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Abstract

de Souza Prado Lopes, Erico; Landau, Lukas Tobias Nepomuk (Ad-
visor).Discrete Precoding and Adjusted Detection for Mul-
tiuser MIMO Systems with PSK Modulation . Rio de Ja-
neiro, 2021. 74p. Dissertação de mestrado – Departamento de Cen-
tro de Estudos em Telecomunicações (CETUC), Pontifícia Univer-
sidade Católica do Rio de Janeiro.

With an increasing number of antennas in multiple-input multiple-output
(MIMO) systems, the energy consumption and costs of the corresponding
front ends become relevant. In this context, a promising approach is the con-
sideration of low-resolution data converters. In this study two novel optimal
precoding branch-and-bound algorithms constrained to constant envelope
signals and phase quantization are proposed. The first maximizes the mini-
mum distance to the decision threshold (MMDDT) at the receivers, while
the second minimizes the MSE between the users’ data symbols and the
receive signal. This MMDDT design presented in this study is a genera-
lization of prior designs that rely on 1-bit quantization. Moreover, unlike
the prior MMSE design that relies on 1-bit resolution, the proposed MMSE
approach employs uniform phase quantization and the bounding step in
the branch-and-bound method is different in terms of considering the most
restrictive relaxation of the nonconvex problem, which is then utilized for
a suboptimal design also. Moreover, three different soft detection methods
and an iterative detection and decoding scheme that allow the utilization
of channel coding in conjunction with low-resolution precoding are propo-
sed. Besides an exact approach for computing the extrinsic information,
two approximations with reduced computational complexity are devised.
The proposed branch-and-bound precoding algorithms are superior to the
existing methods in terms of bit error rate. Numerical results show that
the proposed approaches have significantly lower complexity than exhaus-
tive search. Finally, results based on an LDPC block code indicate that the
proposed receive processing schemes yield a lower bit-error-rate compared
to the conventional design.

Keywords
Precoding; Low-Resolution Quantization; Phase Quantization;

MIMO systems; Branch-and-Bound methods; MMSE; MMDDT;
Constant Envelope signals; Log-Likelihood-Ratios; Soft Detection; Ite-
rative Detection and Decoding.
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Resumo

de Souza Prado Lopes, Erico; Landau, Lukas Tobias Nepomuk.
Precodificação Discreta e Detecção Correspondente para
Sistemas MIMO Multiusuário que utilizam Modulação
PSK . Rio de Janeiro, 2021. 74p. Dissertação de Mestrado – De-
partamento de Centro de Estudos em Telecomunicações (CETUC),
Pontifícia Universidade Católica do Rio de Janeiro.

Com um número crescente de antenas em sistemas MIMO, o consumo de
energia e os custos das interfaces de rádio correspondentes tornam-se rele-
vantes. Nesse contexto, uma abordagem promissora é a utilização de con-
versores de dados de baixa resolução. Neste estudo, propomos dois novos
pré-codificadores ótimos para a sinais de envelope constante e quantização
de fase. O primeiro maximiza a distância mínima para o limite de deci-
são (MMDDT) nos receptores, enquanto o segundo minimiza o erro médio
quadrático entre os símbolos dos usuários e o sinal de recepção. O design
MMDDT apresetado nesse estudo é uma generalização de designs anteri-
ores que baseiam-se em quantização de 1-bit. Além disso, ao contrário do
projeto MMSE anterior que se baseia na resolução de 1-bit, a abordagem
proposta emprega quantização de fase uniforme e a etapa de limite no mé-
todo branch-and-bound é diferente em termos de considerar o relaxamento
mais restritivo do problema não convexo, que é então utilizado para um
design sub ótimo também. Além disso, três métodos diferentes de detec-
ção suave e um esquema iterativo de detecção e decodificação que permite
a utilização de codificação de canal em conjunto com pré-codificação de
baixa resolução são propostos. Além de uma abordagem exata para calcu-
lar a informação extrínseca, duas aproximações com reduzida complexidade
computacional são propostas. Os algoritmos propostos de pré-codificação
branch-and-bound são superiores aos métodos existentes em termos de taxa
de erro de bit. Resultados numéricos mostram que as abordagens propos-
tas têm complexidade significativamente menor do que a busca exaustiva.
Finalmente, os resultados baseados em um código de bloco LDPC indicam
que os esquemas de processamento de recepção geram uma taxa de erro de
bit menor em comparação com o projeto convencional.

Palavras-chave
Precodificação; Quantização de Baixa Resolução; Quantização

em Fase; Sistemas MIMO; Método Branch-and-Bound; MMSE;
MMDDT; Sinais de Envelope Constante; Log da Razão de Verossimi-
lhança; Detecção Suave; Detecção e Decodificação Iterativa.
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1
Introduction

Multiuser multiple-input multiple-output (MIMO) systems have become
central in the wireless communications area. Many standards, such as IEEE
802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX, and Long
Term Evolution (4G LTE), have adopted MIMO due to its benefits over single-
input single-output (SISO) systems.

MIMO systems have considerable advantages over SISO, e.g. increased
capacity, reliability and spectrum efficiency [1]. Thus, multiuser MIMO systems
are expected to be vital for the future of wireless communications [2].

1.1
Motivation and Context

Although MIMO is considered as essential for the future of wireless
communications, the energy consumption and costs related to having multiple
radio frequency front ends (RFFEs) present a challenge for this kind of
technology [3].

The power consumption of one individual RFFE generally does not
generate a huge impact on the total energy consumption of the system, yet
when a large number of RFFEs is employed its energy consumption can become
significant and can cause energy efficiency (EE) problems.

Energy efficiency (EE) is a key requirement for the next generation
of wireless communications. According to [4], 6G networks will require 10
to 100 times higher EE when compared to 5G, to enable scalable low-cost
deployments, with low environmental impact, and better coverage. As stated
in [5, 6], another central demand for future networks is higher data reliability.

With this, a challenge for the design of MIMO systems is the reduction
of the energy consumption and costs related to the large number of RFFEs
with minimum bit-error-rate (BER) compromise.

1.1.1
Radio Frequency Front End Components versus Energy Efficiency

To realize low energy consumption and low hardware-related costs dif-
ferent approaches have risen in literature for increasing the EE of the most
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consuming elements of a RFFE. The following will give a brief overview on
these elements and the main solutions for the increasing of their EE.

1.1.1.1
Power Amplifier

The power amplifier (PA) in wireless communications systems is the
device responsible to amplify the signal and drive it to the antenna. Ideally
the PA should transfer all the energy it consumes to the amplification of the
arriving signal, providing to the antenna an amplified copy of the its input.
However, in real devices a trade-off between distortion and EE has to be made.
For this reason, the PAs are characterized by two main features, linearity and
efficiency.

PAs, when operating with minimum distortion, generally have relatively
low EE, e.g. a class A amplifier transfers a maximum of 50% of the consumed
power to its output [7]. This problem is enhanced when high peak-to-average
wave forms are considered [8].

Thus, one approach for the increasing the PA’s EE in the consideration of
constant envelope (CE) waveforms, such as the ones used for PSK modulation.

1.1.1.2
Digital-to-Analog Converter

On the other side, depending on the pathloss, the converters can be
one of the most energy consuming elements of a RFFE. A noteworthy fact
regarding the consumption of digital-to-analog converters (DACs) is that it
scales exponentially with its resolution in amplitude [9].

In the downlink (DL), the baseband signal is generated by two digital-to-
analog converters (DACs). Traditional RFFEs are generally employ to a pair of
high resolution DACs (e.g. 10 bits or more). The mentioned behavior between
the DAC’s resolution in amplitude and its energy consumption and the fact
that massive multiuser MIMO systems generally have hundreds or thousands
of BS antennas yield a prohibitive energy consumption when employing high-
resolution converters [10]. Hence, adopting low resolution DACs is a potential
solution for mitigating the high energy consumption issue.

However, the adoption of low-resolution converters can cause significant
performance degradation in the BER. In this context, a promising method
to balance this BER loss and approach the requirements of future wireless
communications networks [5, 6] is the usage of channel coding.
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1.2
Related Work

Another way to mitigate the performance degradation caused by coarse
quantization is the employment of low-resolution precoding and detection
schemes. These techniques have been receiving increasing attention from the
wireless communications community.

Several precoding strategies with low-resolution data converters exist
in literature. Linear approaches, such as the phase Zero-Forcing (ZF-P) pre-
coder [11] and the Wiener Filter Quantized (WFQ) precoder [12], benefit from
a relatively low computational complexity. However, they yield performance
degradation in BER especially for higher-order modulation [13, 14, 15, 16].
Therefore, more sophisticated nonlinear approaches have been presented re-
cently in [17, 18, 19, 20, 21, 22, 23, 24]. However, the methods from
[17, 18, 19, 20, 21, 22, 23] imply rounding and the method from [24] implies the
convergence to a local minimum, which make the solution provided by these
approaches suboptimal in their design criteria.

Moreover, some optimal precoders exist in literature. In [25] a branch-
and-bound algorithm was developed for maximizing the minimum distance
to the decision threshold (MMDDT) for the 1-bit case. In addition, in [26] a
branch-and-bound algorithm, is presented for finding the transmit vector that
minimizes the mean square error (MMSE), also for the 1-bit case.

On the detection side, various different techniques with low-resolution
analog-to-digital converters (ADCs) were developed, e.g. [27, 28, 29, 30, 31,
32, 33].

1.3
Contributions

The scope of this work lies in the design of precoding and detection
schemes for a MIMO downlink (DL) system in which the base station (BS)
is considered to use PSK modulation in conjunction with uniform phase
quantizers that have an arbitrary number of quantization regions. With this in
mind this section is divided into two parts, the first exposes the contributions
made in the precoding side, while the second explains the ones made in the
detection side.

1.3.1
Precoding

This work devises an optimal precoding strategy based on the MMDDT
criterion and an optimal and a suboptimal precoding techniques based on the
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MMSE criterion.

1.3.1.1
MMDDT Contributions

In the present study the work from [25], which uses 1-bit quantization,
is generalized for phase quantizers with arbitrary number of phases at the
transmit antennas and PSK modulation. This extension should be considered
as non trivial because in the case of PSK, each symbol cannot be decomposed in
independent real and imaginary part as done in the 1-bit case. The proposed
precoder is optimal in terms of the MMDDT criterion, obtained by using a
sophisticated branch-and-bound strategy.

In contrast to the method presented in [20], which implies a rounding
step, the proposed algorithm finds the global optimum. Rounding steps when
used for computing the final precoding vector causes BER performance degra-
dation and can generate error floors. Moreover, unlike the problem formulation
in [20] with 2q different phases, the proposed approach supports an arbitrary
number of phase quantizations. In the initial step of the proposed method
the relaxed problem is solved and rounded to the feasible set. Subsequently
the optimum is determined by a tree search based algorithm. The MMDDT
ow-resolution precoding contributions were published in [34].

1.3.1.2
MMSE Contributions

In this study, a novel branch-and-bound algorithm for finding the vector
that yields the minimum MSE is also devised. In contrast to the MMDDT
criterion considered in [20] and [25], which is promising in the context of hard
decision receivers and the high signal-to-noise ratio (SNR) regime, the MMSE
criterion is more general.

