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Abstract

Vargas, Anderson R.; Craizer, Marcos (Advisor). Asymptotic
Nets with Constant Affine Mean Curvature. Rio de Janeiro,
2021. 103p. Tese de doutorado – Departamento de Matemática,
Pontifícia Universidade Católica do Rio de Janeiro.

Discrete Differential Geometry aims to develop a discrete theory which
respects fundamental aspects of smooth theory. With this in mind, some
results of smooth theory of Affine Geometry are firstly introduced since
their discrete counterparts shall be treated a posteriori. The first goal of
this work is construct a discrete affine structure for nets q : Z2 −→ R3 with
indefinite Blaschke metric and asymptotic parameters. For this purpose,
one defines a conormal vector field ν, which satisfies Lelieuvre’s equations
and it is associated to a real parameter λ; and an affine normal vector field
ξ, which defines the cubic form of the net and makes the structure well
defined. This structure allows to study, e.g., ruled surfaces with emphasis
on improper affine spheres, which are proved to be equiaffinely congruent
to the graph of z = xy + ϕ(x), for some real function ϕ. Moreover, a
definition for singularities is proposed in the case of discrete improper affine
spheres from the center-chord construction. Another goal here is to propose
a definition for an asymptotic net with constant affine mean curvature
(CAMC), in a way that encompasses discrete affine minimal surfaces and
discrete affine spheres. Discrete affine minimal surfaces receive a beautiful
geometrical characterization directly linked to discrete Lie quadrics. This
work is completed with the main result about a discrete version of Cayley
surfaces, which are ruled improper affine spheres that can be characterized
by the induced connection as: an asymptotic net with CAMC is equiaffinely
congruent to a Cayley surface if and only if the cubic form C does not vanish
and the affine induced connection is parallel, i.e., ∇C ≡ 0.

Keywords
Discrete Affine Minimal Surfaces; Discrete Affine Spheres; Discrete

Ruled Improper Affine Spheres; Discrete Improper Affine Spheres with
Singularities; Discrete Cayley Surfaces; Discrete Lie Quadrics.
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Resumo

Vargas, Anderson R.; Craizer, Marcos. Redes assintóticas com
curvatura afim média constante. Rio de Janeiro, 2021. 103p.
Tese de Doutorado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.
A Geometria Diferencial Discreta tem por objetivo desenvolver uma

teoria discreta que respeite os aspectos fundamentais da teoria suave. Com
isto em mente, são apresentados incialmente resultados da teoria suave da
Geometria Afim que terão suas versões discretas tratadas a posteriori. O
primeiro objetivo deste trabalho é construir uma estrutura afim discreta
para as redes assintóticas q : Z2 −→ R3, com métrica de Blaschke
indefinida e parâmetros assintóticos. Com este intuito, são definidos um
campo conormal ν, que satisfaz as equações de Lelieuvre e está associado a
um parâmetro real λ, e um normal afim ξ que define a forma cúbica da rede
e torna a estrutura bem definida. Esta estrutura permite, por exemplo, o
estudo das superfícies regradas, com ênfase nas esferas afins impróprias, as
quais são congruentes equiafins ao gráfico de z = xy + ϕ(x) para alguma
função real ϕ. Além disso, propõe-se uma definição para as singularidades
no caso das esferas afins impróprias discretas a partir da construção centro-
corda. Outro objetivo deste trabalho é propor uma definição para as
superfícies afins discretas com curvatura afim média constante (CAMC),
de forma que englobe as superfícies afins mínimas e as esferas afins. As
superfícies afins mínimas discretas recebem uma caracterização geométrica
bastante interessane e ligada diretamente às quádricas de Lie discretas. O
trabalho se completa com o principal resultado, referente à versão discreta
das superfícies de Cayley, esferas afins impróprias regradas caracterizadas
a partir da conexão afim induzida: uma rede assintótica com CAMC é
congruente equiafim à uma superfície de Cayley se, e somente se, a forma
cúbica C é não nula e a conexão afim induzida é paralela, ou seja, ∇C ≡ 0.

Palavras-chave
Superfícies Mínimas Afins Discretas; Esferas Afins Discretas; Esferas

Afins Impróprias Regradas Discretas; Esferas Afins Impróprias Discretas com
Singularidades; Superfícies de Cayley Discretas; Quádricas de Lie Discretas.
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1
Introduction

Usually, the discretization of parameterized surfaces within discrete dif-
ferential geometry (DDG) leads to quadrilateral nets, also called quadrilateral
meshes. Compared with, e.g., discrete triangulated surfaces, quadrilateral nets
do not only discretize smooth surfaces understood as sample sets, but also
reflect the combinatorial structure of the parameterizations to be discretized.
Quadrilateral nets has been extensively studied and one can focus in those
with special geometric properties. One of the most fundamental examples is
the discretization of conjugate parameterizations by quadrilateral nets with
planar faces, which is not the case in this work, by the way. Discretizing more
specific conjugate parameterizations yields planar quadrilateral nets with ad-
ditional properties, as the discretizations of curvature line parameterizations,
that have led to the notions of circular and conical nets, as one can see in
Bobenko [3] and Liu at al. [22]. Or the discretizations of Koenigs net and
isothermic surfaces, both treated in Bobenko and Suris [5], Doliwa [13] and
Müller [29].

Conjugate nets are good models for surfaces with definite metric, but we
are interested here in those surfaces with indefinite metric and this leads us
to asymptotic nets, wherein instead of planar faces there are planar crosses,
that is, the four edges with a common vertex are coplanar. It turns out
that asymptotic nets receive this name because it is a natural discretization
for surfaces parameterized along asymptotic lines, which is always possible
when the Gaussian curvature is negative. Plenty of work was done by using
asymptotic parameterizations, as one can see in the long list of references of
this thesis [4], [9], [10], [11], [12], [16], [18], [25], [26], [27], [28], only to cite
what was relevant for our work.

It is natural to look for applications of asymptotic nets in the context of
Computer Aided Geometric Design and Architectural Geometry, for example.
The latter is an emerging field of Applied Mathematics, which provides the ar-
chitecture community with sophisticated geometric knowledge to tackle diverse
problems. Focussing also on important aspects such as efficient manufacturing,
providing intuitive control of available degrees of freedom, and similar issues,
many results in DDG have already been applied in an architectural context, as
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Chapter 1. Introduction 13

proposed by Pottmann et al. [33] or mentioned by Käferböck and Pottmann
[18]. The first paper is beautifully constructed by the architecture perspec-
tive, wherein mathematics appears only as a supporting theory, and it shows
stunning images of real projects.

Bobenko and Schief [2, 1999] have given the first consistent definition for
discrete affine spheres, both for definite or indefinite metrics. In 2003, Matsuura
and Urakawa [26] have done a similar construction in the context of discrete
improper affine spheres. Some years later, Craizer, Anciaux and Lewiner [9]
introduced a discrete analog of the smooth Weierstrass representation in
the indefinite case, giving rise to explicit parameterizations of quadrilateral
surfaces in discrete asymptotic coordinates that they called discrete affine
minimal surfaces. Their work brought some discrete elements up, like metric,
normal affine vector field and cubic form, and these allowed them to have
a consistent discrete structure. In the same article they also proposed an
interpolation by hyperbolic paraboloids for the skew quadrilaterals, which was
extended by Käferböck and Pottman [18, 2013] and was called bilinear patches,
but mentioned as discrete Lie quadrics.

After that we give here an affine structure for asymptotic nets with
indefinite Blaschke metric and asymptotic parameters that go beyond discrete
minimal surfaces. From the conormal vector field, which satisfies Lelieuvre’s
equations and it is associated to a real positive parameter, we define an affine
normal vector field and the cubic form of the net. These elements allow us to set
structural equations for the net that added up to the compatibility equations
turn all the affine structure consistent.

We also show a 1-parameter family of hyperboloid interpolators for the
skew quadrilaterals of the net and how to juxtapose them such that the
composed surface has a tangent plane at any point. A hyperboloid is a doubly
ruled quadric, i.e., a one-sheeted hyperboloid or a hyperbolic paraboloid from
the affine viewpoint. Pieces of those hyperboloids are inserted into the skew
quadrilaterals of an asymptotic net such that this interpolator is bounded
by the edges of the corresponding quadrilateral. In particular, the edges of
a supporting quadrilateral are asymptotic lines of the inserted hyperboloid.
This parameterization is very similar to the discretization of curvature line
parameterized surfaces by cyclidic nets, which were introduced by Bobenko
and Huhnen-Venedey [6].

In their paper Käferböck and Pottman [18] remarked that bilinear
patches can be seen as discrete Lie quadrics. In the smooth case one can see
that a Lie quadric is intrinsically connected to a surface, since at any point
there is a unique Lie quadric, accordingly to Lane [21]. Moreover, a surface has
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Chapter 1. Introduction 14

constant affine mean curvature if and only all Lie quadrics also has constant
affine mean curvature, and it is minimal if and only if each Lie quadric is a
hyperbolic paraboloid.

Note that in the discrete case we have set a 1-parameter family of
interpolators at each quadrangle, which allow us to identify all the nets that can
have the same parameter for all quadrangles. With this in mind, like Käferböck
and Pottman, we called our 1-parameter family of interpolators discrete Lie
quadrics and stated when the net has constant affine mean curvature, exactly
when all discrete Lie quadrics has the same constant affine mean curvature.
That said, we named them nets with CAMC and prove that the definition is
well settled.

As examples of nets with CAMC we show both class of discrete affine
minimal surfaces and class of affine spheres, which has CAMC in the smooth
case. The first class emerges from the work of Craizer, Anciaux and Lewiner [9]
as a particular case when the affine mean curvature is zero, which also includes
discrete improper affine spheres. Smooth affine spheres were extensively studied
and classified, as we can see in Magid and Ryan [24] or Simon [35]. Accordingly
to Bobenko and Schief [2] discrete affine spheres has CAMC, so we only have
to show that our definition accounts this class too, and fortunately that is done
successfully.

A geometric way to characterize smooth affine minimal surfaces was
given by Blaschke [1] by stating that a surface is affine minimal if and only if
along each asymptotic curve the corresponding second asymptotic directions
are parallel to a plane. Käferböck and Pottman [18] proved that a similar
characterization can be given in the discrete case, and we gave here another
proof to this theorem, which states that a discrete surface is minimal if and
only if both assertions are true: the edges of a horizontal (vertical) strip are
parallel to a plane and each discrete Lie quadric is a hyperbolic paraboloid.

One class of surfaces that rings a bell when we talk about asymptotic
parameters is that of ruled surfaces, since in such a parameterization at least
one direction is always a straight line. Martínez and Mílan [25] presented a
study about ruled surfaces with flat affine metric, since in authors words, it is
the best known class of affine minimal surfaces with indefinite metric. Nomizu
and Sasaki [31] dedicate two sections of Chapter 3 to ruled affine spheres and,
as an important class, it appears the Cayley surfaces, and they devote an entire
section to this class of cubic ruled surfaces. They prove that ruled improper
affine spheres are equiaffinely congruent to the graph of z = xy+ϕ(x), for some
real function ϕ and one of the most important case among them is the Cayley
Surface, when ϕ(x) = −x3

3 . They also prove that Cayley surfaces – the set of
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Chapter 1. Introduction 15

all surfaces that are equiaffinely congruent to the Cayley surface – compose
one of the six classes of nondegenerate surfaces of R3 that are homogeneous
under equiaffine transformations. Moreover, they prove that a nondegenerate
surface is affinely congruent to the Cayley surface if and only if the cubic form
C is not zero and is parallel relative to the connection ∇, i.e., ∇C ≡ 0.

We found one reference wherein the author mention discrete Cayley
surfaces, namely Matsuura and Urakawa [26], but they do not build up any
arguments about their parameterization. So we propose a different one and
characterize them in a similar way to the smooth case, i.e., an asymptotic
net with CAMC is equiaffinely congruent to a Cayley surface if and only if the
cubic form C does not vanish and the affine induced connection is parallel, i.e.,
∇C ≡ 0. Note that one of the hypothesis is to be a net with CAMC, which
according to our point of view ratifies our definition of discrete surfaces with
CAMC. Another important remark is that in a certain way we are defining a
discrete connection, although we do not bring this subject up.

Improper affine maps that are not convex can be obtained from a pair
of planar curves, as it was made by Craizer [12], and the planar construction
can be based on the work of Niethammer et al. [30]. Set by x the mid-point
of a chord and by z the area of the planar region bounded by this chord, the
two curves and another fixed chord, we show that (x, z) is an improper affine
sphere that is called the generalized area distance and we call this approach a
centre-chord construction.

A recent paper from last year, but unpublished yet, by Kobayashi and
Matsuura [19], shows a construction of improper affine spheres from two
curves by using loop groups, which is completely different of our approach.
We make use of a discrete centre-chord construction to show that a discrete
ruled improper affine sphere is affine congruent to the graph of z = xy+ϕ(x), as
in the smooth case. Moreover, we also use this tool to define discrete improper
affine spheres with singularities, which is a completely original approach, since
discrete singularities make part of a new research subject and suffer from lack
of references.

In the smooth case Singularities is a well known field and largely
studied by geometers. So we will give here some references that influenced
our project. First of all we need to refer to Kokubu at al. [20], since they
provide an extensive treatise about singularities, with a general classification
of singularities and the criteria for singular points. Moreover, they proved a
fundamental relation between the singularities at the surface and the Wigner
caustics of the flat fronts. Craizer, Silva and Teixeira [11] studied the singular
set of non-convex improper affine maps and they proved that generically it
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Chapter 1. Introduction 16

consists of cuspidal edges and swallowtails. Ishikawa and Machida [17] provide
the generic classification of singularities of improper affine spheres, surfaces
of constant Gaussian curvature and for developable surfaces. This study on
improper affine maps was also done by Mílan [27], who added an approach for
isolated singularities. All these studies are connected to the Wigner caustics or
the midpoint tangent locus (MPTL), which can be found in the work of Giblin
[14].

We have only one reference about singularities as a discrete subject,
namely Rossman and Yasumoto [34] from 2018, which reveals how new is
the subject and how we can make an important contribution to it.

We already said that we have done a discrete centre-chord construction.
From it we propose a definition for the discrete midpoint tangent locus, which
we call DMPTL, and as in the smooth case it can have cusps. We show that
the discrete improper affine sphere created from a pair of curves can have
singularities and they are directly linked to the DMPTL associated to these
curves. We prove that the edges of the DMPTL provide cuspidal edges at the
net, whilst a cusp is associated to a swallowtail vertex at the discrete surface,
and the converse is also true. This result reflects exactly the same of the smooth
theory, which is an evidence of consistency.

Let us go back a couple of pages and bring here the discussion of discrete
Lie quadrics. Note that we interpolated all quadrangles of the net by discrete
Lie quadrics such that at each point of the compound surface has a well defined
tangent plane that varies continuously when moving from one patch to an
adjacent one. Note that two adjacent patches may form a cuspidal edge since
the juxtaposition only predicts a coinciding tangent plane. As we show, it is
possible to have a swallowtail point in one vertex between two cuspidal edges,
without interfere in the interpolation discussion.

All we have accomplished here was mentioned above. So let us now
describe the organization of this thesis.

In chapter 2 we present definitions and results from the smooth theory
that we judge essential for the subsequent chapters. At first we turn to the
affine differential structure, which is followed by a discussion on the definition
of indefinite affine spheres. After that we treat the minimal surfaces and give
some examples, which is also done for the basic hyperboloid. Then we appeal
to the importance of Lie quadrics in the subject of surfaces with constant affine
mean curvature. Thereafter we use the centre-chord construction to prove that
the generalized area distance is an indefinite improper affine sphere and all
indefinite improper affine sphere is the generalized area distance of a pair of
curves. Moreover, we define the singularity set and present the relation between
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the MPTL and the singularities at the surface. The end of the chapter is
dedicated to Cayley surfaces and the proof of their characterization.

The third chapter is dedicated to develop the discrete theory of asymp-
totic nets. We define the discrete conormal and normal vector fields, the coef-
ficients of the cubic form and we give the structural equations, as well as the
compatibility ones, finishing it with the proof of the consistency of the affine
structure. We also show how to interpolate a quadrangle by a hyperboloid and
what comes from the juxtaposition of these interpolators.

Chapter 4 is dedicated to ruled improper affine spheres and singularities
at improper affine spheres. We do a discrete centre-chord construction from a
pair of discrete curves in the plane and we show that this leads to the discrete
generalized area distance, which is proved to be a discrete improper affine
sphere. From this result it emerges the equation form for all ruled improper
affine spheres. After that we propose a definition for the DMPTL and the main
theorem shows a relation between the singularities of the discrete generalized
area distance and it: all the edges and cusps of the DMPTL are associated to
cuspidal edges and swallowtail points of the net, respectively. We also propose
a definition for cuspidal edges and swallowtail points in the case of improper
affine spheres, since there is none so far.

The follow chapter shows the definition of nets with constant affine mean
curvature (CAMC) from the discrete Lie quadrics, its consistency and how this
class of nets encompasses the discrete minimal surfaces and the discrete affine
spheres. We show that all discrete affine minimal surfaces are a particular case
of CAMC with H = 0, how this simplifies all the affine structure of chapter
3, and how this matches with the work of Craizer, Anciaux and Lewiner [10].
Thereon we give another proof to the geometric characterization of discrete
minimal surfaces in terms of discrete Lie quadrics. At the end we frame the
class of affine spheres after Bobenko and Schief [2] as a class of nets with
CAMC.

In chapter 6 we treat the case of discrete Cayley surfaces, which are ruled
improper affine spheres. Besides the definition, we give a characterization for
such discrete surfaces, which is one of the main results of this thesis.

The last chapter brings the final considerations about the work developed
here and the impressions of this humble student for future works.
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2
Preliminaries on smooth affine theory

The main goal of this chapter is to show all the smooth theory needed
to the development of the discrete theory that compose all the subsequent
chapters. Some details will be left out when judged unnecessary, whereas
others will be seen in an opposite perspective, since their importance for the
main discrete results. In any case, everything here is well described and largely
studied in the literature, which can be consulted through out the bibliographic
references.

2.1
Affine differential structure

Consider1 a parameterized smooth surface q : U ⊂ R2 −→ R3, where U
is an open subset of the plane and denote

L(u, v) = [ qu, qv, quu],

M(u, v) = [ qu, qv, quv],

N(u, v) = [ qu, qv, qvv].

The surface is non-degenerate if LN − M2 6= 0, and in this case, the
Berwald-Blaschke metric is defined by

ds2 = 1
|LN −M2|1/4

(
Ldu2 + 2M dudv +N dv2

)
.

If LN −M2 > 0, the metric is called definite and the surface is locally convex.
On the contrary, if LN−M2 < 0, the metric is called indefinite and the surface
is locally hyperbolic, i.e., the tangent plane crosses the surface.

From now on we shall assume that the affine surface has indefinite metric.
Besides that, under a change of coordinates, we may consider L = N = 0. Such
coordinates are known as asymptotic. In this case, it is possible to takeM > 0,
and the metric takes the form ds2 = 2Ω du dv, where Ω2 = M . Without loss of
generality, we shall take Ω > 0.

1All details of this section can be found in Buchin [7] and Nomizu-Sasaki [31].
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Since L = N = 0, we know that quu and qvv live in the tangent space and
can be written in terms of the basis {qu, qv}. In addition, with the expression
of the transversal field quv, we obtain the Gauss equations for the q map:

quu = Ωu

Ω qu + A

Ω qv

qvv = B

Ω qu + Ωv

Ω qv

quv = Ω ξ

(2.1)

where A = [qu, quu, ξ] and B = [qv, qvv, ξ] are the coefficients of the affine cubic
form Adu3 +B dv3.

ξ is called the affine normal vector field. The direction of the affine
normal has a simple geometrical meaning in the hyperbolic case: consider an
infinitesimal quadrangle composed of asymptotic lines and build two planes,
each one being parallel to a pair of opposite edges of the quadrangle, then the
affine normal is parallel to the line of intersection of these two planes.

