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Abstract

Barbosa, Matheus Patrick Soares; Ayala, Helon Vicente Hult-
mann (Advisor).Nonlinear Black-box Identification of Piezo-
electric Systems. Rio de Janeiro, 2021. 84p. Dissertação de
Mestrado – Departamento de Engenharia Mecânica, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Actuators based on piezoelectric materials have ideal characteristics for
applications such as acoustic transmission and micromanipulation. However,
the inherent nonlinearities of those actuators, such as hysteresis and creep,
greatly increase the challenge to control such devices. Furthermore, the increas-
ing need for more precise and faster actuators, allied with frequent changes in
the environmental and operational conditions, further worsens the problem.
Analytical models are application-specific, meaning that they are not easily
and efficiently scalable to all systems. Also, with increased complexity, the
understating of underlying phenomena is not fully documented, making it dif-
ficult to develop such models. This work investigates those challenges from the
perspective of the system identification methodology and data-driven models
for piezoelectric actuators. The black-box approach is tested with experimental
data acquired in a laboratory setting for micromanipulator and acoustic trans-
mission case studies. In some datasets, general-purpose signals were employed
as the excitation input of the system to accelerate the data acquisition of the
whole system dynamic and estimation process. Additionally, some models were
validated on a separate dataset. In both cases, preprocessing was employed to
optimize the amount of data. The tested models include the AutoRegressive
Moving Average with eXogenous inputs (ARMAX), Nonlinear AutoRegressive
with eXogenous inputs (NARX) with an artificial neural network structure,
and Nonlinear AutoRegressive Moving Average with eXogenous inputs (NAR-
MAX). The results show a good ability to predict the nonlinearities of the
micromanipulator and, therefore, the hysteresis at different input frequencies.
The acoustic transmission system was successfully modeled. Although the re-
sults show that there is still room for improvements, it provides insights into
possible optimizations for the setup as the models here devised are useful for
short prediction windows.

Keywords
Artificial Neural Networks; Black box modeling; Identification and con-

trol methods; Piezoelectric Actuators; Nonlinear system identification.
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Resumo

Barbosa, Matheus Patrick Soares; Ayala, Helon Vicente Hultmann.
Identificação Não Linear Caixa-Preta de Sistemas Piezoe-
létricos. Rio de Janeiro, 2021. 84p. Dissertação de Mestrado – De-
partamento de Engenharia Mecânica, Pontifícia Universidade Ca-
tólica do Rio de Janeiro.

Atuadores baseados em materiais piezelétricos apresentam característi-
cas ideais para aplicações como transmissão acústica e micromanipulação. No
entanto, não-linearidades inerentes a estes atuadores, como histerese e fluên-
cia, aumentam o desafio de controla-los. Além disso, a crescente necessidade de
atuadores mais precisos e rápidos aliada a frequentes mudanças nas condições
ambientais e operacionais agravam ainda mais o problema. Modelagens ana-
líticas são específicas ao sistema ao qual foram feitas, o que significa que elas
não são facilmente escalonáveis e eficientes para todos os tipos de sistemas.
Adicionalmente, com o aumento da complexidade, os fenômenos que regem
a física do sistema não são totalmente conhecidos, tornando difícil o desen-
volvimento destes modelos. Este trabalho investiga esses desafios do ponto de
vista da metodologia de identificação de sistemas e modelos baseados em da-
dos para atuadores piezelétricos. A abordagem de modelagem caixa preta foi
testada com dados experimentais adquiridos em um ambiente de laboratório
para os estudos de caso de micromanipulação e transmissão acústica. Sinais de
uso geral foram empregados como entrada de excitação do sistema de modo a
acelerar a aquisição e estimação dos parâmetros. Parte dos modelos desenvol-
vidos foram validados com um conjunto de dados separado. Em ambos os casos
foi necessário pré-processamento para otimização da quantidade de dados. Os
modelos testados incluem a Média Móvel AutoRegressiva com entradas eXóge-
nas (ARMAX), AutoRegressiva Não Linear com entradas eXógenas (NARX)
com uma estrutura de rede neural artificial e Média Móvel AutoRegressiva Não
Linear com entradas eXógenas (NARMAX). Os resultados mostram uma boa
capacidade de prever as não-linearidades do micro manipulador e, portanto, a
histerese em diferentes frequências de entrada. O sistema de transmissão acús-
tica foi modelado com sucesso. Embora os resultados mostrem que ainda há
espaço para melhorias, eles fornecem informações importantes sobre possíveis
otimizações para o sistema uma vez que os modelos apresentados são uteis
para janelas de predição curtas.
Palavras-chave

Atuadores piezoelétricos; Identificação de sistema não lineares; Métodos
de identificação e controle; Micromanipuladores piezoelétricos; Modelagem
Caixa Preta.
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Okabe Rintarō, Steins;Gate.

DBD
PUC-Rio - Certificação Digital Nº 1821042/CA



1
Introduction

The piezoelectric effect is an electromechanical property of certain smart
materials that produce measurable amounts of electric charge proportional
to the mechanical strain applied to the material and vice-versa [1, 2]. This
effect is useful in a wide range of devices such as oscillators, resonators, actu-
ators, transducers. In particular, the piezoelectric effect enabled the creation
of portable actuators that are widely available commercially. They manage
small displacements, in the range of 10pm to 100µm, while maintaining high
resolution, frequency, stiffness [3, 4], and containing no moving parts, elimi-
nating backlash and friction [2]. According to surveys [2] and [5], Piezoelectric
actuators (PEA) are used in micromanipulators and atomic force microscopes
to ultra precision machine tools, revolutionizing research in many fields like
biology, chemistry, materials, and physics. They can even be used as sensors
to provide feedback for control [6–8].

One of the key challenges of PEA emerges from the piezoelectric element
itself. They suffer from high nonlinear static and dynamic behavior dependent
on frequency, load, and/or amplitude [2]. Also, creep and other thermal effects
lead to hysteresis of the PEA and subsequent loss of accuracy [9]. Therefore,
any application that requires a high degree of precision, like micropositioning
and acoustic transmission, requires that the PEA undergoes some form of
control.

The control and automation discipline seeks, in essence, to develop con-
tinuous or discrete dynamic systems that behave in a predictable and optimized
manner, given the operational conditions to which they are submitted. As such,
modeling a system is at the heart of control theory. As modern controllers are
designed based on the system to be controlled, modeling and simulation are
essential. Several analytical models that take nonlinearities into account to
a certain degree, are available in the literature, such as: the Preisach model,
Duhem model, Prandtl-Ishlinskii model, and Maxwell model [2, 3, 10–12].

While those models have good modeling capabilities, due to the complex
behaviors that are not always fully understood, they require extensive prior
knowledge of the system. Therefore limiting the available modeling approaches
and their precision due to the knowledge gap between the user and the system.
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Chapter 1. Introduction 16

Moreover, several experiments are needed to determine the application-specific
physical parameters and weight functions, often not possible due to equipment
availability and/or time constraints. This complexity increases the computa-
tion time needed to perform the modeling and further narrows down their
potential application uses [11,13].

In those cases, the application and development of control models are
not straightforward or simple. Alternative approaches like the System Identi-
fication (SI) methodology allows for easier development with little knowledge
of the underlying physical phenomenon or the need for several experiments. SI
is a field within automation control that encompasses the creation of dynamic
models for the purposes of design, analysis, monitoring, and control of physi-
cal systems based on measured data [14]. A good experiment design is needed
to allow the data acquisition of finite input-output data with as few interfer-
ence’s as possible. It must be noted that the system is modeled as a whole
and, as pointed by [15], this eliminates assumptions that others modeling ap-
proaches, such as the analytical models previously cited, sometimes take. Such
assumption, like a perfect bonding between the PEA and the structure, creates
an inconsistency between the model and the real system, decreasing its accu-
racy [16]. Furthermore, as the SI approach utilizes experimental input-output
data acquired directly from the system, it captures any dynamic behavior even
if its unknown by the user. Therefore the model faithfully represents the sys-
tem [16].

1.1
Literature Review

A system can be described as an object that through the interaction of
different inputs, even unwanted external disturbances or noise, produces an
observable signal, also called an output [17], as shown in Figure 1.1. One of
the properties of a system is its state, which summarizes the effects of the past
inputs and noise. Those kinds of systems are called open loop systems and are
suitable for the SI methodology [18,19].

Figure 1.1: Schematic of an open loop system. Adapted from [18].
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With this in mind, the SI methodology has been applied successfully to
a wide range of systems outside the realm of engineering, such as biology in
general [20–24] and water resource management and monitoring [25, 26], to
cite a few. The available models in SI methodology can be categorized based
on the required knowledge of the underlying physics (white-box, gray-box, or
black-box), based on the presence of error (deterministic or stochastic), or its
structure (Parametric or Non-Parametric) [14,27].

Generic PEA modeling using SI methodology studies such as [13, 28–
30] show the effectiveness of the approach. The authors in [13] accurately
describe static and dynamic hysteresis with generic use of PEA. Employing a
nonlinear moving average model with exogenous inputs and Nonlinear Auto-
Regressive Moving-Average with Exogenous Inputs (NARMAX) for the static
and dynamic hysteresis modeling respectively. In [28] and [29] the authors used
Artificial Neural Networks (ANN) to model the hysteric behavior of PEA. The
second experimentally compared the effectiveness of the approach to other
techniques such as commercial controllers and a Duhem-based model. In [30]
the authors proposed the use of a hybrid approach, where the use of ANN, in
addition to the Preisach model, improved the capabilities of the semiempirical
model that lacked the modeling of frequency-dependent behavior.

Still, some examples of limitations of the aforementioned works are the
lack of model validation, lack of guidelines/assumptions taken in the signal
design, and the test of the piezoelectric element under no load. This leads
to the belief that the results could lack meaningful significance in real-world
specific applications. Otherwise, generic PEA modeling studies provide useful
insights into the overall SI procedure and a guideline on what could work.
Nevertheless, several studies are found that aim to simulate real-world specific
applications of PEA [16,31–33].

In Vibration Control, the authors in [16] and [31] used the SI methodology
to successfully create an equivalent linear model based on a Finite Element
Analysis of PEA. Then validated it through a specially made workbench to
acquire the experimental data.

In Nano and Micro Manipulators PEA are found in biomaterial and
cell manipulation, nanomanufacturing and machining, high-resolution probe
microscopy, and so on [34–38]. They take advantage of some of the PEA
benefits, such as fast response and high stiffness. However, in some applications,
their low displacement can limit their use directly. In those cases, mechanical
amplification can be leveraged to increase the displacement to useful levels at
the cost of size, speed, or even reliability. This can be achieved by altering
the PEA design and, according to [39], they are categorized in: i) externally
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leveraged; ii) internally leveraged, or iii) frequency leveraged.
The simplest is the stack, where several piezoelectric elements are linearly

bounded together creating an overall bigger displacement. Another type is the
bender, which is similar to a cantilever and has the advantage of quadratic
amplification as a function of its length. By applying an electric potential,
the piezoelectric element bend and this bending is exploited to push and
manipulate small objects [40]. Both stack and bender are classified as internally
leverage. As the PEA design influences its performance, it is expected that it
also alters its response to the input and consequently the system dynamics,
further narrowing down the modeling to the specific system [39].

