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Abstract

Calderano, Pedro Henrique Souza; Carvalho, Marcio da Sil-
veira (Advisor). Breakup of two-layer liquid films. Rio de Ja-
neiro, 2021. 67p. Dissertação de Mestrado – Department of Mecha-
nical Engineering, Pontifical Catholic University of Rio de Janeiro.

Thin liquid sheets are present in a variety of systems and applications.
Here, we are interested in double-layered sheets, which are common in the
curtain coating process. In curtain coating, the liquid falls from a die forming
a thin curtain before wetting the moving substrate. One of the most important
process limits is the curtain breakup, which sets a lower limit for the coating
liquid flow rate. Consequently, this flow rate lower limit defines the feasible
minimum deposited film thickness. Experimental evidence have shown that
using a two-layer curtain, with a viscoelastic thin layer, may delay the curtain
breakup to lower flow ratios. The breakup of two-layer liquid sheets, composed
of a Newtonian and a viscoelastic liquid, is studied by solving the differential
equations that describe the evolution of the liquid sheet configuration until
breakup. The effect of different parameters on the breakup time is determined.
The results show the same behavior observed experimentally, thin viscoelastic
liquid layer delays the breakup, stabilizing the liquid sheet.

Keywords
Double-layered sheets; Curtain coating; Thin-films; Viscoelastic fluid;

Non-newtonian fluid.
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Resumo

Calderano, Pedro Henrique Souza; Carvalho, Marcio da Silveira.
Quebra de um filme de líquido composto por duas camadas.
Rio de Janeiro, 2021. 67p. Dissertação de Mestrado – Departamento
de Mechanical Engineering, Pontifical Catholic University of Rio de
Janeiro.

Filmes finos de líquido estão presentes em uma variedade de sistemas
e aplicações. Estamos interessados em filmes compostos por duas camadas,
que são comuns no processo de revestimento por cortina. No revestimento por
cortina, o líquido cai de uma matriz formando uma cortina formada por um
filme fino antes de molhar o substrato em movimento. Um dos limites mais
importantes do processo é a ruptura da cortina, que define um limite inferior
para a vazão do líquido de revestimento. Consequentemente, este limite inferior
da vazão define a espessura mínima viável do filme depositado. Evidências
experimentais mostraram que o uso de uma cortina compostas por duas
camadas, com uma das camadas sendo mais fina e viscoelástica, pode atrasar a
ruptura da cortina para taxas de fluxo mais baixas. A quebra de filmes líquidos
de duas camadas, compostas por um líquido newtoniano e um viscoelástico,
é estudado por meio da resolução das equações diferenciais que descrevem a
evolução da configuração do filme até seu rompimento. O efeito de diferentes
parâmetros no tempo de ruptura é determinado. Os resultados mostram o
mesmo comportamento observado experimentalmente, a fina camada de líquido
viscoelástico retarda o rompimento, estabilizando o filme líquido.

Palavras-chave
Filmes de duas camadas; Revestimento por cortina; Filmes finos; Fluido

viscoelástico; Fluido não newtoniano.
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1
Introduction

A wide range of products from different industries takes advantage of
liquid coating processes to enhance their functionality and quality. Thin film
layers increase and modify the functionality of a bulk surface or substrate. They
are used to protect surfaces from wear (mechanically functional), improve lu-
bricity (mechanically functional), improve corrosion (chemically functional),
and provide chemical resistance (chemically functional), provide diffusion bar-
rier, optical properties, and many other functions. Although usually thin films
do not affect the bulk properties of the material, they can completely modify
the optical, electrical transport, and thermal properties of a surface, in addi-
tion to providing an enhanced degree of protection as well [1]. For instance,
there are applications of coating technology ranging from biomedical materi-
als to energy efficiency purposes, including laser optics, glazings and mirrors,
thin-film batteries, thin-film fuel cells, semiconductor films, transparent elec-
trical contacts, tribological coatings, and corrosion-resistant coatings. Besides
the current relevance of the coating technologies on improved performance
products, it has great potential to have even broader applications due to its
potential to generate entirely new products and to improve the functionality
of already existing ones [1].

Among the several coating processes, this study will concentrate on the
process known as curtain coating. In curtain coating process, a liquid sheet
is formed as the liquid exits the die and flows downwards in the form of a
liquid curtain, before impinging the moving substrate, as sketched in Figure
1.1. Eventually, small wave-form perturbations will appear on the sheet’s free
surfaces. These disturbances may either evolve by increasing its amplitude until
its size is large enough to breakup the sheet or be dissipated, leading to the
curtain maintenance. The mentioned sheet breakup will lead to a defect in the
fabrication process, which validates the rise of a wish for a better understanding
of this phenomenon. Hence, in this study, we look upon the breakup process
of free films.

DBD
PUC-Rio - Certificação Digital Nº 1912756/CA



Chapter 1. Introduction 15

1.1
Curtain coating process

Curtain coating is a premetered coating process at which the film
thickness is set by the flow rate fed to the coating die and web speed. The
liquid falls from the die forming a liquid curtain, before wetting the moving
web or substrate. From the substrate perspective, it will receive its coating
cover layer as soon as it passes under the curtain. Curtain coating enables
high speed coating because it uses the liquid momentum to assist the wetting
of the substrate, delaying air entrainment.

The coating sheet may be formed by a number of layers depending on
desired product functionality. Hence, the liquid curtain may be formed by
different layers, as illustrated in Figure 1.1. Curtain coating is challenging.
Uniform thin liquid layer is only possible within a limited range of operating
parameters. One important limitation of curtain coating is the liquid curtain
breakup. The thickness range of the liquid curtain is on the micrometers scale.
Then, any perturbation on the sheet surface may lead to the breakup of the
liquid sheet. Therefore, the analysis of the liquid sheet breakup process is
critical in the optimization and design of curtain coating.

substrate
movement
  direction

Figure 1.1: We can perceive in this picture a curtain coating scheme [2]. The
coating liquid is pumped through a die and falls freely, establishing a curtain.
At last, the coating surface reaches the moving substrate. It is noticeable in
this image that the curtain sheet may be composed of multiple layers of fluid.

1.2
Sheet rupture

The evolution of surface configuration on thin fluid films has been a field
of study for different applications such as coatings, adhesives, flotation, and
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Chapter 1. Introduction 16

biological membranes to a host of areas in nanotechnology [3, 4]. Therefore,
thin films have been investigated in a variety of conditions, such as on a
substrate [5], in between substrates [6], and composed of one or more layers
[7].

Here, the focus remains on the investigation of the breakup process of
free films motivated by the curtain coating process. These films are susceptible
to small perturbations on its surface since the interface between the liquid and
the surrounding gas is a deformable boundary [3]. Brown [8] reported that
the stability of a liquid curtain depends on the flow rate of coating material
passing through the slot die. Additionally, he established a limit criteria by
balancing a force proportional to the curtain’s momentum with the surface
tension force. Although some works found this limit accurate [9, 10], it was
shown by different works that this stability criterion is not always accurate
[11, 12].

The industry is pushing the breakup process knowledge further to meet
aspirations of boosting coating speed and reducing the thickness of the liquid
film [13] without hole formation and maintaining uniform thickness. In this
regard, Eurnex and Davis [14] considered the Navier-Stokes equations for free
films to derive its long-wave evolution equation and found a bifurcation point
from where the stability of a curtain may be inferred. The proposed stability
threshold only take into account surface tension and van der Waals forces.
Following this work, Ida and Miksis [15] developed a numerical simulation to
estimate the sheet rupture time, from a small amplitude perturbation to the
sheet pinch-off. Among recent advances, Becerra et al. [16] used evidence from
[17] that the effect of viscous forces may shift the breakup critical conditions to
thinner curtains. Becerra’s work experimentally shows the violation of Brown’s
rule [8] by the manipulation of viscosity using complex fluids. Stable and
thinner liquid curtain is possible when the extensional viscosity effects of the
coating polymer solution are strong.

Marston et al. [18] also presented an experimental investigation on the
breakup of liquid curtains. They explored single and multi-layer sheets. This
work gathers a significant amount of data, from which the authors show
that the sheets formed obey the same rule for minimum flow rate definition.
However, the hysteresis window varies according to the number of layers in the
sheet.

Bazzi et al. [19] showed that the Eurnex and Davis’ [14] stability indicator
is valid not only for Newtonian fluids but also for complex fluids. Besides, the
work concludes that although the viscoelastic forces do not account for deciding
whether or not the curtain is stable, they have a great effect on sheet rupture
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Chapter 1. Introduction 17

dynamics. Viscoelastic forces can significantly delay the breakup moment on
unstable sheets when compared with the breakup time of Newtonian fluids.

Karim et al. [13] experimentally showed that two-layer sheets remained
stable at significantly thinner thicknesses than single-layer sheets. Karim
compared a double-layer curtain composed of a shear-thinning fluid bottom
layer and a viscoelastic fluid top layer to a single-layer curtain constituted by a
shear-thinning layer. The double-layer sheet was up to 60% thinner, depending
on fluid properties. The authors acknowledge the viscoelastic top layer to be
the main factor contributing to the slow down of the perturbation growth and
consequently to the thickness reduction.

In this work, we aim to numerically model the breakup process of double-
layered sheets and determine a relationship between viscosity characteristics
and layer thicknesses and rupture time. The results can be used to design
two layer curtain coating processes that enables the delay of sheet breakup to
thinner curtains, allowing thin coatings.
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2
Mathematical Formulation

This chapter presents the mathematical formulation that describes the
flow in two-layer liquid sheets. Boundary conditions are applied at the interface
between each layer and the surround gas phase and along the interface between
the layers. Figure 2.1 illustrates the flow domain of interest, where each layer
is represented by a different color. The flow is assumed two-dimensional,
isothermal and incompressible.

