
Guilherme Siqueira Eduardo

Deep Reinforcement Learning for Quadrotor
Trajectory Control in Virtual Environments

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Engenharia Elétrica, do Departamento de Engenharia Elétrica da
PUC-Rio in partial fulfillment of the requirements for the degree
of Mestre em Engenharia Elétrica.

Advisor: Prof. Wouter Caarls

Rio de Janeiro
March 2021

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Guilherme Siqueira Eduardo

Deep Reinforcement Learning for Quadrotor
Trajectory Control in Virtual Environments

Dissertation presented to the Programa de Pós–graduação em
Engenharia Elétrica da PUC-Rio in partial fulfillment of the re-
quirements for the degree of Mestre em Engenharia Elétrica. Ap-
proved by the Examination Committee:

Prof. Wouter Caarls
Advisor

Departamento de Engenharia Elétrica – PUC-Rio

Prof. Antonio Candea Leite
Norwegian University of Life Sciences

Profª. Karla Figueiredo Leite
Universidade do Estado do Rio de Janeiro

Prof. Eduardo Costa da Silva
Departamento de Engenharia Elétrica – PUC-Rio

Rio de Janeiro, March the 26th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

All rights reserved.

Guilherme Siqueira Eduardo

Majored in Control and Automation Engineering at the Pon-
tifical Catholic University of Rio de Janeiro in 2018. Together
with the AeroRio team, participated in international compe-
titions and conferences on autonomous drones. Since then, he
specializes in the field of robotics and artificial intelligence.

Bibliographic data
Siqueira Eduardo, Guilherme

Deep Reinforcement Learning for Quadrotor Trajectory
Control in Virtual Environments / Guilherme Siqueira Edu-
ardo; advisor: Wouter Caarls. – 2021.

118 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Engenharia Elétrica,
2021.

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Controle de quadrotor.
3. Veículo aéreo não-tripulado (VANT). 4. Aprendizado por
reforço profundo. 5. Soft Actor-Critic (SAC). 6. Navegação
visual.. I. Caarls, Wouter. II. Pontifícia Universidade Católica
do Rio de Janeiro. Departamento de Engenharia Elétrica. III.
Título.

CDD: 621.3

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

To my parents, for their love and support.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Acknowledgments

I would like to thank my advisor Prof. Wouter Caarls for backing the deve-
lopment of this project and for his invaluable and impeccable advices, lectures
and support.

I would like to thank Prof. Antonio Leite, Profª. Karla Figueiredo and Prof.
Eduardo Costa, for the learning opportunities in the various projects I had a
chance to be a part of.

I would like also to express my gratitude for the professors of the DEE Master’s
programme.

I would like to thank as well my friends and colleagues made in PUC-Rio,
especially those of AeroRio, for the happy moments and the travel experiences
together.

I thank the financial support provided by PUC-Rio and CAPES.

Finally, and most importantly, I want to thank my family for all the support
given through my life, my education and my endeavours.

"This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001"

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Abstract

Siqueira Eduardo, Guilherme; Caarls, Wouter (Advisor). Deep
Reinforcement Learning for Quadrotor Trajectory Control
in Virtual Environments. Rio de Janeiro, 2021. 118p. Disserta-
ção de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

With recent advances in computational power, the use of novel, complex
control models has become viable for controlling quadrotors. One such method
is Deep Reinforcement Learning (DRL), which can devise a control policy
that better addresses non-linearities in the quadrotor model than traditional
control methods. An important non-linearity present in payload carrying air
vehicles are the inherent time-varying properties, such as size and mass,
caused by the addition and removal of cargo. The general, domain-agnostic
approach of the DRL controller also allows it to handle visual navigation,
in which position estimation data is unreliable. In this work, we employ a
Soft Actor-Critic algorithm to design controllers for a quadrotor to carry out
tasks reproducing the mentioned challenges in a virtual environment. First,
we develop two waypoint guidance controllers: a low-level controller that acts
directly on motor commands and a high-level controller that interacts in
cascade with a velocity PID controller. The controllers are then evaluated
on the proposed payload pickup and drop task, thereby introducing a time-
varying variable. The controllers conceived are able to outperform a traditional
positional PID controller with optimized gains in the proposed course, while
remaining agnostic to a set of simulation parameters. Finally, we employ the
same DRL algorithm to develop a controller that can leverage visual data to
complete a racing course in simulation. With this controller, the quadrotor is
able to localize gates using an RGB-D camera and devise a trajectory that
drives it to traverse as many gates in the racing course as possible.

Keywords
Quadrotor control; Unmanned Aerial Vehicle (UAV); Deep Reinforce-

ment Learning; Soft Actor-Critic (SAC); Visual navigation.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Resumo

Siqueira Eduardo, Guilherme; Caarls, Wouter. Aprendizado por
Reforço Profundo para Controle de Trajetória de um Qua-
drotor em Ambientes Virtuais. Rio de Janeiro, 2021. 118p.
Dissertação de Mestrado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

Com recentes avanços em poder computacional, o uso de novos modelos
de controle complexos se tornou viável para realizar o controle de quadrotores.
Um destes métodos é o aprendizado por reforço profundo (do inglês, Deep
Reinforcement Learning, DRL), que pode produzir uma política de controle
que atende melhor as não-linearidades presentes no modelo do quadrotor que
um método de controle tradicional. Umas das não-linearidades importantes
presentes em veículos aéreos transportadores de carga são as propriedades
variantes no tempo, como tamanho e massa, causadas pela adição e remoção
de carga. A abordagem geral e domínio-agnóstica de um controlador por DRL
também o permite lidar com navegação visual, na qual a estimação de dados
de posição é incerta. Neste trabalho, aplicamos um algorítmo de Soft Actor-
Critic com o objeivo de projetar controladores para um quadrotor a fim de
realizar tarefas que reproduzem os desafios citados em um ambiente virtual.
Primeiramente, desenvolvemos dois controladores de condução por waypoint:
um controlador de baixo nível que atua diretamente em comandos para o motor
e um controlador de alto nível que interage em cascata com um controlador de
velocidade PID. Os controladores são então avaliados quanto à tarefa proposta
de coleta e alijamento de carga, que, dessa forma, introduz uma variável
variante no tempo. Os controladores concebidos são capazes de superar o
controlador clássico de posição PID com ganhos otimizados no curso proposto,
enquanto permanece agnóstico em relação a um conjunto de parâmetros de
simulação. Finalmente, aplicamos o mesmo algorítmo de DRL para desenvolver
um controlador que se utiliza de dados visuais para completar um curso de
corrida em uma simulação. Com este controlador, o quadrotor é capaz de
localizar portões utilizando uma câmera RGB-D e encontrar uma trajetória
que o conduz a atravessar o máximo possível de portões presentes no percurso.

Palavras-chave
Controle de quadrotor; Veículo aéreo não-tripulado (VANT); Aprendi-

zado por reforço profundo; Soft Actor-Critic (SAC); Navegação visual.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Table of contents

1 Introduction 21

2 Background 28
2.1 Deep learning 28
2.1.1 Neural networks 28
2.1.2 Convolutional neural networks 29
2.2 Reinforcement learning 31
2.2.1 Finite Markov decision processess 32
2.2.2 Temporal difference learning 34
2.2.3 Approximation methods and Deep reinforcement learning 36
2.2.3.1 Playing Atari games 37
2.2.4 Actor-critic methods 38
2.2.5 Soft Actor-Critic 40
2.2.5.1 Maximum entropy objetive 40
2.2.5.2 Automated entropy adjustment 42
2.3 Quadrotor dynamics 43
2.3.1 Linear adaptation 47
2.4 Related work 47
2.4.1 Deep reinforcement learning for control applications 47
2.4.2 Deep reinforcement learning for visual navigation 49
2.4.3 Other control and navigation solutions 51
2.4.3.1 Deep drone racing 51
2.4.3.2 DroNet 52

3 Methods 54
3.1 Low-level control 54
3.1.1 PID gains optimization 55
3.1.2 Learning algorithm 55
3.1.3 Controller integration 57
3.2 Visual navigation 59
3.2.1 Baseline model 59
3.2.2 Image processing and gate detection 61
3.2.2.1 Pre-trained model 62

4 Simulations 64
4.1 Low-level control 64
4.1.1 Training environment 64
4.1.1.1 PID gains optimization 66
4.1.1.2 Integrating dynamics with the environment 67
4.1.1.3 Starting conditions 68
4.1.1.4 Reward function 68

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

4.1.2 Testing environment and experiment setup 68
4.2 Visual navigation: AirSim 70
4.2.1 Racing courses 71
4.2.2 Training environment 73
4.2.2.1 Starting conditions 75
4.2.2.2 Reward function 75
4.2.2.3 Camera properties 76
4.2.3 CNN pre-training 76
4.2.3.1 Grad-CAM 77

5 Results 79
5.1 Low-level control results 79
5.1.1 PID tuning and performance 80
5.1.2 Single environment training and performance 82
5.1.3 Performance evaluation of the waypoint guidance task 84
5.1.4 Performance evaluation of the payload pickup task 89
5.2 Visual navigation results 92
5.2.1 Pre-trained model 93
5.2.2 Learning performance 95
5.2.3 Course navigation 97

6 Conclusion 104
6.1 Future work 108

Bibliography 110

A SAC implementation 117

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

List of figures

Figure 2.1 Multi-layer perceptron that maps an input array xin to
an array of predictions ŷout. Each layer has input weights Wi an
input bias bi. 29

