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Abstract

Amaral, Renan Piazzaroli Finotti; Menezes, Ivan Fabio Mota (Ad-
visor). On Interval Type-2 Fuzzy Logic System using the
Upper and Lower Method for Supervised Classification
Problems. Rio de Janeiro, 2021. 76p. Tese de Doutorado – Depar-
tamento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

Fuzzy logic systems are machine learning techniques that can model
mathematically uncertainties. They are divided into type-1 fuzzy, and type-2
fuzzy logic systems. The type-1 fuzzy logic system has been widely applied to
solve several problems related to machine learning, such as control, classifi-
cation, clustering, prediction, among others. However, as it presents a better
mathematical modeling of uncertainties, the type-2 fuzzy logic system has
received much attention over the years. This modeling improvement is also
accompanied by an increase in mathematical and computational effort. Ai-
ming to reduce these issues to solve classification problems, this work presents
the development and comparison of two Gaussian membership functions for a
type-2 interval fuzzy logic system using the upper and lower method. Gaus-
sian membership functions with uncertainty in the mean and with uncertainty
in the standard deviation are used. Both fuzzy models covered in this work
are trained by algorithms based on first order information. Furthermore, this
work proposes the extension of interval type-2 fuzzy models to present multi-
ple outputs, significantly reducing the computational cost in solving multiclass
classification problems. Finally, aiming to contextualize the use of these mo-
dels in mechanical engineering applications, this work presents the solution of
a problem of fault detection in aircraft gas turbines.

Keywords
Interval type-2 fuzzy logic system; Classification problem; Upper and

lower method; Uncertain mean; Uncertain standard deviation.
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Resumo

Amaral, Renan Piazzaroli Finotti; Menezes, Ivan Fabio Mota. Sis-
temas de Inferência Fuzzy Intervalar do Tipo-2 usando o
Método Superior e Inferior para Problemas de Classifica-
ção Supervisionados. Rio de Janeiro, 2021. 76p. Tese de Douto-
rado – Departamento de Engenharia Mecânica, Pontifícia Univer-
sidade Católica do Rio de Janeiro.

Os sistemas de inferência fuzzy são técnicas de aprendizado de máquina
que possuem a capacidade de modelar incertezas matematicamente. Eles são
divididos em sistemas de inferências fuzzy tipo-1 e fuzzy tipo-2. O sistema de
inferência fuzzy tipo-1 vem sendo amplamente aplicado na solução de diversos
problemas referentes ao aprendizado de máquina, tais como, controle, classifi-
cação, clusterização, previsão, dentre outros. No entanto, por apresentar uma
melhor modelagem matemática das incertezas, o sistema de inferência fuzzy
tipo-2 vem ganhando destaque ao longo dos anos. Esta melhora modelagem
vem também acompanhada de um aumento do esforço matemático e computa-
cional. Visando reduzir tais pontos para solucionar problemas de classificação,
este trabalho apresenta o desenvolvimento e a comparação de duas funções de
pertinência Gaussiana para um sistema de inferência fuzzy tipo-2 intervalar
usando o método superior e inferior. São utilizadas as funções de pertinência
Gaussiana com incerteza na média e com incerteza no desvio padrão. Ambos os
modelos fuzzy abordados neste trabalho são treinados por algoritmos baseados
em informações de primeira ordem. Além disso, este trabalho propõe a exten-
são dos modelos fuzzy tipo-2 intervalar para apresentarem múltiplas saídas,
reduzindo significativamente o custo computacional na solução de problemas
de classificação multiclasse. Finalmente, visando contextualizar a utilização
desses modelos em aplicações de engenharia mecânica, este trabalho apresenta
a solução de um problema de detecção de falhas em turbinas a gás, utilizadas
em aeronaves.

Palavras-chave
Sistema de inferência fuzzy tipo-2 intervalar; Problema de classificação;

Método superior e inferior; Incerteza na média; Incerteza no desvio padrão.
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1
Introduction

Machine Learning (ML) has increased over the years, and many ML
models have been developed, such as Artificial Neural Network (ANN) [1],
Support Vector Machine [2], Random Forest [3], Decision Tree [4], and Fuzzy
Logic System [5]. Each of them has its characteristics being more or less
indicated depending on the application, which can be used in different fields,
such as medical, financial, engineering, and many others. In the medical
area, the ML was employed for cancer diagnosis [6] using a random forest
classification algorithm for diagnosing six cancers using five features from the
isoform of microRNA. Mohan et al. [7] performed a heart disease prediction
using a hybrid ML model. Moreover, the authors in [8] presented a survey
showing the ML algorithm and models that can be used to aid the battling of
the covid-19 virus. Regarding financial applications, the authors in [9] applied
ML to predict the stock market and regional relative directions based on
financial network indicators. Hajek and Henriques [10] used a feature selection
and classifiers based on ML to detect financial statement fraud analyzing
annual reports. Moreover, in [11] is used a ML called Ant Colony Optimization
to predict financial crisis. Focusing on engineering applications the authors in
[12] used the ML to diagnose fault for single- and multi-faults in induction
motors. Gkerekos et al. [13] applied the ML models for predicting ship main
engine fuel oil consumption. Metawa et al. [14] use ML to predict the gas
turbine performance which can help power plants to study and quantify
performance degradation over time.

The application examples, as mentioned above, use different ML models.
However, an ML model that can model uncertainties mathematically is the
Fuzzy Logic System (FLS) which is the focus of this work. Developed by Lotfi
A. Zadeh in 1965 [15], fuzzy logic (FL) is inspired by the processes of human
perception and cognition. Classical logic has only the truth and false while in
the FL was developed the mathematical concept of partial truth and partially
false. Based on this concept, the FLS emerged by promising to deal with
problems owning uncertainties that may not be modeled by well-established
theories, such as statistical theory [16]. This capability to model uncertainties
has been applied in several problems, such as in [17] which an FLS was used to
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Chapter 1. Introduction 17

reduce the residential load in smart grids. In the same direction, the authors in
[18] used an FL control as an intelligent supervisor for the power balance in a
hybrid Wind/Photovoltaic/Diesel system with battery storage. Taghavifar and
Rakheja [19] applied the FLS together with ANN to obtain the desired path-
tacking and lane-keeping of autonomous vehicles. In [20] the authors applied
an FLS to classify Short Circuit GMA Welding. Moreover, Wu et al. [21]
defined risk factors for ship-bridge collision using an FLS approach. All these
applications show that the FLS has wide applicability in different areas.

The core of the FLS is the fuzzy set which is characterized by membership
functions (MFs). These fuzzy sets can be of two types namely type-1 (T1-
FLS) and type-2 (T2-FLS) [16]. A type-1 fuzzy set is represented by a two-
dimensional function, and owing to its simplicity, it has been used in a variety
of applications, such as forecasting short-term traffic flow [22], implementation
of an autonomous approach in smart grids for residential energy management
[17], detection of network anomaly (where the FLS is used to decide whether
an instance represents an anomaly or not) [23], and fault detection in grid-
connected photovoltaic systems using an FLS classifier [24], among others.
In contrast, the T2-FLS uses a type-2 fuzzy set, which is represented by a
three-dimensional function. The T2-FLS enhances the capability to handle
uncertainties [5], and this search for improvement has been investigated by
many researchers over the past few years. Jiang et al. [25] used an interval
T2-FLS (IT2-FLS) for stock index forecasting based on a fuzzy time series
and a fuzzy logical relationship map. In [26], the application of an IT2-FLS
classifier to the motor imagery electroencephalogram discrimination task was
investigated, and the results show that IT2-FLS outperforms some state-
of-the-art brain-computer interface classifiers. Sabahi et al. [27] designed a
combination of T2-FLS and a conventional feedback controller for the load-
frequency control of a nonlinear time-delay power system, and showed that the
combination was efficient even in the presence of long time delays. In [28], an
IT2-FLS was used to solve the lifetime maximization problem of wireless sensor
networks, and it was shown that the model improved the network performance
and enhanced the network lifetime.

The T2-FLS is composed of five parts, namely fuzzification, rules, infer-
ence, type-reducer, and defuzzification. During fuzzification, the MFs have two
grades of membership, the primary and secondary, which can have any value
between 0 and 1, forming the general T2-FLS (GT2-FLS) [29]. However, the
GT2-FLS results in high mathematical and computational effort, making it
difficult to use. To overcome this issue, the Interval T2-FLS (IT2-FLS) works
as a T2-FLS having the secondary membership grade equal to 1 in all domains
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Chapter 1. Introduction 18

[5]. However, even though IT2-FLS reduces the computational costs, it involves
some other challenges, such as the need to determine the number and the type
of fuzzy rules to use and performing type-reduction in IT2-FLS.

Concerning the first challenge of IT2-FLS (i.e., determining the rules),
there are three main approaches: the first one is known as Ad Hoc Data
Covering Methods which are based on the process that is guided by covering
criteria in the training set [30, 31]. The other two approaches for designing
the FLS have been widely investigated, which are the merged model that
associates the fuzzy rule-based method with a neural network (ANFIS) [32],
with the one that uses an evolutionary optimization method associated with
FLS, such as a genetic fuzzy system (GFS) [33]. Another less commonly
used approach is to design an FLS using information based on the gradient
to update a fixed number of rules created initially by the user [34]. In
[35], this approach is implemented using the Steepest Descent (SD) and
the Scaled Conjugate Gradient (SCG) training methods, where the former
uses first-order information, whereas the latter uses second-order information.
The results obtained in [35] indicate that both training methods lead to
less computational cost and a tendency to use fewer rules when compared
to evolutionary fuzzy approaches. Also, this approach has shown promising
results for classification problems applied to diagnostic gas turbines [36], switch
machines faults [37], and welding process [20]. On the other hand, the second
challenge is related to the type-reducer, which transforms a type-2 output
fuzzy set into a type-1 output fuzzy set to be used for computing the crisp
output during defuzzification [5]. One of the most popular methods used to
perform type-reduction is the Karnik-Mendel (KM) iterative approach [38].
However, this approach is computationally intensive, especially when there
are many MFs and the rule base is large [39]. To avoid the use of the KM
iterative approach, the authors in [40] proposed a new method called the
Upper and Lower for IT2-FLS using a Gaussian MF with uncertain mean
(GMFum), which was trained using the SD method. The proposed method
reduced the computational costs as well as improved the convergence speed
and classification ratio when compared to the KM approach. Despite this, the
IT2-FLS using GMFum is still computationally intensive, especially when a
gradient-based optimization method is used for training since its membership
functions are represented in five different segments [5].

Among the different applications of FLS, this work focuses on classi-
fication problems (CPs), which are formulated as discrimination of patterns
among classes [41]. The CPs can be divided into binary CP (BCP) and mul-
ticlass CP (MCP). The models used for solving MCP can be binary classifiers
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(BCs) (i.e., classifiers having a single output, such as a support vector ma-
chine [2]) or multiclass classifiers (i.e., classifiers with multiple outputs, such
as an artificial neural network [42]). The FLS model belongs to BC [43], which
needs a binary decomposition strategy to split the original MCP dataset into
several binary classification subsets. The main decomposition strategies are
One-versus-One (OvO) [44] and One-versus-All (OvA) [45]. The OvO strategy
generates binary classification subsets to classify one class from each of the
other classes, requiring a total of Υ (Υ− 1) /2 classifiers, where Υ ∈ N∗ is the
number of classes in the problem. In contrast, the OvA strategy performs Υ
binary decompositions, where each subset is made to distinguish one class from
all the other classes. The authors in [43], show that T1-FLS using the decompo-
sition strategy increases the computational costs in a highly non-linear manner
with an increase in the number of classes in an MCP. To avoid the use of this
strategy, also in [43], an extension of T1-FLS was developed to support multi-
ple outputs (T1-FLSMO). The results demonstrated that T1-FLSMO achieves
the same performance as that of T1-FLS using the OvA strategy, significantly
reducing the computational effort of MCPs. Figure 1.1 shows the timeline of
the relevant papers that supports the scientific innovation of this dissertation.

In this way, this dissertation attempts to reduce the computational costs
of IT2-FLS using the Upper and Lower method with GMFum (IT2-FLS UL-
GMFum) for CP. Aiming to accomplish the objective, it is proposed to use
the Gaussian MF with uncertain standard deviation (GMFus) in IT2-FLS UL
(IT2-FLS UL-GMFus) trained by the SD method. GMFus is differentiable in
all domains, thereby requiring fewer equations to perform fuzzification, and
consequently to compute its first-order information. The derivatives of the
equations for IT2-FLS UL-GMFus as well as their gradient expressions are
presented, which enables the use of any training method based on its first-order
information. In addition, the concepts of IT2-FLS UL-GMFum and IT2-FLS
UL-GMFus are extended for multiple outputs to obtain the equations of their
models and compute their gradients.
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Figure 1.1: Timeline to present the relevant works for this dissertation.
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1.1
Objective and main contributions

The objective of this dissertation is to reduce the computational costs of
IT2-FLS using the Upper and Lower method trained by gradient-based method
for solving CP, and the main contributions can be summarized as follows:

– The derivation of the equations to compute the gradient of IT2-FLS
UL-GMFus, reducing the computational costs during training using the
steepest descent method;

– The extension of IT2-FLS UL-GMFum and IT2-FLS UL-GMFus to
FLSMO, enabling them to handle multiclass classification problems. This
avoids the use of binary decomposition strategies, consequently reducing
computational costs;

– The derivation of the equations to compute the gradient for both IT2-
FLSMOs UL, facilitating the use of first-order information training
methods available in the literature [35];

– A comparison of the IT2-FLS models with T1-FLS and T1-FLSMO using
the SD and SCG training methods;

– A performance analysis taking into account the accuracy, mean squared
error (MSE), time consumed during the training phase, and well-
established classification metrics based on the datasets provided by
Knowledge Extraction based on Evolutionary Learning [46] and UCI
Machine Learning Repository [47].

– A discussion and contextualization of a mechanical engineering applica-
tion to detect faults in aircraft gas turbine using the IT2-FLS proposed
models.

This dissertation is organized as follows. Chapter 2 presents the problem
formulation and the main concepts of T1-FLS and T2-FLS; Chapter 3 presents
the proposals IT2-FLS using UL-GMFum and UL-GMFus for solving BCP and
MCP; Chapter 4 analyzes the experimental results for the benchmark dataset
and aims to solve a practical application of the FLS proposed herein; Chapter
5 states the main conclusions and suggests some topics for future investigation;
Appendix A and Appendix B outline the equations to compute the gradients
of IT2-FLS UL-GMFum and IT2-FLS UL-GMFus, respectively; Appendix C
and Appendix D present the equations for computing the gradients of IT2-
FLSMO UL-GMFum and IT2-FLSMO UL-GMFus, respectively. Appendix E
presents the results obtained using the SD training method with a step size
value equal to 0.01, and finally the Appendix F show the papers published
during the Doctor of Science course.
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2
Problem formulation

2.1
Membership functions

Membership functions (MFs) characterize a fuzzy set, which can be of
type-1 or type-2. A type-1 fuzzy set A in a universe X is represented as a set
of ordered pairs of a generic element x, where its membership grade is defined
as [51]

A = {(x, µA (x))| ∀x ∈ X} , (2-1)
which µA : X → [0, 1]. Figure 2.1 depicts an example of a type-1 MF.
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m
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Figure 2.1: Example of a Gaussian type-1 MF.

