	0.0010	2.5770	372
Homogêneo	Par Paralelo	1	1	320	253	0.0008	2.0748	628
Homogêneo	Par Paralelo	1	1	1000	575	0.0015	1.6754	1126
Homogêneo	Par Paralelo	1	1	3200	1155	0.0015	1.2606	1861
Homogêneo	Par Paralelo	1	1	10000	1519	0.0108	0.9345	2229
Homogêneo	Par Paralelo	1	1	32000	1715	0.0210	0.7286	2374
Homogêneo	Par Paralelo	1	1	100000	2192	0.0331	0.5425	3073
Homogêneo	Par Paralelo	1	2	0	227	0.0067	2.3521	144
Homogêneo	Par Paralelo	1	2	32	56	0.0025	3.3470	311
Homogêneo	Par Paralelo	1	2	100	72	0.0009	2.4817	358
Homogêneo	Par Paralelo	1	2	320	269	0.0006	2.1491	731
Homogêneo	Par Paralelo	1	2	1000	614	0.0014	1.7270	1107
Homogêneo	Par Paralelo	1	2	3200	975	0.0007	1.3368	1617
Homogêneo	Par Paralelo	1	2	10000	1052	0.0051	1.0762	1668
Homogêneo	Par Paralelo	1	2	32000	1205	0.0112	0.8385	2006
Homogêneo	Par Paralelo	1	2	100000	1371	0.0207	0.6722	2267
Homogêneo	Par Paralelo	1	3	0	321	0.0063	2.0992	176
Homogêneo	Par Paralelo	1	3	32	44	0.0026	3.3239	323
Homogêneo	Par Paralelo	1	3	100	58	0.0008	2.4381	397
Homogêneo	Par Paralelo	1	3	320	239	0.0007	2.2221	688
Homogêneo	Par Paralelo	1	3	1000	503	0.0009	1.7845	1002
Homogêneo	Par Paralelo	1	3	3200	859	0.0005	1.3742	1562
Homogêneo	Par Paralelo	1	3	10000	970	0.0029	1.1251	1807
Homogêneo	Par Paralelo	1	3	32000	1015	0.0058	0.8757	2179
Homogêneo	Par Paralelo	1	3	100000	1050	0.0167	0.6794	2023
Homogêneo	Par Paralelo	5	1	0	17	0.0065	3.7053	67
Homogêneo	Par Paralelo	5	1	32	36	0.0017	3.1709	194
Homogêneo	Par Paralelo	5	1	100	62	0.0009	2.6602	252
Homogêneo	Par Paralelo	5	1	320	166	0.0009	2.1883	464
Homogêneo	Par Paralelo	5	1	1000	441	0.0011	1.6904	759
Homogêneo	Par Paralelo	5	1	3200	759	0.0012	1.3901	1106
Homogêneo	Par Paralelo	5	1	10000	1296	0.0016	1.0918	1588

Homogêneo	Par Paralelo	5	1	32000	1584	0.0014	0.8533	1805
Homogêneo	Par Paralelo	5	1	100000	1813	0.0010	0.7032	2471
Homogêneo	Par Paralelo	5	2	0	28	0.0061	3.5250	76
Homogêneo	Par Paralelo	5	2	32	47	0.0021	3.1964	232
Homogêneo	Par Paralelo	5	2	100	61	0.0011	2.5811	295
Homogêneo	Par Paralelo	5	2	320	178	0.0008	2.2005	536
Homogêneo	Par Paralelo	5	2	1000	439	0.0008	1.7386	929
Homogêneo	Par Paralelo	5	2	3200	600	0.0011	1.4553	1240
Homogêneo	Par Paralelo	5	2	10000	840	0.0015	1.2319	2019
Homogêneo	Par Paralelo	5	2	32000	974	0.0023	0.9753	1845
Homogêneo	Par Paralelo	5	2	100000	1113	0.0063	0.8103	2045
Homogêneo	Par Paralelo	5	3	0	32	0.0056	3.4617	78
Homogêneo	Par Paralelo	5	3	32	50	0.0029	3.2383	270
Homogêneo	Par Paralelo	5	3	100	62	0.0012	2.6307	309
Homogêneo	Par Paralelo	5	3	320	144	0.0009	2.2580	535
Homogêneo	Par Paralelo	5	3	1000	379	0.0008	1.8127	995
Homogêneo	Par Paralelo	5	3	3200	487	0.0010	1.5160	1441
Homogêneo	Par Paralelo	5	3	10000	667	0.0018	1.2444	1620
Homogêneo	Par Paralelo	5	3	32000	873	0.0026	0.9924	2002
Homogêneo	Par Paralelo	5	3	100000	1024	0.0085	0.9137	2269

Tabela A.3: Resultados de Simulaçao - Produção

Matriz	Malha	D	L	K _{frat}	N _p (<i>m³</i>)	FR	Dias para o Breakthrough de Água	t _{Dw}	Dias para P _b	t _{Dpb}
Heterogêneo	Depleção	0	1	0	1.45E+07	0.048	-1	-1.10E-05	4050	0.044614137
Heterogêneo	Depleção	0	1	32	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	0	1	100	1.31E+07	0.043	-1	-1.10E-05	3569	0.03931552
Heterogêneo	Depleção	0	1	320	1.31E+07	0.043	-1	-1.10E-05	3591	0.039557868
Heterogêneo	Depleção	0	1	1000	1.31E+07	0.043	-1	-1.10E-05	3575	0.039381615
Heterogêneo	Depleção	0	1	3200	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	0	1	10000	1.31E+07	0.043	-1	-1.10E-05	3900	0.042961762
Heterogêneo	Depleção	0	1	32000	1.31E+07	0.043	-1	-1.10E-05	3792	0.041772052
Heterogêneo	Depleção	0	1	100000	1.31E+07	0.043	-1	-1.10E-05	3685	0.040593357
Heterogêneo	Depleção	0	2	0	1.44E+07	0.048	-1	-1.10E-05	4050	0.044614137
Heterogêneo	Depleção	0	2	32	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	0	2	100	1.31E+07	0.043	-1	-1.10E-05	3575	0.039381615
Heterogêneo	Depleção	0	2	320	1.31E+07	0.043	-1	-1.10E-05	3588	0.039524821
Heterogêneo	Depleção	0	2	1000	1.30E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	0	2	3200	1.43E+07	0.047	-1	-1.10E-05	4000	0.044063345
Heterogêneo	Depleção	0	2	10000	1.51E+07	0.050	-1	-1.10E-05	4236	0.046663083
Heterogêneo	Depleção	0	2	32000	3.98E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	0	2	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05