Figure 2.1: Sketch of the bilayer that composes the coating fluid sheet.
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Chapter 2. Mathematical Formulation 19

2.1
Coordinate system

The sheet is defined by two different layers of fluid forming three surfaces.
One of those surfaces is the interface between both layers. The other two
surfaces represent the boundaries of the liquid sheet.

To develop a mathematical model describing a liquid sheet made of
assembled layers, the thickness dimension is labeled as z. We call the dimension
that passes through the curtain extension as x. The x-axis is defined along
one of the system’s free-surfaces, as sketched in Figure 2.2. The direction
perpendicular to z and x−axis is not considered since the flow is considered
two-dimensional. Figure 2.2 represents the coordinate system described.

x

z

Figure 2.2: Sketch of the bilayer that composes the fluid sheet in a shifted
coordinate system. For mathematical simplicity, the x-axis is defined as one of
the gas-liquid borderlines. Therefore, in this adopted coordinate system, this
border is represented as a flat line. All curvature that was from this gas-liquid
surface is disseminated to the next surfaces.

2.2
Momentum and mass conservation equations

The fluid motion is described by the momentum and mass conservation
equations.

For incompressible flow, the mass conservation equation is written as

∇ · u = 0, (2-1)
where u stands for the velocity vector.
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Chapter 2. Mathematical Formulation 20

Regarding the momentum conservation equation, it is essential to take in
consideration every significant force in the system. As this problem has a thin
dimension in thickness, the interactions between the interfaces represented by
the van der Waals forces become important. It is an attractive force between
the two boundary surfaces of a layer. This force is inversely proportional to
the distance of the surfaces, then its relevance in the force balance increases
as the film thickness reduces. Thereon, the momentum conservation equation
is given by

ρ
D

Dt
u = ∇ ·T +∇Φ, (2-2)

where ρ represents the fluid density, T is the stress tensor, and Φ the van der
Waals potential, which is defined as

Φ = A

h3 , (2-3)
where A is the Hamaker constant, which in this case relates two boundary
sheets through a medium (coating fluid). h represents the layer thickness. As
we have two layers, h is divided into h1 and h2, illustrated in Figure 2.3, which
are respectively the thickness of the bottom layer and the total sheet thickness.
Hence, the Equation (2-3) is written as

Φ1 = A01

h3
1
, (2-4)

for the bottom layer, and for the upper layer we have

Φ2 = A02

(h2 − h1)3 . (2-5)
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Chapter 2. Mathematical Formulation 21

Figure 2.3: Sketch of the layers in a sheet. This image shows both layers and
the layer height definition.

2.3
Constitutive equations

Constitutive equations or fluid models are mathematical statements that
describe how the material deforms. Each model tries to describe the behavior
of a certain class of fluids.

The description of the stress tensor conveniently splits it in a sum of two
separate terms. The first of them is an isotropic part, and the last term is called
extra stress or deviatoric stress tensor τ associated with the fluid deformation.

T = −p1 + τ . (2-6)
The constitutive equations account for the deviatoric part of the stress tensor,
τ , which is the term only affected by fluid deformation.

In this section, we present the constitutive equations used in this work.
Subsection 2.3.1 discusses the Newtonian model, Subsection 2.3.2 the Gener-
alized Newtonian Model (GNM), and Subsection 2.3.3 the Oldroyd-B model
used to describe viscoelastic liquids.

2.3.1
Newtonian fluid

The Newtonian fluid model is the simplest mathematical model to
describe how a fluid deforms when subjected to stress. It is a linear equation
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Chapter 2. Mathematical Formulation 22

in which stress is proportional to the rate of strain. The extra-stress tensor is
written as

τ = µ
(
∇u +∇uT

)
+
(
κ− 2µ

3

)
(∇ · u)1, (2-7)

where µ is the dynamic viscosity, and κ is the bulk viscosity. As we assume fluid
incompressibility, the divergent operator (∇ · u) is null. Then, the Equation
(2-7) resumes as

τ = µ
(
∇u +∇uT

)
. (2-8)

2.3.2
Generalized Newtonian Model (GNM)

Often real fluids do not behave linearly. Therefore it is necessary to
use a constitutive model that describes the non-linear behavior. Generalized
Newtonian models are the constitutive equations in which stress is a function of
strain rate, and there is no dependence on time. In these models the viscosity
is not constant and vary with the deformation rate. They can be used to
represent fluids in which an increase in strain rate reduces its viscosity, the
so-called shear-thinning fluids. Also, they may be used to describe fluids in
which the increment in strain rate results in a viscosity increase, known as
shear-thickening fluids. The shear-thinning and the shear-thickening behaviors
are represented in Figure 2.4.

Figure 2.4: Sketch presenting a general perspective on the behavior of GNM
fluids [20]. (a) It is noticeable that as the shear rate increases, the Newtonian
fluid shear stress grows linearly. (b) The chart shows that Newtonian fluids
have constant viscosity, shear-thickening fluids viscosity increase as the shear
rate increases, and shear-thinning fluids viscosity have their viscosity reduced
while the shear rate grows.

In the flow that occurs during the breakup of liquid sheets, the shear
rate is negligible and the flow is dominated by planar extensional deformation.
Moreover, polymer solutions’ viscosity commonly increases as the extensional
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strain increases [21]. This behavior is known as extensional-thickening. In an
extensional flow, the deformation rate is called extension rate, ε̇.

There are a handful of GNMs available in the literature. Here, a simple
GNM model is employed, the Carreau’s model, which is stated as

η(ε̇) = η∞ + (η0 − η∞)
(
1 + (λε̇)2

)n−1
2 , (2-9)

where η0 is zero-extensional-rate viscosity, η∞ is infinity-extensional-rate vis-
cosity, λ is a time constant, and n is the power-law index. As it was expressed
in the previous paragraph, the growth in extension rate induces the rise of the
viscosity, as it is shown in Figure 2.5.

log( )
.

0

Figure 2.5: Sketch showing the Carreau model viscosity behavior in an exten-
sional thickening circumstance. Regarding the model variables, in case of a
change in the η0 and η∞ values, the response would change the initial and final
viscosity plateaus respectively. As well as altering the λ value would shift the
viscosity rise position. The increase in λ shifts the climb to the left, while its
decrease shifts the climb to the right. The answer becomes a single plateau
whether λ→ 0 or λ→∞, in which η will be η = η0 or η = η∞ for every ε̇.

Finally, the stress tensor τ is obtained from Equation (2-8), where the
viscosity µ is replaced by the viscosity η calculated from Equation (2-9).
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2.3.3
Oldroyd-B Model

The term viscoelastic means the coexistence of viscous, fluid-like, and
elastic, solid-like, behavior in a material [21]. Further, it is possible to affirm
that every material has a degree of viscoelasticity. The perception of viscoelas-
ticity is a matter of time-scale. Every material has its natural time-scale. The
viscoelastic properties are perceived when the flow time-scale matches the ma-
terial time-scale, while the event will look-like only a fluid flow or a solid stretch
when those time-scales are beyond comparison [21].

The linear viscoelasticity models are frequently used to describe the
viscoelastic aspects of various materials. Each model has a different effect on
how an input function affects stress and deformation responses with time.
In this manner, the models describing the simplest material behavior are the
Newtonian liquid and Hookean solid, representing the viscous liquid, no elastic
recovery, and the glassy material, with complete elastic recovery. Further, there
is the representation of the viscoelastic solid by the Kelvin-Voigt model, which
shows the leathery behavior (slow full or partial elastic recovery). Also, the
Maxwell model that describes viscoelastic liquid behavior, which is a rubbery
flow. Here, the focus remains on the Maxwell model, which is the simplest
model regarding viscoelastic liquids.

(a)

εEεV

(b)

t

τ

t

ε

Figure 2.6: Visual concept of Maxwell model. (V - viscous component, E -
elastic component). (a) Mechanical model of a Maxwell fluid. The stress over
the damping and elastic component are shared (τV = τE), while deformation
is the sum of deformations on the damping and elastic parts (ε = εV + εE). (b)
Deformation over time for a Maxwell viscoelastic fluid when a given imposed
stress is applied.

The Maxwell viscoelastic model describes a viscoelastic liquid. It is
represented by an association of a damping and an elastic component in
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series. In a scenario of constant stress imposition, the deformation answer
has an instantaneous step response and is continuously incremented until
stress release. When stress is finally released, part of the total deformation
retreats instantaneously, and the remaining deformation persists. The rapid
deformation that appears in the moment of stress imposition and stress release
are responses from the elastic component of the system, while the creep built
among the instants of stress imposition and release comes from the damping
component. Figure 2.6 summarizes the described Maxwell model. The following
Equation (2-10) links deformation and stress through the derivation of the
Maxwell model.

τ + λ
∂τ

∂t
= ηγ̇, (2-10)

where λ is the relaxation time, which is a time constant composed as the
ratio between fluid viscosity and its elastic modulus. γ̇ is the deformation rate
tensor. Although this model describes viscoelastic fluid behavior, it cannot be
directly applied to provide stress for the equations in previous sections. That
is because it does not follow the isotropy property [22], once this model will
not hold the features displayed under coordinates rotation, i.e. the model is
not frame invariant [22].

