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Abstract

Antonio Filho, Rodrigo; Fernandes, Cristiano (Advisor). Intermit-
tent demand forecasting in retail: applications of the GAS
framework. Rio de Janeiro, 2021. 86p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

Intermittent demand is defined by periods of zero sales interleaved with
positive sales with highly variable quantities. Most stock keeping units at the
store level can be characterized as containing such demand. Thus, accurate
models for predicting series with intermittent demand have major impacts
in relation to inventory management. In this dissertation we propose the use
of the GAS framework with the appropriate distributions for count data, in
addition to their versions with excess of zeroes, and apply the derived models
to real data obtained from a large Brazilian retail chain. We demonstrate
that the proposed models with excess of zeros are consistently estimated via
maximum likelihood and the distribution of the estimator is asymptotically
normal. The performance of the proposed models is compared to adequate
benchmarks from the time series literature for count data and intermittent
demand forecast. Forecasting is evaluated based on the accuracy of both the
entire predictive distribution and point forecasts. Our results show that the
proposed models, specially the one derived from hurdle Poisson distribution,
perform better than the analyzed benchmarks.

Keywords
GAS models; Count data time series; Intermittent demand; Zero-inflated

models; Hurdle models.
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Resumo

Antonio Filho, Rodrigo; Fernandes, Cristiano. Previsão de de-
manda intermitente no varejo: aplicações do framework
GAS. Rio de Janeiro, 2021. 86p. Dissertação de Mestrado – Depar-
tamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

Demanda intermitente é definida por períodos de vendas nulas interca-
ladas com vendas positivas e de quantidade altamente variável. A maior parte
das unidades de manutenção de estoque (stock keeping units, em inglês) ao
nível loja pode ser caracterizada como contendo demanda desse tipo. Assim,
modelos acurados para prever séries com demanda intermitente trazem gran-
des impactos em relação à gestão de estoque. Nesta dissertação nós propomos
o uso do framework GAS com as distribuições adequadas para dados de con-
tagem, além de suas versões com excesso de zeros, e aplicamos os modelos
derivados a dados reais obtidos com uma grande rede varejista brasileira. Nós
demonstramos que os modelos com excesso de zeros propostos são estimados de
forma consistente por máxima verossimilhança e a distribuição dos estimadores
é assintóticamente normal. A performance dos modelos propostos é comparada
com benchmarks adequados das literaturas de séries temporais para dados de
contagem e previsão de demanda intermitente. A avaliação das previsões é feita
com base tanto na precisão da distribuição preditiva quanto na precisão das
previsões pontuais. Nossos resultados mostram que os modelos propostos, em
especial o modelo derivado sob distribuição hurdle Poisson, performam melhor
do que os benchmarks analisados.

Palavras-chave
Modelos GAS; Séries temporais de contagem; Demanda intermitente;

Modelos inflados em zero; Modelos hurdle.

DBD
PUC-Rio - Certificação Digital Nº 1912828/CA



Table of contents

1 Introduction 12
1.1 Motivation 12
1.2 Contributions 13
1.3 Organization 14

2 Literature review 15
2.1 Score-driven models 15
2.2 Intermittent demand 17
2.3 Count data 19

3 Count data models 20
3.1 Standard count data models 20
3.2 Intermittent demand count data models 22

4 Score-driven models for time series of counts 24
4.1 GAS and unobserved components 24
4.1.1 Comments on the choice of score scaling 27
4.2 Distributions 28
4.2.1 Poisson 28
4.2.2 Negative binomial (NB) 30
4.2.3 Zero-inflated Poisson (ZIP) 32
4.2.4 Zero-inflated negative binomial (ZINB) 35
4.2.5 Hurdle Poisson (HP) 37
4.2.6 Hurdle negative binomial (HNB) 39
4.3 Maximum likelihood estimation 41
4.3.1 EM algorithm 42
4.4 Initialization 43
4.5 Explanatory variables 44
4.6 Diagnostics 46
4.7 Forecasting 47

5 Simulation studies 49
5.1 Setup 49
5.2 Results 50
5.2.1 Parameter estimators 50
5.2.2 Randomized quantile residuals 56

6 Application 58
6.1 Data and filters 58
6.2 Setup 60
6.2.1 Estimation and prediction 60
6.2.2 Accuracy measures 61
6.3 Descriptive statistics 63
6.4 Models 68

DBD
PUC-Rio - Certificação Digital Nº 1912828/CA



6.5 Results 70
6.5.1 Spherical score results 74
6.5.2 Two illustrative examples 75

7 Conclusions 79

Bibliography 82

DBD
PUC-Rio - Certificação Digital Nº 1912828/CA



List of figures

Figure 5.1 Histograms of parameter estimates - HP distribution. 52
Figure 5.2 Histograms of parameter estimates - ZIP distribution. 52
Figure 5.3 Histograms of parameter estimates - HNB distribution. 55
Figure 5.4 Histograms of parameter estimates - ZINB distribution. 55

Figure 6.1 Histogram of ACF(1) for the retail time series. 64
Figure 6.2 Histogram of ACF(2) for the retail time series. 65
Figure 6.3 Histogram of ACF(7) for the retail time series. 65
Figure 6.4 Histogram of price-sales correlation. 67
Figure 6.5 Box plot of average difference in sales between days with

no promotions and each promotion category. 67
Figure 6.6 Comparison of mean 1-day-ahead forecasts - Dataset A. 76
Figure 6.7 Comparison of mean 1-day-ahead forecasts - Dataset B. 77
Figure 6.8 Filtered level (left) and seasonal (right) components -

Dataset A 78
Figure 6.9 Filtered level (left) and seasonal (right) components -

Dataset B 78

DBD
PUC-Rio - Certificação Digital Nº 1912828/CA



List of tables

Table 5.1 Estimated parameters for HP and ZIP GAS models. 51
Table 5.2 Estimated parameters for HNB and ZINB GAS models. 54
Table 5.3 Percentage of rejections - Jarque-Bera test. 56
Table 5.4 Percentage of rejections - Ljung-Box test for auto-

correlation. 57
Table 5.5 Percentage of rejections - Ljung-Box test for conditional

heteroskedasticity. 57

Table 6.1 Descriptive statistics of the retail time series. 63
Table 6.2 Percentage of rejections for diagnostic tests with α = 5%. 68
Table 6.3 Fraction of models with significant estimates for the

parameters associated with the scores. 70
Table 6.4 Percentage of times as best model - Brier Scores. 71
Table 6.5 Percentage of times as best model - MASE. 72
Table 6.6 Percentage of times as best model - RMSSE. 73
Table 6.7 Percentage of times as best model - Spherical Scores. 74
Table 6.8 Forcasting metrics comparison for two time series. 76

DBD
PUC-Rio - Certificação Digital Nº 1912828/CA



List of Abreviations

ACF – Auto-correlation Function
AIC – Akaike Information Criterion
ARMA – Autoregressive Moving Average
ASE – Asymptotic Standard Error
BIC – Bayesian Information Criteron
DCS – Dynamic Conditional Score
ERP – Enterprise Resource Planning
EWMA – Exponentially Weighted Moving Average
GARCH – Generalized Autoregressive Conditional Heteroskedasticity
GARMA – Generalized Autoregressive Moving Average
GAS – Generalized Autoregressive Score
GLM – Generalized Linear Model
HP – Hurdle Poisson
HNB – Hurdle Negative Binomial
IRLS – Iteratively Reweighted Least Squares
MAE – Mean Absolute Error
MASE – Mean Absolute Scaled Error
MGARCH – Multivariate Generalized Autoregressive Conditional Het-
eroskedasticity
ML – Maximum Liklihood
MSE – Mean Squared Errors
NB – Negative Binomial
PMF – Probability Mass Function
RMSE – Root Mean Squared Error
RMSSE – Root Mean Squared Scaled Error
SE – Standard Error
SES – Simple Exponential Smoothing
SKU – Stock Keeping Unit
TSL – Time Series Lab
VAR – Vector Autoregression
ZINB – Zero-inflated Negative Binomial
ZIP – Zero-inflated Poisson

DBD
PUC-Rio - Certificação Digital Nº 1912828/CA



1
Introduction

1.1
Motivation

Stock replenishment is one of the main issues in supply chain manage-
ment. Its objective is to determine the quantity of a certain product needed
in stock to meet the future demand for a given time period. Some key com-
ponents are involved in such decisions: some are exogenous, as the number of
days needed by the vendor to deliver the product (i.e. lead time); some are
strategical and defined by the company, as the number of days that each or-
der must cover; and there is the quantity demanded by costumers, which can
be influenced by actions of the company, such as price reductions, but is not
deterministic nor in direct control of the firm.

Demand is a key source of uncertainty in retail operations. As such,
there has been a whole body of statistical literature that is concerned about
this issue. A comprehensive review was made by Fildes, Ma and Kolassa
[1]. In this article, the authors enumerate the possible levels of aggregation
for retail’s needs and its mostly used forecasting techniques, with usages in
strategical decisions (concerning the competitive environment in which the
firm is involved), tactical decisions (about how to implement the strategy
defined, for example with advertising) and operational decisions (concerning
daily operations, such as demand and supply planning processes).

The focus of this dissertation is at the relevant level of demand forecasts
needed for stock control: Stock Keeping Unit (SKU) x store level. Accurate
forecasts at this granularity can benefit the company in other dimensions
besides stock optimization. If the relevant explanatory variables are available,
the demand model can also be used for promotions planning and price
optimization for each store. In spite of these possible benefits, the main interest
of this dissertation is in the development of accurate demand models for
inventory management and, with that in mind, relevant evaluation metrics
will be used.
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Chapter 1. Introduction 13

As noted by Johnston, Boylan and Shale [2], most of the SKUs at any
store are observed to have intermittent demand, i.e. several periods with zero
demand interleaved with positive and variable order sizes, a kind of demand
difficult to predict. Temporal aggregation is a possible way to relief this
difficulty, as proposed in the ADIDA framework from Nikolopoulos et al. [3]
In this dissertation, the problem of intermittent demand is tackled without
temporal aggregation, so that our data is composed by SKU x store x day
observations. As remarked in [2] and confirmed by previous experience from
the authors, items with intermittent demand typically generate over 40% of a
store income and require about 60% of the investment in stock, so that methods
that address this issue directly are extremely important in retail forecasting.

1.2
Contributions

We now state the two main contributions of this dissertation.
First, we have derived score-driven or Generalized Autoregressive Score

(GAS) models for distributions not previously studied. Most of the GAS
literature focuses on volatility forecasting, see for example the repository that
keeps track of GAS related papers: http://www.gasmodel.com/. In this case,
it is expected that count data distributions do not receive much attention.
Indeed, there is a work from Blasques, Holý and Tomanová [4] that studies
some of the distributions we present in this work - namely: negative binomial
(NB) and zero-inflated negative binomial (ZINB), although in the context of
duration modelling. We extend the work for the ZINB distribution by letting
the probability of zeroes arising from the Bernoulli process also follow a GAS
dynamic. There is also a previous work from Blazsek and Escribano [5] for
Poisson distribution under the GAS framework.

We derive the scaled scores from the GAS framework for the following
distributions: Poisson, NB, zero-inflated Poisson (ZIP), ZINB, hurdle Poisson
(HP) and hurdle negative binomial (HNB). Some of these distributions are
mixtures of a Bernoulli process and a non-negative distribution. In this case, we
also let the probability of success be time varying with a score-driven dynamic.
To the best of our knowledge this is the first time that both components of
the mixture are made time varying in a GAS framework.

The second contribution concerns the application of the GAS framework,
proposed in [6] and [7], to intermittent demand forecasting problems. We
evaluate the derived models and compare them with some benchmarks from
the retail literature using the relevant metrics for stock optimization purposes.
To the best of our knowledge, it is also the first time that the GAS framework

http://www.gasmodel.com/
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Chapter 1. Introduction 14

is applied in such setting.

1.3
Organization

The remainder of this dissertation is organized as follows. Chapter 2
presents the relevant literature in which the present study takes part.

Chapter 3 presents some standard time series models for count data
and specific count data models for intermittent data. Chapter 4 focuses on
the proposed GAS models to forecast the sales of products with intermittent
demand. We present the model structure adopted in this work and detail
specific issues in modelling within the GAS framework.

Chapter 5 presents a simulation study developed to address the issue of
the distribution of the GAS estimators when working with hurdle and zero-
inflated models. We also evaluate the adequacy of the chosen residuals used in
diagnostics when working with correctly specified models.

Chapter 6 shows the application and evaluation on real data of the
proposed GAS models and compares them with the relevant benchmarks.
Chapter 7 wraps up our findings and suggests future research.
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2
Literature review

This chapter is divided in three sections. The first section concerns
the presentation of the GAS framework. We discuss the idea behind this
methodology and provide an overview of this field of study. Intermittent
demand is discussed after that. We present Croston’s seminal study [8] and
detail the advances after that for both mean demand predictions and also for
its entire predictive distribution. This is followed by a review of count data
models from the time series literature which can also address the intermittent
demand forecasting problem.

2.1
Score-driven models

The Generalized Autoregressive Score (or GAS) model framework was
independently developed by Creal, Koopman and Lucas [6] and Harvey [7], for
the latter under the name of Dynamic Conditional Score (DCS) models. The
idea behind the methodology is to provide an unified treatment for dynamic
models for any probability distribution, discrete or continuous. These models
are classified as observation-driven under the categorization developed by
Cox et al. [9]. They provide a generalization of the autoregressive moving
average (ARMA) models for non-Gaussian distributions. The analogue for
the disturbance, or innovation, in ARMA models is the scaled score, which
drives the variation in the parameters being modeled. As previously mentioned,
the following website compiles works that use this framework http://www.
gasmodel.com/

As presented in [6], the GAS framework encompasses many well-known
observation driven models as special cases, such as generalized autoregressive
conditional heteroskedasticity (GARCH), autoregressive conditional duration,
autoregressive conditional intensity, and Poisson count models with time-
varying mean. The latter will be discussed in Chapter 4.

Blazsek and Licht [10] present an overview of the applications of score-
driven models and relate the presented works with other models from the time
series literature. Their first example is based on a previous work by Harvey
and Sucarrat [11]. Both works discuss how GAS models with the choice of

http://www.gasmodel.com/
http://www.gasmodel.com/
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Chapter 2. Literature review 16

adequate fat tail distributions are capable of winsorizing the innovations in the
model. This feature is extremely helpful in volatility modelling. The review also
presents examples of GAS models for both univariate and multivariate time
series, which we will discuss in the ongoing paragraphs.

Concerning multivariate models, there are some different streams of re-
search. Some works resemble Vector Autoregression (VAR) and multivariate
generalized autoregressive conditional heteroskedasticity (MGARCH) models,
meaning they relate directly future observations to previous ones. Alterna-
tively, the series can be modeled through copulas and/or latent factors. An
example of the former is the work from Blazsek, Escribano and Licht [12], that
presents a generalization of VAR models that follows a multivariate Student
t distribution. The same authors also present a multivariate Student t model
that can represent co-integration relations in [13]. The MGARCH analogue
previously mentioned was developed by Creal, Koopman and Lucas in [14].

Latent factors provide a suitable way to model large panels of time series.
Creal et al. [15] develop a dynamic factor model to forecast macroeconomic,
credit and loss given default risk variables. The model is also capable of
handling time series of different frequencies.

The possibility of using the GAS framework with dynamic copulas was
first introduced and exemplified in the paper that proposed the score-driven
dynamic [6]. Opschoor et al. [16] model the dependence of 100 stocks through
a factor dynamic copula model.