Heterogêneo	Depleção	0	3	0	1.42E+07	0.047	-1	-1.10E-05	4050	0.044614137
Heterogêneo	Depleção	0	3	32	1.31E+07	0.043	-1	-1.10E-05	3508	0.038643554
Heterogêneo	Depleção	0	3	100	1.30E+07	0.043	-1	-1.10E-05	3512	0.038687617
Heterogêneo	Depleção	0	3	320	1.31E+07	0.043	-1	-1.10E-05	3517	0.038742697
Heterogêneo	Depleção	0	3	1000	1.30E+07	0.043	-1	-1.10E-05	3516	0.038731681
Heterogêneo	Depleção	0	3	3200	1.31E+07	0.043	-1	-1.10E-05	3563	0.039249425
Heterogêneo	Depleção	0	3	10000	3.98E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	0	3	32000	1.51E+07	0.050	-1	-1.10E-05	3786	0.041705956
Heterogêneo	Depleção	0	3	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	1	1	0	1.45E+07	0.048	-1	-1.10E-05	4050	0.044614137
Heterogêneo	Depleção	1	1	32	1.40E+07	0.046	-1	-1.10E-05	3853	0.042444018
Heterogêneo	Depleção	1	1	100	1.32E+07	0.044	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	1	1	320	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	1	1	1000	1.31E+07	0.043	-1	-1.10E-05	3582	0.039458726
Heterogêneo	Depleção	1	1	3200	1.32E+07	0.044	-1	-1.10E-05	3637	0.040064597
Heterogêneo	Depleção	1	1	10000	1.35E+07	0.045	-1	-1.10E-05	3720	0.040978911
Heterogêneo	Depleção	1	1	32000	3.98E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	1	1	100000	3.97E+07	0.131	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	1	2	0	1.45E+07	0.048	-1	-1.10E-05	4050	0.044614137
Heterogêneo	Depleção	1	2	32	1.31E+07	0.043	-1	-1.10E-05	3537	0.038963013
Heterogêneo	Depleção	1	2	100	1.30E+07	0.043	-1	-1.10E-05	3524	0.038819807
Heterogêneo	Depleção	1	2	320	1.31E+07	0.043	-1	-1.10E-05	3511	0.038676601
Heterogêneo	Depleção	1	2	1000	1.30E+07	0.043	-1	-1.10E-05	3577	0.039403647
Heterogêneo	Depleção	1	2	3200	1.31E+07	0.043	-1	-1.10E-05	3540	0.038996061
Heterogêneo	Depleção	1	2	10000	1.39E+07	0.046	-1	-1.10E-05	3790	0.04175002
Heterogêneo	Depleção	1	2	32000	3.97E+07	0.131	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	1	2	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	1	3	0	1.42E+07	0.047	-1	-1.10E-05	4050	0.044614137
Heterogêneo	Depleção	1	3	32	1.30E+07	0.043	-1	-1.10E-05	3529	0.038874887
Heterogêneo	Depleção	1	3	100	1.30E+07	0.043	-1	-1.10E-05	3493	0.038478316
Heterogêneo	Depleção	1	3	320	1.31E+07	0.043	-1	-1.10E-05	3498	0.038533396
Heterogêneo	Depleção	1	3	1000	1.30E+07	0.043	-1	-1.10E-05	3485	0.03839019
Heterogêneo	Depleção	1	3	3200	1.30E+07	0.043	-1	-1.10E-05	3283	0.036164991
Heterogêneo	Depleção	1	3	10000	1.34E+07	0.044	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	1	3	32000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	1	3	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	5	1	0	1.45E+07	0.048	-1	-1.10E-05	4050	0.044614137
Heterogêneo	Depleção	5	1	32	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	5	1	100	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	5	1	320	1.32E+07	0.044	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	5	1	1000	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	5	1	3200	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	5	1	10000	1.32E+07	0.044	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	5	1	32000	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011

