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Abstract

Silva, Thiago de Menezes Duarte; Pesco, Sinesio (Advisor); Barreto
Jr., Abelardo Borges (Co-Advisor). Evaluating the impact of
the inflation factors generation for the ensemble smoother
with multiple data assimilation. Rio de Janeiro, 2021. 93p.
Tese de Doutorado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

The ensemble smoother with multiple data assimilation (ES-MDA) gai-
ned much attention as a powerful parameter estimation method. The main idea
of the ES-MDA is to assimilate the same data multiple times with an inflated
data error covariance matrix. In the original ES-MDA implementation, these
inflation factors, such as the number of assimilations, are selected a priori.
The only requirement is that the sum of the inflation factors’ inverses must be
equal to one. Therefore, selecting them equal to the number of assimilations
is a straightforward choice. Nevertheless, recent studies have shown a relati-
onship between the ES-MDA update equation and the solution to a regularized
inverse problem. Hence, the inflation factors play the role of the regularization
parameter at each ES-MDA assimilation step. As a result, they have also sug-
gested new procedures to generate these elements based on the discrepancy
principle. Although several studies proposed efficient techniques to generate
the ES-MDA inflation factors, an optimal procedure to generate them remains
an open problem. Moreover, the studies diverge on which regularization scheme
is sufficient to provide the best ES-MDA outcomes. Therefore, in this work,
we address the problem of generating the ES-MDA inflation factors and their
influence on the method’s performance. We present a numerical analysis of
the influence of such factors on the main parameters of the ES-MDA, such
as the ensemble size, the number of assimilations, and the ES-MDA vector of
model parameters update. With the conclusions presented in the aforemen-
tioned analysis, we propose a new procedure to generate ES-MDA inflation
factors based on a regularizing scheme for Levenberg-Marquardt algorithms.
It is shown through a synthetic two-dimensional waterflooding problem that
the new method achieves better model parameters and data match compared
to the other ES-MDA implementations available in the literature.

Keywords
History matching; Uncertainty quantification; Ensemble smoother with

multiple data assimilation; Reservoir characterization.
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Resumo

Silva, Thiago de Menezes Duarte; Pesco, Sinesio; Barreto Jr., Abe-
lardo Borges. Investigando o impacto da geração dos fatores
de inflação para o ensemble smoother com múltipla assi-
milação de dados. Rio de Janeiro, 2021. 93p. Tese de Doutorado
– Departamento de Matemática, Pontifícia Universidade Católica
do Rio de Janeiro.

O ensemble smoother with multiple data assimilation (ES-MDA) se tor-
nou um poderoso estimador de parâmetros. A principal ideia do ES-MDA
é assimilar os mesmos dados com a matriz de covariância dos erros dos da-
dos inflada. Na implementação original do ES-MDA, os fatores de inflação e
o número de assimilações são escolhidos a priori. O único requisito é que a
soma dos inversos de tais fatores seja igual a um. Naturalmente, escolhendo-os
iguais ao número de assimilações cumpre este requerimento. Contudo, estudos
recentes mostraram uma relação entre a equação de atualização do ES-MDA
com a solução para o problema inverso regularizado. Consequentemente, tais
elementos agem como os parâmetros de regularização em cada assimilação.
Assim, estudos propuseram técnicas para gerar tais fatores baseadas no prin-
cípio da discrepância. Embora estes estudos tenham propostos técnicas, um
procedimento ótimo para gerar os fatores de inflação continua um problema
em aberto. Mais ainda, tais estudos divergem em qual método de regulariza-
ção é sufiente para produzir os melhores resultados para o ES-MDA. Portanto,
nesta tese é abordado o problema de gerar os fatores de inflação para o ES-
MDA e suas influências na performance do método. Apresentamos uma análise
numérica do impacto de tais fatores nos parâmetros principais do ES-MDA:
o tamanho do conjunto, o número de assimilações e o vetor de atualização
dos parâmetros. Com a conclusão desta análise, nós propomos uma nova téc-
nica para gerar os fatores de inflação para o ES-MDA baseada em um método
de regularização para algorítmos do tipo Levenberg-Marquardt. Investigando
os resultados de um problema de inundação de um reservatório 2D, o novo
método obtém melhor estimativa tanto para os parâmetros do modelo tanto
quanto para os dados observados.

Palavras-chave
Ajuste de histórico; Quantificação de incertezas; Ensemble smoother

com múltipla assimilação de dados; Caracterização de reservatórios.
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1
Introduction

Predicting the performance of an oil field plays a crucial role in reservoir
engineering. The decisions that have to be made in developing and managing
the reservoir depend on these pieces of information. The risks involved in
this process are considerably high, demanding reasonable administration of
uncertainty during an exploitation project. Likewise, reservoir simulation is
an important tool when prognosticating an oil deposit’s performance and
administering uncertainty. As a result, constructing a robust reservoir model
is, therefore, an important task. The process of characterizing the reservoir
may be executed by incorporating dynamic observed data from a real field in
a model, which is a popular technique called history matching.

The history matching approach consists of an inverse problem where
the vector of reservoir model parameters is estimated given a vector of
observations. This problem is intrinsically ill-posed because it is not possible
to guarantee the uniqueness of a solution. A simple example illustrating this
ill-posedness is a two-layered reservoir model where each layer has the same
properties but permeability. The first layer has a permeability of 100 mD, and
the second layer has a permeability of 200 mD. It is easy to show that the
equivalent permeability of the system is equal to 150 mD. On the other hand,
the same reservoir system with both layers with a permeability of 150 mD
would provide the same equivalent permeability. The same result would occur
if the permeabilities were exchanged within the layers. Following this simple
example, it is straightforward to notice that there are infinite combinations of
permeabilities that may result in the same equivalent permeability of 150 mD.
Moreover, in the real field measurements, the data are regularly inaccurate
and sometimes inconsistent. Therefore, the parameters estimated for a model
in the history matching technique and their predictions are always uncertain.

This simple example exposes the difficulty of solving the inverse problem
of history matching. A traditional approach to deal with the uncertainty of
inverse problems is that one afforded by Bayesian statistics. The strategy
consists of writing down the posterior conditional probability density function
of the model parameters vector given a set of observed data. Therefore,
the problem of estimating the model parameters reduces to sampling this
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Chapter 1. Introduction 14

probability density function correctly. Moreover, these samples allow a good
evaluation of uncertainty and managing predictions of the reservoir production.

Data assimilation methods applied to the history matching problem aim
to minimize an objective function composed of two parts: one related to the
data mismatch and another related to the model parameters mismatch. For
practical history matching, the relation between the theoretical data and the
model parameters is highly nonlinear. As a result, the objective function to
be minimized to incorporate production data information into the reservoir
model will be nonlinear. It transforms the problem of sampling the posterior
probability density function of the vector of model parameters given the
observations in solving a nonlinear minimization problem.

Many techniques are known to solve such minimization problems, and
most of them are based on the computation of the gradient of the objective
function. However, it is not often feasible to differentiate the nonlinear func-
tion that relates the model parameters to the theoretical data for reservoir
simulation problems. One procedure to compute the gradient of the objective
function is the adjoint method. However, such a method is not usually avail-
able for commercial simulators, which hinders the presentation of a general
solution. Another way to differentiate might be the numerical perturbation
methods, such as finite-difference. Nevertheless, the computational consump-
tion of derivatives is linked to the number of parameters to be estimated. As
the number of parameters in the history matching problem is often large, this
technique might be costly.

Alternative methods such as ensemble-based are used to estimate the
sensitivity matrix of the data from an ensemble. This approach considers the
simulator a black box, which presents a general solution for the problem, en-
abling coupling the methods with any commercial or academic simulator. The
sensitivity is easily computed by the simulator’s outputs, and the computa-
tional cost is independent of the number of parameters. The only restriction to
this approach is the size of the ensemble, which is problem-dependent. Estimat-
ing the sensitivity for a highly nonlinear system from an ensemble may require
many members. In contrast, a moderate nonlinear system might demand a
more modest ensemble.

Among the ensemble-based methods, the Ensemble Kalman Filter
(EnKF) might be the most famous, with a large number of studies evalu-
ating its performance in a large number of history matching problems. How-
ever, studies have noticed that the EnKF may result in non-physical values
for the model parameters for highly nonlinear problems, e.g., providing nega-
tive pressure responses and saturations. As a result, many iterative forms of

DBD
PUC-Rio - Certificação Digital Nº 1721314/CA



Chapter 1. Introduction 15

the EnKF were proposed to deal with this inconsistency. Nevertheless, these
iterative EnKF techniques demand increased computational time. Moreover,
as the EnKF assimilates data sequentially in time, the simulator needs to be
restarted at every assimilation step to update the state variables, raising an
elevated computational expense.

The Ensemble Smoother (ES) appears as an alternative to the sequential
data assimilation of the EnKF. Running the simulator from time zero until
the end of the history time, the ES assimilates the data only once, providing
a global and robust update of the model parameters vector. One of the main
advantages of the ES is that restarting the simulator at every time step is
not needed, which makes the ES implementation much easier than the EnKF.
Moreover, as all data are assimilated in a unique update, the ES works as
a traditional parameter estimation method, removing the inconsistency of
update state vectors of the EnKF. Unfortunately, it has been proven that,
at each time-step, implementing the EnKF update is similar to applying a
Gauss-Newton iteration to the model state vector. On the other hand, as the
ES assimilates the data with an individual update, applying the ES is similar
to applying a single Gauss-Newton correction to the model parameters vector,
proving ineffectiveness in affording reasonable estimates.

To overcome this issue of the ES, many iterative forms have been
proposed in the literature. The most famous might be the ensemble smoother
with multiple data assimilation (ES-MDA), which assimilates the same data
multiple times with an inflated data error covariance matrix. The ES-MDA
may be understood as multiple soft Gauss-Newton corrections to the model
parameters instead of a single and potent update supplied by the ES. The
ES-MDA has been proven to sample the posterior probability density function
of the model parameters given a set of observations if the sum of the inverses
of the data-error inflation factors is equal to one. In other words, the harmonic
mean of the inflation factors must be equal to the number of assimilations.
In the original ES-MDA implementation, these factors, such as the number
of assimilations, must be selected a priori. Thus, a straightforward choice is
setting all the inflation factors equal to the number of assimilations. However,
this simple selection of the inflation factors might bring issues when applying
the ES-MDA.

Different procedures to generate the ES-MDA inflation factors have been
proposed in the last few years. However, it remains an open problem deciding
which method achieves optimal performance and the best match of observed
data and model parameters. Recently, the ES-MDA update equation has been
compared to the solution to the regularized inverse problem. Thus, schemes
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based on the discrepancy principle were largely used to generate the ES-MDA
inflation factors. Therefore, this thesis is dedicated to studying the ES-MDA
inflation factors following two paths: analyzing different techniques that have
been proposed to generate these factors and proposing a new method to
generate these factors. In the first approach, we analyze the generation of
these elements using two popular procedures in generating the first inflation
factor for the ES-MDA. Moreover, we present a numerical procedure that
enables evaluate the quality of the inflation factor for the current problem
and ensemble size. Following the results of the first part of this thesis, we
present a new method to generate the ES-MDA inflation factors by setting the
first and the last ones. The others are computed geometrically in decreasing
order.

This thesis is segmented as follows: Chapter 2 supplies a summary of
the Bayesian approach and how to generate the desired objective function
to be minimized in the history matching problem; Chapter 3 displays the
analysis of the inflation factors selection and their influences on the ES-MDA
main parameters, such as the ensemble size and the number of assimilations,
moreover, we discuss which method may be optimal to generate optimal ES-
MDA outcomes; finally, Chapter 4 exhibits a new procedure to generate the
ES-MDA inflation factors.
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2
Bayesian framework of the history matching problem

In Bayesian statistics, probability theory is used to estimate the uncer-
tainty related to the data. This mechanism helps to deal with inverse problems
due to the reduced amount of available data and the high number of model
parameters to be estimated. Moreover, the data is almost inexact, contain-
ing a substantial quantity of measurement inaccuracies. Thus, a measure of
determining the uncertainty is wishful. In reservoir engineering history match-
ing problems, which is intrinsically an inverse problem, the data’s inaccuracy
is a relevant subject to reflect when estimating model parameters such that
their production simulated responses match the observed data. As the reservoir
models are often poor approximations of real ones, a probabilistic approach
enables measuring the uncertainty related to the model and the data.

2.1
Objective function

The starting spot of the Bayesian approach is considering m ∈ RNm the
vector of model parameters and d ∈ RNd the vector of data. In this sense, Nm

is the number of model parameters, and Nd is the number of available data.
Consider the linear case, where the theoretical relation of the vector m and
the vector d is given by:

d = Gm, (2-1)

where G ∈ RNd×Nm is the sensitivity matrix of the data. Assign dobs ∈ RNd

to be the vector that contains a set of observations. Assuming that there are
measurement errors ε ∈ RNd in dobs and no model errors, we can write such
vector as:

dobs = Gm+ ε. (2-2)

The measurement errors ε are often assumed to have a Gaussian distribu-
tion with zero mean and covariance Cd ∈ RNd×Nd [1]. Hence, the probability of

DBD
PUC-Rio - Certificação Digital Nº 1721314/CA



Chapter 2. Bayesian framework of the history matching problem 18

obtaining dobs from sampling the vector of model parameters m can be deemed
the probability of ε, as:

f(dobs|m) = f(ε = dobs −Gm). (2-3)

As we assumed that ε have Gaussian distribution, we can describe the
probability density function f(ε) as:

f(ε) ∝ exp
{
−1

2 (Gm− dobs)T C−1
d (Gm− dobs)

}
. (2-4)

Additionally, if we consider that the model parameters m are also
uncertain and that they assume Gaussian distribution, it is possible to write
their probability density function as:

f(m) ∝ exp
{
−1

2 (m−mpr)T C−1
m (m−mpr)

}
, (2-5)

where mpr ∈ RNm is a prior estimate of the model parameters and Cm ∈
RNm×Nm is the prior model covariance matrix. Finally, Bayes’ rule permits
one to write the probability density function of the model parameters m
conditioned by the data dobs as:

f(m|dobs) = f(dobs|m)f(m)
f(dobs)

= f(dobs|m)f(m)∫
Ω f(dobs|m)f(m)dm. (2-6)

The above equation can be reduced to:

f(m|dobs) = aL(m|dobs)f(m), (2-7)

where the function L(m|dobs) is the likelihood function, which corresponds to
f(dobs|m) and a is a normalizing constant. From Equations (2-4) and (2-5), one
can write down the probability density function depicted in Equation (2-7) in
the following way:

f(m|dobs) = a exp {−O(m)} , (2-8)

where:

O(m) = Om(m) +Od(m), (2-9)

with:
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Om(m) = (m−mpr)T C−1
m (m−mpr) . (2-10)

and:

Od(m) = (Gm− dobs)T C−1
d (Gm− dobs) , (2-11)

As the probability density function f(m|dobs) in Equation (2-8) is as-
sumed to have multivariate Gaussian distribution, it finds its maximum value
when O(m) finds its minimum. The function O(m) measures the data and
model parameters mismatch and, thus, it refers to the desired objective func-
tion to be minimized to achieve a vector of model parameters m with the
maximum probability of matching the observed data dobs.

2.2
Maximum a posteriori estimate

When the relation between the model parameters and the data is linear,
one can prove that the constructed objective function O(m) is quadratic for
any given vector m ∈ RNm . Thus, to obtain a minimum of O(m), it is sufficient
to calculate its gradient ∇O(m) and set it to zero, as:

∇O(m) = C−1
m (m−mpr) +GTC−1

d (Gm− dobs) = 0. (2-12)

Adding and subtracting Gmpr inside the data mismatch parenthesis, we
obtain that:

0 = C−1
m (m−mpr) +GTC−1

d (Gm−Gmpr +Gmpr − dobs)

= C−1
m (m−mpr) +GTC−1

d (Gm−Gmpr) +GTC−1
d (Gmpr − dobs)

= C−1
m (m−mpr) +GTC−1

d G (m−mpr) +GTC−1
d (Gmpr − dobs)

=
(
C−1
m +GTC−1

d G
)

(m−mpr) +GTC−1
d (Gmpr − dobs) .