Besides the consideration of phase quantization and PSK modulation, the
proposed approach uses a different bounding method as the approach presented
in [26]. Whereas the approach in [26] employs for relaxation the constant
envelope constraint, the present study relies on the convex hull of the discrete
non-convex feasible set, which is by definition the most restrictive relaxation
for establishing convexity. Consequently, the lower bounds computed in the
present study are greater or equal to the ones computed in [26].

In addition, a suboptimal precoding approach is devised based on the
relaxed problem, which is formulated as a convex quadratic program. Note that
this method is different from the one presented in [19], since, in the present
study, the scaling factor is also part of the optimization problem and, thus,
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does not need to be approximated as done in [19]. Furthermore, while the
method from [19] implies QPSK data modulation and 2q quantization phases,
the proposed approach allows the entries of the data vector to belong to any
kind of PSK modulation and the quantizers to have an arbitrary number of
phases. The MMSE low-resolution precoding contributions were published in
[35, 36].

The numerical results show that the MMSE branch-and-bound method
corresponds to a lower uncoded BER in comparison to the state-of-the-art
algorithms for the low and intermediate SNR regime. Moreover, the numerical
results confirm that when operating in low SNR, only a small number of bounds
need to be evaluated to determine the optimal solution.

1.3.2
Detection

For receiving, three novel discrete precoding aware (DPA) soft detection
methods integrated in an iterative detection and decoding (IDD) scheme are
proposed. To the best of our knowledge, the present study is the first which
considers soft detection for a MIMO DL system with discrete precoding.

The three proposed soft detection approaches calculate extrinsic infor-
mation values, which are used for computing the log-likelihood-ratios (LLR)
via the DPA-IDD algorithm. While the first method computes the extrinsic in-
formation based on the true probability density function (PDF) of the received
signal, the second method relies on a nonlinear Gaussian approximation of the
original PDF for its computation. Finally, the third relies on a description of
the received signal by a linear model with a Gaussian additive distortion term.

Numerical results show that employing the common LLR computation
method for AWGN channels without taking into account the effects of the
discrete precoder causes an error floor in the systems’ BER for high-SNR.
By relying on more sophisticated LLR computation methods, the proposed
approaches mitigate this problem while also enhancing the overall BER per-
formance of the system. The contributions of the detection part were published
in [36, 37].

1.4
Thesis Outline

The remainder of this thesis consists of 7 chapters which are structured
as follows:

– Chapter 2 presents the model of the system;
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– Chapter 3 revises the state-of-the-art and carefully describes the most
important algorithms from literature;

– Chapter 4 presents the developed precoding techniques;

– Chapter 5 exposes the derivation of the proposed soft detection ap-
proaches as well as the DPA-IDD scheme;

– Chapter 6 presents the numerical evaluation of the proposed approaches
and compares them with the techniques presented in chapter 3;

– Chapter 7 presents the conclusion of the thesis;

– Chapter 8 discusses possible extensions for the proposed study;

Finally, the convexity analysis and the derivation of the linear model are
presented in the appendix.

1.5
Notation

Regarding the notation, bold lower case and upper case letters indicate
vectors and matrices, non-bold letters express scalars. The operators (·)∗,
(·)T and (·)H stand for complex conjugation, transposition and Hermitian
transposition, respectively. Real and imaginary part operator are also applied
to vectors and matrices, e.g., Re {x} = [Re {[x]1} , . . . ,Re {[x]M}]

T and
equivalently for Im {·}.
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2
System Model

This study considers a single-cell multiuser MIMO DL system where
the BS has perfect channel state information (CSI) and is equipped with M

transmitting antennas which serves K single-antenna users as illustrated by
Fig. 2.1.

A blockwise transmission is considered in which the BS delivers Nb

bits for each user. The user specific block is denoted by the vector mk =
[mk,1, . . . ,mk,Nb ], where the index k indicates the k-th user. Each vector mk

is encoded into a codeword vector denoted by ck = [ck,1, . . . , ck,Nb
R

], where R is
the code rate. The encoding operation is considered to be systematic meaning
that ck = [pk,1, . . . , pk,Nb(1−R)

R

,mk,1, . . .mk,Nb ], where pk,i is the i-th parity bit.
Each encoder provides, sequentially over time slots,N bits to a modulator

which maps them into a symbol s ∈ S using Gray coding. The set S represents
all possible symbols of a αs-PSK modulation, with αs = 2N , and is described
by

S =
{
s : s = e

jπ(2i+1)
αs , for i = 1, . . . , αs

}
. (2-1)

The mapping operation is denoted as sk[t] = M (rk,t), where rk,t =
[rk,t,1, . . . , rk,t,N ] is the t-th bit vector, taken from ck. The vector rk,t can also
be expressed as rk,t = [ck,(t−1)N+1, . . . , ck,tN ] for t = 1, . . . , Nb

RN
. After mapping,

the symbols of all K users are represented in a stacked vector notation as
s[t] = [s1[t] . . . sK [t]]T ∈ SK for each time slot t.

The vector s[t] is forwarded to the precoder, which computes the transmit
vector x[t] = [x1[t] . . . xM [t]]T ∈ XM . The entries of the transmit vector are
constrained to the set X , which describes an αx-PSK alphabet, denoted by

X =
{
x : x = e

jπ(2i+1)
αx , for i = 1, . . . , αx

}
. (2-2)

A frequency flat fading channel is considered, which is described by the
matrix H with coefficients hk,m = gk,m

√
βk where gk,m represents the complex

small-scale fading between the m-th antenna and the k-th user, βk denotes
the real valued large-scale fading coefficient of the k-th user, k = 1...K and
m = 1...M . A block fading model is considered in which the channel is time-
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Figure 2.1: Multiuser MIMO downlink with discrete precoding and channel
coding
invariant during the transmission time.

The BS computes for each coherence time interval of the channel the
lookup-table L containing all possible precoding vectors, which then implies
s ∈ SK ⇐⇒ x(s) ∈ L.

With this, the noiseless received signal corresponding to the k-th user at
the t-th time slot is given by

yk [t] = hk x [t] , (2-3)

where hk is the k-th row of the channel matrix H . At the user terminals
the noiseless received signals are distorted by AWGN denoted by the complex
random variable wk [t] ∼ CN (0, σ2

w). The receive signal from the k-th user is
denoted by

zk [t] = yk[t] + wk [t]

= hk x [t] + wk [t] , (2-4)

Using stacked vector notation equation (2-4) can be extended to

z [t] = y [t] +w [t]

= H x [t] +w [t] , (2-5)

where z[t] = [z1[t] . . . zK [t]]T , y[t] = [y1[t] . . . yK [t]]T and w[t] =
[w1[t] . . . wK [t]]T .
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Each received signal zk[t] is forwarded to the IDD receiver where the
transmitted block will be detected. Finally the data block available to the k-th
user reads as m̂k = [m̂k,1, . . . , m̂k,Nb ].
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3
Literature Review and Important Baselines

In this chapter, the precoding literature and important precoding base-
lines for MIMO DL systems is reviewed. The precoding techniques present in
the literature can be divided into three major groups, they are

– Total Power Constraint (TPC),

– Per Antenna Power Constraint (PAPC),

– Low Resolution.

This thesis will focus primarily on the development of low resolution
precoders. However, in what follows a brief explanation on TPC and PAPC
precoders will be also given.

3.1
Total Power Constraint Precoding

This subsection describes the TPC precoding technique. This type of
precoder is characterized by the TPC, meaning that the norm squared of the
precoding vector must be equal to the total transmit power available. The
objective is then to minimize the BER subject to the TPC. There are several
criteria for BER minimization available for precoding, but, in general, the TPC
optimization problem can be cast as

min
x[t]

f(H ,x[t]) (3-1)

s.t. E
[
||x[t]||22

]
≤ Etx ,

where f(H ,x[t]) is the objective function that represents the design criterion
and Etx is the maximum transmit power.

The TPC strategy generates the higher BER performance of all classes
of precoding techniques. However, according to [18] the assumption of a TPC
is not realistic, since each transmitting antenna is typically characterized by
its own PA and is hence affected by specific power constraints. Moreover, the
usage of precoding techniques where the power at each antenna is fixed allows
the PA to work with minimum peak-to-average ratio, hence enhancing the EE
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of the system. Next, the popular linear MMSE Precoder is introduced as an
example of TPC precoding technique.

3.1.1
Linear MMSE Precoder

As the name states the objective of the linear MMSE precoder is to
minimize the mean square error between the arriving signal z[t] and the data
s[t] subject to the TPC. The noise and signal statistics are supposed to be
known as well as the channel state. The problem formulation is then,

PMMSE = arg min
P ,f

E
[
||s[t]− fz[t]||22

]
(3-2)

s.t. tr
{
PCsP

H
}
≤ Etx .

Note that the constraint tr
{
PCsP

H
}
≤ Etx is equivalent to E [||x||22] = Etx.

Considering the MSE minimization problem in (3-2) one might get the idea
that an equivalent problem can be cast when scaling the symbol vector s
instead of the received signal z. This case however implies that issue that
scaling the vector s yields a scaled MSE where the scaling factor is part of the
optimization problem.

Solving the optimization problem from (3-2) yields

PMMSE = fMMSE

(
HHH + tr {Cw}

Etx
I

)−1

HH (3-3)

fMMSE =
√√√√√ Etx

tr
{(
HHH + tr{Cw}

Etx
I
)−2

HHCsH
} , (3-4)

where Cw is the covariance matrix of the noise and fMMSE is the scaling factor
that guarantees that the total transmit power is constant and less or equal to
the total power constraint Etx.

3.2
Per Antenna Power Constraint Precoding

This subsection describes PAPC precoders. This group of precoders is
characterized by the PAPC meaning that the absolute value squared of each
entry of the precoder’s transmit vector has the same value. Essentially this
results in equal distribution of power between all transmit antennas. In general
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the PAPC optimization problem can be cast as

min
x[t]

f(H ,x[t]) (3-5)

s.t. |xi[t]|2 = Etx

M
for i = 1 ... M .

Precoding using PAPC leads to more efficient usage of PAs since it allows
the PA to work with the minimum the peak-to-average ratio. However, PAPC
precoding does not address the problem of energy efficient DACs since it still
implies high resolution.

3.3
Low Resolution Precoding

This subsection describes low resolution precoders. In this type of system
a new constraint takes place of the PAPC, now each entry of the transmit
vector belongs to a predefined discrete set. This set generally represents a
PSK modulation, however, some precoders have extended the PSK results for
QAM. However, when QAM modulation is used, the PA’s efficiency goes down,
decreasing the system’s EE. Because of the discrete set constraint, the term
discrete precoding is treated as a synonym of low-resolution precoding.

Having a discrete set of precoding symbol options generates a significantly
harder problem in terms of computational complexity when compared with
the classes presented in subsections 3.1 and 3.2. In general the problem of low
resolution precoding states

min
x[t]

f(H ,x[t]) (3-6)

s.t. x[t] ∈ F

E
[
||x[t]||22

]
≤ Etx,

where F is the discrete set. Note that in general the low-resolution precoding
optimization problem implies the TPC. However, depending on the structure
of the set F the TPC becomes redundant and, thus, can be dropped.

