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ON THE SOLUTION OF H2/H∞∞∞∞ OPTIMAL PROBLEM 
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    Abstract. Quadratic convergence is know for the Galerkin approximation sequence 
used to solve the H2/H∞ optimal control problem. We show in this paper that is also 
converges in the H∞ topology, at least for Laguerre-type generator sets. Some comments 
are made enlightening the Hilbertian context used to solve the problem. 
 
    Key Words. optimal control, robust control, H2/H∞ problem, linear control systems, 
weighted Hardy spaces 
 
    AMS subject classifications. 49J02, 34H05, 41A20, 65D02 
 
    PII.  
 
    1. Introduction. A question was raised in [1] about uniform convergence for a 
Galerkin approximation of the optimal controller solving the mixed H2/H∞ optimal 
control problem. In the present paper this uniform convergence is proved, at least for 
Laguerre-type complete sets. The proof is based on a result from Szegö [2]. Also, some 
comments are made enlightening the Hilbertian context used to solve the problem. 
    More explicitly, in [1] the mixed H2/H∞ optimal control problem for continuous time 
systems - a quadratic criterium to be minimized under H∞ constraints - was formulated 
in a Hilbertian context in such a way that: 
1) the proof of existence and unicity of the optimal solution was obtained; 
2) it was remarked that, as a consequence of [3], the optimal solution was not finite-
dimensional, neither exponentially stable, except for "trivial" cases - but the sense of 
"trivial" was not completely explaned; 
3) it was proved that the solution transfer function is continuous in the extended 
imaginary axis, which means that it can be approached by rational transfer function in 
the H∞ topology [4]; 
4) an approximating sequence for the optimal control transfer function was defined by a 
Galerkin method. 
    The convergence of the approximating sequence was proved in a Hilbert space 
cointaining the space H∞, but with a strictly coarse topology. But the uniform 
convergence (in the closed right complex semiplane) was not proved, which raises the 
question about conditions for such property. 
    The strong H∞ convergence is necessary to the usual robustness considerations, i. e., 
to warrant the stabilizing property for the finite-dimensional controller approaching the 
optimal one, dating from some order. See [5] for connections between this question and 
the spillover problem. Moreover, as a consequence of the Arzela-Ascoli Theorem, if the 
H∞ convergence is not verified, a subsequence will present undesirable spikes in its 
Bode diagrams. The examples in [1], [6] and [7] did not present such spikes in spite of 
their complexity, a situation claiming more research. 
    In the next section, some preliminary Lemmas will be shown, as an introdutory 
material for the main results. In the third section conditions for the announced H∞ 
convergence will be presented. The fourth section gives an example enlightening the 
sense of "trivial" in point 3 above. 
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    Notations. The set of real polynomiais in the variable z will be denoted by R[z]. The 
class of bounded analytic functions on the open right complex semiplan will be denoted 
as ∞

+H , and the class of bounded analytic functions on the complex unit disk as H∞. The 
usual sup norm for both spaces will be represented by 

∞
(.)f , the supremum taken on 

the imaginary axis or in the complex unit circle, respectively. Following the same 
denotation principle, the usual quadratic Hardy class on the open right complex 
semiplan will be represented by 2

+H , and the corresponding function class on the 
complex unit disk will be represented by H2 (see [8] or [9] for the theory of Hardy 
spaces). The inner product in H2 will be explicitly given by: 
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expliciting the space. The class of ∞
+H  functions continuous on the completed 

imaginary axis will be denoted by A. It is the closure of stable proper rational functions 
in the ∞

+H  topology [4]. The class of H∞ functions continuous on the unit circle will be 
denoted by C. It is the closure of R[z] in H∞ [4].  
    Let 1,2 −

+H  be the weighted Hardy space defined in [1] as the class of functions f(s) 
such that (s+a)f(s) belongs to 2

+H  for some strictly positive real number a, with a inner 
product defined by: 
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and an associated Hilbertian norm defined by  
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This function space was introduced to merge 2
+H  and ∞

+H  in a Hilbert space where the 
H2/H∞ is well posed. 
    Finally, to simplify some statements, the real rational stable and proper functions will 
be denoted by S, and the subset of real rational stable and strictly proper functions will 
be denoted by Ssp.  
    Remark 1. In [1], the inner product and the norm of 1,2 −

+H  are defined with a = 1 and 

without the factor a2 . These changes define equivalent norms, as it was showed in 
the same reference, Theorem 5. The present choice eases some statements in the 
following. 
 
