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Abstract

Soares, Alessandro; Street, Alexandre (Advisor). A Regularized
Benders Decomposition with Multiple Master Problems to
Solve the Hydrothermal Generation Expansion Problem.
Rio de Janeiro, 2021. 42p. Dissertação de Mestrado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

This paper exploits the decomposition structure of the hydrothermal ge-
neration expansion planning problem with an integrated modified Benders
Decomposition and Progressive Hedging approach. We consider a detailed re-
presentation of hourly chronological short-term constraints based on typical
days per month and year. Also, we represent the multistage stochastic nature
of the hydrothermal operational policy through an optimized linear decision
rule, thereby ensuring investment decisions compatible with a nonanticipative
implementable operational policy. To solve the resulting large-scale optimiza-
tion problem, we propose an improved Benders Decomposition method with
multiple instances of the master problem, each of which strengthened by primal
cuts and new Benders cuts generated by each master’s trial solution. Additio-
nally, our new approach allows using Progressive Hedging penalization terms
for regularization purposes. We show that our method is 60% faster than the
traditional ones and also that the consideration of a nonanticipative opera-
tional policy can save, on average, 8.27% of the total cost in out-of-sample
tests.

Keywords
Generation expansion planning; Benders Decomposition; Hydrothermal

power system; Progressive hedging; Linear decision rules.
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Resumo

Soares, Alessandro; Street, Alexandre. Uma Decomposição de
Benders com Múltiplos Problemas Masters Regularizada
para Resolver o Problema da Expansão da Geração Hi-
drotérmica. Rio de Janeiro, 2021. 42p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

Este trabalho explora a estrutura de decomposição de um problema de
planejamento da expansão da geração hidrotérmica, utilizando uma integra-
ção entre uma Decomposição de Benders modificada e um Progressive Hed-
ging. Consideramos uma representação detalhada das restrições cronológicas
de curto prazo, com resolução horária, baseando-se em dias típicos para cada
etapa. Além disso, representamos a natureza estocástica de uma política ope-
racional hidrotérmica multiestágio por meio de uma Regra de Decisão Linear
otimizada, garantindo decisões de investimento compatíveis com uma política
operacional não antecipativa. Para resolver este problema de otimização em
grande escala, propomos um método de decomposição de Benders aprimorado
com várias instâncias do problema mestre, onde cada uma delas é reforçada
por cortes primários além dos cortes de Benders gerados a cada candidato a
solução do mestre. Nossa nova abordagem permite o uso de termos de pena-
lização de Progressive Hedging para fins de regularização. Mostramos que o
algoritmo proposto é 60 % mais rápido que os tradicionais e que a consideração
de uma política operacional não antecipativa pode economizar, em média, 8.27
% do custo total em testes fora da amostra.

Palavras-chave
Planejamento da expansão da geração; Decomposição de Benders;

Sistema de potência hidrotérmicos; Progressive hedging; Regras de decisão
linear.
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Nomenclature

Constants

x̄k Average of the first-stage decision from previous iteration.

x̂ks Candidate solution at scenario s in the iteration k.

I Cost of first-stage variables.

πks Dual variable associated to the constraint that couples the investment
and operation problem, at iteration j.

ρ Progressive hedging static parameter.

A Matrix allocating generators to buses.

at(ω) Vector of hydro inflows at stage t and scenario ω.

B DC power-flow matrix.

c Cost for all operational variables.

cv Vector units’ operational costs.

Dt,d,h(ω) Vector of demand per bus at stage t, typical day d, hour h and
scenario ω.

G Matrix representing the maximum capacity of the plants.

Ht,d Number of hours in typical day d, stage (month) t.

I Vector of investment costs of generation units.

L Matrix selecting hydro units.

P Coefficient matrix modeling the productivity of hydro units.

pω Probability of scenario ω.

R Incidence matrix allocating hydros outflow to reservoirs according to
rivers topology.

W,T Matrices modeling first- and second-stage coupling constraints.
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Nomenclature 13

wks Progressive hedging dynamic parameter.

Index

ω Index representing the operative scenario ω of the operation problem
(subproblem).

s Index representing an operative scenario selected to build a primal cut
and identifying a master problem realization, its trial solution, and
optimal value.

Sets and Indices

X Set of feasible investment decisions.

ℵt,d Set of feasible hourly operating points modeling ramping constraints
and transmission lines maximum flow capacity at stage t and typical
day d.

Λω Feasibility set representing operational constraints.

Ω Set containing the scenarios ω.

Ṽt Set of hydro operative constraints at stage t.

Decision Variables

αω Approximation of the real operational cost at scenario ω.

πω Vector of dual variables associated with operation-investment coupling
constraints used to build the Benders cuts.

θt,d,h(ω) Vector of buses’ phase angle at stage t, typical day d, hour h and
scenario ω.

gt,d,h(ω) Generation vector at stage t, typical day d, hour h, and scenario ω.