3.4
Low Resolution Precoding With PSK Modulation

One interesting result happens when the discrete set represents a PSK
modulation. In this case, not only the TPC can be dropped, but also the set F
is in the form of XM . As will be seen in Section 4.1 this is useful for tree search
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based methods. When the entries of transmit vector x[t] are constrained to a
PSK modulation the optimization problem in (3-6) can be rewritten as

min
x[t]

f(H ,x[t]) (3-7)

s.t. x[t] ∈ XM .

Most of state-of-the-art algorithms, for solving (3-7), employ relaxations
of the feasible set to convexify the non convex optimization problem.

When a relaxation is performed, the solution of the relaxed version
of (3-7) is a lower bound on the optimal solution. However, this lower
bound solution does not necessarily belong in XM therefore being considered
unfeasible on the original problem. For finding a feasible solution from (3-7) in
general mapping to the closest Euclidean distance point in XM is considered.

Yet, this mapping step does not preserve the optimality, since the point
in XM that is closest to the lower bound solution is not necessarily the optimal
of (3-7).

Most of the state-of-the-art low resolution precoders employ the men-
tioned mapping step and, thus, are not optimal in their design criterion. In
the following, some of the most popular state-of-the-art low resolution pre-
coders are presented.

3.4.1
Phase Zero-Forcing Mapped Precoder

The Phase Zero-Forcing mapped precoder (ZF-P) is a low complexity ap-
proach presented by [11]. It considers the popular TPC ZF precoder presented
by [13] and utilizes it in the low resolution context.

The idea is simply to multiply the data vector s[t] by the ZF precoder
matrix and scale the result such that the PAPC is met. The mathematical
expression is stated as follows

x[t] =
√
Etx

M
ej arg {P zfs[t]} , (3-8)

where

P zf = fzfH
(
HHH

)−1
(3-9)

fzf =
√√√√√ Etx

tr
{
Cs

(
HHH

)−1
} ,
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is the TPC ZF precoding matrix.
Note that the result from equation (3-8) is not necessarily in XM and,

thus, the discussed mapping step is considered to generate a feasible solution.

3.4.2
CVX-CIO Mapped Precoder

The CVX-CIO precoder, presented in [18], is an algorithm based on the
maximization of the minimum value of constructive interference. For finding
the transmit vector a second order cone program (SOCP) is solved subject to
the PAPC.

The general idea of CVX-CIO is that the signal that arrives at the receiver
is the transmitted signal summed with noise and interference. Since the BS is
assumed to have perfect CSI, the interference can be controlled in such a way
that it can be helpful for detection.

zk[t]

Im

Re

sk[t] τ dk zk[t]

Im

Re

sk[t]

τ ck

Constructive
Region

Destructive
Region

Constructive
Region

Destructive
Region

Figure 3.1: Destructive (left) and Constructive (right) interference in for QPSK
data system

A graphical representation of the concept can be seen in Fig. 3.1. The
constructive interference of the k-th user is denoted τ ck and the destructive
interference is denoted τ dk . Since the system depicted in Fig. 3.1 utilizes QPSK
modulation, the decision thresholds are the real and imaginary axis. Note
that when the interference is constructive the received symbol zk[t] is more
distant to the decision thresholds than sk[t]. However, when the interference is
destructive the received symbol zk[t] is closer to the decision thresholds than
sk[t].

Using the concept of constructive and destructive interference the work
from [18] defines a metric for optimizing the minimum value of constructive
interference. The optimization problem derived with this metric is stated as

DBD
PUC-Rio - Certificação Digital Nº 1912820/CA



Chapter 3. Literature Review and Important Baselines 29

follows

x[t] = arg max {Re {τk} tanψ − |Im {τk} |} (3-10)

s.t. |xi[t]|2 = Etx

M
for i = 1 ... M .

where,

ψ = π

αs
, τk =

(
M∑
m=1

hk,mxm[t]− sk[t]
)
e−jφk , φk = arg {sk[t]} .

(3-11)

Note that, since the feasible set described by the PAPC is not convex, the
optimization problem from (3-10) is also not convex. To convexify the men-
tioned problem the PAPC is relaxed to an inequality. The relaxed optimization
problem reads as

x′[t] = arg max
|x′[t]|≤

√
M
{Re {τk} tanψ − |Im {τk} |} . (3-12)

The optimal precoding vector computed from (3-12) does not necessarily yield
feasible solution of the optimization problem from (3-10). Therefore, for finding
the transmit vector, the solution from (3-12) needs to be scaled elementwise
as seen below

xi[t] =
√
Etx

M

x′i[t]
|x′i[t]|

for i = 1 ... M . (3-13)

After scaling, mapping is considered to find a solution in the feasible set XM .

3.4.3
RedMinBER Precoder

The Reduced Dimension Minimum BER (RedMinBER) precoder [22]
is a suboptimal massive MIMO approach based on the MMDDT criterion
(the MMDDT criterion is detailed in section 4.2) for 1-bit quantized transmit
signals.

As previously mentioned, a common method for developing suboptimal
low-resolution precoders is to describe the problem in the form of (3-7), employ
a relaxation of the feasible set and subsequently map the solution to XM .

However, the RedMinBER precoder employs a different technique for
computing x[t]. The idea is to assume that x[t] = Q (P (s[t] + ε)), where P
is a fixed linear precoder that only depends on the channel state (e.g. the ZF
precoder) , ε is a predistortion term, and Q(·) is the 1-bit quantizer operation.
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The advantage is that the optimization will be made in ε which has dimension
K × 1. Since [22] considers a system where K � M the computational
complexity of solving the optimization problem is reduced.

The approach from [22] then utilizes a gradient descent method for
updating ε and maximizing the minimum distance to the decision threshold,
which is given by

δ = arg max
x∈XM

min
k
δk, (3-14)

where

δk = Re {zk[t]} sin θ − |Im {zk[t]}| cos θ, θ = π

αs
, (3-15)

and k = 1, . . . , K. At the p-th iteration the gradient, denoted by ∇̃ε, is given
by

∇̃εδ ≈ PHH̃ek (sin θ + j sign (zkI cos θ)) , (3-16)

where

H̃ = (diag (s[t]))HH , zkI = Im {zk[t]} , (3-17)

ek is a vector with a one in position k and zeros elsewhere and the index k
denotes the user with the smallest distance to the decision threshold δk. With
this, the steps of the algorithm of the RedMinBER precoder are detailed in
Algorithm 1. Note that, the transmit vector x[t] is computed using the output
solution of Algorithm 1 as x[t] = Q (P sopt).

Algorithm 1 RedMinBER Precoder’s Algorithm
Given s[t], H̃ , P , number of iterations Np and stepsize µ, set p = 1 and
ε(1) = 0
Calculate z = H̃Q (Ps[t]) and δ(1) using equations (3-14) and (3-15)
Set sopt = s[t] and δopt = δ(1)
for p = 1 : Np do

Find ε(p+ 1) = ε(p) + µ∇̃∗εδ(p)
Calculate z = H̃Q (P (s[t] + ε(p+ 1))) and δ(p+ 1)
If δ(p+ 1) > δopt set δopt = δ(p+ 1) and sopt = s[t] + ε(p+ 1)

end for
Output solution sopt

The main advantage of using the RedMinBER algorithm is its reduced
computational complexity for systems where K � M . As shown in the study
of [22], the BER performance of the RedMinBER method is similar to the
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performance of the CVX-CIO approach presented in the previous subsection
when the ZF method is employed as the linear precoding method.

3.4.4
MSM Precoder

The maximum safety margin (MSM) precoder [20] is a suboptimal
algorithm based on the MMDDT criterion. The MSM algorithm is suitable
for PSK modulations in which αx = 2q where q ∈ N is the number of possible
outputs of the phase quantizer.

The MSM precoder relies on the relation of the original discrete set
XM to its convex hull. By doing that the non convex problem turns into
convex permitting solution via standard convex optimization algorithms. The
optimization problem in which the MSM algorithm is based follows

max
x[t],δ

[
0T2M 1

] x[t]
δ

 s.t. (3-18)


B − tan(θ)A 1
cos θ1K

−B − tan(θ)A 1
cos θ1K

E 0M(αs−4)


x[t]
δ

 ≤
 02K

cos
(
π
αs

12M
)

and
− cos

(
π
αs

12M
)

0

 ≤
x[t]
δ

 ≤
cos

(
π
αs

12M
)

0

 ,
where

Hs∗ = diag(s∗[t])H , A =
[
Re {Hs∗} Im {Hs∗}

]
,

B =
[
Im {Hs∗} Re {Hs∗}

]
, Ri =

 cos βi sin βi
− sin βi cos βi

 ,
βi = 2π

αx
(i− 1) , E =

[
RT

2 −RT
2 · · ·RT

αs
4
−RT

αs
4

]
, θ = π

αs
.

Solving (3-18) does not necessarily provide a feasible solution for the
original problem. Therefore, after solving, the resulting vector x[t] must be
mapped into the feasible set XM in order to achieve a feasible solution of the
problem in (3-18).

Finally, it is worth noting that for the special case where the transmit
vector is one-bit quantized (αx = 4) another precoder based on the same formu-
lation of the objective function was developed. The MSM-FISTA precoder [23]
is a low complexity one-bit approach that provides lower BER when compared
with the MSM precoder especially for systems with denser data modulation.
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3.4.5
Precoding Using Exhaustive Search

The Exhaustive Search method is an optimal high complexity algorithm
that provides the transmit vector by solving the non convex problem (3-7) by
evaluating all possibilities.

This algorithm is very flexible in the sense that any criterion can be
used. However, the most popular and commonly employed for this method are
the MMDDT and the MSE. In that sense if, for example, MSE is chosen, the
Exhaustive Search precoder will exploit all possible points in the set XM and
find x[t] that minimizes the mean square error from the arriving symbol and
the sent data.

This method is optimal in the sense that it always provides the optimal
vector given a chosen criterion, which also usually provides a lower uncoded
BER. Yet, the complexity of Exhaustive Search is given by O

(
αMx

)
which is

prohibitive for high values of modulation order or number of transmit antennas.
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4
Optimal Discrete Precoding via Branch-and-Bound

This chapter exposes the derivation of the developed precoding tech-
niques. Throughout it, the objective functions for the precoding problem will
be explained as well as its design criteria and problem formulation.

The main goal of MIMO precoding algorithms is to mitigate the mul-
tiuser interference (MUI) and to simultaneously reduce distortions brought
by additive noise. As already mentioned in the case of precoding with low-
resolution the problem is more difficult than with full resolution because the
transmitting vector is, in this case, constrained to a discrete set.

The rest of the chapter is divided into four sections. The first provides
a brief introduction to the branch-and-bound method, while the second and
third expose the derivation of the proposed MMDDT and MMSE precoding
strategies, respectively. The fourth and final section provides the final con-
siderations on the subject. The proposed precoding methods do not rely on
previous time instants to compute the transmit vector. For this reason, the
index t notation is suppressed in this section.

4.1
Introduction of the Branch-and-Bound Method

The branch-and-bound method, first created in 1960 by A. H. Land and
A. G. Doig [38], is an established technique in the wireless communications
area. It has important applications in this context, such as multiuser detection
[39], discrete beamforming [40, 41] and more recently discrete precoding [25].