In [32], the authors modeled a 1-Degree of Freedom (DOF) micromanip-
ulator and in [33], a 2-DOF micromanipulator. Both proved the viability of
utilizing a shallow ANN based on the Nonlinear Auto Regressive with Exoge-
nous Inputs (NARX) model with increasing complexity to predict and model
the PEA hysteresis at high frequencies. However, a limitation of both works
is the lack of verification of adherence of the model through specific frequency
bands.

Also, ANNs have been long used for SI [41]. Architectures such as Radial
basis functions [42] and multilayer perceptrons [43] are valuable tools for
nonlinear modeling. However, deep learning has not been extensively applied
in SI in order to solve complex dynamic systems modeling tasks, despite its
impressive improvements mainly in the field of image processing [44]. It consists
of constructing deep neural networks, with many hidden layers and neurons,
forming models with thousands, and even millions, of parameters to set. Thus,
enabling several layers of representation, aiming at increasing the capability of
the models in solving complex systems.

In [45] the authors used a Boltzmann machine trained with random
weights and validated the model using data from standard SI benchmarks
such as: gas furnace data [46], simulated nonlinear system [47] and the Wiener-
Hammerstein case study [48]. In [49], the authors employed partial least squares
regression to estimate a deep neural model and evaluated the methodology with
a simulated nonlinear chaotic system, and by using acquired data predicted
the amount of phosphorus in the wastewater treatment system. Thus, there is
an opportunity for improvement in micromanipulator modeling by means of
deep neural networks.

For applications of acoustic transmission, the PEA creates a mechanical
wave that requires a medium to propagate. Due to its nature, it can be applied
to scenarios where other means of communication are not efficient or feasible
[50]. For example, wired communications through pressure vessels introduce a
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puncture on the walls and another possible point of failure. Another case is
the presence of metal enclosures where the strong Faraday cage effect reduces
the efficiency, or even makes it impossible to use certain techniques, such
as inductive coupling, capacitive coupling, and magnetic resonance coupling
of electromagnetic waves [51, 52]. In those cases, a PEA can be bonded to
the interior and exterior walls creating an acoustic channel, enabling data
transmission [53], energy [54,55], or both simultaneously [52,56]. As one might
expect, the acoustic channel properties have a great impact on transmission
efficiency. This is further exacerbated by the use of multiple layers of different
materials, energy losses due to unwanted reflections and vibrations, and the
existence of discontinuities in the transmission medium, among other factors
[50,57,58].

Although several studies for generic PEA modeling and piezoelectric
based micromanipulator modeling are available in the literature, for the case
of acoustic transmission systems, they are scarce. Making clear that the
available methods, mainly the general multilayered case, are still open for
debate and improvement. Nevertheless, related transmission applications, such
as magnetic coupling [59,60], are useful as a starting point.

1.2
Motivation and Objectives

Through the literature review, it is clear why the use of PEA has become
increasingly intense in the last decade. The advantages that these actuators
bring over conventional ones are numerous, such as their high resolution,
frequency, and stiffness. However, with the increasing need for process agility,
at higher load levels, these actuators suffer from non-linear effects, making
proper control a challenge. The development of analytical models has been
proved to be effective but they depend on complex solutions, demanding, in
addition to processing power, high knowledge of the system in which they will
be used. Thus, they are application-specific and require several experiments.

The use of the SI methodology, especially black-box models, on piezo-
electric based systems allows the creation of models more quickly and with
sufficient precision for application in real scenarios. However, in spite of sev-
eral quality works that apply the SI methodology successfully to PEA, to the
best of our knowledge, there is a lack of proper development of a model for the
general multilayered case of acoustic transmission. Additionally, deep learning
needs more research time for dynamic systems.

Therefore, the main goals of the present work are the following:

– Explore how deep learning models can describe hysteresis originated from
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the nonlinearities in piezoelectric based micromanipulation;

– Investigate, through the use of the SI methodology, which models are
more appropriated to describe a multilayered piezoelectric based acoustic
transmission system of data and/or energy.

To accomplish these, two case studies are devised based on real-world
applications, namely: piezoelectric micromanipulator and piezoacoustic trans-
mission. Suitable test benches, to enable reliable experimental data acquisition,
are also developed. The details of each case study and its respective setup are
devised in Chapter 3.

As the SI black-box models have potential in real-world applications,
a side objective is to show the importance of multisine signals for hysteretic
systems, as pointed by [61].

1.3
Original Contributions

All three contributions, ordered by submission date, are properly refer-
enced below:

1. SOARES BARBOSA, M. P.; RAKOTONDRABE, M. ; HULTMANN
AYALA, H. V.; Deep learning applied to data-driven dynamic
characterization of hysteretic piezoelectric micromanipulators.
IFAC-PapersOnLine, 53(2):8559–8564, 2020. 21th IFACWorld Congress.

2. SOARES BARBOSA, M. P.; DA COSTA, D. P. ; HULTMANN AYALA,
H. V.; Evaluation of nonlinear system identification to model
piezoacoustic transmission. IFAC-PapersOnLine, 53(2):8802–8807,
2020. 21th IFAC World Congress.

3. SOARES BARBOSA, M. P.; HULTMANN AYALA, H. V.; Evaluation
of Deep Artificial Neural Networks for Data-driven Modeling
of Piezoacoustic Transmission. (Manuscript in Preparation)

Regarding the piezoelectric micromanipulator case study, SI methodology
was utilized and the steps to acquire and process the data were devised.
Several deep-learning neural network architectures were tested and compared.
The training excitation signal was a general-purpose multisine spanning the
frequency band of interest. Finally, the best model was decided based on
metrics and it was further validated with semi-static individual sinusoidal
curves of different frequencies. Therefore, verifying the adherence of the
model through the frequency domain. The results indicate the usefulness
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and predictive power of deep learning-based models in the field of system
identification and, in particular, hysteresis modeling and compensation in
micromanipulation applications.

Regarding the piezoacoustic transmission case study, two separated
datasets were acquired. Those employed the same test bench but different
signals. While the first was more of a survey, employing three AutoRegressive
models, including the Auto-Regressive Moving Average with Exogenous Input
(ARMAX), NARX, and NARMAX, and used a chirp signal as the estimation.
The last was an in-depth analysis and expansion of the NARX approach using
a multisine signal as estimation and chirp as validation. The results compare
each model tested and provide insights into improvements that can be made.

1.4
Manuscript organization

This work is organized as follows: Chapter 1 aims to introduce and
contextualize the specific applications of PEA through the literature. The
motivation and objectives are discussed and a brief introduction to the case
studies is made.

Part I aims to present the theoretical basis and key concepts in the SI
general procedure and details of the case studies. All the necessary steps and
methodologies used in data acquisition, preprocessing, and models are devised
in Chapter 2, and details of both cases studies are shown in Chapter 3.

In Part II the results of the contributions of the present work are shown.
Conclusions and additional remarks for future works are presented in

Part III.
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2
System Identification methodology

The general procedure for identifying a system based solely on experi-
mental data is shown in Figure 2.1.

Figure 2.1: System identification procedure, adapted from [62].

This methodology is an iterative process where, although prior knowledge
is not entirely required, if combined with a clear objective, it can significantly
accelerate the process. Even if a good prior knowledge is available, it can change
after several interactions of the procedure, leading to a better understanding
of the system and improvements in the overall SI loop [18].

It is generally not possible to create an exact mathematical description
based on a finite number of samples. This is influenced by several factors like
input type, signal-to-noise ratio (SNR), presence of errors, randomness, to
cite a few. Even with perfect conditions, usually it is not desirable to have a
100% precise model due to increasing complexity in real-world applications.
Consequently, the SI methodology creates an approximate model for system
[14,27].
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2.1
Experiment Design and Data acquisition

Naturally, the first step is to acquire the data and, to alleviates the
influence of the aforementioned factors, a solid experiment is needed. Although
a simple task at first glance, the accuracy or confidence of the model will be
as good as the available data, both in terms of quality and quantity [18]. As
such, even the sampling rate must be carefully analyzed, because relevant
information can be hidden in the frequency domain and by limiting the
sampling rate, this data is lost [14]. It is also important that any source of
noise and/or disturbances, that may contaminate the measurements, have a
low relative amplitude to the data of interest, which is called sensitivity.

Regarding the sampling rate, it should be fast enough to extract all
data available in the system. The Nyquist-Shannon Theorem [63] states that
the minimum sampling rate needed for a continuous signal to be completed
recovered is 2fc, where fc is the highest frequency in the signal band. However,
as pointed by [27], over-sampling provides little benefit as it increases the
necessary lags to correctly estimate the model parameters. Often 5fc/2 is
sufficient, but spectral analysis and correlations benefit from a higher sampling
rate, in the order of 10fc. The overall recommendation is to use the fastest
sample rate possible, which means oversampling the experiment, as one can
decimate it later, instead of performing a new experiment due to slow sample
rate or trying to interpolate the data and introduce errors and noise [27].

Furthermore, other sources of influence, like the probing equipment itself,
must be analyzed as it alters the characteristics of the system under study and
contaminates the data.

2.2
Excitation Signal Design

The choice of the excitation signal is particularly critical. It affects the
overall model estimation and must be taken such that the acquired data
contains as much information about the dynamic properties of the system in
question as possible. General-purpose signals can stimulate the system with an
almost flat power spectrum in user-defined broadband. As such, it can reduce
the measurement time as it captures the whole dynamic in the band of interest
when compared to a signal that excites the system frequency by frequency.
Additionally, those signals can be parameterized according to a range of
amplitude and frequency band of interest. Therefore the signal statistics can
be tuned to an application-specific system and the optimization/maximization
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of the sensitivity can be achieved [14, 18, 64]. Examples of such signals are
multisine and chirp [65].

A multisine signal is a sum of several sinusoidals of different frequencies,
which are predefined. The multisine signal is defined by:

u(t) =
nf∑
k=1

A cos[2πfkt+ φk] (2-1)

where fk and φk are, respectively, the frequency and phase of each sinusoidal
component and A is the amplitude.

The spectrum is not continuous as each fk may be determined equally
spaced between a minimum and maximum value of interest with nf compo-
nents. It is computationally easier to define those components in the frequency
domain and then use the inverse Fourier transform to get the signal in the time
domain [65,66].

A useful guideline is to keep the sines out of phase to keep the crest
factor low [14]. So the phase φk can randomly set in the range [0, 2π] for each
component, becoming a Random Phase Multisine. By using φk = −k(k −
1)π/nf , it is called the Schroeder Multisine [67].

The number of components nf should be large enough so that the
frequency resolution is sufficient for the identification, being dependent on
the system and model order [17].

This signal exclusively excites the band of interest and provides good
estimation at the frequency components defined, providing great flexibility by
allowing dedicated selection of amplitude and frequencies, making it possible
to detect and quantify the presence of nonlinear distortions [65].