Figure 2.2 Illustrated process of convolution in an entry of an image. 30
Figure 2.3 An example of a simple residual block [32]. 31
Figure 2.4 Agent-environment interaction. 31
Figure 2.5 Q-value function approximation by an artificial neural

network. 37
Figure 2.6 The Parrot Bebop is one of the most commonly known

commercial drones. 43
Figure 2.7 Simplified model of the quadrotor used in simulation. 44
Figure 2.8 Diagram of propeller parameters: diameter and pitch,

represented by a Cessna C-172M propeller [41]. 45
Figure 2.9 Indexation of each rotor for total momentum calculation

with indicated direction of rotation. 45
Figure 2.10 DroNet architecture from the original paper [51]. Each

convolutional layer is annotated with its filter size, amount of
filters and a "/2" notation indicating a 2× 2 stride. 52

Figure 3.1 Network models that make up the Soft Actor-Critic,
with hidden layer size and activation functions of each layer.
(a) Critic network. (b) Actor network. 56

Figure 3.2 Control diagram for the fully learned controller. The µ(s)
block represents the ANN trained using the SAC algorithm. 57

Figure 3.3 Control diagram for the pose PID controller. The µ(s)
block represents the ANN trained using the SAC algorithm. 58

Figure 3.4 Control diagram for the cascade controller: a learned ex-
ternal high-level controller and a low-level PID loop for velocity
control, with an implicit structure similar to the diagram in fig-
ure 3.3. The µ(s) block represents the ANN trained using the
SAC algorithm. 59

Figure 3.5 Top-down view diagram representing the gate features. 60
Figure 3.6 Visualization of the gate features overlaid with the image

input. 60
Figure 3.7 The DroNet network, highlighted by the dashed block,

translates the input image into a feature vector, that is concate-
nated with the IMU readings from the vehicle. 61

Figure 3.8 Training data resampling loop. 62

Figure 4.1 Diagram showing how a setpoint is clipped if it is >1 m
away from the quadrotor. 69

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Figure 4.2 Gate texture indicating front/back side and correct
crossing direction. (a) Front side. (b) Back side. 72

Figure 4.3 "Easy" race course top-down view. Gates are numbered
according to the order of crossing and crossing direction is
indicated. 72

Figure 4.4 "Medium" race course top-down view. Gates are num-
bered according to the order of crossing and crossing direction
is indicated. 73

Figure 4.5 Steep descent section of the medium course. 74
Figure 4.6 Steep ascent section of the medium course. 74
Figure 4.7 Grad-CAM overlay over RGB (left) and depth (right)

camera. Red overlay indicates higher relevance regions, while
blue overlay indicates less relevant regions. 78

Figure 5.1 Visual representation of the moving window filter for a
dummy experiment success distribution. The winow size in this
representation does not correspond to the actual window size
used. 81

Figure 5.2 Statistics for the pose PID controller. (a) Expected
success rate (s.r.) in the waypoint guidance task. (b) Position of
the quadrotor over time. (c) Attitude of the quadrotor over time. 83

Figure 5.3 Training metrics for the fixed environment controller.
The lines refer to the median metric from the 10 samples, while
the shaded region denotes the minimum and maximum metrics
from samples. Each data point represents the moving average
of the 100 previous tests (50 previous episodes). 83

Figure 5.4 Statistics for the controller trained in a single set of
environment parameters. (a) Expected success rate (s.r.) in the
waypoint guidance task. (b) Position of the quadrotor over time.
(c) Attitude of the quadrotor over time. 84

Figure 5.5 Training metrics for the learned controllers. The lines
refer to the median metric from the 10 samples, while the
shaded region denotes the minimum and maximum metrics from
samples. Each data point represents the moving average of the
100 previous tests (50 previous episodes). 85

Figure 5.6 Expected success rate (s.r.) in the waypoint guidance
task for each controller by combination of quadrotor parameters. 85

Figure 5.7 Position of the quadrotor over time for different con-
trollers in the waypoint guidance task. 86

Figure 5.8 Attitude of the quadrotor over time for different con-
trollers in the waypoint guidance task. 86

Figure 5.9 Motor commands of the quadrotor over time for different
controllers in the waypoint guidance task. The dashed red lines
here represent the minimum and maximum commands accepted
by the motors. 87

Figure 5.10 Unsaturated motor commands of the quadrotor over
time for the pose PID controller in the waypoint guidance task.
The red dashed lines indicate the velocity where commands are
saturated when sent to the quadrotor. 88

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Figure 5.11 Distribution of total rewards attained per experiment to
perform the waypoint guidance task (21 bins). For the pose PID,
6 of the experiments ended up with less than -200 total reward. 89

Figure 5.12 Expected success rate (s.r.) for each controller in the
payload pickup and drop course, by combination of quadrotor
parameters. 89

Figure 5.13 Distribution of total time taken per experiment to per-
form the payload pickup and drop course (11 bins). 90

Figure 5.14 Heatmap of the route taken by each experiment in the
payload pickup and drop course, viewed from above. 91

Figure 5.15 Heatmap of the route taken by each experiment in the
payload pickup and drop course, viewed from the side. 91

Figure 5.16 Test loss per training episodes of two different training
strategies. 93

Figure 5.17 RMS error of prediction of two different training strate-
gies (less is better), with 95% confidence interval bars. Note that
the gate position is given by its angle with respect to the camera. 94

Figure 5.18 RMS error of prediction of the active learning method
compared between training epochs (less is better), with 95%
confidence interval bars. Note that the gate position is given by
its angle with respect to the camera. 94

Figure 5.19 Training curves of the pre-trained network. 94
Figure 5.20 Percentage of the course completed during training of

the baseline controller, with a 100-sample moving average. 95
Figure 5.21 Percentage of the course completed (100-sample moving

average) for 4 training runs of the baseline controller up to
episode 4000. 96

Figure 5.22 Training metrics for the visual controller. (a) Percentage
of the course completed during training, with a 100-sample
moving average. (b) Actor and critic losses. 96

Figure 5.23 Percentage of the course completed during training of
the visual controller with frozen CNN weights, with a 50-sample
moving average. 97

Figure 5.24 Baseline controller trajectories on the easy course (top-
down view). 98

Figure 5.25 Visual controller trajectories on the easy course (top-
down view). 98

Figure 5.26 Baseline controller trajectories on the medium course
(top-down view). 100

Figure 5.27 Visual controller trajectories on the medium course (top-
down view). 100

Figure 5.28 Baseline controller trajectories on the Gates 04-10 section
of the medium course (side view). 101

Figure 5.29 Visual controller trajectories on the Gates 04-10 section
of the medium course (side view). 101

Figure 5.30 Baseline controller trajectories on the Gates 20-24 section
of the medium course (side view). 101

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Figure 5.31 Visual controller trajectories on the Gates 20-24 section
of the medium course (side view). 102

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

List of tables

Table 4.1 Upper and lower bounds of randomized quadrotor param-
eters used for waypoint controller development and PID gains
optimization. Fixed parameters are used for training the single-
environment benchmark controller. 65

Table 4.2 Hyperparameter and experiment configuration for the
control tests. 65

Table 4.3 Range of quadrotor parameters used in experiments. 70
Table 4.4 Hyperparameters for the supervisioned training of the

DroNet. 77

Table 5.1 PID gains for the quadrotor position control. 81
Table 5.2 PID gains for the quadrotor velocity control. 82
Table 5.3 Mean and standard deviation metrics for the waypoint

guidance task for 100 successful samples of each controller,
including single environment (non-randomized) training. 87

Table 5.4 Mean and standard deviation total rewards for the way-
point guidance task for 100 successful samples of each controller,
including single environment (non-randomized) training. 88

Table 5.5 Mean and standard deviation of the time taken to com-
plete the payload pickup and drop course, for 100 successful
samples of each controller. 90

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

List of Abreviations

ANN – Artificial Neural Network

BDF – Backward Differential Formula

CAM – Class Activation Maps

CNN – Convolutional Neural Network

DDPG – Deep Deterministic Policy Gradient

DDR – Deep Drone Racing

DoF – Degrees of Freedom

DPG – Deterministic Policy Gradient

DQL – Deep Q-learning

DQN – Deep Q-network

DRL – Deep Reinforcement Learning

GPS – Global Positioning System

IMU – Inertial Measurement Unit

LIDAR – Light Detection And Rangefinder

MBRL – Model-Based Reinforcement Learning

MDP – Markov Decision Process

ML – Machine Learning

MLP – Multi-Layer Perceptron

MPC – Model Predictive Control

MSBE – Mean Squared Bellman Error

NeurIPS – Annual Conference on Neural Information Processing Systems

ODE – Ordinary Differential Equation

PID – Proportional Integral Derivative controller

PPO – Proximal Policy Optimization

PWM – Pulse Width Modulation

ReLU – Rectified Linear Unit

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

ResNet – Residual Network

RGB-D – Red-Green-Blue-Depth image/camera

RL – Reinforcement Learning

RMSE – Root Mean Squared Error

RPM – Revolutions Per Minute

SAC – Soft Actor-Critic

SGD – Stochastic Gradient Descent

TD – Temporal Difference learning

TD3 – Twin Delayed Deep Deterministic Policy Gradient

TRPO – Trust Region Policy Optimization

UAV – Unmanned Aerial Vehicle

VAE – Variational Autoencoder

VODE – Variable-cofficient Ordinary Differential Equation

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

List of Symbols

Deep learning

σ(·) – Activation function

Wi – Activation weights of layer i

bi – Activation bias of layer i

θ – Network parameters (weights)

α – Learning rate

L(·) – Loss function

y – Ground truth data

ŷ – Network predictions

Reinforcement learning

s – State

a – Action

s′ – State resulting from taking action a at state s

S – State space

A – Action space

r(·) – Reward/reward function

Gt – Expected returns

Rt – Expected future rewards

γ – Discount factor

π(a|s) – Stochastic control policy

Vπ(s) – Value function under policy π

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Qπ(s, a) – Q-value/action-value function under policy π