(2-13)

From Equation (2-13), we obtain a value of m such that ∇O(m) = 0.
This vector corresponds to the maximum a posteriori estimate of the vector
of model parameters and is denoted as mmap. This vector is computed in the
following way:

mmap = mpr +
(
C−1
m +GTC−1

d G
)−1

GTC−1
d (dobs −Gmpr) . (2-14)
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Note that computing mmap using Equation (2-14) requires solving an
Nm×Nm matrix problem. However, for reservoir history matching, the number
of model parameters Nm is often significantly larger than the quantity of
observed data Nd, i.e., Nm � Nd. Therefore, the practical application of
Equation (2-14) may be unfeasible. On the other hand, note the following
identity:

(
C−1
m +GTC−1

d G
)−1

GTC−1
d = CmG

T
(
GCmG

T + Cd
)−1

. (2-15)

Opposite to the left-hand side of Equation (2-15), the right-hand side of
the same equation displays a matrix problem of size Nd × Nd, which is more
feasible when Nd � Nm, as explained before. Therefore, one may compute
mmap as follows:

mmap = mpr + CmG
T
(
GCmG

T + Cd
)−1

(dobs −Gmpr) . (2-16)

To prove that the minimum of O(m), mmap, is unique, one must compute
its Hessian function H(m), as:

H(m) = ∇ (∇O(m)) = C−1
m +GTC−1

d G. (2-17)

As Cm and Cd are covariance matrices, and assumed to be positive-
definite, one can attest that H(m) is also positive-definite [1]. Hence, the
minimum of O(m) is unique. For the linear case, one may write the posterior
probability density function of m in terms of the mmap, as:

f(m) = â exp
{

(m−mmap)T C−1
map (m−mmap)

}
, (2-18)

where Cmap is called the posterior covariance matrix of the model parameters,
and it is equal to the inverse of the Hessian function of O(m), as:

Cmap = H−1

=
(
C−1
m +GTC−1

d G
)−1

= Cm − CmGT
(
GCmG

T + Cd
)−1

GCm,

(2-19)
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where the last equality is obtained by the Sherman-Morisson-Woodbury for-
mula [2]. For the equations computed so far, there were assumed no model
errors. However, it can be shown that such a theory is still valid for the case
where there are model errors, and they have Gaussian distribution. In this
case, the matrix Cd in Equation (2-4) corresponds to the sum of the covari-
ance matrices of measurement errors and model errors, i.e., Cd = Cd1 + Cd2 .

2.3
Minimization for nonlinear problems

When a nonlinear function gives the relation between the model pa-
rameters and the theoretical data, i.e., d = g(m), where g : RNm → RNd , a
minimization method is required to compute a minimum of O(m). Neverthe-
less, due to the nonlinearity of the function g, one cannot prove that such
a minimum is unique. Moreover, it is expected that the objective function
O(m) has multiple minima, depending on the initial guess given as input for
the minimization method [1]. There are several procedures for minimizing a
nonlinear function. Most of them are gradient-based, i.e., one must compute
the nonlinear function gradient to obtain a minimizing vector. This section
presents three popular techniques to solve the desired nonlinear least-squares
minimization problem using line search and trust region algorithms [3].

Characterizing a local minimum

Some concepts exposed in this section were used before to achieve
a formula to compute mmap. However, for the nonlinear case, we chose
to present a local minimum characterization to avoid misunderstanding. A
straightforward strategy to determine whether a point p ∈ Rn is a local
minimum of a specific function f : Rn → Rmight be investigating all the points
in the immediate neighborhood of p. However, there are much more efficient
methods to discover such property. One of them is given by the analysis of the
gradient and the hessian of the function f . On the other hand, such research
requires f to be smooth and twice continuously differentiable. Let us enunciate
Taylor’s theorem, which is a start to the minimization methods analysis.

Teorema 2.1 (Taylor’s Theorem).
Suppose f : Rn → R continuously differentiable and p ∈ Rn. Then, we

have that:

f(x+ p) = f(x) +∇f(x+ tp)Tp, (2-20)
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for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable, we have
that:

f(x+ p) = f(x) +∇f(x)Tp+ 1
2p

T∇2f(x+ tp)p, (2-21)

for some t ∈ (0, 1).

Using Theorem 2.1, one may investigate conditions to characterize local
minimizers of nonlinear functions by checking the gradient and the hessian
values at such points. The next theorem exposes a first-order necessary
condition regarding the gradient’s behavior around a local minimizer.

Teorema 2.2 (First-order necessary condition).
If x∗ is a local minimum and f is continuously differentiable in an open

neighborhood of x∗, then ∇f(x∗) = 0.

The proof of Theorem 2.2 can be found in [3]. Also, to derive Equation
(2-16), one must invoke Theorem 2.2, as mentioned in the text. The next the-
orem characterizes the hessian of a twice continuously differentiable function
at a local minimizer.

Teorema 2.3 (Second-order necessary condition).
If x∗ is a local minimum and ∇2f is continuous in an open neighborhood

of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive-semidefinite.

Again, one may find the proof for Theorem 2.3 in [3]. Just recall that a
matrix M ∈ Rn×n is said to be positive-definite if pTMp > 0, for all p ∈ Rn,
such that p 6= 0, andM is positive-semidefinite if pTMp ≥ 0. The next theorem
presents sufficient conditions on the derivatives of f that guarantee that x∗ is
a local minimum.

Teorema 2.4 (Second-order sufficient condition).
Suppose that ∇2f is continuous in an open neighborhood of x∗, and

that ∇f(x∗) = 0 and ∇2f(x∗) is positive-definite. Then, x∗ is a strict local
minimum of f .

The previous theorems present interesting tools to characterize and
recognize local minimizers for nonlinear functions. However, finding global
minimizers is a difficult task for the nonlinear case. A good strategy for solving
minimization problems is to define a convex objective function. In this case, it
is possible to prove a useful result, shown in the next theorem and proved in
[3].

Teorema 2.5 (Global minimizers for convex functions).
If f is a convex function, any local minimizer x∗ is a global minimizer.
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Objective function for the nonlinear case

Section 2.1 displays the desired objective function’s derivation to be
minimized to solve the history matching problem for the linear case. In this
part, we expose the objective function used for nonlinear history matching
problems. In fact, there is no significant difference between the one used in the
linear and the other used in the nonlinear case. A nonlinear function now gives
the relation between the theoretical data and the model parameters. Therefore,
we must change the second term in Equation (2-9) by replacing Gm with g(m).
Therefore, we can rewrite the objective function O(m) in the following way:

O(m) = Om(m) +Od(m), (2-22)

with:

Om(m) = (m−mpr)T C−1
m (m−mpr) , (2-23)

and:

Od(m) = (g(m)− dobs)T C−1
d (g(m)− dobs) . (2-24)

In this case, we denote the maximum a posteriori estimate (mmap) as the
following minimization problem:

mmap = arg min
m∈RNm

O(m) (2-25)

Because the objective function in Equations (2-22) to (2-24) is nonlinear,
the minimization problem depicted in Equation (2-25) may have multiple
solutions. When using gradient-based algorithms, the local minimum will be
conditioned to the initial guess. It means that the history matching problem
may have various mmap estimates.

Newton minimization method

The well-known Newton direction to minimize a nonlinear function
f : Rn → R can be derived by using Taylor’s theorem (Theorem 2.1). Define the
following functionmk(p) as the second-order Taylor approximation of f(xk+p):

mk(p) = f(xk) + pT∇f(xk) + 1
2p

T∇2f(xk)p. (2-26)
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Let us assume that∇2f(xk) is positive-definite. Computing the derivative
of mk and setting it to zero, one must achieve the following formula:

pNk = −
(
∇2f(xk)

)−1
∇f(xk). (2-27)

The search direction exposed in Equation (2-27) can be shown to be a
descent direction [3]. Therefore, let us compute the Newton search direction to
the nonlinear objective function O (Equation (2-22)). Let mk be the current
guess:

∇mO(mk) = ∇mOm(mk) +∇mOd(mk). (2-28)

From Equations (2-23) and (2-24), we obtain that:

∇mOm(mk) = C−1
m (mk −mpr)) , (2-29)

and

∇mOd(mk) = GT
kC
−1
d (g(mk)− dobs) , (2-30)

where Gk is the sensitivity matrix of g, evaluated at mk, as follows:

Gk =


∂g1(mk)
∂m1

. . . ∂g1(mk)
∂mNm... . . . ...

∂gNd
(mk)

∂m1
. . .

∂gNd
(mk)

∂mNm

 . (2-31)

Now, let us compute the second derivative of the nonlinear objective
function ∇2

mO(mk), as follows:

∇2
mO(mk) = ∇m (∇mOm(mk) +∇mOd(mk))

= ∇2
mOm(mk) +∇2

mOd(mk).
(2-32)

From Equations (2-29) and (2-30), we obtain that:

∇2
mOm(mk) = C−1

m , (2-33)

and
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∇2
mOd(mk) = GT

kC
−1
d G+∇m

(
GT
k

)
C−1
d (g(m)− dobs) . (2-34)

Note that the term ∇m

(
GT
k

)
corresponds to the second derivative of the

function g. Thus, the minimizer direction, given by the Newton procedure, is
presented as follows:

δmN
k+1 = −

(
C−1
m +GT

kC
−1
d G+∇m

(
GT
k

)
C−1
d (g(mk)− dobs)

)−1

(
C−1
m (mk −mpr)) +GT

kC
−1
d (g(mk)− dobs)

)
. (2-35)

Thus, the iterative process given by the Newton method is the following:

mk+1 = mk + µk+1δm
N
k+1. (2-36)

Gauss-Newton minimization method

In the Gauss-Newton method, a simple change is made in the calculation
of the second derivative of the objective function O. The term involving a
second-order derivative ∇m

(
GT
k

)
is neglected. Instead, the method uses an

approximation as follows:

∇2O(mk) ≈ C−1
m +GT

kC
−1
d G. (2-37)

Neglecting the second-order derivative in the computation of the Hessian
of O brings us some advantages. The first is that the time saved by calculating
the second derivative of the function g can be significant, hence, transforming
the Gauss-Newton search direction faster to estimate. Another critical remark
is that an explicit formula for the function g is not available usually. Therefore,
the first-order derivative must be computed numerically. Hence, a second-
order derivative calculation is not feasible to be estimated. One must note
that the Gauss-Newton and the Newton method behave similarly when the
current guess mk is near a local minimum. There are other situations when
the Gauss-Newton has advantages over the Newton method, which can be
found in [3] and [1]. In reservoir engineering history matching problems,
the covariance matrices Cm and Cd are often assumed to be symmetric and
positive-definite. Consequently, their inverses are also symmetric and positive-
definite. Therefore, one must observe that the Hessian approximation given by
the Gauss-Newton algorithm is also positive-definite.
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Using the approximation depicted in Equation (2-37), the minimizer
direction given by the Gauss-Newton algorithm is given by:

δmGN
k+1 = −

(
C−1
m +GT

kC
−1
d Gk

)−1

(
C−1
m (mk −mpr)) +GT

kC
−1
d (g(mk)− dobs)

)
. (2-38)

Levenberg-Marquardt minimization method

Equation (2-37) shows the Gauss-Newton approximation for the Hessian
of the objective function O(mk), omitting the second-order derivative. In
the Levenberg-Marquardt algorithm, a scalar is added to the Gauss-Newton
approximation in the following way:

∇2O(mk) ≈ C−1
m +GT

kC
−1
d Gk + λkIm, (2-39)

where Im ∈ RNm×Nm is a identity matrix, and λk ∈ R, λk > 0 is the
Levenberg-Marquardt parameter. Denoting the Gauss-Newton approximation
of the Hessian by Hk, we can rewrite Equation (2-39) as follows:

∇2O(mk) = Hk + λkIm. (2-40)

Thus, the iterative process of the Levenberg-Marquardt method becomes:

δmLM
k+1 = − (Hk + λkI)−1(

C−1
m (mk −mpr)) +GT

kC
−1
d (g(mk)− dobs)

)
. (2-41)

The parameter controls both the search direction and the step size. If λ is
large, the Levenberg-Marquardt method will take a small step in the steepest
descent direction. Whereas, if λ is short, the process will behave similarly to a
Gauss-Newton iteration. The choice of λ depends on the problem and may be
reduced iteration by iteration if the method is obtaining a minimum. Another
significant improvement that the Levenberg-Marquardt method gives to the
history matching problem is improving the condition number of the Hessian
approximation. Recall that the condition number of a matrix is defined as
follows:

Definição 2.6 Condition number of a matrix.

DBD
PUC-Rio - Certificação Digital Nº 1721314/CA



Chapter 2. Bayesian framework of the history matching problem 27

For square matrices A, the condition number of A, κ(A), is given by:

κ(A) = ||A||||A−1||. (2-42)

There is a convention that κ(A) =∞ for all singular matrices. Note that
underlying the regular euclidian norm, one can rewrite the condition number
as:

κ(A) = ||A||2||A−1||2 = σmax(A)
σmin(A) . (2-43)

Where σmax(A) and σmin(A) corresponds to the maximum and the
minimum singular values of A, respectively. Thus, one can write the condition
number of the Levenberg-Marquardt Hessian approximation of O(mk) as:

κ(Hk + λkI) = σmax (Hk) + λk
σmin (Hk) + λk

. (2-44)

For practical history matching problems, the derivatives are often com-
puted numerically, resulting in errors in the approximation of the matrix Gk,
hence, rising inaccuracies to the Hessian approximation. The condition number
measures how the matrix errors can result in a lousy solution to linear systems.
From Equation (2-44), one can note that the Levenberg-Marquardt parameter
can fix the bad-conditioning problem when solving Equation (2-41). Moreover,
suppose it is possible to compute the singular values of the matrix Hk. In
that case, one can choose the Levenberg-Marquardt parameter to maintain
the condition number fixed within the iterations.

2.4
Ensemble Smoother

The ensemble-smoother (ES) is an ensemble-based method that works
as a traditional parameters estimation. It uses an ensemble approximation of
the sensitivity matrix to update the model parameters vector. Implementing
the ensemble smoother is more comfortable than the previous gradient-based
algorithms shown in the last subsection. Moreover, the ES does not require
any derivatives, which eases coupling it with any simulator. This subsection
will discuss the update equations of the ensemble smoother and the ensemble
smoother with multiple data assimilation (ES-MDA), which is an iterative
form of the ES.

Suppose that the relation between the model parameters m ∈ RNm

and the theoretical data d ∈ RNd is given by a linear function of the form
d = g(m) = Gm, where G ∈ RNd×Nm is the sensitivity matrix of g. With this
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assumption, Section 2.2 presented the maximum a posteriori estimate mmap

as follows:

mmap = mpr + CmG
T
(
GCmG

T + Cd
)−1

(dobs −Gmpr) . (2-45)

In an ensemble-based method, we create an ensemble of model parameter
vectors {mj}Ne

j=1, where Ne ∈ N∗ is the ensemble size. Hence, we also produce
an ensemble of theoretical data {dj}Ne

j=1, where dj = Gmj. Thus, we can
approximate the model parameters covariance matrix Cm as follows:

Cm ≈
1

Ne − 1

Ne∑
j=1

(mj −m) (mj −m)T , (2-46)

where m = 1
Ne

∑Ne
j=1mj. Using this approximation, we can estimate the

matrices CmGT and GCmG
T using the ensemble members in the following

way:

CmG
T ≈

 1
Ne − 1

Ne∑
j=1

(mj −m) (mj −m)T
GT

≈ 1
Ne − 1

Ne∑
j=1

(
(mj −m) (mj −m)T GT

)

≈ 1
Ne − 1

Ne∑
j=1

(mj −m) (G (mj −m))T

≈ 1
Ne − 1

Ne∑
j=1

(mj −m)
(
dj − d

)T
≈ Cmd.

(2-47)

Note that the previous estimate for CmGT requires assuming that d =
Gm. In a similar process, an estimate for GCmGT is:
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GCmG
T ≈ GCmd

≈ G

 1
Ne − 1

Ne∑
j=1

(mj −m)
(
dj − d

)T
≈ 1
Ne − 1

Ne∑
j=1

G
(

(mj −m)
(
dj − d

)T)

≈ 1
Ne − 1

Ne∑
j=1

(G (mj −m))
(
dj − d

)T

≈ 1
Ne − 1

Ne∑
j=1

(
dj − d

) (
dj − d

)T
≈ Cdd.