Another broadband signal is the chirp, also called swept sine or periodic
chirp. It is a type of signal where the frequency changes with time and is
repeated in a way to create a periodic signal [17,65]. The simplest form changes
the frequency linearly with period T0 and is calculated by:

u(t) = A cos((at+ b)t) 0 ≤ t < T0 (2-2)

Where A is the amplitude, a = π(k2 − k1)(f0)2 and b = 2πk1f0, f0 = 1/T0,
k2 > k1 ∈ N and k1f0, k2f0 are the lowest and highest frequency respectively.
Contrary to the multisine, the spectrum is not as flat. Consequently this
introduces frequency components with lower SNR and, due to the sliding
frequency, spectral lines appearance outside the band of interest. Nevertheless,
it should not be disregarded as a inferior signal as it injects more power into
the system than the multisine, as pointed by [65].
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Different from the chirp, the pure sinusoidal is not a broadband signal
and as such, the acquisition process is usually slower compared to it. The
stimulus of several frequencies is called step sine, as the system needs to be
excited for a specific amount of time. A waiting time should be included to
allow transients to disappear before the next step and it is proportional to the
damping present on the system. When few frequencies are needed to model
a system and the SNR is poor, the pure sinusoidal can prove to be a faster
method, compared to a broadband signal, as it concentrates the power in one
specific frequency, overcoming the poor SNR. When the number of frequencies
to excite is large, this approach loses its advantage [65]. It is defined by:

u(t) = A cos[f0t+ k0] (2-3)

where k0 is the initial phase in the range [0, 2π], f0 is the desired frequency
and A is the amplitude. Nevertheless, they are useful to evaluate the model
adherence and performance to each specific frequency, enabling the creation of
hysteresis loops.

2.3
Signal Preprocessing

In the majority of cases, even with a careful experiment and signal design,
the data can still have some degree of inconsistency. Therefore, an additional
step to preprocess the data, prior to the choice of the model, is necessary. The
raw data can be contaminated by outliers, drifts, shifts, high or low-frequency
disturbances, and even missing points. However, even in the absence of any kind
of quality problems, or if the user decides to pass this burden to the model as
an additional noise, the data can be further optimized. By reducing the number
of points its possible to alleviate the computational cost and greatly reduce
the time necessary in the next steps. One must exercise caution to preserve
the characteristics of the signals in both time and frequency domains, in the
region of interest [14,17].

A good data inspection is often a key step as it can reveal a lot of insights
regarding not only the presence of the aforementioned peculiarities in the data,
but enabling to qualitatively analyze and assert its quality, like the SNR. A
visual inspection in a transformed domain, besides the time domain, such as
the frequency domain, allows for a deeper analysis and can lead to further
insights and valuable information [14,17].

Regarding outliers and missing data, two of the most common problems
in the analysis, they can severely diminish the accuracy of the model. The
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first is an observation, or a group of them, that deviates severally from the
neighbors, influencing the signal properties such as mean, standard deviation
co-variance, spectral density, to cite a few. The second breaks the continuity
of the data and traditional techniques, based on regularly spaced observations,
do not work [14].

One way to deal with those is to cut out the bad segments, then merge
the good ones. This is applicable also when a separate number of experiments
have been performed due to equipment availability. However, for datasets with
multiples inputs and outputs, it might be difficult to find segments where all
variables are assumed good. In those cases, it is usually recommended to treat
outliers as missing data [17].

Beyond outliers and missing data, trends, drifts, offsets, and other non-
stationary behaviors must be also removed, especially if the methods assume
that the statistical properties of the data remain invariant with time. Unknown
time delays can be accommodated by the model during the identification, but
obvious shifts are easier to be removed, since they pose a problem when using
mean, correlation or spectral analysis, and during the parameter estimation.
Drifts and trends are time-varying originated from the inherent non-stationary
process or disturbances in the system. They can be seasonal or not [14,17,27].
One must note that some methods to remove those, such as differentiation
or noise model with integration, can increase the noise floor and, in the case
of offsets, push the model to fit into a high-frequency region, which can be
unsuitable for some applications [17, 27].

Generally, removing noise is not recommended because it is impossible
to differentiate it from valuable information. In general, a careful experiment
design and reliable data acquisition can alleviate the aforementioned problems
and noise, saving time on the overall loop. One must practice moderation in
the preprocess to not alter profoundly the dynamics of the system present in
the input-output data acquired [14,27].

Lastly, assuming that the data has been correctly sampled, signal pre-
processing can help to optimize the amount of data and reduce the number
of samples. This is important to reduce the computational burden and can be
achieved by the simple use of decimation or other filters, like Moving Average.
Some estimation methods, like the Orthogonal Least Squares (OLS) algorithm,
can be applied directly to all points up to five hundred samples. Above five
hundred and up to two thousand samples, the data can be divided into over-
lapping segments and the OLS applied to each of them, increasing the overall
speed compared to the use of all points simultaneously [27].
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2.4
Model types

A model can be described as a mathematical description that can be
categorized according to the approach used in the development: i) theoretical
based on fundamental laws (first-principles or white-box), ii) empirical based
on observations (experimental or black-box) [14, 27]. Figure 2.2 shows a
comparison between the types of models regarding the number of experiments
and the knowledge of the system required.

Figure 2.2: Model types comparison regarding the number of experiments and
the system knowledge required.

The first approach requires that a system is broken in its parts and,
assuming a good understanding of the underlying physics of each part is
available, the model description is built by applying natural laws. This brings
transparency, as one can easily read the model as it has physical meaning.
On the other hand, the drawback is that the required knowledge is not
always available, this is further exacerbated by increasing system complexity,
demanding more time and resources to create a problem-dependent theoretical
model [14,27].

The empirical approach overcomes the aforementioned challenges and is
generally applicable to all systems. By using experiments to acquire sufficient
data, it is possible to extract the dynamics of the system buried in the data
and figure out what the underlying model should be to achieve the relationship
between the inputs and outputs. The downside is that, compared to the
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first-principles or white-box models, the black-box model lacks transparency
(opaque) and physical meaning. Moreover, as it utilizes a finite number of
samples, the generalization capabilities of the data-driven approach is worse,
being capable of good extrapolation in the limited operation envelope that the
data contains [14, 27]. However it has flexibility as it can be applied to linear
and nonlinear systems [68].

By combining the theoretical properties of the white-box with data, the
gray box is an in-between type of model that combines the advantages and
mitigates the weakness of the pure white-box and black-box models [69]. The
possibility to include prior knowledge directly in the model yields fewer and
more tangible parameters than the black-box. Furthermore, in contrast to the
white-box approach, it can better deal with noise and randomness, leading to
improved results [70].

2.5
Model Choice

There is not a definitive answer in the literature for which architecture
is the best for an application. Experimentation can be time-consuming, so one
may take advantage of similar works to narrow down the alternatives.

If none are available, generally, a piece of good advice is to try simple
models first. Some thought in how the relationship between inputs and outputs
can give a head start in the model selection. Additionally, intuition and
ingenuity can be leveraged here [17].

As stated in the previous section, three types are available based on
the approach and amount of knowledge necessary of the underlying physical
phenomena. This work focuses solely on the empirical approach or black-box
models.

The Auto-Regressive Moving Average with Exogenous Input (ARMAX)
is popular in procedures for control design. It is an extension of the Auto-
Regressive with Exogenous Inputs family of models and includes a moving
average component in the noise model [18]. It can be described as:

y(t) + a1y(t− 1) + · · ·+ anyy(t− ny) =
b1u(t− nk) + . . . + bnuy(t− nk − nu + 1) +

c1e(t− 1) + . . . + cnce(t− ne) + e(t)

(2-4)

where y, u, and e are respectively output, input, and the noise signals and
nu, ny and ne are their respective orders. The term nk is the delay, meaning
the number of input samples that occur before the input affects the output. In
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this work nk = 0.
The compact form of the ARMAX model can be described as:

A(q)y(t) = B(q)u(t− nk) + C(q)e(t) (2-5)

where A(q), B(q), and C(q) are the polynomials to be estimated.
The NARMAX is a parsimonious nonlinear model that, similarly to the

ARMAX, includes noise terms to accommodate disturbances in the system.
Moreover, it is based on expansion of past inputs and outputs, but it includes
nonlinear terms. The term NARMAX can also be found on the literature as a
philosophy of nonlinear system identification [27,71]. The general definition of
the model is:

y(t) = F [u(t− 1), . . . , u(t− nu),
y(t− 1), . . . , y(t− ny),
e(t− 1), . . . , e(t− ne)] + e(t)

(2-6)

where y, u, and e are the system output, input, and noise signals respectively,
F [.] is a nonlinear function and nu, ny and ne are the order of the lags for the
input, output and noise respectively. The objective is to find the function F [.]
that correct simulates the system [27]. The case of the polynomial NARMAX,
which is the most commonly used form, the compact definition is:

y(t) = θ0 +
n∑

ii=1
θi1(xi1(t)) +

n∑
i1=1

n∑
i2=i1

θi1i2(xi1(t)xi2(t)) + . . .

+
n∑

i1=1
. . .

n∑
inl

=inl−1

θi1i2 ... inl
(xi1(t)xi2(t) . . . xinl

(t)) + e(t)
(2-7)

where θi1i2...il are model parameters to be estimated, with n = nu + ny + ne.
The first sum concerns linear terms, the second sum, the nonlinear terms of
second order, and so on until the last sum that concerns terms of order nl,
which indicates the degree of polynomial non-linearity. xi1i2...il can assume the
form of input, output, or noise, such as [27]:

xi(t) =


y(t− i) 1 ≤ i ≤ ny

u (t− (i− ny)) ny + 1 ≤ i ≤ ny + nu

e (t− (i− ny − nu)) ny + nu + 1 ≤ i ≤ ny + nu + ne

(2-8)

with nu, ny and ne are the order of the lags for the input, output and residual
respectively.

The NARX model, on the other hand, is a especial case of the NARMAX
that does not include noise-dependent terms [27]. The definition in equation
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2-7 becomes:

y(t) = F [y(t− 1), y(t− 2), . . . , y(t− ny),
u(t− 1), u(t− 2), . . . , u(t− nu)] + e(t);

(2-9)

Similarly to equation 2-7, ny and nu are the maximum lags (or orders of the
model) at the output and the input, e(t) is an independent noise sequence
and F [.] is a nonlinear function. In the case of the NARX, some examples of
functions are the ANN, wavelet network, or sigmoid network.

The ANN have been extensively used for SI [41]. Several architectures
exist, but Radial Base Function [42] and multilayer perceptrons [43] are
between the most valuable tools for the identification of black box systems.
Nevertheless, deep learning has received considerable attention recently, due
to impressive improvements mainly in the field of image processing [44]. It
consists of many hidden layers and modular units, which form models with
millions of free parameters to set [72, 73]. Following the notation in [72], deep
neural models for regression may be described as:

r̂ = φ

∑
k

θokφ

∑
j

θkjφ

[
. . . φ

[∑
i

θlixi

]] (2-10)

where θok is the synaptic weight from k − th to o − th layer and φ[·] is
the neuron activation function (ACF), which can be set, for example, as a
sigmoid, hyperbolic tangent (tanh) or rectified linear unit (ReLU), described
respectively by:

φ(z) = 1/(1 + e−z) (2-11)

φ(z) = tanh(z) (2-12)

φ(z) = max(0, z) (2-13)

The use of ReLU as an ACF is popular and recommended for most feed-forward
structures because: (i) Beyond the fact that ReLU have half of the domain as
zeros, they behave very closely to a linear ACF, being called a piecewise linear
function. As such, they preserve the characteristics of linear models that are far
easier to optimize and overcome some of the problems of sigmoidal and tanh
regarding the gradient vanishing effect due to nonlinearities [74]. (ii) Besides
the not differentiable point at z = 0, they have a large and constant derivative
through the nonzero region (active neuron). Also, the second derivative is
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always zero. This simplifies the optimization when compared to other ACF
that introduces second-order terms [74,75].