GAS models can be set up using two possible structures: an ARMA-
like structure and an unobserved components structure, akin to the structural
models of Harvey [17]. Examples of the former are also presented in [6]. The
idea of the former is to relate the forecast of the parameters directly to previous
forecasts of the same parameters and also to the innovations of the model,
that is, the scaled score. The latter, which is the structure of our choice
for this dissertation, relates the forecast of the parameters with unobserved
components that have an interpretation, such as trend, seasonality and cycle.
Harvey and Luati [18] employ such structure and relate its use in the GAS
framework with the Gaussian unobserved component model estimated through
the Kalman filter. A similar work, but with different distributions, is presented
by Caivano, Harvey and Luati [19].

Other works that relate more directly to this dissertation are the previ-
ously mentioned works [4] and [5]. The former work, by Blasques, Holý and
Tomanová, compares the ZINB GAS model (with a static Bernoulli variable)
with other models in the context of duration forecasting. The objective is to
accurately forecast the length of the time interval between two successive trans-
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actions of stocks of the Dow Jones index. The ZINB GAS model is compared
with benchmarks relevant for duration modelling. As mentioned, we extend
their work by making the Bernoulli variable also dynamic, but in a different
context. They also present the GAS negative binomial model.

Blazsek and Escribano [5] study patents registered at year x firm level
in the US. They propose a GAS fixed effects panel data model with Poisson
distribution. As in standard panel models, the parameters are collectively esti-
mated for the regressors, the GAS dynamics parameters and the initialization
of the recurrence relations. The GAS component is responsible for introducing
serial correlation at firm level.

Another work that deals with excessive zeroes using the GAS framework
is Harvey and Ito [20], although with a different distribution. The authors are
focused on augmenting the probability of observing zeroes with continuous
variables. The probability of observing zeroes is also dynamic, but not driven
by the scaled score. Instead they use the dynamic parameter of the continuous
distribution as the driver of this probability.

2.2
Intermittent demand

Croston [8] was the first to recognize that the widely used Simple
Exponential Smoothing (SES), or Exponentially Weighted Moving Average
(EWMA), method was not suitable for intermittent demand forecasting. His
proposed solution breaks down the forecast of retail series in two components:
the interval between positive demands and order size (given that an order
occurs), and employs one SES recursion to forecast each component using the
same smoothing constant for both methods. The predicted demand is simply
the division of predicted order size by predicted interval between demands.

Croston’s method became the standard for intermittent demand forecast-
ing, and is still widely used in Enterprise Resource Planning (ERP) softwares.
It was later recognized by Syntetos and Boylan [21] that the method pro-
duces biased mean forecasts. To solve this shortcoming, the authors propose
an approximately unbiased modification, which involves multiplying Croston’s
forecast by a constant.

Another issue with the method is that the demand prediction is only
updated when a new order is observed. To overcome this, Teunter, Syntetos
and Babai [22] propose another method inspired by Croston’s work in which
the demand prediction is updated every period, having observed an order or
not.

DBD
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There are some other proposed methods that are not simple modifications
of Croston’s method, but the idea of separating observed demand into its
constituent elements is kept. One of such works was developed by Gutierrez,
Solis and Mukhopadhyay [23]. The authors develop a neural network with,
basically, the same demand constituents of Croston’s method. Willemain,
Smart and Schwarz [24] develop a bootstrap algorithm to simulate the lead
time demand cumulative distribution based on the same ideas.

Aside from proposing new methods, there is a stream of research that
focuses on demand categorization. The aim is to define sets of rules for choosing
the forecasting method for an observed demand time series based on descriptive
statistics from the series. This is important for a firm that needs demand
predictions for large numbers of SKUs, in which the computational burden
of multiple pseudo-out-of-sample evaluations could be prohibitive. This idea
was first introduced in Johnston and Boylan [25]. The authors argue that the
classifications should be based on comparative forecasting performance of the
methods and the rules defined based on which set of series characteristics each
method performs better.

After this work, other rules have been proposed, as the one discussed in
Syntetos, Boylan and Croston [26]. This rule is based on theoretical results for
Mean Squared Errors (MSE) of different methods. The rule was later evaluated
on real data. Kostenko and Hyndman [27] provided a correction for the rule
developed and, later, the correction was further validated by Heinecke, Syntetos
and Wang [28].

Except for the bootstrap algorithm previously mentioned, none of the
presented works focuses on predictive distributions, providing only point
forecasts. Syntetos, Babai and Altay [29] and Johnston, Boylan and Shale
[2] analyse some candidate distributions and evaluate its adequacy on real
data. Snyder, Ord and Beaumont [30] evaluate SES-like recursions estimated
with Poisson, hurdle shifted Poisson and NB distributions to forecast the
mean parameters of these. Hydman et al. [31] previously mentioned the same
possibility.

The work presented in [30] also highlights that evaluating the predictions
of low count data methods only with point forecast measures is inadequate.
The solution given by the authors is to also evaluate the methods based on the
entire predictive distribution. The same argument was presented by Kolassa
[32] and also by Czado, Gneiting and Held [33].

We follow [30] and evaluate the proposed models with scale-free error
measures for point forecasts and metrics for the entire predictive distribution.
Also, our benchmarks from intermittent demand literature are the ones pre-

DBD
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sented in [30]. These points will be further discussed later in our work.

2.3
Count data

Hilbe [34] provides a good introduction to count data models, though
the work and examples focus on cross section and panel data. It also addresses
issues typical of econometric literature, as censored data and instrumental
variables. Besides standard Poisson and NB distribution, the author also
presents the hurdle and zero-inflated static versions of both models. A review
focused on count data models with excessive zeroes is developed by Greene
[35].

For time series data, some of the earlier count data models are part
of a framework presented by Benjamin, Rigby and Stasinopoulos [36]. The
methodology is called generalized autoregressive moving average (GARMA),
and the term "generalized" here means that the class of models developed are a
generalization of the ARMA models to variables with distributions that belong
to the exponential family. These models are also categorized as observation-
driven in Cox’s classification.

It is interesting to note that, for suitable choices in each framework, the
GAS and GARMA methodologies can give the same recursive equations for the
time varying parameters. An example of this equivalence is shown in Section
4.2.1.

Some of the models proposed before in count data literature that are
part of the GARMA framework are presented in Davis [37] and Fokianos
and Tjøstheim [38], for Poisson distribution, and Davis and Wu [39], for NB
distribution.

DBD
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3
Count data models

Here we present the models that will be used in this dissertation when
comparing the forecast accuracy of our proposed GAS models. They are
divided in two categories: the first encompasses those models originated from
the count time series literature, and the second is specific for models associated
with the intermittent demand forecasting literature.

Within each section, we present the model equations, the hypothesised
distribution (when necessary), the estimation procedure, the way explanatory
variables are included, and the forecasting algorithm.

3.1
Standard count data models

GARMA models provide a flexible framework that extends ARMA
models to distributions of the exponential family. Poisson and NB distributions
are suitable for count data and are members of the exponential family, making
GARMA models natural benchmarks in the present context. The general form
of a GARMA(p,q) model, as presented by Benjamin, Rigby and Stasinopoulos
[36], is detailed in the ongoing paragraphs.

If yt is the variable with distribution belonging to the exponential family,
we model its time varying mean as a function of past observations:

µt|t−1 =E(yt|Y t−1) (3-1)
where: Y t−1 = (yt−1, yt−2, . . . , y1)

Then the evolution of µt|t−1 is given by:

g(µt|t−1) = x
′

tβ +
p∑
i=1

φiA(yt−i, xt−i, β) +
q∑
j=1

θjM(yt−j, µt−j|t−j−1) (3-2)

Where g(.) is a link function that specifies how the conditional mean
of the chosen distribution, µt|t−1, evolves in time and is affected by the
explanatory variables. A is a function that represents the autoregressive terms
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PUC-Rio - Certificação Digital Nº 1912828/CA



Chapter 3. Count data models 21

and the function M is for the moving average terms. xt is a vector of
explanatory variables. The fixed and unkown parameters in the model are
[{φi}pi=1, {θj}

q
j=1, β], with φi´s associated with autorregressive terms, θj´s for

moving averages and β being the vector of coefficients of the explanatory
variables.

The authors discuss some models presented in time series literature that
are special cases of this general form. We implement a special case of the above
equation, a GARMA(1,0) model, with the following structure:

ln(µt|t−1) = x
′

tβ + φyt−1 (3-3)

As discussed in [36], the inclusion of explanatory variables is natural in
this framework. Note that a GARMA(0,0) model is a generalized linear model
(GLM) regression. As such, we do not need to worry about initialization of the
coefficients, differently from all other models in this study. GLMs have been
widely studied in statistics and procedures with years of usage are available
for the optimization of the estimation routine. Nevertheless, we need to select
among the available regressors which are relevant for forecasting. In this case,
we employ the same heuristic that will be presented in Section 4.5 for GAS
models.

Estimation in GARMA framework is done through iteratively reweighted
least squares (IRLS), the same algorithm used for GLM models. This makes
these models very fast to estimate. k-steps-ahead forecasting is based on
simulation in a manner similar to the one presented in Section 4.7.

We also implement two other count data models that are not members
of the exponential family but have the same structure in terms of the µt|t−1

equation as given in equation 3-3. These are regression models with ZIP and
ZINB distributions. Now there is also the need to specify an equation for
πt|t−1. Inspired by the pt|t−1 equation presented in the following section, πt−1

is specified as:

ln
(

πt|t−1

1− πt|t−1

)
= α + δzt−1 (3-4)

where zt−1 is a dummy variable that is equal to zero if yt−1 > 0 and one
otherwise.

As these distributions are not members of the exponential family, they are
not estimated via IRLS. In this case, estimation can be done via EM algorithm,
as detailed in Section 4.3.1. We opt to work directly with the maximum
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likelihood estimation without the EM algorithm. As will be detailed later,
we did not find significant differences in parameter estimates when applying
the EM algorithm or the chosen procedure.

As with the other models in this dissertation, k-steps-ahead predictive
distributions are available through simulation. The same procedure for variable
selection previously mentioned was also used here.

3.2
Intermittent demand count data models

Our main interest is to evaluate model performance for stock control.
This objective makes it necessary that the methodology chosen is able to also
generate forecasts for the entire predictive distribution. That is why we do not
use models that are adaptations of Croston’s method aiming to simply correct
its bias, or other disadvantages, but can only generate mean forecasts.

The work presented in Snyder, Ord and Beaumont [30] provides our
chosen benchmark models from the intermittent demand literature. The pre-
sentation in this section is based on their study.

The authors propose the use of two different recursive relations for
parameter forecasting, which they call damped and undamped dynamics, as
given by:

damped: µt|t−1 = (1− φ− α)µ+ φµt−1|t−2 + αyt−1, φ, α, µ > 0, φ+ α < 1
(3-5)

undamped: µt|t−1 = (1− α)µt−1|t−2 + αyt−1, 0 < α < 1 (3-6)

Note that the undamped dynamic is analogous to a SES equation. The
difference lies in the estimation procedure: instead of MSE minimization,
the parameters here are estimated through maximum likelihood. The authors
highlight that, with the distributions being employed (that we discuss bellow),
µt+k|t−1 stochastically converges to zero as k grows in the undamped dynamics
case. With the forecasting horizons analysed in this dissertation we did not
observe such effect. The damped dynamic has a long-run mean (µ) to which
its predictions converge, therefore avoiding the stochastic convergence to zero
mentioned above.

The distributions used for parameter estimation within this context
are Poisson, NB and hurdle shifted Poisson. As we will present the first
two distributions in the next chapter, we will not repeat them in here. The
hurdle shifted Poisson is a little different from the HP presented for GAS
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models: instead of a zero-truncated Poisson distribution in case of failure in
the Bernoulli trial, the observation yt is sampled from a Poisson shifted one
unit to the right. The distribution is given by the following expression:

p(yt|µt|t−1, pt|t−1) =


pt|t−1 if yt = 0

(1− pt|t−1)
µ
yt−1
t|t−1 exp(−µt|t−1)

(yt−1)! else
(3-7)

pt|t−1 ∈ (0, 1), µt|t−1 > 0

We use µt|t−1 instead of λt|t−1 above in order to keep the same notation
used in the presentation of the damped and undamped recursive equations.
The mean of the above distribution is pt|t−1(µt|t−1 + 1).

The authors also make pt|t−1 dynamic with equations analogue to the
damped and undamped dynamics presented, but instead of utilizing yt−1 for
updating pt|t−1, a variable xt−1 is defined. It is equal to zero if yt−1 = 0
and equal to one if yt−1 > 0. The same recursive equations and estimated
parameters are always used for both µt|t−1 and pt|t−1, only the starting values
are separate for each parameter.

As we will discuss later for GAS models, starting values are needed to
initialize the estimation procedure. We initialize φ and α with the fixed value
0.2; µ1 is initialized as the mean of the first six observations, and p1 is equal
to the mean of the first six xts. Differently from the GAS models, here we
optimize µ1 and p1, since these models are much faster to estimate. When
working with damped dynamics we set µ = µ1 and p = p1, i.e. the model is
initialized with the long run mean.

The inclusion of explanatory variables can be done here by simply adding
a ζ ′Xt term to the damped and undamped dynamics, just as will be done for
GAS models in Section 4.5. We follow exactly the same process for variable
selection and initialization from Chapter 4 here with the intermittent demand
models.

The forecasting algorithm for these models is also analogue to the
one presented in Chapter 4. The distribution for k-steps-ahead (k ≥ 2)
predictions is only available via simulation. The algorithm simulates m paths
of k successive iterations of sampling from the predicted distribution and
calculating the updated parameters. The difference here is that there are no
unobserved states, so the calculation is directly done for the parameters.
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4
Score-driven models for time series of counts

This chapter discusses in detail the derivation of models suitable for in-
termittent demand forecasting using the GAS framework. We begin presenting
the form in which parameters evolve in time. After that we present the chosen
distributions and the scaled score derived to drive the variation in the GAS
framework. We then discuss how to estimate the model. This is followed by
a presentation of the heuristics proposed for initializing both the unobserved
components and the static parameters that we need to estimate. The next step
is to present the inclusion of explanatory variables in the model, followed by the
presentation of the diagnostics. The chapter is concluded with the description
of the forecasting algorithm for k-steps-ahead, k ≥ 2.

4.1
GAS and unobserved components

The presentation in this section is based on the previously mentioned
works of Creal, Koopman and Lucas [6] and Harvey and Luati [18].

The basic setup for the GAS framework works as follows: let yt be
the variable of interest, ft|t−1 the time-varying parameter of its conditional
distribution and θ a vector of static parameters. Define Y t = {y1, . . . , yt}
and F t = {f0, . . . , ft|t−1}. The available information set at time t consists of
{ft|t−1,Ft−1}, where:

Ft−1 = {Y t−1, F t−1}, t = 1, . . . , n (4-1)

and yt is assumed to be generated by the conditional density/probability
mass function (PMF):

yt ∼ p(yt|ft|t−1,Ft−1; θ) (4-2)
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Here, we assume that the time-varying parameter ft|t−1 is modeled as a
function of unobserved components appropriate for daily retail time series:

hf (ft|t−1) =µt|t−1 + γt|t−1 (4-3)
µt|t−1 =φµt−1|t−2 + ρ1s̃f,t−1|t−2, |φ| < 1, ρ1 > 0 (4-4)
αt|t−1 =αt−1|t−2 + κt−1s̃f,t−1|t−2 (4-5)
γt|t−1 =z′tαt|t−1 (4-6)

Where hf (.) is a suitable link function that will ensure that, whatever
the values of µt|t−1 and γt|t−1, ft|t−1 will remain on its domain. More on link
functions later. In our case, µt|t−1 is a stationary trend component and γt|t−1

is a seasonal component. The specific choices of components presented were
made based on experimentation with the dataset presented in Chapter 6, and a
similar structure is reproduced in all models for a coherent model comparison.
In other settings, different forms of for the trend could be used. We will discuss
later the reason for this choice.