Heterogêneo	Depleção	5	1	100000	1.31E+07	0.043	-1	-1.10E-05	3548	0.039084187
Heterogêneo	Depleção	5	2	0	1.45E+07	0.048	-1	-1.10E-05	4050	0.044614137
Heterogêneo	Depleção	5	2	32	1.31E+07	0.043	-1	-1.10E-05	3553	0.039139267
Heterogêneo	Depleção	5	2	100	1.31E+07	0.043	-1	-1.10E-05	3600	0.039657011
Heterogêneo	Depleção	5	2	320	1.31E+07	0.043	-1	-1.10E-05	3556	0.039172314
Heterogêneo	Depleção	5	2	1000	1.31E+07	0.043	-1	-1.10E-05	3563	0.039249425
Heterogêneo	Depleção	5	2	3200	1.31E+07	0.043	-1	-1.10E-05	3585	0.039491773
Heterogêneo	Depleção	5	2	10000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	5	2	32000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	5	2	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	5	3	0	1.42E+07	0.047	-1	-1.10E-05	4050	0.044614137
Heterogêneo	Depleção	5	3	32	1.31E+07	0.043	-1	-1.10E-05	3564	0.039260441
Heterogêneo	Depleção	5	3	100	1.31E+07	0.043	-1	-1.10E-05	3535	0.038940982
Heterogêneo	Depleção	5	3	320	1.38E+07	0.046	-1	-1.10E-05	3734	0.041133133
Heterogêneo	Depleção	5	3	1000	1.49E+07	0.049	-1	-1.10E-05	4039	0.044492963
Heterogêneo	Depleção	5	3	3200	1.45E+07	0.048	-1	-1.10E-05	3944	0.043446459
Heterogêneo	Depleção	5	3	10000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	5	3	32000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Depleção	5	3	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Heterogêneo	Par 45°	0	1	0	3.92E+07	0.130	8100	8.92E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	1	32	3.91E+07	0.129	7677	8.46E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	1	100	3.89E+07	0.129	7491	8.25E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	1	320	3.88E+07	0.128	7360	8.11E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	1	1000	3.88E+07	0.128	7302	8.04E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	1	3200	3.88E+07	0.129	7291	8.03E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	1	10000	3.88E+07	0.128	7300	8.04E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	1	32000	3.88E+07	0.128	7222	7.96E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	1	100000	3.84E+07	0.127	7213	7.95E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	2	0	3.91E+07	0.130	8055	8.87E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	2	32	3.89E+07	0.129	7178	7.91E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	2	100	3.86E+07	0.128	6300	6.94E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	2	320	3.78E+07	0.125	4200	4.63E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	2	1000	3.61E+07	0.119	636	7.01E-03	-1	-1.10E-05
Heterogêneo	Par 45°	0	2	3200	3.40E+07	0.113	50	5.49E-04	-1	-1.10E-05
Heterogêneo	Par 45°	0	2	10000	2.97E+07	0.098	22	2.45E-04	-1	-1.10E-05
Heterogêneo	Par 45°	0	2	32000	2.88E+07	0.095	14	1.53E-04	-1	-1.10E-05
Heterogêneo	Par 45°	0	2	100000	2.83E+07	0.094	10	1.08E-04	-1	-1.10E-05
Heterogêneo	Par 45°	0	3	0	3.91E+07	0.129	8058	8.88E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	3	32	3.88E+07	0.128	6767	7.45E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	3	100	3.83E+07	0.127	5483	6.04E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	3	320	3.71E+07	0.123	2577	2.84E-02	-1	-1.10E-05
Heterogêneo	Par 45°	0	3	1000	3.47E+07	0.115	137	1.50E-03	-1	-1.10E-05
Heterogêneo	Par 45°	0	3	3200	3.34E+07	0.110	42	4.62E-04	-1	-1.10E-05
Heterogêneo	Par 45°	0	3	10000	3.04E+07	0.101	23	2.48E-04	-1	-1.10E-05
Heterogêneo	Par 45°	0	3	32000	2.94E+07	0.097	16	1.77E-04	-1	-1.10E-05
-------------	---------	---	---	--------	----------	-------	---------------------------------------	----------	----	-----------
Heterogêneo	Par 45°	0	3	100000	2.82E+07	0.093	12	1.34E-04	-1	-1.10E-05
Heterogêneo	Par 45°	1	1	0	3.92E+07	0.130	8250	9.09E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	1	32	3.91E+07	0.129	7967	8.78E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	1	100	3.91E+07	0.129	7800	8.59E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	1	320	3.91E+07	0.129	7733	8.52E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	1	1000	3.90E+07	0.129	7678	8.46E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	1	3200	3.90E+07	0.129	7659	8.44E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	1	10000	3.90E+07	0.129	7644	8.42E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	1	32000	3.90E+07	0.129	7640	8.42E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	1	100000	3.90E+07	0.129	7637	8.41E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	2	0	3.91E+07	0.130	8100	8.92E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	2	32	3.90E+07	0.129	7588	8.36E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	2	100	3.89E+07	0.129	7017	7.73E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	2	320	3.85E+07	0.127	5068	5.58E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	2	1000	3.75E+07	0.124	2112	2.33E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	2	3200	3.59E+07	0.119	827	9.11E-03	-1	-1.10E-05
Heterogêneo	Par 45°	1	2	10000	3.47E+07	0.115	501	5.51E-03	-1	-1.10E-05
Heterogêneo	Par 45°	1	2	32000	3.45E+07	0.114	423	4.66E-03	-1	-1.10E-05
Heterogêneo	Par 45°	1	2	100000	3.50E+07	0.116	419	4.62E-03	-1	-1.10E-05
Heterogêneo	Par 45°	1	3	0	3.91E+07	0.129	8025	8.84E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	3	32	3.89E+07	0.129	7354	8.10E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	3	100	3.87E+07	0.128	6425	7.08E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	3	320	3.81E+07	0.126	3806	4.19E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	3	1000	3.68E+07	0.122	1538	1.69E-02	-1	-1.10E-05
Heterogêneo	Par 45°	1	3	3200	3.54E+07	0.117	769	8.47E-03	-1	-1.10E-05
Heterogêneo	Par 45°	1	3	10000	3.48E+07	0.115	555	6.11E-03	-1	-1.10E-05
Heterogêneo	Par 45°	1	3	32000	3.52E+07	0.116	514	5.67E-03	-1	-1.10E-05
Heterogêneo	Par 45°	1	3	100000	3.56E+07	0.118	524	5.77E-03	-1	-1.10E-05
Heterogêneo	Par 45°	5	1	0	3.92E+07	0.130	8375	9.23E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	1	32	3.92E+07	0.130	8100	8.92E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	1	100	3.92E+07	0.130	8097	8.92E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	1	320	3.92E+07	0.130	8069	8.89E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	1	1000	3.92E+07	0.130	8042	8.86E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	1	3200	3.92E+07	0.130	8046	8.86E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	1	10000	3.92E+07	0.130	8039	8.86E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	1	32000	3.92E+07	0.130	8036	8.85E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	1	100000	3.92E+07	0.130	8032	8.85E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	2	0	3.92E+07	0.130	8198	9.03E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	2	32	3.92E+07	0.130	8100	8.92E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	2	100	3.91E+07	0.130	8009	8.82E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	2	320	3.90E+07	0.129	7556	8.32E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	2	1000	3.88E+07	0.128	5899	6.50E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	2	3200	3.82E+07	0.127	4080	4.49E-02	-1	-1.10E-05
		·			1		· · · · · · · · · · · · · · · · · · ·			