One drawback of ReLu arises because of its non-linearity present at the
origin. As such, they cannot be used in situations where the activation is
equal to zero and gradient-based training methods are used. In practice, this
method still performs because, usually, it is not expected that an ANN reaches
the exact local minimum of the loss function [74].

As Equation 2-10 can be thought of as a collection of nonlinear static
activation units, φ, it lacks any dynamics due to missing lagged inputs and
outputs. For applications that do not require dynamic behavior, such as pattern
recognition, this is not an obstacle. However, it poses a problem for prediction
applications such as time-series [27]. To circumvent it, a feedback loop must
be used, creating a recurrent neural network model or by explicitly supplying
the network with lagged inputs and outputs.

In the later, the inputs of the model are defined as the inputs in Equation
2-9, namely the lagged inputs and outputs of the NARXmodel, differently from
the recurrent approach. So, as pointed by [72], the input vector is composed
of:

– The current and past input values originated from outside the network,
u(p− 2), . . . , u

– Delayed values of the output, on which future values are regressed from
the network

In order to create the model we need to build the regression matrix and
the target values, described respectively below:

Φ =



y(p− 1) . . . y(p− ny) u(p− 1) . . . u(p− nu)
y(p) . . . y(p+ 1− ny) u(p) . . . u(p+ 1− nu)

y(p+ 1) . . . y(p+ 2− ny) u(p+ 1) . . . u(p+ 2− nu)
. . . . . . . . . . . . . . . . . .

y(N − 2) . . . y(N − 1− ny) u(N − 2) . . . u(N − 1− nu)
y(N − 1) . . . y(N − ny) u(N − 1) . . . u(N − nu)


(2-14)

Y =


y(p)

y(p+ 1)
...

y(N)

 (2-15)

where p = 1 +max(ny, nu), u is the input and y is the measured output. They
are fed as training examples for the deep neural network during estimation.
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2.6
Estimation

The two main categories of estimation are parameter and signal estima-
tion. In this work, estimation assumes the role of parameter estimation, also
known as training when referring to ANN models. It refers to the determina-
tion of unknown parameters (or weights), of the mathematical abstraction (or
model), that best relate to the underlying system, based on known information.
The information can be presented in several forms such as time-series data,
images, and/or initial conditions, to cite a few. The expression, algorithm,
or device that computes and performs the estimation is called an estimator.
Those can be compared to a filter, as it selective chooses the parameters from
the known information or given observations [14].

The preferred characteristic of a good estimator is that it defines the
parameters of the model as such that it (i) defaults to the simplest possible
model; (ii) is as transparent as possible; (iii) provides the closest possible
estimate to the "true value" of the parameters [14,27].

Whether or not a true value exists, the estimator may not produce it due
to the existence of (i) uncertainties in the data, (ii) modeling errors, or (iii)
the impossibility to reach the global minimum. Nevertheless, it is important
to have a metric of how good obtained result is and have confidence intervals
where the true values are expected to be contained. Therefore the use of an
estimator is accompanied by tests to assess its performance. According to. [14]
there are essentially six measurements that can be performed on an estimator:

1. Bias: Statistical average of all possible results of an estimator to assert
the accuracy;

2. Variance: Statistical spread of all possible results around their average
to assert the repeatability;

3. Mean squared error: Also knows as MSE, it is similar to the variance
but the reference point is the true value instead of the average;

4. Consistency: Useful to check if a larger sample size can improve the
result by measuring the behavior of a large sample of the MSE;

5. Efficiency: Useful to compare two estimators;

6. Sufficiency: Determines if the estimator is suitable for a given problem
by analyzing if it left the dynamic of the system in the data.
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Even though several estimators exist, the foundation methods are: Meth-
ods of moments, Least-squares, Maximum likelihood estimation, and Bayes
[14].

Despite the fact that the ARMAX is in the same family of the ARX
model, the estimation procedure is more complex. To correctly estimate it, an
iterative method is needed. Such method includes the recursive prediction error
method (PEM), generalized least squares, instrumental variables, or extended
least squares (ELS) [27].

PEM methods minimize the cost function trough numerical optimization.
The principle is to determine θ that minimizes the residuals in the following
equation:

e(t, θ) = y(t)− ŷ(t|t− 1, θ) (2-16)

where ŷ(t|t−1, θ) is the prediction performed using measured data up to t−1.
Similar to the ARMAX, the NARMAX also requires an iterative method.

The definition in Equations 2-6 and 2-7 includes all possible candidates of
terms, calculated by M = (n + l)!/[n!l!] where n = nu + ny + ne. As such, to
achieve its parsimonious characteristics, an algorithm is needed to select the
most relevant terms by calculating its contribution to the model output.

Once the structure has been defined, the parameters and noise series
can be estimated. The OLS associated with error reduction ratio (ERR) is
a solution that meets the desired characteristic of an estimator [27]. Given a
generic representation of a linear-in-the-parameter model:

M∑
i−1

pi(t)θi(t) + e(t) (2-17)

where θ and M are the parameters to be estimated and the total number of
parameters, respectively, pi(t) are the regressors and e(t) is the noise. The
OLS transform the regressors in equation 2-17 into a orthogonal vector, then
equation 2-17 becomes an auxiliary model [27]:

M∑
i=1

wi(t)gi + e(t) (2-18)

where gi are constant coefficients and wi(t) is orthogonal to the dataset
constructed by [76]:

N∑
i=1

wi(t)wj(t) = 0 (2-19)

with i 6= j. Once each parameter is estimated, the ERR calculates the
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contribution of each term and represents, through a percentage, the reduction
with respect to the output MSE [76]. The ERR introduced by the i-th term
can be described as:

ERRi = gi
2wi

2(t)
y2(t) i = 1, 2, . . . ,M (2-20)

where y and wi are both the expected values for the output and the orthogonal
dataset. A higher value of ERR indicates a higher contribution of the term to
the reduction of the model error. Then the term is included if [76]:

1−
M∑
i−1

ERRi < ρp (2-21)

where ρp is the tolerance of the parameters defined by the user. Additionally,
the ERR can have a separated threshold to be used for the noise term, ρn.
By reordering the regressors pi(t) in Equation 2-17 the ERR criteria can be
affected. Therefore, depending of the order that they are written down, it may
provide a different outcome [27]. The Forward Regression Orthogonal Least
Squares (FROLS), also known as orthogonal forward regression algorithm,
aims to avoid it by improving the basic OLS principles to select the most
relevant and important terms. As the NARMAX from Equation 2-7 belongs
to the following representation of a linear-in-the-parameter model [27]:

y(k) =
M∑
m=1

θmpm(t) + e(t) (2-22)

where θm are the model parameters and pm the model terms defined as:

pm(t) =y (t−my,1) · · · y (t−my,my)u (t−mu,1) . . .
· · ·u (t−mu,mu) e (t−me,1) · · · e (t−my,ey)

(2-23)

with i = 1, 2 . . .M and my,mu,me > 0. The improvement occurs by ordering
the terms such that:

1 ≤ my,1 ≤ my,2 ≤ · · · ≤ my,my ≤ ny

1 ≤ mu,1 ≤ mu,2 ≤ · · · ≤ mu,mu ≤ nu

1 ≤ me,1 ≤ me,2 ≤ · · · ≤ me,me ≤ ne

(2-24)

So, my = 0 indicates that pm(k) contains no y(·) terms. mu = 0 indicates that
pm(k) contains no u(·) terms. And me = 0 indicates that pm(k) contains no
e(·) terms.

Therefore, through iterations of the remaining not selected candidate
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terms, a full search is performed to assert if a term passes the ERR test based
on the parameters defined by the user until all terms are either selected or
disregarded. The limitation of this approach is that it cannot estimate the
moving average terms in the NARMAX models [27].

Further optimizations can be achieved by employing the ELS-FROLS
strategy, overcoming the limitation of estimation of moving average terms [71].
The basic steps are the following:

1. Parameter definition based on orders nu, ny, ne, and nl;

2. Selection of terms according to user-defined threshold ρp using FROLS;

3. Selection of noise terms according to a user-defined threshold ρn;

4. Estimation of the parameters, based on the selected terms, using any
least-squares procedure.

Training ANNs requires a different approach due to its stochastic nature.
The Root Mean Square Propagation Algorithm (RMSprop), which according
to [77] has been proposed by [78], is similar to the gradient descent with mo-
mentum. However, it differs when updates the weights as it divides the gradient
by a running average of its recent magnitude and it is capable of individual-
izing the learning rate for all model parameters, providing improvements as
the parameter scales may differ across the network thus speeding up conver-
gence [79,80]. It is defined as:

υt = αυt−1 + (1− α)(∇ft)2 (2-25)

And the update step is given by:

θt = θt−1 − η ∇ft√
υt + ε

(2-26)

where ∇f is the derivative of the loss function with respect to the parameter
θ to be updated (weight), υt is the average of gradients, η is the learning rate,
α is the decay rate or the moving average parameter and ε is the damping or
smoothing factor.

The training algorithm needs a quantity that it should seek to minimize.
This is called a loss function, or objective function, and the Mean Squared
Error (MSE) was used. It is defined as:

MSE [x, θ; p] = 1
N

N∑
i=1

[yi − ŷi]2 (2-27)
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where N is the total amount of input/output pairs. It computes the error
between the target and the predictions and passes the value to the training
algorithm that minimizes it through interactively update of the weights θ.

2.7
Model Prediction and Validation

After the preceding steps, it is expected to have, at least partially, a
particular model that is capable to describe and predict the system. However,
it remains to test if the predictions of the model are useful. This evaluation
involves various metrics and procedures to assess qualitatively and quantita-
tively how the model performs, this is known as validation. With those in
hand, one can reject or approve the model, knowing that a model is never a
final and true description of a system and can always contain a degree of inac-
curacy. This means that the model must suffice a purpose, as a perfect model
is philosophically impossible [17].

To this end, a common practice in validation is to split the data or use
a totally different data set, with different inputs from the estimation. This
ensures that the tests in the validation phase are as independent as possible.
Although for chaotic systems, that are very sensitive to the initial conditions,
this approach may not be appropriate [27].

First, one must know that the prediction can be made in different ways.
The One-Step-Ahead (OSA) approach uses the measured values, contained in
the dataset, for the prediction of one time-step ahead of the output. It should
be noted that the model can be biased and the OSA prediction can mislead
to a false impression of a good model [27]. As such, it is not a good practice
to analyze the adherence of the model over the course of the OSA Prediction.
Assuming a linear system with noise, and that the initial conditions are known,
the OSA prediction can be calculated according to [17], by:

ŷ(t|t− 1) = H−1(q)G(q)u(t) + 1[1−H−1(q)]y(t) (2-28)

where ŷ is the predicted value, G(q) is a transfer function from input to output
and H(q) is analogous to G(q) but from noise to output. For unknown initial
conditions, when the data between an arbitrary time 0 and t− 1 is available,
the simplest approach would be to replace the unknown data with zeros [17].