(2-48)

Using the ensemble approximations for CmGT and GCmGT , depicted in
Equations (2-47) and (2-48), the mmap can be rewritten as:

mmap = mpr + Cmd (Cdd + Cd)−1 (dobs −Gmpr) . (2-49)

The primary objective of the ES is to update the vector of model
parameters mj first created to build the ensemble approximations for the
matrices Cmd and Cdd. Therefore, the update equation of the ES can be written
as:

ma
j = mf

j + Cf
md

(
Cf
dd + Cd

)−1 (
duc,j − dfj

)
, j = 1, · · · , Ne. (2-50)

In the previous equation, the superscript a refers to the analysis step
an the superscript f refers to the forward step. The vector duc,j ∈ RNd

corresponds to an unconditional realization of the vector of observed data dobs,
i.e., duc,j = dobs + εj, where εj ∼ N (0, Cd). The updated ensemble corresponds
to a sample of the posterior probability density function f(m|dobs). Therefore,
the ES tries to characterize f(m|dobs) by estimating the first two statistical
moments: the mean and variance.

The study of [4] showed that the ES update process is similar to applying
a single Gauss-Newton iteration with full-step size and using the same ensemble
approximation for the sensitivity matrix of the data. As most of the history
matching problems are nonlinear, one single Gauss-Newton iteration is not
expected to produce reasonable estimates for the model parameters. Thus,
one cannot expect the ES to deliver trustable estimates for the vector of model
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parameters. Many iterative forms of the ES have been proposed to improve
its primary formulation. One of them is the ensemble smoother with multiple
data assimilation (ES-MDA), which the idea is to assimilate the same data
multiple times with an inflated data error covariance matrix.

Ensemble smoother with multiple data assimilation

The ES-MDA update equation is given by:

mk+1
j = mk

j + Ck
md

(
Ck
dd + αk+1Cd

)−1 (
dkuc,j − dkj

)
, (2-51)

where j = 1, · · · , Ne, k = 1, · · · , Na. The variableNa ∈ N∗ refers to the number
of assimilations. The set {αk}Na

k=1 ⊂ R refers to the data error inflation factors,
that must satisfy the following condition:

Na∑
k=1

1
αk

= 1. (2-52)

The requirement exhibited in Eq. (2-52) guarantees the ES-MDA to
sample the posterior probability density function f(m|dobs) correctly. A direct
consequence of Equation (2-52) is that αk ≥ 1,∀k = 1, · · · , Na. Another useful
procedure of writing the covariance matrices approximated from the ensemble
is in the following way:

Ck
md = ∆Mk

(
∆Dk

)T
, (2-53)

and

Ck
dd = ∆Dk

(
∆Dk

)T
, (2-54)

where

∆Mk = 1√
Ne − 1

[
mk

1 −mk, · · · ,mk
Ne
−mk

]
, (2-55)

and

∆Dk = 1√
Ne − 1

[
dk1 − d

k
, · · · , dkNe

− dk
]
. (2-56)
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The matrix ∆Mk may be understood as the ensemble approximation of
the square root of the model parameters’ covariance matrix Cm at the step k.
Hence, we obtain that:

Cm ≈ ∆Mk
(
∆Mk

)T
, (2-57)

and

C1/2
m ≈ ∆Mk. (2-58)

Assuming the relationship between the model parameters and the data
to be linear, we obtain that:

∆Dk = G∆Mk. (2-59)

Because the variables contained in the vector of model parameters m
may have different dimensions and also the variance between them may be
significant, [5] defined the dimensionless sensitivity matrix of the data pre
multiplying the matrix G by C

−1/2
d and post multiplying the matrix G by

C1/2
m , as follows:

GD = C
−1/2
d GC1/2

m . (2-60)

As the matrix ∆Mk is an approximation of the square root of Cm, we
obtain that:

Gk
D ≈ C

−1/2
d G∆Mk. (2-61)

From Equation (2-59), we obtain that:

Gk
D ≈ C

−1/2
d ∆Dk. (2-62)

Note that the approximation of Gk
D, depicted in Equation (2-62), has

dimensions Nd × Ne. It is useful to rewrite Equation (2-51) in terms of the
dimensionless sensitivity matrix Gk

D. Therefore, consider the matrix C =
Cmd (Cdd + αCd)−1. We will hide the super and subscripts k in this part for
convenience. Using Equations (2-53) and (2-54), we can rewrite C in the
following way:
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C = ∆M (∆D)T
(
∆D (∆D)T + αCd

)−1
. (2-63)

Assuming that the data-error matrix Cd is symmetric, and noting that
Cd = C

1/2
d INd

C
1/2
d , where INd

∈ RNd×Nd is the identity matrix, we obtain that:

C = ∆M (∆D)T
(
C

1/2
d

(
C
−1/2
d ∆D (∆D)T C−1/2

d + αINd

)
C

1/2
d

)−1

= ∆M (∆D)T C−1/2
d

(
C
−1/2
d ∆D (∆D)T C−1/2

d + αINd

)−1
C
−1/2
d .

(2-64)

Noticing that GT
D = ∆DTC

−1/2
d , directly from Equation (2-64), we

achieve that:

C = ∆MGT
D

(
GDG

T
D + αINd

)−1
C
−1/2
d . (2-65)

Replacing the matrix C computed using Equation (2-65) in Equation
(2-51), we obtain that:

δmk+1
j =

(
Gk
D

)T (
Gk
D

(
Gk
D

)T
+ αk+1INd

)−1
ykj , (2-66)

where j = 1, · · · , Ne, k = 1, · · · , Na, δmk+1
j =

(
∆Mk

)† (
mk+1
j −mk

j

)
∈ RNe

is the dimensionless vector of update parameters, where the superscript
† refers to the pseudo-inverse of the matrix ∆Mk, and the vector ykj =
C
−1/2
d

(
dkuc,j − dkj

)
∈ RNd referring to the dimensionless vector of observed

data.
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3
Influences of the inflation factors generation in the main
parameters of the ES-MDA

The generation of the ES-MDA inflation factors has been the focus of sev-
eral recent studies. Concurrently, recent researches have shown a relationship
between inflation factors and the final ensemble estimates quality. They have
also suggested techniques to generate these factors based on methods derived
from the discrepancy principle. However, a procedure to efficiently generate
ES-MDA inflation factors remains an open problem. Additionally, the studies
diverge on what regularization method suffices to produce ES-MDA inflation
factors that provide optimal final results. Therefore, this chapter presents an in-
vestigation of the generation of ES-MDA inflation factors. Two main paths will
be investigated: selecting them constant, equal to the number of assimilations,
and in a geometrically decreasing order. When selecting them geometrically,
two techniques will be used to generate the first inflation factor: the regular
discrepancy principle and a Levenberg-Marquardt regularization scheme. The
main objective of this study is to examine the error propagation during the
multiple data assimilation of the ES-MDA and the estimates’ quality, consid-
ering only the generation of the inflation factors. Moreover, we numerically
analyze their influence on the ES-MDA ensemble size and number of assim-
ilations and how their choices affect the ES-MDA performance. The results
presented in this chapter were published in Silva et al. (2021) [6].

3.1
Introduction

The generation of ES-MDA inflation factors is the focus of several recent
studies. Le et al. (2016) [7] noted that selecting constant inflation factors,
equal to Na, may lead to under and overcorrections in the final ensemble
estimates when Na = 8 and Na = 16. Therefore, they proposed two automatic
procedures to select such factors. The first one is based on the average objective
function, in a way that the correction of the following step is not larger than a
previously selected threshold. The second method uses a regularization scheme
for Levenberg-Marquardt algorithms proposed by Hanke (1997) [8]. Similar to
the first method of Le et al. (2016) [7], Emerick (2016) [9] also proposed a
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method to generate the inflation factors for ES-MDA based on the average
data mismatch function.

Rafiee and Reynolds (2017) [10] proposed to select the ES-MDA inflation
factors geometrically in decreasing order, where the first factor was generated
using a procedure derived from the Levenberg-Marquardt regularizing scheme
of Hanke (1997) [8]. The following factors were selected geometrically in
decreasing order. Their results suggest that the geometric generation of these
factors enhances the ES-MDA final results. The studies of Evensen (2018)
[11] and Emerick (2019) [12] supported this observation. Rafiee and Reynolds
(2017) [10] also claim that it is possible to yield good ES-MDA final results even
with a low number of assimilations, but with proper inflation factors selection.
This claim was investigated in the work of Silva et al. (2021) [13]. Using the
method of Rafiee and Reynolds (2017) [10], Silva et al. (2021) [13] showed that
increasing Na from 4 to 8 did not produce significant improvements in the
final results when estimating the reservoir skin properties. Emerick (2019) [12]
proposed to select the last inflation factor a priori, and the previous ones are
generated geometrically in increasing order. In contrast with the study of Rafiee
and Reynolds (2017) [10], Emerick (2019) [12] tests the resulting first inflation
factor using a standard discrepancy principle function [14]. Recently, Silva
et al. (2021) [15] proposed a new method to compute the ES-MDA inflation
factors by computing the first and the last factors using the formula of Rafiee
and Reynolds (2017) [10]. The other inflation factors are selected geometrically
in decreasing order.

The ES-MDA performance is intimately linked to its three primary pa-
rameters: the ensemble size, the inflation factors, and the number of assim-
ilations. Additionally, the ES-MDA vector of model parameters update is a
linear combination of the right singular vectors of the average dimensionless
sensitivity matrix GD [5, 10]. Thus, changing any of these three main parame-
ters results in a modified linear combination to compute the ES-MDA update.
Hence, it is possible to analyze their influence on the ES-MDA performance.
There are various researches regarding the ES-MDA achievements considering
both the ensemble size [16, 13] and the number of assimilations [17, 10, 12].
Therefore, this study focus on examining the generation of the inflation factors.

The motivation of the present study comes from the research of Tavakoli
and Reynolds (2010) [18]. They presented an in-depth investigation of the
effects of the singular values of GD in minimizing the uncertainty. They
concluded that the singular values are responsible for the uncertainty reduction
in the vector of model parameters. Moreover, they claim that the largest
singular values may produce an optimal parametrization in updating the vector
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of model parameters when the singular values decay fast. The observations of
Tavakoli and Reynolds (2010) [18] can also be joint with the study of Wang et
al. (2010) [19], which claims that minimal singular values can result in notable
errors when resolving matrix problems.

Considering the similarities between the ES-MDA and the Levenberg-
Marquardt method, we can also mention the study of Shiranji and Emerick
(2016) [20]. They present a comparison between the performance of the Gauss-
Newton and the Levenberg-Marquardt methods applied to parameter estima-
tion. They concluded that the search direction of the Levenberg-Marquardt
algorithm has its main components in the order of the right singular vectors
of GD that correspond to the largest singular values. In the Gauss-Newton
algorithm, they showed that all right singular vectors have similar weights in
the vector of the model update, even those corresponding to the smallest sin-
gular values. As a result, the final estimates of Gauss-Newton present more
significant errors compared to the ones obtained by the Levenberg-Marquardt
method. As noted by Rafiee and Reynolds (2017) [10], the update equation of
ES-MDA has the same structure as the Levenberg-Marquardt algorithm.

Although several studies proposed different methods, efficiently gener-
ating the ES-MDA inflation factors remains an open problem. Thereby, this
study provides a mathematical analysis of the inflation factors selection in the
ES-MDA model parameters update and their influence in the ensemble size Ne

and the number of assimilations Na. This analysis will consider the singular
values and vectors of the average dimensionless sensitivity matrix GD. The
first inflation factor will be generated using the schemes suggested by Emerick
(2019) [12], and Rafiee and Reynolds (2017) [10]: the discrepancy principle [14]
and the regularizing system of Hanke (1997) [8]. The following inflation fac-
tors will be selected geometrically in decreasing order. It is essential to mention
that only the first assimilation step will be analyzed.

This study’s main contribution and novelty is presenting a method
to numerically investigate the generation of the ES-MDA inflation factors
before starting the data assimilation process. The suggested investigation
approach is one of the main differences between the present study and the
ones available in the literature investigating the inflation factors generation
[10, 12]. Furthermore, we offer a numerical procedure to assess whether the
inflation factor generation is suitable for the chosen ensemble size or the
problem itself. The results and discussions presented in this study state an
accurate connection of the inflation factors, the ES-MDA ensemble size Ne

and the number of assimilations Na, and the singular values of the matrix GD.
The proposed method also allows the proper selection of inflation factors to
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improve the ES-MDA final results and the ES-MDA performance.
This work shows that the vector of ES-MDA model parameters update

is contained in the space spanned by the right singular vectors of the matrix
GD. Hence, if the singular values are decreasing ordered, it is desired that
the first right singular vectors, corresponding to the most significant singular
values, have more influence in the model parameters update. The numerical
examples exhibited in this study demonstrate that the inflation factors have
a massive impact on each coefficient’s determination in the linear combina-
tion of the right singular vectors of GD that computes the ES-MDA model
parameters update. Moreover, we show that selecting proper inflation factors
may mitigate small singular values’ effects on the multiple data assimilation.
Thus, significantly diminishing error propagation within the ES-MDA itera-
tions. Also, suitably selecting the inflation factors may also alleviate other
ES-MDA current problems, such as ensemble collapse, spurious correlations
due to small ensembles, and under or overcorrections in the final estimates.
Finally, we intend to conclude which regularization method is recommended
to attain optimal ES-MDA outcomes and performance.

This chapter is organized as follows: Section 3.2 presents the analytical
formulation to compute the coefficient of each right singular vector of GD in
the ES-MDA vector of model parameters update; Section 3.3 presents a brief
theoretical background of regularization for nonlinear inverse problems, the
methods used to generate the first inflation factor, and how to generate the
following ones geometrically in decreasing order; finally, Section 3.4 presents
the investigation of the influences of the inflation factors in the ES-MDA main
parameters and performance.

3.2
Singular Values Analysis

This section analyzes the effects of the average dimensionless sensitivity
matrix GD in the ES-MDA update equation depicted in Equation (2-66). This
analysis will be performed considering the singular values and the singular
vectors of GD. Furthermore, we aim to achieve a procedure to measure their
impacts on the ES-MDA performance and final results. The assimilation
process is not on focus in this section. Therefore, we will eliminate the super
or subscripts k. Consider the singular value decomposition [2] of the matrix
GD as follows:

GD = UΣV T , (3-1)
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where the matrix U ∈ RNd×Nd refers to the left singular vectors of the matrix
GD. The matrix V ∈ RNe×Ne refers to the right singular vectors of the matrix
GD. The matrix Σ ∈ RNd×Ne is a diagonal matrix where each diagonal entry
refers to the singular values of GD. Substituting Equation (3-1) in Equation
(2-66), we obtain that:

δmj =
(
UΣV T

)T (
UΣV T

(
UΣV T

)T
+ αINd

)−1
yj. (3-2)

Note that the matrices U and V are orthogonal, i.e., UUT = UTU = INd

and V V T = V TV = INe . Therefore, Equation (3-2) can be rewritten as:

δmj = V ΣTUT
(
UΣΣTUT + αINd

)−1
yj. (3-3)

Using the fact that matrix U is orthogonal, we can rewrite Equation (3-3)
as:

δmj = V ΣTUT
(
U
(
ΣΣT + αINd

)
UT

)−1
yj

= V ΣTUT
(
UT

)−1 (
ΣΣT + αINd

)−1
(U)−1 yj

= V ΣTUTU
(
ΣΣT + αINd

)−1
UTyj

= V ΣT
(
ΣΣT + αINd

)−1
UTyj.