Heterogêneo	Par 45°	5	2	10000	3.78E+07	0.125	3279	3.61E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	2	32000	3.76E+07	0.124	3003	3.31E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	2	100000	3.77E+07	0.125	2962	3.26E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	3	0	3.92E+07	0.130	8159	8.99E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	3	32	3.92E+07	0.130	8081	8.90E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	3	100	3.91E+07	0.130	7965	8.77E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	3	320	3.90E+07	0.129	7242	7.98E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	3	1000	3.86E+07	0.128	5229	5.76E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	3	3200	3.81E+07	0.126	3890	4.29E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	3	10000	3.78E+07	0.125	3346	3.69E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	3	32000	3.78E+07	0.125	3176	3.50E-02	-1	-1.10E-05
Heterogêneo	Par 45°	5	3	100000	3.80E+07	0.126	3193	3.52E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	1	0	3.88E+07	0.128	7711	8.49E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	1	32	3.85E+07	0.127	6784	7.47E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	1	100	3.80E+07	0.126	5400	5.95E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	1	320	3.69E+07	0.122	2024	2.23E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	1	1000	3.47E+07	0.115	85	9.38E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	1	3200	3.22E+07	0.107	22	2.47E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	1	10000	2.80E+07	0.093	12	1.34E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	1	32000	2.70E+07	0.089	8	9.22E-05	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	1	100000	2.64E+07	0.087	6	6.77E-05	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	2	0	3.88E+07	0.128	7432	8.19E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	2	32	3.83E+07	0.127	6427	7.08E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	2	100	3.76E+07	0.124	4608	5.08E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	2	320	3.60E+07	0.119	1111	1.22E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	2	1000	3.31E+07	0.110	79	8.68E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	2	3200	3.16E+07	0.105	30	3.29E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	2	10000	2.88E+07	0.095	17	1.89E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	2	32000	2.82E+07	0.093	13	1.43E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	2	100000	2.60E+07	0.086	10	1.12E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	3	0	3.87E+07	0.128	7317	8.06E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	3	32	3.81E+07	0.126	6257	6.89E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	3	100	3.73E+07	0.123	4317	4.76E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	3	320	3.54E+07	0.117	771	8.49E-03	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	3	1000	3.24E+07	0.107	85	9.35E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	3	3200	3.19E+07	0.105	37	4.10E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	3	10000	2.99E+07	0.099	23	2.51E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	3	32000	2.87E+07	0.095	17	1.91E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	0	3	100000	2.58E+07	0.085	15	1.62E-04	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	1	0	3.88E+07	0.128	7612	8.39E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	1	32	3.86E+07	0.128	7137	7.86E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	1	100	3.83E+07	0.127	6426	7.08E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	1	320	3.76E+07	0.125	4500	4.96E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	1	1000	3.62E+07	0.120	1594	1.76E-02	-1	-1.10E-05

Heterogêneo	Par Paralelo	1	1	3200	3.40E+07	0.112	690	7.60E-03	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	1	10000	3.25E+07	0.107	469	5.17E-03	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	1	32000	3.18E+07	0.105	425	4.68E-03	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	1	100000	3.18E+07	0.105	437	4.82E-03	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	2	0	3.88E+07	0.128	7500	8.26E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	2	32	3.85E+07	0.127	6900	7.60E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	2	100	3.80E+07	0.126	5971	6.58E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	2	320	3.70E+07	0.123	3704	4.08E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	2	1000	3.53E+07	0.117	1612	1.78E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	2	3200	3.35E+07	0.111	904	9.95E-03	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	2	10000	3.26E+07	0.108	731	8.05E-03	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	2	32000	3.24E+07	0.107	712	7.84E-03	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	2	100000	3.25E+07	0.108	737	8.12E-03	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	3	0	3.88E+07	0.128	7500	8.26E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	3	32	3.84E+07	0.127	6900	7.60E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	3	100	3.80E+07	0.126	5838	6.43E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	3	320	3.68E+07	0.122	3635	4.00E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	3	1000	3.52E+07	0.116	1814	2.00E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	3	3200	3.37E+07	0.111	1155	1.27E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	3	10000	3.30E+07	0.109	1014	1.12E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	3	32000	3.30E+07	0.109	1008	1.11E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	1	3	100000	3.32E+07	0.110	1031	1.14E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	1	0	3.89E+07	0.129	7800	8.59E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	1	32	3.89E+07	0.129	7612	8.39E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	1	100	3.89E+07	0.129	7616	8.39E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	1	320	3.89E+07	0.129	7648	8.42E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	1	1000	3.87E+07	0.128	7536	8.30E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	1	3200	3.83E+07	0.127	6705	7.39E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	1	10000	3.81E+07	0.126	5639	6.21E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	1	32000	3.80E+07	0.126	5188	5.72E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	1	100000	3.81E+07	0.126	5153	5.68E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	2	0	3.89E+07	0.129	7669	8.45E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	2	32	3.89E+07	0.129	7747	8.53E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	2	100	3.89E+07	0.129	7697	8.48E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	2	320	3.89E+07	0.129	7798	8.59E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	2	1000	3.87E+07	0.128	7635	8.41E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	2	3200	3.85E+07	0.127	6830	7.52E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	2	10000	3.83E+07	0.127	6069	6.69E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	2	32000	3.84E+07	0.127	5845	6.44E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	2	100000	3.84E+07	0.127	5909	6.51E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	3	0	3.89E+07	0.129	7619	8.39E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	3	32	3.89E+07	0.129	7721	8.51E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	3	100	3.90E+07	0.129	7784	8.57E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	3	320	3.90E+07	0.129	7924	8.73E-02	-1	-1.10E-05