Equations 4-3 to 4-6 can be seen as a filter algorithm, and one similar
to the single source of error state space model discussed in Hyndman et al.
[31] in the sense that the driver of the variation in all components is the same:
sf,t|t−1. The definition of sf,t|t−1 is presented now:

sf,t|t−1 = St ∗ ∇f,t, ∇f,t = ∂ ln p(yt|ft|t−1,Ft−1; θ)
∂ft|t−1

, St = S(t, ft|t−1Ft−1; θ)

(4-7)

where ∇f,t is the score of the conditional distribution hypothesised for yt
with respect to ft|t−1, and S() is a matrix of appropriated dimension used for
scaling the score of the distribution. The term sf,t|t−1 can be regarded as an
innovation: recall that Et−1[∇f,t] = 0 and so {sf} forms a martingale difference
sequence. A natural and widely used choice for St is:

St =I−dt|t−1, d =
{

0, 1
2 , 1

}
(4-8)

It|t−1 = E[∇f∇
′

f |Ft−1] def=Et−1[∇f∇
′

f ] = −Et−1
[∂2 ln p(yt|ft|t−1,Ft−1; θ)

∂ft|t−1f
′
t|t−1

]
(4-9)

where It|t−1 is Fisher information matrix.
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In our applications, we set d = 0 because this choice gave us the most
stable results.

For some of the distributions used in this dissertation, and presented
in the next section, it is further necessary to specify π - the probability on
a Bernoulli variable that accounts the excess of zeroes typically observed in
retail time series. A possible choice is to estimate a fixed value for π, as in [4].
Here we opt to make π also a score-driven processes, which we call πt|t−1. Its
recursive equation is presented now:

hπ(πt|t−1) = δ + βhπ(πt−1|t−2) + ρ2s̃π,t−1|t−2, |β| < 1, ρ2 > 0 (4-10)

With sπ,t|t−1 defined similarly to sf,t|t−1 and hπ(.) a proper link function
that will keep πt|t−1 ∈ (0, 1). The dynamic specified is analogue to an AR(1)
model.

Most of the distributions present parameters with natural constraints,
that is, they can only take values in subsets of the real line. This being the
case, it may be advisable to adopt specific parametrizations that ensure that
those constraints will be obeyed.

We now show how the link functions can be formally introduced into
the GAS framework. This is easily accomplished by use of the chain rule. Let
f̃t|t−1 = h(ft|t−1), where h(.) is a continuous and invertible function that maps
the real number ft|t−1 to the relevant subspace of R for the distribution being
used. Let ḣ = ∂h(ft|t−1)

∂ft|t−1
, which is deterministic given Ft−1, the information set.

Then it can be shown that:

∇̃t =
(
ḣ
′)−1
∗ ∇t (4-11)

Ĩt|t−1 =
(
ḣ
′)−1
∗ It|t−1 ∗

(
ḣ
)−1

(4-12)

For the distributions so far discussed, the choices of functions h(.) are:

f̃t|t−1 =hf (ft|t−1) = ln(ft|t−1) (4-13)

π̃t|t−1 =hπ(πt|t−1) = ln
(

πt|t−1

1− πt|t−1

)
(4-14)

The log link function ensures that ft|t−1 ∈ R+, and the logit link makes
πt|t−1 ∈ (0, 1).
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We now discuss the choice of the seasonal component (γt|t−1), which is
the same presented in [18]. Recalling the equations of the seasonal component
that is part of the ft|t−1 parameter (equations 4-5 and 4-6), we have:

αt|t−1 =αt−1|t−2 + κt−1sf,t−1|t−2

γt|t−1 =z′tαt|t−1

αt|t−1 is a vector that collects the seasonal components (one for each
seasonal period), and αt−1|t−2 collects the previous forecast for the same values.
κt−1 is a time-varying vector that has an unknown parameter κ > 0. The
elements of this vector are constrained to sum zero and this, together with an
adequate initialization of the seasonal components in α, makes γt|t−1 have a
zero sum during an entire seasonal cycle.

The elements κj,t−1, j = 1, . . . ,m of the vector κt−1 are such that
κj,t−1 = κ when in season j, and κi,t−1 = − κ

(m−1) for i 6= j. We work with
weekly seasonality, so m = 7.

zt is a vector that selects the relevant seasonal forecast for time t, so that
γt|t−1 is a single number representing the seasonal part of the parameter ft|t−1.
For example, if in period t we need to select the third component of αt|t−1,
then z′t = [0, 0, 1, 0, . . . , 0].

If more than one seasonal cycle is present, to capture other intrayear
seasonal effects, it is possible to add other stochastic seasonal components in
order to capture these effects. One possible approach is to replicate the same
structure employed in equations (4-5) and (4-6) for the other seasonal cycles.
Alternatively, trigonometric seasonal components (as presented in Harvey
[17]) can be used. In some cases these will provide a more parsimonious
representation of the various seasonal effects, as fewer harmonics might be
needed to adequately represent some of the seasonal effects. Finally, in case one
of the components can be represented as a deterministic seasonal factor, this
can be treated as an explanatory variable and estimated in the form presented
in Section 4.5.

4.1.1
Comments on the choice of score scaling

As mentioned in Section 2.1, GAS models are typically used to forecast
financial variables, which take values on the whole real line and the interest
usually lies in volatility forecasting. In such setting, the values chosen for d
in st|t−1 = I−dt|t−1∇t are usually 0.5 or 1. Authors claim that these values give
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more stable forecasts and estimates across multiple windows.
Our application, on the other hand, concerns discrete non-negative

variables (daily sales). To define the most appropriate value of d to use in
this dissertation, we have done a small experiment. We have selected 5 time
series from the dataset described in Chapter 6 and compared both in and
out-of-sample performance, analysing log-likelihood and mean absolute error
respectively, of the GAS Poisson model estimated for d ∈ {0, 1

2 , 1}. In all cases,
d = 0 produced the best results in terms of both metrics being analysed.

The experiment was then confirmed by reestimating the same mod-
els using the Time Series Lab (TSL) software (available at https://
timeserieslab.com/) developed by Lit, Koopman, Harvey and Gorgi and
evaluating the same metrics. We have also validated the final estimates of
the fixed parameters: using the same initialization and number of steps taken
by the optimization procedure, we have arrived at the same estimated values
produced by the TSL.

4.2
Distributions

We now present the distributions chosen to model intermittent demand
time series using the GAS framework. All of the following distributions are
discrete and have non-negative support. For each distribution, we present
the respective PMF, followed by its mean and variance. Then we present the
derived score and Fisher information matrix and the reparametrizations used.

4.2.1
Poisson

The Poisson distribution is the simplest among all of the discrete distri-
butions suitable for count data time series. It has just one parameter:

yt ∼Poisson(λt|t−1) (4-15)

p(yt|λt|t−1) =
λytt|t−1 exp(−λt|t−1)

yt!
, λt|t−1 > 0, yt ≥ 0 (4-16)

The most well known property of the Poisson distribution is called
equidispersion. It means that the mean and variance are the same:

Et−1[yt] = λt|t−1 = V art−1[yt] (4-17)

https://timeserieslab.com/
https://timeserieslab.com/
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This is a restrictive property when modelling real data. It is usually
observed that V art−1[yt] > Et−1[yt], what is called overdispersion. This
deficiency is what makes (sometimes) necessary to work with the negative
binomial distribution, which will be presented in the next subsection.

Now we present the derivation of the components of the GAS specifica-
tion:

ln p(yt|λt|t−1) =− λt|t−1 + yt ln(λt|t−1)− ln(yt!) (4-18)

∇λt|t−1 =∂ ln p(yt|λt|t−1)
∂λt|t−1

=
(
yt − λt|t−1

λt|t−1

)
(4-19)

It|t−1 = Et−1[∇2
λt|t−1

] = 1
λt|t−1

(4-20)

Reparameterizing these components:

λ̃t|t−1 =h(λt|t−1) = ln(λt|t−1)⇒ λt|t−1 = exp(λ̃t|t−1) (4-21)

ḣ =∂ ln(λt|t−1)
∂λt|t−1

= 1
λt|t−1

⇒ ḣ−1 = λt|t−1 (4-22)

∇̃λt|t−1 =ḣ−1∇λt|t−1 = (yt − λt|t−1) (4-23)
Ĩt|t−1 =ḣ−2It|t−1 = λt|t−1 (4-24)

So that the general form of the scaled score is given by:

s̃t|t−1 = yt − λt|t−1

λdt|t−1
(4-25)

In our particular study setting d = 0, results in s̃t|t−1 = (yt − λt|t−1).
For the special case of the Poisson distribution, we are working exactly

with a single source of error state space model described in Hyndman et al.
[31], but estimated with a Poisson PMF.

An interesting property of the derived model is the equivalence between
the GAS Poisson and the GARMA models presented in Chapter 3 - the
derivations for the NB distribution works in an analogous form. If instead
of adopting an unobserved component dynamic, we had used an ARMA
dynamics, the resulting GAS(1,1) model will be given by:
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ft|t−1 = ω + αft−1|t−2 + βst−1|t−2 (4-26)

In the case of the Poisson distribution we have λt|t−1 = ft|t−1. Setting
d = 1 in a GAS model without reparameterization, we have:

λt|t−1 = ω + αλt−1|t−2 + β(yt−1 − λt−1|t−2)⇒ λt|t−1 = ω + (α− β)λt−1|t−2 + βyt−1

This is the final form for the GAS model. Now we turn to equation 3-2
in a GARMA(1,1) specification. If we choose g(x) = x, i.e. the identity link,
and make xt = [1, . . . , 1]′ - only an intercept - we have:

µt|t−1 = β0 + φA(yt−1, β0) + θM(yt−1, µt−1|t−2)

If we define A(yt−1, xt−1, β) = (yt−1 − x
′
t−1β) and M(yt−1, µt−1|t−2) =

(yt−1 − µt−1|t−2), then:

µt|t−1 = β0 + φ(yt−1 − β0) + θ(yt−1 − µt−1|t−2)⇒ µt|t−1 = β0(1− φ) + (φ+ θ)yt−1 − θµt−1|t−2

So we have that for suitable choices of d in the GAS model framework,
and g(.), A andM in GARMA models, the models are equivalent.

4.2.2
Negative binomial (NB)

There are some possible formulations for the negative binomial distribu-
tion. In this work, we chose the one in which the mean is a parameter:

yt ∼NB(µt|t−1, α) (4-27)

p(yt|µt|t−1, α) = Γ(yt + α)
Γ(yt + 1)Γ(α)

(
1

1 + µt|t−1
α

)α(
1− 1

1 + µt|t−1
α

)yt
(4-28)

µt|t−1, α > 0, yt ≥ 0

For the NB distribution there is also a relation between the mean and
the variance, but a more flexible one:
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Et−1[yt] = µt|t−1 (4-29)

V art−1[yt] = µt|t−1

(
1 + µt|t−1

α

)
(4-30)

It is interesting to note that
(
1 + µ

α

)
> 1, so that we have V art−1[yt] >

Et−1[yt], that is, overdispersion.
Now we present the derivation of the score and Fisher Information for

this model:

ln p(yt|µt|t−1, α) = ln(Γ(yt + α))− ln(Γ(yt + 1))− ln(Γ(α))− (4-31)

− α ln
(

1 + µt|t−1

α

)
+ yt ln(µt|t−1)− yt ln(µt|t−1 + α)

∇µt|t−1 =∂ ln p(yt|µt|t−1, α)
∂µt|t−1

=
 yt − µt|t−1

µt|t−1
(
1 + µt|t−1

α

)
 (4-32)

It|t−1 =Et−1[∇2
µt|t−1

] = 1
µt|t−1

(
1 + µt|t−1

α

) (4-33)

Reparameterizing to ensure that µt|t−1 > 0, we have that:

˜µt|t−1 =h(µt|t−1) = ln(µt|t−1) (4-34)

∇̃µt|t−1 =ḣ−1∇µt|t−1 =
 yt − µt|t−1(

1 + µt|t−1
α

)
 (4-35)

Ĩt|t−1 =ḣ−2It|t−1 = µt|t−1(
1 + µt|t−1

α

) (4-36)

The scaled score for the NB distribution is:

s̃t|t−1 =
 yt − µt|t−1(

1 + µt|t−1
α

)


(
1 + µt|t−1

α

)
µt|t−1

d (4-37)

In our particular case, in which we set d = 0, we have s̃t|t−1 = yt−µt|t−1(
1+

µt|t−1
α

).
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4.2.3
Zero-inflated Poisson (ZIP)

The standard Poisson distribution has a shortcoming when modelling
very low count time series: it is sometimes observed that the actual proportion
of zeroes is greater than what would be predicted by a Poisson distribution -
p(y = 0|λ) = exp(−λ).

An usually employed solution to such shortcoming is to add a Bernoulli
trial to the Poisson distribution, which is responsible for generating those extra
zeroes. The resulting mixture distribution works as follows: first we begin with
the trial and, in case of success (what happens with probability π), we observe
yt = 0; in case of failure, then we sample from a standard Poisson distribution.
Note that we can also have zeroes from this second stage.

Having mentioned the logic behind the zero-inflated Poisson distribution,
we now present its definition:

p(yt|λt|t−1, πt|t−1) =

πt|t−1 + (1− πt|t−1) exp(−λt|t−1) , if yt = 0;

(1− πt|t−1)
λ
yt
t|t−1 exp(−λt|t−1)

yt! , else.
(4-38)

λt|t−1 > 0, πt|t−1 ∈ (0, 1), yt ≥ 0

Note that, since π + (1 − π) exp(−λ) ⇒ π + exp(−λ) − π exp(−λ) >
exp(−λ), the probability of a zero is higher under the ZIP distribution when
compared with the Poisson. It can be shown that:

Et−1[yt] = λt|t−1(1− πt|t−1) (4-39)
V art−1[yt] = λt|t−1(1− πt|t−1)(1 + λt|t−1πt|t−1) (4-40)

As would be expected, the Bernoulli trial added before sampling from
the Poisson distribution reduces the mean when compared to the standard
Poisson, since π ∈ (0, 1)⇒ λ(1− π) < λ. Another interesting property is that
this distribution has overdispersion, since (1+λπ) > 1⇒ V art−1[yt] > Et−1[yt].