A type-1 fuzzy set has two dimensions. Using the concept of fuzzy set
and extending it to three dimensions, a general type-2 fuzzy set is formed [51]

Ã = {((x, u) , µÃ (x, u))| ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} , (2-2)
where u is equal to µA (x), X is the primary domain and Jx is the secondary
domain. An example of the general type-2 MF is presented in Figure 2.2,
where the fuzzy set models the uncertainties better than type-1 fuzzy set.
However, the usage of a general type-2 fuzzy set leads to higher mathematical
and computational efforts. Aiming to overcome and to reduce these efforts,
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Figure 2.2: Example of a general type-2 MF [5].

there are the interval type-2 fuzzy set Ã, denoted by µ
Ã

(x) and µÃ (x),
representing respectively, the lower and upper membership functions of µÃ (x).
The membership grade of an interval type-2 fuzzy set is defined as [51]

Ã = {((x, u) , 1)| ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} . (2-3)

It is important to notice in Equation (2-3) that all secondary grades are equal
to 1, which simplify the complexity of mathematical expressions for the type-2
fuzzy sets. Figure 2.3 shows an example of an interval type-2 MF.

PSfrag replacements

1

0.5

0

µA (x)

x

Figure 2.3: Example of an interval type-2 MF.
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2.2
Type-1 fuzzy logic system

The T1-FLS is composed of four parts as shown in Figure 2.4, which
are known as rules, fuzzifier, inference and defuzzifier. Before the discussion of
each part, it is important to notice that there are two models for fuzzy sets,
Mamdani or Takagi-Sugeno-Kang (TSK). The difference between the models
is in the output of the fuzzy rules. Mamdani model has the output of the fuzzy
rules as a fuzzy set, while TSK model has the output of the fuzzy rules as a
weighted average or weighted sum (i.e., a function as output of the rules) [5].
Hence, the TSK model is not on the scope of this work. Every FLS which is
presented and discussed in this work refers to the Mamdani model.

Fuzzifier

Rules

Inference

Defuzzifier

Crisp
Inputs

Fuzzy
Inputs Sets

Fuzzy
Output Sets

Crisp
Output

PSfrag replacements

x ∈ X y ∈ Y

Figure 2.4: Structure of a T1-FLS.

The fuzzy rules use the “IF-THEN” structure and for a T1-FLS having
P inputs x1 ∈ X1, . . . , xP ∈ XP and one output y ∈ Y , the l-th rule of an FLS
has the form [16]

rulel : IF x1 is F
l
1 AND . . . AND xP is F l

P THEN y is Y l, (2-4)

where F l
P is the P -th type-1 fuzzy set associated with l-th rule. The rule

presented in Equation (2-4) represents the relationship between the input
spacesX1 . . . XP and the output space Y of the FLS. Moreover, the connectives
of the fuzzy rules can be “AND”1, “OR”2 or their complements forming
the “NOT” [16]. The fuzzifier part is responsible to map the crisp inputs
x = [x1, . . . , xP ]T ∈ X1 × · · · × XP ≡ X into a fuzzy set Ax in X.
The fuzzification is done using the MF, which can be Gaussian, trapezoidal
piecewise-linear, triangular and others. The inference part uses the fuzzy logic
principles to combine the fuzzy “IF-THEN” rules from the fuzzy rule base

1t-norm
2t-conorm
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into a mapping from fuzzy inputs sets to fuzzy output sets [16]. Each rule is
interpreted as a fuzzy implication, so that Equation (2-4) can be rewritten as

rulel : F l
1 × · · · × F l

P → Y l = Al → Y l, (2-5)

where Rl is described by the MF µRl (x, y) as

µRl (x, y) = µAl→Y l (x, y) . (2-6)

The last part of the fuzzy structure is the defuzzifier, which produces the T1-
FLS crisp output from the output fuzzy sets. There are many methods for
defuzzification, such as, maximum, mean-of-maxima, centroid, center-of-sums,
height, modified height and center-of-sets [16].

To design a T1-FLS aiming to attain a good performance for solving a
problem requires the right choice for each part of the structure presented in
Figure 2.4. There are many alternatives to design an FLS and each of them is
more or less suitable depending of the problem to solve (i.e., CP, prediction,
clustering). This work focus on CP and all the FLS presented herein will be
designed for solving it.

2.3
Classification problems

In the field of ML problems, there are two kinds of problems called
supervised or unsupervised problems. The first one is described when the
learning associates the input with some output [52], which gives a training
set of input-output pairs (x : y). However, in many cases, the output y may be
challenging to collect, forming the unsupervised problems. In these problems,
there is no output, and the data set has only ‘features’ becoming to the users of
the ML models to define its objective. In other words, unsupervised problems
refer to extract information from the data that do not require human labor
to annotate examples [52]. In this sense, the classification problems can be
also divided into supervised and unsupervised problems. The first one is called
a supervised classification problem, and the second one is commonly called a
clustering problem [53]. This work will focus on supervised CP, and all mention
of CP will mean to supervised CP.

The CP is stated as a mapping between a vector x ∈ RP and a class y,
where P is the number of features from a given sample with P ∈ N∗. In other
words, the input space is divided into “decision regions” where each region is
assigned to one class [41].
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2.4
Type-1 fuzzy logic system binary classifier

Adopting the FLS binary classifier, and considering a set of input-output
pairs

(
x(q) : y(q)

)
, where q = 1, . . . , Q and Q is the number of patterns used

for training the T1-FLS, the solution of a binary CP can be obtained as the
minimization of a given cost function. Typically, a cost function is expressed
as [35]

J
(
w(γ)

)
= 1

2
[
fT1

(
x(q)

)
− y(q)

]2
, (2-7)

where w(γ) is a vector holding the parameters for T1-FLS in the γ-th iteration,
and fT1 (x) is the T1-FLS output value. Adopting singleton fuzzification, max-
product compositions, product implication3, and the height defuzzifier, the
output of T1-FLS is expressed by [16, 35]

fT1 (x) =

M∑
l=1

θl
P∏
k=1

µF l
k

(xk)
M∑
l=1

P∏
k=1

µF l
k

(xk)
, (2-8)

where xk is the k-th element of the vector x, ∏ denotes the product operator,
µF l

k
(xk) is the membership function (MF) associated with the k-th input of

the l-th rule, and θl is the weight of the height deffuzification associated with
the l-th rule, (l = 1, · · · ,M). Equation (2-8) can also be expressed as

fT1 (x) =
M∑
l=1

θlφl (x), (2-9)

where φl (x) is called a fuzzy basis function (FBF) [16] and defined as

φl (x) =

P∏
k=1

µF l
k

(xk)
M∑
l=1

P∏
k=1

µF l
k

(xk)
. (2-10)

Equation (2-8) represents the entire structure of T1-FLS presented in
Figure 2.4. As mentioned in Section 2.2, each part of the FLS structure
directly influences the final performance. However, the core of the FLSs are
the fuzzy rules which have the most impact at the T1-FLS performance, and
how to define them is widely researched. These rules can be defined by an
specialist through its knowledge about the problem or using some optimization
methods for training the rules using the data problem. In addition, it is
important to notice that an FLS with high number of rules tends to achieve
a better performance than an FLS with low number of rules. But this gain
in performance comes with high computational costs, consequently with an

3t-norm
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increased time consuming for training it.
Generally, the main approaches to design the rules of an FLS are the

merged model that associates the fuzzy rule-based method with a neural
network (ANFIS) [32], and the one which uses an evolutionary optimization
method associated with FLS, such as a genetic fuzzy system (GFS) [33].
However, both of these merged models reduce or even end an important
property of FLS called interpretability [54]. This property means to the
capability of conjugating a complex behavior with a simple description through
the fuzzy rules [55]. The importance of the interpretability is to understand
why the ML model achieved that output, which features are more relevant for
an application, and to avoid the usage of black box ML [56]. In this way, a T1-
FLS classifier that uses the first and second-order information for training the
fuzzy rule parameters is described in [35], where the fuzzy rules are extracted
from the data using only the type “AND” inference. The results in [35] show
that the T1-FLS classifier achieved faster convergence rate, better classification
performance and interpretability than other fuzzy and non-fuzzy methods due
to the need of few rules to achieve good performance. Therefore, this work will
use the FLS described in [35] for solving CP, the main idea is to use a gradient
optimization method for training the fuzzy rules.

Considering the Gaussian MF which is differentiable at every point of its
domain [35] and defined as

µF l
k

(xk) = exp

−1
2

xk −mF l
k

σF l
k

2
 , (2-11)

where mF l
k
and σ2

F l
k
are the mean and variance, respectively, the fuzzy rules

can be expressed in terms of MF parameters as follows

rulel =
{
x1 is F l

1

(
mF l

1
, σF l

1

)
AND . . . AND xP is F l

P

(
mF l

P
, σF l

P

)
THEN Y l

}
.

(2-12)
Hence, the problem consists in the minimization of the cost function (Equation
(2-7)) updating the fuzzy parameters, mF l

k
, σF l

k
and θl [16]. Considering the

simplest optimization method called Steepest Descent (SD), the training of
the fuzzy rules is performed by searching a minimum by taking unidirectional
minimizations at the opposite direction of the gradient of the cost function
regarding to each fuzzy parameters. Thus for the cost function presented in
Equation (2-7), the SD method optimizes the fuzzy parameters as

w(γ+1) = w(γ) − α∇J
(
w(γ)

)
(2-13)

where ∇J
(
w(γ)

)
is the gradient of the cost function evaluated at point

w = w(γ), α is the step-size, and the vector of fuzzy parameters w(γ) is
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expressed as

w(γ) =
[
mF 1

1
(γ) , · · · ,mF 1

P
(γ) , · · · ,mFM

1
(γ) , · · · ,mFM

P
(γ) , · · · ,

σF 1
1

(γ) , · · · , σF 1
P

(γ) , · · · , σFM
1

(γ) , · · · , σFM
P

(γ) , · · · , (2-14)

θ1 (γ) , · · · , θM (γ)]T ,

and the gradient ∇J
(
w(γ)

)
is defined as

∇J
(
w(γ)

)
=
∂J

(
w(γ)

)
∂mF 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂mF 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂mFM

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂mFM

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σFM

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σFM

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂θ1 (γ) , · · · ,

∂J
(
w(γ)

)
∂θM (γ)

T ,
(2-15)

with the derivatives of J
(
w(γ)

)
with respect to the parametersmF l

k
(γ), σF l

k
(γ),

and θl (γ) defined as

∂J
(
w(γ)

)
∂mF l

k
(γ) =

[
fT1

(
x(q)

)
− y (q)

] [
θl (γ)− fT1

(
x(q)

)]
a

(q)
F l

k
(γ)φl

(
x(q)

)
, (2-16)

∂J
(
w(γ)

)
∂σF l

k
(γ) =

[
fT1

(
x(q)

)
− y (q)

] [
θl (q)− fT1

(
x(q)

)]
b

(q)
F l

k
(γ)φl

(
x(q)

)
, (2-17)

∂J
(
w(γ)

)
∂θl (γ) =

[
fT1

(
x(q)

)
− y (q)

]
φl
(
x(q)

)
. (2-18)

where a(q)
F l

k
(γ) and b

(q)
F l

k
(γ) are created to simplify the above equations as follow

a
(q)
F l

k
(γ) =

x
(q)
k −mF l

k
(γ)

σ2
F l

k
(γ) , (2-19)

b
(q)
F l

k
(γ) =

(
x

(q)
k −mF l

k
(γ)

)2

σ3
F l

k
(γ) . (2-20)

It is important to notice that T1-FLS is a binary classifier and only has
one output, which implies a dependence on binary decomposition strategies for
solving MCPs. This dependence makes this model less attractive if the number
of classes is large. Aiming to solve this issue, the authors in [43] developed a
new fuzzy model which has multiple outputs (i.e., the fuzzy output is a vector
instead a crisp output). The results in [43] show that the new fuzzy model
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attains the same classification performance using the fewer rules than T1-FLS.

2.5
Type-1 fuzzy logic system multiple outputs

The extension of T1-FLS to T1-FLSMO presented in [43] has the
structure presented in Figure 2.5.

Fuzzifier

Rules

Inference

Defuzzifier

Crisp
Inputs

Fuzzy
Inputs Sets

Fuzzy
Output Sets

Crisp
Outputs

PSfrag replacements

y1 ∈ Y1

y2 ∈ Y2

yτ ∈ Yτ

x ∈ X

Figure 2.5: Structure of a T1-FLSMO.

The multiple outputs of T1-FLSMO are related to deffuzifier block. Using
the height defuzzification which replaces each rule in an output fuzzy set with
a singleton (θl) at the point having the maximum membership value in that
output set. The extension to multiple outputs of T1-FLSMO is performed by
calculating the centroid of the T1 set comprised of these singletons, creating a
singleton (θl) for each output (t) as follows

Θ =


θ1

1 θ1
2 · · · θ1

M

θ2
1 θ2

2 · · · θ2
M

... ... . . . ...
θτ1 θτ2 · · · θτM

 , (2-21)

where τ is the number of outputs and t = 1, · · · , τ . Therefore, the outputs of
T1-FLSMO using a height deffuzifier are defined as

y(q) = fmo
(
x(q)

)
= ΘΦ

(
x(q)

)
, (2-22)

where Φ
(
x(q)

)
is a vector of FBFs, which is expressed as

Φ
(
x(q)

)
=
[
φ1
(
x(q)

)
φ2
(
x(q)

)
· · · φM

(
x(q)

) ]T
. (2-23)

In Equation (2-22), the subscript “mo” indicates that is a T1-FLSMO.
The rules of T1-FLS described in Equations (2-8) and (2-9) are extracted

from the data using only inference of the type “AND” [35]. Consequently, the
rules of T1-FLSMO are the same as those of T1-FLS, which can be represented
as
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rulelt : IF x1 is F
l
1 AND . . . AND xP is F l

P THEN y is Y l
t . (2-24)

The structure of the rule “IF x1 is F l
1 AND . . . . . . AND xP is F l

P ”
corresponds to the antecedent from l-th rule and “THEN y is Y l

t ” is the
consequent of the l-th rule for the t-th class. Assuming the Gaussian MF
again, the fuzzy rules can be expressed in terms of MF parameters as follows

rulelt =
{
x1 is F l

1

(
mF l

1
, σF l

1

)
AND . . . AND xP is F l

P

(
mF l

P
, σF l

P

)
THEN Y l

t

}
.

(2-25)
Moreover, the cost function presented in Equation (2-7) is extended for T1-
FLSMO as follows

J
(
w(γ)

)
= 1

2
∑τ

t=1

(
f tmo

(
x(q)

)
− yt(q)

)2
, (2-26)

where w(γ) denotes the vector parameters of T1-FLSMO, which are expressed
as

w(γ) =
[
mF 1

1
(γ) , · · · ,mF 1

P
(γ) , · · · ,mFM

1
(γ) , · · · ,mFM

P
(γ) , · · · ,

σF 1
1

(γ) , · · · , σF 1
P

(γ) , · · · , σFM
1

(γ) , · · · , σFM
P

(γ) , · · · , (2-27)

θ1
1 (γ) , · · · , θ1

M (γ) , · · · , θτ1 (γ) , · · · , θτM (γ)
]T
.