Oldroyd [23] derived a family of constitutive equations based on the
linear viscoelastic models. Those Oldroyd models solve the mentioned obstacle.
Such constitutive equations automatically satisfy the principle of material
objectivity: a rigid-body rotation superimposed on any deformation history can
not be registered by equations written in convected coordinates [24]. Oldroyd
fluid models constitutive equations are written in convected coordinates,
which Oldroyd introduced himself [25]. This coordinate system is convected or
embedded. That is, the coordinate curves are attached to material particles and
deform with the body [24]. The Oldroyd-B model comes from the mathematical
development of Jeffreys fluid. However, in this section, it will be presented a
simpler version of this model, derived from the Maxwell fluid. This simpler
model is also known as the upper − convected Maxwell fluid. The adopted
extra-stress tensor, τ , in the Oldroyd-B model is the sum of two components.
The viscoelastic fluid is divided between a polymeric component and a solvent
one. Therefore, the tensor is defined as τ = τp+τs, in which τp is the tensor’s
polymeric component and τs is the tensor’s solvent component. The solvent
component is defined as τs = µsγ̇, where µs is the solvent viscosity. Equation
(2-11) displays Maxwell Oldroyd’s model

τp + λτ∇
p = ηγ̇, (2-11)

where γ̇ is the strain rate tensor, λ is the relaxation time, and the convected
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derivative is defined as

τ∇ = D

Dt
τ −∇u · τ − τ ·∇u. (2-12)

Considering that this work addresses an extensional flow, we briefly ana-
lyze the viscosity behavior in extensional flow under the Oldroyd-B constitutive
model. Extensional flows behave differently from classical shear flows because
they act toward compressibility since they elongate the fluid. As liquids are
considered either uncompressible or having low compressibility rates, viscos-
ity under extensional flows, known as elongational viscosity (ηE), is higher
than the viscosities measured in shear flows. Considering a planar extension,
elongational viscosity is measured as τ11 − τ22 = ε̇ηE(ε̇) [21], where τ11 and
τ22 are the stresses in the first and second principal directions, and ε̇ is the
elongation rate. A common dimensionless notation form for the elongational
viscosity is the Trouton ratio, defined as a relation between elongational and
shear viscosities, Tr = ηE/η [21].

The Oldroyd-B model suggests that the extensional stress growth de-
pends on a dimensionless time and a dimensionless extension rate [26]. Nguyen
et al. [27] showed that the Oldroyd-B model is reasonable to predict behav-
ior for an M1 fluid in an extensional flow under constant extension rates. In
this work [27] plots the apparent elongational viscosity (ηE) vs. time and the
obtained Trouton ratio vs. a dimensionless time, as exposed in Figures 2.7
and 2.8. Figure 2.7 shows that the elongational viscosity changes with time
although the elongation rate is constant. Within the data range available in
the plot, elongational viscosity ηE increases as time passes. It is also percepti-
ble that the increase in elongation rate ε̇ induces an increase in the apparent
elongational viscosity. Figure 2.8 shows the plot for non-dimensionalized pa-
rameters. It allows noticing that the relaxation time λ affects the viscosity ηE

as well. Fluids with higher λ experience higher apparent viscosity than fluids
with lower λ under the same extension rate ε̇.
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Figure 2.7: Plot of elongational viscosity (ηE) vs time for a M1 fluid modeled
by the Oldroyd-B model [27].
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Figure 2.8: Plot of ln(ηe/η) vs (corrected time/λ) for a M1 fluid modeled by
the Oldroyd-B model [27].
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2.4
Boundary conditions

To complete the mathematical formulation, we need to define the bound-
ary and initial conditions. The boundary conditions define the effects of the
ambient gas on the free-surface and the effect of one layer on the other one.

In this problem, the boundary conditions are defined in terms of the
normal and tangential forces acting along the flow boundaries. Figure 2.9 shows
schematically in a drawing the vectors indicating those directions. Hence, to
calculate the boundary conditions, it is necessary to perform dot products
between the direction vectors and the stress tensor.

n1

Figure 2.9: Sketch of the layers in a sheet. This image shows both layers
detached from each other. It shows the vectors in those surfaces that indicate
normal, n, and tangential, t, directions. The directions given by those vectors
are useful to calculate the forces acting as boundary conditions in the problem.
It also clarifies the thickness dimensions adopted in the formulation.

Regarding the direction vectors, they can be defined as

n =
[
∂h

∂x
î; −1 ĵ

]1 +
(
∂h

∂x

)2
−1/2

, (2-13)

and
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t =
[
1 î; ∂h

∂x
ĵ

]1 +
(
∂h

∂x

)2
−1/2

, (2-14)

where n and t are the normal and tangential vectors respectively. h is h = h1(x)
or h = h2(x), which corresponds to the layer surface height in the z-axis,
depending on the layer the vector refers to. Due to sheet slenderness, the
approximation (∂h/∂x)2 −→ 0 is adopted.

The force acting in a point on a surface is obtained by the dot product
between its stress tensor and its normal vector. The dot product between the
resulting vector and a direction vector results in the modulus of the force in
that direction. Therefore, the boundary conditions along the top interface, in
z = h2, are given by the normal and tangential stress balance:

n2 · τ · n2 = σκ =⇒

− p2 + τzz2 − 2τxz2
∂h2

∂x
= σκ, and

(2-15)

t2 · τ · n2 = 0 =⇒
∂h2

∂x
(τxx2 − τzz2)− τzx2 = 0.

(2-16)

u and v represents components of the velocity vector u in the axis x and z. σ
is surface tension and κ stands for the surface curvature defined as the norm
of the tangent unit vector derivative [28]:

κ = ∂2h

∂x2

1 +
(
∂h

∂x

)2
−1/2

. (2-17)

The index 2 indicates that the variable is evaluated at the sheet’s 2nd layer.
The boundary conditions between the two layers, in z = h1, are given by

n2 · τ · n2 = n1 · τ · n1 =⇒

− (p1 − p2) +
[
τzz1 − 2τzx1

∂h1

∂x

]
−
[
τzz2 − 2τzx2

∂h2

∂x

]
= 0,

(2-18)

and

t1 · τ · n1 = τs = K (u1 − u2) =⇒
∂h1

∂x
(τxx1 − τzz1)− τzx1 = K (u1 − u2) .

(2-19)

The index 1 indicates that the variable is evaluated at the sheet’s 1st layer.
τs is the shear stress between the two layers. It is modeled here as a simple
relation between the average velocity of each layer, K is proportional between
the initial fluid viscosities, for simplicity we take K = µ2/µ1.

Lastly, there is the kinematic condition, Equation (2-20), which bounds
the surface movement to velocity in the layer. This condition assures that the
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boundary h = h(x) is moving accordingly to the flow.

n · u =
(
∂h

∂t

)
=⇒ ∂h

∂t
+ u

∂h

∂x
= v. (2-20)

2.5
Long-wave approximation (Asymptotic expansion)

The long-wave approximation adopted uses an asymptotic expansion that
takes advantage of the long and thin geometry of the problem, and the flow
symmetry in each layer [19, 29, 30]. The equations presented in the previous
sections of this chapter are simplified by expanding of the variables in a
power series and then neglecting the high-order terms. The exploited symmetry
permits truncating some of the terms in the series depending on function parity
regarding the variable. Even variables only present even coefficients while odd
variables only present odd coefficients, as it is expressed in Equations (2-21).

u (x, z, t) = U0 + U2z
2 + ...

v (x, z, t) = V1z + V3z
3 + ...

p (x, z, t) = P0 + P2z
2 + ...

φ (x, z, t) = φ0 + φ2z
2 + ...

τxx (x, z, t) = Txx0 + Txx2z
2 + ...

τxz (x, z, t) = Txz1z + Txz3z
3 + ...

τzz (x, z, t) = Tzz0 + Tzz2z
2 + ...

(2-21)

Due to the thin thickness of the layers, z � 1, higher-order z terms are
truncated as the equations are developed. Also, we perform the simplification
z −→ h(x) to the remaining terms that are multiplied by z, since this long-
wave supposes plug flow and the forces acting on the system, besides viscous
forces, depend on the sheet’s thickness.

2.6
System of equations

The long-wave approximation simplifies the conservation equations into
a system of 1-D transient partial differential equations. The development of
the system is discussed in Subsection 2.6.1. Then, Subsection 2.6.2 states the
adopted non-dimensionalization relations. Finally, Subsections 2.6.3, 2.6.4, and
2.6.5 presents the final system of equations. The indexes 1 and 2 are used to
indicate from which layer the variable refers.
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2.6.1
System development

The system describing the sheet dynamics is developed using the conser-
vation equations and the boundary conditions. The path used to develop this
system is described in this Subsection.

We first write the mass and moment conservation equations, Equations
(2-1) and (2-2), for the first layer.

∂u1

∂x
+ ∂v1

∂z
= 0, (2-22)

and the moment conservation

ρ1

(
∂u1

∂t
+ u1

∂u1

∂x
+ v1

∂u1

∂z

)
=
(
∂τxx1

∂x
+ ∂τzx1

∂z

)
− ∂P1

∂x
− ∂φ1

∂x
. (2-23)

For the second liquid layer, the equations are analogous

∂u2

∂x
+ ∂v2

∂z
= 0, (2-24)

and the following moment conservation equation

ρ2

(
∂u2

∂t
+ u2

∂u2

∂x
+ v2

∂u2

∂z

)
=
(
∂τxx2

∂x
+ ∂τzx2

∂z

)
− ∂P2

∂x
− ∂φ2

∂x
. (2-25)

We consider the boundary condition equations, Equations (2-15), (2-16), (2-
18), and (2-19). And finally, the kinematic boundary condition, Equation (2-
20), which becomes

n · u =
(
∂h

∂x

)
=⇒ ∂h1

∂t
+ u1

∂h1

∂x
= v1, (2-26)

considering the first layer of fluid, and

n · u =
(
∂h

∂x

)
=⇒ ∂h2

∂t
+ u2

∂h2

∂x
= v2 (2-27)

considering the second layer of fluid.
The development of equations for the second layer is as follows. The

pressure from Equation (2-15) is isolated as shown in Equation (2-28),

− P 2
0 = σκ− T 2

zz0 =⇒ −∂P
2

0
∂x

= σ
∂κ

∂x
− ∂T 2

zz0
∂x

(2-28)

and substituted into momentum conservation equation, Equation (2-25), for
its development. We can isolate the term τzx1 presented in Equation (2-16),
as reported in Equation (2-29). So, we use it to transform the term τzx1 from
momentum conservation into τxx0 and τzz0.