Heterogêneo	Par Paralelo	5	3	1000	3.88E+07	0.128	7878	8.68E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	3	3200	3.87E+07	0.128	7228	7.96E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	3	10000	3.86E+07	0.128	6594	7.26E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	3	32000	3.86E+07	0.128	6468	7.13E-02	-1	-1.10E-05
Heterogêneo	Par Paralelo	5	3	100000	3.87E+07	0.128	6556	7.22E-02	-1	-1.10E-05
Homogêneo	Depleção	0	1	0	1.41E+07	0.047	-1	-1.10E-05	4200	0.046266513
Homogêneo	Depleção	0	1	32	1.32E+07	0.044	-1	-1.10E-05	3726	0.041045006
Homogêneo	Depleção	0	1	100	1.33E+07	0.044	-1	-1.10E-05	3788	0.041727988
Homogêneo	Depleção	0	1	320	1.31E+07	0.043	-1	-1.10E-05	3618	0.039855296
Homogêneo	Depleção	0	1	1000	1.30E+07	0.043	-1	-1.10E-05	3690	0.040648436
Homogêneo	Depleção	0	1	3200	1.30E+07	0.043	-1	-1.10E-05	3850	0.04241097
Homogêneo	Depleção	0	1	10000	1.30E+07	0.043	-1	-1.10E-05	3756	0.041375481
Homogêneo	Depleção	0	1	32000	1.31E+07	0.043	-1	-1.10E-05	3774	0.041573766
Homogêneo	Depleção	0	1	100000	1.30E+07	0.043	-1	-1.10E-05	3723	0.041011959
Homogêneo	Depleção	0	2	0	1.41E+07	0.047	-1	-1.10E-05	4200	0.046266513
Homogêneo	Depleção	0	2	32	1.31E+07	0.043	-1	-1.10E-05	3683	0.040571325
Homogêneo	Depleção	0	2	100	1.32E+07	0.044	-1	-1.10E-05	3623	0.039910375
Homogêneo	Depleção	0	2	320	1.32E+07	0.044	-1	-1.10E-05	3584	0.039480758
Homogêneo	Depleção	0	2	1000	1.32E+07	0.044	-1	-1.10E-05	3639	0.040086629
Homogêneo	Depleção	0	2	3200	1.69E+07	0.056	-1	-1.10E-05	4785	0.052710777
Homogêneo	Depleção	0	2	10000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	0	2	32000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	0	2	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	0	3	0	1.40E+07	0.046	-1	-1.10E-05	4150	0.045715721
Homogêneo	Depleção	0	3	32	1.31E+07	0.043	-1	-1.10E-05	3642	0.040119676
Homogêneo	Depleção	0	3	100	2.34E+07	0.078	-1	-1.10E-05	6681	0.073596803
Homogêneo	Depleção	0	3	320	1.68E+07	0.056	-1	-1.10E-05	4641	0.051124497
Homogêneo	Depleção	0	3	1000	1.36E+07	0.045	-1	-1.10E-05	3739	0.041188212
Homogêneo	Depleção	0	3	3200	1.52E+07	0.050	-1	-1.10E-05	3950	0.043512554
Homogêneo	Depleção	0	3	10000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	0	3	32000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	0	3	100000	3.98E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	1	1	0	1.42E+07	0.047	-1	-1.10E-05	4200	0.046266513
Homogêneo	Depleção	1	1	32	1.38E+07	0.046	-1	-1.10E-05	3918	0.043160047
Homogêneo	Depleção	1	1	100	1.39E+07	0.046	-1	-1.10E-05	3909	0.043060904
Homogêneo	Depleção	1	1	320	1.37E+07	0.045	-1	-1.10E-05	3837	0.042267764
Homogêneo	Depleção	1	1	1000	1.33E+07	0.044	-1	-1.10E-05	3721	0.040989927
Homogêneo	Depleção	1	1	3200	1.46E+07	0.048	-1	-1.10E-05	4200	0.046266513
Homogêneo	Depleção	1	1	10000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	1	1	32000	3.98E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	1	1	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	1	2	0	1.41E+07	0.047	-1	-1.10E-05	4200	0.046266513
Homogêneo	Depleção	1	2	32	1.32E+07	0.044	-1	-1.10E-05	3688	0.040626405
Homogêneo	Depleção	1	2	100	1.33E+07	0.044	-1	-1.10E-05	3689	0.04063742

Homogêneo	Depleção	1	2	320	1.32E+07	0.044	-1	-1.10E-05	3646	0.040163739
Homogêneo	Depleção	1	2	1000	1.32E+07	0.044	-1	-1.10E-05	3715	0.040923832
Homogêneo	Depleção	1	2	3200	1.61E+07	0.053	-1	-1.10E-05	4556	0.05018815
Homogêneo	Depleção	1	2	10000	3.97E+07	0.131	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	1	2	32000	3.98E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	1	2	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	1	3	0	1.41E+07	0.047	-1	-1.10E-05	4200	0.046266513
Homogêneo	Depleção	1	3	32	3.98E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	1	3	100	1.35E+07	0.045	-1	-1.10E-05	3719	0.040967895
Homogêneo	Depleção	1	3	320	1.67E+07	0.055	-1	-1.10E-05	4645	0.05116856
Homogêneo	Depleção	1	3	1000	1.60E+07	0.053	-1	-1.10E-05	4411	0.048590854
Homogêneo	Depleção	1	3	3200	1.74E+07	0.058	-1	-1.10E-05	4800	0.052876015
Homogêneo	Depleção	1	3	10000	2.06E+07	0.068	-1	-1.10E-05	5852	0.064464674
Homogêneo	Depleção	1	3	32000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	1	3	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	5	1	0	1.41E+07	0.047	-1	-1.10E-05	4150	0.045715721
Homogêneo	Depleção	5	1	32	1.32E+07	0.044	-1	-1.10E-05	3763	0.041452592
Homogêneo	Depleção	5	1	100	1.35E+07	0.045	-1	-1.10E-05	3900	0.042961762
Homogêneo	Depleção	5	1	320	1.33E+07	0.044	-1	-1.10E-05	3878	0.042719413
Homogêneo	Depleção	5	1	1000	1.33E+07	0.044	-1	-1.10E-05	3746	0.041265323
Homogêneo	Depleção	5	1	3200	1.31E+07	0.043	-1	-1.10E-05	3765	0.041474624
Homogêneo	Depleção	5	1	10000	1.32E+07	0.044	-1	-1.10E-05	3860	0.042521128
Homogêneo	Depleção	5	1	32000	1.31E+07	0.043	-1	-1.10E-05	3806	0.041926273
Homogêneo	Depleção	5	1	100000	1.31E+07	0.043	-1	-1.10E-05	3687	0.040615389
Homogêneo	Depleção	5	2	0	1.41E+07	0.047	-1	-1.10E-05	4150	0.045715721
Homogêneo	Depleção	5	2	32	1.32E+07	0.044	-1	-1.10E-05	3707	0.040835705
Homogêneo	Depleção	5	2	100	1.95E+07	0.065	-1	-1.10E-05	5596	0.06164462
Homogêneo	Depleção	5	2	320	1.32E+07	0.044	-1	-1.10E-05	3672	0.040450151
Homogêneo	Depleção	5	2	1000	1.55E+07	0.051	-1	-1.10E-05	4323	0.047621461
Homogêneo	Depleção	5	2	3200	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	5	2	10000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	5	2	32000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	5	2	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	5	3	0	1.41E+07	0.047	-1	-1.10E-05	4200	0.046266513
Homogêneo	Depleção	5	3	32	3.98E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	5	3	100	3.69E+07	0.122	-1	-1.10E-05	1.08E+04	0.118971033
Homogêneo	Depleção	5	3	320	1.87E+07	0.062	-1	-1.10E-05	5268	0.058031426
Homogêneo	Depleção	5	3	1000	1.42E+07	0.047	-1	-1.10E-05	3920	0.043182079
Homogêneo	Depleção	5	3	3200	1.94E+07	0.064	-1	-1.10E-05	5475	0.060311704
Homogêneo	Depleção	5	3	10000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	5	3	32000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Depleção	5	3	100000	3.99E+07	0.132	-1	-1.10E-05	-1	-1.10E-05
Homogêneo	Par 45°	0	1	0	3.74E+07	0.124	5400	5.95E-02	-1	-1.10E-05
Homogêneo	Par 45°	0	1	32	3.73E+07	0.124	5336	5.88E-02	-1	-1.10E-05