A branch-and-bound algorithm is a tree search based method. The
tree represents the set of all possible solutions for the vector x, i.e., it is a
representation of the set XM . For the construction of the tree M levels are
considered and each node has one ingoing branch and αx outgoing branches
as shown in Fig. 4.1.

For constructing the precoding vector the minimization of an objective
function g(x, s) subject to the feasible discrete set is considered. The corre-
sponding optimization problem is described as

xopt = arg min
x
g(x, s) s.t. x ∈ XM . (4-1)
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x1 x2 x3 x4

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

M = 1

M = 2

Figure 4.1: Tree representation of the set XM for a system with M = 2 BS
antennas and QPSK precoding modulation (αx = 4)

A lower bound on g(xopt, s) can be obtained by relaxing XM to its convex
hull. The relaxed problem is expressed as

xlb = arg min
x
g(x, s) s.t. x ∈ P . (4-2)

An associated upper bound on g(xopt, s) can be obtained by mapping the
solution of (4-2) and evaluating g(·) accordingly. The upper bound value of
(4-1) is termed ǧ.

Having an upper bound solution implies that ǧ ≥ g(xopt) ≥ g(xlb), which
means that the mapped solution is always greater or equal to the relaxed one
from (4-2).

By fixing d entries of x, the vector can be rewritten as x = [xT1 ,xT2 ]T ,
with x1 ∈ X d. With this, a subproblem can be formulated as

x2 = arg min
x2

g(x2,x1, s) (4-3)

s.t. x2 ∈ XM−d.

Relaxing the problem from (4-3) states

x2,lb = arg min
x2

g(x2,x1, s) (4-4)

s.t. x2 ∈ J ,

where J is the convex hull of XM−d.
If the optimal value of (4-4) is larger than a known upper bound ǧ on

the solution of (4-1), then all members in the discrete set which include the
previously fixed vector x1 can be excluded from the search process.

The purpose of this strategy is to exclude most of the candidates from the
possible solution set, such that the number of residual candidates is only a small
fraction of its total number and, thus, they can be evaluated via exhaustive
search.
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4.2
Proposed Optimal MMDDT Precoder Design

This section establishes the objective of the MMDDT precoding algo-
rithm and exposes the problem formulation.

The aim of the precoding strategy is to find the vector x which yields the
noiseless received vector y where the smallest distance to the decision threshold
is maximized. The objective can be expressed in the epigraph form [42], which
then corresponds to a linear objective function with linear constraints. Taking
into account the quantization at each transmit antenna, the feasible set is
discrete, which then yields a non-convex problem.

2θ

si

yi

Im

Re

θ
s′i

ωi

Im

Re

Figure 4.2: Rotated coordinate system

During this section the minimum distance to the decision threshold is
denoted by ε. By considering a rotation by arg{s∗i } = −φsi of the coordinate
system, the symbol of interest is placed on the real axis, as shown in Fig.4.2.
This is done by multiplying both the interest symbol si and the noiseless
received signal yi by e−jφsi = s∗i which reads

s′i = sis
∗
i = 1, ωi = yis

∗
i . (4-5)

The smallest distance of the rotated symbol ωi to the rotated decision threshold
is then expressed as

εi = Re {ωi} sin θ − |Im {ωi}| cos θ, (4-6)

where θ = π
αs
. This description is shown in more details in [20]. Since

the considered rotation includes also the decision thresholds, the distance
expression in (4-6) holds also for yi. The minimum of all εi, for i = 1, . . . , K
is defined as ε, which serves as the objective of the precoding design. The
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objective of the algorithm is to construct the transmit vector x that maximizes
ε.

Based on a stacked vector notation for ωi, namely ω = diag(s∗)Hx, the
equivalent minimization problem reads as

[
xopt, ε opt

]
= argmin

x∈XM ,ε
−ε (4-7)

s.t. Re {Hs∗x} sin θ − |Im {Hs∗x} | cos θ ≥ ε12K ,

where Hs∗ = diag(s∗)H . Note that, the description of the objective is
equivalent to the one presented in [20] and for the special case of QPSK
modulation is also analogous to the one utilized in [25].

4.2.1
MMDDT-Mapped Precoder

One approach for finding a feasible solution of (4-7) is to solve a relaxed
version of the original problem followed by a mapping process to ensure that
the precoding vector is in the feasible set of the discrete problem.

The relaxation is brought by replacing the set XM by its convex hull,
which then establishes convexity of the considered problem. The corresponding
relaxed problem reads as

[
xlb, εlb

]
= arg min

x,ε
−ε (4-8)

s.t. Re {Hs∗x} sin θ − |Im {Hs∗x} | cos θ ≥ ε12K

Re
{
xme

jφi
}
≤

cos
(
π
αx

)
√
M

, for m = 1, . . . ,M and

φi = 2πi
αx

, for i = 1, . . . αx,

which is basically presented before in [20]. With the equivalent real valued
notation, the problem in (4-8) can be expressed as a linear program (LP).
Note that unlike the algorithm in [20], where αx is restricted to integer powers
of 2, the problem formulation (4-8) from above supports αx to be any integer
value. Subsequently the continuous solution xlb is quantized to the point in
XM with the shortest Euclidean distance.

The optimal value of (4-8) is always a lower bound to the optimal value
of the original problem (4-7). Mapping to the feasible set yields a valid solution
xub and the corresponding value for−ε provides an upper bound on the optimal
value of the original problem (4-7).
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4.2.2
MMDDT Branch-and-Bound Algorithm Derivation

In this section a branch-and-bound algorithm is proposed which solves
(4-7) by considering the problem in (4-8) for the initialization and the sub-
problems strategy given by (4-3) for computing lower bounds.

In order to formulate a real valued problem matrixHr and vector xr are
defined as follows

xr =



Re {x1}
Im {x1}
Re {x2}
Im {x2}

...
Re {xM}
Im {xM}


, Hr =



Γ11 · · ·Γ1M

Λ11 · · ·Λ1M
...

ΓK1 · · ·ΓKM
ΛK1 · · ·ΛKM
Ψ11 · · · Ψ1M

∆11 · · ·∆1M
...

ΨK1 · · ·ΨKM
∆K1 · · ·∆KM


, (4-9)

with Γ = Im {Hs∗} cos(θ)− Re {Hs∗} sin(θ)

Λ = Re {Hs∗} cos(θ) + Im {Hs∗} sin(θ)

Ψ = −Im {Hs∗} cos(θ)− Re {Hs∗} sin(θ)

∆ = Im {Hs∗} sin(θ)− Re {Hs∗} cos(θ).

(4-10)

With the real valued notation, the variable vector of the optimization problem,
with length 2M +1, can be denoted by v = [ε,xTr ]T . With this, the real valued
problem reads as

vopt = arg min
v
aTv (4-11)

s.t. Av ≤ 02K ,

{v2m + jv2m+1} ∈ X, for m = 1, . . . ,M ,

with

a = [−1,0T2M ]T , A =
[
12K ,Hr

]
.

Replacing the discrete solution set by its convex hull yields the relaxed problem
given by

vlb = arg min
v
aTv s.t. Uv ≤ p, (4-12)
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with

U =
[
AT ,RT

]T
R =

[
0Mαx ,R

′
]

R′ =
[
(IM ⊗ β1)T , (IM ⊗ β2)T , . . . , (IM ⊗ βαx)T

]T

βi =
[
cosφi,− sinφi

]
p =

[
02K ,

cos( π
αx

)
√
M

1Mαx

]T
.

In the branch-and-bound method in each visited node subproblems are solved
due to v =

[
ε,xTr1 ,x

T
r2

]T
, where xr1 is a fixed vector of length 2d, which belongs

to the discrete set according to v12m + jv12m+1 ∈ X, for m = 1, . . . , d.
The matrix U can be expressed with the following structure U =

[u1,U 1,U 2], where U 1 contains 2d columns of U and u1 is the first column
of U . With this, the matrix Ũ =

[
u1,U 2

]
and the vector ṽ =

[
ε,xTr2

]T
are

composed. Using Ũ and ṽ the subproblem for the lower-bounding step can be
expressed as

ṽlb = arg min
ṽ
ãT ṽ s.t. Ũ ṽ ≤ b, (4-13)

with ã =
[
−1,0T2M−2d

]T
and b = p − U 1xr1 . Solving (4-13) provides a lower

bound on the optimal value of the discrete problem with the condition on xr1 .
In case the lower bound conditioned on xr1 is higher than any upper bound on
the original problem xr1 cannot be part of the solution and every member of
the discrete solution set which includes xr1 can be excluded from the search.
In the context of the tree search it means that once a partial solution xr1 is
excluded the corresponding node and all its evolutions can be skipped. The
steps of the method are detailed in Algorithm 2.
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Algorithm 2 Proposed B&B Precoding for solving (4-7)
initialization:
Given the channel H and transmit symbols s compute a valid upper bound
ǧ on the problem in (4-7), e.g., by solving (4-8) followed by a mapping to
the closest precoding vector x ∈ XM

Define the first level (d = 1) of the tree by Gd := X
for d = 1 : M − 1 do

Partition Gd in x1,1, . . . ,x1,|Gd|
for i = 1 : |Gd| do

Express x1,i with stacked vector notation due to (4-9) as xr1,i
Conditioned on xr1,i solve ṽlb from (4-13)
Determine ε = [ṽlb]1
Compute the lower bound: lb(x1,i) := −ε;
Map x2,lb to the discrete solution with the closest
Euclidean distance: x̌2(x2,lb) ∈ XM−d

Using x̌2 find the smallest (negative) distance to the
decision threshold ub(x1,i) :=

max
k

[∣∣∣∣∣Im
{
Hs∗

[
x1,i
x̌2

]}∣∣∣∣∣ cos θ} − Re
{
Hs∗

[
x1,i
x̌2

]}
sin θ

]
k

Update the best upper bound with:
ǧ = min (ǧ, ub(x1,i))

end for
Build a reduced set by comparing conditioned
lower bounds with the global upper bound ǧ
G ′d := {x2,i|lb(x2,i) ≤ ǧ, i = 1, . . . , |Gd|}
Define the set for the next level in the tree Gd+1 := G ′d ×X

end for
Search method for the ultimate level d = M ,
Partition GM in x1,1, . . . ,x1,|GM |

ε(x1,i) := min
k

[Re {Hs∗x1,i} sin θ − |Im {Hs∗x1,i} | cos θ]k

The global solution is
xopt = argmax

x1,i∈GM
ε(x1,i)
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4.3
Proposed Optimal and Suboptimal MMSE Precoder Design

This section exposes the objective of the precoding algorithm, discuss the
chosen criterion and propose two new algorithms for low resolution precoding
with phase quantization.

Unlike the state-of-the-art discrete precoding algorithm for the MMSE
criterion [26], which is devised with 1-bit resolution and uses the PAPC for the
bounding steps, the present study implies arbitrary uniform phase quantization
and the consideration of polyhedral constraints like the ones presented in the
previous section and similar to [20].

The bounding method based on polyhedra is more promising than the
PAPC formulation, because the corresponding set corresponds to the convex
hull and is per definition the smallest convex set that includes all the discrete
solutions. Consequently, the corresponding lower bounds are more restrictive,
such that the bounds can only be larger or equal to the strategy proposed in
[26], which is beneficial for reducing candidates when applying a branch-and-
bound method and also for finding suboptimal solutions.