T
2

zx1z = ∂h2

∂x

(
T
2

xx0 − T
2

zz0

)
(2-29)
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We use mass conservation, Equation (2-24), to transform the velocity compo-
nent v into the velocity component u, as stated in Equation (2-30).

V
2

1 = −∂U
2

0
∂x

(2-30)
The kinematic boundary condition, Equation (2-27), is also developed using
mass conservation, Equation (2-30), so the PDE is only function of the u
component of fluid velocity and sheet height.

∂h2

∂t
+ U

2 ∂h2

∂x
+ h2

∂U 2

∂x
= 0 (2-31)

Therefore, momentum conservation and kinematic boundary condition equa-
tions remain in the developed system. The equations regarding the first layer of
the sheet are developed in a similar manner. It will be also developed the mo-
mentum conservation and kinematic boundary condition equations, Equations
(2-23) and (2-26), using Equations (2-18), (2-19), and (2-22). The intermediate
results achieved using the those relationships are Equations (2-32), (2-33), and
(2-34).

V
1

1 = −∂U
1

0
∂x

(2-32)

−T 1
zx1z = K

(
U
1

0 − U
2

0

)
− ∂h1

∂x

(
T
1

xx0 − T
1

zz0

)
(2-33)

−∂P 1
0

∂x
= σ

∂κ

∂x
− ∂T 1

zz0
∂x

− 2K
(
U
1

0 − U
2

0

)
∂2h1

∂x2 − 2K
∂U 1

0
∂x
− ∂U 2

0
∂x

 ∂h1

∂x

(2-34)
It is adopted (∂h/∂x)2 −→ 0, z2 −→ 0, and κ ≈ ∂2h2/∂x

2. Lastly, it is
necessary to apply the stress tensor equation of the selected fluid model,
Equation (2-8) for the newtonian fluid model, Equation (2-9) for the GNM fluid
model, or Equation (2-11) for the viscoelastic fluid model. The fully developed
systems are presented in the Subsections 2.6.3, 2.6.4, and 2.6.5.

2.6.2
Non-dimensionalization

Dimensionless variables, represented by ∗, are defined as:

U∗ = U
ρ2L

µ2
, t∗ = t

µ2

L2ρ2
, h∗ = h

H
, x∗ = x

L
, τ ∗ = τ

ρ2L

µ2
2
,

in which L refers to sheet length and H to sheet thickness.
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From now on, all variables displayed are non-dimensional. Therefore, we
hide the * symbol.

2.6.3
Newtonian system

Equation I
∂h1

∂t
+ U

1 ∂h1

∂x
+ h1

∂U 1

∂x
= 0 (2-35)

Equation II

∂U 1

∂t
+ U

1 ∂U 1

∂x
− 3S1

∂3h2

∂x3 − 4D∂
2U 1

∂x2 −

4D 1
h1

∂h1

∂x

∂U 1

∂x
+ 2k∂

2h1

∂x2

(
U
1 − U 2 )+

+ 2k∂h1

∂x

∂U 1

∂x
− ∂U 2

∂x

+ L
1
h1

(
U
1 − U 2 )− 3

16A1
1
h4

1

∂h1

∂x
= 0

(2-36)

Equation III

∂h2

∂t
+ U

2 ∂h2

∂x
+ h2

∂U 2

∂x
= 0 (2-37)

Equation IV

∂U 2

∂t
+ U

2 ∂U 2

∂x
− 3S2

∂3h2

∂x3 − 4∂
2U 2

∂x2 −

− 4 1
h2

∂h2

∂x

∂U 2

∂x
− 3

16A2
1

(h2 − h1)4

(
∂h2

∂x
− ∂h1

∂x

)
= 0

(2-38)

in which
S1 = σHρ2

2
6µ2

2ρ1
, S2 = σHρ2

6µ2
2
,

D = µ1ρ2

ρ1µ2
,

k = Kρ2H

ρ1µ2
,

L = Kρ2L
2

Hρ1µ2
,

A1 = A01ρ
2
2L

2

6πH3µ2
2ρ1

, A2 = A02ρ2L
2

6πH3µ2
2
,

are the non-dimensional parameters of the problem.
Equations I and III, Equations (2-35) and (2-35) on the described

Newtonian system, remain unchanged on other fluid systems. Therefore, all
systems share those equations. However, in case of any modification on the
fluid model, Equations II and IV need adjustment.
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2.6.4
GNM system

Equation II

∂U 1

∂t
+ U

1 ∂U 1

∂x
− 3S1

∂3h2

∂x3 − 4D∂
2U 1

∂x2 − 4D 1
h1

∂h1

∂x

∂U 1

∂x
−

− 4N ∂η1

∂x

∂U 1

∂x
+ 2k∂

2h1

∂x2

(
U
1 − U 2 )+ 2k∂h1

∂x

∂U 1

∂x
− ∂U 2

∂x

+

+ L
1
h1

(
U
1 − U 2 )− 3

16A1
1
h4

1

∂h1

∂x
= 0

(2-39)

Equation IV

∂U 2

∂t
+ U

2 ∂U 2

∂x
− 3S2

∂3h2

∂x3 − 4M∂2U 2

∂x2 − 4M 1
h2

∂h2

∂x

∂U 2

∂x
−

− 4G∂η2

∂x

∂U 2

∂x
− 3

16A2
1

(h2 − h1)4

(
∂h2

∂x
− ∂h1

∂x

)
= 0

(2-40)

in which,

N = ρ2

ρ1µ2
, M = η2

µ2
,

η (γ̇) = η∞ + (µ2 − η∞)
1 +

λ̃
2∂U

2

∂x

a
n−1

a

=⇒

∂η

∂x
= (µ2 − η∞)

(n− 1)
1 +

2λ̃∂U
2

∂x

a
n−1−a

a

2λ̃∂U
2

∂x

a−12λ̃∂
2U 2

∂x2


 ,

λ̃ = λµ2

L2ρ2
,

where µ2 is the perceived viscosity when there is no extensional stress, λ̃ is the
Carreau number, and η∞ is the perceived viscosity when extensional stress is
considerably high. The constants a and n are established in this work as a = 2
and n = 0.5.

2.6.5
Oldroyd-B system

The Oldroyd-B system present two additional equations that describe
the evolution of the polymeric component of the stress tensor.

Equation II
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∂U 1

∂t
+ U

1 ∂U 1

∂x
− 3S1

∂3h2

∂x3 − 4D∂
2U 1

∂x2 − 4D 1
h1

∂h1

∂x

∂U 1

∂x
−

− E

∂τ 1xx

∂x
− ∂τ 1zz

∂x

− E 1
h1

∂h1

∂x

(
τ
1

xx − τ
1

zz

)
+ 2k∂

2h1

∂x2

(
U
1 − U 2 )+

+ 2k∂h1

∂x

∂U 1

∂x
− ∂U 2

∂x

+ L
1
h1

(
U
1 − U 2 )− 3

16A1
1
h4

1

∂h1

∂x
= 0

(2-41)
Equation IV

∂U 2

∂t
+ U

2 ∂U 2

∂x
− 3S2

∂3h2

∂x3 − 4∂
2U 2

∂x2 − 4 1
h2

∂h2

∂x

∂U 2

∂x
− L

∂τ 2xx

∂x
− ∂τ 2zz

∂x

−
− L 1

h2

∂h2

∂x

(
τ
2

xx − τ
2

zz

)
− 3

16A2
1

(h2 − h1)4

(
∂h2

∂x
− ∂h1

∂x

)
= 0

(2-42)
Equation V

De
∂τxx

∂t
= −τxx −Deu

∂τxx

∂x
+ 2De ∂u

∂x
τxx + 2ηr

∂u

∂x
(2-43)

Equation VI

De
∂τzz

∂t
= −τzz −Deu

∂τzz

∂x
− 2De ∂u

∂x
τzz − 2ηr

∂u

∂x
(2-44)

in which the non-dimensional parameters are:

E = ρ2L

ρ1
, De = ληs

L2ρ2
.

2.7
Boundary and initial conditions

The system of equations described in the last section is developed from
a restricted space frame and from an initial configuration. As it is discussed in
the next chapter, the equations are first order and parabolic regarding time.
On the other hand, with respect to the spacial variable, it is second order
and elliptical. Considering that, the equations system boundary conditions are
presented in the following paragraphs.

The initial condition corresponds to the vectors set as the initial con-
figuration in time t = 0, which are f 0. The velocity and stress vectors, u0

j ,
τ xx

0
j and τ zz

0
j , are initially arrays of zeros. It assumes that the fluid is not

moving in any particular direction. The vector which represents the surfaces,
h0

j , are initialized with the addition of a height value plus a small deviation, so
it is possible to observe how the system evolves from this perturbed configura-
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tion. This starting deviation is a cosine wave, where the deviation amplitude
is ε0 = 2% of the sheet’s height, as demonstrated in Figure 2.10.

Figure 2.10: Sketch of initial surface position. It is started with a constant
height value plus a cosine wave deviation of amplitude ε0 = 2%(layer height).

The space boundary conditions are present in both space extremes of the
simulated system. Hence, those boundaries are applied in the points x = 0 and
x = L and must be held in every time iteration. In x = 0, the boundaries
are the Dirichlet boundary condition u = 0, and the Neumann boundary
conditions ∂h/∂x = 0, ∂τxx/∂x = 0, and ∂τzz/∂x = 0. In x = L, we have the
Dirichlet boundary condition u = 0, and the Neumann boundary conditions
∂h/∂x = 0, ∂τxx/∂x = 0, and ∂τzz/∂x = 0. The implementation of those
boundaries guided the answer evolution through the time grid according to
the theoretical structured behavior.