The shape operator in basis {qu, qv} is given by

ξu = −H qu + Av
Ω2 qv

ξv = Bu

Ω2 qu −H qv.

(2.2)

Note that the trace of the shape operator is −2H, where H is the affine mean
curvature.

By comparing the mixed third derivatives of q we obtain a compatibility
equation for the parameters Ω, A, B and H:

H = ΩuΩv − ΩΩuv − AB
Ω3 . (2.3)

And comparing the mixed two derivatives of ξ, it is obtained two other
compatibility equations for the same parameters,

Hu = ABu

Ω3 −
1
Ω

(
Av
Ω

)
v

Hv = BAv
Ω3 −

1
Ω

(
Bu

Ω

)
u
.

(2.4)

Conversely, given Ω, A, B and H satisfying compatibility equations (2.3) and
(2.4), there exist a surface q(u, v) according to the equations (2.1).

The vector field ν = 1
Ω qu×qv is called conormal and satisfies Lelieuvre’s

equations
qu = ν × νu
qv = −ν × νv

(2.5)
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It also satisfies ∆(ν) = −Hν, where ∆(ν) denotes the laplacian of ν with
respect to the Blaschke metric. In asymptotic parameters, ∆(ν) = Ω−1 νuv.
Moreover, the affine normal vector field ξ = Ω−1 quv satisfies ν · ξ = 1.

One last remark is the concept of equiaffine transformations of R3, defined
as a map with determinant 1. The set off all such transformations is denoted
by SL(3,R). And the most important, all the quantities in this section are
invariant under equiaffine transformations of R3.

2.2
Indefinite affine spheres

In their paper Bobenko and Schief [2] use purely geometric techniques to
discretize affine spheres with definite and indefinite metric, by discussing the
relations between affine spheres and their duals. We are interested only in the
indefinite case, so let us take a brief look in how they are defined and in their
duality relations.

Definition 2.2.1 A non-degenerate surface in R3 is called an affine sphere if
all affine normals intersect at a point. If this point is not infinite, it may be
chosen as the origin of R3 in a way that ξ = H q, where H is the affine mean
curvature.

It is well known that the affine mean curvature of the affine sphere is
constant. That said, Bobenko and Schief [2] chose to work only with proper
affine spheres, that is, they assume that H 6= 0. Moreover, they make a
distinction between the cases of a definite Blaschke metric (when the surface
is convex or K > 0) and of an indefinite Blaschke metric (when the surface is
hyperbolic or K < 0).

A simple way to obtain indefinite affine spheres is by using the conormal
vector field ν, as shown by the following theorem. Its proof can be found in
the already mentioned paper [2, p.265].

Theorem 2.2.2 (Duality relations for indefinite affine spheres)
Indefinite affine spheres and their duals are equivalently described by the
Lelieuvre’s equations

qu = ν × νu, νu = qu × q,
qv = νv × ν, νv = q × qv,

(2.6)

which imply that q · ν = 1.

Since Bobenko and Schief does not pay any attention to improper affine
spheres, we think that it is important to have a simpler definition stated. So
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the definition (2.2.1) can be split in two depending on the value of H, as one
can see in Simon [35]:

Definition 2.2.3 A surface in R3 is a proper affine sphere if H 6= 0 and the
position vector with respect to a fixed point (the centre of the affine sphere) is
parallel to the direction of the affine normal ξ.

Note that this is the same definition stated by Bobenko and Schief, but
with “proper” as an addendum.

Definition 2.2.4 A surface in R3 is an improper affine sphere if the direction
of the affine normal ξ is constant.

Observe that this definition with the equations (2.2) allow us to conclude
that H = 0 in the case of an improper affine sphere.

Proposition 2.2.5 A surface in R3 is an affine sphere if and only if Av = 0
and Bu = 0, that is, A and B depend only on u and v, respectively.

Proof.
It follows directly from the two last definitions (2.2.3), (2.2.4) and the shape
operator (2.2). �

2.3
Affine minimal surfaces

Definition 2.3.1 A surface is called affine minimal if its affine mean cur-
vatures H vanishes, or equivalently, if its conormal vector field satisfies the
equation νuv = 0.

The last part of this definition gives a straightforward resolution, since
it holds if and only if ν(u, v) takes the form ν(u, v) = ν1(u) + ν2(v), where
ν1 and ν2 are two real functions of one variable. That said, from Lelieuvre’s
equation (2.5) it is possible to get an immersion q which is a parameterization
in asymptotic coordinates of an affine minimal surface.

Note that by definition (2.2.4), all improper affine spheres are minimal
surfaces.

Example 1.
Consider the conormal vector field given by ν(u, v) = (u, v, u2 + v2). Straight-
forward calculations give us the immersion associated:

q(u, v) =
(
u2v − v3

3 , uv
2 − u3

3 ,−uv
)
,
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hence
Ω(u, v) = u2 + v2, ξ(u, v) = 1

u2 + v2 (2u, 2v,−1),

A(u, v) = −2v
u2 + v2 and B(u, v) = 2u

u2 + v2 .

Then, by equation (2.3) we haveH = 0 and the surface is minimal, as expected.
See Figure (2.1).

Figure 2.1: First example of a minimal surface.

Example 2.
Consider the conormal vector field given by ν(u, v) =

(
−v2

2 ,
v−u

2 , 1
)
. Straight-

forward calculations give us the immersion associated:

q(u, v) =
(
u+ v

2 ,
v2

2 ,
uv2

4 −
v3

12

)
,

hence
Ω(u, v) = v

2 , and ξ(u, v) = (0, 0, 1).

Then, we have to take v > 0 and the surface is an improper affine sphere. See
Figure (2.2).

Besides the definition of an affine minimal surface, Blaschke [1, p.180]
gave a geometric characterization for it.

Theorem 2.3.2 A surface is affine minimal if and only if along each asymp-
totic curve the corresponding second asymptotic directions are parallel to a
plane.
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Figure 2.2: Example of a minimal surface that is also an improper affine sphere.

2.4
The basic hyperboloid

Consider the hyperboloid Ha given by the equation

z + az2 = xy (2.7)

parameterized by asymptotic coordinates (u, v),

ψ(u, v) = 1
1− auv (u, v, uv). (2.8)

The equation (2.8) gives L = N = 0 (as expected for asymptotic
coordinates) and M = (1− auv)−4. Thus,

Ω(u, v) = 1
(1− auv)2 ,

ν(u, v) = 1
Ω ψu × ψv = 1

1− auv (−v,−u, 1 + auv), (2.9)

ξ(u, v) = 1
Ωψuv = 1

1− auv (2au, 2av, 1 + auv).

Note that
ξ − (0, 0, 1) = 2 aψ,

which means that the hyperboloid Ha is an affine sphere with center at the
point (0, 0,− 1

2a) and affine mean curvature H = 2a. Furthermore, according
to the conormal vector field, it is easy to see that

νuv = 2 aΩν.
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Figure 2.3: Four examples of the basic hyperboloid for different values of a: a = 0.8
on the upper left, a = 0 on the upper right, a = −1 on the lower left and a = −2 on
the lower right.

2.5
Lie quadrics

Accordingly to Lane [21, p.144], the quadric of Lie at the point Px of
the surface S can be defined as follows. Consider two neighbouring points of
Px, P1 and P2, on one of the asymptotic curves C through Px. Let us assume
that S is parameterized in asymptotic coordinates x(u, v), that is, we can set
P1 = x(u + ∆u, v), P2 = x(u −∆u, v) and the curve C is the u-direction. At
each of these three points let us draw the tangent of the asymptotic curve in v-
direction, i.e., xv(u, v), xv(u+∆u, v) and xv(u−∆u, v). These three asymptotic
tangents determine a quadric surface, and the limit of this quadric when P1

and P2 approach Px, that is, ∆u approaches zero, is a quadric surface called
the Lie quadric at the point Px of the surface S.

Let us assume that x(0, 0) = (0, 0, 0) and write the expansion

x(u, v) = xuu+ xvv + 1
2
(
xuuu

2 + 2xuvuv + xvvv
2
)

+ . . . ,

where xu = xu(0, 0), xv = xv(0, 0), xuu = xuu(0, 0), xuv = xuv(0, 0) and
xvv = xvv(0, 0).

Then X = x(u, 0), a point in the u-asymptotic line close to (0, 0), is
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expanded as
X = xuu+ 1

2xuuu
2 + . . . (2.10)

and the v-asymptotic line at this point can be written as

Xv = xv(u, 0) = xv + xuvu+ 1
2xuuvu

2 + . . . . (2.11)

If Y is an arbitrary point in the v-asymptotic line passing through X,
then it can be written as a linear combination of X and Xv, Y = X + kXv,
for some k, as we can see in next Lemma.

Lemma 2.5.1 We can write

Y = x1xu + x2xv + x3xuv,

where
x1 = u+ 1

2[θu + k(βγ + θuv)]u2 +O(3)

x2 = k +O(2)

x3 = ku+ 1
2kθuu

2 +O(3)

Proof.
Lane writes Gauss equations (2.1) as xuu = θuxu + βxv

xvv = γxu + θvxv
(2.12)

where θ = log(Ω), β = A

Ω , γ = B

Ω and Ω is our old friend from Section 2.1.

Replacing these formulae for xuu and xvv in equations (2.10) and (2.11),
we have

X = xuu+ 1
2θuxuu

2 + 1
2βxvu

2 + . . .

and

Xv = xv + xuvu+ 1
2[(θuv + βγ)xu + (βv + βθv)xv + θuxuv]u2 + . . .

Comparing the coefficients of xu, xv and xuv, we come to the conclusion. �

Proposition 2.5.2 The local equation of the Lie quadric at a point x(0, 0) of
a surface S is

x1x2 − x3 −
1
2(βγ + θuv)x2

3 = 0. (2.13)

Proof.
Equation (2.13) follows the above Lemma up to order 3. �
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Remark that there is a symmetry regarding to x1 and x2, which shows
that the Lie quadric remains the same if the two families of asymptotic curves
are interchanged. Note also that the basic hyperboloid (2.7) is an example of
a Lie quadric.

2.5.1
Affine mean curvature of the Lie quadric

The affine mean curvature H can be written as H = S − J , where

S = − 1
Ω (logΩ)uv and J = AB

Ω3 .

Then, for the above Lie quadric wherein x(0, 0) = (0, 0, 0), we have

S = −θuvΩ and J = βγ

Ω

and we can write
H = − 1

Ω(βγ + θuv).

Consider the linear map T setting

(1, 0, 0) 7→ xu, (0, 1, 0) 7→ xv, (0, 0, 1) 7→ xuv.

Then det(T ) = Ω2. We conclude that the affine mean curvature of the Lie
quadric is

H(LieQuadric) = −βγ + θuv√
Ω2

= HΩ
Ω = H,

the affine mean curvature of the surface at (0, 0, 0). In other words, a surface
has constant affine mean curvature if and only if each Lie quadric of the surface
has also constant affine mean curvature, and both curvatures coincide.

2.6
The generalized area distance of a pair of curves

Craizer, Teixeira and Silva [11] have shown that the generalized area
distance of a pair of curves is an indefinite improper affine sphere with
singularities, and the converse is also true. Moreover, the singularity set of the
improper affine sphere corresponds to the area evolute of the pair of curves,
also called midpoint parallel tangent locus [14].

In this section we aim to show the definitions and the geometric con-
struction that lead us to those results.
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2.6.1
Centre-chord construction

Consider two planar curves α : I −→ R2 and β : J −→ R2, where
I, J ⊂ R. Denote by f(s, t) the midpoint of the chord α(s)β(t), hence

f(s, t) = 1
2(α(s) + β(t)) = 1

2(α1(s) + β1(t), α2(s) + β2(t)).

Take
g(s, t) = 1

2(β(t)− α(s)) = 1
2(β1(t)− α1(s), β2(t)− α2(s)),

and
n(s, t) = g(s, t)⊥ = 1

2(α2(s)− β2(t), β1(t)− α1(s)),

where the symbol ⊥ means anticlockwise rotation of ninety degrees. So n is
orthogonal to the chord α(s)β(t) with half of its length.

Define z(s, t) by the relation ∇z = n, where the gradient is taken with
respect to f , which means that z satisfies zs = n · fs and zt = n · ft.

Lemma 2.6.1 The function z is well defined up to a constant.

Proof.
Let us assume the existence of z. Then

zs = 1
4 ((α2(s)− β2(t))α′1(s) + (β1(t)− α1(s))α′2(s)) = 1

4 [β(t)− α(s), α′(s)]

and

zt = 1
4 ((α2(s)− β2(t))β′1(t) + (β1(t)− α1(s))β′2(t)) = 1

4 [β(t)− α(s), β′(t)] .

Moreover, z is well defined if and only if zst = zts. But

zst = 1
4[β′(t), α′(s)] = zts,

and the Lemma is proved. �

By Green’s Theorem we know that the area of a region bounded by a
closed curve γ is given by

A =
∫
γ
F · dr,

where F = 1
2(−y, x) is a vector field in the plane.

Let us fix a chord L0 connecting α(0) with β(0) and denote by C0 the
line integral along L0. Now consider γ the path given by L0, β([0, t]), β(t)α(s)
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Figure 2.4: Generalized area distance of the pair of curves (α, β).

and α([s, 0]) as in Fig.(2.4). Then the area A(s, t) of the region bounded by γ
is given by

2A(s, t) = C0 +
∫ t

0
[β(t), β′(t)]dt+

∫ s

0
[α′(s), α(s)]ds+ [β(t), α(s)].

Thus
2As = [α′(s), α(s)] + [β(t), α′(s)] = [α′(s), α(s)− β(t)]

and
2At = [β(t), β′(t)] + [β′(t), α(s)] = [β′(t), α(s)− β(t)].

Then we conclude that
z(s, t) = A(s, t)

2 + C,

for some constant C.

Definition 2.6.2 The map q : I × J −→ R3 given by

q(s, t) −→ (f(s, t), z(s, t)),

where f and z are the maps defined above, is called the generalized area
distance of the pair of curves (α(s), β(t)).

Proposition 2.6.3 The generalized area distance map is an indefinite im-
proper affine sphere, and conversely, all indefinite improper affine sphere is
the generalized area distance of a pair of planar curves.

Proof.
Note that

qs = (fs, zs) = 1
2(α′(s),−[α′(s), y(s, t)]),

qt = (ft, zt) = 1
2(β′(t),−[β′(t), y(s, t)]),

and
qss = 1

2(α′′(s),−[α′′(s), y(s, t)]),
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qtt = 1
2(β′′(t),−[β′′(t), y(s, t)]).

Since the curves are planar, let us suppose that [α′(s), β′(t)] 6= 0 and write

α′′(s) = a(s, t)α′(s) + b(s, t)β′(t),

β′′(t) = c(s, t)α′(s) + d(s, t)β′(t),

for some scalar functions a, b, c, d. Then we conclude that

qss = a(s, t)qs + b(s, t)qt,

qtt = c(s, t)qs + d(s, t)qt,

which means that L = N = 0, that is, (s, t) are asymptotic coordinates and
the metric is indefinite.

From
qst = 1

4(0, 0,−[α′(s), β′(t)])

we obtain M = −
(

1
4 [α′(s), β′(t)]

)2
. The sign of M is associated with the

orientation of the basis {qs, qt, qst}, so we can change the roles of s and t to
obtain M > 0. Then we can assume that and set

Ω(s, t) = 1
4 |[α

′(s), β′(t)]|.

Thus ξ = (0, 0,±1) and q is an improper affine sphere.
Let us now assume that q is an indefinite improper affine sphere, so we

can set ξ = (0, 0, 1) and q(s, t) = (f(s, t), z(s, t)) in asymptotic parameters
(s, t), where f(s, t) is the projection of q in the plane {e1, e2}.

First of all, we know that qst = Ω ξ, hence fst = 0 and zst = Ω. Then
f(s, t) = α(s) + β(t) for some planar curves α : I −→ R2 and β : J −→ R2,
and

qs = (fs, zs) = (α′(s), zs),

qt = (ft, zt) = (β′(t), zt),

qst = (fst, zst) = (0, 0,Ω),

which means that
Ω2 = [qs, qt, qst] = Ω[α′, β′]

and
Ω(s, t) = [α′(s), β′(t)].

DBD
PUC-Rio - Certificação Digital Nº 1621857/CA



Chapter 2. Preliminaries on smooth affine theory 30

Let us assume that [α′(s), β′(t)] 6= 0, since we suppose a non degenerate
surface. Since zst = [α′(s), β′(t)] (note that here the sign is opposite to zst in
Lemma (2.6.1) and this will produce a sign difference in the end results), by
integration we get

zs = [α′(s), β(t) + u(s)] = [fs, β(t) + u(s)],

zt = [α(s) + v(t), β′(t)] = [α(s) + v(t), ft],

for some planar curves u and v defined in I and J , respectively.
By assuming that zs = [fs, y] and zt = [ft, y] (in our construction these

two have opposite sign), we conclude that y(s, t) = β(t)+u(s) = −(α(s)+v(t)),
which means that u(s) = −α(s), v(t) = β(t) and y(s, t) = β(t)− α(s).

And we have that q is the generalized area distance of the pair of curves
(α(s), β(t))

Besides some changes of sign we also chose not to take the midpoint for
f , but this does not change the proof, since the relation between z and the
area keeps the same. �

Remark.
We did not calculate the conormal vector field ν in the proof of the last
Proposition since was not necessary for our purpose, but we can verify that
ν(s, t) = (−n(s, t), 1), which means that it is planar, and the Figure (2.2) is
an example of a generalized area distance obtained from the pair of curves
α(u) = (u, 0) and β(v) = (v, v2).

2.6.2
Singularity set

We have seen that if q is the generalized area distance of a pair of curves
(α(s), β(t)), then its Blaschke metric is given by Ω(s, t) = 1

4 [α′(s)β′(t)].

Definition 2.6.4 The singularity set S of q consists of all pairs (s, t) for which
Ω = 0, that is, [α′(s), β′(t)] = 0.

Geometrically, the set f(S) consists of all midpoints of chords connecting
α(s) and β(t) with parallel tangents. Because of it, this set can be called
midpoint parallel tangent locus (MPTL) or area evolute.

Consider r −→ γ(r) = (s(r), t(r)) a parametrization for the singular set
S and denote by η(r) the null direction of df . Then, in order to verify the
regularity of f(S) at a point f(γ(r0)) = f(s0, t0), we must to check whether
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Figure 2.5: Example of the MPTL of the pair of curves (α(s), β(t)).

η(r0) is parallel to γ′(r0) or not. In other words, whether or not the null vector
is

df · (Ωt,−Ωs) = Ωtα
′(s0)− Ωsβ

′(t0),

where Ωs = [α′′(s), β′(t)] and Ωt = [α′(s), β′′(t)].

Lemma 2.6.5 The following statements are equivalent:

1. The affine tangent vectors of α at s0 and β at t0 are opposite, i.e.,
b(t0)α′(s0) + a(s0)β′(to) = 0.

2. The euclidean curvatures k1 of α at s0 and k2 of β at t0 are equal.

3. The null direction η of df is tangent to S, i.e., Ωt α
′(s0)− Ωs β

′(t0) = 0.

4. The direction (b(t0), a(s0)) that vanishes the cubic form is tangent to S.

Any point (s, t) ∈ S that does not satisfy these conditions will be called a
regular singular point.

The proof of this Lemma appears in Craizer, Teixeira and Silva [11, p.72-
73], but it is relevant to say that item (3) will be of better use for us to recognize
an irregular singular point.

The next Proposition can be found in Kokubo et al. [20, p.306] and
Craizer, Teixeira and Silva [11, p.73].
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Figure 2.6: Example of a singular set S and the null direction η in two different
points. At r0, γ′ and η are parallel, and at r1 they are not. By Proposition (2.6.6),
the first point gives us a swallowtail if A′(r0) 6= 0 and the second one necessarily a
cuspidal edge.