(3-4)

From Equation (3-4), it follows straightforward that:

δmj =
r∑
i=1

(
σi

σ2
i + α

uTi yj

)
vi, (3-5)

where r ∈ N∗ is the rank of GD and {σi}ri=1 ⊂ R refers to the set of
singular values of GD. Equation (3-5) states that the ES-MDA updated vector
of model parameters δmj is contained in the space spanned by the singular
vectors vi, i.e., δmj can be described as a linear combination of vi. Moreover,
Equation (3-5) also presents an analytical formula to compute the individual
coefficients of each singular vector vi for computing δmj. Define the function
tj(σ, u, α) : RNd+2 → R that calculates each desired coefficient for the vector
vi as:

tj(σ, u, α) = σ

σ2 + α
uTyj. (3-6)
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Function tj is computed for each ensemble membermj. Also, its variables
are the singular values σi of matrix GD, the value of the inflation factor α at
that assimilation step, and the left singular vectors ui of matrix GD. Using the
function tj, exposed in Equation (3-6), we can rewrite Equation (3-5) as:

δmj =
r∑
i=1

tj (σi, ui, α) vi. (3-7)

All the variables of the function tj are selected in terms of the dimen-
sionless sensitivity matrix GD, except by the inflation factor α, which the user
selects. The only restriction is the one depicted in Equation (2-52). Although
several studies proposed different methods to generate such factors efficiently,
it remains an open problem deciding which one produces the best ES-MDA
results. Equation (3-6) presents an analytical formula to compute each singular
vector’s coefficients in the vector of ES-MDA model parameters update. This
formula is not entirely unfamiliar in the ensemble-based methods literature
[10]. However, it has never been used to evaluate the quality of the ES-MDA
inflation factors effects on the vector of model parameter updates, considering
the matrix GD. The study of Emerick (2019) [12] presents an analysis of the
geometric generation of the ES-MDA inflation factors. However, in this study,
we offer a different investigation of the production of such elements. Instead
of comparing the ES-MDA results with varying inflation factors and deciding
which one achieved the best outcome, we present a mathematical argument
that numerically demonstrates our conclusion of which method may achieve
the best result before starting data assimilation. Therefore, this strategy to
assess the ES-MDA inflation factors generation considering the singular values
and vectors of GD is one of this study’s main contributions and novelty.

One can find a related strategy in the study of Shiranji and Emerick
(2016) [20]. They present a procedure to compute each coefficient of right
singular vectors of GD in the update equation of the Levenberg-Marquardt
and Gauss-Newton algorithms. As a result, based on Tavakoli and Reynolds
(2010) [18], and Wang et al. (2010) [19], we may generate inflation factors
such that the singular vectors vi corresponding to the largest singular values
σi have more influence in the vector of model parameters update δmj. In other
words, we may select inflation factors {αk}Na

k=1 such that function tj computes
the highest values for the greatest σi. This choice may lead to smaller error
propagation in the multiple data assimilation of the ES-MDA. Moreover, it is
desired that the singular vectors corresponding to the smallest singular values
have minor importance in δmj. Therefore, one can decide which choice for the
inflation factor attends these requirements by applying Equation (3-6) to the
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prior ensemble.

3.3
Inflation factor generation from the discrepancy principle

This section presents a brief background of regularization for nonlinear
inverse problems [21] and how we can link this theory to the ES-MDA
update equation [10, 15]. The concept of regularization is crucial to yielding
a significant analysis of the influence of the inflation factors selection in the
ES-MDA performance from a mathematical perspective. Moreover, it was the
base of the studies of Le et al. (2016) [7], Rafiee and Reynolds (2017) [10],
Emerick (2019) [12], and Silva et al. (2021) [15] to present novel methods to
generate ES-MDA inflation factors efficiently.

Regularization for nonlinear inverse problems

Consider x ∈ RNx and y ∈ RNy , where a nonlinear function f : RNx →
RNy gives the relation between them, i.e., y = f(x). To trace a parallel,
reservoir history matching consists of solving the inverse problem of finding
x given y. However, there is no guarantee of the existence nor uniqueness of
such a solution for a nonlinear function f . As a result, one may consider the
following nonlinear minimization problem:

x∗ = min
x∈RNx

||f(x)− y||22. (3-8)

The problem depicted in Equation (3-8) is widely studied in the mathe-
matical literature and can be solved using different approaches. As an exam-
ple, we can mention line search and trust-region techniques [3]. Nevertheless,
in this study, we adopt a simple strategy of using a linearization of the func-
tion f around the current guess xk obtained by the first-order Taylor series
expansion, as follows:

f(x) ≈ f(xk) + Ak(x− xk), (3-9)

where

Ak =


∂f1(xk)
∂x1

. . . ∂f1(xk)
∂xNx... . . . ...

∂fNy (xk)
∂x1

. . .
∂fNy (xk)
∂xNx

 . (3-10)

Considering ŷk = f(xk)− y and x̂k = x− xk, we obtain that:
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x̂k+1 = min
x̂
||Akx̂k − ŷk||2. (3-11)

Due to the nonlinearity of the function f and the lack of a unique solution,
one may search for the resolution of the Tikhonov regularized inverse problem
[21], presented as follows:

x̂k+1 = min
x̂

{
||Akx̂k − ŷk||2 + αk+1||x̂k||2

}
, (3-12)

where αk+1 > 0. Equation (3-12) has the following answer:

x̂k+1 = ATk (AkATk + αk+1I)−1ŷk. (3-13)

The solution to the regularized problem depicted in Equation (3-13) is
similar to the dimensionless ES-MDA update equation, presented in Equation
(2-66), with Ak = Gk

D, x̂k+1 = δmk+1
j , and ŷk = ykj . Thus, note that Equation

(2-66) displays a solution for the following regularized problem:

δmk+1
j = argmin

δmk

{
||Gk

Dδm
k
j − ykj ||2 + αk+1||δmk

j ||2
}
, (3-14)

Inflation factor generation

The inflation factors {αk}Na

k=1, will be generated geometrically in decreas-
ing order, such that α1 will be computed using two popular procedures in the
ensemble-based methods literature, basis for the studies of Le et al. (2016) [7],
Rafiee and Reynolds (2017) [10] and Emerick (2019) [12]. Therefore, we con-
sider that k = 0, referring to the first ES-MDA assimilation step. Consider the
intricacy of updating the ensemble mean, m0, in the following minimization
problem:

δm1 = argmin
δm0

{
||G0

Dδm
0 − y0||2 + α1||δm0||2

}
, (3-15)

where δm1 = (∆M0)† (m1 −m0) and y0 = C
−1/2
d

(
dobs − d

0). As a result, we
have that an answer to the problem depicted in Equation (3-15), given by
Equation (2-66) with k = 0, can be written as:

δm1 =
(
G0
D

)T (
G0
D

(
G0
D

)T
+ α1INd

)−1
y0. (3-16)
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One can note that α1 in Equation (3-16) works as a regularization
parameter to the regularized problem exposed in Equation (3-15) [14, 10].
This parameter may control the quality of the solution. If it is too little, the
numerical answer may present high sensitivity and be excessively unstable. On
the other hand, if α1 is exceedingly high, then the approximation error may be
large [22]. Therefore, to guarantee that the regularization problem converges,
one must produce α1 using the noise level η [23, 10]. A usual assumption is
that the data mismatch is higher than the noise level correlated with the data,
i.e.:

||y0|| > η. (3-17)

In other words:

||C−1/2
d

(
dobs − d

0) || > η, (3-18)

where the noise level correlated with the data can be described as:

η2 ≡ ||C−1/2
d (dobs − dtrue) ||2, (3-19)

where dtrue = Gmtrue and mtrue is the true vector of model parameters such
that dobs = Gmtrue+ε, with ε referring to the model error. Therefore, Equation
(3-19) can be written as:

η2 ≡ ||C−1/2
d ε||2. (3-20)

It is reasonable to consider that the noise vector ε assumes multivariate
Gaussian distribution. Hence, η2 attends a χ2 distribution with Nd degrees
of freedom. Accordingly, a rough approximation may be η =

√
Nd [23]. Two

rules will be applied to generate the regularization parameter to be used as an
inflation factor for the first ES-MDA assimilation step. They are the following:

1) The discrepancy principle (DP):

||G0
Dδm

1 − y0|| = ητ, (3-21)

where τ ≥ 1;

2) The Hanke condition (HC):
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ρ2||y0||2 ≤ α2
1||
(
G0
D

(
G0
D

)T
+ α1INd

)−1
y0||2, (3-22)

where ρ ∈ (0, 1).

For Equation (3-21), we used τ = 1, and for Equation (3-22), we used
ρ = 0.5. For both equations, we used the traditional euclidean norm [2].
The regular discrepancy principle [14], exposed in Equation (3-21), was used
in Emerick (2019) [12] to test the resulting value of α1. The rule exposed
in Equation (3-22), proposed by Hanke (1997) [8], was used by Rafiee and
Reynolds (2017) [10] to derive a formula to compute α1. Therefore, these rules
will be used to compute α1 in the analysis presented by this study. The other
inflation factors will be generated geometrically in decreasing order as follows:

αk+1 = γαk, (3-23)

with γ ∈ (0, 1). The number of assimilations Na will also be selected a priori.
Thus, to guarantee that Equation (2-52) is satisfied, the value of γ must be
computed as the solution of the problem f(γ) = 0, where γ ∈ (0, 1) and f is
determined as follows:

f(γ) = γ−Na + α1
(
1− γ−1

)
− 1. (3-24)

In addition, the standard implementation of the ES-MDA with αk = Na,
k = 1, · · · , Na, will be tested. According to Rafiee and Reynolds (2017) [10],
it is desired a low number of assimilations Na to maintain moderate the
computational cost. They suggest using Na from 4 to 8. Thus, we compare the
inflation factors generated using the conditions exhibited in Equations (3-21)
and (3-22) with αk = 4, k = 1, · · · , 4, and αk = 8, k = 1, · · · , 8. Another
significant remark is that both studies of Emerick (2019) [12] and Rafiee and
Reynolds (2017) [10] derived formulas to compute α1 based on the procedures
depicted in Equations (3-21) and (3-22). Instead, we will strictly apply such
conditions to generate α1.

3.4
Case study

In this section, we present an analysis of the inflation factor generation
in the main parameters of the ES-MDA. We numerically examine their effects
on the ensemble size Ne and the number of assimilations Na. We also present
an investigation of the vector of model parameters update of ES-MDA δm1
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for the different inflation factors selection. This analysis will be done in the
history matching problem of water flooding a two-dimensional reservoir.

Problem description

The reservoir model is squared, with a total length of 1575 m in
each direction. It is discretized in a 63×63×1 grid, where each gridblock
has dimensions 25m×25m×15m. The reference log-permeability field was
generated using a spherical covariance function of correlation length of 40
gridblocks. The prior estimate of the log-permeability field is equal to 5, with
prior variance equals 1. Figure 3.1 displays the reference log-permeability field
and the location of each well. These pieces of information were used to create
ensembles of different sizes in this study. The vector of model parameters m
consists only of the gridblock log-permeability of each gridblock. The reservoir
contains thirteen wells, nine of them are producing, and four are water injection
wells. The producing wells operate at constant bottom-hole pressure (BHP)
of 275 kgf/cm2. The water injection wells run at a continuous BHP of 325
kgf/cm2. The simulation time consists of 3600 days, with measurements every
150 days. The observed data consists of the water and oil rate (WR and OR)
of the producing wells and the water injection rate of the water injection wells.
For the synthetic measurements, it was added a Gaussian error of 3%. In
this study, the matrix Cd is diagonal, with every entry corresponding to the
square of the standard deviation used to generate the errors in the observed
measurements. We used a distance-based covariance localization during all
data assimilation applied directly to the Kalman gain matrix [24]. We do
not use any subspace inversion procedure if we do not intend to neglect
singular vectors’ impact corresponding to small singular values. In fact, the
main objective is to analyze the inflation factors selection and their impact on
the singular vectors components of δm1.

Singular values

With the information described in the previous subsection, we create
four different ensembles of different sizes: Ne = 25, Ne = 50, Ne = 100, and
Ne = 500. Figures 3.2 to 3.5 display the computed singular values of matrix GD

estimated using the prior ensemble with different sizes. Note that the GD has
dimension Nd ×Ne. Therefore, rank(GD) ≤ min(Nd, Ne). One may note that
the singular values present a fast decay rate for all cases. It indicates that only
a few singular vectors vi (see Equation (3-5)) corresponding to the largest
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Figure 3.1: Reference log-permeability field.
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Figure 3.2: Computed singular values forGD estimated from the prior ensemble
with Ne = 25.

singular values σi may create an optimal parametrization for uncertainty
quantification purposes [18]. Thus, as we do not use any parametrization
or subspace inversion procedure, we can investigate the inflation factors
selection and which available technique can neglect the effects of singular values
corresponding to the smallest singular values.

Ensemble size analyzis

Knowing the singular values of the matrix GD, it is possible to compute
the coefficients tj (Equation (3-6)) of each singular vector vi in the vector of
model parameters update calculated by the ES-MDA. Considering the problem
of updating the mean log-permeability field in the first assimilation step of ES-
MDA, m0, one may analyze the ensemble size’s effects in each coefficient of
the components of the vector δm1. We refer to the vector of coefficients of vi
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Figure 3.3: Computed singular values forGD estimated from the prior ensemble
with Ne = 50.
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Figure 3.4: Computed singular values forGD estimated from the prior ensemble
with Ne = 100.
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Figure 3.5: Computed singular values forGD estimated from the prior ensemble
with Ne = 500.
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Ne Discrepancy principle (DP) Hanke condition (HC)
25 59.36 341,294.00
50 799.02 417,960.60
100 839.61 726,932.02
500 1,916.34 997,308.71

Table 3.1: Computed α1 using Equations (3-21) and (3-22) for different
ensembles.

in δm1 as t.
The problem of investigating the ensemble size and their resulting

estimates is well studied in the ensemble-based methods literature [16, 13].
Their primary approach is running the ES-MDA with varying ensembles sizes
Ne and comparing their results. This strategy is not wrong and provides
useful insight into the ensemble size influences in data assimilation. One of
the main reasons that a small ensemble cannot offer a fair characterization of
the posterior probability density function may be the poor approximation of
the covariance matrices Cmd and Cdd in Equations (2-53) and (2-54). It causes
spurious correlations of components of the vector m that are far away from
the observations. Moreover, the matrix GD estimated from a small ensemble
is seriously rank deficient, limiting the degrees of freedom to assimilate data.

In this study, we provide additional information in the ensemble size
investigation for the ES-MDA. Based on the work of Tavakoli and Reynolds
(2010) [18] and Wang (2010) [19], observing the computed singular values in
Figures 3.2 to 3.5, we may infer a supplementary conclusion on why small
ensembles yield unsatisfactory final results for ES-MDA. For computing the
coefficients t, we use four different inflation factors. The first procedure is
selecting them equal to Na. Therefore, we select α1 = 4 and α1 = 8. The second
approach is selecting α1 using the discrepancy principle (Equation (3-21)). The
third and last method is using the scheme of Hanke (1997) [8] to estimate the
first inflation factor (Equation (3-22)). Table 3.1 displays the computed values
for α1 using each method for the different ensembles.

Figures 3.6 to 3.9 display the computed absolute values for the coefficients
t in Equation (3-6). One may note that for the ensemble with Ne = 25, the
right singular vectors vi corresponding to the smallest singular values have
more influence on the model update δm1 when selecting the first inflation
factor equal to Na or using the discrepancy principle. As noted by Wang
(2010) [19], small singular values are responsible for significant errors. Thus,
these three methods may provide inadequate estimates for the posterior ES-
MDA ensemble. As the ensemble size grows, this issue is resolved. Shiranji and
emerick (2016) [20] also checked this issue for Gauss-Newton algorithms.
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Figure 3.6: Computed coefficients t (Equation (3-6)) for vi for Ne = 25 in linear
and semi-log scales.
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Figure 3.7: Computed coefficients t (Equation (3-6)) for vi for Ne = 50 in linear
and semi-log scales.

10 20 30 40 50 60 70 80 90

 Singular Value Index

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 C
o

e
ff

ic
ie

n
t 

(a
b

s
o

lu
te

 v
a
lu

e
)

 
1
 = 4

 
1
 = 8

 
1
 = 839

 
1
 = 726,932

10 20 30 40 50 60 70 80 90

 Singular Value Index

10
-6

10
-4

10
-2

10
0

 C
o

e
ff

ic
ie

n
t 

(a
b

s
o

lu
te

 v
a
lu

e
)

 
1
 = 4

 
1
 = 8

 
1
 = 839

 
1
 = 726,932

Figure 3.8: Computed coefficients t (Equation (3-6)) for vi for Ne = 100 in
linear and semi-log scales.
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Figure 3.9: Computed coefficients t (Equation (3-6)) for vi for Ne = 500 in
linear and semi-log scales.