2.8
Linear stability analysis

Linear stability analysis allows a broad perception of flow stability. This
analysis is a mathematical procedure that starts at the differential equations
and results in an expression stating whether the system is stable or if an
imposed perturbation grows. Then, the final expression provides a chart from
which we can explore a range of system configurations while aware of its
stability. Considering that, this section is dedicated to the linear stability
analysis development of the elaborated system.
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Previous works have carried linear stability analysis for single-layered
sheets. Erneux et al. [14] have shown that only the ratio between the capillary
and van der Waals forces determine flow behavior. Following, Bazzi et al. [19]
added the analysis of viscoelastic fluid flow. Here, we further exploit the subject
addressing the stability analysis for non-Newtonian double-layered sheets. This
analysis will be valuable to simulate sheets under different initial conditions.

The equations presented in Section 2.6 accept a steady-state solution
where the fluid velocity is null, as consequence fluid flow is absent, the stress
tensor stays constant, and the surface configuration remains unchanged in both
layers. This solution is added of a tiny perturbation, represented by

(
h2, U

2
, τ

2
xx , τ

2
zz

)
=
(
h2 + h′2, u2 + u′2, τxx2 + τ ′xx2, τzz2 + τ ′zz2

)
,(

h1, U
1
, τ

1
xx , τ

1
zz

)
=
(
h2H + h′1, u1 + u′1, τxx1 + τ ′xx1, τzz1 + τ ′zz1

)
.

(2-45)

The factor H is a constant where it shows the relationship between the initial
layers #1 and #2 heights, so H = h1/ (h2 − h1). As stated, the steady-state
solution is unchanging, then the mean values are(

h2, u2, τxx2, τzz2
)

= (0.5, 0, 0, 0) ,(
h2H, u1, τxx1, τzz1

)
= (0.5H, 0, 0, 0) .

(2-46)

The perturbation added in this solution follow the expressions

(h′2, u′2, τ ′xx2, τ
′
zz2) = (h02, u01, τxx01, τzz01) δexp(ωt+ iαx),

(h′1, u′1, τ ′xx1, τ
′
zz1) = (h01, u02, τxx02, τzz02) δexp(ωt+ iαx),

(2-47)

where δ indicates the small amplitude of the perturbation in comparison to
the variable mean value, δ � 1. This small amplitude leads to suppression of
higher order terms, i.e. δ2 → 0. The position x is restricted to the bounded
space domain x ∈ R/ − 1 < x < 1 and the wavenumber is established as
α = nπ, where n may take natural numbers excluding zero [14]. ω is the growth
rate, which indicates how the perturbation evolves with time. The perturbation
amplitude grows in case of ω > 0 or reduces with time progression in case of
a negative growth rate, ω < 0. When ω = 0, the perturbation is not affected
by time. Therefore, we shall isolate the term ω to analyze how the system
behaves and point out which parameters influence system stability. Proceeding,
the proposed solution relations presented by Equation (2-45) are used on the
viscoelastic system presented in Section 2.6. Then, the system becomes
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∂h′1
∂t

+ h2H
∂u1

∂x
= 0,

∂u′1
∂t
− 3S∂

3h′1
∂x3 − 4D∂

2u′1
∂x2 − E

(
τxx1

∂x
− ∂τzz1

∂x

)
+

+ L
h2H

(u′1 − u′2)− 3
16A1

1(
h2H

)4

(
∂h′1
∂x

)
= 0,

∂h′2
∂t

+ h2
∂u2

∂x
= 0,

∂u′2
∂t
− 3S∂

3h′2
∂x3 − 4∂

2u′2
∂x2 − L

(
∂τ ′xx2
∂x
− ∂τ ′zz2

∂x

)
− 3

16A2
1
h2

4

(
∂h′2
∂x
− ∂h′1

∂x

)
= 0,

De
∂τ ′xx1
∂t

= −τxx1 + 2ηr
∂u

∂x
,

De
∂τ ′zz1
∂t

= −τzz1 − 2ηr
∂u

∂x
,

De
∂τ ′xx2
∂t

= −τxx2 + 2ηr
∂u

∂x
,

De
∂τ ′zz2
∂t

= −τzz2 − 2ηr
∂u

∂x
.

(2-48)

Using the relations presented in the Equations (2-46) and (2-47) in the system
(2-48) we get

ω2 + 3S
2 (1 +H)α4 + 4Dαω + 4Eηrα

2ω

1 +Deω
+ 2L
H
u01 − u02

u01
ω − 6A1

H3α
2 = 0,

ω2 + 3S
2 (1 +H)α4 + 4αω + 4Lηrα

2ω

1 +Deω
− 6A2α

2 = 0.
(2-49)

Those relations are related to the first and second layers, respectively. From
them, as the system is stable for ω <= 0, the stability criteria shows that the
first layer of the curtain is stable when

S

A1
>= 4

π2 (1 +H)H3 , (2-50)

and the second layer is stable when
S

A2
>= 4

π2 (1 +H) . (2-51)

Considering the stability criteria relations in Equations (2-50) and (2-
51), it is plotted in Figure 2.11 a chart to graphically analyze the proposal
behavior. It is also relevant to notice that the equations are coupled. So, the
evolution of one layer disturbs how the other grows. Equivalent ratios will be
adopted in our simulations to avoid further complications.
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H

S
/A

Figure 2.11: Sketch of the designed system stability map. The colored area
indicates an unstable region. Vertical axis indicates the S/A ratio. For H < 1,
the second layer of fluid, in red, keeps stable longer than the first layer fluid,
in blue, in a decrease of S/A. The opposite is true for H > 1 values.
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3
Solution Method

This Chapter discusses the numerical method used to solve the set of
equations describing sheet evolution reported in the previous Chapter. The
partial differential equations were discretized using first and second-order
finite difference approximation. Also, the time discretization of the derivatives
applied an implicit Crank-Nicolson method, so we avoid solution oscillations.
Finally, Newton’s iterative method is applied to solve the non linear system of
algebraic equations at each time step.

3.1
The Finite Difference Method

The calculus of finite differences is the foundation of the Finite Differ-
ence Method (FDM). This method provides a numerical solution of simple
implementation to partial differential equations (PDEs). The finite difference
calculus is derived from Taylor series expansions and approximates a derivative
of a given PDE. It is a relatively straightforward method in which the governing
PDE is satisfied at a set of prescribed interconnected points within the compu-
tational domain, referred to as nodes [31]. The framework of connected nodes
is known as a mesh. Then, each derivative on a PDE is approximated through
finite differences in all nodes on the grid. Succeeding, the approximated values
are substituted on the equation.

Following the works [19, 30], this work presents a unidimensional stag-
gered grid, meaning that the problem variables are computed in different spots.
The nodes associated with the u and τ variables are placed in the middle of
h related nodes. Figure 3.1 shows how this grid is assembled. This kind of
grid is adopted, so we have a strong coupling between the alternating vari-
ables, which avoids some types of convergence problems [32]. It also reduces
the distance of adjacent nodes and avoids interpolation when calculating other
variable derivatives. Then, it is possible to achieve a relative increase in result
accuracy and avoid some spurious results in the long time limit. The mesh
covers the 0 ≤ x ≤ L interval, which comprehends from the section where the
minimum cross-sectional area is placed to the end of the oscillation, as pre-
sented in Figure 3.1. We define nodes position using the MATLAB function
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logscale, which returns a vector containing a logarithmic scale starting at a
given initial point and ending at an established final point. The length of this
vector is also set in the function input. The goal of this procedure is to have a
more refined mesh (shorter distance between the nodes) in regions where the
variable gradients are higher.

h[N ]h[1]
u[1]
τ[1]

u[N ]
τ[N ]

u[i−1]
τ[i−1]

u[i]
τ[i]

u[i+1]
τ[i+1]

h[i−1] h[i] h[i+1]

︷ ︸︸ ︷∆xh
i

︷ ︸︸ ︷∆xu
i

Figure 3.1: Sketch representing the unidimensional staggered grid. The u and
τ nodes, in purple, and the h nodes, in green, alternate between themselves
intermittently. This grid enables problem discretization and, consequently, to
solve the PDEs related to the system evolution.

A central finite difference scheme (CDS) is used to approximate the
derivative operators. The CDS is one of the possible results of a truncated Tay-
lor series discretization to approximate derivatives. A Taylor series truncated
after the first term approximates the desired derivative. The discretization in
a CDS accounts for the forward and backward nodes from the reference node,
as it is explored next in Equations (3-2) and (3-3). Firstly, we define the dis-
tances between the nodes, which are used on the derivative calculations. These
distances are

∆xh
i = xh

i+1 − xh
i , and

∆xu
i = xu

i+1 − xu
i ,

(3-1)

in which, xh
i is the x coordinate value of the h[i] node and xu

i is the x coordinate
value of the u[i] node. The index i indicates the node position on the grid. The
calculation of variables and derivatives on xi points for Equations I and III,
Equations (2-35) and (2-37), in the system of differential equations follow a
CDS accordingly to
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hj(xh
i ) ∼= hj[i],

uj(xh
i ) ∼=

uj [i]∆xh
i + uj [i−1]∆xh

i−1
∆xh

i + ∆xh
i−1

,

∂hj

∂x
(xh

i ) ∼=
hj [i+1] − hj [i−1]

∆xh
i + ∆xh

i−1
,

∂uj

∂x
(xh

i ) ∼=
uj [i] − uj [i−1]

∆xu
i−1

,

(3-2)

where the j index indicates the fluid layer. On the other hand, the variables and
derivatives approximation in xi for the remaining Equations of the differential
equation systems described in Section 2.6 come as

uj(xu
i ) ∼= uj [i],

τxxj(xu
i ) ∼= τxxj [i],

τzzj(xu
i ) ∼= τzzj [i],

hj(xu
i ) ∼=

hj [i]∆xu
i−1 + hj [i+1]∆xu

i

∆xu
i + ∆xu

i−1
,

∂uj

∂x
(xu

i ) ∼=
uj [i+1] − uj [i−1]

∆xu
i + ∆xu

i−1
,

∂τxxj

∂x
(xu

i ) ∼=
τxxj [i+1] − τxxj [i−1]

∆xu
i + ∆xu

i−1
,

∂τzzj

∂x
(xu

i ) ∼=
τzzj [i+1] − τzzj [i−1]

∆xu
i + ∆xu

i−1
,

∂hj

∂x
(xh

i ) ∼=
hj [i+1] − hj [i]

∆xh
i

,

∂2uj

∂x2 (xu
i ) ∼=

∆xu
i−1uj [i+1] −

(
∆xu

i + ∆xu
i+1

)
uj [i] + ∆xu

i uj [i−1]

∆xu
i ∆xu

i−1 (∆xu
i + ∆xu

i−1) /2 ,

∂2hj

∂x2 (xh
i ) ∼=

∆xh
i−1hj [i+1] −

(
∆xh

i−1 + ∆xh
i

)
hj [i] + ∆xh

i hj [i−1]

∆xh
i ∆xh

i−1

(
∆xh

i + ∆xh
i−1

)
/2

,

∂2hj

∂x2 (xh
i , x

u
i ) ∼=

(
xu

i

∂2hj(xh
i+1)

∂x2 + xu
i−1

∂2hj(xh
i )

∂x2

)
/
(
∆xu

i + ∆xu
i−1

)
,

∂3hj

∂x3 (xh
i ) ∼=

(
∂2hj(xh

i+1)
∂x2 − ∂2hj(xh

i )
∂x2

)
/∆xh

i .