4.3.1
The Continuous Problem

Using the TPC the MMSE problem can be cast as

min
x,f

E{‖fz − s‖2
2} (4-14)

subject to: xHx ≤ Etx, f > 0.

One approach to solve (4-14) in closed form is based on KKT conditions and
the consideration that, for the optimal precoding vector, the transmit energy
constraint must hold with equality as described in [13]. Then the optimal
precoding vector reads as

x = f−1

HHH +
E
{
wHw

}
Etx

I

−1

HHs, (4-15)

where the optimal scaling factor is given by

f =

√√√√√ 1
Etx

sHH (
HHH + E{wHw}

Etx
I

)−2

HHs

. (4-16)
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4.3.2
Problem for Constant Envelope Signals With Phase Quantization at the
Transmitter and PSK Modulation

The problem desribed in (4-14) considers infinite resolution for the entries
in x. Considering quantization of the transmit signal yields the restriction to
a discrete input alphabet such that the corresponding problem can be cast as

min
x,f

E{‖fz − s‖2
2} (4-17)

subject to: x ∈ XM , f > 0.

Note that the feasible set is discrete and therefore not convex. In addition, it
can be shown that the MMSE objective function in (4-17) is not jointly convex
in x and f as described in the Appendix A.1. Accordingly the optimization
problem is not convex.

In the following, a suboptimal algorithm based on the relaxation of the
feasible set and formulation of an equivalent convex problem is devised. Sub-
sequently, a branch-and-bound strategy for computing the optimal precoding
vector is formulated.

4.3.2.1
Proposed MMSE Mapped Precoder

In this subsection, a suboptimal approach for the problem described in (4-17) is
proposed. Since the feasible set, XM , of the optimization problem presented by
(4-17) is non-convex it is replaced by its convex hull P , which is a polyhedron.
With this, the problem reads as

min
x,f

E{‖f(Hx +w)− s‖2
2} (4-18)

subject to: x ∈ P , f > 0.

Rewriting the problem in a real valued notation yields

min
xr,f

E{‖f(Hr xr +wr)− sr‖2
2} (4-19)

subject to: Axr ≤ b, f > 0,
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with

xr =
[
Re {x1} Im {x1} · · · Re {xM} Im {xM}

]T
,

wr =
[
Re {w1} Im {w1} · · · Re {wK} Im {wK}

]T
,

sr =
[
Re {s1} Im {s1} · · · Re {sK} Im {sK}

]T
and

Hr =



Re {h11} −Im {h11} · · · Re {h1M} −Im {h1M}
Im {h11} Re {h11} · · · Im {h1M} Re {h1M}

... . . . ...
Re {hK1} −Im {hK1} · · · Re {hKM} −Im {hKM}
Im {hK1} Re {hK1} · · · Im {hKM} Re {hKM}


.

The inequality Axr ≤ b restricts the elements of the precoding vector
to be inside or on the boarder of the polyhedron whose construction will be
detailed in the sequel. An equivalent problem to (4-18) can be cast as

min
xr,f

f 2xTrH
T
rHr xr − 2fxTrHT

r sr + f 2E{wT
r wr} (4-20)

subject to: Axr ≤ b, f > 0.

If f > 0 would be constant, the problem would be a convex quadratic program,
since HT

rHr ∈ Sn+ (cf. Section 4.4 in [42]). Yet, as mentioned before, the
problem is in general not jointly convex in f and xr, as can be seen in the
Appendix A.1.

Nevertheless, the problem can be rewritten as an equivalent convex
problem by shifting the scaling factor f to the constraints and substituting
the optimization variable. This essentially means that the feasible set is scaled
depending on the value of f . In this context, the mentioned substitution
is applied and by introducing a new optimization variable xr,f = f xr.
Accordingly, the resulting problem reads as

min
xr,f,f

xTr,fH
T
rHrxr,f − 2xTr,fHT

r sr + f 2E{wT
r wr} (4-21)

subject to: Axr,f ≤ fb, f > 0.

The first constraint can be rewritten as a linear constraint, such that the
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problem is a convex quadratic program (cf. Section 4.4 in [42]), which reads as

min
xr,f,f

xTr,fH
T
rHrxr,f − 2xTr,fHT

r sr + f 2E{wT
r wr} (4-22)

subject to: R
xr,f

f

 ≤ 0, f > 0,

whereR =
[
A −b

]
. The polyhedron associated to uniformly phase quantized

transmit symbols with αx different phases can be expressed as proposed in
section 4.2, which is similar to the description in [20]. The corresponding matrix
notation reads as

A =
[
(IM ⊗ β1)T (IM ⊗ β2)T . . . (IM ⊗ βαx)T

]T
, (4-23)

βi =
[
cosφi − sinφi

]
, φi = 2πi

αx
, for i = 1, . . . , αx, (4-24)

b =
cos( π

αx
)

√
M

1Mαx , (4-25)

with 1Mαx being a column vector with length Mαx. Note that the solution
of (4-22) yields a lower bound on the optimal value of the original problem,
meaning that the corresponding MSE is smaller or equal to the corresponding
MSE of the original problem in (4-17). Yet, the optimal solution of the relaxed
problem is not necessarily in the feasible set of the original problem XM .

Therefore, in order to find a feasible solution, mapping to the closest
Euclidean distance point in XM is considered. The solution after mapping,
then, yields an MSE which is always greater or equal to the optimal of (4-17),
meaning that after the mapping process an upper bound on the optimal value
of the original problem is found.

4.3.2.2
Proposed Optimal Approach via Branch-and-Bound

As stated before, the continuous solution of (4-22) is in general not in
XM and then it only provides an unfeasible lower bound, or, after mapping,
a feasible upper bound solution for the original problem. In this sense, the
method in (4-22) does not provide a reliable way for solving (4-17).

Therefore, a branch-and-bound strategy is proposed. This strategy al-
ways provides the optimal solution for (4-17) with significantly reduced com-
putational complexity as compared to exhaustive search.
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Branch-and-Bound Initialization
The branch-and-bound algorithm converges faster when an upper bound that
permits many exclusions is computed as early as possible. Therefore, it is
recommended to have an initialization step where an upper bound ǧ < ∞ is
found before beginning with the search process.

In this regard, for initialization, the problem described in (4-22) is solved.
With this, xlb and g(xlb) = MSElb are obtained. After mapping xlb to the
feasible set xub and ǧ = MSEub are determined.

Note that if the continuous solution of (4-22) is in the feasible set, upper
and lower bound are equal which can be expressed as

xub = xlb = xopt −→ g(xlb) = ǧ. (4-26)

This would mean that the optimal solution is found already by the approach
from subsection 4.3.2.1 and the tree search process can be skipped.

Subproblems
When the condition from (4-26) is not met, one can apply the branch-and-
bound tree search method. It is, then, necessary to solve subproblems, as
first mentioned on section 4.1. The equations that define the subproblems
are derived below.

First the precoding vector is divided in a fixed vector of length 2d and a
variable vector according to

xr =
[
xTr,fixed , x′r

T
]T

. (4-27)

With this, the MMSE problem formulation reads as

min
x′r,f

′
E{‖f ′(Hr

[
xTr,fixed , x′r

T
]T

+wr)− sr‖2
2}

subject to: A′x′r ≤ b′, f ′ > 0, (4-28)

where A′x′r ≤ b′ restricts the elements of the precoding vector to be inside of
the set J and will be detailed in what follows. The channel can be rewritten
accordingly as Hr = [Hr, fixed H ′r]. Then the problem can be cast as

min
x′r,f

′
E{‖f ′(H ′r x′r +Hr, fixed xr, fixed +wr)− sr‖2

2}

subject to: A′x′r ≤ b′, f ′ > 0, (4-29)
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and an equivalent problem is given by

min
x′r,f

′
‖f ′H ′r x′r − sr + f ′Hr, fixed xr, fixed‖2

2 + f ′2E{wT
r wr} (4-30)

subject to: A′x′r ≤ b′, f ′ > 0.

The objective function is not jointly convex in f ′ and x′r, as shown for the
conventional MMSE cost function in the Appendix A.1.

However, it is possible to shift the scaling factor from the objective in the
polyhedron constraint as done in subsection 4.3.2.1. Accordingly, the variable
x′r,f is introduced as f ′x′r = x′r,f . Using x′r,f , the equivalent problem reads as

min
x′r,f ,f

′
‖H ′r x′r,f − sr + f ′Hr, fixed xr, fixed‖2

2 + f ′2E{wT
r wr} (4-31)

subject to: A′x′r,f ≤ f ′b′, f ′ > 0.

Rearranging the constraint yields

min
x′r,f ,f

′
‖H ′r x′r,f − sr + f ′Hr, fixed xr, fixed‖2

2 + f ′2E{wT
r wr} (4-32)

subject to: R′
x′r,f
f ′

 ≤ 0, f ′ > 0,

where R′ = [A′ − b′] is obtained by selecting the last 2 (M − d) columns of R.
Note that the problem in (4-32) is convex because of the convex con-

straints and its objective function which is jointly convex in f ′ and x′r,f as can
be seen in the Appendix A.2, where the Hessian is examined.

MMSE Branch-and-Bound Precoding Algorithm
In this subsection, a branch-and-bound algorithm is proposed which solves
(4-17) with the tools presented in the previous subsections. As mentioned
before, the first step is the initialization, where the problem from (4-22) is
solved and the condition xlb = xub is evaluated. If the condition is met, the
algorithm returns xlb. Otherwise, the branch-and-bound tree search process is
performed as described in the sequel.

For the tree search process a breadth first search is devised and the
subproblems are solved considering partially fixed precoding vectors xr =[
xTr,fixed x′r

T
]T
, where xr,fixed has length 2d as previously stated. Accordingly,

the matrix Hr is divided as Hr = [Hr,fixed H ′r], where Hr,fixed contains the
first 2d columns of Hr. Moreover the matrix R′ is obtained via selecting the
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last 2 (M − d) columns of R.
Using R′ and H ′r, the subproblem (4-32) for the lower-bounding step is

solved. Mapping the solution from (4-32) to the discrete set yields xr,ub. Based
on xr,ub, the MSE is minimized with choosing

f ′ =
sTrHr

xr,fixed

xr,ub


∣∣∣∣∣∣
∣∣∣∣∣∣Hr

xr,fixed

xr,ub

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+ E{wT
r wr}

. (4-33)

The corresponding MSE serves as an upper bound on the optimal value of the
original problem (MSEub).

In case the lower bound conditioned on xr,fixed is higher than any upper
bound on the original problem, xr,fixed cannot be part of the solution and every
member of the discrete solution set which includes xr,fixed can be excluded from
the search process. The steps of the method are detailed in Algorithm 3.