This and the HP distribution are the simplest discrete distributions
to handle the excessive zeroes observed in intermittent demand data. The
differences between both will become clear in the HP subsection.
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The following equations present the log density, the scores for both λ and
π and Fisher information matrix:

ln(p(yt|λt|t−1, πt|t−1)) =

ln{πt|t−1 + (1− πt|t−1) exp(−λt|t−1)} , if yt = 0;

ln(1− πt|t−1)− λt|t−1 + yt ln(λt|t−1)− ln(yt!) , else.
(4-41)

∇yt=0 =
∇πt|t−1

yt=0

∇λt|t−1
yt=0

 = 1
πt|t−1 + (1− πt|t−1) exp(−λt|t−1)

 1− exp(−λt|t−1)
(πt|t−1 − 1) exp(−λt|t−1)


(4-42)

∇yt>0 =
∇πt|t−1

yt>0

∇λt|t−1
yt>0

 =
 −1

(1−πt|t−1)
yt−λt|t−1
λt|t−1

 (4-43)

It|t−1 =Et−1

 (∇πt|t−1)2 ∇πt|t−1∇λt|t−1

∇λt|t−1∇πt|t−1 (∇λt|t−1)2

 = 1
πt|t−1 + (1− πt|t−1) exp(−λt|t−1)∗

∗

 1−exp(−λt|t−1)
(1−πt|t−1) − exp(−λt|t−1)

− exp(−λt|t−1) πt|t−1(1−πt|t−1)+exp(−λt|t−1){(1−πt|t−1)2+λt|t−1πt|t−1(πt|t−1−1)}
λt|t−1


(4-44)

Now we reperameterize the components to ensure that πt|t−1 ∈ (0, 1) and
λt|t−1 > 0:

For πt|t−1 we choose the logit link function:

π̃t|t−1 =h(πt|t−1) = ln
(

πt|t−1

1− πt|t−1

)
⇒ πt|t−1 = exp(π̃t|t−1)

1 + exp(π̃t|t−1) (4-45)

ḣπ =
∂ ln

(
πt|t−1

1−πt|t−1

)
∂πt|t−1

= 1
πt|t−1(1− πt|t−1) ⇒ ḣπ

−1 = πt|t−1(1− πt|t−1) (4-46)

While for λt|t−1 we choose the log link:

λ̃t|t−1 =h(λt|t−1) = ln(λt|t−1)⇒ ḣλ
−1 = λt|t−1 (4-47)
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Define Ḣ−1 =
ḣπ−1 0

0 ḣλ
−1

 =
πt|t−1(1− πt|t−1) 0

0 λt|t−1

 , then
∇̃yt=0 =

∇̃πt|t−1
yt=0

∇̃λt|t−1
yt=0

 = Ḣ ′
−1
∇yt=0 =

= 1
πt|t−1 + (1− πt|t−1) exp(−λt|t−1)

πt|t−1(1− πt|t−1)(1− exp(−λt|t−1))
λt|t−1(πt|t−1 − 1) exp(−λt|t−1)


(4-48)

∇̃yt>0 =
∇̃πt|t−1

yt>0

∇̃λt|t−1
yt>0

 = Ḣ ′
−1
∇yt>0 =

 −πt|t−1

yt − λt|t−1

 (4-49)

Ĩt|t−1 = Ḣ ′
−1
It|t−1 ˙H−1 = 1

πt|t−1 + (1− πt|t−1) exp(−λt|t−1)∗

∗


(πt|t−1)2(1− πt|t−1)(1− exp(−λt|t−1)) − exp(−λt|t−1)λt|t−1πt|t−1(1− πt|t−1)
− exp(−λt|t−1)λt|t−1πt|t−1(1− πt|t−1) λt|t−1[πt|t−1(1− πt|t−1) + exp(−λt|t−1)∗

∗{(1− πt|t−1)2 + λt|t−1πt|t−1(πt|t−1 − 1)}]


(4-50)

In the case of this and for the next distributions (HP, ZINB and HNB),
we have one scaled score for each situation:

s̃ =

∇̃y=0 ∗ Ĩ−d , if y = 0;

∇̃y>0 ∗ Ĩ−d , else.
(4-51)

But in our study, the chosen scailing with d = 0 reduces the scaled score
to:

s̃ =

∇̃y=0 , if y = 0;

∇̃y>0 , else.
(4-52)

It is interesting to note that the derived GAS model for this and the
following distributions overcomes one of the Croston’s method [8] deficiency:
in our framework, the predicted demand is updated every period. This happens
since in all of the following distributions the ∇̃y=0 vector is never null.
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4.2.4
Zero-inflated negative binomial (ZINB)

The zero-inflated negative binomial distribution follows the same logic
of the ZIP: it is a mixture of a Bernoulli trial followed by a standard negative
binomial distribution in the case of failure.

The ZINB distribution is defined as follows:

p(yt|µt|t−1, α, πt|t−1) =


πt|t−1 + (1− πt|t−1)(1 + µt|t−1

α
)−α , if yt = 0;

(1− πt|t−1) Γ(yt+α)
Γ(yt+1)Γ(α)

(
1

1+
µt|t−1
α

)α(
1− 1

1+
µt|t−1
α

)yt
, else.

(4-53)

µt|t−1, α > 0, πt|t−1 ∈ (0, 1), yt ≥ 0

The mean and variance of the ZINB distribution are:

Et−1[yt] = µt|t−1(1− πt|t−1) (4-54)

V art−1[yt] = µt|t−1(1− πt|t−1)
(

1 + µt|t−1

(
πt|t−1 + 1

α

))
(4-55)

Note that, as with the Poisson and NB distributions, both ZIP and ZINB
have the same mean, but the ZINB has a larger variance since α > 0 and so
π + 1

α
> π.
Now we present the derivation of the scaled score:

ln(p(yt|µt|t−1, α, πt|t−1)) =



ln{πt|t−1 + (1− πt|t−1)(1 + µt|t−1
α

)−α} , if yt = 0;

{ln(1− πt|t−1) + ln(Γ(yt + α))− ln(Γ(yt + 1))−

− ln(Γ(α))− α ln
(

1 + µt|t−1
α

)
+

+yt ln(µt|t−1)− yt ln(µt|t−1 + α)} , else.
(4-56)

∇yt=0 =
∇πt|t−1

yt=0

∇µt|t−1
yt=0

 =


1−(1+

µt|t−1
α

)−α

πt|t−1+(1−πt|t−1)(1+
µt|t−1
α

)−α
(πt|t−1−1)

πt|t−1(1+
µt|t−1
α

)α+1+(1−πt|t−1)(1+
µt|t−1
α

)

 (4-57)

∇yt>0 =
∇πt|t−1

yt>0

∇µt|t−1
yt>0

 =

 −1
(1−πt|t−1)
yt−µt|t−1

µt|t−1(1+
µt|t−1
α

)

 (4-58)
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It|t−1 = Et−1

 (∇πt|t−1)2 ∇πt|t−1∇µt|t−1

∇µt|t−1∇πt|t−1 (∇µt|t−1)2


where: (∇πt|t−1)2 =

1− (1 + µt|t−1
α

)−α

(1− πt|t−1)[πt|t−1 + (1− πt|t−1)(1 + µt|t−1
α

)−α]

∇πt|t−1∇µt|t−1 = ∇µt|t−1∇πt|t−1 = −1
πt|t−1(1 + µt|t−1

α
)α+1 + (1− πt|t−1)(1 + µt|t−1

α
)

(∇µt|t−1)2 = (πt|t−1 − 1)2

(1 + µt|t−1
α

)α+2[πt|t−1(1 + µt|t−1
α

)α + (1− πt|t−1)]
+ (1− πt|t−1)
µt|t−1(1 + µt|t−1

α
)
−

(1− πt|t−1)
(1 + µt|t−1

α
)α+2

(4-59)

Reparameterizing the time varying parameters:

π̃t|t−1 =h(πt|t−1) = ln
(

πt|t−1

1− πt|t−1

)
= hπ, ˜µt|t−1 = h(µt|t−1) = ln(µt|t−1) = hµ

∇̃yt=0 =
∇̃πt|t−1

yt=0

∇̃µt|t−1
yt=0

 = Ḣ ′
−1
∇yt=0 =


πt|t−1(1−πt|t−1)[1−(1+

µt|t−1
α

)−α]
πt|t−1+(1−πt|t−1)(1+

µt|t−1
α

)−α
µt|t−1(πt|t−1−1)

πt|t−1(1+
µt|t−1
α

)α+1+(1−πt|t−1)(1+
µt|t−1
α

)


(4-60)

∇̃yt>0 =
∇̃πt|t−1

yt>0

∇̃µt|t−1
yt>0

 = Ḣ ′
−1
∇yt>0 =

 −πt|t−1
yt−µt|t−1

(1+
µt|t−1
α

)

 (4-61)

Ĩt|t−1 =Ḣ ′−1
It|t−1 ˙H−1 =

 h−2
π (∇πt|t−1)2 h−1

π h−1
µ ∇πt|t−1∇µt|t−1

h−1
π h−1

µ ∇µt|t−1∇πt|t−1 h−2
µ (∇µt|t−1)2

 =

where: h−2
π (∇πt|t−1)2 =

[1− (1 + µt|t−1
α

)−α][π2
t|t−1(1− πt|t−1)]

πt|t−1 + (1− πt|t−1)(1 + µt|t−1
α

)−α

h−1
π h−1

µ ∇µt|t−1∇πt|t−1 = −µt|t−1πt|t−1(1− πt|t−1)
πt|t−1(1 + µt|t−1

α
)α+1 + (1− πt|t−1)(1 + µt|t−1

α
)

h−2
µ (∇µt|t−1)2 =

(πt|t−1 − 1)2µ2
t|t−1

(1 + µt|t−1
α

)α+2[πt|t−1(1 + µt|t−1
α

)α + (1− πt|t−1)]
+

+ (1− πt|t−1)µt|t−1

(1 + µt|t−1
α

)
−

(1− πt|t−1)µ2
t|t−1

(1 + µt|t−1
α

)α+2

(4-62)
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4.2.5
Hurdle Poisson (HP)

Hurdle models also increase the probability of zeroes in discrete count
data models but using a different strategy from that adopted by zero-inflated
models. We begin by presenting the hurdle Poisson PMF and then discuss the
differences from the ZIP model:

p(yt|λt|t−1, πt|t−1) =


πt|t−1 , if yt = 0;

(1− πt|t−1)
λ
yt
t|t−1 exp(−λt|t−1)

yt!
1

(1−exp(−λt|t−1)) , else.
(4-63)

λt|t−1 > 0, πt|t−1 ∈ (0, 1), yt ≥ 0

As in the case of zero-inflated models, hurdle distributions are also a
mixture of the Bernoulli trial and Poisson or NB distributions, but in the
present case the observation (yt) is sampled from a zero-truncated distribution
in case of failure in the Bernoulli trial.

The probability of a zero outcome in a hurdle model is p(yt = 0|θ) = π,
since zeroes can only come from the Bernoulli trial. Recall that, as previously
mentioned, under the standard Poisson distribution, p(yt = 0|λ) = exp(−λ),
so the term 1

(1−exp(−λ)) that multiplies the standard Poisson distribution is
responsible for conditioning the distribution on taking positive values.

Differently from the ZIP model, the HP distribution cannot be shown to
have a greater probability of zeroes than the Poisson, since the parameter λ is
not related to the zeroes in this setting. The probability of zeroes is increased
if p(y = 0|λ, π) = π > exp(−λPoisson) = p(y = 0|λPoisson) when both models
are used to fit the same dataset.

It can be shown that:

Et−1[yt] = λt|t−1

1− exp(−λt|t−1)(1− πt|t−1) (4-64)

V art−1[yt] = λt|t−1(1− πt|t−1)
1− exp(−λt|t−1) −

λ2
t|t−1(1− πt|t−1)

exp(λt|t−1)(1− exp(−λt|t−1))2 +

λ2
t|t−1πt|t−1(1− πt|t−1)
(1− exp(−λt|t−1))2 (4-65)

Note that exp(−λ) > 0 ⇒ 1
(1−exp(−λ)) > 1, so that if we assign the same

values of λ and π and then sample from a ZIP and a HP distribution, the mean
of the latter will be larger.
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Now we derive the GAS scaled score components for this model:

ln(p(yt|λt|t−1, πt|t−1)) =


ln(πt|t−1) , if yt = 0;{

ln(1− πt|t−1)− λt|t−1 + yt ln(λt|t−1)−

− ln(yt!)− ln(1− exp(−λt|t−1))
}

, else.
(4-66)

∇yt=0 =
∇πt|t−1

yt=0

∇λt|t−1
yt=0

 =
 1
πt|t−1

0

 (4-67)

∇yt>0 =
∇πt|t−1

yt>0

∇λt|t−1
yt>0

 =

 −1
(1−πt|t−1)

yt−λt|t−1
λt|t−1

− exp(−λt|t−1)
1−exp(−λt|t−1)

 (4-68)

It|t−1 = Et−1

 (∇πt|t−1)2 ∇πt|t−1∇λt|t−1

∇λt|t−1∇πt|t−1 (∇λt|t−1)2

 =

=

 1
πt|t−1(1−πt|t−1) 0

0 (1−πt|t−1)[1−exp(−λt|t−1)−λt|t−1 exp(−λt|t−1)]
(1−exp(−λt|t−1))2λt|t−1

 (4-69)

Reparameterizing:

π̃t|t−1 =h(πt|t−1) = ln
(

πt|t−1

1− πt|t−1

)
= hπ, λ̃t|t−1 = h(λt|t−1) = ln(λt|t−1) = hλ

∇̃yt=0 =
∇̃πt|t−1

yt=0

∇̃λt|t−1
yt=0

 = Ḣ ′
−1
∇yt=0 =

(1− πt|t−1)
0

 (4-70)

∇̃yt>0 =
∇̃πt|t−1

yt>0

∇̃λt|t−1
yt>0

 = Ḣ ′
−1
∇yt>0 =

 −πt|t−1

yt − λt|t−1 −
λt|t−1 exp(−λt|t−1)

1−exp(−λt|t−1)

 (4-71)

Ĩt|t−1 =Ḣ ′−1
It|t−1 ˙H−1 =

=
πt|t−1(1− πt|t−1) 0

0 λt|t−1(1−πt|t−1)[1−exp(−λt|t−1)−λt|t−1 exp(−λt|t−1)]
(1−exp(−λt|t−1))2


(4-72)

Note that, by setting d = 0 in the scaled score, we arrive at an expression
for s̃t in which πt|t−1 doesn’t appear in ∇̃λt|t−1

yt and neither λt|t−1 is represented
in ∇̃πt|t−1

yt for yt = 0 or yt > 0. Since this is the case, an optimization in
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the estimation procedure can be employed, which makes hurdle models much
faster to estimate than zero-inflated distributions: we can fit two independent
GAS models and only combine them for forecasting. We can estimate a
Bernoulli GAS model and a zero-truncated Poisson (or NB) GAS model in
two independent (and lighter) function calls, which can also run in parallel if
necessary.

If we set d ∈ {1
2 , 1} in the scaled score, a different optimization is possible.

Note that only λt is influenced by πt via Fisher Information. Then, we can first
estimate the Bernoulli GAS model and supply the fitted π̂t|t−1 to be used when
estimating the zero-truncated GAS model.

4.2.6
Hurdle negative binomial (HNB)

The derivation of a hurdle negative binomial distribution follows the
same logic used for HP. We begin by presenting the HNB PMF, its mean and
variance:

p(yt|µt|t−1, α, πt|t−1) =



πt|t−1 , if yt = 0;(1− πt|t−1) Γ(yt+α)
Γ(yt+1)Γ(α)

(
1

1+
µt|t−1
α

)α
∗

∗
(

1− 1
1+

µt|t−1
α

)yt(
1

1−(1+
µt|t−1
α

)−α

) , else.