E – Expectations

V ∗, Q∗ – Optimal value function

a′ – Next action from s′ following a particular control policy

µ(s) – Deterministic control policy

ε – Exploration rate

φ – Value function parameters/network weights

y(·) – Value update target

R – Replay buffer

D – Minibatch of transitions

θ – Control policy parameters/network weights

τ – Target network update rate

N (·) – Gaussian probability density function

H(·) – Entropy of a probability distribution

σ(·) – Noise variance of a stochastic control policy

h – Target average entropy constraint

Quadrotor model

Ti – Thrust/throttle of rotor i

Qi – Momentum of rotor i

X, Y, Z – 3-dimensional axes/positions

ẋ, ẏ, ż – 3-dimensional velocities

θ – Roll

φ – Pitch

ψ – Yaw

Ωi – Propeller i angular velocity

d – Propeller diameter

α – Propeller pitch angle

Fp – Force vector generated by rotors

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Mp – Momentum vector generated by rotors

L – Length of quadrotor arms

b – Thrust-momentum constant

I – Momentum of inertia

R – Rotation matrix

S – Attitude frame transfer matrix

p – Position vector (X, Y, Z)

ṗ – Velocity vector in the inertial frame (dx, dy, dz)

Φ – Attitude vector in the inertial frame (θ, φ, ψ)

Φ̇ – Angular velocity/attitude rate (θ̇, φ̇, ψ̇)

ν – Linear velocities vector in the local frame

ω – Angular velocities vector in the local frame

δ – Command vector (thrust, roll, pitch, yaw)

∆ – Allocation matrix

k – PID gain

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Valeu a pena? Tudo vale a pena
Se a alma não é pequena.
Quem quer passar além do Bojador
Tem que passar além da dor.
Deus ao mar o perigo e o abismo deu,
Mas nele é que espelhou o céu.

Fernando Pessoa, Mensagem: X. Mar Português.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

1
Introduction

"Instead of trying to produce a programme to simulate the adult mind,
why not rather try to produce one which simulates the child’s? If this were
then subjected to an appropriate course of education one would obtain the adult
brain."

– A. M. Turing [1]

The idea of learning by interacting with the environment is a very
well established concept in biology. For millions of years, animal behavioural
patterns are passed along generations when offspring observe their parents
and try to reproduce their actions. When doing so, the individual is able to
connect the causes to the effects of their actions, established by a learning
process. This phenomenon is also observable in human children, which inspires
Turing’s passage regarding machine learning and, subsequently, a number of
algorithms in the field.

Reinforcement learning (RL) is a series of machine learning approaches
based on interactions with the environment. These algorithms seek to map
observable situations to actions, in order to maximize a numerical reward
signal, which is given by the environment. In contrast to supervised learning
algorithms, RL models do not know a priori which actions are the most suitable
to achieve the desired behavior. Thus, RL algorithms need to explore possible
paths to the final goal by interacting with the environment and observe which
of these paths leads to the highest reward over time [2].

Deep learning and robotic control

According to the definition by the International Organisation for Stan-
dardisation, robot autonomy is the ability to perform intended tasks based on
current state and sensing, without human intervention [3]. For example, in or-
der to consider a flying robot as reactive-autonomous, it should be capable of
maintaining the current position or trajectory despite external perturbations,
such as winds and obstacles, as well as maintaining a safe, predefined distance
from the ground, coordinate with moving objects, take off and land.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 1. Introduction 22

Recent advances in computational power and in the efficiency of machine
learning algorithms have made it possible to use neural networks for various
types of complex applications that require autonomy and comprehensive
perception of the environment. These advances made it faster to calculate
the output of these networks even in embedded controllers, enabling novel
approaches to control stability, navigation, perception, et cetera, in mobile
robots [4, 5].

The quadrotor is an example of such a robot that is able to move in 3-
dimensional space using four rotors, each consisting of a motor and a propeller.
This vehicle is open loop unstable during flight, requiring constant actuation
to hover and move around without flipping or falling to the ground [6].
Conventionally, underlying PID controllers are used to provide closed loop
stability to the quadrotor so that higher level controllers can focus on more
difficult tasks [7]. The issue with this kind of controller is that it assumes that
the system it tries to control is linear and time-invariant, while the quadrotor
has non-linear dynamics and has some time-variant variables, such as battery
voltage, motor performance (due to wear or temperature), or even mass, if the
vehicle is tasked to interact with a payload. For these uncertainties, a robust
PID design strategy [6] and adaptive controller [8] have been employed. These
methods, however, require extensive development and knowledge input by an
engineer. Reinforcement learning and other machine learning methods allow
the computer to learn the control task by itself, without requiring extensive
prior proficiency in modelling and controlling the system in question.

Classic closed-loop controllers, or feedback control systems, compute the
control actions based on the relationship between the output of the controlled
system and a reference input [9]. As universal function approximators [10],
artificial neural networks (ANNs) can replace traditional methods of controller
design by fitting a function that describes the mentioned relationship between
the feedback error and control actions for the controlled system. ANNs employ
non-linear features into their hidden layers [11]. As such, they are able to model
the non-linear aspects of the quadrotor, conceivably even if these aspects are
not directly observable. Neural networks with multiple neuron layers built on
top of each other are regarded as "deep" neural networks, thus establishing the
process of deep learning [11].

Generally, a neural network is obtained via supervised learning, where
training data consists of a paired set of inputs and outputs for the desired
function to approximate [11]. However, there is no way to obtain a training set
for a low-level quadrotor controller without a fully developed knowledgeable
controller. In this case, we investigate an RL-based approach: instead of

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 1. Introduction 23

finding the desired control output for the network, we need to design a reward
function that describes the desired behaviour of the quadrotor, which should
be trivial [2], as we could, for example, attribute rewards for successfully
hovering and costs to destabilization. On the other hand, there are other
challenges considered when employing RL for robotic control tasks. Using
ANNs as approximators for value and policy functions causes the learning
process to become unstable [5], imprecise [12] and expensive in terms of their
sample complexity [13]. The forecited works improve upon the Deterministic
Policy Gradient [14] actor-critic algorithm to address these problems and other
problems that arise from this form of approximation.

Deep learning and robotic perception

Perception is the ability to become aware of the state of the world through
the senses. For a robot, perception means to extract relevant information
through electronic sensors. Cameras are widely used in small flying vehicles
to extract high level information of the environment due to their reduced mass
and energy consumption compared to other methods, such as LIDARs and
sonars. Relative to their mass and energy requirements, cameras are able to
gather richer information, such as object colours and shapes, and span wider
fields of view, that can be further adjusted by using various types of lenses [15].
In addition, even depth information can be extracted from the environment
by using specific types of cameras capable to do so, for example, RGB-D or
a stereo system, which employs image triangulation to extract this kind of
information [16].

There are several methods to extract features from a camera feed. These
methods constitute the field of computer vision [17]. More recently, due to the
rise in popularity of artificial intelligence algorithms led by the aforementioned
advances in computational power, deep learning methods for image processing
have been favoured over traditional computer vision techniques [11]. These
methods are widely regarded as "intelligent" because they are able to identify
underlying patterns in sets of data without the need of mediation by a
specialist. By simply "learning" from sets of inputs paired with desired outputs,
deep learning methods are capable by themselves of identifying the features
necessary to make a decision [11]. This aspect is known as end-to-end learning,
in which a complex task is not broken up into smaller components, but, in RL,
for example, viewed through the lens of a simple reward [18]. Image-based
perception methods include, but are not restricted to, vehicle localization in
the environment [19], object detection [20, 21], collision detection [22, 23] and

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 1. Introduction 24

velocity (magnitude and direction) estimation [24,25].
The end-to-end learning concept is not restricted only for use in super-

vised image processing techniques. An important advantage of RL-methods
is the production of a control policy without the imposition of explicit rules.
As mentioned, it only requires the design of a reward function that roughly
describes the final desired behaviour and the algorithm, by itself, comes up
with the means to reach this behaviour [2].

Objectives

The objective of this work is to develop and test Deep Reinforcement
Learning (DRL)-based navigation controllers that are able to learn to control
quadrotors in a virtual environment. The general idea is to address possible
mismatches between quadrotor dynamic models used in simulation and the
dynamics of a real vehicle. For the first part of this work, we focus on the basic
quadrotor structure: the controller should be able to account for differences in
quadrotor parameters, such as size and mass, and propeller parameters, such as
diameter and pitch angle. Not only this capability of generalization should be
useful for smoothing out the transition from simulation to the real world, but
also for accounting for additional differences introduced by the performance of
various tasks.

For the second part of this work, we focus on dealing with localization
based on computer vision. In GPS-denied settings, the quadrotor relies on
its own sensors to estimate localization data. In this work, this data is the
quadrotor position relative to scene features, in this case, gates in a racing
course. This localization data is estimated using an ANN and then used as
observations for the RL controller. This form of estimation is often noisy
and unreliable without additional filters and data processors. We expect
the RL controller to learn by itself to deal with these challenges. For both
mentioned parts, the controller development is approached from an end-to-
end perspective: we refrain from imposing too much knowledge and supporting
features to the controller, instead letting the RL model learn by itself how to
tackle the challenges encountered during training.

In this work, we start from developing a simple waypoint guidance
controller and improve upon it to perform more complex tasks, such as payload
carrying and racing through a gate course. In the end, this controller is coupled
with a visual perception model in order to attempt the racing course without
externally available positional data. This general objective is divided in two
sub-objectives: the development of an agnostic low-level waypoint guidance

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 1. Introduction 25

controller and the development of a gate-crossing visual navigation controller.
For the first objective, the DRL-based agnostic controller should be able

to control quadrotors in simulations with a large range of vehicle parameters,
such as mass and propeller size, without retraining the model. Controllers
designed upon a single set of vehicle parameters, despite taking advantage of
the non-linearity of neural networks, are unlikely to perform as well in widely
different simulator parameters. Thus, we introduce an approach that does not
rely on a single set of vehicle parameters, but on a wide, randomized, set.