    2. Some preliminary Lemmas. The first Lemma collects some results from [1] 
(Theorems 2 and 3) and from [4] (pp. 640, 668). 
    LEMMA 1. The function classes defined above satisfy the following set-inclusions: 
    (a) 1,2 −

+H  ⊃ ∞
+H  ⊃ A ⊃ S. 

    (b) 1,2 −
+H  ⊃ 2

+H  ⊃ Ssp. 
    (c) H2 ⊃ H∞ ⊃ C ⊃ R[z]. 
A and C are closed subsets of ∞

+H  and H∞, respectively. For all the others inclusions, 
the smaller set is dense in the largest. 
    The next statement shows that the role of the space 1,2 −

+H  for continuous-time 
systems is the same as H2 for discrete-time systems, when the domain, the open unit 



On the solution of H2/H∞ optimal problems – Complete Version - 3 

disk, is bounded. It is interesting to recall that 2
+H  corresponds to a closed subspace of 

H2 for sampled systems, because its functions are null at infinity - which it is not 
necessary for 1,2 −

+H  functions. 
    LEMMA 2. Let "a" be a strictly positive real number. Define a bilinear transformation 
in the complex plane by z = φ(s) = (a-s)(a+s)-1. Then z = φ(s) defines a unitary 
transformation between 1,2 −

+H  and H2, and a isometry between ∞
+H  and H∞, which 

induces a isometry between A and C. 
    Proof outline. A straightforward calculation shows that z = φ(s) is invertible, with s = 
φ-1(z) = a(1-z)(1+z)-1, transforming the completed (with a point at infinity) closed right 
complex semiplan onto the closed unit disk, and the completed imaginary axis onto the 
unit circle, with φ(∞) = -1. Using polar coordinates, the last transformation can be 
described by 
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Therefore, the inner product on 1,2 −
+H  can be written as 
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which proves Lemma 2.                � 
 
    This bilinear transformation sends Laguerre-type rational function to polynomials in 
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particular, the Laguerre functions Ln(s) = nn asasa −− +− )()(2 1  are transformed into 

)1()(2)]([ 131 +−=φ −−− zzazL n
n . These comments prove the next Lemma. 

    LEMMA 3. Let f(s) be a rational function with all its poles at s = a. Then, f[φ-1(z)] is a 
polynomial in R[z]. 
    The fourth Lemma repeats Theorem 13.1.3 from [2] pg. 314. 
    LEMMA 4. Let m(θ) be a positive weighting function in the unit circle eiθ which 
satisfies the Bernstein condition |m(θ+δ)-m(θ)| < M|ln(δ)|-(λ+1) for some M > 0 and some 
λ > 1, δ sufficiently small. Let {pk(z)} be a set of orthonormal polynomials in the unit 
circle associated to m(θ), complete on C. Let f(z) be a function on C, and let fn(z) and 
Fn(z) be the nth-partial sum in its expansion in the orthonormal set of polynomials and 
the nth-partial sum of its Taylor series, respectively. Then, 

∞→n
lim {fn(z) – Fn(z)} = 0, 

uniformly in the closed unit disk. 
Remark 2. In the case of a (eventually redundant) complete polynomial set in C, but not 
orthonormal with respect to m(θ), the Gramm-Schmidt algorithm produces an 
associated orthonormal polynomial set with exactly the same partial sums. In other 
words, Lemma 4 needs only a complete polynomial set in C (the completeness on 2H  
being a consequence), the orthonormality assumption being superfluous. 
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    3. Main results. After some parametrizations and calculations [1], the H2/H∞ optimal 
control problem for finite-dimensional linear systems can be reduced to minimize a 
quadratic functional  

J2[K(s)] = 
2

)]()()[( sKsKs
�

−Φ  subject to J∞[K(s)] = 
∞

− )()()( sBsKsA  ≤ λ; 

where Φ(s) is a real-rational, stable, strictly proper and miniphase function, A(s) and 
B(s) are proper real-rational functions, λ is a strictly positive real number such that the 
constraint set is not void, and )(sK