Note that, when operating in the high-SNR regime, the computation
of the optimal precoding vector in each symbol period can correspond to
enormous computational complexity. The precomputation of the lookup-table
L is especially important in this situation, since it allows the precoding method
to be a practical solution for channels with large coherence time, as suggested
in [43].
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Algorithm 3 Proposed B&B Precoding for solving (4-17)
initialization:
Given the channel H and transmit symbols s compute a valid upper bound
ǧ on the problem in (4-17), by solving (4-22) followed by a mapping to the
closest precoding vector x ∈ XM and computing its MSE. If the solution of
(4-22) belongs to XM it is optimal. Otherwise, define the first level (d = 1)
of the tree by Gd := X
for d = 1 : M − 1 do

Partition Gd in xfixed,1, . . . ,xfixed,|Gd|
for i = 1 : |Gd| do

Express xfixed,i in real valued notation xr,fixed,i
Conditioned on xr,fixed,i solve (4-32) to find x′r,f and f ′
Determine the lower bound as:

MSElb :=
∣∣∣∣∣∣H ′r x′r,f − sr + f ′Hr, fixed xr, fixed,i

∣∣∣∣∣∣2
2

+ f ′
2E{wT

r wr}

Extract x′r = x′r,f
f ′

Rewrite x′r in complex notation as x′lb
Map x′lb to the discrete solution with the closest
Euclidean distance: x′ub(x′lb) ∈ XM−d

Express x′ub in real valued notation x′r,ub
Compute f ′ according to (4-33)
With x′r,ub and f ′, the upper bound is

MSEub(x r,fixed,i) :=
∣∣∣∣∣∣ f ′Hr

[
xr,fixed,i x

′
r,ub

]
− sr

∣∣∣∣∣∣2
2

+ f ′2E{wT
r wr}

Update the best upper bound with ǧ = min (ǧ,MSEub)
end for
Construct a reduced set by comparing conditioned lower bounds with

the global upper bound ǧ
G ′d :=

{
x′lb,i|MSElb(x′lb,i) ≤ ǧ, i = 1, . . . , |Gd|

}
Define the set for the next level in the tree: Gd+1 := G ′d ×X

end for
Search method for the ultimate level d = M ,
Partition GM in xfixed,1, . . . ,xfixed,|GM |
Express xfixed,i with real valued notation xr,fixed,i and compute f ′ with (4-33)

MSE(xfixed,i) := ||f ′Hrxr,fixed,i − sr||22 + f ′2E{wT
r wr}

The global solution is :
xopt = arg min

xfixed,i∈GM
MSE(xfixed,i)
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4.4
Final Considerations

4.4.1
On Optimality

The proposed branch-and-bound algorithms are optimal in the sense
of providing the precoding vector that yields the maximum MDDT and the
minimum MSE. However, the presented algorithms are not necessarily optimal
in the sense of BER. The MMDDT and MMSE criteria were chosen for the
development of the proposed precoders once the minimization of the BER (Min
BER) criterion is difficult to achieve for all values of SNR.

4.4.2
On the Computational Complexity

The computational complexity of both proposed branch-and-bound ap-
proaches, as will be seen in subsection 6.1.2, grows with the number of BS
antennas. In the case of the MMSE branch-and-bound algorithm, it also in-
creases with the SNR.

In massive multiuser MIMO systems, the computation of the optimal
precoding vector in each symbol period can correspond to enormous computa-
tional complexity. In the case of using the proposed MMSE branch-and-bound
method, this happens, particularly in the high SNR regime. The precompu-
tation of the lookup-table L is especially important in this situation since it
allows the proposed precoding methods to be a practical solution for channels
with large coherence time, as suggested in [43].

4.4.3
On the Computation of the Lookup-Table

For forming L it is not always necessary to compute x (s) ∀ s ∈ SK . If
the utilized precoding strategy has the circular symmetric property, exposed
by the following equation,

φ = π (2i+ 1)
αx

, i = 1...αx =⇒ x
(
s e jφ

)
= x (s) e jφ, (4-34)

when αx = αs, x (s) can be computed by applying a rotation to another
previously computed precoding vector. In this case, the number of precoding
vectors precomputed is reduced which decreases the hardware costs necessary
for its implementation.
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5
Discrete Precoding Aware Receiver Design

This section exposes the design of the DPA-IDD Receiver where three
soft detection methods for the computation of the extrinsic information are
proposed. The objective is to enable channel coding in conjunction with
discrete precoding methods, as those proposed in chapter 4.

The section is divided into two parts, the first proposes three soft
detection approaches for computing the extrinsic information, while the second
describes the DPA-IDD scheme.

The objective of the DPA-IDD receiver is to compute LLRs that are used
to make a decision about ck which impliesmk. The LLRs are defined as follows

L(ck,i) = ln
(
P (ck,i = +1|zk[t])
P (ck,i = −1|zk[t])

)
, (5-1)

where zk[t] is the received signal and ck,i ∈ {−1,+1}. Using Bayes’ theorem,
equation (5-1) is rewritten as

L(ck,i) = ln
(
p (zk[t]|ck,i = +1)
p (zk[t]|ck,i = −1)

)
+ ln

(
P (ck,i = +1)
P (ck,i = −1)

)

= Le (ck,i) + La (ck,i) , (5-2)

where Le (ck,i) and La (ck,i) denote the extrinsic and a priori information,
respectively.

5.1
Extrinsic Information Computation

In this section, three methods for computing Le(ck,i) are presented. The
first method computes the extrinsic information based on the true PDF of the
received signal, while the second relies on a nonlinear Gaussian approximation
of the original PDF. The third approach calculates Le(ck,i) by relying on a
linear model. As shown in equation (5-2), the Le(ck,i) is defined as

Le (ck,i) = ln
(
p (zk[t]|ck,i = +1)
p (zk[t]|ck,i = −1)

)
. (5-3)
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Using the law of total probability equation (5-3) can be expanded as

Le (ck,i) = ln


∑
s∈S+1

p (zk[t]|s)P (s|rk,t,υ = +1)
∑
s∈S−1

p (zk[t]|s)P (s|rk,t,υ = −1)

 , (5-4)

with υ = (i− (t− 1)N) ∈ {1, . . . , N}. The sets S+1 and S−1 represent all
possible constellation points where the υ-th bit of rk,t is +1 or −1, respectively.
For a given s ∈ Sg, g ∈ {+1,−1}, if M−1(s) = [a1, . . . , aυ = g, . . . , aN ], the
probability P (s|rk,t,υ = g) is given by

P (s|rk,t,υ = g) =
N∏
l=1
l 6=υ

P (rk,t,l = al). (5-5)

Based on the a priori information, the previous equation is rewritten as

P (s|rk,t,υ = g) =
N∏
l=1
l 6=υ

e(al La(rk,t,l))

1 + e(al La(rk,t,l)) , (5-6)

where La (rk,t,l) = La
(
ck,l+(t−1)N

)
. Note that for computing Le(ck,i) the only

demands are p (zk[t]|s), that need to be known for all s ∈ S, and the knowledge
of La (ck,i) for i = 1, . . . , Nb

R
.

5.1.1
Common AWGN Approach

A common approach for the computation of Le(ck,i) relies on the assump-
tion of an AWGN channel. It then considers that the received signal can be
described as shown in the following

zk[t] = sk[t] + wk[t]. (5-7)

With this, the PDF of the received signal is a complex random Gaussian,
meaning zk [t] ∼ CN (sk[t], σ2

w). Finally, p(zk[t]|s) is given by

p (zk[t]|s) = 1
πσ2

w

e−
|zk[t]−s|2

σ2
w . (5-8)
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Consequently inserting (5-8) in (5-4) yields

Le (ck,i) = ln


∑
s∈S+1

e−
|zk[t]−s|2

σ2
w P (s|rk,t,υ = +1)

∑
s∈S−1

e−
|zk[t]−s|2

σ2
w P (s|rk,t,υ = −1)

 . (5-9)

5.1.2
Discrete Precoding Aware Soft Detector

As seen in the previous subsection, the assumption of the common
AWGN approach leads to a simple method for computing Le(ck,i). However, the
consideration that the received signal can be described as in equation (5-7) is
not precise for the medium and high SNR regime and yields BER performance
degradation, as will be discussed in chapter 6.

In this subsection, the DPA Soft Detector, which can be considered as
the soft MAP detector, is introduced as a method for computing Le(ck,i).
First, the received signal zk[t] is rewritten in a stacked vector notation zr[t] =
[Re {zk[t]} Im {zk[t]}]T , where, for simplicity, the index k is suppressed. The
distribution p (zk[t]|s) is given by

p (zk[t]|s) =
∑

s′∈SK−1

p (zk[t]|s, s′) P (s′)

=
( 1
αs

)K−1 1
πσ2

w

∑
s′∈SK−1

e−
||zr [t]−E{zr [t]|s,s′}||22

σ2
w , (5-10)

where s′ =
[
s′1, . . . , s

′
k−1, s

′
k+1, . . . , s

′
K

]T
corresponds to the symbols of the other

users. For a given s and s′ the expected value of the receive signal is given by

E {zr[t]|s, s′} = [Re {hkx (s, s′)} Im {hkx (s, s′)}]T . (5-11)

With this, Le(ck,i) can be computed by inserting (5-10) into (5-4). The resulting
expression, finally, reads as

Le(ck,i) = ln


∑
s∈S+1

∑
s′∈SK−1

e−
||zr [t]−E{zr [t]|s,s′}||22

σ2
w P (s|rk,t,υ = +1)

∑
s∈S−1

∑
s′∈SK−1

e−
||zr [t]−E{zr [t]|s,s′}||22

σ2
w P (s|rk,t,υ = −1)

 . (5-12)

Note that, for using (5-12), p (zk[t]|s, s′) needs to be evaluated for all elements
of SK−1. Hence, computing (5-12) can lead to a prohibitive computational
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complexity at the receiver side for systems with many users.

5.1.3
Gaussian Discrete Precoding Aware Soft Detector

To reduce the computational complexity the Gaussian Discrete Precoding
Aware (GDPA) Soft Detector is developed. The basic assumption is that the
vector zr[t] can be described as a Gaussian random vector, meaning

p̃ (zk[t]|s) = e−
1
2

[
(zr[t]−µzr |s)

T
C−1
zr |s(zr[t]−µzr |s)

]
2π
√
det

(
Czr|s

) . (5-13)

In the following the computation of µzr|s and Czr|s is detailed. Since
E {Re {a}} = Re {E {a}}, and E {Im {a}} = Im {E {a}}, first the expected
value of the complex received signal is computed, which reads as

E {zk[t]|s} = E {hkx[t] |s} . (5-14)

To simplify the notation yk(s) = hk x (s) is introduced. The mean vector µzr|s
is, then, given by

µzr|s =
[
E {Re {yk (s)} |s} E {Im {yk (s)} |s}

]T
, (5-15)

where

E {Re {yk (s)} |s} =
( 1
αs

)K−1 ∑
s∈D

Re {yk (s)}, (5-16)

E {Im {yk (s)} |s} =
( 1
αs

)K−1 ∑
s∈D

Im {yk (s)} (5-17)

and D is the set of all possible s[t] whose k-th entry is s. Moreover, the
corresponding covariance matrix is given by

Czr|s =
σ2

r|s ρri|s

ρri|s σ2
i|s

 . (5-18)
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The entries of Czr|s read as

σ2
r|s = σ2

w

2 + E
{
Re {yk (s)}2 |s

}
− E {Re {yk (s)} |s}2 , (5-19)

σ2
i|s = σ2

w

2 + E
{
Im {yk (s)}2 |s

}
− E {Im {yk (s)} |s}2 , (5-20)

ρri|s = E{Re{yk (s)}Im{yk (s) |s}} − E{Re{yk (s)}|s}E{Im {yk (s)} |s},
(5-21)

where

E
{
Re {yk (s)}2 |s

}
=
( 1
αs

)K−1 ∑
s∈D

Re {yk (s)}2, (5-22)

E
{
Im {yk (s)}2 |s

}
=
( 1
αs

)K−1 ∑
s∈D

Im {yk (s)}2, (5-23)

E {Re {yk (s)} Im {yk (s)} |s} =
( 1
αs

)K−1 ∑
s∈D

Re {yk (s)} Im {yk (s)} (5-24)

and E {Re {yk (s)} |s} and E {Im {yk (s)} |s} are defined in equations (5-16)
and (5-17), respectively. Based on Czr|s and µzr|s, Le(ck,i) is computed as

Le(ck,i) = ln



∑
s∈S+1

eΨs√
det

(
Czr|s

)P (s|rk,t,υ = +1)

∑
s∈S−1

eΨs√
det

(
Czr|s

)P (s|rk,t,υ = −1)


, (5-25)

where

Ψs = −1
2

[(
zr[t]− µzr|s

)T
C−1
zr|s

(
zr[t]− µzr|s

)]
(5-26)

and P (s|rk,t,υ = g) for g ∈ {−1,+1} can be computed with equation (5-6)
considering La(ck,i) for i = 1, . . . , Nb

R
.