To accomplish that, we employ Soft Actor-Critic (SAC) [13], a recent
DRL algorithm that includes entropy maximization during training, which,
among other advantages, encourages many alternatives for control, where
possible, enabling the adaptativeness necessary to maintain optimal behaviour
in such a range of simulation parameters. We develop two kinds of RL-based
pose controllers: one that controls directly motor inputs from sensor data and
another that controls only the desired velocity, working together with a low-
level PID controller that provides the corresponding motor inputs.

Further, we propose a payload pickup and drop course that takes full
advantage of the agnosticism of the conceived controller. When picking up or
dropping a payload, the quadrotor mass changes suddenly and significantly,
requiring the controller to be able to not only maintain flight stability, but
must present equal performance in carrying out the remainder of the task.

Ultimately, a robust controller that is able to account for a wide range
of quadrotor parameters is not only useful to account for the mentioned
disturbances, but also to smooth out the transition from simulation to reality,
one of the challenges of low-level DRL controllers [26], as we can train the
model to expect the uncertainties of a real quadrotor.

For the second objective, we combine the development of the low-level
RL controller with a convolutional neural network (CNN) to come up with
a visual perception-based navigation controller to complete a drone racing
course of gate checkpoints. The racing courses we attempt to complete are the
Soccer Field easy and medium courses ofMicrosoft’s 2019 NeurIPS conference1

challenge.
To accomplish that, we divide the racing task in two sub-tasks: gate

localization and checkpoint guidance. Gate localization is done by a CNN
trained in a supervised fashion for this task. For checkpoint guidance, we use
the same approach proposed for waypoint guidance, we train the quadrotor
to follow these checkpoints using the RL algorithm Soft Actor-Critic. Then,

1<https://www.microsoft.com/en-us/research/blog/game-of-drones-at-neurip
s-2019-simulation-based-drone-racing-competition-built-on-airsim/> Accessed:
12 Mar. 2021

https://www.microsoft.com/en-us/research/blog/game-of-drones-at-neurips-2019-simulation-based-drone-racing-competition-built-on-airsim/
https://www.microsoft.com/en-us/research/blog/game-of-drones-at-neurips-2019-simulation-based-drone-racing-competition-built-on-airsim/
DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 1. Introduction 26

both localization and guidance models are combined in one single RL model
for further training and fine tuning in the proposed racing courses.

Contributions

While previous works focus on developing controllers for a specific given
quadrotor [7, 26–28], often because of restrictions imposed by the simulations
used or the employment of real vehicles, this work focus on a generalized
parameter-agnostic approach for designing quadrotor navigation controllers
using reinforcement learning techniques. This work outlines the capabilities
and limitations of such controllers in a variety of tasks, stressing the require-
ment for such controllers to be:

– Stable and accurate;

– Robust to different quadrotor parameters and to sudden changes of these
parameters, without the need to re-train the controller model; and

– Robust to the challenges of a visual localization model (noise and
disturbances) and capable to carry out training nevertheless.

We show that it is possible to design a low-level RL controller for a
quadrotor that is, at the same time, stable and accurate, and robust to a
range of parameters and time varying circumstances.

Previous works in RL-based visual navigation often rely on classic
underlying controllers, such as PID, that integrates with high-level decisions
provided by the top-level RL controller [22, 23], which is typical for learning-
based approaches [7]. In this work, we seek an end-to-end approach that should
not rely on this underlying controller. Accordingly, due to limitations of the
simulated environment for visual navigation, the RL controller provides the
lowest level outputs that can be passed to simulation. By employing this
method, the quadrotor is able to detect and cross several gate checkpoints in
a racing course using visual data, while also being robust to the disturbances
present in visual forms of localization.

These features should be useful not only to carry out the proposed tasks
in this work, but to also smooth the transition between simulation and real
world.

Dissertation structure

The current introductory chapter aimed to lay out the object of study
and outline the objectives and contributions of this work. Chapter 2 seeks

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 1. Introduction 27

to give the reader an understanding of the discussed topics and to discuss
related works and state-of-the-art in the field. Chapter 3 introduces the tasks
to be carried out along with the methodology of design, development and
benchmarking of each of the controllers developed. Chapter 4 aims to describe
in detail the implementation of training and testing environments, along
with the implementation of other proposed tasks. In Chapters 5 and 6, the
results of the proposed experiments are laid out and discussed, accounting for
expectations and comparisons with related work.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

2
Background

In this chapter, we introduce in detail the objects of study of this
work, namely deep convolutional neural networks, reinforcement learning and
quadrotor modelling, and the theory behind them. In the end we discuss
existing work with similar objectives to ours and present the state-of-the-art
in the field of drone racing.

2.1
Deep learning

Machine learning (ML) is an umbrella term used to describe a variety of
algorithms and techniques in which a computer acquires insight into a dataset
or a set of observations from an environment. ML methods are categorized
primarily with respect to dataset pairing. Supervised methods learn from
paired sets of data, in other words, it learns from predefined input-output sets.
Unsupervised methods have no outputs paired to inputs and try to learn from
the intrinsic patterns of the input set. Reinforcement learning methods, like
unsupervised methods, also have no output sets, but rely on the maximization
of a reward signal over time [29].

2.1.1
Neural networks

A common method used to implement machine learning models are
artificial neural networks (ANNs) [18]. This structure is inspired by the activity
of a biological brain consisting of a network of perceptrons, or neuron-like
nodes, that emit a signal based on their inputs. These perceptrons are arranged
in multiple layers (a multi-layer perceptron, or MLP), where the output signal
yi of each layer is given as a function of its inputs xi, input weights Wi, an
input bias vector bi and a non-linear activation function σ [18], as defined by:

yi = σ(Wixi + bi), (2-1)
and illustrated by figure 2.1.

Non-output layers are called hidden layers. Models with many hidden
layers, or deep layers, are called deep neural networks. Hence, the set of

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 29

Figure 2.1: Multi-layer perceptron that maps an input array xin to an array of
predictions ŷout. Each layer has input weights Wi an input bias bi.

techniques used to train these models make up the field of deep learning
(DL) [11].

The model is trained by minimizing an objective function, or loss function
L, which represents the error of estimation between the network output and
the desired output [18]. The parameters θ of a neural network are its combined
weights [W, b], which are adjusted by stepping to the negative direction of the
loss function gradient ∇θL(θ) with respect to θ. Mathematically, for a loss
function of parameters θ, L(θ), the parameters are adjusted by:

θ ← θ − α∇θL(θ), (2-2)
where α is the learning rate term, a positive number. This is the simplest form
of stochastic gradient descent (SGD) [30].

For each training iteration, or epoch, this update is performed with SGD,
which is itself a multiple-step iterative operation. At each step, the gradient is
calculated from the loss sum over a small batch of samples from the dataset,
instead of the sum over the entire dataset. This method converges almost surely
to a local minimum of any objective function [30].

A common approach used to compute the gradient of such a complex
model is backpropagation [11]. In this algorithm, the estimation error is
propagated backwards through the network, providing the gradient of each
perceptron with respect to its weights. This process is done automatically
for any model implemented through a deep learning framework, such as
Tensorflow1 or PyTorch2.

2.1.2
Convolutional neural networks

Convolutional neural networks (CNNs) have at least one convolutional
layer in their architecture, usually at the input side. These layers are specialized

1<https://www.tensorflow.org/> Accessed: 12 Mar. 2021
2<https://pytorch.org/> Accessed: 12 Mar. 2021

https://www.tensorflow.org/
https://pytorch.org/
DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 30

layers that handle spatially correlated inputs, such as images and sound signals.
A convolution operation consists of constructing an activation map,

where each entry is the dot product between a patch of the input and a filter,
or kernel, of the same size. Consider an input image X of size M ×N and a
filter k [31], the resulting (i, j) entry of the activation map A is computed by:

Ai,j = kᵀXi,j + b ∀ i ∈M, j ∈ N, (2-3)
where Xi,j is a slice with the same size as k centered in the pixel [i, j] of
a padded X. A single convolutional layer usually has many learnable filters,
resulting in as many activation maps as there are filters. This convolution
operation is illustrated by figure 2.2.

To increase the parameter efficiency of the network, the dimensionality of
activation maps is reduced prior to being fed to densely connected perceptron
layers. This can be either by striding the convolution operation (applying the
filter every n pixels) or using a strided max-pooling layer after a convolutional
layer. These layers function just like a convolutional layer, but, instead of
calculating the dot product of a subpatch with a filter, the max-pool layer
only takes the highest value of each subpatch [31].

Residual blocks

Some CNN architectures may include residual blocks among their hidden
layers. These blocks are used to improve training performance of CNNs
by addressing the degradation of training accuracy that may arise from
architectures with multiple stacked hidden layers [32]. Instead of learning the
underlying mapping F (X) from an input x, residual blocks learn the residual

Filter
Input image Activation map

=

Figure 2.2: Illustrated process of convolution in an entry of an image.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 31

mapping Fres = F (X)−X, which is recast into Fres +X, where X is brought
from the skip connection [32]. In feedforward ANNs, this is done by employing
a "skip connection" between the input x and the output of the block, as
illustrated by figure 2.3.

weight layer

weight layer

relu
identity

relu

Figure 2.3: An example of a simple residual block [32].

2.2
Reinforcement learning

Reinforcement learning (RL) is an area of machine learning used to obtain
a control policy that maximizes a reward signal over time, without any other
form of prior knowledge made available.

In this form of learning, an agent, which is the system that makes
decisions, interacts with the environment, which is subject to control, by
performing actions (a ∈ A) and observing the state of the environment (s ∈ S)
prior to the action taken, the state after the action (s′ ∈ S) and a reward
signal based on these three variables (r(s, a, s′)), engineered to indicate the
desired behaviour of the agent. This relationship is described by the diagram
of figure 2.4. With these means, we can estimate the value of each state and
take actions that lead up to the states with the highest value.