Additionally, the gradient ∇J
(
w(γ)

)
is defined as

∇J
(
w(γ)

)
=
∂J

(
w(γ)

)
∂mF 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂mF 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂mFM

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂mFM

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σFM

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σFM

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂θ1

1 (γ) , · · · ,
∂J

(
w(γ)

)
∂θ1

M (γ) · · ·
∂J

(
w(γ)

)
∂θτ1 (γ) , · · · ,

∂J
(
w(γ)

)
∂θτM (γ)

T ,
(2-28)

and the derivatives of J
(
w(γ)

)
with respect to the parameters mF l

k
(γ), σF l

k
(γ),

and θtl (γ), are defined as

∂J
(
w(γ)

)
∂mF l

k
(γ) =

τ∑
t=1

([
f tmo

(
x(q)

)
− yt (q)

] [
θtl (γ)− f tmo

(
x(q)

)])
a

(q)
F l

k
(γ)φl

(
x(q)

)
,

(2-29)

∂J
(
w(γ)

)
∂σF l

k
(q) =

τ∑
t=1

([
f tmo

(
x(q)

)
− yt (q)

] [
θtl (q)− f tmo

(
x(q)

)])
b

(q)
F l

k
(γ)φl

(
x(q)

)
(2-30)

and
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∂J
(
w(γ)

)
∂θtl (q) =

[
f tmo

(
x(q)

)
− yt (q)

]
φl
(
x(q)

)
. (2-31)

The T1-FLSMO can deal with MCP without any decomposition strategy
requiring fewer rules than T1-FLS, consequently reducing significantly the
computational costs [43]. Otherwise, the T2-FLS handle with uncertainties
better than T1-FLS [16]. In this way, this work proposes to extend the T1-
FLSMO to T2-FLSMO aiming to improve the classification performance of the
FLS for solving MCP.

2.6
Interval type-2 fuzzy logic system binary classifier

The inference block of a T2-FLS is shown in Figure 2.6, where the main
difference with respect to the T1-FLS is the output processing block. In T2-
FLS, it is necessary to reduce the output type-2 fuzzy set to a type-1 fuzzy
set, and only after that can the defuzzifier method be applied to generate the
crisp output [5].

Fuzzifier

Rules

Inference

Defuzzifier

Type-reducer

Crisp
Inputs

Fuzzy
Inputs Sets

Fuzzy
Output Sets

Type-Reduced
Set (Type-1)

Crisp
Output

Output Processing Block

PSfrag replacements

x ∈ X

y ∈ Y

Figure 2.6: Structure of a T2-FLS [16].

2.6.1
Membership functions for interval type-2 fuzzy logic system

As mentioned in Section 2.1 there are the General T2-FLS and the
Interval T2-FLS (IT2-FLS). The IT2-FLS uses the type-2 fuzzy set with less
computational effort than General T2-FLS, this effort is done by representing
the type-2 fuzzy set Ã by its upper and lower MFs, see Equation (2-3).
Considering the Gaussian MF which is differentiable in all domain, two
different approaches can be used to characterize an IT2-FLS. The first one
is a Gaussian MF with an uncertain mean (GMFum). It can take values in the
range [m1,m2] with a fixed standard deviation σ [16], and is described as

µÃ (x) = exp
[
−1

2

(
x−m
σ

)2
]

, m ∈ [m1,m2] . (2-32)
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The MF described in Equation (2-32) is presented in Figure 2.7, where the
shaded area is called the Footprint Of Uncertainty (FOU). The FOU represents
the domain of uncertainty of Ã [5], and can be expressed as

FOU
(
Ã
)

=
{

(x, v)| ∀x ∈ X and v ∈
[
µ
Ã

(x) , µÃ (x)
]}
, (2-33)

where µÃ (x) and µ
Ã

(x) are called upper MF (UMF) and lower MF (LMF) of
FOU

(
Ã
)
, as well as the upper and lower (type-1 fuzzy set) bounding functions

of the FOU, respectively [5]. The UMF and LMF of the MF described in
Equation (2-32) are given by

µ̄Ã (x) =


exp

[
−1

2

(
x−m1
σ

)2
]
, x < m1

1 , m1 ≤ x ≤ m2

exp
[
−1

2

(
x−m2
σ

)2
]
, x > m2

(2-34)

and

µ
Ã

(x) =


exp

[
−1

2

(
x−m2
σ

)2
]

, x ≤ m1+m2
2

exp
[
−1

2

(
x−m1
σ

)2
]

, x > m1+m2
2

, (2-35)

respectively.

PSfrag replacements

m1 m2

1

0.5

0

Figure 2.7: FOU of Gaussian MF with uncertain mean [16].

The second Gaussian MF, which characterizes IT2-FLS, is a Gaussian
MF with an uncertain standard deviation (GMFus). It can take values in the
range [σ1, σ2] with a fixed mean m [16], expressed by

µÃ (x) = exp
[
−1

2

(
x−m
σ

)2
]

, σ ∈ [σ1, σ2] , (2-36)

where the UMF and LMF are expressed as

µÃ (x) = exp
[
−1

2

(
x−m
σ2

)2
]

(2-37)

and
µ
Ã

(x) = exp
[
−1

2

(
x−m
σ1

)2
]
, (2-38)
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respectively. Figure 2.8 shows the MF presented in Equation (2-36) and its
FOU. It is important to note that the UMF and LMF presented by Equations
(2-34) and (2-35) are not differentiable at all points; however, it is piecewise
differentiable (i.e., each branch is differentiable over its segment domain) [16].
On the other hand, the UMF and LMF presented by Equations (2-37) and
(2-38) are differentiable everywhere in all domains.

PSfrag replacements

σ1 σ2

1

0.5

0 m

Figure 2.8: FOU of Gaussian MF with uncertain standard deviation [16].

2.6.2
Interval type-2 fuzzy logic system single output

Considering the height type-reducer, the authors in [57] provided the
first-order information for training the IT2-FLS binary classifier using the SD
method. The approach proposed in [57] involves type reduction with the Karnik
and Mendel method [5], which uses an algorithm to compute the right and left
end-points of IT2-FLS requiring at most (M + 1) /2 iterations. The algorithm
determines the rule required to change the UMF to LMF for computing the left
end-points and the rule required to change the LMF to UMF for calculating
the right end-points 4. Further, in [40], the same authors of [57] proposed a new
method for IT2-FLS called upper and lower T2-FLS (IT2-FLS UL), which does
not require the Karnik and Mendel method, thus reducing the computational
costs. The idea is to compute the upper and lower end-points, using only the
UMF for the upper end-points and the LMF for the lower end-points. The
results show that the approach based on upper and lower end-points achieves
better performance and convergence rates than the approach based on left and
right end-points using the Karnik and Mendel method. In this way, this work
proposes to extend the IT2-FLS UL single output to IT2-FLS UL multiple
outputs (IT2-FLSMO UL) aiming to improve the classification performance of
the fuzzy logic system.

4A completely description of the KM method is detailed in [16]
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Adopting the upper and lower method, singleton fuzzification, max-
product composition, product implication5, height type-reduction using the
upper and lower method and a height defuzzifier, the upper and lower outputs
of IT2-FLS UL [40] are expressed respectively as

YUT 2 (x) =

M∑
l=1

θl
P∏
k=1

µF̃ l
k

(xk)
M∑
l=1

P∏
k=1

µF̃ l
k

(xk)
(2-39)

and

YLT 2 (x) =

M∑
l=1

θl
P∏
k=1

µ
F̃ l

k

(xk)
M∑
l=1

P∏
k=1

µ
F̃ l

k

(xk)
, (2-40)

where µF l
k

(xk) and µ
F l

k

(xk) are the UMF and LMF associated with the k-th
input of the l-th rule [35]. Moreover, the upper and lower fuzzy basis functions
(FBFs) can be defined as

φl (x) =

P∏
k=1

µF̃ l
k

(xk)
M∑
l=1

P∏
k=1

µF̃ l
k

(xk)
(2-41)

and

φ
l
(x) =

P∏
k=1

µ
F̃ l

k

(xk)
M∑
l=1

P∏
k=1

µ
F̃ l

k

(xk)
, (2-42)

respectively.
The difference between T1-FLS and T2-FLS (including IT2-FLS) is

related to the nature of the MFs, which is not important when forming the
fuzzy rules. In this sense, the structure of T2-FLS rules is the same as that of
T1-FLS, where the fuzzy sets involved are of type-2 [5], expressed as

rulel : IF x1 is F̃
l
1 AND . . . AND xP is F̃ l

P THEN y is Ỹ l, (2-43)

where F̃ l
P is the P -th type-2 fuzzy set associated with l-th rule. The structure

of the rule “IF x1 is F̃
l
1 AND . . . . . . AND xP is F̃ l

P ” corresponds to the
antecedent from l-th rule and “THEN y is Ỹ l” is the consequent of the l-th
rule.

The IT2-FLS UL output is computed from the mean of the upper and
lower outputs, given by

fULT 2

(
x(q)

)
=
YUT 2

(
x(q)

)
+ YLT 2

(
x(q)

)
2 , (2-44)

and considering the same cost function presented in Equation (2-7), we have
5t-norm
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J
(
w(γ)

)
= 1

2
[
fULT 2

(
x(q)

)
− y(q)

]2
, (2-45)

where w(γ) represents the vector of the parameters for IT2-FLS UL in the γ-
th iteration. Adopting GMFum for IT2-FLS UL (IT2-FLS UL-GMFum), the
rules can be expressed in terms of GMFum parameters as follows

rulel =
{
x1 is F̃ l

1

(
m1F̃ l

1
,m2F̃ l

1
, σF̃ l

1

)
AND . . .

. . .AND xP is F̃ l
P

(
m1F̃ l

P
,m2F̃ l

1
, σF̃ l

P

)
THEN Ỹ l

}
. (2-46)

Moreover, the vector of parameters for IT2-FLS UL-GMFum is given by

w(γ) =
[
m1F̃ 1

1
(γ) , · · · ,m1F̃ 1

P
(γ) , · · · ,m1F̃M

1
(γ) , · · · ,m1F̃M

P
(γ) , · · · ,

m2F̃ 1
1

(γ) , · · · ,m2F̃ 1
P

(γ) , · · · ,m2F̃M
1

(γ) , · · · ,m2F̃M
P

(γ) , · · · ,

σF̃ 1
1

(γ) , · · · , σF̃ 1
P

(γ) , · · · , σF̃M
1

(γ) , · · · , σF̃M
P

(γ) , · · · , (2-47)

θ1 (γ) , · · · , θM (γ)]T ,

and its gradient vector is expressed as

∇J
(
w(γ)

)
=
∂J

(
w(γ)

)
∂m1F̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂m1F̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂m1F̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂m1F̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂m2F̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂m2F̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂m2F̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂m2F̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂θ1 (γ) , · · · ,

∂J
(
w(γ)

)
∂θM (γ)

T . (2-48)

The equations for computing∇J
(
w(γ)

)
in Equation (2-48) were provided

in [40] and are presented in Appendix A. Analyzing the domain pieces of
UMF and LMF, and the equations of ∇J

(
w(γ)

)
, it can be seen that IT2-

FLS UL-GMFum results in a significant increase of the computational costs in
comparison with T1-FLS. This is because IT2-FLS UL-GMFum is piecewise
differentiable, which results in one derivative equation for each MF interval.
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As mentioned in the previous chapter, the IT2-FLS UL-GMFum results
in higher computational costs than T1-FLS. In this way, to reduce the
computational costs of the IT2-FLS UL-GMFum, this chapter addresses the
work proposals. The first one is to provide the derivatives of the IT2-FLS UL
using the GMFus. In addition, the second one is to extend the IT2-FLS using
both GMFs to the IT2-FLSMO enabling to use them for solving MCPs without
applying any decomposition strategy.

3.1
Gaussian membership function with uncertain standard deviation

The idea to propose the IT2-FLS UL-GMFus is to have an IT2-FLS UL
differentiable in all domains, thereby reducing the equations of its first-order
information. Therefore, applying Equations (2-37) and (2-38) for an input x(q),
the grades of UMF and LMF are expressed by

µF̃ l
k

(x) = exp

−1
2

xk −mF̃ l
k

(γ)
σ2F̃ l

k
(γ)

2
 (3-1)

and
µ
F̃ l

k

(x) = exp

−1
2

xk −mF̃ l
k

(γ)
σ1F̃ l

k
(γ)

2
 , (3-2)

respectively. The replacement of the MF in IT2-FLS UL does not change the
cost function (i.e., the cost function is already defined in Equation (2-45)).
However, the vector w(γ) is now described as

w(γ) =
[
mF̃ 1

1
(γ) , · · · ,mF̃ 1

P
(γ) , · · · ,mF̃M

1
(γ) , · · · ,mF̃M

P
(γ) , · · · ,

σ1F̃ 1
1

(γ) , · · · , σ1F̃ 1
P

(γ) , · · · , σ1F̃M
1

(γ) , · · · , σ1F̃M
P

(γ) , · · · ,

σ2F̃ 1
1

(γ) , · · · , σ2F̃ 1
P

(γ) , · · · , σ2F̃M
1

(γ) , · · · , σ2F̃M
P

(γ) , · · · , (3-3)

θ1 (γ) , · · · , θM (γ)]T .
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Additionally, its gradient vector ∇J
(
w(γ)

)
is expressed as

∇J
(
w(γ)

)
=
∂J

(
w(γ)

)
∂mF̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂mF̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂mF̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂mF̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ1F̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ1F̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ1F̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ1F̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ2F̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ2F̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ2F̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ2F̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂θ1 (γ) , · · · ,

∂J
(
w(γ)

)
∂θM (γ)

T . (3-4)

The equations for computing the gradient ∇J
(
w(γ)

)
are provided in

Appendix B. As expected, the number of equations for obtaining the gradient of
IT2-FLS UL-GMFus reduces from thirteen to four, reducing the computational
costs compared to the model using IT2-FLS UL-GMFum.

Although the computational costs is reduced, IT2-FLS UL has only one
output, which significantly increases the computational effort when dealing
with MCP [43]. The FLS model needs to use a decomposition strategy for
solving MCP, such as OvO or OvA. Moreover, it was shown in [43] that the
number of rules required for solving MCP using an FLS with single output
increases in a nonlinear manner according to the number of classes.

3.2
The interval type-2 fuzzy logic systems multiple outputs

Applying the concept of multiple outputs from T1-FLSMO to IT2-FLS,
a new inference block is formed, as shown in Figure 3.1.

Fuzzifier

Rules

Inference

Defuzzifier

Crisp
Inputs

Fuzzy
Inputs Sets

Fuzzy
Output Sets

Crisp
Outputs

Type-reducer

Type-Reduced
Set (Type-1)

Output Processing Block

PSfrag replacements

y1 ∈ Y1

y2 ∈ Y2

yτ ∈ Yτ

x ∈ X

Figure 3.1: Structure of T2-FLSMO.