Note that, when calculating Le(ck,i) using (5-25), p̃(zk[t]|s) is evaluated
only αs times. This results in a significant decrease in computational com-
plexity, when compared with the approach proposed in (5-12). However, for
computing (5-25), the receiver requires access to Czr|s and µzr|s for all values
of s. These parameters need to be provided by the BS which causes commu-
nication overhead. In this context, an alternative method that requires fewer
number of parameters to be transmitted is desired.
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5.1.4
Linear Model Based Discrete Precoding Aware Soft Detector

In this subsection, a method for computing Le(ck,i) with a reduced number of
model parameters is devised. This proposed approach relies on the description
of the received signal by a linear model.

5.1.4.1
Discrete Precoding Aware Linear Model

The Discrete Precoding Aware Linear Model (DPA-LM) is based on the
assumption that the received signal can be expressed by

zk[t] = heffk sk[t] + wk[t] + εk[t], (5-27)

where heffk ∈ C is a factor that expresses the precoder and channel effects on
the transmit symbol of the k-th user and εk[t] is the error term that denotes
the difference between zk[t] and heffk sk[t]+wk[t]. To identify an appropriate heffk
the following MSE optimization problem is considered

heffk = arg minλ2
εk

= arg minE
{
|εk[t]|2

}
= arg min

γ∈C
E
{
|hk x[t]− γ sk[t]|2

}
, (5-28)

where the optimal solution is given by

heffk = 1
αKs σ2

s

∑
s∈SK

s∗k(s) yk(s), (5-29)

λ2
εk

= hk Λx h
H
k −

∣∣∣heffk ∣∣∣2 σ2
s , (5-30)

where Λx =
(

1
αs

)K ∑
s∈SK

x (s)x (s)H and sk (s) is the k-th element of s. The

derivation of the values for heffk and λ2
εk

is given in the Appendix B.1.

5.1.4.2
DPA-LM Soft Detector

This subsection describes the proposed DPA-LM Soft Detector as a
method for computing the extrinsic information based on the linear model
previously presented.

The following strategy relies on the assumption that the error term εk[t]
is a circular symmetric complex Gaussian random variable. The expected value
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of the received signal is calculated as

E {zk[t]|s} = heffk s+ E {εk[t]|s} , (5-31)

and assuming E {εk[t]|s} = 0 ∀ s ∈ S yields

µeff
zr|s =

[
Re

{
heffk s

}
Im

{
heffk s

}]T
. (5-32)

Considering that

Ceff
zr =

σ2
effk
2 I, (5-33)

with σ2
effk = λ2

εk
+ σ2

w being the effective noise variance. Then, the extrinsic
information function from (5-4) simplifies to

Le (ck,i) = ln



∑
s∈S+1

e
−
|zk[t]−heff

k
s|2

σ2
effk P (s|rk,t,υ = +1)

∑
s∈S−1

e
−
|zk[t]−heff

k
s|2

σ2
effk P (s|rk,t,υ = −1)


, (5-34)

where the values for P (s|rk,t,υ = g), for g ∈ {−1,+1} are calculated using
equation (5-6).

The computation of Le(ck,i) according to (5-34) only requires knowledge
about the parameters heffk and σ2

effk , which are independent of the data symbol
s. In comparison with the method from subsection 5.1.3, the number of
parameters that need to be transmitted in advance to the information data is
significantly reduced.

5.2
DPA-IDD Algorithm

Subsections 5.1.2, 5.1.3 and 5.1.4.2 expose different methods for comput-
ing Le(ck,i) when La(ck,i) is known. Using these results, the DPA-IDD scheme
is presented as a way of computing L(ck,i) via making an iterative estimation
of La(ck,i) and, consequently, Le(ck,i). For description of the DPA-IDD scheme
the vectors L,Le and La are defined as

L =


L(ck,1)

...
L(c

k,
Nb
R

)

 Le =


Le(ck,1)

...
Le(ck,Nb

R

)

 La =


La(ck,1)

...
La(ck,Nb

R

)

 .
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The principle of the proposed receiver is based on equation (5-2). Based on L
and Le, the a priori information is extracted via La = L−Le.

With this, for initialization, the detector calculates Le assuming La = 0
and forwards it to the decoder. The decoder outputs the LLR vector L. Using
L and Le, the a priori information is calculated and fed back into the detector
which will, then, recompute Le based on the updated La. This process is done
recursively until the maximum number of iterations is reached. An illustration
of the receiving process is shown in Fig. 5.1.

Decoder
zk[t] L

L

Soft Output
Detector

La

Le m̂k

-

Figure 5.1: DPA-IDD Receiver Topology

The DPA-IDD technique does not require a specific method for comput-
ing Le. Hence, the approaches presented in subsections 5.1.2, 5.1.3 and 5.1.4.2
are compatible with the framework and can be used for calculating Le. The
steps of the proposed approach are further detailed in Algorithm 4.

Note that, unlike other IDD approaches, e.g. [44], the proposed soft
detectors compute Le(ck,i) instead of L(ck,i). As a consequence, there is no
need for subtracting the a priori information from the soft detector’s output,
as shown in Fig. 5.1.
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Algorithm 4 Proposed DPA-IDD Algorithm
Select one method for the extrinsic information computation
Initialize La = 0
for j = 1 : Niter − 1 do

for i = 1 : Nb
R

do
Using La, compute Le(ck,i) according to the
method previously selected

end for
Organize Le =

[
Le(ck,1), . . . , Le(ck,Nb

R

)
]T

Forward Le to the message-passing decoder
Using the decoder’s output L, update La = L−Le

end for
for i = 1 : Nb

R
do

Using La, compute Le(ck,i) according to the
method previously selected

end for
Organize Le =

[
Le(ck,1), . . . , Le(ck,Nb

R

)
]T

Forward Le to the message-passing decoder
Using the decoder’s output compute ĉk = sgn (L)
Finally m̂ =

[
c
k,
Nb(1−R)

R
+1, . . . , ck,NbR

]
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6
Numerical Results

For the numerical evaluation, the BER is considered. It is assumed that
the channel gains are modeled by independent Rayleigh fading [45], meaning
βm = 1 for m = 1, . . . ,M and gk,m ∼ CN (0, σ2

g) for k = 1, . . . , K and m =
1, . . . ,M as done implicitly in [11] and [20] and explicitly in [18]. Moreover,
the SNR is defined by SNR = ‖x‖2

2
N0

, where the spectral noise power density N0

is equivalent to the noise sample variance σ2
w.

This section is divided into two different parts. In the first part, an
uncoded transmission is evaluated where hard detection is used. In the second
part, a coded transmission is considered and the proposed soft detection
schemes are evaluated against the common method for AWGN channels
described in subsection 5.1.1.

The analysis is made in conjunction with the IDD scheme presented in
subsection 5.2. It relies on the utilization of the proposed MMSE branch-and-
bound technique as the precoding method.

6.1
Uncoded Transmission

In this subsection the performance of the proposed precoding algorithms
are evaluated against with following the state-of-the-art approaches:

1. The MSM-Precoder [20] considering phase quantization which implies
solving an LP;

2. The ZF precoder with constant envelope [11], where the entries of the
precoding vector are subsequently phase quantized;

3. The phase quantized CIO precoder implemented via CVX [18], which
corresponds to solving a second order cone program.

In this context, the subsection is divided into two parts. In the first part,
the precoding strategies are evaluated in terms of BER using phase quantizers
as hard detectors. In the second part, the complexity of the proposed methods
is analyzed and compared against the mentioned algorithms.
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6.1.1
Hard Detection using Phase Quantizers at the Receiver

In this subsection, the performance of the proposed algorithms is evaluated
with phase quantizers as hard detectors. The analyzed case considers, both,
the data and the transmit vector symbols are 8-PSK, which means αs = 8 and
αx = 8. Two different scenarios are considered. First the BER performance of
the proposed MMSE and MMDDT branch-and-bound algorithms is compared.
The considered system has K = 2 users and M = 4 BS antennas. The BER
performances are illustrated in Fig. 6.1.

−5 0 5 10 15 20 25 30

10−2

10−1

Proposed MMDDT B&B Phase Quantized
Proposed MMSE B&B Phase Quantized

SNR [dB]

B
ER

Figure 6.1: Uncoded BER versus SNR for K = 2, M = 4, αs = 8 and αx = 8

In the second scenario, the proposed methods are compared with state-
of-the-art approaches for a system with K = 3 users andM = 12 BS antennas.
The BER performances are illustrated in Fig. 6.2.

Fig. 6.1 confirms the superiority of the MMSE criterion against MMDDT
for low SNR. On the other hand, Fig. 6.1 shows that the MMDDT criterion is
favorable for the high SNR regime where it yields a lower uncoded BER.

The results shown in Fig. 6.2 illustrate a significant gain in BER
performance when using the optimal branch-and-bound methods in contrast
to suboptimal low resolution approaches. Moreover, the proposed branch-and-
bound precoders shows only a 2 dB loss in comparison with the full resolution
MMSE linear precoding strategy presented in [13].

Fig. 6.2 also confirms the suitability of the MMSE criterion for low
and medium SNR once the proposed optimal approach outperforms all other
low resolution schemes for that SNR regime, in terms of BER. Besides that,
the results indicate that the proposed suboptimal approach termed MMSE

DBD
PUC-Rio - Certificação Digital Nº 1912820/CA



Chapter 6. Numerical Results 60

0 2 4 6 8 10 12 14 1610−3

10−2

10−1

100

ZF-P Phase quantized [11]
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Figure 6.2: Uncoded BER versus SNR, K = 3, M = 12, αs = 8 and αx = 8

Mapped surprisingly outperforms other suboptimal state-of-the-art algorithms
in terms of BER performance.