µt|t−1, α > 0, πt|t−1 ∈ (0, 1), yt ≥ 0 (4-73)

It can be shown that:

Et−1[yt] = µt|t−1(1− πt|t−1)
1− (1 + µt|t−1

α
)−α

(4-74)

V art−1[yt] = (1− πt|t−1)
[
µt|t−1(1 + µt|t−1

α
)

1− (1 + µt|t−1
α

)−α
−
(
1 + µt|t−1

α

)−α( µt|t−1

1− (1 + µt|t−1
α

)−α

)2]
+

+ πt|t−1(1− πt|t−1)
(

µt|t−1

1− (1 + µt|t−1
α

)−α

)2

(4-75)
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Now we present the derivation of the scaled score:

ln(p(yt|µt|t−1, α, πt|t−1)) =



ln(πt|t−1) , if yt = 0; ln(1− πt|t−1) + ln(Γ(yt + α))− ln(Γ(yt + 1))−

− ln(Γ(α))− α ln
(

1 + µt|t−1
α

)
+ yt ln(µt|t−1)−

−yt ln(µt|t−1 + α)− ln
(

1− (1 + µt|t−1
α

)−α
) , else;

(4-76)

∇yt=0 =
∇πt|t−1

yt=0

∇µt|t−1
yt=0

 =
 1
πt|t−1

0

 (4-77)

∇yt>0 =
∇πt|t−1

yt>0

∇µt|t−1
yt>0

 =

 −1
(1−πt|t−1)

yt−µt|t−1

µt|t−1(1+
µt|t−1
α

)
− (1+

µt|t−1
α

)−(α+1)

1−(1+
µt|t−1
α

)−α


(4-78)

It|t−1 = Et−1

 (∇πt|t−1)2 ∇πt|t−1∇µt|t−1

∇µt|t−1∇πt|t−1 (∇µt|t−1)2

 = (4-79)

where: (∇πt|t−1)2 = 1
πt|t−1(1− πt|t−1)

∇πt|t−1∇µt|t−1 = ∇µt|t−1∇πt|t−1 = 0

(∇µt|t−1)2 = (1− πt|t−1)
[

(1 + µt|t−1
α

)2α+1 − (1 + µt|t−1
α

)α+1 − µt|t−1(1 + µt|t−1
α

)α

µt|t−1(1 + µt|t−1
α

)2α+2 + µt|t−1(1 + µt|t−1
α

)2 − 2µt|t−1(1 + µt|t−1
α

)α+2

]
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And the reparametrizations used to map the parameters into the appro-
priate subspace will be given by:

π̃t|t−1 =h(πt|t−1) = ln
(

πt|t−1

1− πt|t−1

)
= hπ, µ̃t|t−1 = h(µt|t−1) = ln(µt|t−1) = hµ

∇̃yt=0 =
∇̃πt|t−1

yt=0

∇̃µt|t−1
yt=0

 = Ḣ ′
−1
∇yt=0 =

(1− πt|t−1)
0

 (4-80)

∇̃yt>0 =
∇̃πt|t−1

yt>0

∇̃µt|t−1
yt>0

 = Ḣ ′
−1
∇yt>0 =

 −πt|t−1
yt−µt|t−1

(1+
µt|t−1
α

)
− µt|t−1(1+

µt|t−1
α

)−(α+1)

1−(1+
µt|t−1
α

)−α


(4-81)

Ĩt|t−1 =Ḣ ′−1
It|t−1 ˙H−1 =

=
 h−2

π (∇πt|t−1)2 h−1
π h−1

µ ∇πt|t−1∇µt|t−1

h−1
π h−1

µ ∇µt|t−1∇πt|t−1 h−2
µ (∇µt|t−1)2

 =

where: h−2
π (∇πt|t−1)2 = πt|t−1(1− πt|t−1)
h−1
π h−1

µ ∇πt|t−1∇µt|t−1 = 0

h−2
µ (∇µt|t−1)2 = µt|t−1(1− πt|t−1)

[
(1 + µt|t−1

α
)2α+1 − (1 + µt|t−1

α
)α+1 − µt|t−1(1 + µt|t−1

α
)α

(1 + µt|t−1
α

)2α+2 + (1 + µt|t−1
α

)2 − 2(1 + µt|t−1
α

)α+2

]

(4-82)

4.3
Maximum likelihood estimation

In GAS models, the vector of fixed parameters θ is estimated by maxi-
mizing the log-likelihood:

θ̂ = arg max
θ

T∑
t=1

lt (4-83)

where lt = ln p(yt|ft|t−1,Ft−1; θ) (4-84)

The expression for ln p(yt|ft|t−1,Ft−1; θ) is readily available, and its eval-
uation requires only the calculation of ft|t−1 - given by the GAS recursion. To
solve the resulting non-linear optimization problem we use standard optimiza-
tion algorithms, such as BFGS, Nelder-Mead, BHHH and others.
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It can be shown (Blasques, Koopman and Lucas [40]) that under regu-
larity conditions, the maximum likelihood estimator θ̂ of θ is consistent and:

√
T (θ̂ − θ) d−→ N(0, H−1) (4-85)

where H = limT→∞E

[(
∂l

∂θ

)(
∂l

∂θ′

)]
/T , and l =

T∑
t=1

lt

For our models, the θ vector collects the following parameters:
{ρ1, ρ2, φ, κ, δ, β}. Besides these, initial values for states {π0, µ0, α0} are also
needed. They can either be incorporated in the θ vector and be optimized, or
be estimated heuristically in order to avoid the extra computational burden
of optimizing eight more parameters. This latter option is employed in this
dissertation.

4.3.1
EM algorithm

As mentioned in Lambert [41], zero-inflated distributions require a fur-
ther modification in the estimation procedure. For both ZIP and ZINB, when
we observe yt = 0, we cannot distinguish if the zero arises from the Bernoulli
trial or the Poisson/NB distribution.

If we knew that the observed zero arises from the Bernoulli trial, we could
rewrite the likelihood in a more tractable form. Suppose we could observe a
variable Zt, that is Zt = 1 if the observed zero is from the Bernoulli trial, and
Zt = 0 otherwise. Then we can express the likelihood for both distributions in
a different form. In the ZIP case we would write:

ln(p(yt|λt|t−1, πt|t−1)) = Zt ln(πt|t−1) + (1− Zt){−λt|t−1+yt ln(λt|t−1)− ln(yt!)}
(4-86)

for observation t

Through the EM algorithm (Dempster, Laird, Rubin [42]) we iteratively
estimate Zt given the current estimates of θ̂k−1 (E step) and then, keeping Ẑk

t

fixed, we maximize the rewritten likelihood to find θ̂k (M step). We iterate
these steps until convergence.
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Zt is estimated through its expected value, given by:

Ẑk
t = E[πt|t−1 = 1|yt, θ̂k−1] =

= P [yt = 0|πt|t−1 = 1]P [πt|t−1 = 1]
P [yt = 0|πt|t−1 = 1]P [πt|t−1 = 1] + P [yt = 0|πt|t−1 = 0]P [πt|t−1 = 0]

(4-87)

In the case of ZIP distribution, this simplifies to:

=


πt|t−1

πt|t−1+(1−πt|t−1) exp(−λt|t−1) , if yt = 0;

0 , else.
(4-88)

The estimation of θ̂k works as before, with the use of standard optimiza-
tion routines.

To assess if the EM algorithm would produce different estimates from
that obtained by directly maximizing the unmodified likelihood, we ran a small
experiment: for ZIP and ZINB distributions, we estimated the same model
presented in Chapter 5 in the dataset used in our application and compared
the estimates for both procedures (EM algorithm and unmodified likelihood).
The maximum difference of parameter estimates in all 752 time series was not
larger than 10%. This being the case, we opted to work with the unmodified
likelihood, since this is the fastest routine.

4.4
Initialization

This section describes the procedures employed for initializing both the
elements of the θ vector in the iterative optimization algorithm, and the initial
values of the components used to describe the dynamic of the time varying
parameters, in which we condition the optimization of the model.

For some parameters in θ, fixed initial values were used. These were
defined based on experimentations with the dataset discussed in Chapter 6.

The parameters associated with the scaled scores (ρ1, ρ2, κ) are initialized
with the value 0.1. The initial value chosen for φ is 0.5. A frequently adequate
initial value for α in NB distributions is 5, which we use for all GAS models
containing a NB component and also for the intermittent demand models
presented in Chapter 3.

For the distributions that involve the π process, we estimate an AR(1)
model for an indicator variable that is equal to one if y = 0 and zero otherwise.
The estimated intercept is used as initial value for δ and the AR coefficient is
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used for β. π0 is initialized as the unconditional mean of the AR(1) process,
that is, π0 = δ

1−β .
The initialization of µ0 and α0 was inspired by an analogous procedure

described in Hyndman et al. [43]. The adaptation employed here is defined in
the sequel:

1. Compute a moving average of order 3 with the first four weeks of data,
call this {rt}, t = 1, . . . , 26. This is the first estimate of the level - as
we have mentioned previously, the series employed here do not exhibit
trend.

2. Set µ0 = 1
26
∑26
t=1 rt.

3. Extract the seasonal component δt of the original series. We set δt = yt−rt
using the first 26 observations of yt and rt.

4. Fit a constrained least squares (with no intercept) to the δt series to
estimate the elements of α0. The imposed restriction is that I′α0 = 0,
where I is a vector of ones with appropriate dimension.

5. Set α0 equal to the parameters estimated in the step above.

We run this procedure in ln(1+y) to mimic the behaviour of the log link
function.

4.5
Explanatory variables

The inclusion of regressors in the GAS framework is straightforward. Let
Xt be a T × k matrix of explanatory variables. Let ζ be the vector of the k
coefficients to be estimated. Then we can include the explanatory variables as:

hf (ft|t−1) = µt|t−1 + γt|t−1 + ζ
′
Xt (4-89)

With µt|t−1 and γt|t−1 as defined in equations 4-4 up to 4-6. This
represents a small modification in equation 4-3 that does not affect the scaled
scores defined in Section 4.2. The coefficients in ζ need to be incorporated in
θ to be estimated.

It is also possible to include regressors in the πt|t−1 dynamic in a similar
manner, but we choose not to do so in this work.

An issue that arises in applications is the choice of the appropriate subset
of variables of Xt that has to be included in the final model. We perform
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variable selection via adaptive Lasso, from Zou [44]. This procedure has the
oracle property - that is, under some specified conditions, as the sample size
grows, the probability that the adaptive Lasso selects the correct subset of Xt,
the "true" model, converges to 1.

The adaptive Lasso is an extension of Lasso [45] - a l1 penalized
regression - that adds a weight to each coefficient to be estimated. The variable
selection and estimation in adaptive Lasso is performed by solving the following
optimization problem:

arg min
β
‖y −

k∑
j=1
xjβj‖2 + λ

k∑
j=1

wjβj (4-90)

With y and x being vectors of length T, for a given choice of λ and
previously selected weights w.

The implementation of the variable selection procedure in this study -
that is the same to all models with external regressors - is specified bellow:

1. The dependent variable is ln(1 + y).

– We do so to mimic the behaviour of the log link function presented
in the discussion of the reparametrizations.

2. Given all the variables to be selected (the columns ofXt), we add to these
the following extra variables: lag 1 and lag 7 of the dependent variable
and seasonal dummies.

– The objective is to insert simple time series structure in the variable
selection problem.

– Neither the lags of ln(1 + yt) nor the seasonal dummies are subject
to penalization. That is, for these variables we set w = 0.

3. The weights in w are selected via Lasso as a first stage without penalizing
the time series structure added in the step above. We define wj =

1
|βLassoj |+ 1√

T

.

4. Estimate the adaptive Lasso coefficients with the above defined weights,
again with no penalization for the time series structure embedded in the
model.

– For both the first stage Lasso and the adaptive Lasso, λ is selected
by minimizing BIC (Bayesian information criterion).
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5. The resulting variables with coefficients different from zero are selected
to compose the final model.

These selected variables are the ones to be included in the GAS dynamic.
It is also necessary to determine starting values for ζ when performing
maximum likelihood estimation. The proposed solution for initialization is to
run a standard GLM regression (with Poisson or NB distribution) for y using
a simple time series structure as described in the topic of variables selected
via Adaptive Lasso. The coefficients estimated at this stage are inserted as
starting values for the optimization algorithm used for estimation.

4.6
Diagnostics

Regarding model diagnostics, when dealing with non-Gaussian distribu-
tions there are several options of residuals suitable for analysis. Hilbe [34]
discusses possible choices for count data models. Here we opt to work with the
randomized quantile residuals, proposed in Dunn & Smyth [46]. This method
provides an adaptation of the quantile residuals, typically used in GLM diag-
nostics, that is suitable for discrete distributions. We define the randomized
quantile residuals in the sequel:

rqt = Φ−1(ut) (4-91)
where: ut ∼U [F̂t(yt − 1), F̂t(yt)]

and F̂t =
yt∑
i=0

p(yi|f̂t|t−1;Ft−1; θ̂)

With Φ(.) being the cumulative distribution function of a standard
normal variable.

For continuous distributions, rt (as defined below) is distributed as a
U[0,1]:

rt = F ∗t (y) =
∫ yt

−∞
p∗(y|f̂t|t−1;Ft−1; θ̂)dy

Where f ∗t is the density of yt. This result also holds if we are able to
consistently estimate the parameters of f ∗t . ut is an adaptation of the the
probability integral transform that makes the cumulative distribution of a
discrete variable also uniformly distributed in the unit interval.
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Kolassa [32] employs ut itself, which is called randomized probability
integral transform in that paper, as a model diagnostic. We follow [46] and
further transform this variable, via Φ−1(.), to assess if our models are correctly
specified.

We will employ conventional tests for Gaussian time series data to
analyse the fitted models. Specifically, we analyse the adequacy of the chosen
distributions via the Jarque-Bera test, and use the Ljung-Box test for auto-
correlation and conditional heteroskedasticity for remaining unmodeled time
series structure.

To validate the model diagnostic choice, Chapter 5 studies the behaviour
of the randomized quantile residuals for hurdle and zero-inflated GAS models
under correct specification.

4.7
Forecasting

Given the chosen distribution for yt, we have the entire predictive
distribution for the first-step-ahead, since πt|t−1 and ft|t−1 are fully determined
given observations up to t and the estimated parameters θ̂. As is typical with
non-Gaussian models, for further steps-ahead there is no closed form expression
for the distribution. As an example, we show how to obtain the second step
ahead predictive distribution:

p(yt+2|ft|t−1, πt|t−1,Ft−1; θ̂) =
∞∑
0
p(yt+2|ft+1|t, πt+1|t,Ft; θ̂)p(yt+1|ft|t−1, πt|t−1,Ft−1; θ̂)

(4-92)

Although p(yt+1|ft|t−1, πt|t−1,Ft−1; θ̂) has a known closed form,
it is not possible to ensure that the same is true for the product
p(yt+2|ft+1|t, πt+1|t,Ft; θ̂)p(yt+1|ft|t−1, πt|t−1,Ft−1; θ̂), and so we need a
Monte Carlo algorithm to estimate the k-step-ahead predictive distribution
p(yt+k|ft|t−1, πt|t−1,Ft−1; θ̂). We do so using the following routine:
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arguments: m, k
input : µt|t−1, αt|t−1, πt|t−1, s̃t|t−1, θ̂
output : A m× k matrix with m simulations of the k-step

ahead predictive distribution
1 for i← 1 to m do
2 Initialize µ, α, π, s̃ with the given inputs;
3 for j ← 1 to k do
4 Given θ̂ and current states (µ, α, π), sample y(i)

t+j;

5 Store y(i)
t+j on the relevant slot of the output matrix;

6 Calculate s̃;
7 Update the states (µ, α, π);
8 end
9 end

Algorithm 1: k-step-ahead predictive distribution for GAS model

It follows that each line of the returned matrix is an estimate of the
k-step-ahead predictive distribution.
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5
Simulation studies

In this chapter the finite sample properties of the maximum likelihood
(ML) estimator for GAS models with HP, HNB, ZIP and ZINB distributions
are investigated. We also check the adequacy of the randomized quantile
residuals for our models with excess of zeroes under correct specification.
To address these issues, we begin the chapter with a description of the
experimental setup. After that, we analyse the results of our simulation studies
and discuss the findings, first for parameter estimation, and then for model
residuals.

5.1
Setup

To assess the performance of the ML estimator and randomized quantile
residuals of the fitted models, we considered the following data generating
process:

yt ∼ p(yt|ft|t−1, πt|t−1,Ft−1; θ) (5-1)
hf (ft|t−1) = hf (ft−1|t−2) + κf∇̃ft−1|t−2 , κf > 0 (5-2)
hπ(πt|t−1) = δ + βhπ(πt−1|t−2) + κπ∇̃πt−1|t−2 , |β| < 1, κπ > 0 (5-3)

With p(yt|ft|t−1, πt|t−1,Ft−1; θ) being the mixture distributions previously
mentioned - see Sections 4.2.3 up to 4.2.6. In both ZIP and HP cases,
λt|t−1 = ft|t−1 and for the ZINB and HNB cases, µt|t−1 = ft|t−1. Note that
we use d = 0 in the scaled score to mimic the choice made for the application
in real data as we have discussed in Section 4.1.