Considering IT2-FLS UL and extending it to multiple outputs, its output
vector can be expressed as
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f(q)ULT2mo
=

YUT 2mo

(
x(q)

)
+ YLT 2mo

(
x(q)

)
2 , (3-5)

where YUT 2mo

(
x(q)

)
represents the upper output vector and YLT 2mo

(
x(q)

)
represents the lower output vector, as follows

YUT 2mo

(
x(q)

)
= ΘΦ

(
x(q)

)
(3-6)

and
YLT 2mo

(
x(q)

)
= ΘΦ

(
x(q)

)
. (3-7)

The Θ in Equations (3-6) and (3-7) is the same as that used in T1-FLSMO
(see Equation (2-21)). Additionally, it is important to define the upper vector
of FBFs Φ

(
x(q)

)
and lower vector of FBFs Φ

(
x(q)

)
, as

Φ
(
x(q)

)
=
[
φ1

(
x(q)

)
φ2

(
x(q)

)
· · · φM

(
x(q)

) ]T
(3-8)

and
Φ
(
x(q)

)
=
[
φ1

(
x(q)

)
φ2

(
x(q)

)
· · · φ

M

(
x(q)

) ]T
(3-9)

respectively. In addition, extending the cost function presented in Equation
(2-45), we obtain

J
(
w(γ)

)
= 1

2
∑τ

t=1

(
f tULT2mo

(
x(q)

)
− yt (q)

)2
, (3-10)

where the vector of parameters w(γ) for IT2-FLSMO UL-GMFum is expressed
as

w(γ) =
[
m1F̃ 1

1
(γ) , · · · ,m1F̃ 1

P
(γ) , · · · ,m1F̃M

1
(γ) , · · · ,m1F̃M

P
(γ) , · · · ,

m2F̃ 1
1

(γ) , · · · ,m2F̃ 1
P

(γ) , · · · ,m2F̃M
1

(γ) , · · · ,m2F̃M
P

(γ) , · · · ,

σF̃ 1
1

(γ) , · · · , σF̃ 1
P

(γ) , · · · , σF̃M
1

(γ) , · · · , σF̃M
P

(γ) , · · · , (3-11)

θ1
1 (γ) , · · · , θ1

M (γ) , · · · , θτ1 (γ) , · · · , θτM (γ)
]T
,

and that for IT2-FLSMO UL-GMFus as

w(γ) =
[
mF̃ 1

1
(γ) , · · · ,mF̃ 1

P
(γ) , · · · ,mF̃M

1
(γ) , · · · ,mF̃M

P
(γ) , · · · ,

σ1F̃ 1
1

(γ) , · · · , σ1F̃ 1
P

(γ) , · · · , σ1F̃M
1

(γ) , · · · , σ1F̃M
P

(γ) , · · · ,

σ2F̃ 1
1

(γ) , · · · , σ2F̃ 1
P

(γ) , · · · , σ2F̃M
1

(γ) , · · · , σ2F̃M
P

(γ) , · · · , (3-12)

θ1
1 (γ) , · · · , θ1

M (γ) , · · · , θτ1 (γ) , · · · , θτM (γ)
]T
.

Therefore, the expression of ∇J
(
w(γ)

)
for IT2-FLSMO UL-GMFum and IT2-
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FLSMO UL-GMFus are respectively given by

∇J
(
w(γ)

)
=
∂J

(
w(γ)

)
∂m1F̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂m1F̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂m1F̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂m1F̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂m2F̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂m2F̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂m2F̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂m2F̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σF̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂θ1

1 (γ) , · · · ,
∂J

(
w(γ)

)
∂θ1

M (γ) · · ·
∂J

(
w(γ)

)
∂θτ1 (γ) , · · · ,

∂J
(
w(γ)

)
∂θτM (γ)

T

(3-13)

and

∇J
(
w(γ)

)
=
∂J

(
w(γ)

)
∂mF̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂mF̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂mF̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂mF̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ1F̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ1F̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ1F̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ1F̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ2F̃ 1

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ2F̃ 1

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ2F̃M

1
(γ) , · · · ,

∂J
(
w(γ)

)
∂σ2F̃M

P
(γ) , · · · ,

∂J
(
w(γ)

)
∂θ1

1 (γ) , · · · ,
∂J

(
w(γ)

)
∂θ1

M (γ) · · ·
∂J

(
w(γ)

)
∂θτ1 (γ) , · · · ,

∂J
(
w(γ)

)
∂θτM (γ)

T .
(3-14)

The partial derivatives of the cost function J
(
w(γ)

)
for each fuzzy parameter

using GMFum are provided in Appendix C, and those using GMFus are
provided in Appendix D. It is important to mention that for solving BCPs
the number of rules in both methods (T1-FLS and T1-FLSMO) are the same,
as T1-FLSMO turns into T1-FLS with a single output [43].
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4
Experimental results

The performance analyses presented in this section consider the datasets
provided by Knowledge Extraction based on Evolutionary Learning [46] and
UCI Machine Learning Repository [47]. Information regarding these datasets
is provided in Table 4.1, which includes nine datasets for BCPs and seven
datasets for MCPs. To compare the proposed strategies, we implemented T1-
FLS trained by the SD (SD T1-FLS) and SCG (SCG T1-FLS) methods [35].
In addition, for MCPs, we implemented T1-FLS using the OvA decomposition
strategy (SD T1-FLS OvA and SCG T1-FLS OvA) and T1-FLSMO trained by
the SD and SCG methods (indicated as SD T1-FLSMO and SCG T1-FLSMO,
respectively) [43].

The classifier’s performance presented herein considers 33 executions on
each dataset, together with the 5-fold cross-validation [58] for all datasets
containing less than 1000 samples. Regarding the remaining datasets, it was
used 15% of the samples as a test set. Moreover, the validation set was
performed using 30% of each training set, where w(γ) is the parameter vector
that attained the best accuracy metric for the validation set among all epochs.
The input variables were normalized to a range of [−1, 1], and the batch
learning was applied [35]. The performance metrics used here were accuracy,
MSE, Cohen’s kappa [59], F-score [60], and best training epoch.

Table 4.1: Details of datasets.
Dataset Input

features

Number of samples
Classes

Total
of samples

1 2 3 4 5 6 7 8
1. Appendicitis1 7 21 85 – – – – – – 106
2. Balance Scale2 4 288 49 288 – – – – – 625
3. Car Evaluation2 6 1210 384 69 65 – – – – 1728
4. Contraceptive2 9 629 333 511 – – – – – 1473
5. Ecoli2 7 143 77 2 2 35 20 5 52 336
6. Glass2 9 70 76 17 13 9 29 – – 214
7. Haberman1 3 225 81 – – – – – – 306
8. Ionosphere2 34 225 126 – – – – – – 351
9. Iris2 4 50 50 50 – – – – – 150
10. Liver Disorders2 6 145 200 – – – – – – 345
11. Monk21 6 228 204 – – – – – – 432
12. Parkinson2 22 147 48 – – – – – – 195
13. Pima2 8 268 500 – – – – – – 768
14. Sonar2 60 97 111 – – – – – – 208
15. South Africa1 9 160 302 – – – – – – 462
16. Wine2 13 59 71 48 – – – – – 178
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The number of fuzzy rules was heuristically defined as follows: two rules
for each class in FLSMO and each FLS OvA binary classifier leading to a total
of M = 2Υ and M = 2× 2Υ rules, respectively. For T1-FLSMO, the first rule
for each class was created using the mean and variance of all inputs in the
entire training set for that class [35], which can be summarized as

rule1
t =

{
x1 is F 1

1

(
mF 1

1
, σF 1

1

)
AND . . .

. . . AND xP is F 1
P

(
mF 1

P
, σF 1

P

)
THEN Y 1

t

}
,

(4-1)

where each rule ‘rule1
t ’ contains the parameter values of the membership

functions related to the first rule of the t-th class. The second rule for each
class consists of the MF parameters from the first rule scaled by random
values, {C ∈ IR| − 0.8 ≤ C ≤ 1.2} and {V ∈ IR| − 0.8 ≤ V ≤ 1.2}, which can
be expressed as

rule2
t =

{
x1 is F 2

1

(
CmF 2

1
, V σF 2

1

)
AND . . .

. . . AND xP is F 2
P

(
CmF 2

P
, V σF 2

P

)
THEN Y 2

t

}
.

(4-2)

The first rule of each class for IT2-FLSMO UL was created in a similar
way. However, the mean and variance parameters of GMFum and GMFus
were defined heuristically as 80% and 120% of the mean and variance of
all inputs (i.e., in GMFum, the mean parameters were m1F̃ l

k
= 0.8mF l

k
and

m2F̃ l
k

= 1.2mF l
k
, and for GMFus, the variance parameters were σ1F̃ l

k
= 0.8σF l

k

and σ2F̃ l
k

= 1.2σF l
k
), respectively. The first rules of GMFum and GMFus are

respectively expressed as

rule1
t =

{
x1 is F̃ 1

1

(
m1F̃ 1

1
,m2F̃ 1

1
, σF̃ 1

1

)
AND . . .

. . . AND xP is F̃ 1
P

(
m1F̃ 1

P
,m2F̃ 1

P
, σF̃ 1

P

)
THEN Ỹ 1

t

} (4-3)

and

rule1
t =

{
x1 is F̃ 1

1

(
mF̃ 1

1
, σ1F̃ 1

1
, σ2F̃ 1

1

)
AND . . .

. . . AND xP is F̃ 1
P

(
mF̃ 1

P
, σ1F̃ 1

P
, σ2F̃ 1

P

)
THEN Ỹ 1

t

}
.

(4-4)

Regarding the second rule of each class in IT2-FLSMO UL, they were created
by scaling the mean and variance parameters of the first rules by C and V ,
respectively, analogous to Equation (4-2).

However, the training samples related to the class for which each binary
classifier was designed, must be used (e.g., an MCP with Υ classes in OvA
decomposition has Υ BCs, where the first BC has two classes; the first class
is designed using the samples of class t = 1 and the second class is designed

1Datasets provided by Knowledge Extraction based on Evolutionary Learning (KEEL)
Repository [46]

2Datasets provided by UCI Machine Learning Repository [47]
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using samples of classes t = {2, . . . ,Υ}) [43]. Table 4.2 lists the total number
of rules for the investigated approaches for each MCP dataset. The matrix Θ
of the height defuzzifier is initialized with θtl = 1 if a rule corresponds to a
class for which the output “t” is positive and with θtl = −1

Υ−1 for the remaining
rules [43]. The output vector for each class was codified by a length-τ vector
of negative unit values where the element that presents the class is replaced
by 1 [43]. Moreover, the threshold assigns the output that is less than zero to
class -1, while an output greater or equal to zero is assigned to class 1.

Table 4.2: Number of rules for each MCP dataset used in FLS with OvA and
FLSMO.

Dataset Total number of rules
FLSOvA FLSMO

1. Balance Scale 12 6
2. Car Evaluation 16 8
3. Contraceptive 12 6
4. Ecoli 12 6
5. Glass 28 14
6. Iris 12 6
7. Wine 12 6

Two hundred epochs were considered for the training phase, and no stop
criteria was set up. The step size adopted for the SD training method was
initially defined as α = 0.01. However, some preliminarily results, which are
presented in Appendix E, show a slow convergence rate for IT2-FLS models
considering only 200 epochs of training. This is because IT2-FLS has a better
capability to model uncertainties than T1-FLS, leading to an optimization
surface with less attenuations and consequently allowing one to increase the
value of step size to achieve the convergence within a defined number of training
epochs. Therefore, a new step size of α = 0.1 was adopted for SD method.
Considering the SCG training method, it was defined the same parameters
used in [35], the initial value of the Lagrange coefficient was γ1 = 10−15, and
the value for restarting the update direction was N = 10, with the infinitesimal
increment set as ε = 10−5.

4.1
Performance analysis for binary classification problems

Table 4.3 lists the performance metrics considering only BCPs for the
proposed models and the T1-FLS model presented in [35]. Also, Figures 4.1
– 4.3 show the average of accuracy and MSE during the training phase for
all 33 executions of the relevant datasets. In almost all the datasets, SCG
T1-FLS achieved the highest training accuracy and the lowest best epoch.
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This demonstrates the superiority of the SCG method, which uses second-
order information, in comparison with the SD method, even when using IT2-
FLS. However, regarding the test metrics, all models were found to achieve
similar results, with the exception of the Ionosphere dataset, in which IT2-
FLSs performed better than the other approaches. This improvement may
be explained by the nature of uncertainties in this dataset, which is probably
better handled using IT2-FLS than T1-FLS irrespective of the training method
applied. In addition, the T1-FLSs models achieved better results than IT2-
FLSs in the Liver dataset. The better results obtained using SCG T1-FLS
can be explained due to the use of second-order information, which has more
chances to avoid poor local minima than first-order information method. The
performance of SD T1-FLS in this dataset can be explained by analyzing the
MSE in Figure 4.2, in which the behavior of the curve becomes unstable after
epoch 40. This behavior indicates that the step size adopted was large for SD
T1-FLS, thus avoiding the local minimum many times and achieving good test
accuracy due to the validation phase, once the fuzzy parameters of the best
validation accuracy were used in the test phase. Moreover, it can be seen in
Figures 4.1 – 4.3, that the performance of IT2-FLS GMFum is always slightly
better than that of GMFus during the training phase.