Q(x) Real operational cost function.

st(ω) Vector of water spilled during stage t and scenario ω.

ut(ω) Vector of amount of water used to generate electricity during stage t
and scenario ω.

v0(ω) Vector of initial storage condition at stage t and scenario ω.

vt(ω) Vector of reservoirs storage at stage t and scenario ω.
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Nomenclature 14

x Vector of first-stage decision variables comprising the binary investment
variables and the affine policy coefficients.

xINV Binary vector of investment decisions (existing generators are modeled
as fixed entries equal to 1).

xLDRt,0 Linear decision rule vector of linear coefficients per hydro unit for stage
t.

xLDRt Linear decision rule vector of angular coefficients for stage t.

y(ω) Vector of decision variable representing all operative variables at sce-
nario ω.
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To become good at anything you have to know
how to apply basic principles. To become great
at it, you have to know when to violate those
principles

Gary Kasparov, Deep Thinking: Where Machine Intelligence Ends and
Human Creativity Begins.
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1
Introduction

Generation expansion planning (GEP) models aim to minimize the to-
tal cost of investment and operation through a long-term horizon. They bring
relevant insights for market agents and also provide planners and regulators
with valuable information about long-term equilibrium generation portfolios
under the absence of market power abuse [1,2]. This is especially important in
hydrothermal systems, where relevant metrics needed to induce efficient gener-
ation expansion rely on the assessment of the opportunity cost of water under
a long-term investment and operational equilibrium [3]. Because of that, GEP
models should take into account the main long- and short-term characteristics
of the system and uncertainties that should enhance the description of op-
portunity costs of first-stage decisions [4,5]. Furthermore, this class of models
is usually non-convex due to the necessity of representing integer investment
and operative decisions. Conventional approaches to solve these large-scale
non-convex stochastic programs are: (i) non-linear programming (NLP) and
mixed-integer linear programming (MILP) to solve the extensive form of the
problem; and (ii) decomposition techniques (such as Benders decomposition).
All of these approaches may be used together with approximations and as-
sumptions to make the problem computationally tractable [6, 7].

A wide range of applications on GEP are found in the literature [8–20],
each of which considering different aspects and system characteristics. In this
work, we focus on hydrothermal power systems [13–16,19,20]. In this setting,
the main challenge is to consider, within the expansion problem, an integrated
and computationally efficient nonanticipative water-value assessments. There-
fore, hydrothermal-based GEP largely relies on the co-optimization of invest-
ment decisions and long-term multistage stochastic dispatch policies. Also,
there are several other applications with a similar structure, such as the main-
tenance optimization problem [21], where the algorithms and idea exploited in
this work is also valid.

1.1
Energy resource planning models

In energy resource planning literature, [8] solves the investment and oper-
ation problems simultaneously. To reduce the computational burden and avoid
decomposition, the authors adopt a linear relaxation of investment decisions
and propose a clever time-clustering scheme to reduce the number of hours yet
keeping a chronological representation of externalities. A clustering algorithm
is also proposed in [22], where the author shows the strategy’s effectiveness
comparing clustered problems with the unclustered version. In [23] the au-
thors proposes a novel optimization problem to minimize the approximation
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errors of the typical days. Time clustering schemes are commonly used in the
literature as typical days or weeks. For instance, [9] uses typical days per month
and year, and considers a deterministic model for long-term planning with a
detailed representation of short-term constraints. In this setting, the problem
can be solved without a decomposition approach. [13] proposes a hydrothermal-
based GEP, using typical days to represent hourly constraints and scenarios to
represent hydro inflows uncertainties. The authors use the progressive hedging
(PH) technique to decompose the problem scenario-wise. Several other recent
planning models in literature adopt simplifications to make the investment and
operational problems computationally tractable [24,25].

Notwithstanding, decomposition methods are largely applied in this
subject. For instance, [10] proposes a decomposition approach where the master
consists of a deterministic investment problem and the subproblem is a detailed
short-term operational problem that produces feasibility cuts. [11] addresses
uncertainties in the net load by a robust optimization approach, considering
uncertainty in the hourly ramping, but without other detailed short-term
constraints. [12] proposes a multiscale multistage stochastic model, addressing
short-term constraints and uncertainties, and decomposes the problem with
PH, where the problem is convex (with linear investment and commitment
decisions), which guarantees optimal solutions but may not be as fast as BD.
Table 1.1 summarizes the comparison between the proposed approach and the
energy resource planning literature. In this table, symbols "X" and "-" indicate
whether a particular aspect is considered or not.

Table 1.1: Proposed approach compared to literature
Approach Representation of

Uncertainties
Hourly

constraints
Operational

policy
Binary investment

decision
Co-optimization of
energy and reserves

Decomposition
Technique

Koltsaklis, N. E. et al. (2015) [9] - X - X X -
Pina, A. et al. (2013) [10] - X - X - Feasibility cuts
Li, J. et al. (2018) [11] XA X - X X Column-and-Constraint
Liu, Y. et al. (2018) [12] X X - - - Progressive Hedging

Thome, F. et al. (2019) [26] X - X X X Benders Decomposition
Proposed approach X X XB X X BDPH

A The uncertainties are represented through robust optimization methods
B The hydro operation policy is represented through linear decision rules

1.2
Decomposition structures

Deterministic planning models can be solved in a reasonable amount
of time, even considering the co-optimization of investment and operational
decisions. Uncertainty representation drastically increases the size of the prob-
lem, leading to intractability issues, especially when the number of scenarios
is large. This is the case for most real problems. Notwithstanding, these is-
sues can be especially worsened in the presence of time-coupling constraints
requiring a multistage model to characterize the opportunity costs of opera-
tional resources such as water. Hence, decomposition approaches such as PH
[27] and Benders Decomposition (BD) [28] are frequently used. PH algorithms
guarantee convergence to the optimal solution when the problem is convex.
However, since real expansion problems have binary investment variables, PH
is usually used as a heuristic to obtain solutions [12, 29, 30]. BD techniques
guarantee optimal solutions when the problem is convex. The BD approach
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was first proposed in the context of GEP by Campodonico et al. [31] and is
used to solve lots of real problems [19,20,26,32–35] since the optimal solution
is guaranteed in a reasonable amount of time.

Guo et al. [36] used the PH to speed up other algorithms that converge
even in the presence of binary variables, i.e., Dual Decomposition (DD)
[37]. The authors used PH to generate initial Lagrangian dual variables to
the Lagrangian relaxation subproblems in DD. Van Roy [38] proposed the
cross decomposition, a primal-dual decomposition that integrates Lagrangian
Relaxation and BD. Barnett et al. [39] applied PH in a branch and bound
scheme to obtain convergence in nonconvex problems.