Analyzing the coefficients of the components of δm1 estimated using the
inflation factor computed utilizing the condition of Hanke (1997) [8], one may
note that the vectors vi corresponding to the largest σi are the ones that have
more influence in the ES-MDA update, even when the ensemble size is small.
It might reduce complications when updating model parameters. However, the
issues regarding lousy estimates for the covariance matrices Cmd and Cdd and
the limited degrees of freedom of GD are still valid for small ensembles. Thus,
we claim that small ensembles also forces the ES-MDA to compute an update
vector that strongly considers right singular vectors corresponding to small
singular values when badly selecting the inflation factor. This result supplies an
interesting scheme. Using Equation (3-6), one can verify whether the inflation
factor is proper for the ES-MDA for the chosen ensemble size before initiating
data assimilation. Suppose the selected inflation factor computes an update
vector that considers the smallest singular values majorly. In that case, it might
end in poor ES-MDA outcomes, as explained previously. Therefore, the user
can change the inflation factor selection before running the ES-MDA method.
This process might be useful for applications problems when the ensemble size
cannot be large due to computational or time obstacles.

Singular values analysis

The problem of generating the inflation factors for the ES-MDA has been
on focus recently [7, 12, 10]. However, which method is the most adequate for
data assimilation remains an open problem . Figures 3.6 to 3.9 also analyze
which method may generate inflation factors for achieving optimal ES-MDA
results. Following the same technique described in the previous subsection,
one may investigate the effects of the right singular vectors vi in the ES-MDA
model parameters update. It is expected that the vectors vi corresponding to
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the largest σi have more influence in the model parameters update vector for
the ES-MDA to achieve the best results.

For all ensemble sizes, it is noteworthy that generating the first inflation
factor using the method of Hanke (1997) [8] resulted in the weaker influence of
singular vectors related to small singular values compared to the other inflation
factors selection. On the other hand, this procedure produces considerably
small coefficients t for the first singular vectors vi. It might result in soft and
limited update vectors δm1. Therefore, the first assimilation of ES-MDA using
the procedure of Hanke (1997) [8] to generate α1 might not result in significant
changes in the model parameters vector m0. Differently, this aspect may be
worthy for the multiple data assimilation of ES-MDA, where the prior ensemble
contains a massive quantity of error approximation. Thus, the vector of model
parameters is softly corrected during the ES-MDA assimilation steps.

When selecting inflation factors equal to the number of assimilations
Na, singular vectors corresponding to small singular values have substantial
influence when the ensemble size is little. This issue is relatively resolved
when the ensemble size increases. In the example shown in Figures 3.6 to
3.9, the mentioned problem is only resolved in the case where Ne = 500. On
the other hand, larger ensembles may result in higher computational cost and
time consumption, which hinders the assimilation process. Another solution
to such a problem might be increasing the number of assimilations. In the
example in Figures 3.6 to 3.9, increasing Na to 8 could not reach more reliable
outcomes for any cases. Thus, one may select Na larger than 8. Still, it brings
the same difficulty of computational cost and time. Therefore, we claim that
equally selected inflation factors may result in poor approximations for model
parameters in the ES-MDA with relatively small ensembles. This claim is
supported by this study’s observations, and the practical examples available in
the ES-MDA literature, which equally selected inflation factors often presents
under and overshooting in the model parameters [7, 10, 12].

The discrepancy principle appears to be a reasonable choice for gener-
ating inflation factors for ES-MDA. However, when the ensemble is small, as
displayed in the case with Ne = 25, it presents the same issue as the one ob-
served with equal inflation factors. An ensemble of size Ne = 50 might not
resolve this issue thoroughly, but the problem is way smaller. The effects of
singular vectors corresponding to smaller singular values might be neglected
only with an ensemble of 100 members or higher. In the example of the en-
semble with Ne = 500, singular vectors of index greater than 50 are almost
entirely ignored.

One may note that a nearly large ensemble, e.g., Ne = 500, results in
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smaller effects of singular vectors corresponding to small singular values, even
when the inflation factors are selected equal to Na. Moreover, also the singular
vectors related to the largest singular values have moderate effects in the vector
of model updates, e.g., smaller t, which cannot be observed in other cases with
smaller ensembles. This observation tells us that the inflation factor selection
almost becomes pointless if the ensemble size is relatively big. This conclusion is
in accordance with the definition of ES-MDA, which provides a correct sample
of the posterior probability density function f(m|dobs) if Equation (2-52) is
satisfied and the ensemble size goes to infinity.

Overall, the inflation factor generated using the method of Hanke (1997)
[8] seems to produce relatively small updates in the vector of model parameters
due to the small coefficients of the first singular vectors. Using the discrepancy
principle might escape this problem, but the ensemble size must not be small.
When the inflation factors are equal to Na, there are two possibilities that
might yield good results: a large ensemble or a large number of assimilations.
In both cases, computational cost and time consumption are increased. Now,
let us analyze the update vector computed by each inflation factor selection
and ensemble size.

Model parameters update analysis

Figures 3.10 to 3.13 display the vector of mean model parameters update
δm1, computed for the different first inflation factor selection and different
ensemble sizes. The figures display the vector δm1 computed using all available
singular values and compare with the same vector calculated using only the
singular values responsible for 90% of the sum of all singular values. In Figures
3.10 to 3.13, the top first column figure refers to the reference field, whereas
the bottom first column figure corresponds to the prior mean. The following
columns correspond to the different computations of the ES-MDA vector of
update: α1 = 4, α1 = 8; α1 computed using the discrepancy principle, and
α1 computed using the scheme of Hanke (1997) [8], respectively. The first line
corresponds to computing the ES-MDA update vector by using all available
singular values. In contrast, the second line corresponds to computing the ES-
MDA update vector using the singular values responsible for 90% of the sum
of all singular values.

As expected, when the ensemble is small, such as the example with
Ne = 25, the vector δm1 might be unable to produce an appropriate update
to the prior mean, especially when the inflation factor is equal to Na (Na = 4
and Na = 8). Although the update seems to be changing the prior mean
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log-permeability towards the reference field, such an update’s amplitude is
excessive, which may cause under or overcorrections in the final ensemble
mean. Moreover, the difference between δm1 computed adopting all singular
values and the same vector utilizing just the largest ones is significant. This
observation is explained by the effects of singular vectors related to small
singular values in the update (see Figures 3.6 to 3.9), which may cause a
considerable quantity of errors in the estimate. Although the parametrized
update also seems unable to generate a reasonable estimation of the reference
field, its amplitude is way smaller, which may alleviate under or overcorrections
to the ES-MDA estimates.

When the ensemble grows to Ne = 50, the update becomes smaller for
all inflation factors selection. Nevertheless, they still seem to be inefficient in
producing reasonable estimates for the mean log-permeability field compared
to the reference field. The difference between the full vector δm1 and the
parametrized one is smaller in this case. However, it is still noticeable the
effects of small singular values. This issue is relatively resolved when the
ensemble size expands to Ne = 100, visually making an update vector that
addresses the prior mean log-permeability towards the reference field. In this
case, the effects of the inflation factors become very apparent. One may note
that when the inflation factor is selected equal to the number of assimilations
Na, the update’s amplitude is larger, computing the vector δm1 that clearly
deviates from the parametrized one. This problem does not happen when we
select α1 using the discrepancy principle or the Hanke condition, which states
that the updates in these two cases are computed mostly in the direction of
singular vectors corresponding to the largest singular values. This observation
also holds for the ensemble with 500 members. However, the largest ensemble
(Ne = 500) produces even smoother and smaller updates, which is useful for
data assimilation. For all cases, the update made using the inflation factor
selected using the method of Hanke (1997) [8] presented the smaller update,
as expected by the previous discussion.

ES-MDA results

Although the previous subsections aimed to analyze the effects of the
inflation factors selection on the ensemble size Ne and on the vector of update
parameters δm1, a similar investigation to acquire information about their
influence in the number of assimilations Na requires running the ES-MDA
with different values for Na. In this study, we use Na = 4 and Na = 8.
These values are chosen because we wish to maintain a low number of

DBD
PUC-Rio - Certificação Digital Nº 1721314/CA



Chapter 3. Influences of the inflation factors generation in the main parameters
of the ES-MDA 52

10 20 30 40 50 60

10

20

30

40

50

60
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60

10

20

30

40

50

60
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

10 20 30 40 50 60

10

20

30

40

50

60

-4

-3

-2

-1

0

1

2

3

4

Figure 3.10: Update vector δm1 for each inflation factor selection for the case
Ne = 25 and comparison with a low-order parametrization. The top-first
column figure refers to the reference field, whereas the bottom-first column
figure corresponds to the prior mean. The following columns correspond to the
different computations of the ES-MDA vector of update: α1 = 4, α1 = 8; α1
computed using the discrepancy principle, and α1 computed using the scheme
of Hanke (1997) [8], respectively. The first line corresponds to computing the
ES-MDA update vector by using all available singular values. In contrast, the
second line corresponds to computing the ES-MDA update vector using the
singular values responsible for 90% of the sum of all singular values.
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Figure 3.11: Update vector δm1 for each inflation factor selection for the case
Ne = 50 and comparison with a low-order parametrization. Figures here have
the same meaning as in Figure 3.10.
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Figure 3.12: Update vector δm1 for each inflation factor selection for the case
Ne = 100 and comparison with a low-order parametrization. Figures here have
the same meaning as in Figure 3.10.
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Figure 3.13: Update vector δm1 for each inflation factor selection for the case
Ne = 500 and comparison with a low-order parametrization. Figures here have
the same meaning as in Figure 3.10.

assimilations to avoid increased computational cost and time consumption [10].
The values of α1 computed for each ES-MDA run is exposed in Table 3.1. The
other inflation factors will be computed geometrically in decreasing order, as
displayed in Equation (3-23). As this study focuses exclusively on parameter
approximation, we present only the model parameters’ ES-MDA results.

When running the ES-MDA with the inflation factors equal to Na, it will
be referred to as 4x-EQL forNa = 4 and 8x-EQL forNa = 8. For the case where
the first inflation factor is computed using the discrepancy principle, it will be
referred to as 4x-DP for Na = 4 and 8x-DP for Na = 8. When using the scheme
of Hanke (1997) [8] to generate the first inflation factor, it will be referred to
as 4x-HC for Na = 4 and 8x-HC for Na = 8. In Figures 3.14 to 3.21, the first
three columns correspond to the first three posterior ensemble members m1,
m2, and m3; the fourth column refers to the posterior ensembles means m; the
last column corresponds to the reference field. Additionally in those Figures,
the first line corresponds to selecting α1 = Na. The second line corresponds
to selecting α1 using the discrepancy principle. The third line corresponds to
selecting α1 using the scheme of Hanke (1997) [8]. We also display the root
mean squared error (RMSE) for each ES-MDA final ensemble. The RMSE is
computed using the following formula:

RMSEj =
(

1
Nm

Nm∑
k=1

(mtrue,k −mj,k)2
)1/2

, (3-25)

Investigating the ES-MDA performance in the ensemble with Ne = 25
in Figure 3.14, one may note that 4x-EQL could not produce a reasonable
estimate for the reference field. Moreover, the mean ensemble shows that
the members do not vary, exposing the limited degrees of freedom in data
assimilation due to the rank deficiency of GD. This problem is well known
in the ensemble-based data assimilation literature as ensemble collapse [25],
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Figure 3.14: First three posterior ensemble members and mean for ES-MDA
with Ne = 25 and Na = 4. The first three columns correspond to the first
three posterior ensemble members m1, m2, and m3; the fourth column refers
to the posterior ensembles means m; the last column corresponds to the
reference field. The first line corresponds to selecting α1 = Na. The second
line corresponds to selecting α1 using the discrepancy principle. The third line
corresponds to selecting α1 using the scheme of Hanke (1997) [8].
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Figure 3.15: First three posterior ensemble members and mean for ES-MDA
with Ne = 25 and Na = 8. Figures here have the same meaning as in Figure
3.14.
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Figure 3.16: First three posterior ensemble members and mean for ES-MDA
with Ne = 50 and Na = 4. Figures here have the same meaning as in Figure
3.14.
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Figure 3.17: First three posterior ensemble members and mean for ES-MDA
with Ne = 50 and Na = 8. Figures here have the same meaning as in Figure
3.14.
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Figure 3.18: First three posterior ensemble members and mean for ES-MDA
with Ne = 100 and Na = 4. Figures here have the same meaning as in Figure
3.14.
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Figure 3.19: First three posterior ensemble members and mean for ES-MDA
with Ne = 100 and Na = 8. Figures here have the same meaning as in Figure
3.14.
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Figure 3.20: First three posterior ensemble members and mean for ES-MDA
with Ne = 500 and Na = 4. Figures here have the same meaning as in Figure
3.14.
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Figure 3.21: First three posterior ensemble members and mean for ES-MDA
with Ne = 500 and Na = 8. Figures here have the same meaning as in Figure
3.14.
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where the difference between the ensemble members is exceedingly minimal
that they practically do not diversify. The inaccurate estimate is also because
of the poor approximations of the covariance matrices Cmd and Cdd and the
influences of singular vectors corresponding to small singular values in the
vector of model parameters update, as depicted in Figures 3.6 to 3.9. The
use of a regularization method to determine the first inflation factor partially
diminishes these problems. However, the ensemble means also indicate that the
ensemble does not vary due to the pre-mentioned difficulty. The case where
Na = 8, in Figure 3.15, shows that a higher number of assimilations slightly
alleviate the problems obtained with reduced iterations. However, the same
troubles explained before are still valid for this case.

As the ensemble size increases to Ne = 50, the problem of limited degrees
of freedom in data assimilation is marginally lessened due to the increased
number of members in the first ensemble. This fact can be noted in the mean
of each posterior ensemble in Figures 3.16 and 3.17. However, the quality of
the estimates is still low. The use of the regularizing method to generate the
inflation factors improved the ES-MDA estimates, particularly the technique
of Hanke (1997) [8]. For both cases where Ne = 25 and Ne = 50, selecting
the first inflation factor using Equation (3-22) provided a reasonable posterior
ensemble even with all the small ensembles issues. Moreover, the results of
4x-HC and 8x-HC for these two cases were relatively similar, showing the
method’s consistency, which is demonstrated by the observations in Figures
3.6 to 3.9.

An ensemble of size Ne = 100 is commonly used in the ensemble-based
methods literature [26, 7], capable of yielding reliable estimates for the history
matching problem. An excessive augmented ensemble, such as in the example
with Ne = 500, shows that the ES-MDA with all different inflation factors
selection produced high-grade and comparable results. It can be explained
by analyzing the effects of singular vectors corresponding to small singular
values in the vector of model parameters update, strongly mitigated with
a vast ensemble (see Figures 3.6 to 3.9). The good approximations of the
matrices Cmd and Cdd, along with the nearly full-rankness of the matrixGD also
improve the ES-MDA results for a relatively large ensemble. As a comparison,
we present the computed RMSE for each posterior ensemble obtained by ES-
MDA in Figures 3.22 to 3.25. In these figures, the black boxes correspond to
the region between the percentiles 25 and 75; the solid red lines inside of the
boxes correspond to the ensemble median; the solid red diamonds correspond
to the ensemble mean; the red whiskers correspond to the ensemble outliers;
the solid horizontal black lines correspond to the ensemble range.
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Figure 3.22: Computed RMSE for prior and posterior ES-MDA ensembles for
Ne = 25.
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Figure 3.23: Computed RMSE for prior and posterior ES-MDA ensembles for
Ne = 50.
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Figure 3.24: Computed RMSE for prior and posterior ES-MDA ensembles for
Ne = 100.
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Figure 3.25: Computed RMSE for prior and posterior ES-MDA ensembles for
Ne = 500.

The computed RMSE supports our claim that when the ensemble is
small, using the method of Hanke (1997) [8] to generate the first inflation
factor produces an excellent result with a reduced number of iterations. This
observation is in accordance with the study of Hanke (2010) [27], which
proves that the Hanke condition is of optimal order for Levenberg-Marquardt
algorithms. Another critical remark is that selecting inflation factors equal
to Na has proved unable to provide trustable approximations with little
ensembles. One may note that when the ensemble is relatively large, e.g.
Ne = 500, the inflation factors selection does not alter the ES-MDA final
results significantly. Figures 3.22 to 3.25 also support the claim of Rafiee and
Reynolds (2017) [10], stating that small number of assimilations with propper
inflation factors selection yields good results for the ES-MDA. It can be noticed
because for the cases where Ne = 25, Ne = 50, and Ne = 100, the 4x-EQL
and 8x-EQL produced the poorest results compared to the other ES-MDA
implementations.