(3-3)

3.2
Crank-Nicolson method

The set of PDEs is solved as an initial value problem since we have
equations that describe a system evolving in time, and we impose an initial
configuration for this system in the initial time, t = 0. While the problem
space aspect requires two boundary conditions, considering it stands presenting
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characteristics of elliptical equations, the time aspect is only supplied with a
single initial condition, as the equations are first order from time perspective.
Therefore, it is stipulated a small time step, ∆t, to numerically solve the given
set of equations. The system solution in a particular time, tn, is used as a basis
to manage to solve the forward time step, tn+1 = tn +∆t. The algorithm obeys
this pattern until it reaches a specified time point. Then the solution across
the desired time range is reached.

To solve the system, for the forward time step calculation, it is used as
an approximation of the calculus’ mean value theorem. The theorem states
that given a continuous function, f(t), in a domain range, ∆t, the derivative
of at least one point in this range, t = tspot, equals the derivative of the linear
function passing through the outer points from this range. Mathematically,

∂f(tspot)
∂t

= f(t+ ∆t)− f(t)
∆t . (3-4)

We rewrite the term f(t + ∆t) − f(t) using a notation that indicates
the variable manipulation on the discrete time grid, fn+1 − fn. As we cannot
determine which is the tspot point, the Crank-Nicolson method approximates
it. This method uses two common approximations of tspot and combines them.
The first approximation is the one used in the explicit method, where tspot = tn.
The remaining approximation is from an implicit method, where tspot = tn+1.
Those approximations do not deviate much from the actual tspot value because
the considered range ∆t is considerably small. The Crank-Nicolson method
is a straight line interpolation between the results from these both estimates,
which is called the trapezoid rule [32]. Considering that, the above expression
becomes [31]

fn+1 = α

2

(
∂fn+1

∂t
+ ∂fn

∂t

)
∆t+ fn. (3-5)

∂fn+1/∂t and ∂fn/∂t are computed from function values in the spatial grid
points using Section 2.6 equations and the discretization showed in Equations
(3-2) and (3-3). Since the computation of the variable we intend to calculate,
fn+1, requires the employment of this same variable, this method is defined
as implicit. The usage of implicit methods is valuable, as they offer improved
stability, which allows solving stiff equations using larger time steps than it is
necessary to solve them in explicit methods.

3.3
Newton’s method

After spacial and time discretization, we obtain a non-linear set of
algebraic equations at each time step that describes the nodal values at tn+1.
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Newton’s method is the solver adopted among a range of non-linear equation
solving techniques. An intrinsic advantage of the method is its convergence
speed. Differently, its negative aspect is the Jacobian computation requirement,
which is very costly for large equations.

Newton’s method uses the first two terms of Taylor series expansion to
linearize the set of equations, f(x), and then find its roots. Demonstrating the
Taylor linearization in a single equation, the process to find the root would
isolate x in the expression f(x) ∼= f(x0) + (∂f(x0)/∂x) (x− x0) = 0. Then, for
a system of n equations we have

fi(x) ∼= fi(xk) +
(
xk+1 − xk

) ∂fi(x)
∂xj

= 0, (3-6)

for i = 1, . . . , n, j = 1, . . . , n, x is the root vector of n elements, and k is the
iteration index. The matrix ∂fi(x)/∂xj is known as Jacobian and is represented
as Jij. So, the root is easily found following(

xk+1 − xk
)

= −J−1
ij fi(xk),

xk+1 = xk +
(
xk+1 − xk

)
.

(3-7)

The method converges quadratically when the first estimate is near the
system root. I.e. the error at iteration k + 1 is proportional to the square of
the error at iteration k [32]. Then, it needs only a few iterations to reach a
solution once the system estimate gets close to the root.
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4
Results

This chapter presents the results of the analysis. First, the model deriva-
tion and implementation is validated by comparing the predictions considering
both layers of the same liquid with results presented in the literature for single
layer liquid sheets. Then, the results for the two-layer systems are presented
and discussed.

4.1
Validation

The model validation was conducted by comparing the predictions ob-
tained for a single layer sheet with results presented in the literature. The
time evolution of the liquid sheet was compared with the results presented
by Bazzi et al. [19]. As previous works studied the evolution of single-layer
sheets, the validation was performed using the same fluid parameters for both
layers. This validation examines the temporal thickness evolution and com-
pares the behavior to the reference works. The evaluation was performed for
Newtonian, GNM, and Oldroyd-B models. Hence, the proposed model must
show similar sheet surface progress to be considered correctly implemented.
The rupture times predicted by the proposed models and the values reported
by Bazzi et al. [19, 33] are also compared. The initial sheet profile for vali-
dation is as described in Section 2.7. The final rupture time is taken when
the minimum sheet height is less than 20% of the initial sheet’s height mean
value. Figure 4.1 shows the sheet surface profile for a Newtonian sheet in the
instant when rupture occurrence is considered. Similarly, Figure 4.2 considers
the rupture sheet profile for a Oldroyd-B viscoelastic liquid with ηr = 8 and
De = 0.5. The proposed model recovers the literature final sheet profile in both
cases. Considering the evolution of the minimum thickness with time, Figure
4.3 shows that the evolution presented in the literature and obtained with the
proposed model for Newtonian sheets are similar. Likewise, Figure 4.4 exhibits
that the Oldroyd-B proposed model also recovers literature behavior concern-
ing the perturbation evolution. Regarding the models in broad circumstances,
Figures 4.5 and 4.6 compare the proposed models and [19] models rupture
times for different fluid parameters. Figure 4.5 compares the Oldroyd-B model
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rupture times for multiple ηr and De values. As these values increase, the
non-Newtonian fluid characteristic gets stronger. It is perceptible that fluids
with a stronger non-Newtonian nature have a further delay in rupture time.
Figure 4.6 compares rupture times for GNM models and has similar behavior,
the increase in non-Newtonian characteristics leads to extended times to sheet
breakup.
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Figure 4.1: Graphical comparison of sheet profile at the rupture instant
between the [19] Newtonian model and the proposed Newtonian model. The
proposal recovers the literature final sheet profile.
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Figure 4.2: Graphical comparison of sheet profile at the rupture instant
between the [19] Oldroyd-B model and the proposed Oldroyd-B model, where
the fluid parameters are ηr = 8 and De = 0.5. The proposal recovers the
literature final sheet profile.
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Figure 4.3: Graphical comparison of minimum total thickness in the sheet pro-
file over time between the [19] Newtonian model and the proposed Newtonian
model. The proposal recovers the behavior described in the literature for the
perturbation evolution.
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Figure 4.4: Graphical comparison of minimum total thickness in the sheet
profile over time between the [19] Oldroyd-B model and the proposed Oldroyd-
B model, where the fluid parameters are ηr = 8 and De = 0.5. The proposal
recovers the behavior described in the literature for the perturbation evolution.

Figure 4.5: Graphical comparison of rupture times between the [19] Oldroyd
model and the proposed Oldroyd model. The proposal recovers the literature
rupture times effectively.
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˜
Figure 4.6: Graphical comparison of rupture times between the [19, 33] GNM
and Newtonian models and the proposed models. The proposal recovers the
presented rupture times published.

4.2
Single layered sheets

The validation was performed using the two-layer model to simulate a
single-layer sheet. This enables detail analysis of some conclusions of previous
works. The validation data presented provide enough information to notice
the effects of non-Newtonian physics on rupture times of single-layered sheets.
Figure 4.5 shows that as the non-Newtonian characteristic in a fluid become
more intense, characterized by higher Deborah number for the Oldroyd-B
model, De, or Carreau number for the Generalized Newtonian model, λ̃, and
relative viscosities, ηr, the rupture instant is further delayed. It comes from
the tension-thickening nature of the fluids. Figure 4.7 exhibits the intensity of
different forces along the sheets in a near rupture moment. It is noticeable that
the van der Waals forces are in opposite direction to all other forces, which is
expected since van der Waals are the only driving force for the pertubation
growth and all other forces resist the flow. Capillary and van der Waals forces
define the stability of the curtain, while viscous related forces affect the rupture
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time. Therefore, the viscoelastic force delays the sheet breakup. Lastly, the
interfacial force, which comes from the tangential forces between the layers,
Equation (2-19), remain null in this single layer situation. As both layers have
the same properties, that is the expected since tangential forces between the
two layers is only present if they have different viscosities.
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Figure 4.7: Individual forces in the initial 15% of the domain. Both layers are
represented on the instant about to occur sheet breakup. It is a simulation of
a single-layered sheet. Both viscoelastic layers have the fluid properties ηr = 4
and De = 0.5. a) Forces intensity in the sheet’s first layer. b) Forces intensity
in the sheet’s second layer.