Proposition 2.6.6 Let γ(r0) be a nondegenerate singularity of a front q :
I × J −→ R3. Then

1. The germ of q at γ(r0) is locally diffeomorphic to a cuspidal edge if and
only if η(r0) is not parallel to γ′(r0).

2. The germ of q at γ(r0) is locally diffeomorphic to a swallowtail if and
only if η(r0) is parallel to γ′(r0) and A′(r0) 6= 0, where

A(r) = [η(r), γ′(r)].

A singularity is called a front if the map (s, t) −→ (q, ν) is an immersion
at (s0, t0).

The next results, Lemma and Corollaries, are proved in Craizer, Teixeira
and Silva [11, p.73-74]. They intent to describe the nature of the surface at
singular points from the behavior of the singular set, that is, the nature of a
singular point in the surface – if it is a cuspidal edge or a swallowtail – depends
on whether a point in the singular set is regular or not.

Corollary 2.6.7 Assume that (s0, t0) ∈ S is a regular singular point. Then
f(S) is smooth at (s0, t0) and the germ of the singularity q(s0, t0) is diffeomor-
phic to a cuspidal edge.

This Corollary says that a singular point of the surface is a cuspidal
edge whenever associated to a regular point of the set f(S). Now consider
a singular point (s0, t0) associated with the parameter r0 such that the
Lemma (2.6.5) holds. It is possible to assume that, close to (s0, t0), α(s)
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and β(t) are parameterized by affine arc-lenght. Define λ(r) by the equation
α′(r) + λ(r)β′(r) = 0.

Lemma 2.6.8 The following statements are equivalent:

1. λ′(r0) 6= 0.

2. k′1(r0) 6= k′2(r0).

3. A′(r0) 6= 0.

Corollary 2.6.9 Suppose that (s0, t0) ∈ S is not regular and the conditions of
Lemma (2.6.8) hold. Then f(S) has an ordinary cusp at (s0, t0) and the germ
of q(s0, t0) is diffeomorphic to a swallowtail.

In other words, whenever the set f(S) has a cusp the associated singular
point at the surface is a swallowtail.

Example:
Consider the pair of curves (α, β) where α(s) = (s, s2 + 2) and β(t) =(
t, t

3−6t2+5t
6

)
, for (s, t) ∈ R2. These two curves appeared in Figure (2.5), so

we will make use of them to understand the last results.
We know that

Ω(s, t) = 1
4[α′(s)β′(t)] = 1

4

(
3t2 − 12t+ 5

6 − 2s
)
,

which means that Ω = 0 if and only if s = 3t2−12t+5
12 .

Then, the singular set S is

S =
{

(s, t) ∈ R2
/
s = 3t2 − 12t+ 5

12

}
,

and f(S) is the red curve in Figure (2.5).
From Lemma (2.6.5), we want to know when the null direction η of df

is tangent to S, i.e., Ωt α
′(s0) − Ωs β

′(t0) = 0. But, Ωs = −1
2 and Ωt = t−2

4 .
Hence, we are interested in pairs (s, t) such that

t− 2
4 (1, 2s) + 1

2

(
1, 3t2 − 12t+ 5

6

)
= (0, 0).

And this happens at the point
(

5
12 , 0

)
. Thus we conclude from Corollary (2.6.9)

that f(S) has a cusp at this point and the germ of q is differmorphic to a
swallowtail, as one can see in Figure (2.7). On the other hand, Corollary (2.6.7)
point out that all other points in f(S) are regular and the germ of q will be
diffeomorphic to a cuspidal edge.
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Figure 2.7: Surface q(s, t) = (f(s, t),−z(s, t)), where z is the generalized area
distance of the pair of curves α(s) = (s, s2 + 2) and β(t) =

(
t, t

3−6t2+5t
6

)
. The

swallowtail is quite evident, although the cuspidal edge is not. The sign of z was
changed to improve the visualization.

2.7
Characterization of smooth Cayley Surfaces

This section aims to discuss some properties of the so called Cayley
Surfaces, since it is a model of equiaffinely homogenous surfaces and of affine
spheres with affine metric of constant mean curvature (these being our focus).
This study was meticulous done by Nomizu [31] and all the absent proofs in
this work can be found there.

Definition 2.7.1 A surface f : R2 −→ R3 is ruled if it can be written as

f(x, y) = yF (x) +G(x),

for some functions F,G : R −→ R3.

Our intention here is to study a surface that is the graph of z = xy+ϕ(x),
where ϕ(x) is an arbitrary smooth function defined on R. It is easy to see that
this surface is a ruled (see Def.2.7.1) improper affine sphere, since the normal
vector ξ is constant.

When we take ϕ(x) = −x3

3 , we find one of the most important surface
among them, the Cayley Surfaces:

z = xy − x3

3 , (2.14)
and all its equiaffinely congruent surfaces.
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Figure 2.8: A Cayley Surface from two different view points.

Accordingly to Nomizu, this surface is affine homogeneous, that is, there
is a Lie subgroup of the group of all equiaffine transformations of R3 that acts
transitively on the surface. This information leads us to the theorem about
classification of the affine homogeneous surfaces:

Theorem 2.7.2 Any nondegenerate surface in R3 that is homogeneous under
equiaffine transformations is a quadric or is affinely congruent to one of the
following surfaces:

(I) xyz = 1,
(II) (x2 + y2)z = 1,
(III) x2(z − y2)3 = 1,
(IV ) x2(z − y2)3 = −1,
(V ) z = xy − x3

3 ,

(V I) z = xy + log(x).

The full proof of this Theorem can be found in Nomizu [31, p.102]. Let
us only explain what affine congruence means and give one particular fact used
in the demonstration that will be necessary for our further results.

If a nondegenerate surfaceM2 in R3 is equiaffinely homogeneous and the
image φ(M2) is also a nondegenerate equiaffinely homogeneous surface for any
affine transformation φ of R3 onto itself, the two surfaces M2 and φ(M2) are
called affinely congruent. This means that the above Theorem is up to affine
congruence.

In its proof Nomizu uses the Pick invariant J to show that the first four
equations will be found if J 6= 0 and, in the other case, if J = 0, the last two
equations will follow.

Some sections ahead Nomizu treats the local classification of affine
spheres whose affine metrics have constant curvature and gives a list that
exhausts all such surfaces in the following Theorem:
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Theorem 2.7.3 Let f : M2 −→ R3 be an affine sphere with Blaschke
structure. If the affine metric h is flat, then the surface is locally affine
congruent to one of the following surfaces:

(1) z = x2 + y2,

(2) xyz = 1,
(3) (x2 + y2)z = 1,
(4) z = xy + ϕ(x),

where ϕ is an arbitrary function of x.

The Pick invariant is again used in the proof by Nomizu, so that the
second and third equations can be found if J 6= 0. If J = 0, the first equation
follows from the definite metric whilst the last one follows from the indefinite
one.

Another result due to Nomizu and Sasaki [31] refers to ruled affine spheres
and will be of our interest in chapter 4.

Theorem 2.7.4 If f : M2 −→ R3 is a ruled improper affine sphere, then it is
locally of the form (4) in Theorem (2.7.3).

As we can see the Cayley surface appears explicitly in the Theorem (2.7.2)
and implicitly in the Theorem (2.7.3), what is a sign of its importance. In 1989,
Nomizu and Pinkall [32] presented a paper in which the characterization of the
Cayley surface was made, as we shall see in the next theorem.

Theorem 2.7.5 [Characterization of Cayley surfaces] Let M2 be a non-
degenerate surface with Blaschke structure in R3. Then M2 is affinely congru-
ent to a Cayley surface if and only if the cubic form C is not 0 and it is parallel
to ∇, i.e., ∇C = 0.

Proof.
It is easy to see that the parametrization ψ(x, y) = (x, y, z(x, y)) given by
the equation (2.14) is not asymptotic, but this problem can be solved by a
change of parameters. So we can reparameterize it along the asymptotic lines
by setting x = u and y = v + u2

2 and get

φ(u, v) =
(
u, v + u2

2 , uv + u3

6

)
(2.15)

Since φu =
(
1, u, v + u2

2

)
, φv = (0, 1, u), φuu = (0, 1, u), φuv = (0, 0, 1)

and φvv = (0, 0, 0), we have L = [φu, φv, φuu] = 0, M = [φu, φv, φuv] = 1 and
N = [φu, φv, φvv] = 0, which confirms asymptotic coordinates. Moreover, it
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says that the metric is constant Ω = 1 > 0 and the affine normal vector field
is also constant ξ = (0, 0, 1). It follows that the coefficients of the cubic form
are A = 1 and B = 0 (this means that the surface is ruled), and by formula
(2.3) we come to a surface with constant affine mean curvature, since H = 0.

Now let us take a look at the cubic form and the covariant derivative
∇C. We know that C = Adu3 + B dv3 in asymptotic coordinates. Let be
U = ∂

∂u
and V = ∂

∂v
, so C(U,U, U) = A, C(U,U, V ) = C(U, V, V ) = 0 and

C(V, V, V ) = B.
In terms of the covariant derivative ∇ the equations (2.1) lead us to

∇UU = Ωu

Ω U + A

ΩV,

∇V V = B

ΩU + Ωv

Ω V,

∇UV = 0.

We want to calculate ∇ZC where Z is a direction in the space spanned
by {U, V }, so it is sufficient to calculate ∇UC and ∇VC. With the use of the
above covariant derivatives, we have:
∇UC(U,U, U) = ∇C(U,U, U, U)

= U C(U,U, U)− 3C(∇UU,U, U) = Au − 3AΩu

Ω

∇UC(U,U, V ) = ∇C(U,U, V, U)

= U C(V, U, U)− C(∇UV, U, U)− 2C(V,∇UU,U) = 0

∇UC(U, V, V ) = ∇C(U, V, V, U)

= U C(V, V, U)− 2C(∇UV, V, U)− C(V, V,∇UU) = −AB
Ω

∇UC(V, V, V ) = ∇C(V, V, V, U)

= U C(V, V, V )− 3C(∇UV, V, V ) = Bu

∇VC(U,U, U) = ∇C(U,U, U, V )

= V C(U,U, U)− 3C(∇VU,U, U) = Av

∇VC(U,U, V ) = ∇C(UU, V, V )

= V C(V, U, U)− C(∇V V, U, U)− 2C(V,∇VU,U) = −AB
Ω

∇VC(U, V, V ) = ∇C(U, V, V, V )

= V C(U, V, V )− C(∇VU, V, V )− 2C(U,∇V V, V ) = 0

∇VC(V, V, V ) = ∇C(V, V, V, V )

= V C(V, V, V )− 3C(∇V V, V, V ) = Bv − 3BΩv

Ω
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So we have ∇C = 0 if and only all the eight terms above are equal to
zero.

Note that in the Cayley surface we already have that A and H are
constant and B = 0, which means that ∇C = 0. Conversely, let us suppose
that ∇C = 0, that is,

(i) Au = 3AΩu

Ω
(ii) Av = Bu = 0

(iii) Bv = 3BΩv

Ω
(iv) AB

Ω = 0

From (iv) we have that A = 0 or B = 0. Let us suppose that B = 0 and
A 6= 0.

Let R be the curvature of the surface. Let us prove that R(X, Y )Z = 0
for all tangent directions X, Y and Z. Since the tangent space has dimension 2,
X, Y and Z are linear combinations of U and V , with [U, V ] = 0, it is enough
to calculate R(U, V )U and R(V, V )V , because it is know that R(U,U)U =
R(V, V )U = R(U,U)V = R(V, V )V = 0, R(U, V )U = −R(V, U)U and
R(U, V )V = −R(V, U)V . Then from relations (i) to (iv) we have:

R(U, V )U = ∇V∇UU −∇U∇VU = ∇V

(
Ωu

Ω U + A

ΩV
)

=
(

Ωu

Ω

)
v

U + Ωu

Ω ∇VU +
(
A

Ω

)
v
V + A

Ω∇V V

=
(

Ωu

Ω

)
v

U + AvΩ− AΩv

Ω2 V + AB

Ω2 U + AΩv

Ω2

=
(

Ωu

Ω

)
v

U

R(V, U)V = ∇U∇V V −∇V∇UV = ∇U

(
B

ΩU + Ωv

Ω V

)

=
(

Ωv

Ω

)
u

V + Ωv

Ω ∇UV =
(

Ωu

Ω

)
v

V

By setting Z = αU + βV , we get R(U, V )Z =
(

Ωu

Ω

)
v

(αU − βV ). So

from the First Bianchi identity

R(U, V )Z +R(V, Z)U +R(Z,U)V = 0

DBD
PUC-Rio - Certificação Digital Nº 1621857/CA



Chapter 2. Preliminaries on smooth affine theory 39

in addition to the bilinearity of R we come to R(V, U)V = 0, which means
that the metric is flat, that is, Ω is constant. Thus the relation (iv) and the
formula (2.3) give us H = 0 and by equation (2.2) we have ξ = (0, 0, 1), i.e.,
the surface is an improper affine sphere.

Let us take Ω = 1. Moreover, since Ωu = 0, the relation (i) turns to
Au = 0. So from now on we have Au = Av = 0, i.e., A is also constant and
w.l.g. let us take A = 1.

Let us rewrite the Gauss equations (2.1) with the information we have
until now:

quu = qv, qvv = 0 and quv = ξ.

From qvv and quv we get qv = uξ + C, where C is a constant vector in
R3. By integration on v we come to

q = uvξ + vC +D(u),

where D(u) is a vector function of u. From this equation we get

qu = vξ +D′(u).

From quu we find quu = uξ+C, which by integration on u it follows that
qu = u2

2 ξ + uC + E(v), where E(v) is a vector function of v. By comparing
these two equations for qu we find

D′(u) = u2

2 ξ + uC + P,

D(u) = u3

6 ξ + u2

2 C + uP +R,

where P and R are constant vectors in R3. We may assume that R = 0, and
ξ, C and P are linearly independent. Then

q =
(
uv + u3

6

)
ξ +

(
v + u2

2

)
C + uP.

By setting x = u, y = v + u2

2 and z = uv + u3

6 , we get z = xy − x3

3 and the
proof is completed. �

Remark.
Another way to start our proof could be without using the curvature. Note that
the relation(iv) shows us that the Pick invariant J is given by J = AB

Ω3 = 0. So
the Theorem (2.7.2) assures that the surface is an improper affine sphere (V)
or (VI), and the Theorem (2.7.3) also ensures that by surface (4). That said,
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without loss of generality, we can take ξ = (0, 0, 1). From that point on the
demonstration would follow similarly.
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3
Structure of non-degenerate asymptotic nets

3.1
Notation

Given a discrete function f : D ⊂ Z2 −→ R3, we denote the discrete
partial derivatives with respect to u and v, respectively, by

f1

(
u+ 1

2 , v
)

= f(u+ 1, v)− f(u, v),

f2

(
u, v + 1

2

)
= f(u, v + 1)− f(u, v).

From these equations, the second order partial derivatives follow

f11(u, v) = f(u+ 1, v)− 2f(u, v) + f(u− 1, v)
f22(u, v) = f(u, v + 1)− 2f(u, v) + f(u, v − 1)
f12(u, v) = f(u+ 1, v + 1) + f(u, v)− f(u+ 1, v)− f(u, v + 1).

The quadrangle formed by the vertices f(u, v), f(u + 1, v), f(u, v + 1)
and f(u+ 1, v + 1) will be referred to as the quadrangle

(
u+ 1

2 , v + 1
2

)
.

Given two vectors V1, V2 ∈ R3, we denote by V1 × V2 the cross product
and by V1 · V2 the dot product between them. And given three vectors
V1, V2, V3 ∈ R3, we denote by [V1, V2, V3] = (V1 × V2) · V3 their determinant.

3.2
Basic structure

A net q : D ⊂ Z2 −→ R3 is called asymptotic if the “crosses are planar”,
i.e., q1(u+ 1

2 , v), q1(u− 1
2 , v), q2(u, v+ 1

2) and q2(u, v− 1
2) are coplanar (see [4],

p.66). From this definition, for each quadrangle
(
u+ 1

2 , v + 1
2

)
, we can define

L
(
u+ 1

2 , v + 1
2

)
=
[
q1
(
u+ 1

2 , v
)
, q2

(
u, v + 1

2

)
, q1

(
u− 1

2 , v
) ]

= 0,

N
(
u+ 1

2 , v + 1
2

)
=
[
q1
(
u+ 1

2 , v
)
, q2

(
u, v + 1

2

)
, q2

(
u, v − 1

2

) ]
= 0,

M
(
u+ 1

2 , v + 1
2

)
=
[
q1
(
u+ 1

2 , v
)
, q2

(
u, v + 1

2

)
, q2

(
u+ 1, v + 1

2

) ]
.
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Observe that L = N = 0, in line with the smooth theory and according
with the planar crosses, since geometrically these determinants correspond to
volumes. In particular, M is the volume of the tetrahedron of vertices q(u, v),
q(u+ 1, v), q(u, v + 1) and q(u+ 1, v + 1).

We say that the asymptotic net is non-degenerate if all its elementary
quadrangles are non-planar, which means that M 6= 0 in any quadrangle.
More than that, M does not change sign so, from now on, we shall assume
that M

(
u+ 1

2 , v + 1
2

)
> 0 for any (u, v) ∈ D. Besides that, like its smooth

counterpart, the definition of an asymptotic net implies that all vertices are
saddle points, in other words, the plane spanned by q1

(
u+ 1

2 , v
)
, q1

(
u− 1

2 , v
)
,

q2
(
u, v + 1

2

)
and q2

(
u, v − 1

2

)
crosses the surface.

Similarly, define the affine metric Ω at a quadrangle
(
u+ 1

2 , v + 1
2

)
by

Ω
(
u+ 1

2 , v + 1
2

)
=
√
M
(
u+ 1

2 , v + 1
2

)
. (3.1)

Note that we are taking Ω > 0 for definiteness, in order to agree with the
smooth case.

We remark that if A ∈ SL(3,R3), then Aq is also a non-degenerate
asymptotic net and its affine metric remains Ω.

In the discrete case (see [4], p.70), the conormal vector field ν with respect
to an asymptotic net q is a vector-valued map defined at the vertices (u, v)
satisfying the discrete Lelieuvre’s equations

ν(u, v)× ν1
(
u+ 1

2 , v
)

= q1
(
u+ 1

2 , v
)
,

ν(u, v)× ν2
(
u, v + 1

2

)
= −q2

(
u, v + 1

2

)
.

Since ν1
(
u+ 1

2 , v
)

= ν(u + 1, v) − ν(u, v) and ν2
(
u, v + 1

2

)
= ν(u, v + 1) −

ν(u, v), we come to simpler discrete Lelieuvre’s equations

ν(u, v)× ν(u+ 1, v) = q1
(
u+ 1

2 , v
)
,

ν(u, v)× ν(u, v + 1) = −q2
(
u, v + 1

2

)
.

(3.2)

Let us take the vector field νρ(u, v) = ρν(u, v), if u + v is even, and
νρ(u, v) = ρ−1ν(u, v), if u+ v is odd, for any constant ρ > 0. This operation is
known as black-white re-scaling and shows us that νρ also satisfies Lelieuvre’s
equations (3.2), i.e., is a way to obtain another conormal vector field with
respect to the q net. Conversely, we can see that any conormal vector field
with respect to the asymptotic net q is obtained from ν by a black-white
re-scaling.

We can easily see that any co-normal vector field is orthogonal to the
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planar crosses by

−q1(u+ 1
2 , v)× q2(u, v + 1

2) = (ν(u, v)× ν(u+ 1, v))× (ν(u, v)× ν(u, v + 1))

= [ν(u, v), ν(u+ 1, v), ν(u, v + 1)]ν(u, v).

Moreover, the conormal vector field is invariant under affine transformations.
In fact, for any A ∈ SL(3,R3), (A−1)tν is a co-normal vector field for the
asymptotic net Aq, since ((A−1)tν) · (Aq) = 0.

Figure 3.1: Example of a planar cross with the conormal vector at the vertex and
the normal vectors at the faces representing ξe or ξo.

A two-dimensional net f : D ⊂ Z2 → R3 is called a Moutard net if
for any quadrangle (u + 1

2 , v + 1
2), f(u + 1, v) + f(u, v + 1) is parallel to

f(u, v) + f(u+ 1, v + 1).