As an example, considering the Dynamic ANN models in Section 2.6, the
OSA prediction can be calculated in batch by using Equation 2-14.

Another type of prediction is the Free-Run Simulation (FRS), also
called the Model Predicted Output. It uses a few measured values solely to
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initialize the model. New predictions are calculated based on past predictions.
Compared to the OSA approach, where the calculations are almost reset each
step, suppressing the build-up of errors, on the FRS approach those tend to
accumulate over time, better reflecting the real model capability of representing
the system dynamics [27]. On the other hand, the FRS is more complex
to calculate, assuming a generic ARX model, it is necessary to iteratively
construct each regressor using past predicted data, which is based on the
number of samples in the validation data set, which can be time-consuming. As
such the first predictions from the measured input-output data are initialized
so that: 

ŷ(1) = y(1)

ŷ(2) = y(2)
...

ŷ(ny) = y(ny)

(2-29)

And then future predictions can be performed interactively by:



ŷs(ny + 1) = F (ŷs(ny), ŷs(ny − 1), ... , ŷs(1),

u(nu), u(nu − 1), ... , u(1))
...

ŷs(t) = F (ŷs(t− 1), ŷs(t− 2), ... , ŷs(t− ny),

u(t− 1), u(t− 2), ... , u(t− nu))
...

where ŷ is the predicted output value.

2.8
Validation Metrics

All the metrics presented can be applied for either OSA or FRS predic-
tion. One must be aware that, if a model has poor performance in the OSA
prediction, according to the metrics, in the FRS prediction it will still not
perform [27].

The simplest evaluation metric is the residuals. It can be thought of as
the "leftover" from the modeling process, which means that it contains the data
the model could not reproduce [17]. It can be calculated by:

ξ(t) = y(t)− ŷ(t) (2-30)
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where y(t) is the real value and ŷ(t) is the predicted value.
If the model is truly unbiased, the residuals should form a white noise,

meaning that all predictable information should have been captured [27]. A
first visual inspection of the residual, at an appropriate scale, can help identify
some problems that might have got through the preprocessing, such as outliers,
drift, and others, discussed in Section 2.3. One must be aware that if the dataset
is too short it is not possible to make a firm statement if some peculiarities
such as drift and periodicity are truly present in the data or introduced by a
ill model [18]. Also, even if the amplitude of the residuals is large, it is not a
clear sign of a bad model, as it could indicate a poor noise-to-signal ratio due
to faulty sensors or even bad experiment design [27].

Based on the residuals, other metrics can be calculated. An example is
an error quantitative metric by applying the equation 2-27 to the residuals.
However, complex models with several parameters naturally tend to have lower
MSE for both linear and nonlinear cases. As such, only the MSE is not sufficient
to properly judge a model as it can have a good MSE, but it can be biased
toward the fitted data and have poor generalization for new data sets [27].
In summary, the model is overfitted towards the training data and it can be
identified trough validation with different datasets from the estimation phase.

Another error quantitative metric based on the residuals is the multiple
correlation coefficient or R2 in short. Compared to the MSE, it lacks the
dependence on the amplitude and it is calculated by:

R2 = 1−
∑N
t=1 [ξ(t)]2∑N

t=1 [y(t)− ȳ]2
(2-31)

where values closer to one means a better fit of the model.
Additional statistical properties of the residuals or based on other metrics

can be useful. In the case of the MSE, they tend to alleviate the aforementioned
problems but usually assume that the residuals have normal or Gaussian
distribution, which for nonlinear systems is not always true [27].

Assuming that the residuals should not correlate linearly or non-linearly
with any combination of past inputs or outputs, correlation tests of the
residuals can help to quantify its white-noise condition and model validity
[81,82]. As such, assuming that the residuals are equal to ξ(t) = y(t)−ŷ(t|t−1),
where y(t|t− 1) is the OSA prediction, the residuals are truly white noise, or
unpredictable, when the following statement is true:
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φξξ(τ) = δ(τ), ∀τ

φuξ(τ) = 0, ∀τ

φξ(ξu)(τ) = 0, τ ≥ 0

φ(u2)′ξ(τ) = 0, ∀τ

φ(u2)′ξ2(τ) = 0, ∀τ

(2-32)

where (u2)′ = (u(t))2− ū2, ξu = ξ(t+ 1)u(t+ 1) and φ is the Cross-correlation
between two signals x and y defined as:

φxy(τ) =
∑N−τ
k=1 [x(t)− x̄][y(k + τ)− ȳ]√∑N
k=1[x(t)− x̄]2

√∑N
k=1[y(t)− ȳ]2

(2-33)

where an upper bar, like x̄, denotes the mean value of a sequence.
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3
Case Studies

Both case studies, namely respectively, Piezoelectric micromanipulators
and Piezoacoustic transmission, use PEA as the main element of excitation of
the system. Although the objectives of those systems are different, the presence
of nonlinearities such as hysteresis and creep inherent to piezoelectric materials
are present. Additionally, both systems are subject to their own complex
dynamic originated from their respective applications, further increasing the
modeling difficulty. As an example, the acoustic transmission case can have
more variables to manage due to multiple interfaces and materials while the
micromanipulator has fewer variables but needs to be fast, repeatable, and
precise in a narrow displacement range and higher loads.

3.1
Piezoelectric Micromanipulator

The goal of the experiment is to simulate a 1-DOF piezoelectric micro-
manipulator and study the hysteric behavior of the piezoelectric element when
subjected to different operational conditions like differences in stimulus signal
frequency. A test bench, exhibited in Figure 3.1, was developed. It consists of
a PEA with a cantilever structure of rectangular section of two layers, one of
which is based on lead-zirconate-titanate piezoelectric material and the other
one is based on non-piezoelectric layer. The overall dimensions are (length,
width, thickness): 15mm x 2mm x 0,3mm. Which is classically used in micro-
manipulation applications with 1-DOF.

Additional equipment necessary to generate the arbitrary electrical sig-
nal, and to measure the displacement, was included to ensure reliable data
acquisition and easier change of parameters. Such as a computer using Matlab
Simulink and a power amplifier to stimulate the piezoelectric element with an
arbitrary input voltage u spanning from [−100, 100] V. And an optical displace-
ment sensor, having a resolution of 10nm and a bandwidth of 5kHz (LK2420
from Keyence) to measure the deflection of the cantilever beam y. All data
was acquired and converted with an acquisition board (dS1104 from dSPACE)
set at a 10kHz sampling frequency. The high sample rate used is important for
this application, for rapid and accurate micropositioning.
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Figure 3.1: Description of the piezoelectric micromanipulator actuator test
bench. A voltage is applied to the active layer of the beam, which deflects due
to the piezoelectric effect. (a) MATLAB and dSpace are used to send the input
commands and store the data for identification which is performed offline. In
(b) we show the real system where the acquisitions were made. And in (c) the
dimensions and layers of the piezoelectric micromanipulator.

As shown in Figure 3.2 the objective is to develop a model capable to
compensate the hysteresis inherent to the system and the piezo cantilever
micromanipulator. This can be done with or without feedback. The last
provides online update capabilities to the model and can accommodate changes
in the setup, such as the change of the piezo cantilever. The first approach,
with no feedback, is compared to a calibration, as once the system is changed,
the model needs to be retrained with new data.

To this end, two signals were created. For estimation (i), the multisine
signal and, for validation of each of the hysteresis modeling (ii), a pure
sinusoidal. The multisine was chosen because it is a general-purpose excitation
signal that can be designed to operate at a predefined frequency band of
interest and amplitude. Which in this case was up to 0.5 kHz frequency and
maximum amplitude of 100 V, as limited by the device. It has been constructed
with nf = 5000 sinusoidal signals and uniformly distributed with random
phases. This band was chosen because it includes both the operating frequency
range and the first resonant frequency of the PEA. Figure 3.3 shows the whole
dataset (i) used for the estimation of the parameter.

Figure 3.4 shows the power spectrum of the excitation signal and the
output of the system, spanning the band of interest. The peak around 750
Hz is outside the generated signal frequency band. Its presence may be due
to nonlinearities or unknown disturbances. As this peak is closed to -20 dB,
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compared to the base amplitude of 40 dB for the band of interest, this peak
is disregarded as it is not interesting to analyze outside the excitation signal
band.

For validation, several pure sinusoidal signals, one at a time, with
different frequencies ranging from 0.1 Hz to 500 Hz, were used. This allows
to evaluate the adherence of the model in capturing the behavior at several
frequencies, which is a major issue for the piezo cantilever in micropositioning
tasks.

Figure 3.2: Proposed application of the technique to compensate the hysteresis
inherent to the PEA for the Piezoelectric Micromanipulator.

DBD
PUC-Rio - Certificação Digital Nº 1821042/CA



Chapter 3. Case Studies 44

Figure 3.3: Exploratory plots of the measured input and output data for
piezoelectric micromanipulator. In (a) the input [V] and (b) output [µm] of
the whole dataset with eight seconds (8 × 104 samples at 10 kHz). And five
thousand samples from zero in (c) and eight seconds in (d) from the input and
output relations.

Figure 3.4: Power spectrum for the multisine input and the measured output
for piezoelectric micromanipulator.
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3.2
Piezoacoustic Transmission

The goal of this experiment is to simulate a piezoacoustic application
with one piezoelectric transmitter (Tx) and receiver (Rx). The test bench can
be visualized in Figure 3.5 and it is composed of:

– Two PEA of rectangular section and dimensions of 70x25mm (length,
width). Both are attached to stainless steel plates using epoxy resin as
shown in Figure 3.6;

– An arbitrary Function Generator as the signal source (Tektronix
AFG3022C);

– An Oscilloscope to capture all signals (Tektronix MDO3024);

– A Linear Broadband RF Power Amplifier to boost the signal to the
transmitter (Electronics and Innovation 2100L);

– A stainless steel tank with an integrated heater (Lauda Alpha RA24).

Figure 3.5: Experimental set-up description for the Piezoacoustic transmission
case study. (a) Test Bench with an amplifier, oscilloscope, and signal generator;
(b) Steel plates with PEA (on the lower right) at 10 cm away from each other.
The tank is filled with distilled water at room temperature.

DBD
PUC-Rio - Certificação Digital Nº 1821042/CA



Chapter 3. Case Studies 46

Figure 3.6: Schematic of the PEA bounded to the steel plate. Both Tx and Rx
are identical and have the PEA bounded to the center of the steel plate.

As shown in Figure 3.7 the objective is to develop a model capable to
identify the system optimal transmission frequency of data, energy or both
simultaneously to a sensor in view of the presence of discontinuities in the
medium and changes of the overall operational and ambient conditions. As
those introduces undesirables reflections, the transmission efficiency degrades.
As such, feedback from the Rx side is needed to perform the online update of
the model, enabling the necessary modulation of the input signal. Moreover,
the feedback can be performed trough the same acoustic channel of the
transmission, as it function in both ways. However, in this scenario, additional
circuitry is needed to separate the received and transmitted signals.
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Figure 3.7: Proposed application of the technique to optimize and improve the
transmission efficiency for the Piezoacoustic transmission case study.
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The use of an power amplifier was needed because the signal generator
can not create an arbitrary signal with sufficient amplitude for the PEA in this
application. As the measurement of the amplified signal would not be possible
with the available hardware, as a compromise, the data used as the input for
the model was prior to the amplification. As such, the amplifier was made
part of the system to be modeled as shown in Figure 3.8. Thus, any additional
noise introduced by the power amplifier, which should be minimal due to the
linear broadband nature of the specific equipment used, is considered in the
modeling.