�
 is the unconstrained optimal solution, which can be 

calculated by an usual formula [1], [10]. Here, it will be considered the cases where the 
optimal solution )(ˆ sK  belongs to 1,2 −

+H , or to 2
+H . For the last case, Φ(s) needs to be 

biproper. Conditions for the existence of such solutions are given in [1], Theorems 7 
and 11.  
    Similarly, a Galerkin algorithm was proposed to find the optimal solution )(ˆ sK . The 
problem was solved on the n-dimensional subspace defined by the first n functions in a 
complete (but not necessarily orthogonal or independent) set on 1,2 −

+H , being suggested 
the use of Laguerre-type functions. This means that the denominators of those functions 
are in the form (s+a)k, for a strictly positive real number a. Denoting by )(ˆ sK n  the 
optimal solution for the H2/H∞ problem restricted to the n-dimensional subspace defined 
above, it was proved that the sequence { })(ˆ sK n  converges to )(ˆ sK  in the 1,2 −

+H  

topology ([1], Theorem 9). Moreover, )(ˆ sK  belongs to A, i. e., it is continuous on the 
extended imaginary axis [1], Theorem 12. The following Theorem goes beyond these 
results. 
    Theorem 1. Consider the optimal solution of the H2/H∞ problem studied in [1]. 
Suppose it verifies )(ˆ sK  ∈ 1,2 −

+H  (i.e., the conditions on [1], Theorem 9, are verified), 

and also that the generator set {pk(s)} is Lagrange-type. If { })(ˆ sK n  denotes the 
approximating sequence calculated by the Galerkin method associated to this generator 

set, then it converges to )(ˆ sK  also in ∞
+H . 

    Proof. As { })(ˆ sK n  converges to )(ˆ sK  in 1,2 −
+H  by Lemma 2, )]([ˆ 1 zK n

−φ  converges 

to )]([ˆ 1 zK −φ  in the H2 topology. In this case the weigthing function is m(θ) ≡ 1, trivially 
verifying the Bernstein condition. Also, by Lemma 3, the corresponding complete set on 

C is polynomial. Thus, )]([ˆ 1 zK n
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Fourier series of )]([ˆ 1 zK −φ  for a complete (in C) set of polynomials. Therefore, Lemma 
4 and Remark 2 apply.  
    Let βk  be the kth-Taylor coefficient for )]([ˆ 1 zK −φ . Then 
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At the last row, the first term converges uniformly in the closed unit disk by the 
Weierstrass Theorem, and the second term by Lemma 4. Therefore, )]([ˆ 1 zK n

−φ  

converges to )]([ˆ 1 zK −φ  in H∞.  
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    Finally, by Lemma 2 we can return to functions in A with the ∞
+H  topology, which 

proves that )(ˆ sK n  converges to the optimal solution )(ˆ sK  in the ∞
+H  topology.         � 

    The 2
+H  situation is readily solved if we remember that this space is a subspace of 

1,2 −
+H  with a finer topology. Then, if )(ˆ sK n  converges on 2

+H , it converges also in 
1,2 −

+H , and Theorem 1 applies. 
    Corollary 1. Consider the optimal solution of the H2/H∞ problem studied in [1]. 
Suppose it is such that )(ˆ sK  ∈ 2

+H  (i.e., the conditions on [1], Theorem 11, are 

verified), and also that the generator set is Lagrange-type. If { })(ˆ sK n  denotes the 
approximating sequence calculated by the Galerkin method associated to this generator 
set, then it converges to )(ˆ sK  also in ∞

+H . 
    Remark 3. The topological arguments used to proof Theorem 1 hide the inner product 
relations, an interesting information for convergence estimates. To better understand 
these relations, it is necessary to apply the bilinear transformation directly to the 
quadratic functional. First, the functional J2[K(s)] can be rewritten as 
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The function h(s) = )()(]2[ 1 sasa Φ+−  is a real-rational biproper function with all 
poles and zeros in the open left complex semi-plan. Thus, h[φ-1(z)] is also a real-rational 
biproper function, but with all poles and zeros at the exterior of the unit disk. Therefore,  

)]([)]([)( 11 θ−θ−− φφ=θ ii ehehm  
is a positive weighting function as in Lemma 4, bounded and differentiable in the unit 
circle, with a bounded derivative in the same set. An usual argument shows that this last 
property implies the Bernstein condition necessary to apply Lemma 4.  
    Second, assume that the generating set {pk(s)} used in the Galerkin method is a 
Laguerre-type generator set orthonormal for the weighted inner product in 1,2 −

+H  
defined by 
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By Lemma 2 and the comments above, this inner product is transformed in a inner 
product on the unit circle weighted by the positive function m(θ). Also, )]([ˆ 1 zK n

−φ  

converges (in the weighted quadratic mean) to )]([ˆ 1 zK −φ , a function belonging to C. 