Proposition 3.2.1 A vector field ν(u, v) is the conormal vector field of an
asymptotic net q(u, v) if and only if it defines a Moutard net, i.e.,

λ2
(
u+ 1

2 , v + 1
2

)
(ν(u, v) + ν(u+ 1, v + 1)) = ν(u, v + 1) + ν(u+ 1, v), (3.3)

for some map λ : (Z2)∗ → R+.

Proof.
From Lelieuvre’s equations we have

q1
(
u+ 1

2 , v
)

+ q2
(
u+ 1, v + 1

2

)
= (ν(u, v) + ν(u+ 1, v + 1))× ν(u+ 1, v)

and

q1
(
u+ 1

2 , v + 1
)

+ q2
(
u, v + 1

2

)
= ν(u, v + 1)× (ν(u, v) + ν(u+ 1, v + 1)).
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Thus

(q21−q12)
(
u+ 1

2 , v + 1
2

)
= (ν(u, v)+ν(u+1, v+1))×(ν(u+1, v)+ν(u+1, v+1)).

Now, if ν is a conormal vector field of an asymptotic net, the first
member of the above equation is zero, and then ν must satisfy equation (3.3).
Reciprocally, if ν satisfies equation (3.3), then the second member is zero,
what means q12 = q21, which implies that, starting from an arbitrary point, it
is possible to define an asymptotic net with conormal vector field ν without
any ambiguity.

Note that under a black-white re-scaling on ν, the map λ is multiplied
by the same positive constant of ν, since

λ2(u+ 1
2 , v + 1

2)(ρν(u, v) + ρν(u+ 1, v + 1)) = ρ−1ν(u, v + 1) + ρ−1ν(u+ 1, v)

or

(ρλ)2(u+ 1
2 , v + 1

2)(ν(u, v) + ν(u+ 1, v + 1)) = ν(u, v + 1) + ν(u+ 1, v),

for some ρ > 0. �

Lemma 3.2.2 In terms of conormals, the affine metric is given by

Ω
(
u+ 1

2 , v + 1
2

)
= λ−1

(
u+ 1

2 , v + 1
2

)
[ν(u, v), ν(u, v + 1), ν(u+ 1, v)].

One can also write

ν(u, v) =
λ−1

(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

) (
q1(u+ 1

2 , v)× q2(u, v + 1
2)
)
.

Proof.

Ω2 =
[
q1
(
u+ 1

2 , v
)
, q2

(
u, v + 1

2

)
, q2

(
u+ 1, v + 1

2

) ]

= [ν(u, v)× ν(u+ 1, v), −ν(u, v)× ν(u, v + 1),−ν(u+ 1, v)× ν(u+ 1, v + 1)]

= [ν(u, v)× ν(u+ 1, v), ν(u, v)× ν(u, v + 1),
ν(u+ 1, v)× (ν(u, v) + ν(u+ 1, v + 1))]

= 1
λ2 [ν(u, v)× ν(u+ 1, v), ν(u, v)× ν(u, v + 1),

ν(u+ 1, v)× (ν(u+ 1, v) + ν(u, v + 1))]
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= 1
λ2 [ν(u, v), ν(u+ 1, v), ν(u, v + 1)]2

Then
Ω = λ−1[ν(u, v), ν(u, v + 1), ν(u+ 1, v)].

Moreover,

q1(u+ 1
2 , v)× q2(u, v + 1

2) = (ν(u, v)× ν(u+ 1, v))× (ν(u, v)× ν(u, v + 1))

= [ν(u, v), ν(u+ 1, v), ν(u, v + 1)]ν(u, v)
= λΩ ν(u, v)

and it follows that

ν(u, v) =
λ−1

(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

) (
q1(u+ 1

2 , v)× q2(u, v + 1
2)
)
.

�

Remark.
It is possible to obtain ν(u, v) by considering the other three quadrangles of
which q(u, v) is a vertex:

ν(u, v) =
λ
(
u− 1

2 , v + 1
2

)
Ω
(
u− 1

2 , v + 1
2

) (q1(u− 1
2 , v)× q2(u, v + 1

2)
)
,

ν(u, v) =
λ−1

(
u− 1

2 , v −
1
2

)
Ω
(
u− 1

2 , v −
1
2

) (
q1(u− 1

2 , v)× q2(u, v − 1
2)
)
,

ν(u, v) =
λ
(
u+ 1

2 , v −
1
2

)
Ω
(
u+ 1

2 , v −
1
2

) (q1(u+ 1
2 , v)× q2(u, v − 1

2)
)
.

Note that in even quadrangles, i.e., when u+ v is even, it appears λ−1, whilst
in odd ones it appears only λ.

Another observation about Lemma (3.2.2) refers to the fact that since λ
is chosen to be positive, so it will also be positive the basis {q1, q2, ν}.
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3.3
Asymptotic nets and interpolations by hyperboloids

3.3.1
The interpolator hyperboloid

Given four non coplanar points A, B, C and D in R3, we can interpolate
the quadrangle ABCD by the quadric Hc = H(c, A,B,C,D) given by the
following formulae:

φ(u, v) = A+ u

1− cuv (B − A) + v

1− cuv (C − A) (3.4)

+ uv

1− cuv ((1− c)D + (1 + c)A− (B + C)) ,

where 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, c ∈ R and |c| < 1.
Let us take A = (0, 0, 0), B = (1, 0, 0), C = (0, 1, 0) and D = 1

1−c(1, 1, 1).
In this case, the interpolation is given by

φ(u, v) = u

1− cuv (1, 0, 0) + v

1− cuv (0, 1, 0) + uv

1− cuv (0, 0, 1), (3.5)

which coincides with the basic hyperboloid (2.8) by taking c = a.

Figure 3.2: Two interpolations for the quadrangle ABCD where A = (0, 0, 0),
B = (1, 0, 0), C = (0, 1, 0) and D = (1, 1, 1) with c = 0 on the left and c = 0.8
on the right. Note that as c approaches 1 more planar the interpolation is at the
origin.

Take a look at the co-normal vectors at the vertices νA, νB, νC and νD.
From equation (2.9), it follows that νA = ν(0, 0) = (0, 0, 1), νB = ν(1, 0) =
(0,−1, 1), νC = ν(0, 1) = (−1, 0, 1) and νD = ν(1, 1) = 1

1−c(−1,−1, 1 + c).
From Proposition 3.2.1 we write λ2(νA + νD) = νB + νC . Then

λ =
√

1− c. (3.6)

Now consider the affine map composed by a translation of A with the
linear map T that realizes: (1, 0, 0) 7→ B−A, (0, 1, 0) 7→ C−A and (0, 0, 1) 7→
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(1−c)(D−A)−(B−A)−(C−A). Then the image of the basic hyperboloid given
by the equation (3.5) under this affine map is the interpolator hyperboloid
given by the equation (3.4). Moreover, we have det(T ) = (1− c) Ω2.

Insofar as the affine mean curvature of the basic hyperboloid is −2c, we
conclude that the affine mean curvature of the interpolator hyperboloid is

Hc,A,B,C,D = −2c√
1− cΩ

. (3.7)

Remark.
If we take any quadrangle A, B, C, D of a given basic hyperboloid Ha and we
choose c such that −2c√

1− cΩ
= −2a, (3.8)

then equation (3.6) allow us to conclude the special relation

1− λ2 = aλΩ. (3.9)

3.3.2
Juxtaposition of two interpolator hyperboloids

We have seen how to interpolate a quadrangle by a hyperboloid and
the relation between the parameter λ and the curvature of the interpolator.
But this extends to all net, so we have to understand what happens in two
adjacent quadrangles, in other words, how the juxtaposition of two adjacent
hyperboloids interfere in the parameters associated to each quadrangle.

We know that λ and ν are invariant under affine transformations, so we
can choose conveniently our two adjacent quadrangles ABDC and ACFE such
that A = (0, 0, 0), B = (1, 0, 0), C = (0, 1, 0), D = (1, 1, 1), E = (x1, y1, 0) and
F = (x2, y2, x2), for some real numbers x1, x2, y1 and y2. E and F were chosen
in a way that the crosses are planar at A and C. See Figure (3.3).

The interpolations of the quadrangles ABDC and ACFE are given by

φ(u, v) = u

1− cuv (1, 0, 0) + v

1− cuv (0, 1, 0) + uv

1− cuv ((0, 0, 1)− c(1, 1, 1))

and
ψ(s, t) = s

1− bst(x1, y1, 0) + t

1− bst(0, 1, 0)

+ st

1− bst ((1− b)(x2, y2, x2)− (x1, y1 + 1, 0)) .

The two quadrics must be tangent along the common edge AC, i.e., they
must have the same tangent plane along it, which means the same normal
vector at any point of the edge. This happens when ψs(0, t) × ψt(0, t) =
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Figure 3.3: Two adjacent quadrangles properly chosen.

φu(0, v)× φv(0, v) or

(1− c)v
1− cv = x2(1− b)t

x1 − x1t+ x2(1− b)t (3.10)

for 0 ≤ v ≤ 1 and 0 ≤ t ≤ 1.
Besides, the conormal vectors at the vertices A and C must coincide.

On the one hand we have νA = 1√
1− c

(0, 0, 1) and νC =
√

1− c (−1, 0, 1)

from φ, on the other hand we have νA = −x1√
1− b√x1x2

(0, 0, 1) and νC =

−x2
√

1− b
√
x1x2

(−1, 0, 1) from ψ. So they coincide if and only if

1√
1− c

= −x1√
1− b√x1x2

⇔ 1
1− c = x1

(1− b)x2
(3.11)

Observe that (3.10) and (3.11) occur if and only if 0 ≤ v = t ≤ 1,
meaning that the two quadrics must be tangent along the common edge AC
with coincident conormal vectors at the vertices if and only if (3.11) is valid.

Let us use the equation (3.3) on the quadrangles ABDC and AEFC,
i.e., there are parameters λ and µ such that

λ2(νA + νD) = νB + νC and µ2(νE + νC) = νA + νF .

From φ we get νB =
√

1− c (0,−1, 1) and νD = 1√
1− c

(−1,−1, 1). Then

λ =
√

1− c. (3.12)
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From ψ we have

νE = ψs(1, 0)× ψt(1, 0)
M1/2 =

√
1− b
√
x1x2

(x2y1,−x1x2, x1y2 − x2y1)

and

νF = ψs(1, 1)× ψt(1, 1)
M1/2 = 1

√
x1x2
√

1− b
(x2y1−x2,−x1x2, x1y2−x2y1−x1+x2).

Hence
µ = 1√

1− b
. (3.13)

From (3.11), (3.12) and (3.13), we conclude that the two quadrics must
be tangent along the common edge AC with coincident conormal vectors at
the vertices A and C if and only if

λµ =
√

1− c√
1− b

=
√
x2√
x1
. (3.14)

That said we come to the following result.

Proposition 3.3.1 In any asymptotic net, if each quadrangle is interpolated
by a hyperboloid (3.4) in such a way that two adjacent ones are always tangent
along the common edge, it holds

λ2
(
u+ 1

2 , v + 1
2

)
λ2
(
u− 1

2 , v + 1
2

)
=

1− c
(
u+ 1

2 , v + 1
2

)
1− c

(
u− 1

2 , v + 1
2

)
and

λ2
(
u+ 1

2 , v + 1
2

)
λ2
(
u+ 1

2 , v −
1
2

)
=

1− c
(
u+ 1

2 , v + 1
2

)
1− c

(
u+ 1

2 , v −
1
2

) ,
where c is the curvature of the interpolator of the respective quadrangle.

3.4
Discrete hyperboloid

Consider the basic hyperboloid (2.7). Since the asymptotic curves of the
smooth hyperboloid are straight lines, sampling it in the domain of asymp-
totic parameters generate an asymptotic net q. Denote by ∆u and ∆v the
distance between samples in u and v directions, respectively. Straightforward
calculations lead us to

ν(u, v)× ν(u+ ∆u, v) = q(u+ ∆u, v)− q(u, v) = q1(u+ ∆u
2 , v),

ν(u, v + ∆v)× ν(u, v) = q(u, v + ∆v)− q(u, v) = q2(u, v + ∆v
2 ).
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Whereas the discrete Lelieuvre’s formulas hold, one can use the samples of the
smooth ν(u, v) as a co-normal vector field of q. We shall call this pair (q, ν)
the discrete hyperboloid.

From the equation (2.9) whith a = c and the Lemma 3.2.2, it follows
that
Ω(u+ ∆u

2 , v + ∆v
2 ) =

∆u∆v√
[1− c(u+ ∆u)(v + ∆v)][1− cv(u+ ∆u)][1− cu(v + ∆v)][1− cuv]

and

λ(u+ ∆u
2 , v + ∆v

2 ) =

√√√√ [1− cuv][1− c(u+ ∆u)(v + ∆v)]
[1− cv(u+ ∆u)][1− cu(v + ∆v)] .

From the above formulas, it is possible to verify that

1− λ2 = cλΩ

holds at any quadrangle, which is in agreement with the fact that the discrete
hyperboloid is a basic one.

3.5
Affine normal vector fields and the cubic form

3.5.1
Affine normal vector field

At each quadrangle
(
u+ 1

2 , v + 1
2

)
, we define two affine normal vectors

ξe and ξo by

ξe
(
u+ 1

2 , v + 1
2

)
=
λ
(
u+ 1

2 , v + 1
2

)
q12

(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

) (3.15)

and

ξo
(
u+ 1

2 , v + 1
2

)
=
λ−1

(
u+ 1

2 , v + 1
2

)
q12

(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

) . (3.16)

Observe that ξe satisfies ν(u, v)·ξe
(
u+ 1

2 , v + 1
2

)
= 1 for each quadrangle,

since from Lemma (3.2.2)

ν(u, v) · ξe
(
u+ 1

2 , v + 1
2

)
=

=
λ−1
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) (
q1(u+ 1

2 , v)× q2(u, v + 1
2)
)
·
λ

(
u+ 1

2 ,v+ 1
2

)
q12

(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)
= 1

Ω2
(
u+ 1

2 ,v+ 1
2

) [q1
(
u+ 1

2 , v
)
, q2

(
u, v + 1

2

)
, q12

(
u+ 1

2 , v + 1
2

)]
= 1

Similarly, we have
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ν(u+ 1, v + 1) · ξe
(
u+ 1

2 , v + 1
2

)
= 1,

ν(u+ 1, v) · ξo
(
u+ 1

2 , v + 1
2

)
= 1,

ν(u, v + 1) · ξo
(
u+ 1

2 , v + 1
2

)
= 1.

3.5.2
Coefficients of the cubic form

At any vertex we can define the coefficients of the cubic form in a similar
way of their smooth counterpart as

A(u, v) =
[
q1
(
u− 1

2 , v
)
, q1

(
u+ 1

2 , v
)
, ξe

(
u+ 1

2 , v + 1
2

)]
and

B(u, v) =
[
q2
(
u, v − 1

2

)
, q2

(
u, v + 1

2

)
, ξe

(
u+ 1

2 , v + 1
2

)]
.

By using Lelieuvre’s equations and the inner products above, one can verify
that

A(u, v) =
[
q1
(
u− 1

2 , v
)
, q1

(
u+ 1

2 , v
)
, ξo

(
u− 1

2 , v + 1
2

)]
=
[
q1
(
u− 1

2 , v
)
, q1

(
u+ 1

2 , v
)
, ξo

(
u+ 1

2 , v −
1
2

)]
=
[
q1
(
u− 1

2 , v
)
, q1

(
u+ 1

2 , v
)
, ξe

(
u− 1

2 , v −
1
2

)]
and

B(u, v) =
[
q2
(
u, v − 1

2

)
, q2

(
u, v + 1

2

)
, ξo

(
u− 1

2 , v + 1
2

)]
=
[
q2
(
u, v − 1

2

)
, q2

(
u, v + 1

2

)
, ξo

(
u+ 1

2 , v −
1
2

)]
=
[
q2
(
u, v − 1

2

)
, q2

(
u, v + 1

2

)
, ξe

(
u− 1

2 , v −
1
2

)]

3.6
Structural equations

Since at each vertex of the net the crosses are planar, the second
derivatives q11(u, v) and q22(u, v) can be written as linear combination of
q1
(
u+ 1

2 , v
)
and q2

(
u, v + 1

2

)
.

Proposition 3.6.1 The structural equations of the affine immersion are given
by

q11(u, v) = α q1
(
u+ 1

2 , v
)

+ β q2
(
u, v + 1

2

)
q22(u, v) = γ q1

(
u+ 1

2 , v
)

+ δ q2
(
u, v + 1

2

) (3.17)

where

α =
Ω
(
u+ 1

2 , v + 1
2

)
− λ−1

(
u+ 1

2 , v + 1
2

)
λ−1

(
u− 1

2 , v + 1
2

)
Ω
(
u− 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

) ,
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β =
λ−1

(
u+ 1

2 , v + 1
2

)
A(u, v)

Ω
(
u+ 1

2 , v + 1
2

) ,

γ =
λ−1

(
u+ 1

2 , v + 1
2

)
B(u, v)

Ω
(
u+ 1

2 , v + 1
2

) ,

δ =
Ω
(
u+ 1

2 , v + 1
2

)
− λ−1

(
u+ 1

2 , v + 1
2

)
λ−1

(
u+ 1

2 , v −
1
2

)
Ω
(
u+ 1

2 , v −
1
2

)
Ω
(
u+ 1

2 , v + 1
2

) .

Proof.
We know that[

q1
(
u+ 1

2 , v
)
, q2

(
u, v + 1

2

)
, q12

(
u+ 1

2 , v + 1
2

)]
= Ω2

(
u+ 1

2 , v + 1
2

)
(3.18)

and
q11 = q1

(
u+ 1

2 , v
)
− q1

(
u− 1

2 , v
)
.

Replacing equations (3.17) in (3.18), using (3.15), Lemma (3.2.2) and its
remark, we reach the expected conclusion.

It is important to say that 1 − α and −β are the coefficients of the
expansion of q1(u− 1

2 , v) in the basis {q1(u+ 1
2 , v), q2(u, v + 1

2)}. �

Remark.
Note that the equations (3.17) can be rewritten by considering any combination
{q1(u± 1

2 , v), q2(u, v ± 1
2)} as a basis of the plane at (u, v). For example, if we

chose {q1(u+ 1
2 , v), q2(u, v − 1

2)} then

q11(u, v) = α q1
(
u+ 1

2 , v
)

+ β q2
(
u, v − 1

2

)
,

where

α =
Ω
(
u+ 1

2 , v −
1
2

)
− λ−1

(
u+ 1

2 , v −
1
2

)
λ−1

(
u− 1

2 , v −
1
2

)
Ω
(
u− 1

2 , v −
1
2

)
Ω
(
u+ 1

2 , v −
1
2

)
and

β =
λ−1

(
u+ 1

2 , v −
1
2

)
A(u, v)

Ω
(
u+ 1

2 , v −
1
2

) .

In this case q22(u, v) does not change.

3.7
Gauss equations for the derivatives of ξ

We define the derivatives of ξ in the u-direction as

ξ−1
(
u, v + 1

2

)
= ξe

(
u+ 1

2 , v + 1
2

)
− ξo

(
u− 1

2 , v + 1
2

)
,
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ξ+
1

(
u, v + 1

2

)
= ξo

(
u+ 1

2 , v + 1
2

)
− ξe

(
u− 1

2 , v + 1
2

)
.

Note that these vectors are orthogonal to ν(u, v) and ν(u, v + 1), respectively.
Similarly, in the v-direction we define

ξ−2
(
u+ 1

2 , v
)

= ξe
(
u+ 1

2 , v + 1
2

)
− ξo

(
u+ 1

2 , v −
1
2

)
,

ξ+
2

(
u+ 1

2 , v
)

= ξo
(
u+ 1

2 , v + 1
2

)
− ξe

(
u+ 1

2 , v −
1
2

)
,

and they are orthogonal to ν(u, v) and ν(u+ 1, v), respectively.
From the orthogonality of ξ−1 and ξ−2 with ν(u, v) we can write them in

the basis {q1(u+ 1
2 , v), q2(u, v + 1

2)}.