Table 4.3: BCPs Performance comparison in terms of the mean and standard
deviation.
Dataset Method Training

accuracy [%]
Test

accuracy [%]
Training
MSE

Test
MSE

Training
Kappa

Test
Kappa

Training
F-score

Test
F-score

Best
epoch

Appendicitis

IT2-FLS UL-GMFum 92.49 (±2.47) 85.55 (±6.81) 0.25 (±0.07) 0.46 (±0.21) 0.65 (±0.13) 0.53 (±0.22) 0.82 (±0.07) 0.76 (±0.11) 100 (±75)
IT2-FLS UL-GMFus 92.52 (±2.44) 85.32 (±6.90) 0.26 (±0.07) 0.46 (±0.19) 0.65 (±0.12) 0.54 (±0.21) 0.82 (±0.06) 0.77 (±0.11) 97 (±73)

SD T1-FLS [35] 93.29 (±3.25) 84.79 (±6.44) 0.22 (±0.08) 0.51 (±0.21) 0.72 (±0.11) 0.49 (±0.21) 0.86 (±0.06) 0.74 (±0.11) 100 (±68)
SCG T1-FLS [35] 95.57 (±2.11) 84.98 (±6.63) 0.15 (±0.07) 0.51 (±0.21) 0.84 (±0.10) 0.49 (±0.22) 0.92 (±0.05) 0.74 (±0.12) 39 (±58)

Haberman

IT2-FLS UL-GMFum 78.68 (±2.11) 74.22 (±3.58) 0.62 (±0.04) 0.74 (±0.07) 0.25 (±0.10) 0.15 (±0.13) 0.60 (±0.06) 0.55 (±0.08) 92 (±67)
IT2-FLS UL-GMFus 78.53 (±2.14) 74.47 (±3.51) 0.63 (±0.04) 0.74 (±0.07) 0.24 (±0.10) 0.16 (±0.12) 0.60 (±0.06) 0.55 (±0.07) 88 (±72)

SD T1-FLS [35] 78.38 (±2.24) 74.39 (±4.18) 0.62 (±0.04) 0.74 (±0.08) 0.29 (±0.08) 0.20 (±0.12) 0.63 (±0.04) 0.59 (±0.07) 67 (±63)
SCG T1-FLS [35] 81.34 (±2.38) 74.06 (±3.82) 0.57 (±0.05) 0.75 (±0.09) 0.44 (±0.09) 0.19 (±0.12) 0.71 (±0.05) 0.58 (±0.07) 25 (±42)

Ionosphere

IT2-FLS UL-GMFum 98.16 (±1.28) 91.81 (±3.23) 0.09 (±0.03) 0.28 (±0.09) 0.95 (±0.04) 0.82 (±0.07) 0.97 (±0.02) 0.91 (±0.04) 168 (±40)
IT2-FLS UL-GMFus 98.32 (±0.75) 93.03 (±2.73) 0.09 (±0.02) 0.23 (±0.08) 0.96 (±0.02) 0.85 (±0.06) 0.98 (±0.01) 0.92 (±0.03) 191 (±18)

SD T1-FLS [35] 75.86 (±2.92) 73.66 (±4.43) 0.59 (±0.05) 0.65 (±0.06) 0.52 (±0.06) 0.49 (±0.09) 0.75 (±0.03) 0.73 (±0.05) 189 (±29)
SCG T1-FLS [35] 95.81 (±4.83) 87.46 (±6.48) 0.13 (±0.12) 0.39 (±0.16) 0.91 (±0.10) 0.73 (±0.13) 0.95 (±0.05) 0.86 (±0.07) 91 (±60)

Liver

IT2-FLS UL-GMFum 73.23 (±3.43) 65.31 (±5.73) 0.73 (±0.06) 0.90 (±0.08) 0.38 (±0.12) 0.26 (±0.13) 0.68 (±0.07) 0.62 (±0.07) 152 (±60)
IT2-FLS UL-GMFus 73.34 (±3.21) 66.34 (±5.71) 0.74 (±0.06) 0.87 (±0.07) 0.41 (±0.10) 0.28 (±0.13) 0.70 (±0.06) 0.63 (±0.07) 178 (±44)

SD T1-FLS [35] 75.60 (±4.40) 69.21 (±5.05) 0.68 (±0.13) 0.85 (±0.09) 0.50 (±0.10) 0.35 (±0.11) 0.74 (±0.06) 0.67 (±0.06) 82 (±45)
SCG T1-FLS [35] 85.97 (±2.12) 69.87 (±4.99) 0.47 (±0.05) 0.83 (±0.09) 0.70 (±0.05) 0.37 (±0.11) 0.85 (±0.02) 0.68 (±0.06) 25 (±21)

Monk2

IT2-FLS UL-GMFum 97.92 (±1.15) 97.65 (±1.67) 0.09 (±0.04) 0.10 (±0.06) 0.96 (±0.02) 0.95 (±0.03) 0.98 (±0.01) 0.98 (±0.02) 199 (±4)
IT2-FLS UL-GMFus 98.34 (±1.18) 97.97 (±1.73) 0.08 (±0.03) 0.09 (±0.05) 0.97 (±0.02) 0.96 (±0.03) 0.98 (±0.01) 0.98 (±0.02) 199 (±4)

SD T1-FLS [35] 97.73 (±0.98) 97.36 (±1.52) 0.10 (±0.03) 0.12 (±0.06) 0.95 (±0.02) 0.95 (±0.03) 0.98 (±0.01) 0.97 (±0.02) 199 (±6)
SCG T1-FLS [35] 99.10 (±1.22) 98.74 (±1.83) 0.02 (±0.03) 0.03 (±0.04) 0.98 (±0.03) 0.97 (±0.04) 0.99 (±0.01) 0.99 (±0.02) 189 (±24)

Parkinson

IT2-FLS UL-GMFum 92.60 (±3.28) 84.32 (±6.08) 0.22 (±0.09) 0.45 (±0.15) 0.76 (±0.12) 0.57 (±0.17) 0.88 (±0.06) 0.78 (±0.09) 165 (±44)
IT2-FLS UL-GMFus 93.28 (±3.64) 84.58 (±5.68) 0.20 (±0.08) 0.43 (±0.12) 0.78 (±0.12) 0.58 (±0.16) 0.89 (±0.06) 0.79 (±0.08) 170 (±44)

SD T1-FLS [35] 94.43 (±3.47) 86.74 (±5.56) 0.20 (±0.10) 0.42 (±0.16) 0.80 (±0.10) 0.61 (±0.18) 0.90 (±0.05) 0.80 (±0.09) 134 (±52)
SCG T1-FLS [35] 95.27 (±2.36) 85.80 (±5.88) 0.17 (±0.07) 0.45 (±0.17) 0.86 (±0.07) 0.58 (±0.18) 0.93 (±0.04) 0.78 (±0.09) 100 (±64)

Pima

IT2-FLS UL-GMFum 80.33 (±1.62) 76.41 (±3.17) 0.55 (±0.03) 0.64 (±0.06) 0.51 (±0.04) 0.46 (±0.07) 0.76 (±0.02) 0.73 (±0.04) 111 (±61)
IT2-FLS UL-GMFus 80.14 (±1.50) 76.62 (±3.32) 0.56 (±0.03) 0.63 (±0.06) 0.52 (±0.04) 0.46 (±0.08) 0.76 (±0.02) 0.73 (±0.04) 136 (±50)

SD T1-FLS [35] 81.90 (±1.41) 76.63 (±3.29) 0.51 (±0.03) 0.63 (±0.07) 0.53 (±0.04) 0.47 (±0.07) 0.77 (±0.02) 0.73 (±0.04) 56 (±51)
SCG T1-FLS [35] 86.43 (±1.75) 76.56 (±3.20) 0.44 (±0.03) 0.64 (±0.08) 0.69 (±0.04) 0.47 (±0.07) 0.85 (±0.02) 0.73 (±0.04) 13 (±11)

Sonar

IT2-FLS UL-GMFum 98.55 (±1.20) 79.90 (±6.36) 0.06 (±0.04) 0.63 (±0.19) 0.89 (±0.10) 0.60 (±0.13) 0.94 (±0.05) 0.80 (±0.06) 69 (±58)
IT2-FLS UL-GMFus 98.21 (±1.24) 80.03 (±6.60) 0.07 (±0.04) 0.62 (±0.19) 0.91 (±0.08) 0.60 (±0.13) 0.95 (±0.04) 0.80 (±0.07) 90 (±67)

SD T1-FLS [35] 99.29 (±2.76) 79.78 (±6.19) 0.03 (±0.08) 0.62 (±0.19) 0.88 (±0.14) 0.59 (±0.13) 0.94 (±0.08) 0.79 (±0.06) 44 (±55)
SCG T1-FLS [35] 99.69 (±0.51) 79.72 (±6.57) 0.01 (±0.02) 0.63 (±0.21) 0.99 (±0.01) 0.59 (±0.13) 1.00 (±0.01) 0.79 (±0.07) 34 (±52)

South Africa

IT2-FLS UL-GMFum 78.13 (±1.97) 70.27 (±3.90) 0.62 (±0.04) 0.77 (±0.08) 0.43 (±0.07) 0.32 (±0.09) 0.71 (±0.04) 0.65 (±0.05) 103 (±62)
IT2-FLS UL-GMFus 78.20 (±2.17) 70.67 (±4.26) 0.61 (±0.04) 0.76 (±0.08) 0.43 (±0.07) 0.33 (±0.10) 0.71 (±0.03) 0.66 (±0.05) 109 (±61)

SD T1-FLS [35] 80.59 (±2.12) 71.08 (±3.96) 0.56 (±0.04) 0.76 (±0.08) 0.46 (±0.05) 0.34 (±0.09) 0.73 (±0.03) 0.67 (±0.05) 69 (±55)
SCG T1-FLS [35] 88.14 (±2.15) 71.15 (±3.96) 0.42 (±0.05) 0.77 (±0.09) 0.72 (±0.05) 0.34 (±0.09) 0.86 (±0.03) 0.67 (±0.05) 12 (±15)
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Figure 4.1: Ionosphere dataset: average performance of FLSs.
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4.2(a): Accuracy.
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4.2(b): MSE.

Figure 4.2: Liver dataset: average performance of FLSs.
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4.3(a): Accuracy.
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Figure 4.3: Parkinson dataset: average performance of FLSs.
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4.2
Performance analysis for multiclass classification problems

Table 4.4 lists the performance metrics for the MCPs of the proposed
models as well as the T1-FLS, and T1-FLSMO models presented in [43].
Figures 4.4 – 4.6 show the average of accuracy and MSE during the training
phase for all executions of the most relevant datasets. In addition, it should
be noted that the best epoch metric was not computed for all approaches
because there can be no fair comparison between the average best epoch of
the Υ classifiers required for OvA decomposition strategies and the best epoch
achieved by the FLSMO models, which uses only one classifier. With respect to
the mean and standard deviation of the test metrics, the models using OvA and
FLSMO approaches achieve the same performance for Balance, Contraceptive,
Ecoli, Iris, and Wine datasets. Regarding the results for the Car dataset, the
FLSMO approaches were slightly better than FLS with OvA models, and the
T1-FLSMO trained by SCG attained the best results. On the other hand,
in the Glass dataset, the FLS models using OvA strategy were better than
FLSMO models, except for SCG T1-FLSMO, which achieved similar results
for the test metrics. However, the FLSs using the OvA approach required twice
the number of fuzzy rules in comparison with FLSMO, thereby increasing the
computational costs during the training phase. Moreover, the training MSE of
IT2-FLSMO models always achieved the lowest values in all datasets.
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Figure 4.4: Balance dataset: average performance of FLSs.
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Figure 4.5: Car dataset: average performance of FLSs.
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Figure 4.6: Glass dataset: average performance of FLSs.
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Table 4.4: MCPs performance comparison in terms of the mean and standard
deviation.
Dataset Method Training

accuracy [%]
Test

accuracy [%]
Training
MSE

Test
MSE

Training
Kappa

Test
Kappa

Training
F-score

Test
F-score

Best
epoch

Balance

IT2-FLS UL-GMFum OvA 91.48 (±1.41) 91.84 (±0.82) 0.57 (±0.05) 0.51 (±0.04) 0.84 (±0.03) 0.85 (±0.02) 0.66 (±0.05) 0.65 (±0.03) –
IT2-FLS UL-GMFus OvA 91.97 (±0.80) 91.70 (±0.77) 0.49 (±0.03) 0.53 (±0.04) 0.85 (±0.01) 0.85 (±0.01) 0.65 (±0.02) 0.64 (±0.02) –

SD T1-FLS OvA [43] 91.75 (±1.49) 91.90 (±0.93) 0.55 (±0.04) 0.50 (±0.04) 0.85 (±0.03) 0.85 (±0.02) 0.67 (±0.06) 0.66 (±0.04) –
IT2-FLSMO UL-GMFum 90.73 (±0.97) 89.47 (±1.88) 0.30 (±0.02) 0.70 (±0.07) 0.83 (±0.02) 0.81 (±0.03) 0.69 (±0.03) 0.64 (±0.03) 191 (±29)
IT2-FLSMO UL-GMFus 91.76 (±0.95) 90.83 (±1.56) 0.26 (±0.02) 0.60 (±0.06) 0.86 (±0.02) 0.83 (±0.03) 0.72 (±0.04) 0.66 (±0.04) 111 (±55)

SD T1-FLSMO [43] 91.29 (±1.03) 89.18 (±1.90) 0.57 (±0.05) 0.71 (±0.07) 0.84 (±0.02) 0.80 (±0.03) 0.71 (±0.04) 0.64 (±0.03) 188 (±27)
SCG T1-FLSMO [43] 92.88 (±1.17) 91.01 (±1.22) 0.43 (±0.06) 0.54 (±0.08) 0.86 (±0.02) 0.83 (±0.02) 0.69 (±0.06) 0.64 (±0.02) 138 (±56)

Car

IT2-FLS UL-GMFum OvA 89.93 (±0.63) 88.18 (±1.83) 0.70 (±0.02) 0.74 (±0.08) 0.77 (±0.02) 0.73 (±0.04) 0.73 (±0.04) 0.67 (±0.07) –
IT2-FLS UL-GMFus OvA 90.00 (±0.61) 88.58 (±2.14) 0.69 (±0.02) 0.74 (±0.08) 0.78 (±0.01) 0.74 (±0.04) 0.73 (±0.04) 0.69 (±0.06) –

SD T1-FLS OvA [43] 91.41 (±0.66) 89.26 (±2.12) 0.65 (±0.02) 0.71 (±0.08) 0.81 (±0.02) 0.76 (±0.04) 0.77 (±0.04) 0.71 (±0.06) –
IT2-FLSMO UL-GMFum 91.78 (±3.18) 90.80 (±1.87) 0.24 (±0.04) 0.51 (±0.07) 0.85 (±0.02) 0.80 (±0.04) 0.81 (±0.06) 0.75 (±0.08) 191 (±11)
IT2-FLSMO UL-GMFus 93.38 (±1.01) 91.73 (±1.78) 0.21 (±0.02) 0.49 (±0.07) 0.86 (±0.02) 0.82 (±0.04) 0.86 (±0.04) 0.80 (±0.06) 196 (±7)

SD T1-FLSMO [43] 91.85 (±3.98) 91.80 (±2.07) 0.49 (±0.16) 0.48 (±0.08) 0.86 (±0.02) 0.82 (±0.04) 0.87 (±0.03) 0.82 (±0.06) 194 (±7)
SCG T1-FLSMO [43] 97.05 (±1.09) 94.89 (±1.69) 0.23 (±0.06) 0.33 (±0.09) 0.93 (±0.03) 0.89 (±0.03) 0.95 (±0.02) 0.90 (±0.05) 183 (±28)

Contraceptive

IT2-FLS UL-GMFum OvA 58.79 (±1.22) 55.09 (±2.61) 2.11 (±0.03) 2.24 (±0.07) 0.35 (±0.02) 0.30 (±0.04) 0.56 (±0.01) 0.52 (±0.03) –
IT2-FLS UL-GMFus OvA 58.59 (±1.19) 55.07 (±2.70) 2.13 (±0.03) 2.25 (±0.06) 0.35 (±0.02) 0.30 (±0.04) 0.56 (±0.01) 0.52 (±0.03) –

SD T1-FLS OvA [43] 59.52 (±1.33) 55.42 (±2.23) 2.08 (±0.04) 2.24 (±0.07) 0.36 (±0.02) 0.30 (±0.03) 0.57 (±0.02) 0.52 (±0.02) –
IT2-FLSMO UL-GMFum 57.86 (±1.37) 55.08 (±3.17) 1.07 (±0.02) 2.27 (±0.09) 0.33 (±0.02) 0.30 (±0.05) 0.54 (±0.02) 0.52 (±0.03) 169 (±43)
IT2-FLSMO UL-GMFus 59.21 (±1.01) 54.55 (±3.08) 1.04 (±0.02) 2.29 (±0.09) 0.35 (±0.02) 0.29 (±0.05) 0.56 (±0.02) 0.52 (±0.03) 168 (±35)

SD T1-FLSMO [43] 59.38 (±1.37) 54.76 (±3.29) 2.12 (±0.04) 2.29 (±0.08) 0.35 (±0.03) 0.29 (±0.05) 0.56 (±0.02) 0.52 (±0.04) 145 (±46)
SCG T1-FLSMO [43] 62.11 (±2.39) 54.52 (±3.16) 2.02 (±0.06) 2.30 (±0.11) 0.35 (±0.04) 0.29 (±0.05) 0.56 (±0.04) 0.51 (±0.04) 49 (±39)