Figure 3.8: Schematic drawing of the system showing the input and output
acquisition signals location for the Piezoacoustic transmission case study and
the system to be modeled.

In this scenario, the four main variables that influence the dynamics of
the system are: (i) the distance between the PEA, (ii) coupling fluid medium,
(iii) temperature, and (iv) alignment between the steel plates (both in terms of
the angle between them and the superposed area). Additional variables could
be introduced through solid obstacles or discontinuities in the medium, induced
by flow of gas or vibrations, as shown in Figure 3.7.

All these variables can lead to undesirable inner reflections and trans-
mission losses, further complicating the modeling. In fact, those are present
in real-world conditions, but due to the limited availability of equipment and
time to model, a compromise between them was needed.
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Considering this context, the variables were set as such: the Tx and Rx
actuators spaced 100 mm and aligned concerning each other. The setup was
skewed to the right side of the tank, meaning that the Tx was closed to the
wall, as shown in Figure 3.5(b). This aims to reduce the inner reflections due to
the size of the tank. Finally, the tank was filled with distilled water and kept at
room temperature ( 24°C) and no additional obstacles or discontinuities were
introduced.

Thus, the acoustic channels contain five layers and three materials (epoxy,
steel, and distilled water) where both data and energy can transverse. Then,
a Vector Network Analyzer (VNA), model Keysight E5061B, is used to excite
the system with a 100ms swept sine signal of 707 milliVolts RMS, or 2V peak-
to-peak. This aims to detect the band of interest of the device under test. This
resulted in an increased response in the range between 900kHz to 1350kHz.
Figure 3.9 shows the power spectrum of the input signal used by the VNA as
a stimulus for the Tx PEA and the amplitude responses of the Rx PEA. Thus,
indicating that the peak transmission is located at ≈ 940kHz.

Figure 3.9: Power spectrum as measured by the VNA for the Piezoacoustic
transmission case study. It is possible to see that the system has a peak in
transmitted power at 940kHz with a second peak around 1162kHz.

The first dataset utilizes for the estimation a chirp signal. It was chosen
due to its characteristic to excite the system in many frequencies, resulting in
faster measurement rates and a higher SNR. The change rate of frequency was
set as a linear function of time with 100ms of period and amplitude before
amplification equal to 80mVpp. The frequency range was set from 900kHz to
1350kHz according to the VNA.
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The data was acquired at a sample rate of 100MHz to capture the
maximum amount of information of both Tx and Rx signals. This resulted
in 10 million points for the 100ms period of the signal. On the other hand, the
resulted dataset was oversampled. Therefore, it was necessary to preprocess
the data before the estimation and resample it.

Instead of using the Nyquist-Shannon Theorem [63] to find the minimum-
sampling rate at which a continuous signal can be recovered, the method
proposed in [83] was used as a guideline to find the ideal sampling frequency.
It consists in purposely oversampling the dataset and calculating the linear
and nonlinear covariance functions. Then, it is determined the necessary
decimation, and consequently the sampling frequency, based on the lag of each
function. This resulted in a reduction of the total number of samples from 10
million to 1 million.

To further process the resampled data, the frequencies outside the band
of interest were removed by a fifth-order band-pass filter. This new resampled
and filtered dataset was truncated to 2000 samples for creating the models.
Due to the characteristics of the signal, this new dataset does not contain the
entire frequency range of the original signal, but the gain in performance allows
us to obtain the model predictions for all orders tested. The input-output is
shown in Figure 3.10.

Figure 3.10: Input and Output, of the first dataset, used for the creation of
the model for the Piezoacoustic transmission case study.

The second dataset utilized both an estimation and validation signal.
For the estimation phase, it was employed the multisine signal and for the
validation, the linear chirp. The multisine was chosen because it is a general
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purpose signal that has an adjustable wide spectrum simultaneous stimulus
and is easy to generate.

The multisine had a randomly sampled phase in the range [0, 2π] with
uniform distribution. The number of components was set at nf = 45, 000
which turned out to represent a reasonable resolution for the frequency range
of 900kHz to 1350kHz, and 400mV amplitude. The original signal contained 1
million points. Limitations of the available memory of the signal generator, and
the sampling rate needed to correct excite the system, limited the maximum
number of points of the original signal that could be used. Therefore it was
truncated to 5 thousand points. Due to the nature of the multisine, it would
still cover the entire band of interest but with a lower resolution.

For the validation phase of the model, a linear up-chirp with a sweep time
of 1 ms was used. That means it takes 1 ms for the signal to sweep the entire
span of frequencies, which range from 900kHz to 1350kHz. The amplitude
was set to 150mVpp. As it was natively created by the signal generator, no
additional treatment of the signal was needed.

Similar to the first dataset, the data acquisition was performed at
100MHz sampling frequency, resulting in an oversampled dataset of 10 million
samples for both estimation and validation signals that needed to be optimized.

This was achieved through a moving average filter, with a span of 100
points, that was used in both estimation and validation. Those were further
re-sampled to 5 times the maximum frequency in the band of interest, which
amounts to 6.75MHz or two and a half times the Nyquist sampling frequency
needed to represent a signal with a maximum input frequency of 1350KHz. This
resulted in a decrease from 10 million points to 27 thousand points without any
noticeable loss in resolution in the frequency domain. This resulted in a loss of
amplitude in the power spectrum, as shown in Figure 3.12 and 3.14. However,
as a benefit from the preprocessing removed peaks outside the interest band,
smoothing and de-noising both the Tx and Rx signals, as shown in Figure 3.11
and 3.13.

Nevertheless, due to the available tools, computational and memory limi-
tations, the signal needed to be further reduced in size. This was accomplished
by simple truncation of the data, resulting in 2 thousand points for the multi-
sine (estimation) and 1 thousand points for the chirp (validation).

In the case of the estimation, due to the nature of the multisine, the
signal still covers the entire band of interest but with a lower resolution.
For the validation, due to the linear nature of the chirp, the signal kept the
resolution but was a slice of the original band of interest. For the validation,
it was not a problem since the truncation could be shifted and the model
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validated for several slices of the range. For the estimation, this could pose an
additional layer of difficulty to the modeling, but the gain in computation time
was noticeable.

Figure 3.11: First 10 µs of the Multisine signal pre-process (estimation).

Figure 3.12: Power Spectrum comparison for the Multisine (estimation).
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Figure 3.13: First 10 µs of the Linear chirp signal pre-process (validation).

Figure 3.14: Power Spectrum comparison for the Linear chirp signal (valida-
tion).

DBD
PUC-Rio - Certificação Digital Nº 1821042/CA



Part II

Contributions

DBD
PUC-Rio - Certificação Digital Nº 1821042/CA



4
Piezoelectric Micromanipulators

A PEA, with a cantilever structure and rectangular section, is employed
for a 1-DOF micromanipulator application. A general-purpose signal is used
to capture the dynamics of the system in the interest band. Several ANN
architectures are tested and compared based on validation metrics. The best
one is validated through several pure sinusoidal to verify the model adherence
in several frequencies. The results show that this contribution is suited for
predicting hysteresis loops of piezoelectric based micro-manipulators.

4.1
Results for Deep Learning Applied to Data-driven Dynamic Characteriza-
tion of Hysteretic Piezoelectric Micromanipulators

Both estimation (training) and validation datasets were normalized and
the results are given in a dimensionless scale. The model of choice was an ANN
and the training parameters can be visualized in Table 4.1.

Table 4.1: Parameters used for creation of the ANN models for the Piezoelectric
micromanipulator case study.

Description Value
Training algorithm RMSprop

Loss function MSE
Epochs 100

Learning rate 10−4

Batch (input/output pairs) 128
Activation function ReLU

ny order 10
nu order 10

N° hidden layers [3-5]
N° neurons per layer [25,50,100]
Architecture Type Feed-forward

The convergence of the loss function MSE, during the training phase,
occurred during the first epochs for most of the models. Little improvements
were observed after the first 10 epochs, as shown in Figure 4.1. Therefore,
indicating that the choice of training parameters were adequately selected.
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Figure 4.1: Convergence example of the loss function for the model with 4
layers of 25 neurons.

Table 4.2 summarizes all tested architectures in validation. To choose
the best model the criteria took into consideration the mean values R2 of the
FRS prediction in the estimation and validation phase, the total number of
parameters, the MSE and the complexity of architecture.

Table 4.2: Mean of the values of R2 for all validation datasets and total number
of parameters, according to the different architectures tested.

Layers Neurons Mean R2 Parameters
3 25 0.984742017 1851
3 50 0.992217724 6201
3 100 0.964782331 22401
4 25 0.989210717 2501
4 50 0.916190505 8751
4 100 0.992844673 32501
5 25 0.992375649 3151
5 50 0.986898346 11301
5 100 0.992068821 42601

Between the candidates, the model with 4 layers of 25 neurons, totaling
2501 parameters, was chosen as it presents a better compromise between
complexity and accuracy. One might say, at first glance, that the model with
5 layers of 25 neurons, totaling 3151 parameters, is better. But it provides
approximately a 3% increase in R2 for 26% more parameters. Also, as shown
in Figure 4.2 the mean of the MSE during the training phase was lower for the
chosen model.
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Figure 4.2: Comparison between the models for the loss function (MSE) and
the number of parameters.

It is possible to see a pattern in Figure 4.2 regarding the number of hidden
layers and the loss function. Except the model with 50 neurons, the models with
5 hidden layers performed far worse than its 3 and 4 layers counterparts. This
is an indication of an overfit, where the increased complexity of the model leads
to a very close representation of the training data, but poor generalization over
the new data presented in the validation. Also, the models with 100 neurons
had smaller overall deviation, indicated by the error bars, compared to other
models.

In Table 4.3 the validation of this model with respect to R2 obtained for
each sinusoidal is detailed. The values are close to unity, showing the excellent
prediction capability of the constructed model.

Table 4.3: Values for R2 in validation phase, varying frequencies for the
excitation signal, using 4 layers of 25 neurons.

Frequency (Hz) FRS Frequency (Hz) FRS
0.1 0.986797839 200 0.994559081
1 0.989170955 250 0.985648806
10 0.991136621 300 0.995859260
50 0.998469432 400 0.987992324
100 0.998403016 450 0.997331124
150 0.997474415 500 0.985664909
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By plotting the predicted value with respect to the real value we confirm
the obtained R2 and further inspect the results. Figure 4.3 shows that the lines
of prediction and measured data are almost superimposed. Additionally, the
shape of the loops curves changes with the frequency. This indicates that the
hysteresis is influenced by the excitation signal frequency, as expected, and
compensation needs to be employed in those cases.

Furthermore, under specific frequencies, such as 200, 250, 400, and 500Hz,
the results show larger spaced intervals. This could lead to improvements in the
design of the experiment as one might conclude that for higher input frequency
scenarios, the sampling rate needs to be even faster.