Proposition 3.7.1 Gauss equations for the derivatives of the normal vector
field are given by

ξ−1
(
u, v + 1

2

)
=

λ−2
(
u−1

2 ,v+ 1
2

)
−λ2
(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q1
(
u+ 1

2 , v
)

+
λ2
(
u+ 1

2 ,v+ 1
2

)
A(u,v+1)−A(u,v)

λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)

and

ξ−2
(
u+ 1

2 , v
)

=
λ2
(
u+ 1

2 ,v+ 1
2

)
B(u+1,v)−B(u,v)

λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v−
1
2

) q1
(
u+ 1

2 , v
)

+
λ−2
(
u+ 1

2 ,v−
1
2

)
−λ2
(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
.

Proof.
ξ−1
(
u, v + 1

2

)
can be written in the basis {q1(u+ 1

2 , v), q2(u, v + 1
2)} as

ξ−1
(
u, v + 1

2

)
= α q1

(
u+ 1

2 , v
)

+ β q2
(
u, v + 1

2

)
.

So[
ξ−1
(
u, v + 1

2

)
, q2

(
u, v + 1

2

)
, ξe

(
u+ 1

2 , v + 1
2

)]
=

α
[
q1
(
u+ 1

2 , v
)
, q2

(
u, v + 1

2

)
, ξe

(
u+ 1

2 , v + 1
2

)]
,

and then
−
[
ξo
(
u− 1

2 , v + 1
2

)
, q2

(
u, v + 1

2

)
, ξe

(
u+ 1

2 , v + 1
2

)]
=

αλ
(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

)
.

Since
λ−1

(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

)
ξe
(
u+ 1

2 , v + 1
2

)
=
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q1(u+ 1
2 , v + 1)− q1(u+ 1

2 , v),

λ
(
u− 1

2 , v + 1
2

)
Ω
(
u− 1

2 , v + 1
2

)
ξo
(
u− 1

2 , v + 1
2

)
=

q1(u− 1
2 , v + 1)− q1(u− 1

2 , v),

q1(u− 1
2 , v) =

λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q1
(
u+ 1

2 , v
)

−
λ−1
(
u+ 1

2 ,v+ 1
2

)
A(u,v)

Ω
(
u+ 1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
and

q1(u− 1
2 , v + 1) =

λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q1
(
u+ 1

2 , v + 1
)

−
λ

(
u+ 1

2 ,v+ 1
2

)
A(u,v+1)

Ω
(
u+ 1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
,

we conclude that

α =
λ−2

(
u− 1

2 , v + 1
2

)
− λ2

(
u+ 1

2 , v + 1
2

)
λ
(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

) .

Similarly we have[
ξ−1
(
u, v + 1

2

)
, q1

(
u+ 1

2 , v
)
, ξo

(
u− 1

2 , v + 1
2

)]
=

−βλ
(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

)
.

It is only necessary to replace ξo
(
u− 1

2 , v + 1
2

)
again to conclude that

β =
λ2
(
u+ 1

2 , v + 1
2

)
A(u, v + 1)− A(u, v)

λ
(
u+ 1

2 , v + 1
2

)
λ
(
u− 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

)
Ω
(
u− 1

2 , v + 1
2

) .
The coefficients of ξ−2

(
u+ 1

2 , v
)
can be found in the same way. �

Remark.
Note that the above equations can be rewritten by considering any vertex
q(u ± 1, v) or q(u, v ± 1) and their respective plane by using ξ+ instead of
ξ− when necessary. For example, by considering the plane determined in the
vertex q(u, v + 1), the first equation would be written as

ξ+
1

(
u, v + 1

2

)
=

λ−2
(
u+ 1

2 ,v+ 1
2

)
−λ2
(
u−1

2 ,v+ 1
2

)
λ−1
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q1
(
u+ 1

2 , v + 1
)

+
A(u,v+1)−λ−2

(
u+ 1

2 ,v+ 1
2

)
A(u,v)

λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
.
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3.7.1
Compatibility equations

The compatibility equations can be obtained by comparing as q112 and
q121 as the mixed second derivatives of ξ.

Observe that q112
(
u, v + 1

2

)
= q11(u, v + 1) − q11(u, v). On one hand we

have

q11(u, v+1) =
1−

λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)  q1
(
u+ 1

2 , v + 1
)

+
λ

(
u+ 1

2 ,v+ 1
2

)
A(u,v+1)

Ω
(
u+ 1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
and

q11(u, v) =
1−

λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)  q1
(
u+ 1

2 , v
)

+
λ−1
(
u+ 1

2 ,v+ 1
2

)
A(u,v+1)

Ω
(
u+ 1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
.

But
q1
(
u+ 1

2 , v + 1
)

= q1
(
u+ 1

2 , v
)

+ q12
(
u+ 1

2 , v + 1
2

)

= q1
(
u+ 1

2 , v
)

+ λ−1
(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

)
ξe
(
u+ 1

2 , v + 1
2

)
.

So the coefficient of q1
(
u+ 1

2 , v
)
in the expansion of q112

(
u, v + 1

2

)
in

the basis {q1
(
u+ 1

2 , v
)
, q2

(
u, v + 1

2

)
, ξe

(
u+ 1

2 , v + 1
2

)
} is

λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) −
λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) .

On the other hand we can take q11(u, v) in terms of the quadrangle(
u+ 1

2 , v −
1
2

)
:

q11(u, v) =
1−

λ

(
u+ 1

2 ,v−
1
2

)
λ

(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

)  q1
(
u+ 1

2 , v
)

+
λ

(
u+ 1

2 ,v−
1
2

)
A(u,v+1)

Ω
(
u+ 1

2 ,v−
1
2

) q2
(
u, v − 1

2

)
.

We also set

q2
(
u, v − 1

2

)
=

λ−1
(
u+ 1

2 ,v+ 1
2

)
B(u,v+1)

Ω
(
u+ 1

2 ,v+ 1
2

) q1
(
u+ 1

2 , v
)

DBD
PUC-Rio - Certificação Digital Nº 1621857/CA



Chapter 3. Structure of non-degenerate asymptotic nets 56

+
λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
and then the coefficient of q1

(
u+ 1

2 , v
)
in the expansion of q112

(
u, v + 1

2

)
in

the basis {q1
(
u+ 1

2 , v
)
, q2

(
u, v + 1

2

)
, ξe

(
u+ 1

2 , v + 1
2

)
} is now given by

λ

(
u+ 1

2 ,v−
1
2

)
λ

(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

) −
λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)
+
λ−1
(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v−
1
2

)
A(u,v)B(u,v)

Ω
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v−
1
2

) .

Comparing the two found coefficients we come to the first compatibility
equation:

λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) (3.19)

=
λ

(
u+ 1

2 ,v−
1
2

)
λ

(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

) +
λ−1
(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v−
1
2

)
A(u,v)B(u,v)

Ω
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v−
1
2

)
Let us now take a look at the second derivatives of the normal vector

field ξ. Observe that

ξ−1
(
u, v + 1

2

)
− ξ+

1

(
u, v − 1

2

)
= ξ−2

(
u, v + 1

2

)
− ξ+

2

(
u, v − 1

2

)
.

From Proposition (3.7.1) and its remark we know that

ξ−1
(
u, v + 1

2

)
=

λ−2
(
u−1

2 ,v+ 1
2

)
−λ2
(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q1
(
u+ 1

2 , v
)

+
λ2
(
u+ 1

2 ,v+ 1
2

)
A(u,v+1)−A(u,v)

λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
,

ξ+
1

(
u, v − 1

2

)
=

λ−2
(
u+ 1

2 ,v−
1
2

)
−λ2
(
u−1

2 ,v−
1
2

)
λ−1
(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

) q1
(
u+ 1

2 , v
)

+
A(u,v)−λ−2

(
u+ 1

2 ,v−
1
2

)
A(u,v−1)

λ−1
(
u+ 1

2 ,v−
1
2

)
λ−1
(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

) q2
(
u, v − 1

2

)
,

ξ−2
(
u+ 1

2 , v
)

=
λ2
(
u+ 1

2 ,v+ 1
2

)
B(u,v+1)−B(u,v)

λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v−
1
2

) q1
(
u+ 1

2 , v
)
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+
λ−2
(
u+ 1

2 ,v−
1
2

)
−λ2
(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
and

ξ−2
(
u− 1

2 , v
)

=
B(u,v)−λ−2

(
u−1

2 ,v+ 1
2

)
B(u−1,v)

λ

(
u−1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v−
1
2

) q1
(
u− 1

2 , v
)

+
λ−2
(
u−1

2 ,v−
1
2

)
−λ2
(
u−1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
.

Moreover, Proposition (3.17) gives us

q1(u− 1
2 , v) =

λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q1
(
u+ 1

2 , v
)

−
λ−1
(
u+ 1

2 ,v+ 1
2

)
A(u,v)

Ω
(
u+ 1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
and

q2
(
u, v − 1

2

)
=

λ−1
(
u+ 1

2 ,v+ 1
2

)
B(u,v+1)

Ω
(
u+ 1

2 ,v+ 1
2

) q1
(
u+ 1

2 , v
)

+
λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q2
(
u, v + 1

2

)
.

If we compare the coefficients of q1
(
u+ 1

2 , v
)
, we obtain the second

compatibility equation:

λ−2
(
u−1

2 ,v+ 1
2

)
−λ2
(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) −
λ−2
(
u+ 1

2 ,v−
1
2

)
−λ2
(
u−1

2 ,v−
1
2

)
λ−1
(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

) (3.20)

+
λ−1
(
u+ 1

2 ,v+ 1
2

)
B(u,v)

Ω
(
u+ 1

2 ,v+ 1
2

) ·
A(u,v)−λ−2

(
u+ 1

2 ,v−
1
2

)
A(u,v−1)

λ−1
(
u+ 1

2 ,v−
1
2

)
λ−1
(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

)
=

λ2
(
u+ 1

2 ,v+ 1
2

)
B(u+1,v)−B(u,v)

λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v−
1
2

)
−
λ−1
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) · B(u,v)−λ−2
(
u−1

2 ,v+ 1
2

)
B(u−1,v)

λ−1
(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v−
1
2

)
Similarly, the third compatibility equation can be obtained by comparing

the coefficients of q2
(
u, v + 1

2

)
:
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λ−2
(
u+ 1

2 ,v−
1
2

)
−λ2
(
u+ 1

2 ,v+ 1
2

)
λ

(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) −
λ−2
(
u−1

2 ,v−
1
2

)
−λ2
(
u−1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

) (3.21)

+
λ−1
(
u+ 1

2 ,v+ 1
2

)
A(u,v)

Ω
(
u+ 1

2 ,v+ 1
2

) ·
B(u,v)−λ−2

(
u−1

2 ,v+ 1
2

)
B(u−1,v)

λ−1
(
u−1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v−
1
2

)
=

λ2
(
u+ 1

2 ,v+ 1
2

)
A(u,v+1)−A(u,v)

λ

(
u+ 1

2 ,v+ 1
2

)
λ

(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
−
λ−1
(
u+ 1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) · A(u,v)−λ−2
(
u+ 1

2 ,v−
1
2

)
A(u,v−1)

λ−1
(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v−
1
2

)

Theorem 3.7.2 Given functions Ω, λ, A and B satisfying the compatibility
equations (3.19), (3.20) and (3.21), there exists an asymptotic net q satisfying
Gauss equations (3.7.1). Moreover, two asymptotic nets with the same Ω, λ,
A and B are affine equivalent.

Proof.
We begin by choosing four points q(0, 0), q(1, 0), q(0, 1) and q(1, 1) satistying

[q(1, 0)− q(0, 0), q(0, 1)− q(0, 0), q(1, 1)− q(1, 0)] = Ω2
(

1
2 ,

1
2

)
.

These four points are determined up to an affine transformation of R3.
From a quadrangle

(
u− 1

2 , v −
1
2

)
it is possible to extend the defi-

nition of q to the quadrangles
(
u+ 1

2 , v −
1
2

)
and

(
u− 1

2 , v + 1
2

)
by using

equations (3.17). From this point one can calculate both normal vectors
ξe(o)

(
u+ 1

2 , v −
1
2

)
and ξe(o)

(
u− 1

2 , v + 1
2

)
. Furthermore, they satisfy Gauss

equations (3.7.1) and the first compatibility equation determine the coherence
of those extensions.

Then one can extend the definition of q to the quadrangle
(
u+ 1

2 , v + 1
2

)
in two different ways: from

(
u+ 1

2 , v −
1
2

)
and

(
u− 1

2 , v + 1
2

)
. We just need to

be sure that both extensions lead to the same result, and for this purpose we
have to verify that both affine normals ξe(o)

(
u+ 1

2 , v + 1
2

)
are the same, which

reduces to verify that ξ±12(u, v) = ξ±21(u, v). But this is assured by second and
third compatibility equations. �
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4
Discrete indefinite improper affine spheres

In this chapter one can find two different approaches for improper affine
spheres. In the first one, ruled improper affine spheres are the subject and a
discrete genuine version of the Theorem (2.7.4) is given, based on a discrete
centre-chord construction. In the second one, it is proposed a study about
the singularities of discrete indefinite improper affine spheres, with original
definitions and criteria to decide the nature of the singularity.

4.1
Ruled nets

Ruled nets are defined in the same way as in smooth case, that is, in
at least one of the coordinates direction, u-curves or v-curves are all straight
lines. If this happens for both parameters, the net is called double ruled.

Lemma 4.1.1 Let q : Z2 −→ R3 be an asymptotic net. Then the net q is ruled
if and only if A(u, v) = 0 or B(u, v) = 0 for all (u, v) ∈ Z2.

Proof.
Note that B(u, v) = 0,∀(u, v) ∈ Z2 if and only if

B(u, v) =
[
q2
(
u, v − 1

2

)
, q2

(
u, v + 1

2

)
, ξ+

(
u+ 1

2 , v + 1
2

)]
= 0,

equivalently

[
q2
(
u, v − 1

2

)
, q2

(
u, v + 1

2

)
, q12

(
u+ 1

2 , v + 1
2

)]
= 0,

which means that q2
(
u, v − 1

2

)
is in the space spanned by q2

(
u, v + 1

2

)
and

q12
(
u+ 1

2 , v + 1
2

)
.

Moreover, by the asymptotic net definition q2
(
u, v − 1

2

)
is also in the

space spanned by q1
(
u+ 1

2 , v
)
and q2

(
u, v + 1

2

)
.

Since these two spaces are flat our first assumption is true if and only
if q2

(
u, v − 1

2

)
is in the same direction of q2

(
u, v + 1

2

)
. Since u and v are

arbitrary, for u fixed q2
(
u, v + 1

2

)
are in the same direction for all v ∈ Z, that

is, the net is ruled. �
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Remark
Note that A = 0 or B = 0 determine if u-curves or v-curves are straight lines,
respectively. If both A and B are null, then the net q is double ruled.

4.2
Centre-chord construction

We have done the centre-chord construction for the smooth case in
Chapter 2. Now we propose the same construction for the discrete case, that
is, we start from two discrete planar curves and construct a net.

Consider α : I −→ R2 and β : J −→ R2, where I, J ⊂ Z; x(u, v) =
α(u) + β(v) and y(u, v) = β(v)− α(u), where [α1(u+ 1

2), β2(v + 1
2)] 6= 0.

Define a function z : I × J −→ R such that

z1(u+ 1
2 , v) = [x1(u+ 1

2 , v), y(u, v)],

z2(u, v + 1
2) = [x2(u, v + 1

2), y(u, v)].

Then
z1(u+ 1

2 , v) = [α1(u+ 1
2), y(u, v)],

z2(u, v + 1
2) = [β2(v + 1

2), y(u, v)].

In order to be sure that there is such a function let us calculate and
compare the mixed second derivatives of z:

z12(u+ 1
2 , v + 1

2) = [α1(u+ 1
2), β2(v + 1

2)] = z21(u+ 1
2 , v + 1

2).

Let us define a net

q(u, v) = (x(u, v), z(u, v)).

Then

q1(u+ 1
2 , v) = (α1(u+ 1

2), [α1(u+ 1
2), y(u, v)]),

q2(u, v + 1
2) = (β2(v + 1

2), [β2(v + 1
2), y(u, v)]),

q12(u+ 1
2 , v + 1

2) = (0, [α1(u+ 1
2), β2(v + 1

2)]),

q11(u, v) = (α11(u), [α11(u), y(u, v)]),

q22(u, v) = (β22(v), [β22(v), y(u, v)]).

Since [α1(u + 1
2), β2(v + 1

2)] 6= 0, we can write α11 and β22 as a linear
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combination of α1 and β2 as

α11(u) = a(u, v)α1(u+ 1
2) + b(u, v)β2(v + 1

2)

β22(v) = c(u, v)α1(u+ 1
2) + d(u, v)β2(v + 1

2)

for some functions a, b, c, d. So we have

q11(u, v)(u) = a(u, v)q1(u+ 1
2 , v) + b(u, v)q2(u, v + 1

2)

q22(u, v)(v) = c(u, v)q1(u+ 1
2 , v) + d(u, v)q2(u, v + 1

2)

q12(u+ 1
2 , v + 1

2) = [α1(u+ 1
2), β2(v + 1

2)]ξ

where ξ = (0, 0, 1). This means that q(u, v) is asymptotically parameterized
and an improper affine sphere.

The cubic form is given by

A = [q1(u− 1
2 , v), q1(u+ 1

2 , v), ξ] = [α1(u− 1
2), α1(u+ 1

2)],

B = [q2(u, v − 1
2), q2(u, v + 1

2)ξ] = [β2(v − 1
2), β2(v + 1

2)].

Since α and β are planar curves, q is ruled if and only if α or β is a
straight line.

4.2.1
Discrete generalized area distance

In the smooth case we have seen that the centre-chord construction leads
to the generalized area distance map. The same can be made in the discrete
case, as we shall see.

Definition 4.2.1 The map q : I × J −→ R3 given by

q(u, u) −→ (x(u, v), z(u, v)),

where x and z are the maps defined in the centre-chord construction, is called
the discrete generalized area distance of the pair of discrete planar curves
(α(u), β(v)).

Note that the area A(u, v) of the region limited by the curves α, β and
the segments α(0)β(0) and α(u)β(v), can be expressed as a sum of areas of
triangles, as shown if Figure (4.1).
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Then A1(u + 1
2 , v) = A(u + 1, v) − A(u, v) is equal to the area of the

triangle formed by α1(u+ 1
2) and β(v), that is,

A1(u+ 1
2 , v) = 1

2
[
α1(u+ 1

2), β(v)− α(u)
]

= 1
2z1(u+ 1

2 , v).

Similarly,

A2(u, v + 1
2) = 1

2
[
β2(v + 1

2), β(v)− α(u)
]

= 1
2z2(u, v + 1

2),

although this one does not correspond to Figure (4.1).
Then, up to a constant, z is equal to the double area.

Figure 4.1: Discrete generalized area distance.

Remark.
In the smooth case z is half the area. This did not take place here because
in discrete centre-chord construction we chose to let the half out, i.e., we set
up x(u, v) = α(u) + β(v) and y(u, v) = β(v) − α(u), instead of x(u, v) =
1
2(α(u) + β(v)) and y(u, v) = 1

2(β(v)− α(u)). This difference does not change
any result of this chapter and we will take the half when it is convenient.

Proposition 4.2.2 If q : I × J −→ R3 is an improper affine sphere, then it
can be parameterized by centre-chord construction, that is,

q(u, v) = (x(u, v), z(u, v)),

where x(u, v) = α(u)+β(v), z1(u+ 1
2 , v) = [x1(u+ 1

2 , v), y(u, v)], z2(u, v+ 1
2) =

[x2(u, v + 1
2), y(u, v)] and y(u, v) = β(v)− α(u), for some curves α : I −→ R2

and β : J −→ R2, where I, J ⊂ Z. In another words, the map q is the discrete
generalized area distance of the pair of curves (α, β).
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Proof.
Since q is an improper affine sphere, let us assume that ξ = (0, 0, 1) and let us
take an asymptotic parameterization

q(u, v) = (x(u, v), z(u, v)),

where x(u, v) is the projection in the plane {(1, 0, 0), (0, 1, 0)}.
Note that

q12(u+ 1
2 , v + 1

2) = Ω12(u+ 1
2 , v + 1

2) ξ,

but we also can write it as

q12(u+ 1
2 , v + 1

2) = (x12(u+ 1
2 , v + 1

2), z12(u+ 1
2 , v + 1

2)),

which means that
x12(u+ 1

2 , v + 1
2) = 0

and
z12(u+ 1

2 , v + 1
2)) = Ω12(u+ 1

2 , v + 1
2).