Ecoli

IT2-FLS UL-GMFum OvA 90.46 (±1.61) 86.45 (±3.46) 0.69 (±0.08) 1.02 (±0.19) 0.87 (±0.02) 0.81 (±0.05) 0.75 (±0.08) 0.72 (±0.09) –
IT2-FLS UL-GMFus OvA 89.47 (±1.76) 86.28 (±3.49) 0.81 (±0.09) 1.06 (±0.19) 0.85 (±0.02) 0.81 (±0.05) 0.73 (±0.08) 0.72 (±0.09) –

SD T1-FLS OvA [43] 90.82 (±1.62) 86.28 (±3.50) 0.67 (±0.09) 1.03 (±0.18) 0.87 (±0.02) 0.81 (±0.05) 0.76 (±0.09) 0.72 (±0.09) –
IT2-FLSMO UL-GMFum 90.11 (±2.02) 85.10 (±3.47) 0.45 (±0.07) 1.17 (±0.18) 0.86 (±0.03) 0.79 (±0.05) 0.74 (±0.05) 0.63 (±0.07) 195 (±9)
IT2-FLSMO UL-GMFus 89.84 (±2.17) 85.48 (±3.55) 0.48 (±0.09) 1.16 (±0.18) 0.86 (±0.03) 0.80 (±0.05) 0.74 (±0.06) 0.64 (±0.07) 198 (±3)

SD T1-FLSMO [43] 90.74 (±1.83) 85.36 (±3.85) 0.85 (±0.13) 1.16 (±0.16) 0.87 (±0.03) 0.80 (±0.05) 0.75 (±0.05) 0.64 (±0.06) 193 (±12)
SCG T1-FLSMO [43] 93.21 (±2.49) 84.72 (±4.14) 0.52 (±0.13) 1.20 (±0.57) 0.87 (±0.03) 0.79 (±0.06) 0.76 (±0.05) 0.60 (±0.02) 66 (±48)

Glass

IT2-FLS UL-GMFum OvA 77.04 (±2.95) 65.08 (±6.71) 1.47 (±0.12) 2.17 (±0.26) 0.68 (±0.04) 0.51 (±0.09) 0.69 (±0.06) 0.52 (±0.10) –
IT2-FLS UL-GMFus OvA 75.95 (±2.97) 65.10 (±6.93) 1.54 (±0.11) 2.16 (±0.25) 0.67 (±0.04) 0.52 (±0.09) 0.67 (±0.06) 0.53 (±0.10) –

SD T1-FLS OvA [43] 77.73 (±3.65) 65.84 (±6.95) 1.41 (±0.15) 2.15 (±0.27) 0.69 (±0.05) 0.52 (±0.10) 0.71 (±0.06) 0.54 (±0.09) –
IT2-FLSMO UL-GMFum 73.19 (±5.28) 62.56 (±7.59) 0.86 (±0.11) 2.20 (±0.29) 0.62 (±0.07) 0.47 (±0.11) 0.59 (±0.05) 0.42 (±0.08) 182 (±25)
IT2-FLSMO UL-GMFus 74.07 (±3.94) 61.61 (±6.61) 0.84 (±0.07) 2.23 (±0.25) 0.63 (±0.06) 0.46 (±0.09) 0.59 (±0.04) 0.41 (±0.08) 186 (±19)

SD T1-FLSMO [43] 74.17 (±4.44) 62.60 (±6.86) 1.65 (±0.15) 2.17 (±0.27) 0.63 (±0.07) 0.47 (±0.10) 0.60 (±0.05) 0.43 (±0.08) 178 (±25)
SCG T1-FLSMO [43] 82.04 (±4.89) 64.45 (±6.64) 1.25 (±0.21) 2.27 (±0.41) 0.68 (±0.08) 0.50 (±0.09) 0.60 (±0.04) 0.42 (±0.04) 79 (±58)

Iris

IT2-FLS UL-GMFum OvA 97.80 (±1.28) 94.97 (±4.03) 0.18 (±0.05) 0.37 (±0.23) 0.97 (±0.02) 0.92 (±0.06) 0.98 (±0.01) 0.95 (±0.04) –
IT2-FLS UL-GMFus OvA 97.54 (±1.25) 95.23 (±3.74) 0.18 (±0.05) 0.34 (±0.20) 0.96 (±0.02) 0.93 (±0.06) 0.98 (±0.01) 0.95 (±0.04) –

SD T1-FLS OvA [43] 97.94 (±1.46) 95.11 (±3.90) 0.16 (±0.08) 0.36 (±0.22) 0.97 (±0.02) 0.93 (±0.06) 0.98 (±0.01) 0.95 (±0.04) –
IT2-FLSMO UL-GMFum 97.84 (±3.50) 94.97 (±3.94) 0.07 (±0.11) 0.38 (±0.22) 0.95 (±0.05) 0.92 (±0.06) 0.97 (±0.04) 0.95 (±0.04) 144 (±46)
IT2-FLSMO UL-GMFus 98.87 (±1.13) 95.35 (±3.73) 0.03 (±0.02) 0.34 (±0.30) 0.97 (±0.03) 0.93 (±0.06) 0.98 (±0.02) 0.95 (±0.04) 144 (±47)

SD T1-FLSMO [43] 97.92 (±3.26) 95.01 (±3.77) 0.14 (±0.17) 0.33 (±0.25) 0.96 (±0.05) 0.93 (±0.06) 0.97 (±0.04) 0.95 (±0.04) 137 (±47)
SCG T1-FLSMO [43] 99.52 (±0.74) 94.79 (±3.97) 0.04 (±0.05) 0.44 (±0.32) 0.97 (±0.03) 0.92 (±0.06) 0.98 (±0.02) 0.95 (±0.04) 59 (±64)

Wine

IT2-FLS UL-GMFum OvA 99.64 (±0.53) 95.84 (±3.30) 0.04 (±0.03) 0.36 (±0.17) 0.99 (±0.01) 0.94 (±0.05) 1.00 (±0.01) 0.96 (±0.03) –
IT2-FLS UL-GMFus OvA 99.59 (±0.55) 96.15 (±3.17) 0.05 (±0.03) 0.33 (±0.17) 0.99 (±0.01) 0.94 (±0.05) 1.00 (±0.01) 0.96 (±0.03) –

SD T1-FLS OvA [43] 99.76 (±0.47) 95.95 (±3.29) 0.03 (±0.03) 0.35 (±0.18) 1.00 (±0.01) 0.94 (±0.05) 1.00 (±0.00) 0.96 (±0.03) –
IT2-FLSMO UL-GMFum 99.56 (±0.67) 94.60 (±3.98) 0.02 (±0.02) 0.35 (±0.28) 0.98 (±0.05) 0.92 (±0.06) 0.99 (±0.04) 0.95 (±0.04) 96 (±62)
IT2-FLSMO UL-GMFus 99.24 (±0.79) 94.11 (±3.57) 0.03 (±0.03) 0.40 (±0.23) 0.98 (±0.02) 0.91 (±0.05) 0.99 (±0.01) 0.94 (±0.04) 114 (±61)

SD T1-FLSMO [43] 99.59 (±0.66) 94.99 (±3.52) 0.03 (±0.05) 0.33 (±0.23) 0.99 (±0.01) 0.92 (±0.05) 0.99 (±0.01) 0.95 (±0.04) 109 (±59)
SCG T1-FLSMO [43] 99.05 (±1.43) 93.80 (±4.50) 0.07 (±0.10) 0.46 (±0.30) 0.98 (±0.03) 0.91 (±0.07) 0.98 (±0.02) 0.94 (±0.05) 65 (±57)

4.3
Statistical analysis

To evaluate the results presented in Tables 4.3 and 4.4, a two-sample
t-test was performed on the test accuracy metric. The two-sample t-test can
infer a statistical comparison from two independent data samples [35]. This
statistical test is expressed as

T = G1 − G2√
σ2

G1
LG1

+ σ2
G2
LG2

, (4-5)

where G1, G2, σ2
G1 and σ2

G2 are the mean and standard deviation values of
samples belonging to G1 and G2, respectively. In addition, LG1 = # {G1} and
LG2 = # {G2}, where # denotes the cardinality operator. The degree of freedom
is defined as LG1 +LG2−2. In addition to determining T , it becomes important
to infer the following hypotheses
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 H0 : G1 = G2

H1 : G1 6= G2
. (4-6)

Given a significance level ω (typically around 0.05), the p-value is calculated
from T and it represents the lowest value of ω required to non reject the null
hypothesis (H0). Therefore, p-values below ω indicates that the null hypothesis
is rejected [61].

The statistical analyses performed herein were obtained from 33 exper-
iments, having 64 degrees of freedom for datasets with less than 1000 sam-
ples and 328 degrees of freedom for datasets requiring 5-fold cross-validation,
thereby allowing us to avoid verifying the normality of error distributions [61].
Tables 4.5 and 4.6 list the statistical analysis results, which compare the FLS
and FLSMO models for IT2 using GMFus, IT2 using GMFum, and T1 trained
by the SCG method [35, 43]. The rejection of the null hypothesis is expressed
by the letters “W” and “L”, which indicate wins and losses for the tested mod-
els, respectively. The non-rejection of the null hypothesis is expressed by the
letter “E” which indicates equality between the tested models.

Table 4.5: Statistical analyses performed by two-sample t-test for the test
accuracy metric considering BCPs.

Data set Set of sample1 Set of sample2 p-value Lower
boundary

Upper
boundary

Null
hypothesis

Appendicitis IT2-FLS UL-GMFus IT2-FLS UL-GMFum 0.76 -1.72 1.25 E
SCG T1-FLS 0.65 -1.13 1.80 E

Haberman IT2-FLS UL-GMFus IT2-FLS UL-GMFum 0.53 -0.52 1.01 E
SCG T1-FLS 0.31 -0.38 1.21 E

Ionosphere IT2-FLS UL-GMFus IT2-FLS UL-GMFum 0.00 0.58 1.87 W
SCG T1-FLS 0.00 4.50 6.65 W

Liver IT2-FLS UL-GMFus IT2-FLS UL-GMFum 0.10 -0.20 2.27 E
SCG T1-FLS 0.00 -4.69 -2.37 L

Monk2 IT2-FLS UL-GMFus IT2-FLS UL-GMFum 0.09 -0.05 0.69 E
SCG T1-FLS 0.00 -1.15 -0.38 L

Parkinson IT2-FLS UL-GMFus IT2-FLS UL-GMFum 0.68 -1.01 1.54 E
SCG T1-FLS 0.06 -2.46 0.04 E

Pima IT2-FLS UL-GMFus IT2-FLS UL-GMFum 0.56 -0.49 0.91 E
SCG T1-FLS 0.86 -0.64 0.77 E

Sonar IT2-FLS UL-GMFus IT2-FLS UL-GMFum 0.85 -1.27 1.54 E
SCG T1-FLS 0.67 -1.12 1.73 E

South Africa IT2-FLS UL-GMFus IT2-FLS UL-GMFum 0.37 -0.48 1.29 E
SCG T1-FLS 0.30 -1.36 0.42 E

The results of the statistical test show that in 13 datasets, the IT2
fuzzy models (namely FLS and FLSMO) using GMFus achieved the same
performance as that of IT2 using GMFum, whereas in three datasets, the IT2
models using GMFus performed better than those using GMFum. Additionally,
the IT2 fuzzy models using GMFus obtained the same results as those of the
SCG T1 fuzzy models in 11 datasets, presented a better performance in the
Ionosphere dataset, and the worse performance in the remaining four datasets.
These results show that the IT2 fuzzy models can obtain the same performance
as that of a T1-FLS trained by a method that uses second-order information,
even attaining better results in some cases.
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Table 4.6: Statistical analyses performed by two-sample t-test for the test
accuracy metric considering MCPs.

Data set Set of sample1 Set of sample2 p-value Lower
boundary

Upper
boundary

Null
hypothesis

Balance IT2-FLSMO UL-GMFus IT2-FLSMO UL-GMFum 0.00 0.99 1.74 W
SCG T1-FLSMO 0.25 -0.48 0.12 E

Car IT2-FLSMO UL-GMFus IT2-FLSMO UL-GMFum 0.04 0.03 1.82 W
SCG T1-FLSMO 0.00 -4.01 -2.31 L

Contraceptive IT2-FLSMO UL-GMFus IT2-FLSMO UL-GMFum 0.49 -2.07 1.00 E
SCG T1-FLSMO 0.97 -1.51 1.56 E

Ecoli IT2-FLSMO UL-GMFus IT2-FLSMO UL-GMFum 0.33 -0.38 1.14 E
SCG T1-FLSMO 0.08 -0.08 1.59 E

Glass IT2-FLSMO UL-GMFus IT2-FLSMO UL-GMFum 0.22 -2.50 0.59 E
SCG T1-FLSMO 0.00 -4.28 -1.41 L

Iris IT2-FLSMO UL-GMFus IT2-FLSMO UL-GMFum 0.36 -0.45 1.21 E
SCG T1-FLSMO 0.18 -0.27 1.40 E

Wine IT2-FLSMO UL-GMFus IT2-FLSMO UL-GMFum 0.24 -1.31 0.32 E
SCG T1-FLSMO 0.50 -0.58 1.18 E

4.4
Computational costs analysis

The computational costs was analyzed by computing the time consumed
during the training phase without the validation set using the SD method.
The following five datasets were selected: Haberman, Monk2, South Africa,
Ionosphere, and Sonar datasets having 3, 6, 9, 34, and 60 input features,
respectively. Moreover, each analysis was performed 33 times, during which
100 samples were selected randomly from each dataset normalized between
[−1, 1], considering 200 epochs of training. The analyses were performed in
MATLAB 2019a environment on a computer with Intel Core i7-2630QM 2.00
GHz CPU, 6144MB DDR3 666.7 MHz RAM, and 64-bit Windows 10 operating
system.

Table 4.7 lists the mean and standard deviation for each investigated
dataset, and Figure 4.7 depicts the corresponding graphical results. Addition-
ally, it should be noted that each dataset is listed in Table 4.7 according to
the number of their input features, since they have been normalized to have
the same number of samples and training epochs. Based on the results, we can
state that the proposed method, namely IT2-FLS UL-GMFus, is up to 7 times
faster than IT2-FLS UL-GMFum and slightly slower than T1-FLS. This is be-
cause IT2-FLS ULGMFum requires more equations than IT2-FLS UL-GMFus
to perform fuzzification, and consequently to compute the gradient vector of
the cost function. This result can be extended to FLSMO models since its
fuzzification procedure is the same as that in FLS.
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Table 4.7: Time performance comparison in terms of the mean and standard
deviation.

Number of
features

Time consumed [s]
IT2-FLS UL-GMFum IT2-FLS UL-GMFus T1-FLS

3 12.84 (± 0.31) 1.66 (± 0.06) 1.69 (± 0.07 )
6 12.99 (± 0.28) 1.87 (± 0.05) 1.78 (± 0.04)
9 13.56 (± 0.34) 2.02 (± 0.04) 1.90 (± 0.09)
34 15.29 (± 0.24) 3.43 (± 0.11) 2.60 (± 0.09)
60 17.48 (± 0.24) 4.77 (± 0.07) 3.41 (± 0.06)
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Figure 4.7: Time consumed during the training phase for IT2-FLS approaches
and T1-FLS considering datasets with different numbers of input features.