    From these comments, )]([ˆ 1 zK n
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Fourier series of )]([ˆ 1 zK −φ  for a set of polynomials in z, orthonormal in respect to the 
weighting function m(θ). Then, Lemma 4 implies the uniform convergence of  

)]([ˆ 1 zK n
−φ  to )]([ˆ 1 zK −φ . Lemma 2 and Remark 2 complete an alternative proof for 

Theorem 1. 
    Remark 4. The use of Cèsaro sums to obtain the uniform convergence for the optimal 

solution Fourier series do not apply, because the Cèsaro partial sum � �
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does not coincide with )(ˆ sK n . 
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    Remark 5. More general conditions can be given on the norms of Dirichlet kernels for 
the generating original set, as indicated in [11]. But the explicit connexion with usual 
orthonormal rational functions, as Laguerre functions, is not clear. 
 
    4. A finite dimensional solution for a particular H2/H∞∞∞∞ problem. 
 
    Finite dimensional solutions for the H2/H∞ problem here considered are obtained if 
the unconstrained solution )(sK

�
 verifies the H∞ constraint. In the 2

+H  context there is 

no other possibility [3]. In the 1,2 −
+H  context there are another possibilities: when the 

function )()()( sBsKsA −
�

 (see the beginning of section 3) is all-pass, A(s) is miniphase 
and A-1(s)B(s) is stable and proper.  
    Indeed, it was showed in [1] that the H2/H∞ problem can be see as a best 
approximation problem: to find the convex projection of )(sK

�
 on the constraint defined 

by J∞[K(s)] = 
∞

− )()()( sBsKsA  ≤ λ according to the 1,2 −
+H  metric. If )()()( sBsKsA −
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is all-pass, with 
∞

− )()()( sBsKsA
�

 = µ and µ > λ (otherwise )(sK
�

 verifies itself the 

constraint), a variational argument on the quadratic metric shows that the optimal 
solution )(ˆ sK  will be obtained by reducing )(sK

�
 at each frequence to give 

∞
− )()(ˆ)( sBsKsA = λ.  

    Now, assume that λ<ω−ωω )()(ˆ)( iBiKiA  in a real subset E with positive measure. 

Let )(
~ ωiK  be a version of )(ˆ sK  modified on E to perform the equality. Therefore, 

)(
~ ωiK  is bounded on the imaginary axis, verifies the constraint, and, necessarily, 

)ˆ()
~

( 22 KJKJ < . Thus, by the contrapositive implication, if )(ˆ sK  is optimal, 

λ=ω−ωω )()(ˆ)( iBiKiA  on E.  

    In general, the function so defined is not racional, because a rational function cannot 
be constant on a finite and open imaginary axis interval. But, if )()()( sBsKsA −

�
 is all-

pass, with 
∞

− )()()( sBsKsA
�

 = µ and µ > λ, set set E coincides with all the imaginary 

axis. Therefore, if A(s) and B(s) satisfy the above assumptions, the function 
)(ˆ sK  = (λ/µ) )()(]/)[()()/( 1 sBsAsK −µλ−µ−µλ

�
 

satisfy the wished equality on the imaginary axis and is a proper real-rational function in 
∞
+H . In conclusion, the proposed )(ˆ sK  is the optimal solution. 

    An example is the problem defined by the minimization of 

J2[K(s)] = ωω
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subject to J∞[K(s)] = 
∞

)(sK  ≤ λ, 

where U(s) is any all-pass rational function. Here, 
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s
+

=Φ 1
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, 

and,if 
∞

)(sK
�

 = µ > λ, the optimal solution is )(ˆ sK  = (λ/µ) )(sU
sa
sa

+
−

, a rational 

function. 
    This comment enlightes the "trivial cases" in [1] Theorem 12. 
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