Thus,
x(u, v) = α(u) + β(v),

for some curves α : I −→ R2 and β : J −→ R2, where I, J ⊂ Z.
Moreover,

q1(u+ 1
2 , v) =

(
α1(u+ 1

2), z1(u+ 1
2)
)
,

q2(u, v + 1
2) =

(
β2(v + 1

2), z2(v + 1
2)
)
,

q12(u+ 1
2 , v + 1

2) =
(
0, Ω12(u+ 1

2 , v + 1
2)
)
.

Hence
Ω2 = [q1, q2, q12] = Ω

[
α1(u+ 1

2), β2(v + 1
2)
]

and
Ω12(u+ 1

2 , v + 1
2) =

[
α1(u+ 1

2), β2(v + 1
2)
]
> 0.

Thereafter,
z12(u+ 1

2 , v + 1
2)) =

[
α1(u+ 1

2), β2(v + 1
2)
]
,
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and by discrete integration we have

z1(u+ 1
2 , v) =

[
α1(u+ 1

2), β(v) + f(u)
]
,

z2(u, v + 1
2) =

[
α(u) + g(v), β2(v + 1

2)
]
,

for some curves f and g.
If we set

z1(u+ 1
2 , v) =

[
x1(u+ 1

2), y(u, v)
]
,

z2(u, v + 1
2) =

[
x2(v + 1

2), y(u, v)
]
,

we find y(u, v) = β(v)− α(u) and the proof is completed. �

Theorem 4.2.3 If q is a discrete ruled improper affine sphere, then it is of
the form

z = xy + ϕ(x),

for some real function ϕ.

Proof.
Since the net is as improper affine sphere we can take the above centre-chord
parameterization. Furthermore, the ruled hypothesis allow us to take α or β
as a straight line. So w.l.g. let us set

α(u) = (α1(u), α2(u)) and β = (0, v),

where α1, α2 : Z −→ R and α1(u+ 1
2) 6= 0.

Then

x(u, v) = (α1(u), α2(u) + v),

y(u, v) = (−α1(u), v − α2(u)),
z1(u+ 1

2 , v) = vα1
1(u+ 1

2)− α1
1(u+ 1

2)α2(u) + α1(u)α2
1(u+ 1

2),

z2(u, v + 1
2) = α1(u+ 1

2).

By discrete integration on v we have z(u, v) = vα1(u + 1
2) + g(u) for

some real function g. But the first derivative of z on u must agree with the
expression of z1, so

g1(u+ 1
2) = −[α1(u+ 1

2), α(u)]

and
q(u, v) =

(
α1(u), α2(u) + v, vα1(u) + g(u)

)
,

which means that z = xy + ϕ(x), where ϕ(x) = g(u)− α1(u)α2(u). �
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4.3
Discrete improper indefinite affine spheres with singularities

Our intention here is to give a proper definition to singularities for
discrete improper indefinite affine spheres and how to classify them. From
Proposition (4.2.2) they can be parameterized by centre-chord construction,
so we will make use of this tool.

Consider two discrete planar curves α : I −→ R2 and β : J −→ R2,
where I, J ⊂ Z, such that:

• For any point α(u) and any triplet β(v−1), β(v), β(v+ 1), we have that
β(v) is within the interior of the angle β(v − 1)α(u)β(v + 1), supposed
less than 180◦.

• For any point β(v) and any triplet α(u−1), α(u), α(u+1), we have that
α(u) is within the interior of the angle α(u − 1)β(v)α(u + 1), supposed
less than 180◦. See Figure (4.2).

Figure 4.2: Restriction to the pair of planar curves (α, β).

This restriction is made to simplify our first model of singularities, but
we think that is something to be explored in future works about the subject.

4.3.1
Singularity set

The singular set defined in the smooth case gives us a set of all midpoints
of chords connecting α and β with parallel tangents. So it is essential to set
up a definition for parallelism in the context of discrete planar curves α and β.
First of all, it is not possible to take parallel derivatives, because it would imply
in two parallel edges and this is something that we must avoid, since it would
generate a planar quadrangle in the net, which is degenerate by definition.
Then we will make a definition of parallelism by a relation between a point of
one curve and an edge of the other, as follow.
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Definition 4.3.1 Given a pair of planar curves (α, β) we say that:

• β2(v+ 1
2) is parallel to α at α(u) if α(u−1) and α(u+1) are in the same

half-plane determined by the straight line given by α(u) + rβ2(v+ 1
2), for

r ∈ R. See Figure (4.3);

• Similarly, α1(u + 1
2) is parallel to β at β(v) if β(v − 1) and β(v + 1)

are in the same half-plane determined by the straight line given by
β(v) + rα1(u+ 1

2), for r ∈ R.

Figure 4.3: Parallelism between β2(v + 1
2) and α(u). Note that the green dotted

line is parallel to the derivative of β (an edge of the curve β) and let α(u − 1) and
α(u+ 1) in the same half-plane.

Definition 4.3.2 The singularity set S of q consists of all pairs (u, v) for
which α1(u + 1

2) is parallel to β at β(v) or β2(v + 1
2) is parallel to α at α(u),

accordingly to Definition (4.3.1).

Figure 4.4: The DMPTL curve is formed by the midsegments of the triangles formed
in points of tangency. In this example, FG represents an edge of the DMPTL of the
pair of curves (α, β).
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Geometrically, the set x(S) consists of all midpoints of chords connecting
α(u) and β(v) where one of two kinds of tangents occurs. This set generate
a discrete curve that shall be called discrete midpoint parallel tangent locus
(DMPTL) or discrete area evolute of the pair of curves (α, β). Observe that
the parallelism at one point is associated to a triangle formed by the point of
one curve and the derivative of the other, as we can see on Figure (4.4). So the
DMPTL curve will be formed by the midsegments of each of these triangles.

Let us study the behaviour of the DMPTL curve and how to construct
it pass by pass. Suppose that α1(u + 1

2) is parallel to β(v) for some u and v,
then we have formed a triangle and its midsegment is part of the DMPTL.
The next pass is to decide what adjacent triangle we should choose and that
is going to be clear after next Proposition.

Proposition 4.3.3 Let A, B and C be three successive points on α; D, E and
F successive points on β, such that AB is parallel to E. Then only one of the
three follow statements is true:

• BC is parallel to E, as in Figure (4.6 - left);

• EF is parallel to B, as in Figure (4.6 - right);

• DE is parallel to B, as in Figure (4.7).

Proof.
Let us fix A, B, D, E and F such that the hypothesis keep valid and see what
can happens to the point C.

Figure 4.5: The three possible configurations for the vertex C.

Let r and s be straight lines passing by B and parallel to the edges
DE and EF , respectively. They divide the plane in four open regions and the
point C can be only in three of them. In fact, it can not be at the same region
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wherein is the point A, because the restriction made to the curves α and β at
the beginning of the section. Also, since there is no parallelism between edges
of α and β, C can not be either in the straight line r or in s.

From the parallelism between AB and E, one know that A and E are in
two different of those regions. Let us call region A that one wherein is the point
A, and similarly for region E. The other two will be regions A and E, where
the points A and E are symmetric to A and E with respect to B, respectively.

Suppose that C is in the region A (C2 in Figure 4.5). So neither s nor
r let A and C in the same half-plane, which means that the parallel to BC
passing by E do that with D and F . Then BC is parallel to E and we get the
first item of the Proposition.

Let us know suppose that C is in the region E (C1 in Figure 4.5). So s
let A and C in the same half-plane, which means that EF is parallel to B and
we get the second item of the Proposition.

Finally, C can be in the region E (C3 in Figure 4.5). So r let A and C
in the same half-plane, which means that DE is parallel to B and we get the
third item of the Proposition.

There is no other possibility to the point C and the parallelism is uniquely
determined by the chosen region for C, so the proof is completed. �

Figures (4.6) and (4.7) show that in all of three options we have
constructed the DMPTL given by MNP composed by two midsegments. Now
we can extend this construction for all points of both curves α and β, from the
points M and P .

Figure 4.6: On the left, the first possibility for the construction of the DMPTL,
where BC is parallel to E. On the right, the second one, where EF is parallel to B.
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Observe that in first and second possibilities, the orientation of u or v
did not change, whilst in the third one, the orientation of v has changed. This
point of orientation change at the curve DMPTL shall be called a cusp. From
the restriction made on the pair of curves α and β we have that a cusp occurs
at N when M and P are in the same half-plane determined by BE, as in
Figure (4.7).

Figure 4.7: Third possibility for the construction of the DMPTL, where DE is
parallel to B.

4.3.2
Relation between the DMPTL and the singularities at the net

From the curve DMPTL associated to the pair of curves (α, β) we want
to define and classify the singularities in the discrete generalized area distance,
i.e., the indefinite improper affine sphere.

Let us begin by the edges of the DMPTL, which will be correspondent
to regular points in the smooth case, that is, they will generate the cuspidal
edges of the net.

Figure 4.8: The edge of the DMPTL let the vertices of the two adjacent quadrilat-
erals in the same half-plane.
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Consider a pair of curves (α, β) such that β2(v + 1
2) is parallel to α(u),

as in Figure (4.8). The segment FG (in red) is an edge of the DMPTL and
generate the edge q2

(
u, v + 1

2

)
of the net q. Note that in the plane, the straight

line that contains FG let H, I, J and K in the same half-plane, that is,
x(u−1, v), x(u−1, v+ 1), x(u+ 1, v) and x(u+ 1, v+ 1), respectively, because
the parallelism with the edges of α (blue segments). This means that the same
happens at the net in both star planes1 at q(u, v) and q(u, v + 1), since points
x are projections of the net q in the plane of α and β. Then we come to the
definition of a cuspidal edge.

Definition 4.3.4 Let q : I × J ⊂ Z2 −→ R3 be an indefinite improper affine
sphere. Then the edge q1

(
u+ 1

2 , v
)
is called a cuspidal edge if the straight line

q(u, v) + rq1
(
u+ 1

2 , v
)
, with r ∈ R, in the star plane at q(u, v), let q(u, v − 1)

and q(u, v + 1) in the same half-plane. Similarly, the edge q2
(
u, v + 1

2

)
is a

cuspidal edge if the straight line q(u, v) + sq2
(
u, v + 1

2

)
, with s ∈ R, in the

star plane at q(u, v), let q(u−1, v) and q(u+1, v) in the same half-plane. This
can be seen in Figure (4.9).

Figure 4.9: A cuspidal edge (in red) in the net q from two different viewpoints. It
is easy to see that in the star plane at q(u, v) the pair of vertices q(u − 1, v) and
q(u+1, v) is in the same half-plane, and the same happens to the pair q(u−1, v+1)
and q(u+ 1, v + 1) in the star plane at q(u, v + 1).

Proposition 4.3.5 Let q : I × J ⊂ Z2 −→ R3 be an indefinite improper
affine sphere. Then the edge q1

(
u+ 1

2 , v
)
is a cuspidal one if and only if the

star plane at q(u, v) let q(u+1, v−1) and q(u+1, v+1) in the same half-space
determined by it. Similarly, the edge q2

(
u, v + 1

2

)
is cuspidal if and only if the

star plane at q(u, v) let q(u−1, v+1) and q(u+1, v+1) in the same half-space
determined by it. See Figure (4.9).

1Since at each vertex the four edges are planar, from now on, the plane that contains
these edges will be referred to as the star plane at the vertex.
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Proof.
Consider two planes Π1 and Π2 that intersect each other at the straight line
γ. Then two points A and B are in the same half-plane of Π1 determined by γ
if and only if they are in the same half-space determined by Π2. Applying this
to the star planes at q(u, v) and q(u+ 1, v), the proposition follows. �

Before we discuss about a cusp of the DMPTL, let us make some notes
about possible configurations for star planes in the net.

Definition 4.3.6 A star plane at q(u, v) is called typical if the four points
q(u+1, v), q(u, v+1), q(u−1, v) and q(u, v−1) appear in this order, clockwise
or counter clockwise, with respect to q(u, v). And it shall be called atypical
otherwise. See Figure (4.10).

Figure 4.10: Both figures on the left show two different possibilities of a typical
star, whilst both on the right show two possible configurations for an atypical one.
The colors identify the u and v directions.

A typical star can have two different configurations that are of interest,
as shown in Figure (4.10). If there is or not two different directions that form
an angle which measure is greater than 180◦ at q(u, v).

If all pairs of two different directions form angles with less than 180◦ (first
star on Figure 4.10), then there is no cuspidal edges at the star. Otherwise,
there is a pair of cuspidal edges and they are those forming the bigger angle
(second star on Figure 4.10). In fact, since both of them let the three other
vertices at the same half-plane, they are cuspidal edges.

An atypical star has always a pair of cuspidal edges, which can be either
in same or different directions. The first case can be seen in Figure (4.10) on
the third star, since both green directions let both blue ones in the same half-
plane. We could have the inverse situation where both blue directions would let
both green ones in the same half-plane, and they would be the pair of cuspidal
edges. If these two cases do not happen, then we have the second possibility
(last star on Figure 4.10), since one of green directions let both blue ones in the
same half-plane and a similar split up happens when one of the blue directions
is taken.
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We have defined a cusp in the DMPTL by the change of direction and
orientation. That lead us to the definition of a swallowtail point in the net.

Definition 4.3.7 Let q : I × J ⊂ Z2 −→ R3 be an indefinite improper affine
sphere. Then the vertex q(u, v) is called a swallowtail point if two adjacent
edges in different directions are cuspidal and the star plane at q(u, v) is an
atypical one. See last star on Figure (4.10).

Theorem 4.3.8 Consider two discrete planar curves α : I −→ R2 and
β : J −→ R2, where I, J ⊂ Z, and let q : I × J −→ R3 be the discrete
generalized area distance given by

q(u, v) = (x(u, v), z(u, v)),

where x(u, v) = α(u) + β(v), y(u, v) = β(v) − α(u), z1(u + 1
2 , v) = [x1(u +

1
2 , v), y(u, v)] and z2(u, v + 1

2) = [x2(u, v + 1
2), y(u, v)]. Then

(i) An edge of the net q is cuspidal if and only if it is associated to an edge
of the planar curve DMPTL.

(ii) A vertex of the net q is a swallowtail point if and only if it is associated
to a cusp of the planar curve DMPTL.

Proof.
Observe that item (i) follows directly from the construction of the definition
of a cuspidal edge (4.3.4). Then we have to think only about the item (ii).

Figure 4.11: A cusp in the DMPTL forms an atypical star.

A cusp x(u, v) in the DMPTL is a point of direction change as one can
see in Figure (4.11) and it generates the vertex q(u, v) of the net. Moreover, it
connects two edges of the DMPTL that generate two adjacent cuspidal edges
in different directions in the star plane at q(u, v). So it is only necessary to
verify that this star is an atypical one.
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Note that the edge x(u, v)x(u, v − 1) let x(u − 1, v) and x(u + 1, v) in
the same half-plane, whilst the edge x(u, v)x(u− 1, v) does the same with the
points x(u, v−1) and x(u, v+1). That means these five points form an atypical
star in the plane that contains the DMPTL and this plane is a projection of
the star plane at q(u, v). Thus we come to the expected conclusion. �

Let us remember that a swallowtail point in the smooth case always
imply in self-intersection, so we expect that behaviour in discrete case too.

Proposition 4.3.9 Let q : I×J ⊂ Z2 −→ R3 be an indefinite improper affine
sphere. If q(u, v) is a swallowtail point, then there is a pair of quadrangles,
with q(u, v) as a vertex, that intersect each other.

Proof.
Let q(u, v) be a swallowtail point in an indefinite improper affine sphere, with
adjacent cuspidal edges q1

(
u− 1

2 , v
)

and q2
(
u, v − 1

2

)
as shown in Figure

(4.12).

Figure 4.12: Swallowtail point.

Since q1
(
u− 1

2 , v
)
is a cuspidal edge, by Proposition (4.3.5) the star plane

at q(u, v), let us call it Π, leaves q(u− 1, v− 1) and q(u− 1, v+ 1) in the same
half-space. Similarly, q2

(
u, v − 1

2

)
is a cuspidal edge and Π let q(u− 1, v − 1)

and q(u+ 1, v− 1) in the same half-space (see Figure 4.12). Thus we conclude
that all three vertices q(u− 1, v − 1), q(u− 1, v + 1) and q(u+ 1, v − 1) are in
the same half-space determined by Π.

Consider the star planes at q(u+1, v−1) and q(u−1, v+1). They intersect
the plane Π in two straight lines, q(u, v−1)q(u+1, v) and q(u−1, v), q(u, v+1),
respectively. But these straight lines intersect each other since the star is
atypical. Then, the planes must also intersect each other, which means that
this happens to que quadrangles

(
u+ 1

2 , v −
1
2

)
and

(
u− 1

2 , v + 1
2

)
. �
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Remark.
This proof also shows that intersecting quadrangles are either both even or
both odd.

Figure 4.13: A swallowtail at q(u, v) with two adjacent cuspidal edges (in red).
Note that blue and green edges are v and u-directions, respectively. The star plane
at q(u, v − 1) helps to see the intersection between two quadrangles.

After all we can summarize the relation between the planar curve
DMPTL given by the pair of curves α and β, and the asymptotic net at a
star plane wherein there are two cuspidal edges and eventually one swallowtail
point, in three configurations. Let us see each of them separately.

Fisrt configuration: This is the first possibility considered by Proposition
(4.3.3). In DMPTL we have a pair of edges in the same direction (Figure 4.14
- left) and in an atypical star a pair of cuspidal edges (Figure 4.14 - right).
The full net is shown in Figure (4.16 - left).

Figure 4.14: A pair of edges in DMPTL (left) that produces a pair of cuspidal edges
in the same direction u− u in an atypical star (right), when there is no swallowtail
point.
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Figure 4.15: A pair of edges in DMPTL (left) that produces a pair of cuspidal edges
in different directions u − v in a typical star (right), when there is no swallowtail
point.

Second configuration: This represents the second possibility shown in
Proposition (4.3.3). One can see the DMPTL with a pair of edges in different
directions (Figure 4.15 - left) and a typical star with a pair of cuspidal edges
(Figure 4.15 - right). The full net can be seen in Figure (4.16 - right).

Figure 4.16: Discrete generalized area distance of the pair (α, β) with an atypical
(left) and a typical (right) star, both of them with a pair of cuspidal edges with no
swallowtail, representing first and second configurations, respectively.

Third configuration: As the other two, it represents the third possibility of
Proposition (4.3.3). It is possile to visualize the DMPTL with a pair of edges
in different directions (Figure 4.17 - left) and an atypical star where there is
a swallowtail point between a pair of cuspidal edges (Figure 4.17 - right). The
full net is drawn in Figure (4.18).
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Figure 4.17: A cusp in DMPTL (left) that produces a swallowtail point in an
atypical star (right) with a pair of cuspidal edges in different directions u− v.

Figure 4.18: Discrete generalized area distance of the pair (α, β) with an atypical
star, with a pair of cuspidal edges and a swallowtail point.

4.3.3
Example of a discrete improper affine sphere with singularities

Let us construct here an example of a discrete improper affine sphere with
singularities from two curves α and β making use of centre-chord construction.

Consider the curves given by

α(u) =
(
u, 5− (u− 2)2

8

)
and β(v) = (v2 − 2, v).