The results have shown that deep neural networks have the potential
for dynamic modeling of PEA in micromanipulator applications. Also, the
use of several pure sinusoidal for validation provided insights into the model
adherence and the hysteresis. The high accuracy model obtained for this
application allows the prediction of the hysteresis based on the input signal
frequency.

f = 0.1 Hz f = 1 Hz f = 10 Hz f = 50 Hz

f = 100 Hz f = 150 Hz f = 200 Hz f = 250 Hz

f = 300 Hz f = 400 Hz f = 450 Hz f = 500 Hz

Figure 4.3: Output predictions for the selected model for the piezoelectric
micromanipulator case study. Note that the data is normalized. Curves of u(t)
versus y(t) (blue) and ŷs(t) (red) for the various frequencies tested in validation
phase. Note that the hysteretic behavior has been adequately captured for a
wide band. Also, it is interesting to note how the hysteresis loop shape changes
when the frequency increases.
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Piezoacoustic Transmission

A test bench was developed with two PEA submerged in distilled water
to simulate an acoustic transmission application, enabling reliably and fast
data acquisitions. A survey of different data-driven modeling approaches were
performed. A total of three models were tested and compared. They were
the ARMAX with PEM estimator, the NARMAX with FROLS for the term
selection, and the NARX with a ANN as the nonlinear function. Both OSA
and FRS predictions were performed. A general purpose signal was employed
for estimation and the models were not validated through a separated dataset.
Instead, its quality was measured through metrics such as residuals and the R2.
Thus, each model was analyzed separately and summarized according to the
ascending order of R2 in FRS. The parameters used for the models were defined
empirically and the results show that the most complex model (NARMAX)
had the best accuracy, encouraging further creation of nonlinear mathematical
data-driven abstractions for the piezoacoustic transmission application.

Additionally, an in-depth exploration of ANN models was performed
to investigate how its architecture and parameter changes affect the model
prediction. This also used a general purpose signal for estimation of the several
thousands of configurations tested. Then they are compared based on residuals
and quantitative metrics. The eight most accurate models were validated with
a linear chirp signal. To account for the stochastic nature of ANN models,
each architectures were validated multiple times. The best overall architecture
was then further validated a total of 75 times to provide more insights on its
performance. Although the results do not have a perfect fit for the validation
data, it serves as a proof of concept for the use of ANN for this specific
application.
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5.1
Results for Evaluation of Nonlinear System Identification to Model
Piezoacoustic Transmission

The parameters used for the estimation of each model can be seen
in Table 5.1. As shown, several configurations were tested and the best
configuration is devised below.

Table 5.1: Parameters used for creation of the models for the Piezoacoustic
transmission case study.

Model Parameter Value

ARMAX
nu order [1-10]
ny order [1-10]
ne order [1-10]

NARX

nu order [1-20]
ny order [1-20]

N° hidden layers [1-2]
N° neurons per layer [4-5,10]
Architecture Type Cascade-forward or Feed-forward

Non-linearity estimator Sigmoid or Wavelet network

NARMAX

nu order [1-10]
ny order [1-10]
ne order [1-10]
nl order 2
ρp [10−4, 10−6]
ρn 10−1ρp

For the ARMAX, the best result obtained used the following orders:
nu = 2, ny = 10, and ne = 6. The model error can be observed in Figure
5.1. Although the model does not include nonlinear terms, the obtained result
presented good performance, with R2 = 0.9060 in FRS.

For the NARX model, a higher fit value was obtained with higher total
complexity. The model that obtained the higher R2 in FRS used a sigmoid
network as the activation function with the best model having the following
orders: nu = 15, and ny = 16, with R2 = 0.8920.

Comparing the residuals for both the ARMAX and the NARX models
in Figure 5.1, the NARX error is greater on the center part of the dataset,
while the ARMAX error is bigger in the extremities. This may suggest that
an ensemble of both models may lead to a better overall fit.

The best models for the NARMAX model took in consideration not only
the R2 metric, but also the selected number of terms. As such, the chosen
model has the following parameters: nu = 1, ny = 2, ne = 3, nl = 2, ρp = 10−4,
and ρn = 10−5, with R2 = 0.9629.
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Figure 5.1: Residuals (error) for FRS prediction of the ARMAX (left) and
NARX models (Right).

Figure 5.2 shows the scatter plot of the predictions vs. the measurements.
It is possible to see that the point near the 0V mark has greater dispersion
than the extremities. However, the fitted linear regression (green line) is close
to the 45◦ slope (red line), which represents an ideal model.

Figure 5.2: Measured vs Predicted for the free-run simulation of the best
NARMAX model. In red the y = x curve and in green the fitted linear
regression for the predictions.

By comparing different prediction horizons and their respective residuals,
Figure 5.3, the overall shape and amplitude between them are virtually the
same. However, for the FRS in Figure 5.3(f), it shows a different pattern
due to the FRS accumulation of errors over time and a greater amplitude
when compared to the others prediction horizons. This further reassures
the importance of the FRS prediction over the OSA and N-Step Ahead.
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Additionally, one can see that both nonlinear models, NARMAX and NARX,
have a similar pattern for the FRS residual but with different amplitudes.
Further investigation is needed as this is not present in the linear model,
ARMAX.

5.3(a): OSA Residual. 5.3(b): 10 Step Ahead Residual.

5.3(c): 20 Step Ahead Residual. 5.3(d): 50 Step Ahead Residual.

5.3(e): 100 Step Ahead Residual. 5.3(f): FRS Residual.

Figure 5.3: Residual (error) for the selected NARMAX model at different
predictions horizons. Note that all plots have the same amplitude.

By comparing the residuals at the same horizons from Figure 5.3 in the
frequency domain, as shown in Figure 5.4, its clear that the OSA residual
has lower system dynamic left when compared to the others. Furthermore,
the predicted output, ŷ, closes matches the peak at 950kHz of the measured
output, y. Which according to Figure 3.9 is close to the peak transmission
power of the frequency band of interest studied.
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Figure 5.4: Frequency domain comparison between measured output y (black),
predicted output ŷ (blue), and prediction errors (residuals) at different predic-
tion horizons. Note that the FRS prediction error is in red and the OSA is in
green. All prediction in between those are colored in gray for clarity.

Still, the predicted output lacks some of the system dynamics on other
frequencies that are outside the interest range. Note that the FRS residuals
contains the most system dynamics of all residuals. This is expected as the
FRS prediction tends to accumulate errors more easily. Furthermore, it has
a peak that matches the measured output, indicating that the model did not
capture the system dynamics completely.

This can be shown by plotting the residuals normal distribution in Figure
5.5. The OSA prediction residual has the narrower distribution and the FRS
the wider.

Figure 5.5: NARMAX residual (error) fitted normal distribution at different
prediction horizons. Due to scale, the FRS distribution looks like a flat line.
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Reinforcing the statement that the model did not capture all the system
dynamics, both the auto-correlation of the residuals (φξξ(τ)) and the cross-
correlation between the residuals and the input vector (φuξ(τ)) fall outside the
confidence margins as shown in Figure 5.6. Meaning that there is still room
for improvement.

Figure 5.6: Correlations tests for the NARMAX model.

In Table 5.2 a summary of all tested models is shown in terms of R2 in
FRS. In this table, NARMAX had the best results, with a greater margin,
when compared to the ARMAX and NARX. It is possible to see that the
predictions are close to unity in FRS for the NARMAX case, which confirms
this model’s ability to represent the dynamics of the system using measured
data.

As show in Figure 5.3, up to 100 steps ahead, the residual shape suffers
virtually no change. By further investigating larger prediction horizons for the
NARMAX model, one might find the sweet spot where the model starts to
lose its accuracy for this system.
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Table 5.2: Best models ordered by ascending order of R2 in FRS.

Model nu ny ne nl ρp ρn R2
FRS

NARX 19 17 NA NA NA NA 0.8830
NARX 17 16 NA NA NA NA 0.8830
NARX 18 18 NA NA NA NA 0.8880
NARX 15 16 NA NA NA NA 0.8920
ARMAX 1 5 2 1 NA NA 0.9000
ARMAX 1 5 5 1 NA NA 0.9010
ARMAX 2 10 7 1 NA NA 0.9040
ARMAX 1 8 3 1 NA NA 0.9040
ARMAX 2 10 6 1 NA NA 0.9060
NARMAX 1 3 1 2 10−4 10−5 0.9396
NARMAX 1 2 8 2 10−4 10−5 0.9612
NARMAX 1 2 3 2 10−4 10−5 0.9629
NARMAX 1 2 3 2 10−6 10−7 0.9651
NARMAX 4 5 10 2 10−6 10−7 0.9815
NARMAX 4 4 1 2 10−6 10−7 0.9819
NARMAX 4 6 4 2 10−6 10−7 0.9822
NARMAX 4 5 8 2 10−6 10−7 0.9824

5.2
Results for Evaluation of Deep Artificial Neural Networks for Data-driven
Modeling of Piezoacoustic Transmission

The Keras package, in R language, was used to create the models, see [84].
Both estimation (training) and validation datasets were normalized and the
training parameters for the ANN model can be visualized in Table 5.3.

As such, several hundred ANN configurations were tested with a input
vector containing a minimum of 4 and a maximum of 2048 values from the
input-output data. To account for the stochastic nature of ANN, each model
was run twice and the best model, another 3 times. Meaning the results are
the mean of 5 runs. The training algorithm used was an RMSprop.

For the majority of the models, the convergence of the loss function,
during the training phase, occurred during the first 20 epochs, showing
small improvements after the succeeding epochs, as shown in Figure 5.7.
Additionally, the majority presented a smooth descent without spikes. As such,
the parameters for the training phase were properly selected for the present
models.
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Table 5.3: Parameters used for creation of the ANN models for the Piezoa-
coustic Transmission case study.

Description Value
Training algorithm RMSprop

Loss function MSE
Epochs 75

Learning rate 10−4

Batch (input/output pairs) 128
Activation function Sigmoid, ReLU, or tanh
N° hidden layers [1-8]

N° neurons per layer [2-10,16,25,32,50,64,75,100,128,256,512,1024]
nu and ny order [2-10,16,32,64,128,256,512,1024]

Architecture Type Feed-forward

5.7(a): Example with less than 20 epochs until convergence.

5.7(b): Example with more than 20 epochs until convergence.

Figure 5.7: Training examples with the selected parameters. The X-axis is the
epoch number and Y the value for the loss function MSE.