We evaluate the ML estimator and model residuals for time series with
sample sizes T = {250, 500, 1000}. For each sample size, we simulate the time
series and estimate the parameters 500 times, store the estimation results and
estimate the residuals as in equation 4-91 for later analysis. The parameters
associated with the scores are kept fixed at κf = 0.01 and κπ = 2.25. For the
πt|t−1 variable, we also fix δ = 0.6 and β = 0.2. When analysing the ZINB and
HNB distributions, we set α = 4.
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5.2
Results

5.2.1
Parameter estimators

Once obtained the parameter estimates, we report the mean of the
estimates, the root mean square error (RMSE) and the standard error (SE),
and the mean of the asymptotic standard error (ASE) of each ML estimate. We
also provide p-values for the Jarque-Bera test used to assess if the distribution
of the parameter estimates is Gaussian and provide histograms of the these.
We group Poisson-type distributions in one table and NB-type in other.

We begin the discussion of the results with HP and ZIP distributions.
Table 5.1 gathers the estimated metrics for these and Figures 5.1 and 5.2 plot
the standardized distributions of the parameter estimates along with a N(0, 1)
distribution in blue.

Concerning the bias of the estimates we note that, from the beginning,
all parameters exhibit small bias, with the largest estimated bias being from β

under ZIP distribution - around 12%. We note that this sample size (T = 250)
is actually smaller than the one being used to estimate our models in our
empirical application in Chapter 6 (T = 365, as we mention in 6.2.1). As sample
sizes grows, the bias decreases, achieving negligible values for all estimated
parameters under T = 1000.

With few exceptions, RMSE and SE estimates exactly match. If the
asymptotic standard error of the ML estimators was a good estimate of the
parameters true standard errors, we would observe its estimate being very close
to the observed estimates for RMSE and SE. This is not the case for any of
the parameters being studied.

Concerning the Jarque-Bera test for the ML estimators, we note that
with sample size T = 1000, we do not reject the null hypothesis of normality
at a 1% significance level for any parameter studied. In some cases, we do not
reject the null hypothesis of normality for some of the parameters with smaller
sample sizes.
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Table 5.1: Estimated parameters for HP and ZIP GAS models.

H
P

ZIP

κ
f

=
0.01

δ
=

0.6
β

=
0.2

κ
π

=
2.25

κ
f

=
0.01

δ
=

0.6
β

=
0.2

κ
π

=
2.25

T
=

250
M
ean

0.011
0.629

0.197
2.299

0.009
0.616

0.176
2.291

R
M
SE

0.005
0.225

0.150
0.372

0.009
0.234

0.157
0.384

SE
0.005

0.223
0.150

0.369
0.008

0.234
0.155

0.382
A
SE

0.000
0.014

0.009
0.024

0.000
0.014

0.010
0.024

N
orm

ality
0.004

0.000
0.929

0.000
0.000

0.000
0.230

0.000

T
=

500
M
ean

0.010
0.626

0.204
2.284

0.009
0.601

0.200
2.280

R
M
SE

0.004
0.152

0.097
0.245

0.006
0.155

0.114
0.260

SE
0.004

0.150
0.097

0.243
0.006

0.155
0.114

0.259
A
SE

0.000
0.007

0.005
0.012

0.000
0.007

0.005
0.012

N
orm

ality
0.055

0.015
0.061

0.000
0.000

0.000
0.704

0.279

T
=

1000
M
ean

0.010
0.606

0.204
2.254

0.010
0.601

0.200
2.260

R
M
SE

0.003
0.106

0.070
0.189

0.004
0.105

0.077
0.174

SE
0.003

0.106
0.070

0.189
0.004

0.105
0.077

0.174
A
SE

0.000
0.003

0.002
0.006

0.000
0.003

0.003
0.006

N
orm

ality
0.092

0.313
0.484

0.015
0.076

0.836
0.055

0.154
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Figure 5.1: Histograms of parameter estimates - HP distribution.

Figure 5.2: Histograms of parameter estimates - ZIP distribution.

DBD
PUC-Rio - Certificação Digital Nº 1912828/CA



Chapter 5. Simulation studies 53

The findings obtained for HP and ZIP distributions are also valid for
HNB and ZINB. Table 5.2 reports the metrics being analyzed and Figures 5.3
and 5.4 present the histograms of parameter estimates.

We observe a constantly decreasing bias, which becomes negligible with
the largest sample size. RMSE and SE show very close estimated values, and
ASE is again an inadequate estimate of the true parameter dispersion. We do
not reject the null hypothesis of normality for any parameter at 1% significance
level for T = 1000.

The extra parameter α, which is related to the overdispersion in the NB
distribution, has precise estimates, with only a small bias for the sample size
of 250 observations. In all other cases, the estimated bias is negligible.

Our results indicate that the ML estimator is consistent and asymp-
totically normal for the parameters of the excessive zeroes distributions with
dynamic Bernoulli process proposed in this dissertation. We also conclude that
the asymptotic standard errors (ASE) doesn’t provide adequate estimates of
true dispersion of the parameters studied. The estimated values are much
smaller than the standard errors estimated from the distribution of ML es-
timators. It seems that a correction for finite samples is needed for proper
inference.
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Table 5.2: Estimated parameters for HNB and ZINB GAS models.

H
N
B

ZIN
B

κ
f

=
0.01

δ
=

0.6
β

=
0.2

κ
π

=
2.25

α
=

4
κ
f

=
0.01

δ
=

0.6
β

=
0.2

κ
π

=
2.25

α
=

4

T
=

250
M
ean

0.011
0.640

0.192
2.293

4.151
0.008

0.614
0.190

2.264
4.283

R
M
SE

0.013
0.220

0.151
0.401

0.899
0.011

0.213
0.145

0.344
0.895

SE
0.013

0.217
0.150

0.399
0.887

0.010
0.213

0.145
0.344

0.850
A
SE

0.001
0.014

0.010
0.023

0.055
0.001

0.014
0.009

0.023
0.049

N
orm

ality
0.000

0.000
0.020

0.000
0.000

0.000
0.000

0.073
0.003

0.000

T
=

500
M
ean

0.011
0.602

0.205
2.272

4.055
0.010

0.603
0.194

2.255
4.106

R
M
SE

0.010
0.150

0.109
0.264

0.591
0.006

0.155
0.108

0.249
0.541

SE
0.009

0.150
0.109

0.264
0.589

0.006
0.155

0.108
0.249

0.531
A
SE

0.000
0.007

0.005
0.011

0.026
0.000

0.007
0.005

0.011
0.023

N
orm

ality
0.000

0.028
0.704

0.011
0.000

0.066
0.000

0.506
0.022

0.000

T
=

1000
M
ean

0.010
0.601

0.197
2.268

4.043
0.010

0.598
0.201

2.252
4.027

R
M
SE

0.005
0.108

0.072
0.187

0.398
0.004

0.104
0.075

0.192
0.355

SE
0.005

0.108
0.072

0.187
0.396

0.004
0.104

0.075
0.192

0.354
A
SE

0.000
0.003

0.002
0.006

0.013
0.000

0.003
0.002

0.006
0.011

N
orm

ality
0.682

0.284
0.446

0.300
0.082

0.064
0.018

0.560
0.012

0.024
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Figure 5.3: Histograms of parameter estimates - HNB distribution.

Figure 5.4: Histograms of parameter estimates - ZINB distribution.
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5.2.2
Randomized quantile residuals

Having established, via our simulation study, the consistency and asymp-
totic normality of the ML estimators, we now turn our analysis to the random-
ized quantile residuals. It is expected that, aside from sample variability, the
randomized quantile residuals should be uncorrelated, homoscedastic and fol-
low a Gaussian distribution - as is the case for "standard" quantile residuals
under correct specification and consistent estimation method.

This is indeed the result we find. The following tables exhibit, for
significance levels α = {10%, 5%, 1%} and sample sizes T = {250, 500, 1000},
the percentage of null hypotheses rejections according to the distribution being
studied.

The first table presents the Jarque-Bera test used to assess if the
distribution of the randomized quantile residuals is Gaussian. After that, we
present the results for Ljung-Box test for auto-correlation, and Ljung-Box test
for conditional heteroskedasticity.

Table 5.3: Percentage of rejections - Jarque-Bera test.

ZIP HP ZINB HNB

T = 250
α = 10% 7.2% 7.4% 6% 5.2%
α = 5% 3.8% 4% 3.4% 3.2%
α = 1% 1% 2% 0.6% 1.6%

T = 500
α = 10% 8.4% 6.2% 3.6% 6%
α = 5% 4.8% 3.2% 2.4% 3.2%
α = 1% 2.2% 1.2% 0.2% 1.8%

T = 1000
α = 10% 8.2% 9.4% 6.8% 4.6%
α = 5% 3.4% 5.6% 3.2% 1.8%
α = 1% 0.2% 1.8% 1% 0.2%

The table above highlights that, for most cases, we have slightly less
rejections of the null hypothesis of the Jarque-Bera test than the significance
level being used.

The two next tables present the results of Ljung-Box tests with different
numbers of lags used to evaluate the null hypotheses. We vary the number
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of lags from 1 up to 4 to calculate the test statistic. These numbers seem
adequate, since the simulated series do not exhibit a seasonal component.

First, for auto-correlation of the residuals, we note that the number of
rejections is also smaller than the significance level specified. This is true for
every lag order, sample size and distribution studied. Concerning conditional
heteroskedasticity, the percentage of null hypothesis rejections is closer to the
significance levels specified, specially for k = 1.

Under correct specification, the randomized quantile residuals exhibit the
expected properties for the proposed GAS models with excess of zeroes.

Table 5.4: Percentage of rejections - Ljung-Box test for auto-correlation.

T = 250 T = 500 T = 1000

ZIP HP ZINB HNB ZIP HP ZINB HNB ZIP HP ZINB HNB

α= 10%
k = 1 7% 6% 5.8% 4.6% 6% 5.8% 3.6% 4.8% 8% 2.8% 6.8% 4.6%
k = 2 5% 6% 4.8% 3.6% 5% 4.8% 4% 5% 5% 2% 4.6% 4.8%
k = 3 5.8% 7.4% 6% 4.8% 5.6% 5.2% 4.6% 5.8% 5% 4.4% 5% 5.8%
k = 4 6.8% 7.4% 6.6% 5.4% 5.8% 6.6% 6.4% 7.4% 6.4% 5.4% 5.6% 7.4%

α= 5%
k = 1 2.8% 2.4% 2% 2% 3% 2% 1.8% 1.6% 2.8% 1.4% 2.4% 3.2%
k = 2 2.4% 2.6% 1.8% 1.2% 1.8% 2.4% 1.6% 2.2% 2% 0.6% 1.6% 1.8%
k = 3 2.8% 3.4% 3.2% 2.8% 2.4% 2.8% 2.2% 2.4% 2.4% 2.4% 1.8% 2.8%
k = 4 3.4% 2.8% 3.4% 2.8% 2.2% 3.6% 2.6% 2.4% 2.8% 2.6% 1.8% 4%

α= 1%
k = 1 1% 0.4% 0.4% 0% 0% 0.2% 0.6% 0.2% 0.6% 0% 0.2% 0.6%
k = 2 0.6% 0.2% 0.6% 0% 0.2% 0.4% 0% 0.2% 0.4% 0% 0% 0.2%
k = 3 0.6% 0.8% 1% 0.2% 0.2% 0.4% 0% 0.2% 0.2% 0.2% 0% 0.6%
k = 4 0.4% 0.8% 1% 0.2% 0.4% 0.4% 0.4% 0.2% 0.4% 0.4% 0% 1%

Table 5.5: Percentage of rejections - Ljung-Box test for conditional het-
eroskedasticity.

T = 250 T = 500 T = 1000

ZIP HP ZINB HNB ZIP HP ZINB HNB ZIP HP ZINB HNB

α= 10%
k = 1 10.4% 10.2% 8.8% 10.4% 10.2% 6.6% 9.8% 7.8% 9.2% 9.4% 9% 10%
k = 2 8.6% 9.6% 6.2% 7.4% 8.2% 6.4% 7.4% 8% 10.8% 10.4% 10% 10%
k = 3 9% 7.4% 6.2% 9% 9.2% 7.4% 7.6% 9.2% 10% 8.4% 8.4% 9%
k = 4 9% 7.8% 7.2% 9.6% 9.4% 8.2% 8% 9% 12% 8.4% 8.2% 9.8%

α= 5%
k = 1 5% 4.4% 3.6% 5% 5% 3.2% 4.2% 3.4% 5% 4.4% 4.4% 5.8%
k = 2 3.2% 4.4% 3.2% 4.2% 4.4% 3.2% 4.2% 4.4% 4.8% 4.4% 5% 4.6%
k = 3 5% 4.8% 3.4% 5.6% 5.2% 4% 4% 4.8% 7.2% 4.2% 3.4% 5%
k = 4 5.4% 3% 4.8% 5.8% 5% 5% 4% 3.2% 5.8% 4% 4.6% 3.8%

α= 1%
k = 1 1.4% 0.6% 1% 1.4% 0.8% 0.4% 0.6% 0.6% 1.2% 0.8% 1% 1%
k = 2 1.4% 0.6% 0.4% 0.8% 1.4% 0.6% 0.4% 0.6% 1% 0.8% 1.2% 0.6%
k = 3 1.4% 0.4% 0.8% 1.4% 1.4% 0.6% 0.6% 0.8% 1.2% 1.4% 0.8% 0.6%
k = 4 1.4% 0.4% 1.2% 1.2% 1.6% 0.8% 0.6% 1.6% 1% 1% 0.8% 1.6%
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6
Application

In this chapter we compare our proposed GAS models with the bench-
marks from intermittent demand forecasting and count time series literatures.
For this, we use real intermittent demand time series obtained from a large
Brazilian retailer. The models are compared with metrics suitable for both
point and distribution forecasts.

We begin the chapter with the description of the data being analysed.
This is followed by a discussion of the setup of our model comparison exercise
and the presentation of descriptive statistics of the data used in our compari-
son. After that, we analyse the models estimated and present its diagnostics.
The chapter is concluded with the presentation of the results.

6.1
Data and filters

To test the proposed GAS models, we had access to real daily sales time
series from a big Brazilian retailer, a company with more than 1700 stores over
the country and presence in all states. The daily data used in this dissertation
comes from one particular state, from which we had access to all stores, with
observations starting in January 1st 2017 up to the last day of 2019.

The specific SKUs that are analysed come from two different lines of
products: hair colour and small appliances. SKU is the most disaggregated
unit measure of a product. It represents, for instance, a T-shirt from a certain
brand, along with its colour, size and model. This is the relevant unit for
inventory management purposes. In theory, prices could be set by SKU, but
most typically these are group specif - as is the case for our data. Continuing
with the aforementioned example, every T-shirt form the same brand and
model has the same price, regardless of colour and size. This common price
definition is not taken into account in our models as we do not leverage
information across different time series.

Besides daily demand, other variables were also made available by the
retailer: daily prices, number of products in stock, a dummy variable indicating
if the store is opened and promotions calendar. To these, we added weekdays
(for the models with deterministic seasonality) and both national and local
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holidays. All of these are used as explanatory variables in all models. For the
forecasting horizons being analysed it is reasonable to assume that their values
are known in advance, since the ones provided by the company are part of a
regular planning routine. The exception is the number of products in stock. In
this case, when making predictions, the last observed values are kept fixed for
forecasting.

We add holidays to our variables since these have different effects on
different kinds of stores: a group of stores may not open on holidays, others
have restricted working hours, and some do not have any change in schedule.
Even in this case it is important to control for unusual behaviour in costumer
flow. With regard to promotions effects, they are extremely variable, since
each promotion category may have its own advertising channel, such as TV,
newspapers or mobile app notification, for example. We control for promotions
in our models, adding up to 10 promotion variables.