One may note that with a relatively big ensemble, e.g., Ne = 500, the
problem of ensemble collapse alleviates. It is because of the expanded degrees
of freedom in data assimilation, where the matrices Cmd and Cdd are almost
full-rank for this problem. Moreover, the discrepancy in the results of 4x-EQL
and 8x-EQL is not significant, exhibiting the high quality of approximating
the average dimensionless sensitivity matrix GD. Furthermore, as exposed in
this study, large ensembles also avoid the effects of small singular values in the
ES-MDA update equation. This fact brings an interesting discussion about a
well-known conjecture in the ES-MDA literature that increasing the number of
assimilations Na yields better results. This might very well be true, as exposed
in the vast ES-MDA published studies [17, 7, 12, 28]. However, the theoretical
and numerical results presented in this study indicate that larger ensembles are
more desired than larger assimilation steps. It can be explained because large

DBD
PUC-Rio - Certificação Digital Nº 1721314/CA



Chapter 3. Influences of the inflation factors generation in the main parameters
of the ES-MDA 60

ensembles naturally mitigate the effects of singular vectors corresponding to
small singular values in the vector of model parameters update. Thus, providing
optimal ES-MDA estimates. This fact can be observed by noting that doubling
the number of assimilations Na for the case with Ne = 500 did not generate
notable enhancements.

3.5
Conclusions

This study investigates the influences of the inflation factors in the main
parameters of the ES-MDA, such as the number of assimilations Na and the
ensemble size Ne. Also, we investigate their influence on the vector of ES-
MDA model parameters update, which is strictly associated with the method’s
performance. The primary objective is to conclude an optimal procedure to
generate ES-MDA inflation factors considering only the model parameter
estimations and the singular values and vectors of matrix GD. Therefore, we
examine the ES-MDA update equation in terms of the dimensionless sensitivity
matrix’s singular value decomposition to determine the effects of inflation
factors in the model parameters.

The ES-MDA estimates can be composed as a linear combination of the
dimensionless sensitivity matrix’s right singular vectors. Moreover, we present
an analytical formula to compute each right singular vector coefficient in the
ES-MDA update vector. This procedure is the start point of this study. The
proposed formula has all variables computed based on the matrix GD, except
by the inflation factor at that assimilation step, which is selected by the user.
This technique explicitly computes each coefficient of the linear combination
that determines the vector of model parameters update. Therefore, it is possible
to assess the effects of each inflation factor generation on those coefficients.

Previous studies showed that minimal singular values could generate
meaningful errors when resolving matrix problems. Moreover, if the singu-
lar values of GD have a fast decay rate, one can show that a parametrization
containing just a few of the largest ones is optimal for uncertainty reducing
purposes. Therefore, we demonstrate that the inflation factor generation sub-
stantially influences the weights of the right singular vectors of GD on the
ES-MDA update equation. Consequently, we can determine which approach
is optimal to generate inflation factors such that right singular vectors corre-
sponding to small singular values have minimal effects on data assimilation.

Our numerical results show that if the ensemble size is relatively small,
e.g., Ne = 25 or Ne = 50, the method of Hanke (1997) [8] provides optimal
results even with a reduced number of assimilations, such as Na = 4. It is
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explained because such a method computes an ES-MDA update that partially
neglects singular vectors corresponding to small singular values, resulting in
diminishing the error propagation in data assimilation. It is also noticeable that
selecting inflation factors equal to the number of assimilation Na produces
an update that highly considers small singular values. Thus, enabling error
propagation in the ES-MDA iterations with relatively small ensembles. When
the ensemble is relatively large, e.g., Ne = 500, the inflation factors selection
is not crucial to yield good approximations. It is explained because, as the
ensemble increases, singular vectors corresponding to small singular values are
neglected naturally. Finally, we also conclude that larger ensembles are more
decisive than bigger assimilation steps in the ES-MDA. This fact holds not only
because of the better ensemble approximations of covariance matrices but also
because larger ensembles naturally push the ES-MDA almost to neglect small
singular values in the update process. On the other hand, small ensembles force
the ES-MDA to compute an update vector majorly in the direction of singular
vectors corresponding to small singular values.
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4
A new procedure for generating data covariance inflation
factors for ES-MDA

This study aims to introduce a new method for generating the data
covariance inflation factors for ES-MDA. The main motivation of the presented
study comes from the observation in Silva et al. (2021) [6] that applying the
scheme of Hanke (1997) [8] to generate the first inflation factor resulted in
the best ES-MDA performance. In the new method, the first inflation factor is
generated using a Levenberg-Marquardt regularizing scheme. The last inflation
factor is set by a parameter that limits its magnitude, computed using the
singular values of the dimensionless sensitivity matrix estimated from the
prior ensemble. As a result, the method computes the correct number of data
assimilations that produces inflation factors such that the sum of their inverse
is equal to one, as required by ES-MDA. It is shown through a synthetic
two-dimensional water flooding history matching problem that the proposed
methodology achieves both better model parameter match and data match
with a smaller number of assimilations than the methods available in the
literature. The results presented in this chapter were published in Silva et
al. (2021) [15].

4.1
Introduction

In the ES-MDA, the problem of selecting all the inflation factors equal to
the number of data assimilations is that if it is not enough to provide reasonable
results, one may need to restart the assimilation process with a higher number
of assimilations, which increases computational time. Another problem is that
it may cause overcorrections of the model parameters [12, 10, 7]. In a study
presented by Le et al. (2016) [7], selecting all the inflation factors equal to
the number of assimilations led to overshooting in the final permeability and
porosity field when implementing the ES-MDA with 8 and 16 assimilation
steps. Therefore, they proposed two adaptive procedures for selecting inflation
factors. The first one, ES-MDA-RS, is based on the average data mismatch
function, determining inflation factors that do not result in great changes in
model parameters at each assimilation step. The second method, ES-MDA-
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RLM, is based on a study proposed by Iglesias and Dawson (2013) [29], that
uses a regularizing scheme proposed by Hanke (1997) [8] to compute the
inflation factors at each assimilation step. Although the methods proposed
by Le et al. (2016) [7] improved the performance of the ES-MDA, it often
requires many iterations, which may hinder the application for large-scale
problems [10]. Emerick (2016) [9] proposed a method to select the inflation
factors adaptatively, based on the average data mismatch function multiplied
by a factor smaller than one. The termination criterion is when the sum of the
inverse of the inflation factors becomes equal to one. Emerick (2016) [9] tested
the method in a real field case. However, the results were not significantly
better than the standard ES-MDA.

Motivated by the studies of Le et al. (2016) [7] and Iglesias (2015) [30],
Rafiee and Reynolds (2017) [10] presented an ES-MDA algorithm where the
first inflation factor is computed based on the regularization condition for
Levenberg-Marquardt algorithms of Hanke (1997) [8]. One of their objectives
was to determine the number of assimilation a priori to maintain low compu-
tational cost and assimilation time. They state that selecting the number of
assimilations from 4 to 8, with propper inflation factors, produce good results
for the final ensemble. They also declared that selecting the inflation factors
geometrically in decreasing order is good to improve ES-MDA results. In the
study of Silva et al. (2021) [13], increasing the number of assimilation from
4 to 8 did not improve the ES-MDA outcomes significantly when using the
method of Rafiee and Reynolds (2017) [10]. However, the first inflation factor
computed by Rafiee and Reynolds (2017) [10] is often large. It implies that
when the number of assimilations is close to 4, the last inflation factor is close
to 1, i.e., the last assimilation is almost full-step.

Emerick (2019) [12] presented an ES-MDA algorithm that determines
the inflation factor for the last iteration. Then, the algorithm computes the
previous inflation factors geometrically in increasing order such that the sum
of the inverse of them is equal to one. Computed value for the first inflation
factor is tested against the Morozov Discrepancy Principle (MDP) [14]. If
it is not satisfied, the method increases the number of assimilations in one
and recomputes all the inflation factors again. However, recent studies [7, 10]
observed that the ES-MDA update equation has a similar structure as a
Levenberg-Marquardt algorithm. Therefore, the method of Hanke (1997) [8]
can be applied to select the inflation factors Le et al. (2016) [7]. Moreover, as
presented in Hanke (2010) [27], the scheme for nonlinear inverse problems of
Hanke (1997) [8] is of optimal order, i.e., it provides optimal accuracy for such
algorithms.
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In this study, we present a novel method for generating the inflation
factors for ES-MDA. We apply the analytical formula derived by Rafiee and
Reynolds (2017) [10] to determine a lower bound for the first inflation factor
and use the same equation to propose the inflation factor’s computation for
the last assimilation step using the singular values of the average sensitivity
matrix estimated from the prior ensemble. In the calculation of the last
inflation factor, we limit its magnitude to a previously selected threshold.
Although we can mathematically prove such a procedure only for the linear-
Gaussian case, the numerical examples presented in this study demonstrate
that the proposed method is adequate for the nonlinear case. The other
inflation factors are computed geometrically in decreasing order. The proposed
algorithm then computes the correct number of data assimilations that produce
inflation factors satisfying ES-MDA requirements. In addition, as the method
of Emerick (2019) [12] has no efficient procedure to compute the last inflation
factor, the proposed analytical formula introduced by this study can be used
in the algorithm of Emerick (2019) [12].

The motivations for using the proposed method are the following: (i)
if the number of assimilation runs is small (e.g., close to four), the last
assimilation of the method of Rafiee and Reynolds (2017) [10] will be an
approximately full-step update; (ii) there is no efficient way to compute
the last inflation factor in the method proposed by Emerick (2019) [12];
(iii) as noted by Iglesias (2015) [30] and Rafiee and Reynolds (2017) [10],
the regularization parameter of Hanke (1997) [8] usually decreases with the
iterations; therefore, we may simulate this decreasing behavior in a geometric
progression, computing the first and last inflation factor using the formula
derived by Rafiee and Reynolds (2017) [10] a priori; (iv) the method of Hanke
(1997) [8] has been proven to be of optimal order for Levenberg-Marquardt
algorithms [27]. As it has a similar form as the ES-MDA update equation
[7, 10], we conjecture that it may produce better outcomes than the discrepancy
principle for generating ES-MDA inflation factors; v) finally, the study of Silva
et al. (2021) [6] shows that generating the first inflation factor using the scheme
of Hanke (1997) [8] results in optimal ES-MDA performance.

This chapter is organized as follows: Section 4.2 presents the methods of
Rafiee and Reynolds (2017) [10] and Emerick (2019) [12]. In section 4.3, we
describe the proposed method to generate the inflation factors for the ES-MDA
and discuss its efficiency. Section 4.4 presents the results obtained by running
the ES-MDA using the simplest implementation, the method of Rafiee and
Reynolds (2017) [10], the method of Emerick (2019) [12], and the one proposed
by this study in a synthetic two-dimensional waterflooding problem.
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4.2
Previous works

In this section, we review the methods of Rafiee and Reynolds (2017) [10]
and Emerick (2019) [12] for generating the inflation factors for the ES-MDA.

Method of Rafiee and Reynolds (2017)

Consider the problem of updating the ensemble mean in the first as-
similation step k = 0, i.e., the vector m0. Rafiee and Reynolds (2017) [10]
used the condition of Hanke (1997) [8] as a criterion to determine α1. De-
fine the matrix C = (G0

D (G0
D)T + α1I), where G0

D = C
−1/2
d ∆D0, and con-

sider y0 = C
−1/2
d

(
dobs − d

0) in Equation (3-22). Thus, Equation (3-22) can be
rewritten as:

ρ2 ≤ α2
1
||C−1y0||2

||y0||2
. (4-1)

If y0 is in the same direction of the kth singular vector of the matrix C,
then Equation (4-1) reduces to:

ρ2 ≤ α2
1

(σ2
k + α1)2 , (4-2)

where σk correspond to the kth singular value of G0
D. The equality occurs

when:

α1 = ρ

1− ρσ
2
k. (4-3)

The largest value for α1 is obtained when y0 is aligned with the first
singular vector of the matrix C. Conversely, the smallest α1 is obtained when
y0 is aligned with the singular vector corresponding to the smallest singular
value of C. The optimum value for α1 is between these two extremes. Therefore,
Rafiee and Reynolds (2017) [10] computed α1 using the following equation:

α1 = ρ

1− ρσ
2, (4-4)

where

σ = 1
N

N∑
i=1

σi. (4-5)
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In Equation (4-5), N is the number of non-zero singular values of G0
D.

Using α1 computed by Equation (4-4), the other inflation factors are selected
geometrically in a decreasing order, as:

αk = γk−1α1 ∀k = 1, · · · , Na, (4-6)

where γ ∈ (0, 1]. The computation of γ can be done following Equation (2-52),
by solving the following problem:

Na∑
k=1

1
γk−1 = α1. (4-7)

As the left side of Equation (4-7) is the finite sum of the geometric
progression with ratio γ, Equation (4-7) can be rewritten as:

1− γ−Na

1− γ−1 = α1. (4-8)

To solve this problem, define the function:

f1(γ) = 1− γ−Na

1− γ−1 − α1, (4-9)

and find γ∗ such that f1(γ∗) = 0.

Method of Emerick (2019)

Emerick (2019) [12] proposed to select the last inflation factor αNa and
compute the previous ones geometrically in a increasing order, by using the
following formula:

αk = γk−NaαNa ∀k = 1, · · · , Na. (4-10)

The coefficient γ ∈ (0, 1] can be computed by finding the root of f2,
defined as follows:

f2(γ) = 1− γNa

1− γ − αNa . (4-11)

The value of α1, computed from Equation (4-10) with proper γ, is tested
against the Morozov’s Discrepancy Principle (MDP) [14]. If α1 does not satisfy
the MDP, the number of iterations Na is increased by one and Eqs. (4-10) and
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(4-11) are applied again until a suitable value for α1 is obtained. To check the
MDP, Emerick (2019) [12] defines a function as follows:

h(α) = ||G0
Dxα − y0||2 − (τη)2 , (4-12)

where:

xα =
(
G0
D

)T (
G0
D

(
G0
D

)T
+ αId

)−1
y0. (4-13)

He computes α∗ > 0 such that h(α∗) = 0. Thus, it is sufficient to check
if computed α1 is such that α1 ≥ α∗ > 0. In Equation (4-12), Emerick (2019)
[12] used αNa = 1.5, τ = 1 and η =

√
Ndσy, where σy is the standard deviation

of y0.

4.3
Proposed Methodology

In this section, we present a new formulation of generating the inflation
factors for ES-MDA. Rafiee and Reynolds (2017) [10] used the scheme of Hane
(1997) [8] to calculate the first inflation factor α1. However, the following ones
are computed considering only Equation (2-52). Emerick (2019) [12] proposed
a methodology to obtain these factors based on the selection of αNa . However,
Emerick (2019) [12] proposes no analytical procedure for efficiently computing
αNa . Considering the remarks about the decay rate of the method proposed
by Rafiee and Reynolds (2017) [10], and the lack of a procedure to efficiently
compute αNa in the method of Emerick (2019) [12], we attempt to present an
analytical formula to compute the last inflation factor in advance. Besides,
computing αNa as proposed by this study may be used in the algorithm
proposed by Emerick (2019) [12].