Crainic et al. [40] proposed the partial BD, where they add a subset of
constraints and variables to the master problem. The algorithm we present
in this work improves this idea considering multiple copies of the master
problem, each of which accounting for primal cuts generated based on scenario
information and new Benders’ cuts obtained from each master’s trial solution.
Due to the multiplicity of trial solutions generated by the information of
different scenarios, we use Progressive Hedging penalization terms to regularize
and accelerate our method.

1.3
Nonanticipative hydrothermal dispatch

The solution of a long-term GEP problem applied to a hydrothermal
power system requires the consideration of a multistage reservoirs’ operational
policy. The main reason for that is to avoid the threat of optimistically biasing
the water opportunity-cost assessments based on an anticipative operational
model [41, 42]. In other words, we need to consider in our GEP a decision
rule (see [43]) that is as closer to an implementable (nonanticipative) policy as
possible to avoid under investments due to artificially reduced operational costs
(based on optimistic anticipative policies) that will not be implementable in
practice. In this context, the customary two-stage approximation, in which
given the investment decisions the system operation follows with perfect
(anticipative) information of the uncertainty realizations (i.e., per scenario), is
not valid as we demonstrate in our case study.

A nonanticipative operational policy is a rule defining decision variables
of a given period t based on previously reveled information, i.e., without
assuming access to the information of uncertainty factors after t. The linear
decision rule (LDR) methodology defines an implementable nonanticipative
policy based on an optimized linear combination of functions applied to
the previously revealed uncertainty scenario. [44] first proposed the LDR for
reservoir management, and this approach is gaining more and more attention
in the literature (see [45–48] and [49]) and will be used in this work to propose a
new stochastic hydrothermal GEP with multistage (nonanticipative) dispatch
policy based on linear decision rules.

1.4
Contributions and work organization

The main contributions of this work are threefold:
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– A new stochastic hydrothermal GEP model considering multistage
(nonanticipative) dispatch policies based on linear decision rules. Out-
of-sample tests based on real data demonstrate that the consideration of
nonanticipativity has significant impacts on first-stage investment deci-
sions and subsequent operation costs.

– An improved Benders Decomposition with multiple master problems
(BDMM) method, each of which strengthened by primal cuts based on
scenario information and new Benders’ cuts generated by each master’s
trial solution.

– Leveraging the diversity of trial solutions our BDMM method provides,
we combine the proposed BDMM with Progressive Hedging penalization
terms for regularization purposes, thereby generating a novel regularized-
Benders Decomposition with Multiple Masters (r-BDMM) method.

The remainder of this paper is organized as follows. In Section 2, the
GEP problem is introduced and formulated. The decomposition algorithm is
presented as the solution strategy to solve the problem in Section 3. Section
4 provides numerical results illustrating the performance of the proposed
algorithm and an analysis of the anticipative policy in the GEP formulation.
Finally, in Section 5 final remarks are drawn.
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2
The generation expansion planning model

This section introduces the GEP problem formulation as a MILP opti-
mization problem, which will be referred to as the Deterministic Equivalent
(DE) problem. We assume a discrete and finite sample space Ω = {1, .., ω, ...},
in which each scenario ω is assumed to have a known conditional probability
pω. For the operational variables, we use a LDR to consider a monthly nonan-
ticipative multistage operational policy under uncertainty of inflows [49,50] for
the reservoirs.

The system operation constraints and costs are computed within an
hourly resolution based on monthly hydro generation targets dictated by the
LDR. Thus, based on monthly inflow scenarios and subsequent hydro gener-
ation amounts given by the LDR, the uncertainties of intermittent renewable
sources are used to define the operation of typical (representative) days within
an hourly granularity. In this sense, we approximate the daily operation within
each stage (months) by weekdays, weekends, and holidays multiplied by their
number of hours per month. Hourly scenarios for renewables are conditionally
generated based on the inflows scenarios to present correlations.

Mathematically, for each month (stage) t ∈ T and scenario ω ∈ Ω
we have: i) strategic stagewise decisions, such as ut(ω), ut(ω), vt(ω), defining
the total amount of water used to generate electricity and spilled during the
stage, and the storage level at the end of the stage; ii) short-term operational
decisions, such as gt,d,h(ω), θt,d,h(ω), defining the hourly generation and the bus
angles for each typical day d ∈ D and hour h ∈ H of the stage t; iii) strategic to
short-term linking constraints, Put(ω)−L∑d,hHt,dgt,d,h(ω) = 0; and iv) xINV
and (xLDRt,0 , xLDRt ) representing the investment decisions and LDR coefficients
(first-stage decision vectors).

Figure 2.1 summarizes the proposed scheme. The idea is that we will
have a first-stage solution (which is the investment and hydro operating policy
decisions), represented as the first white circle, and then evaluate the operation
of this solution through all of the scenarios. For each scenario, we have T
months (represented as the solid black circles), and for each month, we will
have hydro balance constraints. Inside each of the months, we solve the hourly
operational problems for each of the typical days (a representative day of the
month with 24 consecutive hours). The relation between the monthly operation
and the hourly operation is made by the coupling constraint (highlighted in
the figure), which will restrict the model to use, in the hourly operation, the
hydro energy that was decided in the monthly hydro balance.