Agent

Environment

Actions State

Rewards

Figure 2.4: Agent-environment interaction.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 32

In this section, we lay out the history of RL theory leading up to the
state-of-the-art. Most of the basic RL theory is thoroughly compiled by Sutton
& Barto [2]. From Deep Q-learning onwards, we summarize some of the most
relevant works in the RL field.

2.2.1
Finite Markov decision processess

Markov decision processes, or simply MDPs, are a formalization of
stochastic decision-making processes introduced by Richard Bellman [33].
Initially, the theory of MDPs evolved from efforts to understand the problem
of making sequences of decisions under uncertainty, where each decision can
depend on the previous decisions and their outcomes. As such, this theory
can be employed as a mathematical idealization of the reinforcement learning
problem, in which precise theoretical statements can be made. MDPs are used
here to describe how actions influence, not only the immediate reward, but the
subsequent states and expected rewards [2].

In finite, fully observable MDPs, the transition from state s to a state s′,
yielding a reward r, and resulting from action a, follows a discrete probability
distribution, which can be denoted as p(s′, r|s, a). Stochastic processes have the
Markov property if this distribution is dependent only on the current state-
action pair (s, a), being independent of all previous states visited and actions
taken [2].

The function of future rewards that should be maximized by the agent is
called the expected return Gt. In finite episodic tasks, this expectation can be
undiscounted, meaning that the expected returns at state s is simply the sum
of expected future rewards. However, tasks are usually continuing, in other
words, they can not be broken into episodes and can continue without a limit.
In these cases, the expected return is discounted by a factor 0 < γ < 1, to
avoid divergence to infinity [2]. Thus, the expected return in an episode can
be described by:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1. (2-4)

A core part of most reinforcement learning algorithms is the estimation of
a value function, which estimates the expected return Gt defined by eq. (2-
4), starting from a state St and following a particular control policy. This
control policy can be denoted as the probability distribution π(a|s) of taking
action a given the current state s. The value function of the current state s
under a policy π is denoted Vπ(s). Likewise, the value function is estimated
not only considering the current state, but also considering any action that can

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 33

be taken in that state and actions taken thereafter, following the considered
control policy. When estimating the value function in these terms, it is denoted
as Qπ(s, a), or Q-value function [2]. Thus, we define Vπ(s) and Qπ(s, a) as:

Vπ(s) = Eπ [Gt|St = s]

= Eπ
[∞∑
k=0

γkRt+k+1

∣∣∣∣ St = s

]
,

(2-5)

and:

Qπ(s, a) = Eπ [Gt|St = s, At = a]

= Eπ
[∞∑
k=0

γkRt+k+1

∣∣∣∣ St = s, At = a

]
,

(2-6)

where the notation Eπ[·] represents the expected value of an agent under the
control policy π.

These value estimations maintain an average of returns for each state
visited, converging to the true expected return of a state as the amount of
times it is visited converges to infinity [2]. This also would require visiting
every state at least once, which is impractical for large state spaces.

A fundamental property of RL is that the definitions presented in
eqs. (2-5) and (2-6) satisfy recursive relationships, or, mathematically, Gt =
Rt+1 + γGt+1. This way, the value function can be estimated iteratively by
bootstrapping, which means that the value of each state is estimated based
on the value of the successive states, considering the underlying probability
distribution of state transitions and the control policy being followed [2]. Thus,
the value function can be described as eqs. (2-7) and (2-8):

Vπ(s) = Eπ [Gt|St = s]

= Eπ [Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γEπ [Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γVπ(s′)] ,

(2-7)

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 34

Qπ(s, a) = Eπ [Gt|St = s, At = a]

= Eπ [Rt+1 + γGt+1|St = s, At = a]

=
∑
s′,r

p(s′, r|s, a) [r + γEπ [Gt+1|St+1 = s′, At+1 = a′]]

=
∑
s′,r

p(s′, r|s, a) [r + γQπ(s′, a′)] ,

(2-8)

which are the Bellman equations for Vπ and Qπ, respectively. Many RL
methods, such as dynamic programming and temporal difference (TD) learning
leverage this process to generate an estimate of the value function. When
utilizing bootstrapping, if an episode ends in a certain state s, this is considered
a terminal state. In this case, the theoretical subsequent state s′ will always
be evaluated as 0, since no more rewards are expected thereafter [34].

2.2.2
Temporal difference learning

Temporal difference learning, or TD-learning, is a central idea of rein-
forcement learning. In these methods, the agent learns directly from raw ex-
perience, without requiring a model of the environment. TD methods do not
wait until the end of an episode to perform the value update, as it can be done
as soon the next state s′ and observed reward r are known [2].

It is, however, not possible to accurately estimate the state transition
probability distribution to calculate eq. (2-7), from a limited amount of
samples. Thus, the value function is updated incrementally, as each state
transition is a small sample from the distribution p(s′, r|s, a), following the
policy distribution π(a|s), resulting in the TD update in:

V (s)← (1− α)V (s) + α [r + γV (s′)]

← V (s) + α [r + γV (s′)− V (s)] ,
(2-9)

for V (s), with the same process applicable for the Q-value function:

Q(s, a)← (1− α)Q(s, a) + α [r + γQ(s′, a′)]

← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)] ,
(2-10)

where the factor α is a substitution for the importance-sampling ratio for
incremental implementations [2], used here as a form of learning rate. These are
the simplest TD update methods, named TD(0), or one-step TD. As pointed

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 35

out in the previous section, this update, based in part on an existing estimation,
is a bootstrapping method.

TD control methods have different approaches to update the value
functions, which can be on-policy or off-policy. When performing the value
update in eq. (2-10), on-policy methods sample the Q-value of the next state
s′, Q(s′, a′), considering that the next action a′ is sampled from the current
policy π(a|s).

Off-policy methods, however, sample the next action a′ from a different
policy than the one being followed, usually a theoretical, optimal, greedy
policy:

µ(s) = argmax
a

Q∗(s, a), (2-11)
attempting to directly estimate the optimal value, or Q-value functions,
respectively:

V ∗(s) = E
[
r + γmax

a′
V ∗(s′)

∣∣∣∣s] , (2-12)
and:

Q∗(s, a) = E
[
r + γmax

a′
Q∗(s′, a′)

∣∣∣∣s, a] . (2-13)
The greedy control policy consists of following states with the highest

values. This is a deterministic policy, as, at state s, only one action a ∈ A has
probability π(a|s) = 1 of being chosen, while others have a null probability.
For these policies, the notation µ(s) is used, instead. However, a purely
deterministic policy can lead to poor results, due to a lack of exploration. A
proper exploration strategy guarantees that the agent will visit states it would
not visit otherwise, providing value estimates outside poor local minima [2].
An exploration strategy can be built upon a pre-existing deterministic policy,
for example, an ε-greedy policy, with distribution described by:

π(a|s)←


1− ε+ ε

|A(s)| , if a = argmaxaQ(s, a)
ε

|A(s)| , otherwise,
(2-14)

based on an exploration factor ε.
This form of Q-value estimation is called Q-learning, and is considered

to be one of the early breakthroughs in reinforcement learning. In this method,
the learned action-value function Q, directly approximates the optimal action-
value function Q∗(s, a), independently of the policy being followed [2]. A
generic off-policy Q-learning routine is described by Algorithm 1.

There is another TD method called actor-critic, which becomes the basis
of many modern deep RL algorithms. In these methods, the control policy

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 36

Algorithm 1:GenericQ-learning routine for off-policy TD control
Initialize Q(s, a) for all s ∈ S
repeat

Sample a from a policy derived from Q(s, a), with a proper
exploration strategy, such as ε-greedy.
Take action a and observe s′, r.

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]

until s is terminal;

does not need to consult the value function to follow the highest valued
states. Instead, the control policy is estimated separately and is updated at
each iteration, usually via a stochastic gradient method. These methods are
discussed and detailed in further sections.

2.2.3
Approximation methods and Deep reinforcement learning

Simple tabular value function methods often work for very small learning
tasks, with limited space states. However, learning becomes impractical as the
state set S becomes arbitrarily larger and more complex, especially if the
state is continuous, as even the coarsest discretization methods eventually
come across the curse of dimensionality, i.e. the amount of possible states
increases exponentially with the amount of dimensions of the state space [2].
For instance, the number of possible 8-bit RGB-colour images of 320 × 240
pixels is 21843200, or, approximately, a googol to the power of 1843.

So that learning can be properly carried out in these situations, the
algorithm needs to generalize unvisited states by leveraging information from
previous experience. This way, it is able to determine an approximate value
function even within limited iterations.

There are several well-researched ways to perform this approximation.
Parameterized approximation methods estimate the value function employing
a feature weight vector φ which parameterizes the value function, making it
differentiable with respect to these parameters. In this form, state-value
functions are denoted Vφ(s) and action-value functions are denoted Qφ(s, a) [2],
and their gradients with respect to their parameters φ are denoted by ∇φ.

The most popular approximation method for modern RL algorithms is
the representation by deep neural networks [34]. In this form, the feature
weights φ are the neuron connection weights, represented in figure 2.5 by
the matrices [WHL1; · · · ;WHLn]. Neural networks can be differentiated with

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 37

respect to their weights, using a process called backpropagation.

2.2.3.1
Playing Atari games

Mnih et al. [35] propose a variant of the Q-learning (DQN) algorithm
to teach an agent to play Atari games by learning a control policy that maps
raw video data to input actions. This variant leverages recent deep learning
advancements in computer vision, by training a deep convolutional neural
network as an approximation to the action-value, Q, function.