6.1.2
Complexity Analysis

In this subsection the computational complexity of the proposed algorithms
is evaluated and compared against the state-of-the-art approaches. For the
analysis considered the system has K = 3 users and uses QPSK modulation
for both the data and transmit vector, meaning αx = αs = 4.

The computational complexity of each algorithm is summarized in Ta-
ble 6.1, where B denotes the number of evaluated bounds in the corresponding
branch-and-bound algorithm.

Table 6.1: Computational Complexity of the Algorithms
Algorithm Complexity
MSM-Precoder [20] O((2M + 1)3.5)
ZF-P [11] O(K2M)
CVX-CIO [18] O((2M + 1)3.5)
RedMinBER [22] O(NpM̃K)
Proposed MMDDT branch-and-bound O(B (2M + 1)3.5)
Proposed MMSE branch-and-bound O(B (2M + 1)3.5)
Proposed MMSE Mapped O((2M + 1)3.5)

The results shown in Table 6.1 were obtained considering that by using
the interior points method (IPM) the optimization problems of the state-of-
the-art algorithms can be solved with complexity in the order of O(n3.5),
with n ≤ (2M + 1), cf. [42]. Furthermore, for the RedMinBER precoder it
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Figure 6.3: Average # of evaluated bounds × SNR, K = 3, M = 12 , αs =
αx = 4 (left). Average # of evaluated bounds × Number of transmit antennas,
K = 3, SNR = 3dB, αs = αx = 4 (right).
is considered that the gradient descent method uses Np iterations with each
one having complexity M̃K, where typically M̃ �M .

Fig. 6.3 shows the number of evaluated bounds of the proposed branch-
and-bound methods compared exhaustive search for the considered system. In
Fig. 6.3 it can be seen that the number of evaluated bounds of the proposed
MMSE branch-and-bound method is significantly smaller than the one from
MMDDT for low SNR, which underlines the superiority of the MMSE criterion
for low SNR. However, for the high-SNR regime the complexity of the proposed
MMDDT branch-and-bound method is smaller than the one from the proposed
MMSE approach, which underlines the superiority of the MMDDT criterion
for high SNR.

Furthermore, based on Fig. 6.3, the average number of subproblems
solved using the proposed methods is always significantly smaller than the total
number of candidates to be evaluated in the exhaustive search. Taking into
account that each candidate evaluation in the exhaustive search corresponds
to a complexity of O(K2M) justifies the utilization of the proposed method
when the optimal precoding vector is desired.

6.2
Coded Transmission

In this subsection, the proposed soft detection schemes are evaluated
considering as the proposed MMSE branch-and-bound approach the precoding
technique.

The shown results were computed using an LDPC block code with a
block size of Nb

R
= 486 bits and code rate R = 1/2. The LLRs are processed by

sum-product algorithm (SPA) decoders [46]. The examined system has K = 2
users and B = 6 BS antennas where the data symbols are considered as 8-
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PSK and the precoded symbols are considered as QPSK, meaning αs = 8 and
αx = 4. The examined approaches are as follows

1. Uncoded transmission

2. Coded transmission using the DPA soft detector (5-12) for the compu-
tation of Le;

3. Coded transmission using the GDPA soft detector (5-25) for the com-
putation of Le;

4. Coded transmission using DPA-LM soft detector (5-34) for the compu-
tation of Le;

5. Coded transmission using AWGN method (5-9) for the computation of
Le.

Note that the uncoded system provides higher data rate than the coded
versions.

−10 −5 0 5 10 15 20 25 30
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Proposed DPA-IDD (5-12)
Proposed GDPA-IDD (5-25)
Proposed DPA-LM-IDD (5-34)
AWGN method with IDD (5-9)
Uncoded with Hard Detection

SNR [dB]

B
ER

Non Iterative
Niter = 2

Figure 6.4: Coded BER versus SNR, K = 2, M = 6, αs = 8, αx = 4

As can be seen in Fig. 6.4, all proposed methods provide similar per-
formance for low-SNR. As expected, for the high-SNR regime the proposed
DPA-IDD method, that relies on the true PDF of the received signal, yields a
lower BER as compared with the proposed suboptimal methods. Furthermore,
considering the marginal performance loss referring to the proposed DPA-IDD
method, shown in Fig. 6.4, reasonable complexity performance trade-offs can
be achieved via using the proposed suboptimal methods GDPA-IDD and DPA-
LM-IDD.

The BER performance associated with the system that uses the common
AWGN soft detector is similar to the proposed methods for low-SNR. However,
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in the medium and high-SNR regime, the distortion brought by the discrete
precoding becomes relevant, and, since this is not considered in the common
AWGN receive processing it results in an error floor in the BER, as shown in
Fig. 6.4.

Finally, Fig. 6.4 shows an improvement in performance when using the
iterative method. With a relatively small number of iterations there is a gain
of approximately 1.5 dB when compared with the non iterative approach.
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7
Conclusions

In this study, two novel optimal precoding branch-and-bound algorithms
and its corresponding suboptimal methods constrained to CE signals and phase
quantization were devised. The first maximizes the MDDT at the receivers,
while the second minimizes the MSE between the users’ data symbols and the
receive signal.

Moreover, three different soft detection methods and an iterative de-
tection and decoding scheme that allow the utilization of channel coding in
conjunction with low-resolution precoding were proposed. Besides an exact
approach for computing the extrinsic information, two approximations with
reduced computational complexity were devised.

The proposed branch-and-bound precoding algorithms are superior to
the existing state-of-the-art methods in terms of uncoded BER. Moreover nu-
merical results indicate that the proposed suboptimal MMSE design outper-
forms marginally the other examined suboptimal methods in terms of uncoded
BER. Numerical results also show that the proposed approaches also have sig-
nificantly lower complexity than exhaustive search. Finally, results based on
an LDPC block code indicated that the proposed receive processing schemes
yield a lower BER when compared to the conventional design.
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8
Future Work

First, an interesting topic of study is the investigation of the sum-rate
and energy efficiency of the proposed system. Comparison with other state-of-
the-art methods in these regards is also desired.

For this study the data and precoding modulation were considered
as PSK. An open issue for future work is the extension of the proposed
precoding and detection approaches for different kinds of modulation e.g.
QAM. Moreover, an extension of the proposed DPA-IDD approach for multiple
receive antenna systems is desired.

Another open issue is the study of the effect of imperfect CSI on the
performance of the proposed precoding and detection approaches. In this
context, the development of receivers and precoders that consider imperfect
CSI in its formulation is desired.

For reducing the computational complexity of the branch-and-bound
based precoders it would be interesting to study different types of search
methods, such as depth first search and best first search. In the context of
reducing the computational cost of the branch-and-bound approaches it would
be also of great interest to study different node enumeration techniques.

Finally, the investigation and development of true constant envelope
precoding techniques is desired to enable the utilization of PAs with even
higher efficiency.
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A
Convexity Analysis

A.1
The Conventional MMSE Cost Function With the Scaling Factor

The corresponding real valued function of the equivalent MMSE cost
function including the scaling factor reads as

J(xr, f) =f 2xTrH
T
rHrxr − 2fxTrHT

r sr + f 2E{wT
r wr}. (A-1)

The Hessian is constructed based on the partial derivatives given by

Γ = ∂2J(xr, f)
∂xr∂xTr

= 2f 2HT
rHr, (A-2)

ε = ∂2J(xr, f)
∂f 2 = 2‖Hrxr‖2

2 + 2E{wT
r wr} ≥ 0,

η = ∂2J(xr, f)
∂xr∂f

= 4fHT
rHrxr − 2HT

r sr.

Positive semi-definiteness of the Hessian is established when the following
inequality holds

vTΓv + ν2ε+ 2νηTv ≥ 0 for all ν,v. (A-3)

Assuming that Γ � 0, the minimum value of the LHS of (A-3) is given by
ν2ε − ν2ηTΓ−1η. For positive semi-definiteness of the Hessian, this minimum
must be greater or equal to zero which yields the condition

ε ≥ ηTΓ−1η. (A-4)
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Inserting the partial derivatives in (A-4) gives

2‖Hrxr‖2
2 + 2E{wT

r wr} ≥
1

2f 2η
T (HT

rHr)−1η, (A-5)

2‖Hrxr‖2
2 + 2E{wT

r wr} ≥ 8xTrHT
rHrxr −

8
f
xTrH

T
r sr+

2sTrHr(HT
rHr)−1HT

r sr,
(A-6)

which can be rearranged as

8
f
xTrH

T
r sr ≥6xTrHT

rHrxr + 2sTrHr(HT
rHr)−1HT

r sr − 2E{wT
r wr}.

The MMSE cost function is, then, in general not jointly convex in xr and f .

A.2
The Partial MMSE Cost Function

The MMSE cost function for the problem formulation with the f ′ scaled
polyhedron and partially fixed precoding vector is given by

J
(
x′r,f , f

′
)

=
∣∣∣∣∣∣H ′rx′r,f − sr + f ′Hr, fixedxr, fixed

∣∣∣∣∣∣2
2

+ f ′2E{wT
r wr}. (A-7)

As in the previous subsection the Hessian can be constructed with the partial
derivatives which are now given by

Γ =
∂2J(x′r,f , f ′)
∂x′r,f∂x

′T
r,f

= 2H ′Tr H ′r,

ε =
∂2J(x′r,f , f ′)

∂f ′ 2 = 2‖Hr, fixedxr, fixed‖2
2 + 2E{wT

r wr} ≥ 0, (A-8)

η =
∂2J(x′r,f , f ′)
∂x′r,f∂f

′ = 2H ′Tr Hr, fixedxr, fixed.

Analogous to the previous subsection Γ � 0 is assumed and then (A-4) is a
sufficient condition for convexity. In this case, (A-4), after including the partial
derivatives (A-8), can be rearranged to

E{wT
r wr} ≥ xTr, fixedHT

r, fixed(H ′r(H ′Tr H ′r)−1H ′Tr − I)Hr, fixedxr, fixed. (A-9)

Convexity is established by showing that the RHS of (A-9) is always smaller
or equal to zero. This can be shown by considering

vT (H ′r(H ′Tr H ′r)−1H ′Tr − I)v ≤ 0, (A-10)
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which holds for all v, since H ′r(H ′Tr H ′r)−1H ′Tr is a projection matrix where
the eigenvalues can only be one or zero.
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B
Linear Model Derivations

B.1
Derivation of heffk

In the following, the expression for heffk is derived. To minimize λ2
εk

the
derivative of (5-28) with respect to γ∗ is taken and equated to 0, which is
expressed as

∂λ2
εk

∂γ∗
= γ E {sk(s) sk(s)∗} − E {hk x(s) sk(s)∗} = 0. (B-1)

With this, the effective channel coefficient reads as

heffk = γ = hk E {sk(s)∗ x(s)}
σ2
s

. (B-2)

Finally, heffk is used for the computation of the mean squared error λ2
εk

=
E
{
|εk[t]|2

}
as follows

λ2
εk

= hkE
{
x(s) x(s)H

}
hHk −

1
σ2
s

|E {hk x(s) k(s)∗}|2

= hk Λx h
H
k −

∣∣∣heffk ∣∣∣2 σ2
s . (B-3)
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