The proposed model is detailed as follows in expressions (2-1)-(2-10):
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Figure 2.1: Typical days within each stage

min ITxINV +
∑
t,d,h,ω

pωc
T
vHt,dgt,d,h(ω) (2-1)

s.t xINV ∈ X (2-2)
vt(ω) +R(ut(ω) + st(ω))− vt−1(ω) = at(ω) ∀t, ω (2-3)
vT (ω)− v0(ω) ≥ 0 ∀t, ω (2-4)
Put(ω)− L

∑
d,h

Ht,dgt,d,h(ω) = 0 ∀t, ω (2-5)

gt,d,h(ω)−GxINV ≤ 0 ∀t, d, h, ω (2-6)
Agt,d,h(ω) +Bθt,d,h(ω) = Dt,d,h(ω) ∀t, d, h, ω (2-7)
ut(ω)− (xLDRt,0 + xLDRt at(ω)) = 0 ∀t, d, h, ω (2-8)
{gt,d,h(ω), θt,d,h(ω)}h ∈ ℵt,d ∀t, d, ω (2-9)
{vt(ω), ut(ω), st(ω)} ∈ Ṽt ∀t, ω. (2-10)

We omit the sets in which indexes range for the sake of conciseness.
The objective function has two parts, the investment cost and the present
value of the expected operational costs. Constraint (2-2) refers to investment
constraints, such as capacity target, energy policies, and limits for the LDR
coefficients. Constraint (2-7) refers to the load balance. Constraint (2-3)
refers to the hydro balance equation. Constraint (2-5) refers to the hourly
hydro generation modeling, where we restrict the model to use in the hourly
operation, the energy that was decided in the monthly decision. Similar
approaches are widely adopted in long-term studies (see relevant publications
in the last five years [5, 42, 51, 52]). Also, the matrix P is representing an
average production factor for the hydro plant, so we are simplifying the hydro
operation assuming that the production factor does not vary with the storage.
Constraint (2-6) represents the relation between the investment variable and
the operation maximum capacity constraint. Constraint (2-4) represents the
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hydro operational strategy used to prevents the end-of-horizon effect. This
constraint aims to obligate the model to use only the water that arrives along
the years comprised in the study horizon. The constraint (2-8) represents the
linear decision rule. In this expression, xLDRt,0 and xLDRt are decision variables
representing the vector of linear and matrix of angular coefficients defining the
LDR, respectively. This strategy could be "improved" increasing the number
of coefficients defining the policy, for example, we could add a constraint
such as ut(ω) − (xLDRt,0 + xLDRt,1 at(ω) + xLDRt,2 at−1(ω)), but the improvement
in this LDR is not being discussed in this work. Finally, constraint (2-9)
represents other operational constraints, such as ramping constraints and limits
on angles modeling transmission lines maximum flow capacity. Constraint
(2-10) represents hydros constraints, such as minimum and maximum values
for water storage, maximum generation and spillage amounts.
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3
Solution Strategy

Problem (2-1)-(2-10) provides optimal investment decisions considering a
multistage stochastic operational policy. However, because we are using a LDR
parametrization, the problem can be formulated as a large-scale multiperiod
two-stage stochastic optimization problem, where the LDR is estimated as part
of first-stage variables. To efficiently solve this problem, in the next sections,
we present a variant of the Benders decomposition approach. For the sake of
simplicity and didactic purposes, we re-write problem (2-1)-(2-10) in a compact
formulation as follows:

min ITx+
∑
ω∈Ω

pωc
Tyω (3-1)

s.t Wyω − Tx ≤ hω ∀ω ∈ Ω (3-2)
x ∈ X , yω ∈ Λω ∀ω ∈ Ω, (3-3)

where, yω is the vector comprising the operational variables (gt,d,h(ω), θt,d,h(ω)
and ut,d,h(ω)); Λw is a set containing the feasibility constraints (2-2)-(2-10); x
is the vector comprising the first-stage variables (xINV , xLDRt,0 , and xLDRt ); and
the constraint (3-2) couples the first- and second-stage variables.

3.1
Traditional Benders decomposition

Now we present the traditional benders decomposition (TBD) applied
to solve problem (3-1)-(3-3). We decompose the problem into master and
subproblem problems, where the master will be solved as a MILP and the
subproblems as a LP. The master selects the first-stage variables (vector x
comprising investment and LDR coefficients), while the subproblem evaluates
the recourse function, Q(x), by solving the operative problem given x.

So, we start defining the recourse function (the expected cost of the
second-stage) for a given point x as follows:

Q(x) =
∑
ω∈Ω

pωqω(x). (3-4)

The evaluation of Q(x) can be decomposed per scenario ω and solved in
parallel. For each scenario, qω(x) represents the second-stage cost and can
be calculated as follows:

qω(x) = min cTyω (3-5)

s.t Wyω ≤ Tx+ hω : dual−−−→ πω (3-6)
yω ∈ Λω. (3-7)
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Chapter 3. Solution Strategy 24

Where, πω = (dual)TT is the subgradient of qω with respect to x. Then, for
a given iteration k of the algorithm, we run the master problem to obtain a
new trial solution, x̂k, and a lower bound, LBTBD. The master is a relaxation
of problem (2-1)-(2-10) because the recourse function is approximated from
below by supporting planes. These planes are also called Benders’ cuts and
are obtained in previous iterations of the method. Using the multi-cut method
[53], the master problem of a TBD returns a new trial solution and a lower
bound as follows:

zk, x̂k ← min ITx+
∑
ω∈Ω

pωαω (3-8)

s.t αω ≥ qω(x̂j) + πjω(x− x̂j) ∀ω ∈ Ω, j ∈ [k − 1] (3-9)
αω ≥ 0 ∀ω ∈ Ω, x ∈ X , (3-10)

where, αω represents the best approximation of the epigraph of qω until
iteration k. Furthermore, hereinafter, we adopt the notation in which [k−1] =
{1, ..., k − 1} and [0] = ∅. Then, by solving (3-5)–(3-7) for the newly obtained
trial solution x̂k, a new Benders’ cut can be generated to feed the next iteration
master problem. Additionally, a lower and upper bound can be assessed to
check the optimality GAP of the current solution as follows:

LBTBD = zk (3-11)
UBTBD = IT x̂k +Q(x̂k). (3-12)

If the GAP = UBTBD − LBTBD ≤ ε, then the algorithm stops and xk is
returned as the optimal solution. Otherwise, the k is incremented, and the
master problem is called once again.