ipendice A									10
	5 450			100	0 705 07	0.400	5007	5 055 00	
Homogeneo	Par 45°	0	1	100	3./3E+0/	0.123	5307	5.85E-02	-1
Homogêneo	Par 45°	0	1	320	3.72E+07	0.123	5251	5.78E-02	-1
Homogêneo	Par 45°	0	1	1000	3.71E+07	0.123	5221	5.75E-02	-1
Homogêneo	Par 45°	0	1	3200	3.74E+07	0.124	5210	5.74E-02	-1
Homogêneo	Par 45°	0	1	10000	3.71E+07	0.123	5206	5.73E-02	-1
Homogêneo	Par 45°	0	1	32000	3.71E+07	0.123	5180	5.71E-02	-1
Homogêneo	Par 45°	0	1	100000	3.67E+07	0.121	5194	5.72E-02	-1
Homogêneo	Par 45°	0	2	0	3.74E+07	0.124	5400	5.95E-02	-1
Homogêneo	Par 45°	0	2	32	3.73E+07	0.123	5234	5.77E-02	-1
Homogêneo	Par 45°	0	2	100	3.71E+07	0.123	4981	5.49E-02	-1
Homogêneo	Par 45°	0	2	320	3.66E+07	0.121	4200	4.63E-02	-1
Homogêneo	Par 45°	0	2	1000	3.56E+07	0.118	1612	1.78E-02	-1
Homogêneo	Par 45°	0	2	3200	3.45E+07	0.114	59	6.54E-04	-1
Homogêneo	Par 45°	0	2	10000	3.17E+07	0.105	24	2.69E-04	-1
Homogêneo	Par 45°	0	2	32000	3.18E+07	0.105	15	1.61E-04	-1
Homogêneo	Par 45°	0	2	100000	3.19E+07	0.105	10	1.12E-04	-1
Homogêneo	Par 45°	0	3	0	3.73E+07	0.124	5331	5.87E-02	-1
Homogêneo	Par 45°	0	3	32	3.72E+07	0.123	5100	5.62E-02	-1
Homogêneo	Par 45°	0	3	100	3.69E+07	0.122	4610	5.08E-02	-1
Homogêneo	Par 45°	0	3	320	3.61E+07	0.120	3209	3.53E-02	-1
Homogêneo	Par 45°	0	3	1000	3.47E+07	0.115	176	1.94E-03	-1
Homogêneo	Par 45°	0	3	3200	3.41E+07	0.113	48	5.25E-04	-1
Homogêneo	Par 45°	0	3	10000	3.24E+07	0.107	24	2.68E-04	-1
Homogêneo	Par 45°	0	3	32000	3.28E+07	0.108	17	1.83E-04	-1
Homogêneo	Par 45°	0	3	100000	3.29E+07	0.109	13	1.41E-04	-1
Homogêneo	Par 45°	1	1	0	3.74E+07	0.124	5515	6.08E-02	-1
			L	-				-	