The solutions provided by the single-layer sheet simulations enable us
to study how the linear stability analysis impacts the final answer. Then, we
consider sets of single-layered sheets. These sheets are composed of two layers
of the same fluid, so we vary the thickness ratio, H, to show that the developed
stability analysis relationship provides equal conditions despite changes in H.
The S/A ratio in the layers are given by the constant γ, defined as:

γ = S/A

S/Acr

, (4-1)

where S/Acr is the critical value of S/A ratio, given by Equations (2-50) and
(2-51). Then, S/A ratio is computed by

S

A1
= 4γ1

π2 (1 +H)H3 ,

S

A2
= 4γ2

π2 (1 +H) .
(4-2)
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In this work we simulate the curtains in which both layers have the same values
of γ, meaning that γ = γ1 = γ2. Rupture times of unstable sheets, γ < 1, are
displayed in Table 4.1.

From the Table 4.1 data, it is perceptible that when γ is constant, the
change in H will not alter rupture time. So, the developed stability analysis
generates equal initial conditions, regarding the proportion of capillary and
surface tension forces, at thickness ratio change when the constant γ remains
unchanged in Equation (4-2). This result was expected. When the properties
of both layers are equal, the thickness ratio should not affect the solution and
the sheet behaves as a single layer film.

γ

1/4 2/4 3/4
0.8 1.954 2.827 5.199

H 0.9 1.954 2.827 5.199
1 1.954 2.826 5.198

1.2 1.954 2.827 5.199

Table 4.1: Rupture time for a single-layered viscoelastic sheet with properties
ηr = 3 and De = 0.5. It is varied the thickness ratio of the layers, H. It is
also varied the layers’ S/A ratio by multiplying a factor, γ, to the stability
threshold established.

Figure 4.8 shows whether the curtain is stable or not over a range of γ.
Stability may be inferred through the analysis of the change in perturbation
amplitude. The Figure shows the perturbation amplitude change from t = 0 to
t = 0.5. Change in perturbation amplitude is computed as ∆ε = ε (t = 0.5)−ε0

since ε is the deviation from the the mean profile thickness. Stability occurs
when γ > 1 since this is the range at which ∆ε < 0, meaning that the amplitude
of the perturbation is decreasing. Analogously, the curtain is unstable for γ < 1.
It is also noticeable, as reported in [19], that as viscoelastic effects become
stronger, the change in amplitude decreases indicating the viscoelastic forces
slow down the flow. The results show that viscoelastic effects affect the flow
velocity, but do not interfere with the stability criteria.
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Figure 4.8: Change in perturbation amplitude over a range of γ from t = 0
to t = 0.5. ∆ε is computed as ∆ε = ε (t = 0.5) − ε0. Curtain is stable when
∆ε < 0, and unstable when ∆ε > 0.

4.3
Double layered sheets

In this section, we discuss the model results for curtains constituted by
two layers with different fluid properties. Subsection 4.3.2 addresses sheet
surface evolution. Subsection 4.3.1 discusses the rupture times. Subsection
4.3.3 examine the force distribution in the layers.

4.3.1
Sheet surface evolution

We investigate curtains constituted by two layers with different fluid
properties and analyze the curtain time evolution. We also vary layer thickness
ratio to obtain a broader perspective on the subject.

First, we analyze sheets constituted by two layers of Newtonian fluids.
The fluid density is the same in both layers. The second layer viscosity is
fixed as µ2 = 1 mPa.s, and for the first layer, viscosity, µ1, is a factor
multiplied by the viscosity µ2. The non-dimensional thicknesses are initialized
using the relationship H that defines the ratio between the first and second
layer thickness at the initial time, H = h1/ (h2 − h1). h1 is the height of
the interface between both layers and h2 is the total sheet height. So, they
are initialized as h1 = 0.5H and h2 = 0.5 (1 +H). The ratio between the
non-dimensionals of capillary and van der Waals forces are set according to

DBD
PUC-Rio - Certificação Digital Nº 1912756/CA



Chapter 4. Results 54

S1/A1 = 2/ (π2 (1 +H)H3) and S2/A2 = 2/ (π2 (1 +H)). As γ = 0.5 for those
S/A ratio values, the simulated sheets are expected to be unstable. We consider
as the final rupture time when the minimum sheet height is less than 20% of
the initial sheet’s height mean value. The actual rupture time is imminent
from this final point since the rate of reduction in sheet thickness is already
considerably steep when the minimum sheet height gets to this value.

Here it is considered the surface evolution of double and single-layered
sheets. As the sheets are initialized with different non-dimensional thickness
ratios, H, it is performed a normalization before the sheet profile analysis.

h1norm = h1/ (0.5 (1 +H)) ,

h2norm = h2/ (0.5 (1 +H)) .
(4-3)

This normalization aids to perform comparisons among different conditions
since the normalized upper layer always starts at the height of 1−ε0. Figures 4.9
and 4.10 present the evolution of the normalized values of minimum height with
time considering the perturbation profile of a two-layer sheet and a single-layer
sheet. The former is constituted by a Newtonian and a non-Newtonian layer,
while the latter is formed only by the Newtonian liquid layer. The Newtonian
fluid viscosity is µ = 1 mPa.s. It is shown a combination of Newtonian and
GNM layers and Newtonian and Oldroyd-B layers, respectively. The GNM
fluid properties are ηr = 20 and λ̃ = 1, while the Oldroyd-B fluid properties
are ηr = 4 and De = 0.5. These Figures show that the thin non-Newtonian
layer stabilizes the sheet and extends the demanded time to rupture. Figure 4.9
reveals that the decrease in thickness with time for the Newtonian single-layer
sheet has a lower magnitude at the beginning of the evolution and increases
rapidly during a later stage of the perturbation evolution. Conversely, the sheet
with a thin layer of a GNM fluid does not significantly accelerate the thickness
reduction with time. This explains the noticed increase in breakup time. On
the other hand, Figure 4.10 displays for the sheet with a thin Oldroyd-B layer
a behavior similar to the described to the Newtonian single-layer sheet. The
rate of thickness reduction with time has a steep increase near rupture. In this
case, it is inferred that the delay in breakup time is an overall reduction in
the thickness reduction rate. Comparing the total thickness for these sheets
over time. The sheet with the GNM layer starts the evolution with a thickness
reduction rate equal to the one in the Newtonian sheet, while the sheet with the
Oldroyd-B layer has a lower thickness reduction rate. The rest of the evolution
is as described.

Figure 4.11 compares the profile evolution for double-layered sheets
constituted by a thick Newtonian layer and a thin viscoelastic layer. It is
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shown the evolution of sheets with the same fluid properties but with different
thickness ratios,H = 0.15 andH = 0.3. It is visible that the change in thickness
ratio did not modify the upper layer minimum thickness evolution.

In a comparison between the evolution of the layers’ thicknesses of a
Newtonian–Oldroyd-B sheet with time, it is possible to evaluate how the
relationship between the layers affects the dynamics. This comparison is
performed using the ratio between the layers’ height percentages of its initial
height. The percentages are given by

h1perc (t) = h1 (t) / (0.5H) ,

h2perc (t) = h2 (t) / (0.5 (1 +H)) .
(4-4)

The ratio is calculated as

hratio = h1perc/h2perc. (4-5)

The calculated ratio remains throughout the entire time range as hratio → 1.
This implies that, in the simulated conditions, both layers’ rate of thickness
reduction is the same. Then, for double sheets in an instability case, in which
the fluid surface tension and the Hamaker constant are about the same, both
layers will have their rupture together.

The reported ratio maintenance hints that the velocity profile is kept
equivalent in the time domain. Figures 4.12 and 4.13 show the velocity along
the sheet in the last time step for a Newtonian–Newtonian sheet, µ1 = 5 mPa.s,
and a Newtonian–viscoelastic sheet, ηr = 4 and De = 0.5. In both cases,
the modulus of the velocity profile difference goes to zero when compared
to the velocity, O (−3) and O (1) respectively, which confirms the previous
hypothesis. Although the difference between velocity profiles in the different
layers is small, it is enough to produce high shear stress values. Shear stress
and the other forces are discussed in detail in Subsection 4.3.3.
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Figure 4.9: Normalized minimum thickness over time. a) A sheet constituted
by a thick Newtonian layer and a thin GNM layer with the fluid properties
ηr = 20, λ̃ = 1, and H = 0.2. b) A single sheet of Newtonian fluid, µ = 1
mPa.s.
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Figure 4.10: Normalized minimum thickness over time. a) A sheet constituted
by a thick Newtonian layer and a thin viscoelastic layer with the fluid
properties ηr = 4, De = 0.5, and H = 0.15. b) A single sheet of Newtonian
fluid, µ = 1 mPa.s.
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Figure 4.11: Normalized minimum thickness over time. a) A sheet constituted
by a thick Newtonian layer and a thin viscoelastic layer with the fluid
properties ηr = 4, De = 0.5, and H = 0.15. b) It is changed the parameter
H = 0.3.
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Figure 4.12: Velocity profile in the entire sheet length when the sheet is about
to pinch-off. Both layers are Newtonian. a) Velocity profile in the sheet’s first
layer with fluid property µ1 = 5 mPa.s. b) Velocity profile in the sheet’s second
layer with fluid property µ2 = 2 mPa.s.
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Figure 4.13: Velocity profile in the entire sheet length when the sheet is about
to pinch-off. The sheet is constituted by a Newtonian layer and a viscoelastic
layer with the fluid properties ηr = 4, De = 0.5, and H = 0.15. a) Velocity
profile in the sheet’s first layer. b) Velocity profile in the sheet’s second layer.