3.2
The Benders Decomposition with multiple master problems

In this section, we present our proposed BDMM method. First, we make
S = |S| copies of the master problem (3-8)-(3-10), i.e., in each iteration of
our BDMM method we define one master problem for each s ∈ S. Second,
each master problem, now indexed by s, instead of considering only Benders’
cuts, also considers the second-stage primal constraints associated with a given
scenario s (this strategy may significantly increase the size of the problem, but
as we show in Section 4, this is worth it). It is worth highlighting that S could
be generated based on different clustering strategies. Hence, we will develop our
method for a general set S. However, in this paper, we will use S = Ω. Then,
we end up with S = |Ω| master problems, each of which differing from each
other by a (stochastic) primal cut related to a given scenario. Furthermore,
due to the multiplicity of master problems, multiple (S) trial solutions are also
generated. Therefore, for each one of the S newly generated points {xks}s∈S ,
the multi-cut approach generates |Ω| new cuts, each of which approximating
one function in {qω(·)}ω∈Ω. Consequently, in each master problem s of a given
iteration k, a total of S · |Ω| Benders’ cuts are considered for each previous
iterations. Thus, the s–master problem and the associated lower bound and
trial solution are defined as follows:
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zks , x̂
k
s ← min ITx+

∑
ω

pωαω (3-13)

s.t

αω ≥ qω(x̂js′) + (πjω,s′)T (x− x̂js′)
∀ω ∈ Ω, s′ ∈ S, j ∈ [k − 1] (3-14)

αs ≥ cTys (3-15)
Wys − Tx ≤ hs (3-16)
ys ∈ Λs (3-17)
x ∈ X . (3-18)

Note that traditional Benders’ cuts are built based on local-dual infor-
mation of the recourse problem, thereby providing the master problem with
loose linear approximations of the recourse function. The primal cut defined by
(3-15)–(3-17), on the other hand, provides a much richer polyhedral informa-
tion about the second stage to the master problem. This improvement proposed
in this work is inspired by the success of column-and-constraint-generation al-
gorithms applied to robust optimization, where few primal cuts are actually
needed to support the optimal decisions (see [54]). Furthermore, the number
of Benders’ cuts in (3-14) is S times greater than in the TBD method, which
significantly improves the description of the recourse function.

After solving the S instances of the master problem, we have {zks , x̂ks}s∈S .
Because all values in {zks}s∈S are valid lower bounds for the problem, an
improved Benders’ lower bound can be calculated based on the maximum
among all values, i.e.,

LBBDMM = max
s∈S
{zks}. (3-19)

A similar approach can be used to improve the upper bound. By evaluating
the recourse function on each x̂ks , we get S new candidates for upper bounds,
{IT x̂ks +Q(x̂ks)}s∈S . Thus, we can select the lowest upper bound, i.e., we define

UBBDMM = min
s∈S
{IT x̂ks +Q(x̂ks)}, (3-20)

and store the solution associated with the best upper bound, x̂k(s∗), as the
best trial solution at iteration k. A comparison with the best solution found
so far is also advisable to keep the global best solution at hand.

Finally, note that although a lower and upper bound comparison between
the two methods, TBD and the proposed BDMM, is not directly possible,
because the methods should follow different paths. However, it is clear that
the BDMM provides tighter approximations in every master problem since
the first iteration. The improvement in lower bounds comes at the cost of a
higher computational effort. The tradeoff between improving the lower bound
assessment and the additional computational effort will be depicted in our Case
Study Section. Leveraging the diversity of trial solutions our BDMM method
provides, in the next section, we propose a new regularization scheme based
on PH penalization terms.
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3.3
Accelerating convergence of the Benders Decomposition with multiple
masters

Now we present a new regularization scheme based on the PH method to
accelerate our BDMM. To do that, we add the PH penalty terms in the master
problem formulation (3-13)-(3-18). So, we rewrite the master problem (3-13)-
(3-18) as problem (3-21)-(3-22), adding the terms related to the augmented
Lagrangian relaxation following the PH approach (see [55]).

x̂ks ←

min ITx+
∑
ω

pωαω + ρ

2‖x− x̄
k‖2+wks (x− x̄k) (3-21)

s.t Constraints (3-14)–(3-18). (3-22)

Then, after solving the S master problems, following the BDMM approach, wks
is updated following the sub-gradient method, i.e.,

wk+1
s = wks + ρ(x̂ks − x̄k) (3-23)

where x̂ks is the solution of the problem (3-21)-(3-22) from the iteration k and
scenario s, and x̄k is the average of all the S trial solutions obtained with
(3-21)-(3-22) at iteration k.

To obtain a lower bound however, we have to solve the following modified
version of the problem, which considers only the simple Lagrangian relaxation
(without the quadratic terms):

ζks ←min ITx+
∑
ω

pωαω + wks (x− x̄k) (3-24)

s.t Constraints (3-14)–(3-18). (3-25)

Thus, the lower bound can be calculated according to the following Theorem:

Theorem 1. Problem (3-1)-(3-3) admits the following lower bound:

LBr-BDMM =
S∑
s=1

psζ
k
s . (3-26)

Although slightly different, the proof to Theorem 1 goes very much like that
provided in [55]. Therefore, for the sake of conciseness, we omit the proof here.
Finally, the upper bound remains unchanged and follows expression (3-20).