-1.10E-05

Homogêneo

Par 45°

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

32

100

320

1000

3200

10000

32000

100000

0

32

100

320

1000

3200

10000

32000

100000

0

3.74E+07

3.74E+07

3.73E+07

3.73E+07

3.73E+07

3.73E+07

3.73E+07

3.73E+07

3.74E+07

3.73E+07

3.72E+07

3.69E+07

3.62E+07

3.47E+07

3.29E+07

3.21E+07

3.21E+07

3.74E+07

0.124

0.124

0.124

0.123

0.123

0.123

0.123

0.123

0.124

0.124

0.123

0.122

0.120

0.115

0.109

0.106

0.106

0.124

5400

5400

5317

5292

5289

5282

5278

5278

5400

5296

5091

4500

2786

568

356

292

272

5400

5.95E-02

5.95E-02

5.86E-02

5.83E-02

5.83E-02

5.82E-02

5.81E-02

5.81E-02

5.95E-02

5.83E-02

5.61E-02

4.96E-02

3.07E-02

6.26E-03

3.92E-03

3.22E-03

3.00E-03

5.95E-02

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Homogêneo	Par 45°	1	3	32	3.73E+07	0.123	5214	5.74E-02	-1	-1.10E-05
Homogêneo	Par 45°	1	3	100	3.71E+07	0.123	4892	5.39E-02	-1	-1.10E-05
Homogêneo	Par 45°	1	3	320	3.67E+07	0.121	3900	4.30E-02	-1	-1.10E-05
Homogêneo	Par 45°	1	3	1000	3.56E+07	0.118	1401	1.54E-02	-1	-1.10E-05
Homogêneo	Par 45°	1	3	3200	3.39E+07	0.112	439	4.83E-03	-1	-1.10E-05
Homogêneo	Par 45°	1	3	10000	3.27E+07	0.108	347	3.82E-03	-1	-1.10E-05
Homogêneo	Par 45°	1	3	32000	3.24E+07	0.107	316	3.48E-03	-1	-1.10E-05
Homogêneo	Par 45°	1	3	100000	3.26E+07	0.108	304	3.35E-03	-1	-1.10E-05
Homogêneo	Par 45°	5	1	0	3.74E+07	0.124	5593	6.16E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	1	32	3.74E+07	0.124	5458	6.01E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	1	100	3.74E+07	0.124	5451	6.00E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	1	320	3.74E+07	0.124	5453	6.01E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	1	1000	3.74E+07	0.124	5433	5.98E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	1	3200	3.74E+07	0.124	5425	5.98E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	1	10000	3.74E+07	0.124	5425	5.98E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	1	32000	3.74E+07	0.124	5425	5.98E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	1	100000	3.74E+07	0.124	5430	5.98E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	2	0	3.74E+07	0.124	5469	6.02E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	2	32	3.74E+07	0.124	5499	6.06E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	2	100	3.74E+07	0.124	5483	6.04E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	2	320	3.73E+07	0.124	5400	5.95E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	2	1000	3.71E+07	0.123	5031	5.54E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	2	3200	3.66E+07	0.121	3556	3.92E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	2	10000	3.60E+07	0.119	2660	2.93E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	2	32000	3.56E+07	0.118	2316	2.55E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	2	100000	3.57E+07	0.118	2214	2.44E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	3	0	3.74E+07	0.124	5430	5.98E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	3	32	3.74E+07	0.124	5476	6.03E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	3	100	3.74E+07	0.124	5510	6.07E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	3	320	3.73E+07	0.123	5378	5.92E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	3	1000	3.70E+07	0.122	4511	4.97E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	3	3200	3.65E+07	0.121	3218	3.54E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	3	10000	3.60E+07	0.119	2631	2.90E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	3	32000	3.59E+07	0.119	2411	2.66E-02	-1	-1.10E-05
Homogêneo	Par 45°	5	3	100000	3.61E+07	0.119	2344	2.58E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	1	0	3.77E+07	0.125	5700	6.28E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	1	32	3.76E+07	0.124	5163	5.69E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	1	100	3.73E+07	0.124	4652	5.12E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	1	320	3.68E+07	0.122	3378	3.72E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	1	1000	3.56E+07	0.118	414	4.56E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	0	1	3200	3.45E+07	0.114	29	3.17E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	0	1	10000	3.15E+07	0.104	14	1.49E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	0	1	32000	3.12E+07	0.103	9	9.79E-05	-1	-1.10E-05
Homogêneo	Par Paralelo	0	1	100000	3.09E+07	0.102	6	7.08E-05	-1	-1.10E-05

Homogêneo	Par Paralelo	0	2	0	3.77E+07	0.125	5574	6.14E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	2	32	3.75E+07	0.124	5041	5.55E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	2	100	3.72E+07	0.123	4307	4.74E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	2	320	3.63E+07	0.120	2348	2.59E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	2	1000	3.46E+07	0.114	113	1.24E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	0	2	3200	3.41E+07	0.113	36	3.97E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	0	2	10000	3.19E+07	0.106	19	2.14E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	0	2	32000	3.19E+07	0.106	14	1.56E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	0	2	100000	3.16E+07	0.105	11	1.19E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	0	3	0	3.77E+07	0.125	5435	5.99E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	3	32	3.74E+07	0.124	4854	5.35E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	3	100	3.70E+07	0.122	4109	4.53E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	3	320	3.59E+07	0.119	2012	2.22E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	0	3	1000	3.41E+07	0.113	113	1.25E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	0	3	3200	3.43E+07	0.114	43	4.75E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	0	3	10000	3.24E+07	0.107	25	2.78E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	0	3	32000	3.27E+07	0.108	19	2.05E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	0	3	100000	3.25E+07	0.108	15	1.65E-04	-1	-1.10E-05
Homogêneo	Par Paralelo	1	1	0	3.77E+07	0.125	5609	6.18E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	1	32	3.77E+07	0.125	5400	5.95E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	1	100	3.75E+07	0.124	4951	5.45E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	1	320	3.72E+07	0.123	3978	4.38E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	1	1000	3.63E+07	0.120	2113	2.33E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	1	3200	3.46E+07	0.115	705	7.77E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	1	10000	3.31E+07	0.110	436	4.80E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	1	32000	3.22E+07	0.107	374	4.12E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	1	100000	3.19E+07	0.106	362	3.99E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	2	0	3.77E+07	0.125	5567	6.13E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	2	32	3.76E+07	0.125	5316	5.86E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	2	100	3.74E+07	0.124	4707	5.19E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	2	320	3.69E+07	0.122	3476	3.83E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	2	1000	3.57E+07	0.118	1534	1.69E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	2	3200	3.41E+07	0.113	669	7.37E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	2	10000	3.30E+07	0.109	501	5.52E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	2	32000	3.25E+07	0.108	460	5.07E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	2	100000	3.24E+07	0.107	451	4.97E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	3	0	3.77E+07	0.125	5571	6.14E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	3	32	3.76E+07	0.124	5329	5.87E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	3	100	3.74E+07	0.124	4688	5.16E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	3	320	3.67E+07	0.122	3357	3.70E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	3	1000	3.55E+07	0.117	1317	1.45E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	1	3	3200	3.41E+07	0.113	648	7.14E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	3	10000	3.33E+07	0.110	553	6.09E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	1	3	32000	3.30E+07	0.109	520	5.73E-03	-1	-1.10E-05

Homogêneo	Par Paralelo	1	3	100000	3.29E+07	0.109	512	5.64E-03	-1	-1.10E-05
Homogêneo	Par Paralelo	5	1	0	3.78E+07	0.125	5680	6.26E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	1	32	3.78E+07	0.125	5651	6.23E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	1	100	3.78E+07	0.125	5662	6.24E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	1	320	3.77E+07	0.125	5650	6.22E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	1	1000	3.76E+07	0.124	5602	6.17E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	1	3200	3.72E+07	0.123	4969	5.47E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	1	10000	3.69E+07	0.122	4165	4.59E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	1	32000	3.67E+07	0.121	3782	4.17E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	1	100000	3.67E+07	0.121	3662	4.03E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	2	0	3.78E+07	0.125	5680	6.26E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	2	32	3.78E+07	0.125	5700	6.28E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	2	100	3.78E+07	0.125	5700	6.28E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	2	320	3.77E+07	0.125	5700	6.28E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	2	1000	3.75E+07	0.124	5582	6.15E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	2	3200	3.73E+07	0.123	4970	5.47E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	2	10000	3.71E+07	0.123	4335	4.78E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	2	32000	3.70E+07	0.122	4071	4.48E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	2	100000	3.70E+07	0.122	3993	4.40E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	3	0	3.78E+07	0.125	5700	6.28E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	3	32	3.78E+07	0.125	5700	6.28E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	3	100	3.78E+07	0.125	5700	6.28E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	3	320	3.78E+07	0.125	5732	6.31E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	3	1000	3.76E+07	0.124	5615	6.19E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	3	3200	3.74E+07	0.124	5061	5.58E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	3	10000	3.73E+07	0.123	4545	5.01E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	3	32000	3.73E+07	0.123	4326	4.77E-02	-1	-1.10E-05
Homogêneo	Par Paralelo	5	3	100000	3.73E+07	0.123	4262	4.69E-02	-1	-1.10E-05