4.3.2
Rupture time

The rupture time of different sheets are considered in this subsection.
For the Newtonian–Newtonian sheets, the dimensionless rupture time does
not exhibit large variation with the viscosity ratio and thickness ratio, as
shown in Table 4.2. So, independently of the viscosity ratio among the fluids or
layer thickness ratio, the non-dimensional times until the pinch-off were about
the same. This numerical result obtained agrees with experimental data [18].
Experimental measurements [18] have shown that by substituting the fluid of
one layer for another fluid with 3.3 times its viscosity, the critical flow rate
for curtain breakup remains within the same range. The flow rate examined
in [18] is related to the breakup time computed since the flow rate determines
the dimensional sheet thickness. Also, the necessary time to occur the burst
in the curtain depends on the experimental set configuration. The longer the
falling height is, the longer the perturbation will have to stay on the sheet.
So, in a breakup case, the maximum time to rupture in an experimental set is
fixed.
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µ1 [mPa.s]

2 5 10
0.3 1.519 1.518 1.516

H 0.4 1.519 1.518 1.514
0.6 1.517 1.516 1.508

Table 4.2: Rupture time for Newtonian–Newtonian sheets. It is displayed for
different values of viscosity in the sheet’s first layer, µ1. It is also varied the
thickness ratio of the layers, H. The rupture time for a single layer sheet of
Newtonian fluid is tr = 1.52.

Subsequently, it comes the analysis of sheets constituted by a Newtonian
and non-Newtonian layers. As in the previous case, we have both layers with
the same density. The viscosity of the Newtonian layer is µ = 1 mPa.s, while the
non-Newtonian layer follows either a GNM model or a Oldroyd-B model. The
GNM is set with the parameters ηr = 20 and λ̃ = 1, while the Oldroyd-B model
is set with ηr = 4 and De = 0.5. The initial non-dimensional layers’ thicknesses
and the ratio S/A are set just as described in the previous Subsection.

The Newtonian–non-Newtonian sheets results for rupture time are listed
in Table 4.3. Comparing these values with the ones presented in Table 4.3,
we can notice that the system rupture time of a two-layer sheet with a thin
viscoelastic layer takes longer to pinch-off than a single sheet Newtonian layer.
This explains the results presented by Karim et al. in [13], which experimentally
showed a drastic reduction on minimum sheet thickness for stable curtains by
using a viscoelastic thin layer as one of the layers of a two-layer sheet. They
measured the reduction in minimum sheet thickness when a shear-thinning
fluid sheet was substituted by a double layer sheet constituted of the previous
fluid and a thin layer of a viscoelastic liquid. So, the viscoelastic layer improved
stability and has allowed reducing the minimum thickness of a sheet that
had to be thicker to remain stable. The results presented here support this
experimental finding. Moreover, according to the results presented in Table
4.3 and Figure 4.11, at least until the explored thickness ratio, the thickness
ratio do not significantly change the sheet rupture time. Therefore, maintaining
the total dimensional sheet thickness, the proportion between the sheet layers
thickness can be freely altered to fit a given application, rupture time will
remain constant.
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GNM Oldroyd-B
0.15 2.4477 3.3590

H 0.2 2.4474 3.3585
0.3 2.4472 3.3578

Table 4.3: Rupture time for Newtonian–non-Newtonian sheets. The Newtonian
layer viscosity is µ = 1 mPa.s. For the non-Newtonian layer we have a GNM
model with ηr = 20 and λ̃ = 1, and a Oldroyd-B model with ηr = 4 and
De = 0.5. The rupture time for a single layer GNM sheet with the given fluid
properties is tr = 2.446, while the single-layer Oldroyd-B sheet has the rupture
time tr = 3.36. It is varied the thickness ratio of the layers, H, in a way that
the non-Newtonian layer is the thinner one.

4.3.3
Force distribution

The analysis of force distribution on the layers allows better understading
of the phenomena reported in the previous subsections. Figure 4.14 shows the
sum of forces in a Newtonian–viscoelastic double-layer sheet. It is apparent
that the sum of forces in one layer is analogous to the sum of forces in the
other one. This justifies the equivalent velocity profiles found in Figures 4.12
and 4.13, which generates the sheet surface profile evolution perceived. As both
layers undergo the same resultant force intensity, the pairing velocity evolution
related in the previous section is explained.

Figure 4.15 shows the individual forces intensity that act on the sheet
along its length. We can see in the right plot viscoelastic layer forces. Besides
the null inertial forces, there are capillary forces, viscous forces, van der Waals
forces, and the Oldroyd-B viscoelastic forces. The van der Waals forces are
opposite in direction from all other forces, so it is the only force acting towards
rupture. In the left plot, it is described the forces acting on the Newtonian layer.
In addition to the inertial forces, the viscoelastic forces are also null since it is a
Newtonian liquid model. The capillary and van der Waals cannot be perceived
in the plot due to the thickness ratio, which provoked its modulus reduction.
The viscous force magnitude does not alter or get influenced by the thickness
ratio. The interfacial forces modulus, from Equation (2-19), is remarkable.
The interfacial forces rise substantially according to sheet thickness ratio and
fluid parameters difference in the different layers, although the velocity profile
difference between the layers is visually undetectable, as shown in Figures 4.12
and 4.13, and the interfacial forces are computed from the layers’ difference in
velocity profile, this difference is enough to produce the effect of generating a
force of large modulus. For the Newtonian layer, in Figure 4.15, the interfacial
forces are the greatest in magnitude. So, the interfacial forces lead to the
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equivalent sum of forces in the layers observed in Figure 4.14, and their
outcomes. The interfacial forces are only present in the Newtonian layer chart
because the system is only evaluated at the interfacial surface height, h1, and
at the total sheet thickness height, h2. As shear stress in h2 is null due to the
free surface boundary condition, Equation (2-16), there is no direct interfacial
force effect for the viscoelastic layer in the proposed system.
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Figure 4.14: Sum of forces at the final time point in a double-layer sheet with
a Newtonian layer and viscoelastic layer properties ηr = 4, De = 0.5, and
H = 0.15. a) Sum of forces on the Newtonian layer. b) Sum of forces on the
viscoelastic layer.
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Figure 4.15: Individual forces at the final time point in a double-layer sheet
with a Newtonian layer and viscoelastic layer properties ηr = 4, De = 0.5, and
H = 0.15. a) Individual forces on the Newtonian layer. b) Individual forces on
the viscoelastic layer.

4.3.4
Maximum thickness reduction

The results presented in the previous subsections indicate that the
addition of an extra layer of a viscoelastic liquid may allow a reduction in
total thickness of stable liquid sheets. Here, we investigate how the reduction
happens. We analyze sheet thickness reduction for different values of γ,
presented in Equation (4-2), and different viscoelastic forces, characterized
by ηr. From the non-dimensional coefficients definition, presented in Section
2.6, the ratio S/A is defined as

S

A
= σH4π

A0L2 , (4-6)

where H is the dimensional sheet thickness. Therefore, the variation in γ

represents different sheet thickness since the σ, A0, and L remain constant.
Then, higher γ indicates the curtain is thicker. First, it is simulated the rupture
time of Newtonian single layers for each of the S/A ratios to be used as a
reference. Then, we compute the rupture time for double sheets composed
of Newtonian–viscoelastic layers with reduced thickness. The dimesnional
thickness reduction,H reduction, is performed by multiplying γ by (1− ζ)4, see
Equation (4-6), where ζ is the percentage reduction in dimensional thickness.
Sheet rupture happens when the rupture time is shorter than the perturbation
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residence time on the curtain. The maximum reduction possible, ζmax, is
calculated considering the reference rupture time. As it is stated in previous
Subsections, the addition of an extra viscoelastic layer delays the sheet breakup
time. So, this time buffer to the rupture moment can be leveraged by reducing
the curtain thickness. Therefore, ζmax is defined when the double layer system
rupture time matches the reference single sheet rupture time. Figure 4.16 shows
the results for maximum reduction percentage for all cases. We found that for
higher S/A ratios, the potential reduction in sheet thickness is weaker. In a
physical setting, the need for higher S/A ratios may be related to lengthier
sheets, since disturbances that appear on the sheet surface take longer to get
to the sheet’s end. On the other hand, the increase in the non-Newtonian
characteristic in the viscoelastic layer increases the maximum value for possible
thickness reduction. Karim et al. [13] found experimentally the same behavior
regarding the viscoelastic effects reported. They simulated the viscoelastic
coating fluid as an aqueous solution of polyethylene oxide. The viscoelastic
effects were tuned by changing the polymer concentration in the solution.
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Figure 4.16: Reduction percentage on the dimensional thickness varying the
γ and ηr parameters. The De parameter is set as a constant De = 0.25. The
thickness of a single-layered Newtonian sheet is considered for reference, µ = 1
mPa.s. The reduction bases on a comparison between the reference and the
value for a viscoelastic-Newtonian double layer.
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5
Final Remarks

It was examined the evolution of a double-layer thin-film sheet under
unstable conditions until its rupture. The investigation was performed applying
a numerical solver for the developed equation system describing the problem.

It was explored double-layers varying thickness ratios among a sheet
composed of Newtonian and viscoelastic layers. As formerly presented by Bazzi
et al. [19], the viscoelastic effect has considerable influence delaying rupture
times in thin-film single sheets. The solutions obtained demonstrate that this
effect is inherited in the double-layered sheets. The achieved answers show that
the evolution on a double-layer with one viscoelastic layer requires more time to
breakup than on a Newtonian liquid single-layer. The flow resistance effect that
appears on the Newtonian layer and induced by the viscoelastic layer originates
from the interfacial forces that appear on the layers’ interface. Those results
can explain some previously reported experimental observations on stability
and thickness reduction of thin-films. Finally, it is performed simulations on
dimensional thickness reduction based on the addition of a viscoelastic second
layer. Those results reveal the effects of viscoelasticity and curtain length
variation on the maximum reduction achievable. The model presented can
be used in the design of optimal conditions for curtain coating with the goal
of reducing the minimum thickness possible.
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