There are several challenges present when integrating deep learning and
reinforcement learning. First, supervised DL algorithms require a large number
of hand-labeled training data, while, as previously discussed, only a scalar
reward signal is made available for RL algorithms, and it is usually sparse, noisy
and delayed. Second, while DL training data is assumed to be independent and
uncorrelated, RL algorithms usually deal with highly correlated sequences of
states as training data. Finally, in RL, the data distribution changes after
each iteration as new data is obtained through new control policies, posing a
problem for DL methods that assume a fixed distribution [35].

In order to mitigate the problem of data correlation and changing
distributions, the algorithm uses an experience replay mechanism [36], which
generates minibatches of data from previous iterations of the training routine,
smoothing out the sample distribution trough iterations. This is possible
because off-policy methods try to directly approximate the optimal Q-value
function Q∗(s, a) (eq. (2-13)), which should be able to satisfy the Bellman
equation (eq. (2-7)) regardless if sample transitions are obtained from obsolete
control policies. These older state transitions are usually uncorrelated to newer
samples as a result of being sampled from different control policies, helping to
prevent overfitting of the model. Additionally, DQN is able to greatly improve
sample efficiency by reusing older state transitions.

The Q-value function is learned by adjusting its weights φ aiming

...

...

...

...
WHL1 WHLn

Figure 2.5: Q-value function approximation by an artificial neural network.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 38

at minimizing the mean-squared Bellman error (MSBE), eq. (2-15), using
stochastic gradient descent, which updates the value function incrementally
with a target y(r, s′). For the DQN, this target is:

L(φ) =
∑
D

(y(r, s′)−Qφ(s, a))2
, (2-15)

where the transitions (s, a, r, s′) are obtained from a minibatch D sampled from
the replay buffer, and:

y(r, s′) = r + γmax
a′

Qφ(s′, a′). (2-16)

2.2.4
Actor-critic methods

Applying classic Q-learning methods with greedy control policies (eq. (2-
11)) is remarkably difficult for agents with continuous action spaces. An
immediate workaround would be discretizing the action space, but one would
rapdily hit the curse of dimensionality roadblock, as the amount of possible
actions grows exponentially with the dimensions of the action space.

For agents with continuous actions spaces, the control policy can be
represented by a parameterized function that can be differentiated with respect
to these parameters (θ). This control policy is updated by calculating its
gradient, with respect to its parameters, in the direction with the highest
probability of returns. Thus, these methods are called policy gradient methods
[14].

DQN-based Actor-Critic methods are a popular form of policy gradient
algorithms [14, 34], in which a differentiable control policy (the actor) is
improved based on the judgment of a value function (the critic). The simplest
policy gradient computed by this method is:

∇θQφ(s, µθ(s)), (2-17)
which updates the policy parameters via a deterministic policy gradient (DPG)
ascent [14], as to maximize the expected return of the control policy over the
states.

Deep Deterministic Policy Gradients (DDPG) [5] and Twin Delayed
DDPG (TD3) [12] are widely used actor-critic methods that introduce a
number of features to the base DPG algorithm, aiming to improve learning
stability, which is usually brittle, and speed up learning.

Replay buffers (DDPG). This is the same improvement introduced by the
Atari study presented in the previous section. This finite replay buffer takes

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 39

advantage of the off-policy charcteristics of DDPG to greatly improve sample
efficiency by reusing old uncorrelated state transitions.

Target networks (DDPG). TD methods rely on reusing the same approxi-
mation of the value function to calculate their updates. In many environments,
this implementation, especially with neural networks, is highly unstable and
prone to divergence. To avoid this issue, the value update target y(s′, r) is cal-
culated based on separate Q and policy networks that slowly track the most
recent corresponding network weights via Polyak averaging with update rate
τ :

φtarg ← τφ+ (1− τ)φtarg

θtarg ← τθ + (1− τ)θtarg.
(2-18)

In this way, the update target becomes:

y(s′, r) = r + γQφtarg(s′, µθtarg(s′)), (2-19)
and the critic parameters φ are updated with one-step gradient descent, based
on the loss function shown in eq. (2-15), as described by the update rule in:

φ← φ− α∇φL(φ). (2-20)
In both DDPG and TD3, the policy is still updated with the gradient in

eq. (2-17), using the most recent weights (φ, θ). The target weights (φtarg, θtarg)
are usually updated every iteration of the algorithm, with the τ factor set to a
value between 0 (slower tracking) and 1 (faster tracking), usually set closer to
0. The TD3 algorithm employs the same optimizations as DDPG, except for
not using a target network for the control policy.

Soft policy updates (TD3). In DDPG, Q-function approximation errors can
lead to localized narrow peaks in value estimation, which can be exploited by
the control policy. To avoid this particular kind of inaccuracy, the algorithm
introduces target policy smoothing, which serves as a regularizer, by adding a
small random normal noise to the target policy in Q-value updates, as in:

a′(s′) = clip(µθtarg(s′) + clip(ε,−c, c), alow, ahigh), ε ∼ N (0, σ). (2-21)

Note that, with this, the value function is not updated according to the greedy
policy anymore.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 40

Double Q-learning (TD3). To address the issue of overestimation bias of
the Q-value function, caused by the instability of its estimation, the algorithm
learns two concurrent Q-networks, performing the value update using the
minimum of these networks, or:

y(s′, r) = r + γ min
i=1,2

Qφi
(s′, a′(s′)) (2-22)

where a′(s′) is sampled from eq. (2-21) and the given update is performed for
both main Q-networks.

Delayed policy updates (TD3). In TD3, the "stabilizing" effect caused by
the use of a target policy network can be achieved by delaying policy updates
with respect to value updates. Despite a slight increase in volatility of value
estimates, experiments result in similar and faster convergent behaviours.

2.2.5
Soft Actor-Critic

A more recent iteration of a DQN-based actor-critic algorithm is the Soft
Actor-Critic (SAC) [13], which is the learning algorithm employed in this work.
The advantage of this algorithm is that it automatically adjusts exploration of
the agent by enforcing a maximum entropy target, in other words, a target of
maximum "randomness" of the control policy, resulting in a control policy that
is able to devise multiple routes to an objective. A version of this algorithm by
the same author [37] goes further and automatically adjusts the reward scale of
the entropy target, denominated the temperature. By using this method, not
only does it become unnecessary to tune exploration, but we can also expect
the agent to automatically seek improvement in low confidence subspaces. The
enforced entropy objective further speeds up learning compared to previous
actor-critic iterations, a crucial feature if one wishes to employ RL on a real-
life quadrotor [13].

2.2.5.1
Maximum entropy objetive

The maximization of the entropy is a measurement of the "randomness"
of a variable. Consider a random variable x with a density function P . We can
compute its entropy H as [34]:

H(P) = E
x∼P

[− logP (x)]. (2-23)
To enforce entropy maximization, the reward term is augmented with

an entropy term H(πθ(·|s)), which represents the entropy of the distribution

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 41

over actions πθ(·|s) of the stochastic control policy. The augmented reward
becomes, at time t:

Rt = r(st, at, st+1) + αH(πθ(·|st)), (2-24)
where the temperature, α, dictates the scale of the effect of the entropy term
in the value function and in the stochastic policy. Thus, the expected return
following the stochastic policy π becomes:

Vπ(s) = Eπ
[∞∑
t=0

γt (r(st, at, st+1) + αH(πθ(·|st)))
∣∣∣∣ s0 = s

]
, (2-25)

for the state value function from a timestep t = 0, and:

Qπ(s, a) = Eπ
[∞∑
t=0

γtr(st, at, st+1) + α
∞∑
t=1

γtαH(πθ(·|st))
∣∣∣∣ s0 = s, a0 = a

]
,

(2-26)
for the state-action value function from a timestep t = 0, which includes the
entropy bonuses from every timestep except the first [34]. With this, Vπ(s) can
be written in terms of Qπ(s, a) [13] by:

Vπ(s) = Ea∼π[Qπ(s, a)] + αH(πθ(·|s)), (2-27)
and the Bellman equations (eq. (2-7) and eq. (2-8)) for Qπ becomes [34]:

Qπ(s, a) = Es′∼P,a∼π [r(s, a, s′) + γ(Qπ(s′, a′) + αH(πθ(·|s′)))] , (2-28)

which, by the definition given in eq. (2-27), becomes:

Qπ(s, a) = Es′∼P [r(s, a, s′) + γVπ(s′)] . (2-29)
By the definition given in eq. (2-23), the expectation H(πθ(·|s)) can be

estimated using samples from the policy, thus being rewritten as:

H(πθ(·|s)) = − log πθ(a|s), a ∼ πθ(·|s). (2-30)
By replacing this expectation in eq. (2-28), we can estimate the target of

the MSBE loss (eq. (2-15)) of the Q-value function:

y(s′, r) = r + γ
(

min
i=1,2

Qφtarg,i
(s′, a′)− α log πθ(a′|s′)

)
, (2-31)

where this target value relates to the Q function not including the entropy
of the first (current) state (eq. (2-27)), and where a′ is sampled from the
distribution πθ(·|s′). Note that, in this implementation, target value networks
are used for bootstrapping, but not target policy networks. The algorithm is

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 42

"soft", since it performs the policy evaluation and improvement steps using its
own stochastic policy distribution over actions πθ(·|s) as a regularizer [34].

The control policy is updated in a way that maximizes the expected
returns-plus-entropy over all the visited states, i.e., over a minibatch of states,
it should maximize Vπ(s). Thus, for every update step, the policy is updated
via one-step gradient ascent of:

∇θ

(
min
i=1,2

Qφi
(s′, ãθ)− α log πθ(ãθ|s′)

)
, (2-32)

where ãθ is sampled from the distribution πθ(·|s′) differentiable with respect
to θ [34].