Method Formulation

Hereafter, we present the method to generate inflation factors where
α1 and αNa are known. As a result, the method searches for the number of
assimilation Na and the γ ratio (Eqs. (4-6) and (4-10)) that produce inflation
factors that satisfy Equation (2-52). In this study, we use ρ = 0.5, τ = 1, and
η =

√
Nd in Eqs. (4-4) and (4-12) [23]. Suppose α1 and αNa known. Using

Equation (4-6), we can compute the value of γ from:

αNa = α1γ
Na−1, (4-14)

DBD
PUC-Rio - Certificação Digital Nº 1721314/CA



Chapter 4. A new procedure for generating data covariance inflation factors for
ES-MDA 68

as:

γ =
(
αNa

α1

) 1
Na−1

. (4-15)

However, if we generate inflation factors αk, k = 1, · · · , Na, using γ

computed by Equation (4-15) in Equation (4-6), we must not attend Equation
(2-52). Therefore, we must compute Na that produces inflation factors that
satisfy Equation (2-52). To do so, we use Equation (4-8) as follows:

1− 1
γNa

= α1 −
α1

γ
. (4-16)

Taking all terms that contains γ to the left hand side of Equation (4-16)
and factoring out 1

γ
in the left hand side:

1
γ

(
α1 −

1
γNa−1

)
= α1 − 1. (4-17)

Multiplying both sides of Equation (4-17) by 1
α1
:

1
γ

(
1− 1

α1γNa−1

)
= 1− 1

α1
. (4-18)

Using Equation (4-14) in Equation (4-18):

1
γ

(
1− 1

αNa

)
= 1− 1

α1
. (4-19)

Then, directly from Equation (4-19):

γ =
1− 1

αNa

1− 1
α1

. (4-20)

If α1 is large, Equation (4-20) provides an approximation of γ as:

γ ≈ 1− 1
αNa

. (4-21)

Therefore, selecting a high value for αNa may lead to γ ≈ 1, i.e., the
algorithm may yield a high number of assimilations. This conclusion also holds
for the method of Emerick (2019) [12]. For simplification, consider:

T1 =
1− 1

αNa

1− 1
α1

, (4-22)
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and

T2 = αNa

α1
. (4-23)

Finally, to compute Na it is needed to match Equation (4-15) and
Equation (4-20), using Eqs. (4-22) and (4-23), as follows:

T
1

Na−1
2 = T1. (4-24)

Taking the logarithm of both sides of Equation (4-24):

1
Na − 1 log T2 = log T1. (4-25)

Then, with a simple algebraic manipulation:

Na = 1 + log T2

log T1
. (4-26)

The proposed method uses the values of γ computed in Equation (4-20)
and Na computed in Equation (4-26) for generating inflation factors satisfying
Equation (2-52) with α1 and αNa previously determined. However, Equation
(4-26) does not always assume integer values, as required by ES-MDA for-
mulation [17]. To address this problem, observe that the scheme depicted in
Equation (4-2), presents the following lower bound for α1:

α1 ≥
ρ

1− ρσ
2. (4-27)

Rafiee and Reynolds (2017) [10] select α1 by searching for the equality
of Equation (4-2). Thus, to alleviate the problem of computing non-integer
values for Na in Equation (4-26), define the function f3:

f3(α) = 1 + log T2(α)
log T1(α) , (4-28)

where

T1(α) =
1− 1

αNa

1− 1
α

, (4-29)

and

T2(α) = αNa

α
, (4-30)
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and compute the minimum α∗ such that:

α∗ ≥ ρ

1− ρσ
2, (4-31)

and f3(α∗) ∈ N and, finally, set α1 = α∗.
In this study, we attempt to present a method to determine αNa . The

idea is to use the procedure of Rafiee and Reynolds (2017) [10], using the
singular values of the dimensionless sensitivity matrix estimated from the
prior ensemble G0

D. They observed that α1 assumes its largest value if it
is computed using the largest singular value of G0

D. On the other hand, α1

assumes its smallest value if it is computed using the smallest singular value of
G0
D. Therefore, as we desire to compute inflation factors in decreasing order, we

may assume that αNa is the smallest inflation factor. However, as a consequence
of Equation (2-52), we need that αNa ≥ 1. Thus, we propose to select αNa such
that:

αNa = ρ

1− ρ

(
1
p

p∑
i=0

σN−i

)2

, (4-32)

where p ∈ [1, N − 1] is the minimum integer such that αNa > µα, where
µα ∈ [1, Na) is a threshold to select a minimum value for αNa , and N is the
number of non-zeros singular values of G0

D. The threshold µα works as a lower
bound for αNa and may control the quality of final results and the magnitude
of αNa . If one selects µα = 1, αNa might be close to one. Moreover, if αNa = 1,
we have the standard ES. On the other hand, if one selects high µα, as observed
in Equation (4-21), it may lead to a large Na, which increases computational
cost. Another important remark is that Ne must be sufficiently large for G0

D

to have singular values close to one. Based on the examples examined in this
study, selecting Ne = 100 was enough.

Generating αNa using Equation (4-32) is valid for data assimilation only
in the linear-Gaussian case, where the dimensionless sensitivity matrixG0

D does
not change during data assimilation, i.e., ykj = GDx

k
j , with GD = Gk

D = G0
D,

∀k = 1, · · · , Na. The motivation for using Equation (4-32) to generate the
last inflation factor in the linear-Gaussian case comes from the fact that the
ES-MDA update equation has a similar structure as the Levenberg-Marquardt
minimization algorithm [7, 10]. Therefore, the inflation factor α plays the role
of the regularization parameter [12]. Thus, as the method of Hanke (1997) [8]
has been proven of optimal order [27], it can be efficiently applied to compute
the ES-MDA inflation factor. Nevertheless, this fact may not hold for the
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nonlinear case. On the other hand, our numerical examples show that the
proposed approach improves the ES-MDA outcomes with fewer assimilations
than the others available in the literature. Moreover, the motivation to use
such a procedure in the nonlinear case comes from the study of Silva et
al. (2021) [6], which numerically shows that generating the first inflation
factor using the scheme of Hanke (1997) [8] almost neglects the effects of
minimal singular values, i.e., diminish error propagation on the multiple data
assimilation processes. As a result, we conjecture that it may also happen for
the last assimilation step, computing it by using the formula of Rafiee and
Reynolds (2017) [10].

Analysis of f3

Depending on the value of αNa , it is not straightforward to predict what
the values of T1(α) (Equation (4-29)) and T2(α) (Equation (4-30)) may assume.
Therefore, we analyze the continuity and the limits of f3 in the interval where
it is continuous.

To verify if f3 is a continuous function, we must check the values where
log T1(α) 6= 0. One can notice that log T1(α) = 0 if and only if T1(α) = 1.
Then, T1(α) = 1 implies that α = αNa . However, if α = αNa , we have that
α1 = αNa and, using Equation (4-14), γ = 1 and the resulting method is
the simplest formulation of the ES-MDA with αk = Na ∀ k ∈ {1, · · · , Na}.
As we wish to compute inflation factors geometrically in decreasing order, we
assume α > αNa and guarantee that f3 is a continuous function in (αNa ,∞). To
analyze f3 in (αNa ,∞) it is sufficient to check the limits of f3 when α → α+

Na

and α→∞.
For the case when α→ α+

Na
, we can see that:

lim
α→α+

Na

T1(α) = lim
α→α+

Na

T2(α) = 1. (4-33)

Therefore, limα→α+
Na
f3(α) is not defined. Computing the following deriva-

tives:

d

dα
(log T1(α)) = − 1

α (α− 1) , (4-34)

and

d

dα
(log T2(α)) = − 1

α
, (4-35)
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and applying L’Hôpital’s rule:

lim
α→α+

Na

f3(α) = 1 + lim
α→α+

Na

 − 1
α

− 1
α(α−1)

 = 1 + lim
α→α+

Na

α− 1 = αNa . (4-36)

The result shown in Equation (4-36) is consistent in the sense that if
Na = αNa , it refers to the simplest inflation factors selection for ES-MDA. For
the case α→∞, note that:

lim
α→∞

log T1(α) = lim
α→∞

(
log

(
1− 1

αNa

)
− log

(
1− 1

α

))

= log
(

1− 1
αNa

)
.

(4-37)

As αNa > 1 (Equation (2-52)), we have that 1 − 1/αNa ∈ (0, 1). Thus,
log (1− 1/αNa) < 0. One can notice that, if α → ∞, T2(α) → 0 (Equation
(4-30)), implying that log T2(α)→ −∞. Thus, by Equation (4-37):

lim
α→∞

f3(α) =∞, (4-38)

what completes our analysis of f3.

Algorithm to compute Na and α∗

To computeNa and α∗ attending Equation (4-31), we suggest a procedure
using a zero-finding method, e.g., the bisection method. First, define the
function:

faux(α) = f3(α)−Na, (4-39)

with previously defined Na. From Equation (4-36):

lim
α→α+

Na

faux(α) = αNa −Na < 0, (4-40)

as 1 < αNa < Na. From Equation (4-38):

lim
α→∞

faux(α) =∞. (4-41)
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Thus, we can use bisection to compute α∗, such that faux(α∗) = 0, in
(αNa ,∞), and set α1 = α∗. Note that we must obtain α∗ respecting Equation
(4-31). In other words, we need that α∗ ∈

[
ρ

1−ρσ
2,∞

)
. Therefore, we must

apply bisection in this interval. Hence, Na will be iteratively increased until
we get faux( ρ

1−ρσ
2) ≤ 0. Hereafter we present an algorithm for computing

inflation factors and the number of data assimilation Na. We denote the value
of α1 computed using Equation (4-4) as α0

1 and the initial number of data
assimilation as N0

a .

Algorithm 1 New procedure to generate ES-MDA inflation factors.

1. Set Na = N0
a , µα and compute α0

1 using Equation (4-4);
2. Compute αNa using Equation (4-32);
3. While faux(α0

1) ≥ 0 (Equation (4-39)), set Na = Na + 1;
4. Compute α∗ using bisection in faux and set α1 = α∗;
5. Compute γ using α1 and αNa in Equation (4-15) and generate {αi}Na

i=1 using
Equation (4-6).

One can notice that if α∗ = α0
1, the method is similar to the method

of Rafiee and Reynolds (2017) [10] with Na = N0
a . The choice of µα affects

the computed Na. This fact will be demonstrated in the next section with the
examples.

4.4
Results and Discussion

In this section, we present a comparison of the results obtained when
implementing ES-MDA with data covariance inflation factors generated using
the methods of Rafiee and Reynolds (2017) [10], Emerick (2019) [12], the
simplest choice with αi = Na ∀i = 1, . . . , Na, and the method proposed in
this study. For simplification, we follow the nomenclature defined by Emerick
(2019) [12], where the method of Rafiee and Reynolds (2017) [10] is referred
to as ES-MDA-GEO1; the method of Emerick (2019) [12] is referred to as ES-
MDA-GEO2; selecting αi = Na ∀i = 1, . . . , Na is referred to as ES-MDA-EQL
and the method of this study is referred to as ES-MDA-GEO3. The results are
compared using the root mean square error (RMSE) and the data mismatch
(Od) of the final ensemble, exposed in Equation (4-42) and Equation (4-43):

RMSE =
(

1
Nm

Nm∑
k=1

(mtrue,k −mj,k)2
)1/2

, (4-42)

and
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Od(dfj ) = 1
Nd

(dfj − dobs)TC−1
d (dfj − dobs). (4-43)

Waterflooding example

The methods will be evaluated using a synthetic two-dimensional water
flooding history matching problem. The reservoir is squared with a total length
of 1575 m in each direction. The reservoir domain is discretized in 63× 63× 1
grid, where each grid block is 25m × 25m × 25m. The true permeability
field (Figure 4.1) was generated using a spherical covariance function with a
correlation length of 40 gridblocks. The prior model of the log-permeability
is constant and equal to 5, with a prior variance of 1. These informations
were used to create ensembles of size Ne = 100. We consider the vector
of model parameters m consisting of the gridblocks log-permeabilities. The
reservoir model contains nine producing wells and four water injection wells.
The water injection wells are operated at constant bottom-hole pressure (BHP)
of 325 kgf/cm2 and the producing wells are operated at constant BHP of 275
kgf/cm2 for the whole simulation time, which is a period of 3600 days, with
measurements every 150 days. The observed data consists of water and oil rate
of the producing wells and water injection rate of water injection wells, where
each well location is displayed in Figure 4.1, where circles corresponds to the
oil producing wells and triangles corresponds to the water injection wells. For
the synthetic measurements, it was added an error of 5% and we assume that
the matrix Cd is a diagonal matrix with each diagonal entry corresponding
to the square of the standard deviation used to generate the errors in the
observed measurements. During all data assimilation, the Schur-product-based
covariance localization with isotropic correlation function of 40 gridblocks was
applied directly to the Kalman gain matrix [24].

We created five different stochastic ensembles with the pieces of informa-
tion described before, generated using distinct seeds each. The first method to
be applied in the ensembles was ES-MDA-GEO3. Thus, we could discover the
computed number of assimilations Na for each ensemble. Therefore, we can
compare the proposed technique with the ES-MDA-GEO1 and the ES-MDA-
EQL with the same number of assimilations. Because ES-MDA-GEO2 also
computes the adequate number of assimilations to acquire good final results,
it was not possible to analyze ES-MDA-GEO2 and ES-MDA-GEO3 with the
same number of assimilations.

For the five ensembles, we tested ES-MDA-GEO3 with two different
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Figure 4.1: True log-permeability field (mD) for the two-dimensional test
problem.

values of µα, µα = 1.1 and µα = 1.2. The inflation factors’ values are exposed
in Table 4.1. The main objective is to examine how the magnitude of αNa

influences the quality of the final results. Selecting µα > 1.2 led to larger
assimilation runs. As we wish to maintain Na between 4 and 8, we did not test
any values for µα greater than 1.2. This fact can be noticed in Table 4.1, where
the higher values of αNa led to higher assimilation runs Na. The values of the
inflation factors and the γ ratio of ES-MDA-GEO1 are exposed in Table 4.2.

For the ES-MDA-GEO2, setting Na = 4 was sufficient to provide α1

that satisfies the MDP [14]. Figure 4.2 displays the root of the discrepancy
function (Equation (4-12)) computed for each ensemble. The top-left Figure
refers to Ensemble 1; the top-right Figure refers to Ensemble 2; the mid-left
Figure refers to Ensemble 3; the mid-right Figure refers to Ensemble 4; the
bottom Figure refers to Ensemble 5. As proposed by Emerick (2019) [12], we
use αNa = 1.5. Therefore, we obtained α1 = 37.33, α2 = 12.78, α3 = 4.37, and
α4 = 1.5, with γ = 0.3425 for all ensembles.

Case µα = 1.1

In this case, all methods were tested using the same number of assim-
ilations of ES-MDA-GEO3 for each ensemble (see Tables 4.1 and 4.2). The
only exception is ES-MDA-GEO2, which was tested with Na = 4 for all en-
sembles. Figure 4.3 exhibits the mean of the final ensemble members for each
ES-MDA implementation. In Figure 4.3, the first line corresponds to the refer-
ence field; the first column corresponds to ES-MDA-EQL; the second column
corresponds to ES-MDA-GEO1; the third column corresponds to ES-MDA-
GEO2; the last column corresponds to ES-MDA-GEO3. The lines correspond
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Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5
µ
α

=
1.

1

α1 6,617.03 21,117.05 13,297.75 19,852.75 6,975.4
α2 756.26 2,970.8 1,269.8 2,828.83 786.43
α3 86.43 417.94 121.25 403.08 88.66
α4 9.87 58.8 11.58 57.43 10
α5 1.13 8.27 1.11 8.18 1.12
α6 1.16 1.16
Na 5 6 5 6 5
γ 0.1143 0.1407 0.0955 0.1425 0.1127

µ
α

=
1.

2

α1 12,276.25 23,439.67 13,754.12 20,560.37 8,659.24
α2 2,662.23 4,541.66 2,924.1 4,075.51 1,465.85
α3 577.33 878 621.66 807.85 248.14
α4 125.2 170.5 132.16 160.13 42
α5 27.15 33.03 28.09 31.74 7.11
α6 5.88 6.4 5.97 6.29 1.21
α7 1.27 1.24 1.27 1.24
Na 7 7 7 7 6
γ 0.2169 0.1938 0.2126 0.1982 0.1693

Table 4.1: Computed inflation factors using Algorithm 1 for ES-MDA-GEO3
for the five different ensembles with µα = 1.1 and µα = 1.2.

to the five different ensembles. One may observe that the ES-MDA-EQL over-
corrects the regions with high log-permeability. This fact is noticed in other
studies about the ES-MDA implementation [7, 10]. It may be explained by the
ill-conditioning of the ensemble approximations of covariance matrices. The
overshooting become quite severe in the ensembles 1, 3, and 5, where Na = 5,
and slightly lightened in the ensembles 2 and 4, where Na = 6. However, for all
ensembles, this problem is still critical. The overshooting presented in the EQL
method is mitigated when the inflation factors are selected using the discrep-
ancy principle, which can be observed in the final results of ES-MDA-GEO1,
GEO2, and GEO3. One may note that GEO1 and GEO3 obtained smoother
solutions compared to the ones achieved through GEO2. This is because α1

is much greater for GEO1 and GEO3 than for GEO2. In fact, the results of
GEO3 is lightly smoother than the ones of GEO1 for the same reason.

Figure 4.4 exposes the posterior standard deviation for the gridblocks log-
permeabilities obtained from each ES-MDA implementation. In Figure 4.4, the
first column corresponds to ES-MDA-EQL; the second column corresponds
to ES-MDA-GEO1; the third column corresponds to ES-MDA-GEO2; the
last column corresponds to ES-MDA-GEO3. The lines correspond to the five
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Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5
µ
α

=
1.