We show in Figure (4.19) the MPTL in the smooth case aiming to
compare it with the DMPTL of Figure (4.20). Note that both of them are
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formed by two connected components and only one presents a cusp, which
means that both surfaces (smooth and discrete) generated by the pair (α, β)
contain two cuspidal curves and a unique swallowtail point.

Figure 4.19: MPTL composed by two curves (in red) associated to the pair of curves
(α, β) of the example.

Figure 4.20: DMPTL composed by two discrete curves (in red) associated to the
pair of discrete curves (α, β) of the example.

As we can see, Figure (4.21) shows the discrete improper affine sphere
constructed from the pair (α, β) and its easy to see one cuspidal curve
composed only by cuspidal edges and another one with a swallowtail point,
both of them mimic the DMPTL.
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Figure 4.21: A discrete improper affine sphere with singularities and its upper view.

This net is given by q(u, v) = (x(u, v), z(u, v)), where

x(u, v) = 1
2

(
u+ v2 − 2, 5 + v − (u− 2)2

8

)
,

z(u, v) = 1
4

(
−15u

4 − 3v + uv − uv2

8 + u2v2

8 − 3u(u− 1)
16 − u(u2 − 1)

12

+v
2

2 − 4v(v − 1) + v(v − 1)(v − 2)
3

)
.
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5
Asymptotic nets with constant affine mean curvature

In this chapter we present a definition for nets with constant affine
mean curvature from the discussion made in Section 3.2 about hyperboloid
interpolators under the perspective of Lie quadrics in the smooth case. After
that we show that discrete minimal surfaces and affine spheres have this
property, as we expect from the smooth theory.

5.1
Constant affine mean curvature

In the smooth theory the mean curvature is an extrinsic measure that
in a way describes how the surface is embedded in a certain space. At a point
of the surface, it is the average of the principal curvatures. So if we think in
the discrete world, what could the mean curvature be at a point in a net?
Especially in an asymptotic net, such a concept does not have any sense at a
vertex, since each of them has four coplanar edges. Then we have to see the
mean curvature here as a general property of the net.

We discussed in Section 3.2 how to interpolate the quadrilaterals of the
net by pieces of hyperboloids in such a way that two adjacent interpolators
have the same tangent plane at the common edge. Our intention is to define
the idea of affine mean curvature from the hyperboloid interpolators and, as
it was said by Käferböck and Pottman [18], these interpolators can be seen
as discrete Lie quadrics. So from now on, we will refer to the interpolator a
discrete Lie quadric.

We have proved that at each quadrangle there is a relation between the
parameter λ, the metric Ω and the affine mean curvature −2c of the discrete
Lie quadric, and we can chose c such that

1− λ2
(
u+ 1

2 , v + 1
2

)
= a λ

(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

)
. (5.1)

This means that the discrete Lie quadric has constant affine mean
curvature −2a through all the net and we can state the following definition.
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Definition 5.1.1 An asymptotic net has constant affine mean curvature if
each discrete Lie quadric has the same constant affine mean curvature. Such a
net shall be referred as an asymptotic net with CAMC and will satisfy equation
(5.1).

Note that in each quadrangle there is a 1-parameter family of discrete Lie
quadrics, differently from its smooth counterpart, where at each point there
is a unique Lie quadric. So we stated here that when we can chose for each
quadrangle a Lie quadric with the same constant affine mean curvature, the
net shall have constant affine mean curvature.

Lemma 5.1.2 An asymptotic net can not have CAMC for two different values
of a.

Proof.
We already know that equation (5.1) holds for some map λ : (Z2)∗ −→ R+.
Let us suppose that it also holds for ρλ, with ρ > 0. Then both equations are
valid

1− λ2 = aλΩ and 1− ρ2λ2 = aρλΩ.

It follows that

1− ρ2λ2 = ρ(1− λ2) ⇔ (ρ− 1)
(
ρ− 1

λ2

)
= 0,

which means ρ = 1.
Then we conclude that under a black-white re-scaling on λ, the equation

(5.1) will not hold anymore. �

This Lemma establishes that asymptotic nets with CAMC are well
defined and combined with Lemma (3.2.2), we have a fixed conormal vector
field for the net, since any black-white re-scaling on ν automatically changes
λ.

The first and obvious example of asymptotic nets with CAMC is the
discrete hyperboloid as seen in Section 3.3. We will see ahead that both classes
of affine minimal surfaces and proper affine spheres have CAMC too.

5.2
Discrete affine minimal surfaces

Asymptotic nets that are affine minimal were well treated in Craizer,
Anciaux and Lewiner [10], and they were followed by Käferböck and Pottmann
[18], Huhnen-Venedey and Rörig [16], among others. Let us see the first work
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here as a particular case of nets with CAMC when λ is identically 1, from
the perspective of the theory developed in chapter 3. Moreover, it is given a
geometric characterization for these nets, in a different way of that given by
Käferböck and Pottmann [18], that agrees with Blaschke characterization in
Theorem (2.3.2).

Firstly we need to establish the conditions when a net is minimal. Note
that Definition (2.3.1) about smooth minimal surfaces says that νuv = 0 means
minimality. So in the discrete case we shall call discrete affine minimal surface
a net in which ν12 = 0. This is proved by Craizer, Anciaux and Lewiner [10],
i.e., they prove that a discrete minimal surface is actually the critical set of a
variational area functional, which is equivalent to ν12 = 0.

Proposition 5.2.1 A discrete affine surface is minimal if and only if the map
λ : (Z2)∗ → R+ associated to the conormal vector field ν is identically 1.

Proof.
Equation (3.3) says that

λ2
(
u+ 1

2 , v + 1
2

)
(ν(u, v) + ν(u+ 1, v + 1)) = ν(u, v + 1) + ν(u+ 1, v).

Then

ν12(u+ 1
2 , v + 1

2) = ν2(u+ 1, v + 1
2)− ν2(u, v + 1

2)
= ν(u+ 1, v + 1)− ν(u+ 1, v)− ν(u, v + 1) + ν(u, v)
= (1− λ2)(ν(u, v) + ν(u+ 1, v + 1))

Since the surface is minimal if and only if ν12 = 0, thus it happens if and
only if λ = 1. �

Observe that Proposition (5.2.1) and Definition (5.1.1) declare that a
discrete minimal surface has CAMC equal to zero, as expected.

Now we can see all the theory developed in chapter 3, with λ = 1, to be
sure that it agrees with the work of Craizer, Anciaux and Lewiner [10]. Let us
bring here the important results.

From Lemma (3.2.2) we can write the affine metric only in terms of the
conormal vector field.

Lemma 5.2.2 In terms of conormals, the affine metric is given by

Ω
(
u+ 1

2 , v + 1
2

)
= [ν(u, v), ν(u, v + 1), ν(u+ 1, v)].

DBD
PUC-Rio - Certificação Digital Nº 1621857/CA



Chapter 5. Asymptotic nets with constant affine mean curvature 82

One can also write

ν(u, v) = 1
Ω
(
u+ 1

2 , v + 1
2

) (q1(u+ 1
2 , v)× q2(u, v + 1

2)
)
.

This Lemma with the Remarks of Lemma (3.2.2) agrees with Theorem
1.1 from Craizer, Anciaux and Lewiner [10].

The affine normal map becomes simpler in the case where λ = 1, since
ξe = ξo. Then the affine normal vector becomes

ξ
(
u+ 1

2 , v + 1
2

)
=
q12

(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

) (5.2)

as in the above mentioned reference.

5.2.1
Structural equations for discrete minimal surfaces

The coefficients of the cubic form keep the same, only without difference
between ξe and ξo:

A(u, v) =
[
q1
(
u− 1

2 , v
)
, q1

(
u+ 1

2 , v
)
, ξ
(
u± 1

2 , v ±
1
2

)]
and

B(u, v) =
[
q2
(
u, v − 1

2

)
, q2

(
u, v + 1

2

)
, ξ
(
u± 1

2 , v ±
1
2

)]
.

Then, from Proposition (3.6.1) we can write knew structural equations.

Proposition 5.2.3 The structural equations of the discrete affine minimal
surface are given by

q11(u, v) =
Ω1
(
u, v + 1

2

)
Ω
(
u+ 1

2 , v + 1
2

) q1
(
u+ 1

2 , v
)

+ A(u, v)
Ω
(
u+ 1

2 , v + 1
2

) q2
(
u, v + 1

2

)

q22(u, v) = B(u, v)
Ω
(
u+ 1

2 , v + 1
2

) q1
(
u+ 1

2 , v
)

+
Ω2
(
u+ 1

2 , v
)

Ω
(
u+ 1

2 , v + 1
2

) q2
(
u, v + 1

2

)

Note that these equations are exactly equal to the structural equations
(2.1) in the smooth case, only in a discrete version.

Let us see now the Gauss equations for the derivatives of ξ, from
Proposition (3.7.1).
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Proposition 5.2.4 Gauss equations for the derivatives of the normal vector
field in a discrete minimal surface are given by

ξ1
(
u, v + 1

2

)
=

A2
(
u, v + 1

2

)
Ω
(
u+ 1

2 , v + 1
2

)
Ω
(
u− 1

2 , v + 1
2

) q2
(
u, v + 1

2

)

and

ξ2
(
u+ 1

2 , v
)

=
B1
(
u+ 1

2 , v
)

Ω
(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v −
1
2

) q1
(
u+ 1

2 , v
)

Corollary 5.2.5 A discrete affine minimal surface is an improper affine
sphere if and only if A = A(u) and B = B(v).

5.2.2
Compatibility equations for discrete minimal surfaces

We are now able to write the three compatibility equations for discrete
affine minimal surfaces. From the first of them (3.19) we get:

Ω
(
u− 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

) =
Ω
(
u− 1

2 , v −
1
2

)
Ω
(
u+ 1

2 , v −
1
2

) + A(u, v)B(u, v)
Ω
(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v −
1
2

)
which is equivalent to
A(u, v)B(u, v) =

Ω
(
u− 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v −
1
2

)
− Ω

(
u+ 1

2 , v + 1
2

)
Ω
(
u− 1

2 , v −
1
2

)

Let us make some changes in order to have an equation similar to the
smooth one. Note that

Ω1
(
u, v + 1

2

)
= Ω

(
u+ 1

2 , v + 1
2

)
− Ω

(
u− 1

2 , v + 1
2

)
,

Ω2
(
u+ 1

2 , v
)

= Ω
(
u+ 1

2 , v + 1
2

)
− Ω

(
u+ 1

2 , v −
1
2

)
and

Ω12(u, v) = Ω(u+ 1
2 , v+ 1

2)−Ω(u− 1
2 , v+ 1

2)−Ω(u+ 1
2 , v−

1
2) + Ω(u− 1

2 , v−
1
2).

Then the first compatibility equation for a discrete minimal surface can
be written as

A(u, v)B(u, v) = Ω1
(
u, v + 1

2

)
Ω2
(
u+ 1

2 , v
)
− Ω

(
u+ 1

2 , v + 1
2

)
Ω12(u, v),
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which is a straight discrete version of the equation (2.3) when H = 0.
The second compatibility equation (3.20) for an asymptotic net with

λ = 1 gives us

B(u, v)A2
(
u, v − 1

2

)
Ω
(
u− 1

2 , v −
1
2

)
Ω
(
u+ 1

2 , v −
1
2

) =
B1
(
u+ 1

2 , v
)

Ω
(
u+ 1

2 , v −
1
2

) − B1
(
u− 1

2 , v
)

Ω
(
u− 1

2 , v −
1
2

)
or
B(u, v)A2

(
u, v − 1

2

)
=

Ω
(
u− 1

2 , v −
1
2

)
B1
(
u+ 1

2 , v
)
− Ω

(
u+ 1

2 , v −
1
2

)
B1
(
u− 1

2 , v
)
.

From the third compatibility equation (3.21) we get

A(u, v)B1
(
u− 1

2 , v
)

Ω
(
u− 1

2 , v + 1
2

)
Ω
(
u− 1

2 , v −
1
2

) =
A2
(
u, v + 1

2

)
Ω
(
u− 1

2 , v + 1
2

) − A2
(
u, v − 1

2

)
Ω
(
u− 1

2 , v −
1
2

) .
or
A(u, v)B1

(
u− 1

2 , v
)

=

Ω
(
u− 1

2 , v −
1
2

)
A2
(
u, v + 1

2

)
− Ω

(
u− 1

2 , v + 1
2

)
A2
(
u, v − 1

2

)
.

Note that both second and third compatibility equations are similar to
equations (2.4) when H = 0. Moreover, all of them appear in the mentioned
paper.

5.2.3
Geometric characterization of discrete minimal surfaces

Käferböck and Pottmann [18] deal with the extension of asymptotic nets
to smooth surfaces by gluing bilinear patches – discrete Lie quadrics – into the
skew quadrilaterals. The crucial difference here is that they obtained smooth
surfaces as a piecewise smooth discretization of surfaces parameterized along
asymptotic lines, inasmuch we have made a juxtaposition in order to have
only coincident tangent planes at the edges, including possible singularities.
Our construction is more general, since it applies to all asymptotic nets with
CAMC, whilst they are interested just in minimal asymptotic nets.

They proved that the only quadrilateral net which can be extended by
discrete Lie quadrics to overall continuously differentiable surfaces are those
asymptotic nets in which the edges that join two neighboring net polylines
are parallel to a plane, as a discrete counterpart to Blaschke characterization.
Moreover, these surfaces can be seen as discrete affine minimal surfaces with
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negative curvature.
We are going to show here this Blaschke characterization from the fact

that our gluing discrete Lie quadrics need to have only coincident planes at
the edges. Although this result is not totally original, we think it is relevant
from the perspective of the developed theory that has been proposed along
this work.

Let us remember some equations that we found in Section 3.2.2 about
the juxtaposition of two adjacent discrete Lie quadrics of quadrangles ABDC
and ACFE such that A = (0, 0, 0), B = (1, 0, 0), C = (0, 1, 0), D = (1, 1, 1),
E = (x1, y1, 0) and F = (x2, y2, x2), for some real numbers x1, x2, y1 and y2.
See Figure (5.2).

We have seen that there is a strict relation between the two parameters
associated to a quadrangle, λ (from the conormal vector field) and c (from the
discrete Lie quadric), and this relation is different in two adjacent quadrangles,
as shown by the following equations

λ =
√

1− c and µ = 1√
1− b

, (5.3)

where they are associated to the quadrangles ABDC and ACFE, respectively.
We also found a relation between all the parameters and the edges

λµ =
√

1− a√
1− b

=
√
x2√
x1
. (5.4)

After Proposition 5.2.1, the surface is minimal if and only if λ = µ = 1.
So from relations (5.3) and (5.4), the surface is minimal if and only if x1 = x2

and a = b = 0. That said we have almost proved the follow theorem.

Theorem 5.2.6 [Geometric characterization of discrete minimal sur-
faces]
Let q : Z2 → R3 be an asymptotic net and L

c

(
u+ 1

2 ,v+ 1
2

) the discrete Lie quadric

for the quadrangle
(
u+ 1

2 , v + 1
2

)
. The surface represented by q is affine mini-

mal if and only if the follow conditions are valid:

(i) The edges of a vertical strip, i.e., q1
(
u+ 1

2 , v
)
with u fixed, are parallel

to one plane. The same property is satisfied by the edges of a horizontal
strip q2

(
u, v + 1

2

)
, with v fixed,.

(ii) Each discrete Lie quadric L
c

(
u+ 1

2 ,v+ 1
2

) is a hyperbolic paraboloid, i.e., for

all u and v, c
(
u+ 1

2 , v + 1
2

)
= 0.
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Proof
At any vertex of an asymptotic net the four adjacent edges are coplanar,
consequently

q2
(
u, v + 1

2

)
= x1 q2

(
u, v − 1

2

)
+ y1 q1

(
u+ 1

2 , v
)
,

for some real constants x1 and y1. But q(u + 1, v + 1) − q(u, v) is
not in the same plane, so we can write it in terms of the basis{
q2
(
u, v − 1

2

)
, q1

(
u+ 1

2 , v
)
, ν(u, v)

}
with real coefficients x2, y2 and z:

q(u+ 1, v + 1)− q(u, v) = x2 q2
(
u, v − 1

2

)
+ y2 q1

(
u+ 1

2 , v
)

+ z ν(u, v)

Figure 5.1: Two adjacent quadrangles of a vertical strip in an asymptotic net.

We can apply an affine transformation over the net such that Figure 5.1
is transformed in Figure 5.2, i.e.,

q(u, v) 7→ A = (0, 0, 0) q(u+ 1, v) 7→ C = (0, 1, 0)
q(u, v − 1) 7→ B = (1, 0, 0) q(u+ 1, v − 1) 7→ D = (1, 1, 1)
q(u, v + 1) 7→ E = (x1, y1, 0) q(u+ 1, v + 1) 7→ F = (x2, y2, x2)

From this point we can turn to the preceding calculations and translate
those conclusions for the q net:

(i) In the cartesian coordinates, x1 = x2 means that the edges of a vertical
strip are parallel to the plane x = 0. So in the q net the edges of a
vertical strip q1

(
u+ 1

2 , v
)
, with u fixed, are parallel to the plane spanned

by q1
(
u+ 1

2 , v
)
and ν(u, v). And we come to the same conclusion for the

horizontal strips.
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Figure 5.2: A convenient choice of quadrangles of an asymptotic net in cartesian
coordinates.

(ii) From c = 0 we know that the discrete Lie quadric is a hyperbolic
paraboloid meaning that each quadrangle is interpolated by such a
surface. �

5.2.4
Examples of discrete minimal surfaces

Example 1.
Consider the conormal vector field given by ν(u, v) = (u, v, u2 + v2), the same
that was taken in Example 1 of a smooth minimal surface in Section 2.3.

Note that

ν(u, v) + ν(u+ 1, v + 1) =
(
2u+ 1, 2v + 1, u2 + v2 + (u+ 1)2 + (v + 1)2

)
= ν(u, v + 1) + ν(u+ 1, v),

which means that λ is identically 1 and the asymptotic net q associated to ν
is minimal.

By a discrete integration we get

q(u, v) =
(
u2v − v(v2 − 1)

3 , uv2 − u(u2 − 1)
3 , −uv

)

and the net is shown in Figure (5.3 - left).
It is important to remark that the vertices of the discrete surface are not

points of the smooth one since the equations that define them are different,
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Figure 5.3: Discrete minimal surface of Example 1 on the left and its smooth sister
on the right.

but the graphs seem almost the same. Another great difference is the integer
domain in the discrete case.

Example 2.
Let us make use of an Exemple of Section 2.3. again, by considering the
conormal vector field given by ν(u, v) =

(
−v2

2 ,
v−u

2 , 1
)
. This is a especial one

because it was constructed from the centre-chord theory, which also means
that it is an improper affine sphere.

Note that

ν(u, v) + ν(u+ 1, v + 1) =
(
−v

2

2 −
(v + 1)2

2 , v − u, 2
)

= ν(u, v + 1) + ν(u+ 1, v),

which means that λ is identically 1 and the asymptotic net q associated to ν
is minimal, as expected.

Figure 5.4: Discrete minimal surface of Example 2 on the left and its smooth sister
on the right.
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By a discrete integration we get

q(u, v) =
(
u+ v

2 ,
v2

2 ,
uv2

4 −
v(v2 − 1)

12

)

and the net is shown in Figure (5.4 - left).
The remark made in Example 1 keeps valid here.

5.3
Discrete proper affine spheres

According to Bobenko and Schief [2], a pair (q, ν) is called a discrete
affine sphere if q and ν satisfy Lelieuvre’s equations (3.2) and its dual:

ν(u+ 1, v)− ν(u, v) = 2a q(u+ 1, v)× q(u, v),
ν(u, v + 1)− ν(u, v) = 2a q(u, v)× q(u, v + 1),

(5.5)

These dual relations say in particular that both nets q and ν are asymptotic and
Moutard at the same time. It seems important to observe that we are choosing
2a instead of 1, as it was done by Bobenko, who normalized it, because this
will be proven convenient to our future conclusions.

In the smooth case we have made an observation about the difference
between proper and improper affine spheres. The same is true for discrete
affine spheres, that is, we shall call discrete proper affine sphere when the dual
relation (5.5) is satisfied.