We summarize the proposed r-BDMM in the following algorithm:
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Algorithm 1 The proposed r-BDMM method
1: Initialization (ρ← input)
2: k ← 0, GAP k ← +∞, wks ← 0 ∀s ∈ S
3: while GAP k > ε do
4: k ← k + 1
5: for each s ∈ S (computed in parallel) do
6: Solve master problem (3-21)–(3-22) and store xks
7: for each ω ∈ Ω: compute qw(xks) and store πkω,s
8: Solve problem (3-24)–(3-25) and store ζks
9: end for

10: Compute:
11: x̄k ← ∑

s∈S
psx̂

k
s

12: LBk
r-BDMM ←

S∑
s=1

psζ
k
s

13: UBk
r-BDMM ← min

s∈S
{IT x̂ks +Q(x̂ks)}

14: GAP k ← UBk
r-BDMM − LBk

r-BDMM

15: wk+1
s ← wks + ρ(x̂ks − x̄k)

16: end while
17: Return solution with the lowest UB so far

The figure 3.1 illustrates the proposed scheme, in which, for each itera-
tion, the master problems and the real operating problems are solved in parallel
(we are hiding the problem (3-24)-(3-25) for the sake of simplicity since it does
not affect the analysis of the parallelization). The parallelization scheme is
synchronized after computing the Benders cuts for each master problem.

Let us assume that we are solving the problem with S scenarios. So,
without any parallelization, we would have to solve S master problems.
For each of them, the real operating problem is calculated by solving S
deterministic operating problems (3-4), resulting in S2 problems.

Considering the parallelization scheme, let us assume that we also have S
processors available. In this case, we would solve, for each processor, one master
problem and S deterministic operating problems. Moreover, if S2 processor are
available we can solve all the operation problems in parallel too.
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4
Case study - The Brazilian power system

This section will study the proposed r-BDMM method to solve the GEP
for the Brazilian power system. The Brazilian power system is interconnected
by a transmission network comprising 50 transmission lines connecting sub-
systems. The system has 550 thermal plants, 150 renewable plants, 200 hy-
dro plants, 10 batteries, 35 buses, and a total of 100 projects. We consider
monthly stages (time steps), with three typical days per stage (week, weekend,
and critical days). For each hydro unit, an affine policy with 24 coefficients
is considered - thus, we have 4,900 first-stage variables per year to solve. The
database configuration is based on [56], where the main assumptions are:

– Starting point: PDE 2026 final system configuration (see in [57])
– We analyze a target year where the demand is considered to be twice the
demand of 2017, which amounts to 166 GW/1200 TWh (peak/annual
energy)

– The investment cost of the projects is annualized to be comparable with
the operational cost

– No hydropower project candidates other than those included in the PDE
2026 expansion plan

We compare the proposed method r-BDMM against the TBD, the unreg-
ularized BDMM method, and the deterministic equivalent (DE) formulation
(3-1)-(3-3) solved directly through a MILP algorithm. We compare the algo-
rithm in terms of number of iterations and computational time. The analyses
include 10 instances considering 5, 10, ..., 50 scenarios in Ω representing uncer-
tainties in renewable generation, hydro inflows, and demand. Furthermore, we
also analyze the effects of the nonanticipativity constraints in the expansion
planning.

We used the following relevant parameters for the algorithm: GAP tol-
erance of 0.1%; the maximum number of Benders’ iterations equal to 200; 12
stages representing months; and three typical days (weekdays, weekend days,
and a critical day) for each stage. Because the proposed method significantly
benefits from parallelism, we used the same computational resources to com-
pare all methods. We used the Xpress solver (FICO, optimizer version 34.01)
and an Amazon EC2 c5.12xlarge computer (48 processors and 96 GB of RAM),
for the LP problems we used the barrier algorithm.

It is relevant to highlight that vector x comprises very different com-
ponents, with different images and different weights in the original objective
function (3-1). While investment decisions are binary and already appear in the
original objective function weighted by investment costs, LDR coefficients are
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real numbers and do not participate in the original objective function. There-
fore, in our implementation, we modified the penalization term ρ

2‖x − x̄k‖2

from expression (3-21) to consider different penalty weights for components in
xINV and (xLDRt,0 , xLDRt ). Therefore, we used the following quadratic penalty
term:

‖xINV − xINV ‖2
I
2
+

1
2‖x

LDR
t − xLDRt ‖2+1

2‖x
LDR
t,0 − xLDRt,0 ‖2, (4-1)

where, ‖x‖P := xTPx. In this context, the quadratic deviation of investment
decisions is penalized with half of their original weight (investment costs),
whereas deviations of LDR coefficients are penalized with ρ = 1. This selection
strategy constitutes a selection rule that improved the algorithm’s efficiency
(in terms of iterations) for all tested instances.

In the following sections, we analyze the performance, in terms of
iterations and computational time, of the proposed method for different
instance sizes, and the impact of nonanticipativity in the investment decisions,
total cost and spot prices.

4.1
Analysis of the decomposition algorithm

Table 4.1 summarizes some macro results of the proposed r-BDMM
method for some selected instances. The number of constraints and variables
are referring to the size of the DE version of the problem (instance (3-1)-(3-3)).