All the models proposed herein used benchmark datasets for their val-
idation, and, therefore, the that dataset was not explained in detail. In this
way, aiming to contextualize an practical engineering application of the pro-
posed models the next chapter attempts to solve a detection problem of fault
in aircraft gas turbines.

4.5
Practical application: aircraft gas turbine fault detection

The gas turbine (GT) is a combustion engine that converts natural gas
or other liquid fuels to mechanical energy. It has found increasing service in
the last decades in the power industry, due to its compactness, lightweight and
multiple fuel application [62]. Nowadays, there are GTs which run on natural
gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils,
and biomass gases [62]. The above-mentioned characteristics also turn out the
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GTs are the most common engine used in aircraft. Accordingly to AIRBUS
global market forecasting done in 2019 [63], the number of aircraft will increase
around 84% until 2038. Also, the International Air Transport Association
(IATA) forecast predicts 8.2 billion passengers worldwide by the year of 2037
[64], even after the revision due to the Covid-19 pandemic [65]. Considering
this scenario, it is important to deal with the aircraft’s GT reliability and
maintenance. The GT components operate in a hostile environment that
creates degradation mechanisms in the structure of the parts, which increase
the risk of mechanical failures [66]. Aiming to ensure the reliability of the GT
components the engines are supported by a rigorous maintenance schedule [36].
This maintenance schedule considers the jet engine thermal cycles and the time
it is in the air [67]. Even having a rigorous maintenance schedule for preventing
failures, due to the high number of aircrafts the aeronautical companies need
to be well prepared to monitor and diagnose GT conditions for preventing
major accidents and losses that may occur between overhaul [36]. In this way,
this chapter aims to exemplify a mechanical engineering application using the
proposed model IT2-FLS for detecting aircraft engine gas path faults.

4.5.1
Gas turbine problem formulation

Engine Health Management (EHM) is used by Aircraft Engine Manu-
facturers in order to maintain an engine operative through a reduction of op-
erational events [68]. The EHM is described as the process of diagnosing and
preventing system failures, whilst predicting the reliability and remaining use-
ful life of its components [69]. In order to stimulate the development of a model
fully capable of diagnosing a gas turbine engine, NASA created the Propulsion
diagnostic method evaluation strategy (ProDiMES) [70], where a software that
simulates real data signal of aeronautical gas turbine engines. The ProDiMES
allows users to develop diagnostic solutions through the evaluation of sensor
signals which are simulated by an environment called Engine Fleet Simulator
(EFS) [36]. The EFS uses a modified steady-state version of the NASA Com-
mercial Modular Aero-Propulsion System Simulation (C-MAPSS) which was
validated against the original C-MAPSS model [70]. Table 4.5.1 lists the EFS
output parameters and Figure 4.8 illustrates stations numbers, modules, and
sensors of the C-MAPSS steady-state.

The EFS users can select some properties of the simulated data set,
which are: number of engines in the fleet, the number of flights of data will
be collected, eighteen different gas path fault types (listed in Table 4.5.1), the
fault initiation flight and the fault evolution rate. The faults are divided into
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Table 4.8: EFS output parameters.
Index Symbol Description

1 Nf Physical fan speed [rpm]
2 Nc Physical core speed [rpm]
3 P24 Total pressure at LPC outlet [psia]
4 Ps30 Static pressure at HPC outlet [psia]
5 T24 Total temperature at LPC outlet [◦R]
6 T30 Total temperature at HPC outlet [◦R]
7 T48 Total temperature at HPT outlet [◦R]
8 Wf Fuel flow [pps]
9 P2 Total pressure at fan inlet [psia]
10 T2 Total temperature at fan inlet [◦R]
11 Pamb Ambient pressure [psia]

Fan LPC
HPC

H
P
T LPT

Pamb
P2
T2

P24
T24

Ps30
T30

Burner

Wf

T48
Nf

Nc

Inlet

Bypass
duct

0 2 15 24 30 40 48 50Station numbers

Sensors

Modules

Figure 4.8: C-MAPSS Steady-State station numbers, modules, and sensors
[70].

two categories, abrupt faults and rapid faults. The first one evolves to its final
magnitude after a number of flights while the second one emerges in its final
magnitude. This faults magnitude are divided into three groups: small faults,
medium faults, and large faults. In addition to all these properties, the EFS
can insert noise fluctuations in the simulated sensor’s signals. After the EFS
generates the data, the historical sensed parameters can be used to develop a
supervised diagnostic model. Thus, the problem consists of design an IT2-FLS
UL-GMFus and IT2-FLS UL-GMFum using the EFS generated data to detect
faults in GT.
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Table 4.9: EFS fault types.
Index Fault description Fault component

0 No-fault –
1 Fan fault Turbomachinery
2 LPC fault Turbomachinery
3 HPC fault Turbomachinery
4 HPT fault Turbomachinery
5 LPT fault Turbomachinery
6 VSV fault Actuator
7 VBV fault Actuator
8 Nf sensor fault Sensor
9 Nc sensor fault Sensor
10 P24 sensor fault Sensor
11 Ps30 sensor fault Sensor
12 T24 sensor fault Sensor
13 T30 sensor fault Sensor
14 T48 sensor fault Sensor
15 Wf sensor fault Sensor
16 P2 sensor fault Sensor
17 T2 sensor fault Sensor
18 Pamb sensor fault Sensor

4.5.2
Pre-processing stage

According to the ProDiMES manual [70] the pre-processing stage will be
applied to the data generated by EFS. The pre-processing stage is composed of
parameter correction, trend monitoring, anomaly detection, and normalization
as illustrated in Figure 4.9. This pre-processing stage was proposed in [70] and
further adopted in [36, 71, 72, 73]. At the pre-processing stage, the raw data
R generated by EFS turns out to be seven ones Xproc as recommended by
ProDiMES.

Fleet average
engine model

Exponential
moving average

Raw data

Parameter
Correction

Parameter
Correction

Trend monitoring

Difference
calculation Normalization

Anomaly detection Normalization

Processed
data

+

-

PSfrag replacements

XprocR

Figure 4.9: Pre-processing diagram block of the EFS generated data [36].

The pre-processing stage has four steps; the first one is called parameter
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correction, where all engine parameters are corrected to standard day operating
conditions, applying the following equation

Parametercorrected = Parameter
θaδb

, (4-7)

which the temperature θ and pressure correction δ terms, are defined as

θ = T2 (◦R)
518.67 (4-8)

and
θ = P2 (psia)

14.696 . (4-9)
The second step is called trend monitoring, applied to capture gradual per-
formance changes in the form of residuals, or measurements deltas, relative
to a fleet average engine [70]. Considering an individual engine corrected data
collected in each flight, it is referenced against the fleet average engine model
to calculate measurement deltas as [70]

∆yi (k) = yi (k)− yi_baseline (k) , (4-10)

where yi (k) is the corrected value of the i-th measurement collected during
the k-th flight, and yi_baseline (k) is the fleet average engine value for the i-th
measurement at the corresponding pressure altitude, Mach number, and cor-
rected fan speed values of the k-th flight. Further, the calculated measurement
delta values are trended over time by applying an exponential moving average
approach given as [70]

∆yi_ema (k) = αyi_ema (k − 1) + (1− α) ∆yi (k) (4-11)

∆yi_ema (k) is the exponential moving average of the i-th measurement delta
on flight k. In addition, the moving average weighting between previous and
current data is established by a constant α ∈ R [0, 1].

The third step of the pre-processing stage is the anomaly detection,
applied to detect discrete events causing a rapid shift in observed measurement
delta and to extract the corresponding measurement delta signature of the
events [70]. The anomaly detection uses a backward difference calculation of
the exponential moving average (EMA) of each measurement delta shown as

∆∆yi_ema (k) = ∆yi_ema (k)−∆yi_ema (k − β) , (4-12)

where ∆∆yi_ema (k) is the change in the EMA of the i-th measurement delta
between a flight k and some previous flight k − β.

The last step of the pre-processing stage is the normalization, which
gathers the sensors data in a scale standardized by the standard deviation of
the equivalent sensor [36][70] using the following equation
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N (∆∆yi_ema (k)) = ∆∆yi_ema (k)
σi

, (4-13)

whereN (∆∆yi_ema (k)) is the normalized data and σi is the standard deviation
of the corresponding measurements delta.

4.5.3
Practical application results

The experimental results consider a dataset composed of 3600 engines
performing 50 flights each, where 1800 engines develop one of the 18 fault
types with the fault initiation occurring at any flight. These 1800 engines are
equally divided to have 100 occurrences of the same fault. In addition for
training the fuzzy model, the dataset is divided into 50% as test set, 15% as
the validation set, and 35% as the training set. Moreover, the dataset features
are composed of sensors values of take-off and cruise operation which after
the pre-processing totalizing 14 features [36, 73]. For both investigated models
(IT2-FLS UL-GMFus and IT2-FLS UL-GMFum) it was considered γ = 500,
α = 0.1, normalization of the dataset to a [−1, 1] range, the SD training method
with batch learning, and the threshold equal to zero (i.e., outputs higher or
equal to zero are assigned as fault and less than zero as non-fault). In addition,
the fuzzy rules are defined as the same as Equation (4-4) with M = 4 (two
rules for the non-fault and two rules for fault classes).

4.5.3.1
Detecting performance

Table 4.10 lists the confusion matrix of the test set for both IT2-FLS
proposed models. Same as noted for benchmarking data sets, both models
achieve similar results with test accuracy equal to 81.4%. However, attempting
to maintain a level of uniformity in the diagnostic solutions applied for
ProDiMES, a target false positive detection rate (false alarm rate) of once per
1,000 flights has to be satisfied [70]. In this scenario, it was defined the threshold
equal to 0.61 for both models, attaining 1038 and 1076 flights per false alarm for
IT2-FLS UL-GMFum and IT2-FLS UL-GMFus, respectively. Table 4.11 lists
the confusion matrix of this new scenario in which IT2-FLS GMFus detected
correctly only 18 flights higher than IT2-FLS GMFum, obtaining the same test
accuracy equal to 78.5%. Moreover, it is important to notice that the data set is
unbalanced. Even attaining around 78% of correct accuracy, both models miss
classifying around one-quarter when only the samples predicted as ‘non-fault’
is considered. In the same way, analyzing only the target samples of ‘fault’,
the models classify correctly only 34%.
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Table 4.10: Confusion matrix of the test dataset for both investigated IT2-FLS
models, where F and NF means fault and non-fault respectively.

Predicted
F NF

T
ar
ge
t F

31299 27241 53.5%
17.4% 15.2% 46.5%

N
F 6072 114938 95.0%

3.4% 64.0% 5.0%
83.8% 80.8% 81.4%
16.2% 19.2% 18.6%

(a) IT2-FLS UL-GMFum

Predicted
F NF

T
ar
ge
t F

31604 26936 54.0%
17.6% 15.0% 46.0%

N
F 6354 114656 94.7%

3.5% 63.8% 5.3%
83.3% 81.0% 81.5%
16.7% 19.0% 18.5%

(b) IT2-FLS UL-GMFus

Table 4.11: Confusion matrix of both IT2-FLS models considering at least 1000
flights per false alarm for the test dataset, where F and NF means fault and
non-fault respectively.

Predicted
F NF

T
ar
ge
t F

20177 38363 34.5%
11.2% 21.3% 65.5%

N
F 173 120837 99.9%

0.1% 67.3% 0.1%
99.1% 75.9% 78.5%
0.9% 24.1% 21.5%

(a) IT2-FLS UL-GMFum

Predicted
F NF

T
ar
ge
t F

20189 38351 34.5%
11.2% 21.3% 65.5%

N
F 167 120843 99.9%

0.1% 67.3% 0.1%
99.2% 75.9% 78.5%
0.8% 24.1% 21.5%

(b) IT2-FLS UL-GMFus
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5
Conclusions

In this work, we proposed the equations required to use GMFus in an IT2-
FLS UL binary classifier trained by the steepest descent method, significantly
reducing the computational costs in comparison with IT2-FLS UL-GMFum. In
addition, we extended the IT2-FLS UL models (adopting any Gaussian MF)
to IT2-FLSMO and provided the necessary equations, simplifying the use of
IT2-FLS UL without adopting any decomposition strategies for handling MCP.

The objective of the dissertation was entirely fulfilled by reducing the
computational cost of the IT2-FLS with GMFs using the upper and lower
method. The experimental results indicated that the approach using the
Gaussian MBF with uncertain standard deviation, i.e., IT2-FLS UL-GMFus
and IT2-FLSMO UL-GMFus, achieved the same or better performance in
comparison with the approach using the Gaussian MBF with uncertain mean,
i.e., IT2 FLS UL-GMFum and IT2-FLSMO UL-GMFum. Moreover, the fuzzy
models using GMFus were up to 7 times faster than the models using GMFum,
which is explained by GMFus requiring fewer equations to compute the
gradient vector of the cost function than GMFum. In addition, the IT2-
FLSs UL-GMFus attained the competitive performance with the SCG T1-
FLSs, which used the second-order information for training the fuzzy rules.
These results of the SCG T1-FLSs support the superiority of the second-order
training method even when we compare it with the IT2-FLS classifier, which
presents better modeling of uncertainties. On the other hand, the single output
proposed model was also applied for solving a practical engineering application
regarding to a detection fault in aircraft gas turbine. The results shows that
the proposed model can detect correctly 81.4% of the faults at the flight and
78.5% even in a worse scenario.

Future research will focus on modifying the IT2-FLSMO classifier to
handle additional supervised learning problems, such as the prediction of time
series. Also, we will attempt to apply the SCG training method for IT2-FLS
UL-GMFus to improve the performance of the model.
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Appendices

A
Partial derivatives of ∇J

(
w(γ)

)
for the IT2-FLS UL-GMFum

Using the cost function presented in Equation (2-45) the gradient vector
∇J

(
w(γ)

)
is formed by partial derivatives from J

(
w(γ)

)
regarding to each

fuzzy parameter m1F̃ l
k
(γ), m2F̃ l

k
(γ), σF̃ l

k
(γ) and θl(γ). Aiming to simplify the

partial derivatives equations the following terms have been used

e(q) = fULT 2

(
x(q)

)
− y(q), (A-1)

e
(q)
θl

= θl (γ)− YUT 2

(
x(q)

)
, (A-2)

e
(q)
θl

= θl (γ)− YLT 2

(
x(q)

)
, (A-3)

a
(q)
1F̃ l

k
(γ) =

x
(q)
k −m1F̃ l

k
(γ)

σ2
F̃ l

k

(γ) , (A-4)

a
(q)
2F̃ l

k
(γ) =

x
(q)
k −m2F̃ l

k
(γ)

σ2
F̃ l

k

(γ) , (A-5)

b
(q)
1F̃ l

k
(γ) =

(
x

(q)
k −m1F̃ l

k
(γ)

)2

σ3
F̃ l

k

(γ) (A-6)

and
b

(q)
2F̃ l

k
(γ) =

(
x

(q)
k −m2F̃ l

k
(γ)

)2

σ3
F̃ l

k

(γ) . (A-7)

GMFum has distinct equations in each part of its domain. Thus the
partial derivatives of IT2-FLS UL have to be applied to each domain part.