Some treatments were needed in order to select the series to be used
in our forecasting comparison exercise. The first operation performed was the
exclusion of all time series coming from recently opened stores. In the company
that provided the data there is a general perception that recently opened stores
take about two years to stabilize sales. Because of that, we have chosen to work
only with stores older than two years at the beginning of 2017. This explains
why we have chosen a stationary level component for our models (equation
4-4).

Other operation performed in our data concerns the removal of two weeks
in mid-2018. Brazil faced a general strike of truckers that interrupted supply
all over the country. To deal with this unexpected event, we chose to remove
the observations during the strike.

We have opted to work with a rolling window scheme for model estima-
tion and forecasting. The year of 2019 was used as our out-of-sample period
and a window of size 365 was employed for model fitting.

Not all series have 365 observations available for the first estimation win-
dow in 2019. These series were used only when all 365 in-sample observations
became available for model estimation. Because of this, the number of out-of-
sample observations at our disposal for model comparison is not fixed. In the
case of 1-day-ahead forecasts, this translates to a maximum of 365 observations
(all year of 2019) used when comparing models, and a minimum of 31 days
(only December 2019) in the worst case.

Other criteria used to select which time series to use in our forecasting
exercise were the following: we did not use series that exhibit zero sales in 2019;
the series used had at least a variance of 0.5; we did not work with SKU/stores
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that had more than 60 days with no products in stock (not necessarily in
sequence).

After applying all this filters, we are left with a total of 752 daily time
series from hair colour and small appliances lines of products, totaling 8285
windows - between 11 and 12 estimation rounds for each one of the 752 time
series studied.

6.2
Setup

The experimental setup is now discussed. We provide details about the
estimation and prediction procedures and the accuracy measures are shown.

6.2.1
Estimation and prediction

We now describe some decisions concerning the frequency of model rees-
timation, days at which we evaluate our predictions and number of simulations
ran to calculate the k-days-ahead predictive distribution.

As mentioned in Section 6.1, we estimate our models with a fixed
window of 365 observations (after applying the described filters). As we have
a maximum of one year to evaluate the forecasts, it is important to reestimate
the models when possible to update the parameters estimates. We chose to do
so on a monthly basis. That is, before predicting the first day of each month
in 2019 we reestimate our models using a rolling window and evaluate our
predictions at 1, 8, 15-days-ahead.

The benchmark models described in Chapter 3 are estimated incorpo-
rating a deterministic seasonality and the first lag of the dependent variable.
All other variables are subject to selection. As we employ the same selection
procedure for the explanatory variables at each reestimation period, all models
for the same time series and month of estimation have the same explanatory
variables.

To evaluate the 1, 8, 15-days-ahead predictive distributions, we ran
1000 simulations to calculate the metrics discussed in the next section -
m = 1000, k = 15 in Algorithm 1. For point forecasts, we calculate the mean
of the simulated values for each step ahead when evaluating RMSSE, and use
the median of the simulations for MASE. Both of this metrics are defined in
the section that follows.

Some particular days are excluded from the calculation of the metrics:
days in which the store is not opened, Black Friday and holidays. In this
last case we also exclude the day before and the day after the event. For
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the Black Friday, this particular retailer has 4 days of promotions. In this
case, excluding just the days of promotions is sufficient to account for atypical
behaviour. Holidays and Black Fridays are not evaluated since we have too few
observations in-sample to make a reasonable prediction. Excluding holidays
(and the days around it) and Black Friday reduces our out-of-sample period
by 58 observations. Days of closed stores vary, but on average we have the
stores opened at 95% of the remaining days. So that from the year of 2019, we
utilize around 290 days to evaluate the forecasts.

6.2.2
Accuracy measures

The accuracy measures utilized in this dissertation evaluate both the
adequacy of the predictive distribution, and the performance of point predic-
tions. For the former, we follow the discussion in Kolassa [32] and evaluate
the accuracy of the predictive distributions via proper scoring rules. Czado,
Gneiting, and Held [33] also argument that these should be the forecasting
accuracy metrics to be analysed in a count data context. Both works present
some possible scoring rules from which we choose Brier and spherical scoring
rules to compare the models. Concerning point predictions, we use Mean Abso-
lute Scaled Error (MASE), proposed in Hyndman and Koehler [47], a scale-free
error measure most suitable for comparing models across series with different
scales. We also use a variation of this metric, called Root Mean Squared Scaled
Error (RMSSE), proposed in the M5 competition of 2020.

First, it is important to recall the definition of each of these metrics. We
begin with scoring rules. As defined in [32]:
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"A scoring rule is a function s that maps a predictive distribu-
tion p̂ and a single realization y to a penalty value s(p̂, y). In
practice, one usually reports averages of the scores over suit-
able pairs (p̂, y), e.g., over forecasts and actuals over multiple
time points t,

S := 1
T

T∑
t=1

s(p̂t, yt).

A scoring rule is said to be proper if its expected value is
minimal if p̂ is the true future distribution of y,

Ey p(s(p, y)) ≤ Ey p(s(p̂, y)),

and strictly proper if its expectation is minimized only by the
true future distribution,

Ey p(s(p, y)) < Ey p(s(p̂, y)) if p 6= p̂. "

By the definition above, we see that scoring rules are loss functions that
have its expected values minimized by the true distribution of the data. The
proper scoring rules used in this dissertation are Brier (or quadratic) and
spherical scoring rules, as given by:

Brier(p̂, y) = −2p̂y,h + ||p̂||2 (6-1)

Spherical(p̂, y) = − p̂y,h
||p̂||

(6-2)

where: ||p̂|| =
√√√√ ∞∑
k=1

p̂2
k,h

The term p̂k,h represents the probability mass of the h-step-ahead predic-
tive distribution evaluated at the value k. That is, evaluating this probability
at the realized value of y provides a measure of point forecast accuracy. Larger
probabilities assigned to the observed value help to minimize the scoring rule,
with the best achievable value being choosing the observed value of y and
assigning probability one to this realization.

On the other hand, ||p̂|| assess how concentrated are the forecasts. This
term is minimized when we have equal probabilities assigned for each p̂k,h with
k ∈ [0,∞), when we achieve ||p̂|| = 0. Assigning probability one to any forecast
will make ||p̂|| = 1, its maximum value.
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Brier scoring rule has values in [−1, 1], while suitable spherical scoring
rule values are in [−1, 0] . We evaluate p̂ numerically in this study using 1000
simulations ran for each h-step-ahead forecast.

When it comes to assessing the point forecast accuracy, we analyse MASE
and RMSSE, both of which we define bellow:

MASE =
1
h

∑t+h
j=t+1 |yj − ŷj|

1
t−8

∑t
i=8 |yi − yi−7|

(6-3)

RMSSE =

√√√√ 1
h

∑t+h
j=t+1(yj − ŷj)2

1
t−8

∑t
i=8(yi − yi−7)2 (6-4)

We call the reader’s attention to the fact that the numerator of these
metrics are Mean Absolute Error (MAE) and RMSE, respectively. The issue of
utilizing MAE and RMSE is that both of these are dependent on the scale of the
data, what makes comparisons between different series difficult. Both MASE
and RMSSE scale out-of-sample errors by the in-sample forecasting errors of
random walk models. In our use case, we employ a weekly seasonal random
walk, since all models compared have a weekly seasonal component. The only
case in which these metrics would be undefined is when all observations in-
sample are equal. Values smaller than 1 for both of these metrics represent
better forecasts than naive random walk models.

6.3
Descriptive statistics

We now present the descriptive statistics for the time series being
analysed. Table 6.1 presents some descriptive statistics of the daily sales series.
The presented statistics are the following: demand sizes, i.e. quantity sold
given that we have a day with sales; demand per period, the actual observed
series containing both days with and without sales; demand intervals, the time
between two successive sales; and the fraction of days with zero sales.

Table 6.1: Descriptive statistics of the retail time series.

Demand sizes Demand per period Demand intervals Fraction of zeroes

Min. 1.328 0.136 1.373 0.207
1st Qu. 1.549 0.329 3.357 0.668
Median 1.665 0.427 4.221 0.738
Mean 1.777 0.512 4.625 0.723
3rd Qu. 1.866 0.592 5.288 0.795
Max. 6.089 3.711 19.120 0.945
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Analysing the demand sizes column we see that when we observe positive
sales, the typical value is between 1 and 2 units sold for most of the series.
Demand per period, which corresponds to the mean of the series, is typically
much less than half of the demand sizes. Both demand sizes and demand
intervals describe the components in which Croston’s method divides the
observed demand. The intervals estimated are very variable, but for all series
this is larger than 1. The fraction of zeroes observed is concentrated around
0.7.

We now exhibit the auto-correlation functions (ACF) at lags 1, 2 and
7 for these time series. We plot histograms of the estimated values from the
series. Concerning the first lag, we note that there is a significant amount of
series with values greater than 0.1. On the other hand, most of the estimated
values for the second lag concentrate at around 0.05. In the auto-correlation
of order 7 we observe similarities to the histograms for ACF(2), though with
a little more of variability.

Figure 6.1: Histogram of ACF(1) for the retail time series.
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Figure 6.2: Histogram of ACF(2) for the retail time series.

Figure 6.3: Histogram of ACF(7) for the retail time series.
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Figure 6.3 raises the question of whether or not the seasonal component is
necessary. To asses if this is the case, we have performed a likelihood ratio test
in which we compare two different GAS Poisson models: a model containing
seasonal components as detailed in equations (4-3) up to (4-6); and a model
that excludes equations (4-5) and (4-6), but adds an intercept to equation
(4-4). We add the intercept to account for possibly different unconditional
means of the level components estimated. The former model is the alternative
hypothesis of the test, while the latter details the null hypothesis.

We have used only the first estimation window of each time series to
fit these models in order to avoid using pseudo-out-of-sample information to
interfere in this decision. When performing the test with 5% significance level,
we did not reject the null hypotheses of no seasonal effect in only 7% of the
intermittent demand time series.

For the products being analysed, we typically observe that Sundays have
lower average sales. Fridays, followed by Saturdays, exhibit higher average
sales.

The relationship between the daily sales and price and promotions, the
main explanatory variables at our disposal, is now discussed. Recall that these
are only included when deemed as relevant in our variable selection procedure.

Concerning prices, we calculate its correlation with the sales for each
serie. For the promotions we calculate the difference between the average sales
in days with no promotions or holidays, and an average day with each one of
the categorized promotions.

Estimated correlations are shown below. Most of the data exhibit a
coefficient between -0.3 and -0.1. For the promotions, we plot the estimated
metrics excluding the observations classified as outliers to avoid distortions in
the graphs.

We see that for most of the promotions, the median stays very close to
zero, with relatively low variability. Promotions 6 and 7 show a little more
variation. The exception is for promotion 1, which is highly variable and
presents a higher median. These numbers may seem small, but recall that
the median demand per period of the series is 0.427, so these small changes
represent big proportional variations.
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Figure 6.4: Histogram of price-sales correlation.

Figure 6.5: Box plot of average difference in sales between days with no
promotions and each promotion category.
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6.4
Models

We now examine the fitted models, detailed in Chapters 3 and 4, via esti-
mated randomized quantile residuals. As demonstrated by the simulation study
in Chapter 5, under correct specification, these residuals should be uncorre-
lated, homoscedastic and Gaussian. We have also verified that the Jarque-Bera
test for normality and Ljung-Box test for auto-correlation often have slightly
less rejections than what would be implied by the chosen significance level α,
while Ljung-Box test for heteroscedasticity has approximately the right num-
ber of rejections for well specified models.

We now repeat the analysis performed in Chapter 5. We report the
percentage of rejections of the null hypotheses for each of the tests mentioned,
grouping results according to model label. We perform the diagnostics test in
each of the estimated serie/window for every model studied. The table that
follows exhibits the percentage of null hypotheses rejections for significance
level α = 5%:

Table 6.2: Percentage of rejections for diagnostic tests with α = 5%.

Normality Auto-correlation Heteroscedasticity

GAS
Poisson 62.59% 5.71% 6.05%
NB 10.57% 5.68% 4.9%
ZIP 34.57% 4.93% 4.89%
ZINB 11.24% 5.74% 5.08%
HP 25.64% 8.4% 6.05%
HNB 7.12% 9.74% 4.84%

TS
Poisson Regression 58.6% 11.46% 8.49%
NB Regression 6.32% 10.34% 6.22%
ZIP Regression 40.76% 10.16% 8.44%
ZINB Regression 19% 9.64% 7.8%

EWMA
Damped Poisson 63.64% 19% 12.16%
Damped NB 65.15% 23.29% 13.54%
Damped Hurdle Shifted Poisson 50.18% 18.7% 5.29%
Undamped Poisson 69.41% 28.8% 24.76%
Undamped NB 65.74% 12.88% 10.5%
Undamped Hurdle Shifted Poisson 21.6% 9.07% 4%

We first discuss the results for the Jarque-Bera test. All models show
higher rejections of the null hypothesis of normality than the 5% nominal value.
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It seems that Poisson-type models are more prone to rejection in this test. Note
that, in both TS regressions and GAS models, this result is true, for both
standard and excessive zeroes distributions. For EWMA models, undamped
hurdle shifted Poisson stands out as the most adequate for describing the
distribution of the data.

These often bad results are caused by outliers. When we drop estimated
models containing randomized quantile residuals larger than 3 in absolute
values, we get results closer to those observed in Chapter 5. Outlier treatment
was not pursued in this dissertation because of the computational burden that
would be incurred for treatment of the total of 8285 models fitted per model
class studied.

In spite of the effect that extreme observations exert in Jarque-Bera
test statistics, this was less often the case in Ljung-Box tests. For both auto-
correlation and heteroscedasticity, the test statistics were estimated using 14
lags, which translates to two weekly seasonal cycles.

We clearly see GAS models being more able to capture the series
dynamics, with models having approximately the right percentage of null
hypothesis rejections for both auto-correlation and heteroscedasticity tests.
Time series count data models perform a little worse in these tests, specially
for auto-correlation, but also seem adequate for most use cases. On the other
hand, models based on EWMA dynamics suffer a little more. Undamped hurdle
shifted Poisson again stands out as the most adequate model in this category,
performing even better than time series count data benchmarks. Its damped
dynamic counterpart is also one of the most well adjusted in this category,
together with damped Poisson model.

Except for a few untreated observations, the models seem to adequately
describe data dynamics in most cases.

Concerning only the estimated GAS models, an interesting question is
whether or not it is necessary to have a stochastic seasonal component, as we
could alternatively estimate seasonal factors as part of the regressors. We can
also verify if the π variable should also follow a dynamic model.

To assess if this is the case, we have calculated the number of times
the parameters associated with the scores in each situation are statistically
significant at 5%. The results are shown in the table that follows:
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Table 6.3: Fraction of models with significant estimates for the parameters
associated with the scores.

GAS Poisson GAS NB GAS ZIP GAS ZINB GAS HP GAS HNB

κ 0.897 0.894 0.875 0.897 0.617 0.635
ρ2 - - 0.759 0.690 0.970 0.964

We employ the same notation of Chapter 4: κ is the parameter that
drives the variation in the weekly seasonal component in equation 4-5; and ρ2

is the parameter associated with the score of π as in equation 4-10, which is
responsible for a dynamic probability of zeroes arising from Bernoulli trials.

We can see that for a large proportion of the estimated models, both
time varying components are relevant.

6.5
Results

This section discusses the results of our forecasting comparison experi-
ment. We begin the presentation with Brier score (equation 6-1). Similar find-
ings were obtained for spherical score (equation 6-2) and, because of that, we
exhibit the results for this metric at the end of the section. We then discuss
our findings for point forecasts. Two illustrative examples are discussed at the
end of the chapter.

We compare the percentage of times each model is the one that minimizes
the metric being analysed. In all tables that follow we highlight the three
models most often selected, with darker tones indicating higher percentages.
We begin the discussion with the results for Brier score:
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Table 6.4: Percentage of times as best model - Brier Scores.