Table 4.1: Results of the proposed algorithm for some instances (identified by
the number of scenarios considered)

|Ω| 15 25 30 50
Constraints (107) 1.75 2.92 3.50 5.84
Variables (107) 2.45 4.08 4.92 8.16
Execution time (min) 28 65 120 206
Number of iterations 36 33 37 31
Upper bound (M$) 71,423 57,087 42,600 30,036
Lower bound (M$) 71,359 57,053 42,562 30,012
Optimality GAP (%) 0.09 0.06 0.09 0.08

Table 4.2 shows, for each instance and method, the number of iterations
required to achieve a GAP of 0.1%. Note that the number of iterations required
by the proposed BDMM method is always smaller than that required by the
TBD. Furthermore, the regularized version of the algorithm, the r-BDMM
method, further reduced this number, showing that the PH regularization
scheme is effective in reducing the number of Benders’ loops needed to
achieve the required GAP. Indeed, the r-BDMM required, on average (over all
instances), 53% fewer iterations than the unregularized version of the algorithm
(BDMM) and 68% fewer iterations than the TBD. So, results show that the
proposed r-BDMM method outperforms the benchmarks in terms of Benders’
iterations needed to solve the GEP for the Brazilian power system.
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Table 4.2 also shows that the DE converges faster than the TBD and the
proposed unregularized BDMM as long as the computer’s memory is enough
to address the problem. However, for larger instances in which MILP solvers
fail to address the DE, Benders’ approaches are still capable of providing
high-quality solutions. Notwithstanding, it is important to highlight that the
proposed r-BDMM breaks this pattern, achieving the required GAP faster than
all methods for the larger eight out of ten tested instances. After considering
25 scenarios, the DE method fails to load the problem. Additionally, the
same pattern observed for the number of iterations was observed for the
computational time. The BDMM outperformed the TBD, and the r-BDMM
outperformed the BDMM. Indeed, the r-BDMM is, on average (over all
instances), 46% faster than the BDMM and 60% faster than the TBD.

Table 4.2: Number of iterations and computational time for different instance
sizes and methods

Number of Benders loops (iterations) Execution time (in minutes)
|Ω| TBD BDMM r-BDMM TBD BDMM r-BDMM DE
5 176 78 34 29 17 11 7
10 132 82 33 48 33 17 11
15 136 89 36 88 59 28 31
20 125 83 36 132 88 46 59
25 113 83 33 193 142 65 -
30 101 72 37 276 203 120 -
35 87 64 34 287 226 135 -
40 73 61 32 252 237 131 -
45 88 70 33 356 320 163 -
50 78 63 31 443 407 206 -

For comparison purposes, the algorithm r-BDMM for the instance with 50
scenarios, the total execution time was 206 minutes, where 21% (44 minutes)
was used to solve the master problems and 79% (162 minutes) to solve the
subproblems.

Finally, Figure 4.1 compares the convergence over time of the r-BDMM,
BDMM, and TBD, for the instance with 50 scenarios. It’s clear that the
convergence of the r-BDMM outperforms the BDMM and TBD. Also, after
1 hour of running time, the GAP values are: 9.76% for the r-BDMM; 53.15%
for the BDMM; and 490% for the TBD. The GAP after 2 hours decreases
to: 1.59% for the r-BDMM; 11.75% for the BDMM; and 68.3% for the TBD.
These results corroborate the superiority of our proposed method to solve the
GEP for the Brazilian system.

4.2
Benefits of a nonanticipative operational policy

This section analyzes the benefits of considering a multistage (nonantici-
pative) operational policy when deciding the investment plans for the Brazilian
power system. To do that, we consider two cases:
Case 1 (multistage nonanticipative policy) – We solve problem (3-1)-
(3-3) with the r-BDMM algorithm and |Ω50|= 50 scenarios (the same case
study analyzed in Section 4.1). The operational results obtained in the op-
timization will be referred to as "in-sample". Then, we fix the optimal value
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Figure 4.1: Lower bound and Upper bound for each algorithm

obtained for x∗ and evaluate Q(x∗) with |Ω1000|= 1000 scenarios (i.e., we eval-
uate the operational part of the problem, (3-4), with one thousand unseen
scenarios). These results will be referred to as "out-of-sample".
Case 2 (Anticipative policy) – We solve the same problem (3-1)-(3-3), dis-
regarding the nonanticipative constraints (2-8) for |Ω|= 50. In this context,
we are considering an anticipative approximation for the hydrothermal dis-
patch costs when deciding the generation investment plans. Then, as in the
previous case, we will provide results for both in-sample and out-of-sample
cases. However, in order to assess the benefit of a multistage nonanticipa-
tive operational policy when making investment decisions in hydrothermal
power systems, the out-of-sample analysis must be carried out based on an
implementable (nonanticipative) policy. To do that, we fix the optimal in-
vestment part of the solution found with the anticipative approximation, i.e.,
xINV ∗A , load the nonanticipative constraints to the in-sample problem, and
solve it again to define xLDR∗(xINV ∗A ). Then, with the complete first-stage vec-
tor, x∗A = [xINV ∗A xLDR∗(xINV ∗A )], we evaluate the out-of-sample operational
cost. To do that, we use the same 1000 scenarios used in the out-of-sample
evaluation of Case 1.

Notwithstanding, it is clear that the anticipative case 2 is motivated by
its lower computational burden. In this case study, the in-sample optimization
of case 1 took 206 min, whereas the anticipative case 2 took 68 min. Therefore,
this work aims to highlight the benefits of considering a nonanticipative
operational policy to justify its higher computational times. In our comparison,
we used the following metrics:

– Expected total cost – assessed with out-of-sample nonanticipative opera-
tional results.
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– Regret – measured as the difference between the in-sample and out-of-
sample expected total cost.

– The average spot price – assessed with out-of-sample operational results.
– The 95th-percentile of the spot price – assessed with out-of-sample
operational results.