Lemma 5.3.1 The duality relations implies that

(i) q(u, v) ·ν(u, v) = q(u+1, v) ·ν(u, v) = q(u, v+1) ·ν(u, v) = 1
2a , for some

constant a > 0.

(ii) 1 + 2a q(u + 1, v) · ν(u, v + 1) = 1 + 2a q(u, v + 1) · ν(u + 1, v) =
2λ2

(
u+ 1

2 , v + 1
2

)
.

(iii) λ2
(
u+ 1

2 , v + 1
2

)
(q(u, v) + q(u+ 1, v + 1)) = q(u+ 1, v) + q(u, v + 1).

Proof.

(i) From equations (3.2) we have (q(u + 1, v) − q(u, v)) · ν(u, v) = 0 and
(q(u, v + 1)− q(u, v)) · ν(u, v) = 0. Then

q(u, v) · ν(u, v) = q(u+ 1, v) · ν(u, v) = q(u, v + 1) · ν(u, v) = 1
2a.

(ii) Let us do the inner product of q(u, v + 1) with both members of the
equation (3.3)
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λ2
(
u+ 1

2 , v + 1
2

)
(ν(u, v) + ν(u+ 1, v + 1)) · q(u, v + 1)

= ν(u, v + 1) + ν(u+ 1, v) · q(u, v + 1)
and use (i). Hence

λ2
(
u+ 1

2 , v + 1
2

) ( 1
2a + 1

2a

)
= 1

2a + ν(u, v + 1) · q(u, v + 1)

then
2λ2

(
u+ 1

2 , v + 1
2

)
= 1 + 2a ν(u, v + 1) · q(u, v + 1).

Similarly,

2λ2
(
u+ 1

2 , v + 1
2

)
= 1 + 2a ν(u, v + 1) · q(u+ 1, v).

(iii) Since q is also a Moutard net, q(u, v) + q(u+ 1, v + 1) and q(u+ 1, v) +
q(u, v + 1) are in the same direction. From (i) and (ii) we conclude that

λ2
(
u+ 1

2 , v + 1
2

)
(q(u, v)+q(u+1, v+1)) = q(u, v+1)+q(u+1, v). �

Lemma 5.3.2 Similarly to Lemma (3.2.2) the net q(u, v) can be writen
directly in terms of the conormal vector field as

q(u, v) = −
λ−1

(
u+ 1

2 , v + 1
2

)
2aΩ

(
u+ 1

2 , v + 1
2

) ν1
(
u+ 1

2 , v
)
× ν2

(
u, v + 1

2

)
.

Proof.
From Lemma (3.2.2) we know that

Ω = λ−1 [ν(u, v), ν(u, v + 1), ν(u+ 1, v)].

The dual equations (5.5) give us
(ν(u+ 1, v)− ν(u, v))× (ν(u, v + 1)− ν(u, v)) =

− 4a2 [q(u, v), q(u+ 1, v), q(u, v + 1)]q(u, v),

and thus
−[ν(u, v), ν(u, v + 1), ν(u+ 1, v)] =

− 4a2 [q(u, v), q(u+ 1, v), q(u, v + 1)]q(u, v) · ν(u, v),

which by Lemma (5.3.1)(i) we can write

λΩ = 2a [q(u, v), q(u+ 1, v), q(u, v + 1)].

DBD
PUC-Rio - Certificação Digital Nº 1621857/CA



Chapter 5. Asymptotic nets with constant affine mean curvature 91

Therefore

ν1
(
u+ 1

2 , v
)
×ν2

(
u, v + 1

2

)
= −2aλΩ q(u, v). �

This Lemma can be seen as the dual of Lemma (3.2.2) and looking at its
Remark, in the same way, it is possible to get the equations with respect to
the other three quadrangles:

q(u, v) = −
λ
(
u− 1

2 , v + 1
2

)
2aΩ

(
u− 1

2 , v + 1
2

) ν1
(
u− 1

2 , v
)
× ν2

(
u, v + 1

2

)
,

q(u, v) = −
λ−1

(
u− 1

2 , v −
1
2

)
2aΩ

(
u− 1

2 , v −
1
2

) ν1
(
u− 1

2 , v
)
× ν2

(
u, v − 1

2

)
,

q(u, v) = −
λ
(
u+ 1

2 , v −
1
2

)
2aΩ

(
u+ 1

2 , v −
1
2

) ν1
(
u+ 1

2 , v
)
× ν2

(
u, v − 1

2

)
.

Proposition 5.3.3 Any affine sphere has CAMC, i.e., it holds

1− λ2 = aλΩ.

Proof.
From Lemma (5.3.1)(iii) it follows that

q(u+ 1, v + 1) = λ−2 (q(u, v + 1) + q(u+ 1, v))− q(u, v)
= λ−2 {(q(u, v + 1)− q(u, v)) + (q(u+ 1, v)− q(u, v))}

+ 2λ−2q(u, v)− q(u, v).
Moreover,

q(u+ 1, v) = (q(u+ 1, v))− q(u, v)) + q(u, v).

Then
Ω2 = [q(u+ 1, v))− q(u, v), q(u, v + 1)− q(u, v), q(u+ 1, v + 1)− q(u+ 1, v)]

= [q(u+ 1, v))− q(u, v), q(u, v + 1)− q(u, v), 2(λ−2 − 1)q(u, v)]

= 2(1− λ2)
λ2 [q(u, v), q(u+ 1, v), q(u, v + 1)].

Since
λΩ = 2a [q(u, v), q(u+ 1, v), q(u, v + 1)],

we come to

1− λ2 = aλΩ. �
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Remark.
Note that this fact is in according to the smooth counterpart and it is the
reason we have taken the constant 2a in the formulae (5.5).

5.3.1
Examples of discrete proper affine spheres

Unfortunately it is very difficult to explicit affine spheres by formulas,
since they are solutions of PDEs. So the only class of proper affine spheres
in asymptotic parameters that we know is the 1-parameter family of discrete
hyperboloids (Section 3.3) taken as samples of the basic ones

q(u, v) = 1
1− auv (u, v, uv)

discussed in Section 2.4 for a 6= 0, since when a = 0 we have an improper affine
sphere.
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6
Discrete Cayley surfaces

Section 2.7 was dedicated to the characterization of smooth Cayley
surfaces, accordingly to Nomizu and Sasaki [31]. We make in this chapter
a discrete approach to these surfaces, with a similar characterization, which
gives us a very good example for our previous discussion on discrete surfaces
with CAMC.

6.1
Defining discrete Cayley surfaces

We have found only one reference to a discrete Cayley surface in Mat-
suura and Urakawa [26], wherein it appears as an example of discrete improper
affine spheres. However, the given parameterization does not agree with our
construction.

Our first step is to find a solution for the discrete version of the Gauss
equations of the Cayley surface given in asymptotic coordinates by (2.15). In
the smooth case we have

φuu = (0, 1, u) = φv,

φvv = (0, 0, 0),
φuv = (0, 0, 1) = ξ.

Then the discrete version can be written in the following form

q11(u, v) = q2(u, v + 1
2) = (0, 1, u),

q22(u, v) = (0, 0, 0),

q12(u+ 1
2 , v + 1

2) = (0, 0, 1).

We shall assume as initial conditions q(0, 0) = (0, 0, 0), q(0, 1) = (0, 1, 0) and
q(1, 0) = (1, 0, 0). So the solution shall be

q(u, v) =
(
u, v + u(u− 1)

2 , uv + u(u2 − 1)
6

)
, (u, v) ∈ Z2. (6.1)
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As we always remark in discrete examples, this is not a sample of the
smooth Cayley surface, since the equations are different. But they are quite
the same and satisfy the same PDE system.

Figure 6.1: Discrete Cayley surface with its affine normal vector.

Thus we conclude that this is the discrete version of Cayley surface
and, as in the smooth case, one can easily get Ω

(
u+ 1

2 , v + 1
2

)
= 1 and

ξ
(
u+ 1

2 , v + 1
2

)
= (0, 0, 1). Moreover λ

(
u+ 1

2 , v + 1
2

)
= 1, which means that

the surface is minimal and H = 0.
Let us calculate the coefficients A and B:

q1
(
u− 1

2 , v
)

=
(

1, u− 1, v + u(u− 1)
2

)

q1
(
u+ 1

2 , v
)

=
(

1, u, v + u(u+ 1)
2

)

q2
(
u, v − 1

2

)
= q2

(
u, v + 1

2

)
= (0, 1, u)

Then

A(u, v) =
[
q1
(
u− 1

2 , v
)
, q1

(
u+ 1

2 , v
)
, ξ
(
u+ 1

2 , v + 1
2

)]
= 1

and
B(u, v) =

[
q2
(
u, v − 1

2

)
, q2

(
u, v + 1

2

)
, ξ
(
u+ 1

2 , v + 1
2

)]
= 0,

in line with its smooth counterpart.
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6.2
Characterization of discrete Cayley surfaces

Considering Cayley surfaces from equation (6.1) and all structural ele-
ments shown above we can give them a good characterization, which is in cor-
respondence with the Theorem (2.7.5), since the equations that appear here
are the discrete counterpart for those in the proof of the smooth one.

Theorem 6.2.1 [Characterization of discrete Cayley surfaces] Let q :
Z2 −→ R3 be an asymptotic net with CAMC. Then the net q is affinely
congruent to a discrete Cayley surface if and only if it satisfies the following
relations:

(i) A1
(
u+ 1

2 , v
)

= 3A(u, v)
1−

λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)  ;

(ii) A2
(
u, v + 1

2

)
= B1

(
u+ 1

2 , v
)

= 0;

(iii) B2
(
u, v + 1

2

)
= 3B(u, v)

1−
λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

)  ;

(iv) A(u, v)B(u, v)
Ω
(
u+ 1

2 , v + 1
2

) = 0 or simply either A(u, v) 6= 0 or B(u, v) 6= 0.

Proof.
As we have seen the net given by the equation (6.1) satisfies all the four
relations in the theorem since A and Ω are constant and B = 0. It is only
necessary to prove the converse.

Let us suppose that A(u, v) 6= 0 and from relation (iv) we have B(u, v) =
0, which means that q is ruled by Lemma (4.1.1). Since B = 0 the relation (iii)
vanishes and does not give any information.

From relation (ii) we get

A(u, v + 1) = A(u, v),∀v ∈ Z,

i.e., A is a function of u.
From relation (i) and A(u, v) 6= 0 we can write

λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) = f(u, v) 6= 0,

for some map f : Z2 −→ R and f 6= 0 since λ 6= 0 and Ω 6= 0.
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Then, from Lemma (3.2.2) and its remark, it follows that

λ−1(u− 1
2 , v + 1

2)Ω(u− 1
2 , v + 1

2)ν(u, v) = f(u, v)[q1(u+ 1
2 , v)× q2(u, v + 1

2)],

and similarly,

λ(u+ 1
2 , v+ 1

2)Ω(u+ 1
2 , v+ 1

2)ν(u, v+1) = 1
f(u, v) [q1(u+ 1

2 , v+1)×q2(u, v+ 1
2)].

Hence

λ−1(u− 1
2 , v+ 1

2)λ(u+ 1
2 , v+ 1

2)Ω(u− 1
2 , v+ 1

2)Ω(u+ 1
2 , v+ 1

2)(ν(u, v)×ν(u, v+1)) =

[q2(u, v + 1
2), q1(u+ 1

2 , v), q1(u+ 1
2 , v + 1)]q2(u, v + 1

2)
or equivalently,

[q1(u+ 1
2 , v), q2(u, v + 1

2), q1(u+ 1
2 , v + 1)] =

λ−1(u− 1
2 , v + 1

2)λ(u+ 1
2 , v + 1

2)Ω(u− 1
2 , v + 1

2)Ω(u+ 1
2 , v + 1

2),
which means that

Ω(u+ 1
2 , v + 1

2) = λ−1(u− 1
2 , v + 1

2)λ(u+ 1
2 , v + 1

2)Ω(u− 1
2 , v + 1

2). (6.2)

Observe that the first compatibility equation (3.19) results in

λ−1
(
u+ 1

2 ,v+ 1
2

)
λ−1
(
u−1

2 ,v+ 1
2

)
Ω
(
u−1

2 ,v+ 1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) =
λ

(
u+ 1

2 ,v−
1
2

)
λ

(
u−1

2 ,v−
1
2

)
Ω
(
u−1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v−
1
2

) .

So by use of equation (6.2) it becomes

λ−2
(
u+ 1

2 , v + 1
2

)
= λ2

(
u− 1

2 , v −
1
2

)
. (6.3)

Let us now make use of the fact that the net has CAMC, in other words,
there is a constant a such that in every quadrangle the equation (3.9) holds

1− λ2 = aλΩ,

and we can write

λ−2
(
u+ 1

2 , v + 1
2

)
= 1 + aλ−1

(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

)
and

λ2
(
u− 1

2 , v −
1
2

)
= 1− aλ

(
u− 1

2 , v −
1
2

)
Ω
(
u− 1

2 , v −
1
2

)
.
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Since this two expressions are equal, we have

a
(
λ
(
u− 1

2 , v −
1
2

)
Ω
(
u− 1

2 , v −
1
2

)
+ λ−1

(
u+ 1

2 , v + 1
2

)
Ω
(
u+ 1

2 , v + 1
2

))
= 0,

but this term in parenthesis is always positive, which means that a = 0 and
the net is minimal. Thus we conclude that λ is identically 1.

Thereafter, equation (6.2) states that Ω(u+ 1
2 , v + 1

2) = Ω(u− 1
2 , v + 1

2),
in other words, Ω depends only on v, and by replacing these two pieces of
information in relation (i), we get

A1(u, v) = 0,

and therefore A is constant.
Note that B = 0 = B(u) and λ = 1, so the Corollary (5.2.5) ensures that

q is an improper affine sphere, i.e., ξ is constant.
Then the structural equations (3.17) become

q11(u, v) = A

Ω
(
u+ 1

2 ,v+ 1
2

)q2(u, v + 1
2),

q22(u, v) =
Ω
(
u+ 1

2 ,v+ 1
2

)
−Ω
(
u+ 1

2 ,v−
1
2

)
Ω
(
u+ 1

2 ,v+ 1
2

) q2(u, v + 1
2),

q12(u, v) = Ω
(
u+ 1

2 , v + 1
2

)
ξ.

The last equation can be integrated in u such that (remember that Ω is
a function of v and ξ is constant)

q2

(
u, v + 1

2

)
= uΩ

(
u+ 1

2 , v + 1
2

)
ξ + C,

where C is a constant vector in R3. Hence

q22(u, v) = u
(
Ω
(
u+ 1

2 , v + 1
2

)
− Ω

(
u+ 1

2 , v −
1
2

))
ξ.

Observe that q22(u, v) has been written in two different ways, as a
multiple of q2 and ξ, but these two vectors are always linearly independent, so
we conclude that

Ω
(
u+ 1

2 , v + 1
2

)
= Ω

(
u+ 1

2 , v −
1
2

)
.

which means that Ω is constant.
Without loss of generality, let us suppose that A = 1, Ω = 1 and
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ξ = (0, 0, 1). Then the structural equations can be written as

q11(u, v) = q2(u, v + 1
2)

q22(u, v) = 0
q12(u, v) = ξ

Let us take as initial conditions q(0, 0) = (0, 0, 0), q(0, 1) = (0, 1, 0) and
q(1, 0) = (1, 0, 0) as above.

From q22 and q12 we get q2(u, v + 1
2) = uξ + C, where C is a constant

vector in R3. Then C = q2(0, 1
2) = q(0, 1)− q(0, 0) = (0, 1, 0) and we can write

q2(u, v + 1
2) = (0, 1, u).

By discrete integration on v we come to

q(u, v) = uvξ + vC +D(u),

where D(u) is a vector function of u.
Hence D11(u) = q11(u, v) = (0, 1, u) or

D(u− 1) +D(u+ 1)− 2D(u) = (0, 1, u).

Then,

D(u+ 1)−D(u) =
(

1, 1, u(u+ 1)
2

)
,

and we come to

D(u) =
(
u,
u(u− 1)

2 ,
u(u+ 1)(u− 1)

6

)
.

Thereafter

q(u, v) =
(
u, v + u(u− 1)

2 , uv + u(u2 − 1)
6

)
,

which by equation (6.1) is the discrete Cayley surface. �
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7
Final Considerations

After all this work I believe I have made a good contribution to Math-
ematics research, in particular to Discrete Affine Geometry, a growing field
along the last two decades. I have proposed an original definition for discrete
singularities for indefinite improper affine spheres, although I did not show
as many examples as I would like to. I also proposed the first definition for
asymptotic nets with constant affine mean curvature, which was called CAMC.
Maybe there is another way to give a definition for that, but what was made
here seems quite solid, since it encompasses the set of indefinite affine spheres
and the set of minimal surfaces, which agrees with the smooth case. In order
to complete this work with a great result, I gave a discrete version for Cayley
surfaces and I proved how to characterize them from the fact that they are
asymptotic nets with CAMC.

Since the lack of references about discrete singularities, I hope that what
was proposed in Chapter 4 will be a kick-off for researchers in this brand new
area. For example, in the smooth case a swallowtail point use to be isolated,
as we have seen in the example of Subsection 4.3.3, but in several attempts
with discrete examples, it seems that sometimes there is a pair of adjacent
swallowtail points close to the correspondent one of the smooth case. This
can be seen by the construction of the DMPTL curve. Since the discrete
improper affine sphere is not a sample of its smooth counterpart, I believe
that this happens because it is highly improbable that a discrete swallowtail
point overlaps the smooth one. I also have the impression that these pairs
disappear insofar the discrete net coincides with the smooth one and the
DMPTL converges to the MPTL.

All figures in this work were made in Geogebra and Matlab. The first
one is an easy tool for planar constructions and it proved to be a good choice
for examples of small nets, mainly when I wanted to bring up a particular
characteristic, like the case in Chapter 4 in which I needed to show the possible
cases of singularities. The Matlab was used to construct all surfaces, since is an
excellent software to do everything, if you have programming skills, what is not
my case by the way. That said, I could not construct small nets in Matlab with
a good understand of what was going on close to a swallowtail point, mainly
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when there were several of them. Therefore I believe that someone with this
kind of skill will aggregate great data to the study of discrete singularities.

Another observation about discrete singularities is that we have defined
them only for indefinite improper affine spheres, since the centre-chord con-
struction proved to be the perfect tool for the task. But what about general
asymptotic nets? Is it possible that the definitions work in the same way or at
least similarly? Maybe they work for a bigger set of asymptotic nets, like those
with CAMC. These are only a couple of questions that can be made, which
shows that there is plenty of work to do about the subject from now on.

Lie quadrics have an important role in the characterization of surfaces
with constant affine mean curvature, especially in the case of minimal surfaces,
so it is natural to extend them to the discrete case, as it was mentioned by
Käferböck and Pottman [18] and we stablished in Section 5.1. But one can
question if it is not artificial since there is a 1-parameter family of discrete
Lie quadrics for each quadrangle of the net. I believe that the characterization
for the smooth case by Lie quadrics is a strong argument for the definition
we have made and the uniqueness proved in Lemma (5.1.2) states that nets
with CAMC were well defined, and we proved that discrete minimal surfaces
and affine spheres are examples of them. Are there other classes of nets with
CAMC? Is it possible to classify all the nets with CAMC, if we know them?
So much to do.

Among all the nets with CAMC we chose to work with discrete Cayley
surfaces and I am very happy with the result. But I would like to leave here a
little note about one of the hypothesis used in Theorem (6.2.1). In the smooth
case, Martinéz and Milán [25] proved that AB = 0 implies that the surface is
locally ruled, which is very easy to see, but this is completely different in the
discrete universe, since the continuity is the argument key used in the proof. I
tried very hard to find something similar or a counterexample for asymptotic
nets. Although unsuccessful, my intuition says that it is possible to have some
conclusion in this point.

Another remark about Cayley characterization is the importance of the
CAMC hypothesis. All paths that I tried to follow led me to Rome and in this
case Caesar is called CAMC.
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