1 day-ahead 8 days-ahead 15 days-ahead

GAS
Poisson 4.53% 2.53% 2%
NB 12.52% 9.99% 7.99%
ZIP 7.86% 10.12% 11.98%
ZINB 7.19% 7.59% 9.32%
HP 12.92% 14.25% 13.18%
HNB 4.26% 4.13% 4.79%

TS
Poisson Regression 3.06% 2.4% 1.86%
NB Regression 8.66% 10.92% 10.79%
ZIP Regression 6.92% 6.79% 6.79%
ZINB Regression 7.86% 9.59% 9.45%

EWMA
Damped Poisson 1.07% 1.46% 1.6%
Damped NB 4.26% 4.13% 5.33%
Damped Hurdle Shifted Poisson 2.13% 1.46% 1.2%
Undamped Poisson 0% 0% 0.13%
Undamped NB 5.59% 4.39% 3.86%
Undamped Hurdle Shifted Poisson 11.19% 10.25% 9.72%

The proposed GAS HP model is the most often chosen as best performer
for all horizons being analysed. GAS NB and ZIP are also chosen as second
in ranking for some specific horizons. In general, the models under the GAS
label concentrate the most often chosen models for distribution metrics.

The second label that concentrates most often chosen models is TS
label, which groups our benchmarks from time series count data literature.
NB regression exhibits results similar to GAS ZIP model, being much faster
to estimate.

The results for EWMA class concentrates on undamped hurdle shifted
Poisson model. This finding is in line with the results obtained in model
diagnostics, which points this specific model as being the one that best
describes in-sample dynamics of the data analysed in its class.

Interestingly, we have two hurdle Poisson models consistently ranking as
best performers for distribution forecasts. This is a good results, as it indicates
that the simplest distribution among the excessive zeroes options is sufficient
to characterize the data dynamics adequately.

In general, we don’t see a large difference in percentage of times chosen
as best model for the top three most often chosen. For these, we also don’t
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see a sharp increase or decrease in relative performance as we analyse further
days-ahead.

We now turn our analysis to point forecasts. Both MASE (equation 6-
3) and RMSSE (equation 6-4) are discussed. We get different results from
the ones obtained in distribution forecasts and also find differences in relative
performance among both point forecast metrics being studied. We begin our
analysis with MASE, which is presented in the table that follows:

Table 6.5: Percentage of times as best model - MASE.

1 day-ahead 8 days-ahead 15 days-ahead

GAS
Poisson 4.26% 4.53% 3.2%
NB 4.93% 4.26% 4.79%
ZIP 5.99% 5.46% 5.06%
ZINB 3.73% 3.73% 4.13%
HP 16.11% 17.84% 15.18%
HNB 8.39% 8.79% 9.19%

TS
Poisson Regression 2.13% 0.8% 2%
NB Regression 7.86% 4.79% 4.93%
ZIP Regression 6.13% 4.26% 3.06%
ZINB Regression 8.52% 6.79% 8.26%

EWMA
Damped Poisson 1.73% 3.73% 3.46%
Damped NB 7.46% 9.45% 10.12%
Damped Hurdle Shifted Poisson 2% 1.2% 1.6%
Undamped Poisson 0% 0.13% 0.13%
Undamped NB 7.99% 9.05% 9.59%
Undamped Hurdle Shifted Poisson 12.78% 15.18% 15.31%

We now get results more concentrated in the two most often chosen
models. Again we see GAS HP model as the best alternative for both 1 and 8-
days-ahead forecasts. The second best performing model is, again, undamped
hurdle shifted Poisson, with this model being slightly better than GAS HP for
15-days-ahead forecasts under MASE metric.

Damped NB model now ranks in top three for both 8 and 15-days-
ahead forecasts and a similar performance is observed for its undamped
dynamic counterpart. GAS HNB and the ZINB regression model show a similar
performance, though this group lags behind GAS HP and undamped hurdle
shifted Poisson.
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As we know, the quantity that minimizes MAE (which is the numerator
of MASE) is the median of the predictive distribution, which is the quantity
analysed in the previous result. RMSSE, in its turn, is minimized by the mean
of the predictive distribution. Count data distributions with low mean exhibit
positive skew, and one of the characteristics of these distributions is that the
mean is larger than the median. The table that follows repeats the same
analysis for RMSSE, now using the mean of the predictive distribution as
the point forecast evaluated:

Table 6.6: Percentage of times as best model - RMSSE.

1 day-ahead 8 days-ahead 15 days-ahead

GAS
Poisson 11.98% 7.06% 5.73%
NB 4.79% 2.26% 2.13%
ZIP 7.32% 7.06% 5.86%
ZINB 4.39% 3.33% 3.86%
HP 14.25% 15.31% 15.85%
HNB 12.25% 16.11% 18.91%

TS
Poisson Regression 6.13% 7.32% 7.99%
NB Regression 7.99% 9.19% 5.46%
ZIP Regression 6.66% 6.52% 6.26%
ZINB Regression 5.73% 7.32% 6.39%

EWMA
Damped Poisson 2.66% 3.6% 5.33%
Damped NB 5.06% 5.99% 5.99%
Damped Hurdle Shifted Poisson 2.26% 1.46% 1.46%
Undamped Poisson 0% 0% 0.13%
Undamped NB 5.59% 4.79% 5.99%
Undamped Hurdle Shifted Poisson 2.93% 2.66% 2.66%

As expected, we get different results from the ones exhibited above. Now,
GAS HP and HNB alternate as best model and have a large margin for others.

We found that GAS HP model exhibits a good relative performance
consistently across all of the metrics analysed. Concerning the benchmarks
studied, we have EWMA related models showing good relative performance
in different situations. Undamped hurdle shifted Poisson is the third most
often chosen model for predictive distribution metrics in both 1 and 8 days-
ahead forecasts, being behind GAS HP by a small margin. For MASE metric,
undamped hurdle shifted Poisson places as second best model, being behind
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GAS HP for 1 and 8-days-ahead forecasts and taking on the first place for 15-
days-ahead predictions. Still for MASE, we see both damped and undamped
dynamics NB exhibiting a similar performance.

GARMA models from time series literature behave somewhat like GAS
NB model. These are sometimes ranked in the top three models, but the results
are not consistent across forecast horizons nor metrics.

The GAS HP models seem specially well suited for intermittent demand
forecasting problems. Curiously, although being very similar, the same is not
true for the GAS ZIP model. In spite of our results in Chapter 5 demonstrating
similarly good results for both HP and ZIP distributions in the examined
simulation study, in more realistic settings (more regressors and short time
series) it can be the case that convergence of the parameter estimates to its
true values might be slower for the latter distribution. The property of zeroes
arising from both the standard Poisson distribution and the Bernoulli variable
is a possible explanation for slower convergence.

6.5.1
Spherical score results

Table 6.7: Percentage of times as best model - Spherical Scores.

1 day-ahead 8 days-ahead 15 days-ahead

GAS
Poisson 3.73% 2% 1.6%
NB 11.72% 10.25% 8.12%
ZIP 8.12% 9.85% 9.85%
ZINB 6.92% 7.59% 9.59%
HP 12.92% 13.98% 15.31%
HNB 4.53% 4.39% 3.99%

TS
Poisson Regression 2.13% 1.6% 2.13%
NB Regression 9.19% 10.52% 9.45%
ZIP Regression 5.86% 5.99% 5.86%
ZINB Regression 8.12% 8.66% 8.66%

EWMA
Damped Poisson 0.8% 1.07% 1.6%
Damped NB 5.73% 4.93% 5.99%
Damped Hurdle Shifted Poisson 2% 1.86% 1.46%
Undamped Poisson 0% 0% 0%
Undamped NB 6.52% 6.26% 5.86%
Undamped Hurdle Shifted Poisson 11.72% 11.05% 10.52%
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6.5.2
Two illustrative examples

In this subsection we present two of the studied intermittent demand time
series to discuss the differences between the GAS HP model and the undamped
hurdle shifted Poisson model, which we refer to as "Undamped HSP" in Table
6.8. The criteria for the choice was to select one time series in which each one
of the proposed models was selected as the best option across all of the metrics
being analyzed, and also that these series reproduce some of the characteristics
observed in the forecasts of both models.

For the GAS models presented, we additionally exhibit the filtered
estimates for the level and seasonal component. By coincidence, both models
possess a nearly constant Bernoulli variable (πt|t−1). This is an infrequent
result, as indicated in Table 6.3, where the vast majority (97%) of the estimates
from the GAS HP model count with a statistically significant coefficient
associated with the scaled score of the Bernoulli variable.

The values in Table 6.8 report the estimated performance metrics in the
whole evaluation period, while the Figures 6.6 and 6.7 exhibit only one of
the months in our out-of-sample period. The criterion for the choice of the
month was to select the one with less observations discarded according to the
criteria described in Section 6.2. Only one-day-ahead forecasts are compared
below, but similar findings were obtained for further days-ahead. Labels on
the vertical axis were omitted as requested by the company that provided the
data. Dataset A exhibits a case in which the GAS HP model was selected
as the best performer, while dataset B is better modeled with the undamped
hurdle shited Poisson model.

First, concerning the estimated performance metrics exhibited in Table
6.8, we note that scoring rules are not as easily interpreted as the point forecast
measures used. This being the case, we turn our analysis to the point forecast
measures. As discussed during the presentation of both RMSSE and MASE, in
Section 6.2, the denominator of both represents in-sample RMSE and MAE,
respectively, from a (seasonal) naive forecasting model. In the absence of a
structural break, it is expected that these would have approximately the same
estimated values out-of-sample. In this case, values smaller than 1 indicate
better forecasts than this simple benchmark. This is indeed what we observe
for both models and in both datasets used, where the analysed models beat
the benchmark by a large margin. Undamped HSP in dataset B and under
MASE evaluation metric reduces the naive forecast errors by 2

3 , this represents
a large gain.
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Table 6.8: Forcasting metrics comparison for two time series.

Dataset A Dataset B

Brier score Spherical score MASE RMSSE Brier score Spherical score MASE RMSSE

GAS HP -0.465 -0.675 0.532 0.435 -0.592 -0.768 0.593 0.585
Undamped HSP -0.375 -0.607 0.682 0.592 -0.750 -0.862 0.335 0.487

Figures 6.6 and 6.7 highlight the most notable feature in both models.
Undamped HSP (in red) tends to exhibit more variation in the predictions,
what, in some cases, leads to an excessive variation in the forecasts. This
feature can be observed in both plots, as the range of the predictions is wider
for undamped HSP in both cases. On the other hand, GAS HP (blue line)
tends to oscillate around the same value.

Figure 6.6: Comparison of mean 1-day-ahead forecasts - Dataset A.
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Figure 6.7: Comparison of mean 1-day-ahead forecasts - Dataset B.

The following figures exhibit the filtered level and seasonal components
of both Datasets A and B. A frequent concern when modelling series with
too many regressors is that the unobserved components might exhibit little
variation, as the regressors might capture a big part of the variability of the
series. This is specially troublesome for the seasonal component. In our present
context, a situation in which this could occur would be if we have a specific
promotion that takes place only on a certain day of the week and is very
frequent.

This is not the case for the current examples. As we can see, the filtered
seasonal components are indeed very different and have a varying amplitude,
specially for Dataset B. The level component, on the other hand, captures short
term shifts, more visible in Dataset A, and remaining effects not captured by
the available regressors.
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Figure 6.8: Filtered level (left) and seasonal (right) components - Dataset A

Figure 6.9: Filtered level (left) and seasonal (right) components - Dataset B
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7
Conclusions

The purpose of this dissertation was to expand the GAS models frame-
work to previously unstudied discrete distributions, namely zero-inflated Pois-
son, zero-inflated negative binomial, hurdle Poisson and hurdle negative bino-
mial models. As mentioned, zero-inflated negative binomial distribution was
indeed studied before in [4], but we further develop the model to make the
Bernoulli variable also dynamic.

The derived models were then applied to the intermittent demand
forecasting time series. We have presented an overview of the research in the
area, presenting Croston´s method [8] and further works that addressed some
of its shortcomings. The proposed GAS models do correct one of the mentioned
issues: the necessity of observing a sale to update the forecasts. The models
developed in this dissertation are updated every period because the conditional
score that drives the forecasts is never null.

For each one of the discussed models, both our own and those from
the literature, we have detailed model equations and hypothesised distribu-
tion, estimation procedure, inclusion of explanatory variables and forecasting
algorithm. Our heuristical approaches to variable selections and parameter
initialization (when necessary) were also presented.

Before entering the forecasting experiment, we have studied the finite
sample properties of hurdle and zero-inflated GAS models and the properties of
the randomized quantile residuals of these under correct specification through a
simulation study. We have generated a simple model containing both mean and
zeroes regimes and studied the behaviour of the ML estimator with variable
sample sizes. The ML estimator is shown to be consistent and asymptotically
normal for the excessive zeroes distributions proposed in this dissertation. We
have also noted that ASE is not a good estimate of the parameter variance
for the sample sizes evaluated. For randomized quantile residuals, we get the
expected properties for correctly specified excessive zeroes GAS models: we
have Gaussian, uncorrelated and homoscedastic residuals.

Concerning the forecasting comparison exercise, we began detailing the
source of the data, one of Brazil´s largest retail companies, and specifying
the variables obtained. We then described our data treatments and filters
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applied to the dataset, which left us with 752 time series of variable sizes.
Some issues regarding estimation and prediction were also presented, along
with the accuracy measures used for our evaluation.

The obtained results for our diagnostics show that the models can
adequately account for the dynamics exhibited in the series analysed, but they
do struggle with Jarque-Bera test for normality. This is the case since we do
not engage in model specific outlier treatment, as we have to deal with more
than eight thousand estimation windows per model being evaluated. Special
events that exhibit very atypical behaviour, as Black Fridays, are treated
with dummies. These were the only outlier candidates known beforehand
and, as such, were included when deemed important in our variable selection
procedure.

The proposed GAS HP model is consistently one of the highest ranked
models among the ones studied, both across metrics analysed and forecast
horizons. This is a surprising result, as this is the simplest of the mixture
models proposed in this dissertation. We call the reader’s attention to the
fact that both hurdle models don’t need to resort to the EM algorithm for
parameter estimation, which can take a long time to achieve convergence.
Hurdle models can also be estimated by two separate (and lighter) function
calls when we set d = 0 in the scaled score since, in this case, there is no
cross dependence between zero and positive distribution parameters. We can,
effectively, estimate one GAS Bernoulli model and another GAS zero-truncated
Poisson (or NB) independently and then combine the estimated models for
forecasting. Both of this facts contribute for a faster model estimation routine,
which can be better suited for the large amount of time series that need to be
predicted in a typical retail setting.

Concerning our benchmark models, we note that undamped hudle shifted
Poisson model has consistently performed well in all metrics analysed, per-
forming similarly to the proposed GAS HP model for most cases, except when
evaluating RMSSE metric. Of the remaining EWMA-like recursions, damped
and undamped NB models were only relevant under MASE metric, but lagging
behind the most often chosen models. Count time series models, on the other
hand, don’t excel in neither distribution forecast nor point forecasts metrics,
presenting performance comparable to some of the GAS models analysed, but
being much faster to estimate.

There are some possible streams of research to be followed from this
dissertation. The most obvious is to replicate our findings in Chapter 6
with other datasets and setups. We took advantage of some features of our
dataset that are not always available: we used the most disaggregated level of
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observations, while in some cases only weekly or monthly data are available;
and also we had access to explanatory variables that are relevant to the problem
being analysed. The M5 competition dataset provides very large amount of
time series with a similar structure in which we could further validate this
findings. On the other hand, the asymptotic properties of the developed models
are not formally demonstrated. Our findings indicate that the parameters
estimates are indeed consistent and asymptotic normal, but a theoretical proof
is needed.
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