– The average uncertainty level of spot price – assessed with out-
of-sample operational results. This metric is defined as (see [58]):
1
T

T∑
t=1

(
Q95%
t −Q5%

t

)
, where Qα%

t represents the α% quantile of a given
variable at stage t.

– The time variability of the spot price – assessed with out-of-
sample operational results. This metric is defined as (see [58]):

1
T − 1

∑
ω∈Ω1000

pω
T∑
t=2

∣∣∣∣∣πt,ω − πt−1,ω

πt−1,ω

∣∣∣∣∣.
– Value of the nonanticipative policy – the difference between the expected
total cost, assessed with out-of-sample operational results, of Case 1
(nonanticipative) and Case 2 (anticipative), i.e., V NAP = ITx∗A +
QΩ1000(x∗A)− (ITx∗ +QΩ1000(x∗)).

Table 4.3 shows the in-sample and out-of-sample costs for Cases 1
and 2. Table 4.3 shows that the anticipative case 2, albeit 15.84% cheaper
than the nonanticipative case 1, when analyzed with in-sample results, is
actually 6,579M$ (or 8.27%) more expensive when analyzed with out-of-
sample results. This difference defines the benefit or value of considering
a nonanticipative policy when making the investment decisions: V NAP =
86, 116 − 79, 537 = 6, 579M$ in absolute terms, or 8.27% of the total cost
and 16.18% of the investment cost obtained with the anticipative operational
policy. The difference between what was expected when optimizing and what
we get when actually implementing the solutions defines the regret metric,
which values 20,679 M$ (or 24% of the total cost and 50.85% of the investment
cost obtained with the anticipative operational policy).

Table 4.3: Impact of the stochastic policy in terms of total cost
In-sample results

Policy Investment cost
(M$)

operational cost
(M$)

Total cost
(M$)

Nonanticipative 42,646 33,155 75,801
Anticipative 40,662 24,775 65,437
Difference 4.88% 33.82% 15.84%

Out-of-sample results

Policy Investment cost
(M$)

operational cost
(M$)

Total cost
(M$)

Nonanticipative 42,646 36,891 79,537
Anticipative 40,662 45,454 86,116
Difference 4.88% -23.21% -8.27%
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Table 4.4: Out-of-sample metrics for the temporal inconsistency
Policy Total costs

(M$)
Regret
(M$)

Average spot
price (R$/MWh)

95th-percentile of
the spot price (R$/MWh)

Average uncertainty level
of the spot price (R$/MWh)

Time variability
of the spot price (%)

Anticipative 86,116 20,679 335.4 900.9 1276.7 105%
Non Anticipative 79,537 3,736 156.2 542.9 478.0 65%

Difference -8.27% -453.51% -114.72% -65.94% -167.09% -61.54%

Figure 4.2 shows the 90% confidence interval for the spot price in both
cases. Since both cases considered building interconnections between areas, the
spot prices for each of the regions are exactly the same. This figure shows that
the investments made under an anticipative policy, when actually operating
the system, produces much higher and uncertain spot prices. Furthermore,
Table 4.4 shows the metrics presented at the beginning of this section. We can
see that, besides being 8.27% more expensive, the non-implementable policy
brings higher spot price on average and for high quantiles, higher volatility
(uncertainty level) and higher temporal variability. Additionally, the deficit
risk for the nonanticipative case 1 achieved a 0% probability in the out-of-
sample, while the anticipative case 2 exhibited several scenarios with deficit as
shown in Figure 4.3.

These results are consistent with the results obtained in previously re-
ported works where simplifications were used in the opportunity cost assess-
ment [5, 42, 47]. In this work, however, we extend this idea to the expansion
planning level.

Figure 4.2: 90% confidence interval of the energy price for both cases
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Figure 4.3: Variability and amount of deficit for the anticipative policy case
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5
Conclusions

This work presented a novel regularized Benders Decomposition with
multiple master problems. We show that the proposed method significantly
improves the performance of the traditional Bender decomposition by using
different parallel master problems, each of which considering a primal cut
associated with a given scenario. Furthermore, we also showed that the
consideration of a regularization scheme based on the Progressive Hedging
is capable of significantly improve the proposed method performance when
applied to the generation expansion planning problem.

In this work, we studied the Brazilian hydrothermal power system, which
highly relies on the assessment of the opportunity cost of water through mul-
tistage nonanticipative operational policies. We show that the consideration
of a multistage nonanticipative policy, rather than the less computationally
intensive anticipative approximation, brings relevant benefits to the optimal
investment decisions.

The case studies presented in this work allows us to convey the following
concluding remarks:

– The unregularized version of our method outperforms the traditional
Bender decomposition benchmark in both the number of iterations (30%
on average) and computational time (23% on average) under the same
computational resources.

– The proposed regularized version of our method outperforms the un-
regularized version in both number of iterations (53% on average) and
computational time (46% on average). So, the proposed regularized ver-
sion of our method outperforms the traditional Benders decomposition
benchmark in terms of the number of iterations (68% on average) and in
terms of computational time (60% on average).

– The proposed algorithm can solve huge instances of the expansion
planning problem, such as the Brazilian power system.

– The value of considering the nonanticipative operational policy when
deciding the investment plans is 8.27%, investment decisions disregarding
anticipativity constraints can be reduced by this amount on average.

– The consideration of a nonanticipative operational policy also brings
other benefits, such as (i) a reduction of 115% on average energy prices;
(ii) a reduction of 66% on the 95th-percentile of the spot prices; (iii)
a reduction of 167% in the spot prices uncertainty metric; and (iv) a
reduction of 61% on the temporal variability of the spot prices.

– The regret of considering an anticipative (non-implementable) opera-
tional policy in the expansion problem is 20,679 M$, which is 24% of the
total cost and 51% of the investment cost.
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