In the implementation of SAC used in this work, the entropy of the
stochastic policy is estimated via a Gaussian log-likelihood function combined
with an invertible squashing function [13]:

H(π(·|st)) =−1
2

len(a)∑
i=1

(
π(ai|st)− µ(ai|st)

σ(ai|st)

)2

+ 2 ln σ(ai|st) + ln 2π

Gaussian log-likelihood

−
len(a)∑
i=1

ln
(
1− tanh2 π(ai|st)

)
Invertible squashing function

,

(2-33)

assuming that the underlying distribution of the action vector a is Gaussian
and each action ai is bounded to finite values.

2.2.5.2
Automated entropy adjustment

The temperature α defines the scale of the influence of the entropy term in
the reward function. A high temperature causes the algorithm to approximate
a high-entropy low-return control policy, while a low temperature causes the
opposite. This complex trade-off has different effects with different training
environments, usually requiring manual tuning of the temperature for each
environment. Further, the temperature requirement depends on the policy,
which changes during the learning process. A solution consists in formulating a
different maximum entropy reinforcement learning objective, where the entropy
is treated as a constraint [37].

In this formulation, the average entropy of the policy is set as a constraint,
h, and the temperature α is adjusted by minimizing the loss function:

L(α) = − lnα(H(π(·|st)) + h) (2-34)
after performing the value update and policy improvement steps.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 43

As a result, the complex interplay between maximum entropy objec-
tive and maximum expected return from the environment is controlled in ac-
cordance to a minimum expected entropy constraint, adjusting the scale of
"stochasticity" according to the needs of the environment and the exploration
requirements [37]. In other words, if the policy entropy is below the constraint,
α increases, emphasizing the maximum entropy objective. On the other hand,
if the policy entropy is higher than the minimum entropy constraint, α de-
creases, emphasizing the maximum expected return.

2.3
Quadrotor dynamics

The quadrotor, also known as quadcopter, is a kind of unmanned aerial
vehicle (UAV, also commonly known as drone) that generates lift using 4
rotors, one at the extremity of each of its arms. Most quadrotors have these
rotors distributed symmetrically in a plus (+) shape or in a cross (×) shape.
Figure 2.6 shows a cross-shaped quadrotor. Despite the latter being more
common for commercial drones, the quadrotor used in the first part of this
work is plus-shaped, as we found to be easier to model mathematically.

A rotor corresponds to a motor-propeller pair. It rotates in a single
direction, generating a thrust (T) upwards and momentum (Q) around it,
against the direction of rotation. In order to prevent the quadrotor spinning
out of control due to the sum of momentums, 2 of the rotors rotate clockwise
while the other 2 rotate counter-clockwise [38].

While capable of movement in 6 degrees of freedom (X, Y, Z and rotation
around each of these axes), the quadrotor only actuates directly in 4 degrees of
freedom: Z (thrust), roll (θ), pitch (φ) and yaw (ψ) torques. Roll is the rotation
around the X axis, used to move along the Y axis. Pitch is the rotation around
the Y axis, used to move along the X axis. Yaw is the rotation around the Z
axis [38].

Model training and experiments are performed with a simulated quadro-

Figure 2.6: The Parrot Bebop is one of the most commonly known commercial
drones.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 44

tor based on the dynamic model of a simplified structure illustrated by fig-
ure 2.7. The central body of the quadrotor, or the hub, which houses the
battery and all the electronic components of the vehicle, as well as any extra
payload, is approximated by a sphere. Each of its arms is approximated by a
thin rod with no mass and its rotors (not shown in the figure) approximated
by point masses [39].

While the local and inertia reference frames most used for quadcopter
dynamics modelling is NED (north-east-down), where the axes X, Y and Z
point to, respectively, front, right and down, the formulation used in this work
uses the NEU reference frame (north-east-up), so the local reference frame is
X pointing to the front, Y pointing to the right and Z pointing up, as indicated
by the diagram.

The thrust Ti produced by each rotor results from the relationship
between rotor velocity and propeller parameters described by:

Ti = 4.392× 10−8 Ωd
3.5
√
α

(4.23× 10−4 Ω α), (2-35)

based on the aerodynamics of a dual-blade propeller with diameter d and
angle of attack defined by a "pitch" (α) calculation [40]. In this model, the
propeller pitch is the theoretical travel distance of the propeller after one full
revolution, assuming that the leading edge of the blades have an angle of
attack of 0◦ with respect to the airflow (no slip), as indicated by the diagram
shown in figure 2.8. Both propeller parameters are measured, in this case, in
inches.

In the same equation, Ω is the desired rotor velocity (in RPM,
revolutions-per-minute), the direct input of this model, assuming the electric
motor subsystem dynamics are negligible with respect to the overall system.

The force Fp applied by the rotors to the quadrotor in the local frame is

Spherical hub

Arm length

X
Y

Z

Figure 2.7: Simplified model of the quadrotor used in simulation.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 45

Propeller tip travel

Travel direction

Propeller diameter

Propeller pitch distance

Text

Figure 2.8: Diagram of propeller parameters: diameter and pitch, represented
by a Cessna C-172M propeller [41].

given by:

Fp =


0
0

Σ4
i=1Ti

 , (2-36)

and the momentum Mp applied by the rotors is given by:

Mp =


L(T1 − T3)
L(T2 − T4)

b(T1 − T2 + T3 − T4)

 , (2-37)

where each rotor is indexed as indicated by figure 2.9, and where L is the
length of the quadrotor arms and b is an appropriately dimensioned constant
that describes the rotor torque linearly with respect to the rotor thrust [42]
(in this case, b = 0.0245).

The moment of inertia of the simplified quadrotor model is given by

2

14

3

XY

FrontRight

Figure 2.9: Indexation of each rotor for total momentum calculation with
indicated direction of rotation.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 46

matrix I. In this simplification, the quadrotor hub is represented by a dense
sphere with massM and radius r, surrounded by point masses m at a distance
` from the center, representing the motors [39]. Hence, I results in a diagonal
3× 3 matrix given by:

I =


Ixx 0 0
0 Iyy 0
0 0 Izz

 , (2-38)

where its diagonal entries given by:

Ixx = Iyy = 2
5Mr2 + 2m`2

Izz = 2
5Mr2 + 4m`2.

(2-39)

The matrix R is the rotation matrix from the local reference frame to
the inertial frame, which describes the relationship between the quadrotor
velocities ν, in the local frame, and ṗ, in the inertial frame:

R = RxRyRz =


1 0 0
0 cθ −sθ
0 sθ cθ




cφ 0 sφ

0 1 0
−sφ 0 cφ



cψ −sψ 0
sψ cψ 0
0 0 1

 . (2-40)

The matrix S is the representation Jacobian which describes the rela-
tionship between the quadrotor angular velocities ω, in the local frame, to the
angular rates Φ̇, in the inertial frame:

S =


1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cφ cφ/cθ

 . (2-41)

where s∗, c∗ and t∗ are compact notations for, respectively, sin(∗), cos(∗) and
tan(∗).

Finally, the set of differential equations that describe the dynamics of
the quadrotor in the local and inertial frames are described by the set of
equations [42]:

ν̇ = −ω × ν +Rᵀg + Fp/m

ω̇ = −I−1ω × Iω + I−1Mp

ṗ = Rν

Φ̇ = Sω.

(2-42)

The observation array used as input to the reinforcement learning con-
trollers is the same state space array [ν, ω, p,Φ], where:

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 47

– ν and ω are, respectively, the linear and angular velocities of the
quadrotor in the local frame, and

– p and Φ are, respectively, the quadrotor position in the setpoint frame,
also referred as X, Y and Z positions, and its attitude in the setpoint
frame, which is its angular position around axes X (roll), Y (pitch) and
Z (yaw).

2.3.1
Linear adaptation

PID controllers are originally designed for controlling linear time-
invariant systems. Because most practical systems are non-linear, such as the
quadrotor, some adaptations are needed for the controller and/or for the plant.
A straightforward adaptation commonly used is a linear approximation by first
order Taylor series, where the system is modelled as a linear function around
a reference point. For quadrotors, this reference is the hover point, where all
velocities and attitude angles are zero [38].

In the linearized model of the quadrotor, movement in each of the 6
degrees of freedom become uncoupled double integrator subsystems, allowing
to design a controller for each subsystem separately as a single input single
output (SISO) plant [38]. Then, the desired control action, δ, calculated as
throttle, roll, pitch and yaw torques, can be allocated directly to individual
motor velocities Ω, via a control allocation matrix ∆:

Ω =


1 1 0 1
1 0 1 −1
1 −1 0 1
1 0 −1 −1

 δ, (2-43)

specific for the +-shaped quadrotor.

2.4
Related work

In this section, relevant work in the field is reviewed, that motivate the
development of this project.

2.4.1
Deep reinforcement learning for control applications

Deep reinforcement learning (DRL) control applications aim to develop a
controller that fills in the same positions as classic PID and similar controllers.
Control tasks are sub-divided in two levels: high-level control and low-level
control, in which a controller can fulfill either or both.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 48

High-level controllers fit into the external loop of a PID controller, so
that they do not interact directly with actuators, as the underlying dynamics
of quadrotors are notoriously difficult to control, especially if its parameters
are unknown or difficult to accurately measure. High-level control tasks often
rely on a pre-existing stable underlying on-board controller that manages the
low-level control loop [7].

Low-level controllers map the decisions taken by high-level controllers
to actual commands to the quadrotor actuators, as throttle-roll-pitch-yaw
(throttle-RPY) forces and torques, which are allocated to each motor, or
controlling motors directly. As a control task traditionally fulfilled by PID
controllers, some work has been developed in order to bring RL-trained
controllers to fit into this low-level control gap.

In our work, and in [27, 28, 43], the developed RL-controller fulfills both
low and high level control loops, as a learning-based controller is able to grasp
the full dynamics of the quadrotor.