Apêndice B. Tabelas com os Ajustes da Curva Logística

Matriz	Malha	D	L	Y mín	y máx	h	p_i	x _a
Heterogêneo	Par Paralelo	0	1	0.09	0.13	-0.97	3.42	4.45
Homogêneo	Par Paralelo	0	1	0.10	0.12	-1.10	3.47	4.38
Heterogêneo	Par Paralelo	1	1	0.10	0.13	-1.10	3.23	4.13
Homogêneo	Par Paralelo	1	1	0.11	0.12	-1.04	3.48	4.44
Heterogêneo	Par Paralelo	5	1	0.13	0.13	-1.58	3.32	3.96
Homogêneo	Par Paralelo	5	1	0.12	0.13	-1.18	3.52	4.37
Heterogêneo	Par Paralelo	0	2	0.08	0.13	-0.51	3.28	5.25
Homogêneo	Par Paralelo	0	2	0.10	0.13	-0.78	3.10	4.38
Heterogêneo	Par 45°	0	2	0.09	0.13	-1.14	3.50	4.38
Homogêneo	Par 45°	0	2	0.10	0.12	-1.36	3.43	4.16
Heterogêneo	Par Paralelo	1	2	0.11	0.13	-1.16	2.95	3.81
Homogêneo	Par Paralelo	1	2	0.11	0.12	-1.07	3.20	4.14
Heterogêneo	Par 45°	1	2	0.11	0.13	-1.48	3.20	3.88
Homogêneo	Par 45°	1	2	0.11	0.12	-1.24	3.50	4.31
Heterogêneo	Par Paralelo	5	2	0.13	0.13	-2.13	3.11	3.58
Homogêneo	Par Paralelo	5	2	0.12	0.13	-1.37	3.30	4.03
Heterogêneo	Par 45°	5	2	0.12	0.13	-1.40	3.36	4.08
Homogêneo	Par 45°	5	2	0.12	0.12	-1.31	3.58	4.35
Homogêneo	Par Paralelo	0	3	0.11	0.13	-0.75	2.73	4.06
Heterogêneo	Par 45°	0	3	0.09	0.13	-0.64	3.38	4.95
Homogêneo	Par 45°	0	3	0.11	0.12	-1.02	2.95	3.94
Heterogêneo	Par Paralelo	1	3	0.11	0.13	-1.20	2.81	3.64
Homogêneo	Par Paralelo	1	3	0.11	0.12	-1.07	3.06	3.99
Heterogêneo	Par 45°	1	3	0.12	0.13	-1.70	2.91	3.50
Homogêneo	Par 45°	1	3	0.11	0.12	-1.36	3.21	3.95
Heterogêneo	Par Paralelo	5	3	0.13	0.13	-13.74	3.01	3.08
Homogêneo	Par Paralelo	5	3	0.12	0.13	-1.56	3.19	3.84
Heterogêneo	Par 45°	5	3	0.13	0.13	-1.60	3.11	3.73
Homogêneo	Par 45°	5	3	0.12	0.12	-1.51	3.30	3.96

Tabela B.1: Ajustes da curva logística do FR.

Matriz	Malha	D	L	y _{mín}	y _{máx}	h	p_i	xa
Heterogêneo	Par Paralelo	0	1	0.00	0.08	-1.92	2.29	2.81
Homogêneo	Par Paralelo	0	1	0.00	0.05	-2.57	2.62	3.01
Heterogêneo	Par Paralelo	1	1	0.00	0.08	-1.63	2.60	3.21
Homogêneo	Par Paralelo	1	1	0.00	0.06	-1.39	2.79	3.51
Heterogêneo	Par Paralelo	5	1	0.06	0.08	-1.78	3.64	4.20
Homogêneo	Par Paralelo	5	1	0.04	0.06	-1.62	3.69	4.30
Heterogêneo	Par Paralelo	0	2	0.00	0.07	-2.11	2.16	2.64
Homogêneo	Par Paralelo	0	2	0.00	0.05	-2.09	2.46	2.94
Heterogêneo	Par 45°	0	2	0.00	0.08	-2.09	2.57	3.05
Homogêneo	Par 45°	0	2	0.00	0.06	-2.01	2.82	3.32
Heterogêneo	Par Paralelo	1	2	0.01	0.08	-1.44	2.45	3.15
Homogêneo	Par Paralelo	1	2	0.00	0.06	-1.42	2.63	3.33
Heterogêneo	Par 45°	1	2	0.00	0.08	-1.51	2.66	3.32
Homogêneo	Par 45°	1	2	0.00	0.06	-1.86	2.99	3.53
Heterogêneo	Par Paralelo	5	2	0.06	0.09	-2.15	3.51	3.98
Homogêneo	Par Paralelo	5	2	0.04	0.06	-1.60	3.59	4.21
Heterogêneo	Par 45°	5	2	0.03	0.09	-1.41	3.09	3.80
Homogêneo	Par 45°	5	2	0.02	0.06	-1.69	3.42	4.01
Homogêneo	Par Paralelo	0	3	0.00	0.05	-1.99	2.41	2.91
Heterogêneo	Par 45°	0	3	0.00	0.08	-1.81	2.36	2.91
Homogêneo	Par 45°	0	3	0.00	0.05	-3.13	2.59	2.90
Heterogêneo	Par Paralelo	1	3	0.01	0.08	-1.37	2.40	3.13
Homogêneo	Par Paralelo	1	3	0.01	0.06	-1.57	2.58	3.22
Heterogêneo	Par 45°	1	3	0.01	0.08	-1.46	2.46	3.14
Homogêneo	Par 45°	1	3	0.00	0.06	-1.95	2.73	3.24
Heterogêneo	Par Paralelo	5	3	0.07	0.09	-4.08	3.52	3.76
Homogêneo	Par Paralelo	5	3	0.05	0.06	-1.65	3.57	4.17
Heterogêneo	Par 45°	5	3	0.04	0.09	-1.48	2.91	3.59
Homogêneo	Par 45°	5	3	0.03	0.06	-1.54	3.22	3.87

Tabela B.2: Ajustes da curva logística do t_{Dw} .