Table 5.4 shows the best ANN models during the estimation phase.
The choice of the best model took not only into consideration the mean of
the evaluation metrics in both FRS and OSA, such as the residuals, cross-
correlation tests, MSE, and R2, but also the total number of parameters
trained, for a better compromise between complexity and accuracy.
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Table 5.4: Chosen ANN models, ordered by ascending value of R2 during FRS
in the estimation phase.

nu ny nrn acf R2
FRSMEAN

R2
FRSSD

1 - 512 1 - 256 256-128-64-32-16-8-4-2 tanh 0.9244 0.0292
1 - 512 1 - 512 256-128-64-32-16-8-4-2 tanh 0.9628 0.5274
1 - 512 1 - 512 100-100-100 tanh 0.9890 0.0043
1 - 512 1 - 512 50-50-50-50-50 tanh 0.9950 0.0014
1 - 512 1 - 512 50-50 tanh 0.9951 0.0025
1 - 512 1 - 512 50-50 sigmoid 0.9958 0.0015
1 - 512 1 - 512 100-100-100 sigmoid 0.9963 0.0016
1 - 512 1 - 512 75-75 sigmoid 0.9964 0.0015

Due to the number of architectures tested some insights could be ex-
tracted from the data. As an example, in Table 5.4, it is noticeable the absence
of models with lower lags for nu and ny. Until lags of order 64 for both nu and
ny, meaning 128 values for the input vector, there were no models with a good
fit. This means that a higher number of past values are necessary for the cor-
rect prediction of this system. Moreover, the lack of models with nu 6= ny does
not mean that only models where nu = ny had good accuracy. In fact, a lot of
models with different lags had good results, but the majority of models with
good fit had an equal amount of data from both input and output as the input
vector for the ANN.

Another insight is that the majority of the good models had sigmoid and
tanh as the activation function. Models with ReLU as the activation function
resulted in poor performance, even in the estimation phase. This is a point for
investigation as it is one of the most used functions and recommended given
the limitations of the other two [74,75].

Although the models provides an excellent fit for the estimation, they
did not provide a good fit for the validation data in FRS, as shown in Table
5.5. Reinforcing the importance to validate a model with different signals.

The OSA simulation provided better results with an R2 above 0.7 for
all models, reaching 0.9 in some runs. This short prediction window, where
the result has higher accuracy, could prove useful for some applications and
control. Future works could extend this window to find exactly when the model
loses accuracy, an example would be a 100 step ahead window.
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Table 5.5: Chosen ANN models, ordered by ascending value of R2 during FRS
in validation phase.

nu ny nrn acf R2
FRSMEAN

R2
FRSSD

1 - 512 1 - 256 256-128-64-32-16-8-4-2 tanh 0.3841 0.2378
1 - 512 1 - 512 256-128-64-32-16-8-4-2 tanh 0.4204 0.2444
1 - 512 1 - 512 100-100-100 tanh 0.4341 0.0750
1 - 512 1 - 512 50-50-50-50-50 tanh 0.4383 0.1122
1 - 512 1 - 512 50-50 tanh 0.4950 0.0953
1 - 512 1 - 512 50-50 sigmoid 0.4977 0.2255
1 - 512 1 - 512 100-100-100 sigmoid 0.5281 0.0349
1 - 512 1 - 512 75-75 sigmoid 0.5642 0.0705

It is also noticeable that, by sorting in ascending order of R2 in FRS,
the models kept the same order between the estimation phase, Table 5.4, and
validation, Table 5.5. This is not always the case as one model can provide
great results in estimation but not in validation due to several factors such as
overfitting, further reinforcing the importance of validation.

The best model according to all metrics and complexity, among all the
chosen models, has 2 layers of 75 neurons each, sigmoid activation function,
and 512 lags for nu and ny. Looking at each run in Table 5.6, the best run for
this model had an R2 of 0.6463 in validation. Considering the trade-offs due
to the large bandwidth and sampling frequency required by the system, it is
not a bad result.

Table 5.6: Individual runs for the best model, ordered by ascending value of
R2 during FRS in validation phase.

Run R2
OSAEST

R2
FRSEST

R2
OSAV AL

R2
FRSV AL

1 0.9988 0.9971 0.8805 0.4729
2 0.9991 0.9981 0.8930 0.5110
3 0.9993 0.9965 0.8973 0.5916
4 0.9986 0.9941 0.8924 0.5991
5 0.9991 0.9962 0.9065 0.6463

This model was executed another 70 times, totaling 75 runs, to further
analyze it. The evaluation metrics implies that there is still room to improve
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this model. The residuals for the estimation phase in Figure 5.8, shows a peak
in the same region in several runs for both OSA and FRS. Potentially indicating
the presence of an outlier in the data.

5.8(a): Run N°6. 5.8(b): Run N°14.

5.8(c): Run N°35. 5.8(d): Run N°75.

Figure 5.8: Error (residuals) in FRS (red) and OSA (blue) predictions for the
estimation (training) of the selected ANN model. Note that all graphs have
the same amplitude in y axis.

The residuals for the validation phase, in Figure 5.9, have higher am-
plitude compared to the estimation, as expected based on Table 5.6. But the
distribution of the residual is not as uniform, having a higher amplitude in the
center region.

Selecting the run six and comparing both validation and estimation
phases in the frequency domain we see that the validation has, as expected, lost
its resolution due to the truncation, Figure 5.10. Additionally, the residuals still
contains dynamic of the underling system, as both OSA and FRS predictions
contains peaks near the 950kHz. Furthermore, outside the band of interest,
there is a peak around 2750kHz. This could indicate that the model suffers
from over-fitting or could indicate a source of noise that was captured by the
model in the preprocess data. Those are not present for the estimation as show
in Figure 5.11.

DBD
PUC-Rio - Certificação Digital Nº 1821042/CA



Chapter 5. Piezoacoustic Transmission 70

5.9(a): Run N°6. 5.9(b): Run N°14.

5.9(c): Run N°35. 5.9(d): Run N°75.

Figure 5.9: Error (residuals) in FRS (red) and OSA (blue) predictions for the
validation of the selected ANN model. Note that all graphs have the same
amplitude in y axis.

Figure 5.10: Frequency domain comparison for validation of run N°6 of the
selected ANN model. In black the measured output y, in blue the predicted
output ŷ, in green the OSA residual and in red the FRS residual.
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Figure 5.11: Frequency domain comparison for estimation of run N°6 of the
selected ANN model. In black the measured output y, in blue the predicted
output ŷ, in green the OSA residual and in red the FRS residual.

The scatter plot of the measured output by the predicted output, in
Figure 5.12, shows that the estimation data is close to the ideal prediction,
although that, at the extremes, the data points are distant from the fitted
linear regression. The fitted linear regression for the validation data is still
close to the ideal prediction, however the data point at the center is distant
from it, as expected from Figure 5.9. This is a point for future work and maybe
is connected to the data collection and/or preprocessing limitations of the case
study.

5.12(a): Estimation phase. 5.12(b): Validation phase.

Figure 5.12: Measured vs Predicted values in FRS for the selected ANN model
structure. In green the x=y line and in red the fitted linear regression for the
predictions.
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Finally, the distribution of R2, in Figure 5.13, shows that the validation
result has higher standard deviation than the estimation. As the results of
the validation are clearly inferior, further investigation is needed for the phase
information of the signals. Those can be evaluated by plotting the measured
output from the system versus the signals obtained using the FRS prediction.

5.13(a): Estimation phase with mean 0.997181545 and SD 0.001188647.

5.13(b): Validation phase with mean 0.54788858 and SD 0.05346327.

Figure 5.13: R2 distribution for both FRS estimation and validation on 75
runs. Note that as R2 only goes to a maximum value of 1, the fitted curve for
the estimation is limited to it.
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6
Final Considerations

The present work explored the application of SI methodology and black-
box data-driven models in two applications of PEA: (i) micromanipulators and
(ii) acoustic transmission. Different types of signals, preprocessing methods,
and evaluation metrics were explored. All with experimental data, acquired
through the use of specially developed test benches to mimic the real-world
application.

Concerning the micromanipulators, it was shown that deep neural net-
works are feasible for dynamic modeling. Additionally, the importance of the
use of a general-purpose excitation signal for acquiring data to create the model
was demonstrated.

With respect to the acoustic transmission case, few works in the literature
are found employing the SI methodology for this application of PEA. The re-
sults show the great potential of black-box models in comparison to analytical
approach models, primarily when computational performance is important for
monitoring, as environmental changes may take place. Several models, namely,
linear ARMAX, power-form polynomial NARMAX models, and several thou-
sand configurations of the NARX with ANN model structure were tested. In
the specific case of the NARX-ANN models, although a perfect accuracy for
the validation data was not achieved, it paves the way for further improve-
ments as it serves as a proof of concept of the use of ANN for this specific
application. Nevertheless, the models are useful for tracking time-varying sys-
tems at short prediction windows. This is extremely relevant since the optimal
frequency response, which determines the maximum gain in transmission, can
be influenced by the parameters of the obtained model. The mere fact that the
methodologies here utilized require only input and output data is worth the
effort.

Based on the contributions and its results, the following suggestions are
made to further improve the models of piezoelectric in micromanipulation and
acoustic transmission in future research:

– More research shall be diverted to the creation of a more automatic
approach to generate models, such as the use of neuroevolution tech-
niques [85]. It still lacks relevant engineering applications that involve
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dynamic systems modeling such as monitoring, prediction, compensa-
tion, and simulation. Even if the use of such techniques implies greater
computational burden, the combination of powerful complex represen-
tation and ease of model creation may play an important role in the
nonlinear black-box system identification space as it is time-consuming
and thus expensive to create models at scale, if not impossible, when
problem-dependent decisions are needed.

– Further study is needed to comprehend how different assumptions and
changes in the operational conditions affect the model performance. A
few examples, in the case of the acoustic transmission, are the distance
between the Rx and Tx PEA, the type of fluid, and its temperature. For
the micromanipulator case, it is needed to study how pure sinusoidal with
simultaneous different amplitudes and frequency affect the modeling and
hysteresis loops.

– As the bandwidth and sampling frequency required by the piezoelectric
here presented are large, new methods for handling big datasets are a
handful for black-box modeling. The used methods cannot accommodate
the several thousand samples, after preprocessing of the acquired data,
simultaneously or in batch mode. As such, it is required to truncate the
data leading to a potential loss of accuracy of the models.

– An expansion of the ANN model through the use of Recurring Neural
Networks that have temporal dynamic behavior ("memory") or Physi-
cally Informed Artificial Networks, that takes into consideration physical
laws described through the nonlinear partial differential, could lead to
improvements and interesting results, especially in the acoustic trans-
mission. Additionally, an ensemble of models shall be investigated for
the micromanipulators as it may lead to a better fit as suggested when
comparing the residuals in Figure 5.1.

– Improvements in the test bench to overcome limitations in the avail-
able hardware are needed. Those were circumvented in the present work,
but future research could include the use of better and/or use of specifi-
cally made equipment/circuitry reducing the uncertainties introduced by
the aforementioned circumvented limitations. This includes better signal
generators that can fully utilize broadband signals, such as the multi-
sine, with all its components. And, in the specific case of the acoustic
transmission, a large tank or specialized circuitry to mitigate inner re-
flections that cross-feeds the PEA and contaminates the data. The use of
equipment with high voltage data acquisition capabilities, to remove the
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amplifier from the model, is not mandatory. In some real world applica-
tions, all the electronics needed for signal amplification and conditioning
are not easily detached from the system and needs to be accounted for
in the model.

– One shortcoming of the acoustic transmission approach here taken is the
use of a single Tx and Rx. For the magnetic coupling approach of wireless
power transfer, the authors in [59] say that the use of multiple-input
single-output systems have increased power transfer when compared to
the single-input single-output approach. However, at the same time, it
poses new challenges for the modeling due to increased number of DOF.
The acoustic approach may not be different once, by analogy with the
magnetic coupling method, the increased number of Tx and/or Rx PEA
introduces secondary reflections that lead to cross-feed and contaminate
the data.
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