A.1
Partial derivatives with respect to m1F̃ l

k
(γ):

If x(q)
k < m1F̃ l

k
(γ):

∂J
(
w(γ)

)
∂m1F̃ l

k
(γ) = e(q)

2

(
e

(q)
θl
φl
(
x(q)

)
a

(q)
1F̃ l

k
(γ)

)
(A-8)

If m1F̃ l
k
(γ) ≤ x(q)

k ≤ m2F̃ l
k
(γ) and x(q)

k ≤
m1F̃ l

k
(γ)+m2F̃ l

k
(γ)

2 :
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∂J
(
w(γ)

)
∂m1F̃ l

k
(γ) = 0. (A-9)

If m1F̃ l
k
(γ) ≤ x(q)

k ≤ m2F̃ l
k
(γ) and x(q)

k >
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A.2
Partial derivatives with respect to m2F̃ l
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If m1F̃ l
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(γ) ≤ x(q)
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A.3
Partial derivatives with respect to σF̃ l
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If m(q)
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k ≤ m

(q)
2F̃ l

k

and x(q)
k ≤

m
(q)
1F̃ l

k

+m(q)
2F̃ l

k

2 :

∂J
(
w(γ)

)
∂σF̃ l

k
(γ) = e(q)

2

(
e

(q)
θl
φ
l

(
x(q)

)
b

(q)
2F̃ l

k
(γ)

)
(A-17)

If m(q)
1F̃ l

k

≤ x(q)
k ≤ m

(q)
2F̃ l

k

and x(q)
k >

m
(q)
1F̃ l

k

+m(q)
2F̃ l

k

2 :

∂J
(
w(γ)

)
∂σF̃ l

k
(γ) = e(q)

2

(
e

(q)
θl
φ
l

(
x(q)

)
b

(q)
1F̃ l

k
(γ)

)
(A-18)
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A.4
Partial derivatives with respect to θl (γ):
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B
Partial derivatives of ∇J

(
w(γ)

)
for the IT2-FLS UL-GMFus

The same cost function used for IT2-FLS UL-GMFum presented in
Equation (2-45) is applied for IT2-FLS UL-GMFus, then the gradient vector
∇J

(
w(γ)

)
is formed by partial derivatives from J

(
w(γ)

)
regarding to each

fuzzy parameter mF̃ l
k
(γ), σ1F̃ l

k
(γ), σ2F̃ l

k
(γ) and θl(γ). Aiming to simplify the

partial derivatives equations the following terms have been introduced

c
(q)
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The partial derivatives of ∇J
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are expressed as follows
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C
Partial derivatives of ∇J

(
w(γ)

)
for the IT2-FLSMO UL-GMFum

Using the cost function presented in Equation (3-10) the gradient vector
∇J

(
w(γ)

)
is formed by partial derivatives from J

(
w(γ)

)
with respect to each

fuzzy parameter m1F̃ l
k
(γ), m2F̃ l

k
(γ), σF̃ l

k
(γ) and θtl(γ). Aiming to simplify the

partial derivatives equations the following terms have been introduced

e
(q)
t = f tULT2mo

(
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)
− yt(q), (C-1)

etθl
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UT 2mo

(
x(q)
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(C-2)

and
etθl

(q) = θtl (γ)− Y t
LT 2mo

(
x(q)

)
. (C-3)

Following the same explanation presented in A, the partial derivatives of
IT2-FLSMO UL have to be applied in each domain part of GMFum.

C.1
Partial derivatives with respect to m1F̃ l
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C.2
Partial derivatives with respect to m2F̃ l
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C.3
Partial derivatives with respect to σF̃ l
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C.4
Partial derivatives with respect to θtl (γ)
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D
Partial derivatives of ∇J

(
w(γ)

)
for the IT2-FLSMO UL-GMFus

Adopting the cost function used for IT2-FLSMO UL-GMFum presented
in Equation (3-10) the gradient vector ∇J

(
w(γ)

)
is formed by partial deriva-

tives from J
(
w(γ)

)
with respect to each fuzzy parameter, i.e., mF̃ l

k
(γ), σ1F̃ l

k
(γ),
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E
Preliminary results of FLSs trained by SD method

The first performance analyses of the proposed models were to adopt
the same step size for SD method as used in [43] (i.e., α = 0.01). Table E.1
lists the performance metrics comparisons between the proposed models with
the T1-FLS trained by SCG method. Analysing the best epoch of training,
it can be stated that in almost all datasets the mean of best epoch was near
to the stipulated final epoch of training, with a higher standard deviation.
Moreover, Figures E.1–E.4 show that the proposed IT2-FLS UL obtained a
slight increase in training accuracy and MSE over the epochs. Therefore, based
on the abovementioned aspects, we can conclude that α = 0.01 is too small
for IT2-FLS UL models.

Table E.1: Performance comparison in terms of the mean and standard
deviation using α = 0.01 for BCPs.
Dataset Method Training

accuracy [%]
Test

accuracy [%]
Training
MSE

Test
MSE

Training
Kappa

Test
Kappa

Training
F-score

Test
F-score

Best
epoch

Appendicitis

IT2-FLS UL-GMFum 87.93 (±3.25) 85.00 (±7.61) 0.38 (±0.08) 0.48 (±0.21) 0.59 (±0.10) 0.56 (±0.21) 0.79 (±0.05) 0.78 (±0.10) 162 (±63)
IT2-FLS UL-GMFus 86.93 (±3.32) 84.32 (±7.80) 0.40 (±0.09) 0.49 (±0.21) 0.58 (±0.10) 0.55 (±0.21) 0.79 (±0.05) 0.77 (±0.10) 175 (±50)

SD T1-FLS 91.10 (±3.31) 84.72 (±6.86) 0.31 (±0.09) 0.51 (±0.22) 0.67 (±0.11) 0.52 (±0.21) 0.84 (±0.06) 0.76 (±0.11) 134 (±7)
SCG T1-FLS 95.57 (±2.11) 84.98 (±6.63) 0.15 (±0.07) 0.51 (±0.21) 0.84 (±0.10) 0.49 (±0.22) 0.92 (±0.05) 0.74 (±0.12) 39 (±58)

Haberman

IT2-FLS UL-GMFum 75.18 (±2.03) 74.20 (±2.67) 0.72 (±0.05) 0.77 (±0.06) 0.12 (±0.09) 0.09 (±0.11) 0.51 (±0.07) 0.49 (±0.07) 179 (±49)
IT2-FLS UL-GMFus 75.44 (±2.08) 74.93 (±2.58) 0.71 (±0.05) 0.75 (±0.06) 0.15 (±0.09) 0.13 (±0.11) 0.54 (±0.06) 0.52 (±0.07) 181 (±40)

SD T1-FLS 77.24 (±1.96) 74.88 (±3.89) 0.67 (±0.04) 0.74 (±0.07) 0.28 (±0.08) 0.20 (±0.12) 0.62 (±0.05) 0.58 (±0.07) 170 (±50)
SCG T1-FLS 81.34 (±2.38) 74.06 (±3.82) 0.57 (±0.05) 0.75 (±0.09) 0.44 (±0.09) 0.19 (±0.12) 0.71 (±0.05) 0.58 (±0.07) 25 (±42)

Ionosphere

IT2-FLS UL-GMFum 74.37 (±4.20) 72.27 (±6.09) 0.67 (±0.09) 0.73 (±0.14) 0.51 (±0.07) 0.47 (±0.10) 0.74 (±0.04) 0.72 (±0.06) 199 (±1)
IT2-FLS UL-GMFus 72.30 (±2.20) 70.64 (±4.85) 0.73 (±0.04) 0.78 (±0.12) 0.48 (±0.04) 0.45 (±0.08) 0.72 (±0.02) 0.71 (±0.05) 200 (±0)

SD T1-FLS 64.54 (±1.99) 64.39 (±4.92) 0.77 (±0.03) 0.78 (±0.06) 0.36 (±0.04) 0.36 (±0.07) 0.64 (±0.03) 0.64 (±0.05) 199 (±3)
SCG T1-FLS 95.81 (±4.83) 87.46 (±6.48) 0.13 (±0.12) 0.39 (±0.16) 0.91 (±0.10) 0.73 (±0.13) 0.95 (±0.05) 0.86 (±0.07) 91 (±60)

Liver

IT2-FLS UL-GMFum 61.74 (±3.17) 59.04 (±4.83) 0.94 (±0.04) 0.98 (±0.06) 0.14 (±0.09) 0.10 (±0.11) 0.54 (±0.07) 0.51 (±0.08) 189 (±39)
IT2-FLS UL-GMFus 60.02 (±3.41) 57.93 (±5.12) 0.98 (±0.04) 1.00 (±0.06) 0.13 (±0.09) 0.09 (±0.11) 0.54 (±0.06) 0.52 (±0.07) 183 (±50)

SD T1-FLS 74.68 (±2.45) 67.78 (±5.17) 0.75 (±0.04) 0.87 (±0.07) 0.44 (±0.07) 0.31 (±0.11) 0.71 (±0.04) 0.65 (±0.06) 188 (±40)
SCG T1-FLS 85.97 (±2.12) 69.87 (±4.99) 0.47 (±0.05) 0.83 (±0.09) 0.70 (±0.05) 0.37 (±0.11) 0.85 (±0.02) 0.68 (±0.06) 25 (±21)

Monk2

IT2-FLS UL-GMFum 93.04 (±1.09) 92.48 (±2.68) 0.26 (±0.02) 0.28 (±0.05) 0.86 (±0.02) 0.85 (±0.05) 0.93 (±0.01) 0.92 (±0.03) 200 (±0)
IT2-FLS UL-GMFus 91.48 (±1.09) 90.87 (±2.77) 0.31 (±0.03) 0.32 (±0.05) 0.83 (±0.02) 0.82 (±0.05) 0.91 (±0.01) 0.91 (±0.03) 200 (±0)

SD T1-FLS 91.34 (±1.09) 90.71 (±3.06) 0.36 (±0.03) 0.38 (±0.05) 0.83 (±0.02) 0.82 (±0.06) 0.91 (±0.01) 0.91 (±0.03) 200 (±0)
SCG T1-FLS 99.10 (±1.22) 98.74 (±1.83) 0.02 (±0.03) 0.03 (±0.04) 0.98 (±0.03) 0.97 (±0.04) 0.99 (±0.01) 0.99 (±0.02) 189 (±24)

Parkinson

IT2-FLS UL-GMFum 79.98 (±4.20) 75.59 (±7.39) 0.52 (±0.08) 0.64 (±0.18) 0.49 (±0.09) 0.42 (±0.15) 0.74 (±0.05) 0.70 (±0.08) 186 (±38)
IT2-FLS UL-GMFus 79.06 (±4.91) 74.37 (±8.01) 0.57 (±0.09) 0.67 (±0.18) 0.50 (±0.08) 0.42 (±0.15) 0.74 (±0.04) 0.70 (±0.08) 189 (±32)

SD T1-FLS 88.11 (±3.24) 80.75 (±5.82) 0.39 (±0.08) 0.60 (±0.18) 0.63 (±0.10) 0.45 (±0.17) 0.81 (±0.05) 0.72 (±0.09) 162 (±61)
SCG T1-FLS 95.27 (±2.36) 85.80 (±5.88) 0.17 (±0.07) 0.45 (±0.17) 0.86 (±0.07) 0.58 (±0.18) 0.93 (±0.04) 0.78 (±0.09) 100 (±64)

Pima

IT2-FLS UL-GMFum 73.97 (±1.56) 73.12 (±3.20) 0.69 (±0.03) 0.71 (±0.06) 0.38 (±0.05) 0.36 (±0.08) 0.68 (±0.03) 0.67 (±0.04) 200 (±0)
IT2-FLS UL-GMFus 73.43 (±1.62) 72.62 (±3.18) 0.72 (±0.04) 0.73 (±0.06) 0.35 (±0.05) 0.33 (±0.08) 0.67 (±0.03) 0.66 (±0.04) 200 (±1)

SD T1-FLS 79.06 (±1.28) 76.74 (±3.23) 0.57 (±0.02) 0.63 (±0.06) 0.52 (±0.03) 0.47 (±0.07) 0.76 (±0.02) 0.73 (±0.04) 175 (±45)
SCG T1-FLS 86.43 (±1.75) 76.56 (±3.20) 0.44 (±0.03) 0.64 (±0.08) 0.69 (±0.04) 0.47 (±0.07) 0.85 (±0.02) 0.73 (±0.04) 13 (±11)

Sonar

IT2-FLS UL-GMFum 93.12 (±3.09) 77.60 (±7.09) 0.26 (±0.09) 0.68 (±0.20) 0.83 (±0.07) 0.55 (±0.14) 0.92 (±0.04) 0.77 (±0.07) 170 (±45)
IT2-FLS UL-GMFus 91.25 (±3.19) 77.01 (±6.85) 0.32 (±0.09) 0.68 (±0.20) 0.81 (±0.07) 0.54 (±0.14) 0.90 (±0.04) 0.77 (±0.07) 181 (±39)

SD T1-FLS 96.63 (±1.61) 79.42 (±6.08) 0.16 (±0.04) 0.61 (±0.16) 0.87 (±0.09) 0.58 (±0.12) 0.93 (±0.05) 0.79 (±0.06) 134 (±67)
SCG T1-FLS 99.69 (±0.51) 79.72 (±6.57) 0.01 (±0.02) 0.63 (±0.21) 0.99 (±0.01) 0.59 (±0.13) 1.00 (±0.01) 0.79 (±0.07) 34 (±52)

South Africa

IT2-FLS UL-GMFum 71.99 (±2.04) 69.63 (±3.84) 0.74 (±0.03) 0.80 (±0.08) 0.35 (±0.05) 0.31 (±0.09) 0.67 (±0.03) 0.65 (±0.05) 177 (±58)
IT2-FLS UL-GMFus 71.95 (±2.07) 69.88 (±4.06) 0.75 (±0.03) 0.80 (±0.08) 0.35 (±0.05) 0.31 (±0.10) 0.67 (±0.03) 0.65 (±0.05) 181 (±54)

SD T1-FLS 74.86 (±1.71) 70.58 (±4.12) 0.68 (±0.03) 0.77 (±0.08) 0.42 (±0.05) 0.34 (±0.09) 0.71 (±0.03) 0.67 (±0.04) 174 (±56)
SCG T1-FLS 88.14 (±2.15) 71.15 (±3.96) 0.42 (±0.05) 0.77 (±0.09) 0.72 (±0.05) 0.34 (±0.09) 0.86 (±0.03) 0.67 (±0.05) 12 (±15)
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E.1(a): Accuracy.
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Figure E.1: Ionosphere dataset: average performance of FLS models.
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E.2(a): Accuracy.
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E.2(b): MSE.

Figure E.2: Liver disorders dataset: average performance of FLS models.
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E.3(a): Accuracy.
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Figure E.3: Monk2 dataset: average performance of FLS models.
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Figure E.4: Pima dataset: average performance of FLS models.
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