1

α1 4,696.23 4,802.48 4,816.39 4,589.93 4,888.64
α2 586.54 919.67 597.61 887.36 604.24
α3 73.25 176.11 74.15 171.55 74.68
α4 9.15 33.72 9.2 33.16 9.23
α5 1.14 6.45 1.14 6.41 1.14
α6 1.23 1.24
Na 5 6 5 6 5
γ 0.1249 0.1915 0.1241 0.1933 0.1236

µ
α

=
1.

2

α1 4,696.23 4,802.48 4,816.39 4,589.93 4,888.64
α2 1,205.78 1,228.18 1,231.11 1,183.25 932.68
α3 309.58 314.1 314.68 305.03 177.94
α4 79.48 80.32 80.43 78.63 33.94
α5 20.4 20.54 20.56 20.27 6.47
α6 5.24 5.25 5.25 5.22 1.23
α7 1.34 1.34 1.34 1.34
Na 7 7 7 7 6
γ 0.2568 0.2557 0.2556 0.2578 0.1908

Table 4.2: Computed inflation factors and γ ratio for ES-MDA-GEO1 for
comparison with ES-MDA-GEO3 with µα = 1.1 and µα = 1.2.

different ensembles. Without a precise sample, it is not possible to estimate
the standard deviation accurately. Nevertheless, we may obtain a trustable
estimate using the ensemble. Overall, all methods presented standard deviation
that does not vary too much, which means consistency. The ES-MDA-EQL
obtained the lowest standard deviation values among all methods. It tells us
that the log-permeability fields obtained by the EQL method do not vary
from one ensemble to another. The ES-MDA-GEO1 and GEO3 presented
higher values of the standard deviation among all of them. The methods
provide different scenarios that match the observed data and the mean log-
permeability, as exposed in Figure 4.3, allowing a more precise analysis when
joint with seismic and geophysical data.

In Figure 4.5, the RMSE (Equation (4-42)) computed for each final
ensemble is displayed in a boxplot. The top-left figure refers to ES-MDA-EQL;
the top-right figure refers to ES-MDA-GEO1; the bottom-left figure refers to
ES-MDA-GEO2; the bottom-right figure refers to ES-MDA-GEO3. The black
boxes correspond to the percentiles 25 and 75. The solid red lines inside the
boxes correspond to the median of the ensemble. The red diamonds correspond
to the mean of the ensemble. The solid black lines outside the boxes correspond
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to the extension of the ensemble, excluding the outliers. The red whiskers
correspond to the outliers of the ensemble. The dashed black lines correspond
to the median of the ensemble’s medians. The dashed green lines correspond
to the median of the ensemble’s median obtained by ES-MDA-GEO3. We
display the median of each ensemble’s medians as a plan to visually compare
the magnitude of the root mean squared error computed for each ensemble
member and compare with the one obtained by ES-MDA-GEO3. One may
see that the RMSE computed for ES-MDA-GEO3 with µα = 1.1 achieved
the lowest values than the other ES-MDA implementations, indicating that
the proposed method could estimate the reference log-permeability field more
accurately.

Figure 4.6 exposes the posterior production data combining all the
five ensembles obtained by the different ES-MDA implementations. The first
column refers to well INJ-4; the second column refers to well PROD-6; the
third column refers to well PROD-7. In contrast, the first line corresponds
to ES-MDA-EQL; the second line corresponds to ES-MDA-GEO1; the third
line corresponds to ES-MDA-GEO2; the fourth line corresponds to ES-MDA-
GEO3. Blue solid lines correspond to the posterior ensemble data. The solid
gray lines correspond to the prior ensemble data. The red circles correspond
to the observed data. The approach of exposing the posterior production data
by combining all ensembles is similar to the one presented in Le et al. (2016)
[7]. Although it presents some outliers, one may note that the ES-MDA-EQL
obtained the best match of observed data compared to the other techniques.
The methods ES-MDA-GEO1 and GEO3 performed similarly. It is noticeable
that, although it still presents a good match of the observed data, the ES-MDA-
GEO2 obtained a considerable number of outliers. This fact can also be noted
in Figure 4.7, which displays the computed data mismatch for all methods
combining the five ensembles. Boxes, lines, and points here have the same
meaning as in Figure 4.5. Figure 4.7 endorses the observation that ES-MDA-
EQL obtained the best data match among all methods and that the GEO1 and
GEO3 performed similarly, although the median of GEO3 is relatively lower
than the one computed by GEO1.

Case µα = 1.2

This section compares the results obtained by the ES-MDA methods
with the one obtained by ES-MDA-GEO3 with µα = 1.2. The results are not
much different from the ones presented in the previous section. Therefore, we
present only the statistical numerical measurements to avoid being repetitive.
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Notice that the results for ES-MDA-GEO2 are the same as the ones exposed
in the case where µα = 1.1. The other methods follow the same number of
assimilations displayed in Tables 4.1 and 4.2.

Figure 4.8 displays the computed RMSE of the posterior ensemble
obtained by the different ES-MDA implementations, combining all ensembles.
The figures, boxes, lines, and points have the same meaning as in Figure 4.5.
One may observe that the results were quite similar to the ones obtained
when using µα = 1.1. However, the posterior ensemble of ES-MDA-GEO1
with higher assimilation runs resulted in the lowest RMSE among the other
methods, including the one proposed in this study. On the other hand, no
ensemble member of ES-MDA-GEO3 achieved RMSE higher than 1, including
the outliers. This fact does not hold for the ES-MDA-GEO1.

The data mismatch function is displayed in Figure 4.9 in a boxplot.
The figures, boxes, lines, and points here have the same meaning as in Figure
4.5. Again, ES-MDA-GEO1 and GEO3 presented similar mismatches. The
posterior ensemble’s median of ES-MDA-GEO1 presents a median slightly
lower than the one obtained by ES-MDA-GEO3. The results obtained with
µα = 1.2 led the ES-MDA-GEO3 to compute a larger value forNa. However, we
observed that the match of model parameters was not substantially increased.
Therefore, we conclude that using µα = 1.1 provides a good trade-off between
model parameters and observed data match with smaller assimilation runs for
this problem.

Analysis of final results

In this section, we summarize the results obtained by all methods by
combining the five ensembles. We show the median and the mean of the RMSE
and the data mismatch function in Tables 4.3 and 4.4. Implementing ES-
MDA-GEO3 with µα = 1.1 (Table 4.3) achieved the best model parameters
match among the other ES-MDA implementations both for the mean and
the median of the posterior ensembles. Concerning the data match, the ES-
MDA-EQL produced the best match of the observed data. For the case where
µα = 1.2 (Table 4.4), the ES-MDA-GEO3 again computed the lowest RMSE
when combining the five ensembles. It can be inspected both in the mean and
the median. However, the ES-MDA-GEO1 achieved a better match of observed
data, which can be noted both in the mean and median of the ensemble. The
ES-MDA-EQL achieved the best match of observed data again.
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EQL GEO1 GEO2 GEO3

R
M
SE Mean 0.7985 0.7569 0.777 0.7463

Median 0.8013 0.7437 0.7663 0.7365

O
d Mean 0.216 0.5435 1.5066 0.4865

Median 0.1364 0.4492 0.6107 0.3519

Table 4.3: Summary of the methods, comparing with ES-MDA-GEO3 with
µα = 1.1.

EQL GEO1 GEO2 GEO3

R
M
SE Mean 0.7907 0.7436 0.777 0.7316

Median 0.7717 0.7402 0.7663 0.7314

O
d Mean 0.1078 0.2996 1.5066 0.3326

Median 0.0972 0.247 0.6107 0.2605

Table 4.4: Summary of the methods, comparing with ES-MDA-GEO3 with
µα = 1.2.

4.5
Conclusions

In this study, we present a new procedure for generating inflations factors
for the ES-MDA. The new method uses the analytical formula developed in
the study of Rafiee and Reynolds (2017) [10] to compute both the first and
the last ES-MDA inflation factors. The other inflation factors are generated
geometrically in decreasing order. As a result, the method computes the correct
number of assimilations that produces inflation factors such that the sum of
their inverse is equal to one, as required by the ES-MDA.

The first and last inflation factors are computed based on the singular
values of the average sensitivity matrix, computed using the prior ensemble.
Although the proposed methodology is only valid for the linear-Gaussian case,
we show with numerical examples that the proposed method is appropriate
for the nonlinear case. Moreover, the numerical results suggest that selecting
inflation factors as proposed leads to a better match of model parameters
with a smaller number of iterations than the other ES-MDA implementations.
In Equation (4-32), we determine the magnitude of the last inflation factor by
setting the threshold µα. We tested two cases where µα = 1.1, and µα = 1.2. We
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show that the choice of µα is crucial for determining the number of assimilations
Na. This fact can be observed in Equation (4-21), where a high value of αNa

may impose a high number of assimilations Na.
The primary motivation for using inflation factors as proposed is based

on the observations of Rafiee and Reynolds (2017) [10] and Iglesias (2015) [30]
that the regularization parameter computed using the scheme of Hanke (1997)
[8] usually decreases during the iterations of the ES. Therefore, we attempt
to produce inflation factors based on the scheme of Hanke (1997) [8], but
using the method of Rafiee and Reynolds (2017) [10] for the linear-Gaussian
case. Furthermore, the ES-MDA update equation has the same arrangement
as a Levenberg-Marquardt method to minimize the function O(m), depicted
in Equation (2-22). Also, the scheme of Hanke (1997) [8] has been proven to
be of optimal order, i.e., it provides optimal accuracy [27]. Hence, generating
inflation factors as suggested by this work may yield better ES-MDA final
results.

We applied the new method in a synthetic two-dimensional waterflood-
ing test problem. Through the numerical results of five different stochastic
ensembles, the ES-MDA-GEO3 yielded the best match of model parameters
among the other ES-MDA implementations available in the literature when
using µα = 1.1, with fewer assimilation steps. Excluding the ES-MDA-EQL,
the proposed technique also achieved the best match of observed data. Com-
paring the results of µα = 1.1 and µα = 1.2, we observed that µα = 1.1 led
to a smaller number of assimilations Na and provided good trade-off between
final results and computational time for the tested problem.
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Figure 4.2: Root α∗ of discrepancy function (Equation (4-12)) computed for
ES-MDA-GEO2 for all five stochastic ensembles.
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Figure 4.3: Ensemble means achieved with the methods, compared with ES-
MDA-GEO3 using µα = 1.1. The first line corresponds to the reference field;
the first column corresponds to ES-MDA-EQL; the second column corresponds
to ES-MDA-GEO1; the third column corresponds to ES-MDA-GEO2; the
last column corresponds to ES-MDA-GEO3. The lines correspond to the five
different ensembles.
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Figure 4.4: Posterior standard deviation for each ensemble obtained by different
ES-MDA implementations. The first column corresponds to ES-MDA-EQL;
the second column corresponds to ES-MDA-GEO1; the third column corre-
sponds to ES-MDA-GEO2; the last column corresponds to ES-MDA-GEO3.
The lines correspond to the five different ensembles.
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Figure 4.5: Computed RMSE comparing the ES-MDA implementations with
ES-MDA-GEO3 with µα = 1.1. The top-left figure refers to ES-MDA-EQL;
the top-right figure refers to ES-MDA-GEO1; the bottom-left figure refers to
ES-MDA-GEO2; the bottom-right figure refers to ES-MDA-GEO3.
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Figure 4.6: Production and injection water rates of wells INJ-4, PROD-6, and
PROD-7 with different ES-MDA methods. The first column refers to well INJ-
4; the second column refers to well PROD-6; the third column refers to well
PROD-7. In contrast, the first line corresponds to ES-MDA-EQL; the second
line corresponds to ES-MDA-GEO1; the third line corresponds to ES-MDA-
GEO2; the fourth line corresponds to ES-MDA-GEO3.
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Figure 4.7: Posterior data mismatch for all methods, comparing with ES-MDA-
GEO3 with µα = 1.1. Boxes, lines, and points here have the same meaning as
in Figure 4.5.
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Figure 4.8: Computed RMSE comparing the ES-MDA implementations with
ES-MDA-GEO3 with µα = 1.2. Boxes, lines, and points here have the same
meaning as in Figure 4.5.
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Figure 4.9: Data mismatch for all methods comparing with ES-MDA-GEO3
with µα = 1.2. The data mismatch was computed by combining all five
ensembles. Boxes, lines, and points here have the same meaning as in Figure
4.5.
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5
Summary and Conclusions

In this thesis, we address the problem of generating the inflation factors
for the ES-MDA. Recent studies have shown a relationship between the ES-
MDA update equation and the solution to the regularized inverse problem. As
a result, several numerical procedures that investigate the regularization pa-
rameter can be applied to examine the inflation factors and their impacts on
the ES-MDA performance. In addition to this observation, the ES-MDA up-
date equation has clear similarities with the Levenberg-Marquardt algorithm.
Moreover, the first assimilation of the ES-MDA is similar to a Levenberg-
Marquardt update. In this comparison, the inflation factor plays the role of
the Levenberg-Marquardt parameter. Again, all mathematical procedures of
this area can be used to evaluate the ES-MDA inflation factors.

The ES-MDA has three main parameters: the ensemble size, number of
assimilations, and inflation factors. The relation between these parameters
is quite unknown in the ensemble-based data assimilation literature. It is
understood that a small ensemble may offer bad parameter approximations,
and a small number of assimilations may result in poor estimates. However,
the relation between the number of assimilations and ensemble size with the
inflation factors was unexplored. This thesis’s first study investigates this pre-
mentioned relation between the inflation factors and the other ES-MDA main
parameters. It is presented a numerical intimate connection between the ES-
MDA main parameters. We also show that the inflation factors selection may
infer the ES-MDA vector of model parameters. We conclude that the method of
Hanke produces optimal ES-MDA outcomes, even when the ensemble is little
with a small number of assimilations. Selecting the inflation factors equal to
the number of assimilations enables error propagation in the multiple data
assimilation process due to the effects of small singular vectors in the model
update vectors. Finally, when the ensemble is nearly large, e.g., Ne = 500, the
inflation factors selection becomes almost pointless, as long as Equation (2-52)
is satisfied. The results presented in this study were published in [6].

As a consequence of the results of this thesis’ first study, concluding that
the method of [8] may provide the best ES-MDA performance, we attempt
to produce the ES-MDA inflation factors based on that scheme. However, for

DBD
PUC-Rio - Certificação Digital Nº 1721314/CA



Chapter 5. Summary and Conclusions 90

the nonlinear approach to the history matching problem, it is only possible
to compute the inflation factor a priori for the first assimilation step. Using
the results presented in [6], it would be desirous to computing all inflation
factors based on the scheme of [8]. Assuming that the problem is linear,
we propose a new procedure to compute the ES-MDA inflation factors by
computing the first and the last inflation factors using the formula proposed
by [10]. One explanation for using such a system is the observation that the
regularizing parameter generated using the scheme of [8] often decreases within
the iterations. Therefore, we attempt to simulate this decrease in a geometric
progression by computing the first and the last inflation factors using the
formula of [10]. Another explanation comes from the study of [27], which
proves that the scheme of [8] is of optimal order. In other words, this scheme
achieves optimal accuracy for model parameters. Thus, as the ES-MDA update
equation has the same structure as the Levenberg-Marquardt algorithm, we
showed with numerical examples that selecting inflation factors proposed by
this thesis achieves optimal ES-MDA outcomes. Although the new method is
only valid for the linear-Gaussian case, the numerical results show that the
proposed methodology is proper for the nonlinear case. The results presented
in this chapter were published in [15].

For future works, we intend to study an ES-MDA implementation where
the number of assimilations and the inflation factors are selected adaptively. As
a result, the only parameter to be determined a priori is the ensemble size. This
procedure might be useful for history matching problems due to the difficulty of
defining the ES-MDA main parameters before data assimilation. The first work
of this thesis exposed a technique to assess the quality of the inflation factors
before data assimilation starts. However, the other main parameters must be
selected a priori. We also intend to investigate the effects of the inflation
factors on the techniques to mitigate errors in ES-MDA, such as the subspace
inversion procedure. This technique is used for parametrizing the sensitivity
matrix, neglecting small singular values. Thus, diminishing error propagations
and improving uncertainty quantification. As a result of the first study of this
thesis, we showed that generating the first inflation factor using the scheme of
[8] plays a similar role in data assimilation. Therefore, we believe that subspace
inversion might be unnecessary if the inflation factors are selected using the
scheme of [8]. However, we still need to investigate this claim thoroughly.
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