Model-based RL (MBRL) methods have been employed in training with
real vehicles in the mentioned references. However, when working on real
hardware, sensors often present noise and drift in their measurements. The
controllers found in these works have shown to be able to handle this issue
by constructing a latent state-space model, from observational data [43], and
a model predictive controller (MPC) [7]. The controller developed in [43]
tracks a randomly placed waypoint in an enclosed space, actuating directly in
unallocated thrust forces and RPY torques, while the controller developed in [7]
aims to perform hover control, actuating directly in motor PWM commands.

These approaches are shown to be very sample efficient, by generating
their own simulated data based on real dynamics, while also being able,
with proper modifications, to account for sensor noise and disturbances. The
resulting predictive model, however, is fine-tuned for use with a particular
quadrotor configuration, with little known flexibility of use with different
configurations, which a robust controller aims to achieve.

Model-free methods have also been investigated for the presented task.
Previous works, such as [28], have successfully been able to develop a low-
level controller using a variation of classic RL algorithms within simulated
environments, capable of waypoint tracking and fast vehicle stabilization.
The RL algorithm developed in [28] is an adaptation of deterministic policy
optimization (or gradient, such as DDPG) with optimizations assuming the
training environment is deterministic. This implies the quadrotor parameters
are always constant, e.g. the same torques applied to the airframe produce the
same accelerations. This, however, is not the case for the environments explored

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 49

in this work, which are stochastic with respect to quadrotor parameters for
the first part (waypoint guidance and payload pickup and drop) and with
respect to sensor disturbances for the second part (visual navigation). In such
situations, stochastic gradient methods seem to display better performance
than deterministic gradient methods [28].

More recently, actor-critic algorithms have been showing good learning
performance, while being easier to implement and requiring fewer hyperpa-
rameter adjustments. Some examples of recent work using such algorithms
are [27], which investigates the use of TD3 for waypoint tracking, and [26],
which investigates the use of DDPG, TRPO and PPO for attitude control.

In [26], the author describes three open challenges in RL for attitude
control (but applicable for many RL robot control tasks): precision and accu-
racy, robustness and adaptation, and reward engineering. The first challenge is
the main focus of that work and [27], the development of a RL controller that
works extremely well in a very specific task by a specific quadrotor configura-
tion that aims to achieve a very strict control policy, which the author claims
to be the appropriate approach to such a time-sensitive task as the attitude
control.

Our work, however, aims at the second challenge when designing the
robust waypoint tracker. We show that it is possible to design a low-level RL
controller for a quadrotor that is, at the same time stable, accurate and robust
to a range of parameters and time varying circumstances. This is achieved
by leveraging the entropy enforcement introduced by the novel Soft Actor-
Critic algorithm. As previously mentioned, the entropy enforcement allows the
learning-based controller to devise multiple routes to an objective, achieving
great adaptability when the quadrotor dynamics become unpredictable.

2.4.2
Deep reinforcement learning for visual navigation

A robot navigating through enclosed and cluttered environments usually
requires high level sensors to complement the sensors that falter in these cases.
This is because these environments present a series of challenges compared to
their open-air counterparts: these environments are tight and crowded with
obstacles; indoor environments are usually GPS-denied, requiring an internal
odometry estimation; and cluttered environments have too much information
to be captured by simple sensors, like LIDARs, requiring high level sensors that
are able to extract richer information. Monocular, stereo and depth cameras
provide high level information about the environment, while being usually
cheaper and lighter than other available alternatives, becoming common for

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 50

navigation tasks in quadrotors and other mobile robots.
Modeling the value function as a CNN has been shown to yield satis-

factory results [35], allowing the development of RL-based robot navigation
controllers for the mentioned tasks.

DQN-based navigation controllers have been successfully developed for
a visual obstacle avoidance controller for a quadrotor [22, 23]. The vehicles
in these studies use a depth camera to generate observations of the environ-
ment, with [22] using a 4-timestep buffer of images. However, control policies
used with DQN algorithms are discrete. In the mentioned works, the DQN
navigation controllers are used together with low level classic controllers that
interconnect the high level decisions taken by the DQN to motor commands.
Additionally, these high level decisions are discretized, meaning that the control
policy loses capability of exploiting control strategies outside the predefined
discrete actions. A control policy that outputs decisions in the continuous
domain can be more adequate for use with quadrotors. For example, actor-
critic methods have been successfully employed for control tasks with visual
inputs [44, 45].

In case of [44], DDPG has been used for teaching a car to drive around
a simple track. Although it is not a quadrotor being controlled, the mentioned
work provides relevant insight on speeding up the learning process for real
time control tasks. The observations of the environment do not rely only
on the camera images, but also on numerical sensor data of the vehicle.
Additionally, it has been shown that the convolutional layers can be pre-trained
on a dataset and transferred to the RL model for a major improvement in
convergence speed, as these layers are able to abstract high level features of the
environment from the first episode. The convolutional layers were pre-trained
as a variational autoencoder (VAE) [46, 47], an unsupervised deep learning
algorithm with the purpose of encoding an input into a latent space.

Regarding the specific race course used for visual navigation training in
this dissertation, there is hardly any research available on proposed control
solutions. The only solution that uses DRL is [45], which employs two coop-
erating models: a segmentation model and an RL control policy. The segmen-
tation model is based on an object detection CNN, using monocular camera
RGB images as input, which feeds the rough gate position to a pre-trained
actor-critic model. Two controllers are trained with different action spaces:
one that outputs RPY and throttle setpoints and other that outputs the pa-
rameters of a spline trajectory, the latter performing better than the former.
Both controllers rely on underlying low level controllers, that translate these
outputs into motor velocities. The mentioned work, however, provides little

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 51

insight on some of the strategies employed, such as the choice of a convoluted
reward-driven training process for the segmentation model and the actor-critic
pre-training process.

As previously mentioned, our work aims to develop a controller that
outputs commands directly to the lowest level possible. From the cited works,
the lowest level of control is attitude position setpoints [45]. Due to limitations
of the visual navigation simulator, the lowest level of control are attitude
velocity setpoints, which is still a "step" lower than position setpoints, used in
the mentioned work. Additionally, even if not aiming for an agnostic controller
for visual navigation, using SAC for learning this controller is advantageous for
a racing course, considering that the quadrotor attitude, distance and velocity
with respect to each gate can vary a lot.

2.4.3
Other control and navigation solutions

The works described in this subsection aim to undertake similar tasks
using non-RL control solutions, however still using deep learning techniques.

2.4.3.1
Deep drone racing

Deep Drone Racing (DDR) [48–50] is a large scale project to develop a
racing controller for quadrotors capable of challenging human pilots and was
largely an inspiration for the development of the second part of this work.
Racing tracks are usually cluttered, GPS-denied and partially-known. At the
same time, fast-moving quadrotors often provides noisy and unreliable IMU
readings. DDR aims to combine deep learning gate detection and position
estimation with a state-of-the-art trajectory generation and tracking algorithm.

The gate detection system is designed with the sparsity of training data
of a racing track in mind. The deep CNN in charge of estimating the gate
positions also provide the controller with an uncertainty estimation, generating
a coarse map of gate locations [49, 50]. The detection model is based on the
DroNet architecture [51].

These predictions are incorporated into the trajectory controller using
an extended Kalman filter. A minimum jerk trajectory is generated using the
coarse map of gate locations and model predictive control, handling for gate
displacement during the course [49,50].

However, even if the proposed detection model is designed to be sample
efficient, it still requires large amounts of labeled data for the specific racing
track of interest [49].

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 52

2.4.3.2
DroNet

DroNet [51] is a CNN architecture, illustrated in figure 2.10, based on
the ResNet architecture [32], employed throughout this work to perform visual
localization estimation. This CNN is developed originally aiming to learn a
visual navigation controller for collision avoidance, that integrates with other
navigation controllers. This controller is trained in a supervised fashion with a
dataset consisting of collision sequences and potentially dangerous situations,
paired with desired steering angles for the quadrotor and the probability of
collision. The aim is to trade-off detection performance for processing time,
while still maintaining reliable collision avoidance [51].

In the DroNet architecture, an input image passes through 2 convolu-
tional layers before being fed to the residual blocks. First, a convolutional
layer with 32 filters of size 5×5 and a 2×2 stride with no activation. Then,
a max-pooling layer with a filter of size 3×3 and a 2×2 stride, with ReLU
activation.

The architecture has 3 residual blocks, each consisting of two convolu-
tional layers with filters of size 3×3, the first layer with a 2×2 stride and ReLU
activation and the second layer with normal striding and linear activation. The
skip connection of each block consists of a max-pooling layer with filters of size
1×1 and a 2×2 stride, with no activation, essentially downsampling the input
map to match the dimensions of the second layer output. Finally, this output
is added to the output of the second convolutional layer and passes through
a ReLU activation layer. Each residual block has, in order, 32, 64 and 128
convolutional filters for every convolutional layer and skip connection.

Figure 2.10: DroNet architecture from the original paper [51]. Each convolu-
tional layer is annotated with its filter size, amount of filters and a "/2" notation
indicating a 2× 2 stride.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 2. Background 53

Finally, the output of the last residual block is flattened and fully
connected to a 6 neuron feature layer with linear activation (contrary to the
2 neuron output of the original architecture depicted in figure 2.10). These
connections have an 20% dropout rate during training and no dropout during
evaluation.

To understand the decisions taken by the controller and which are the
relevant characteristics of a frame for this decision, a technique based on class
activation maps (CAM) called Grad-CAM [52] is used. This technique is based
on a generalization of CAM, used as a way to provide visual explanations on the
inner calculations of CNN-based architecture. This method uses the gradient
flow into the convolutional layers to localize which parts of an input image
have most relevance for the final decisions taken by the model.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

3
Methods

In this work, we explore different kinds of controllers drawn from some
of the tasks described in the previous chapter. First, we develop waypoint
guidance controllers that fit in both high and low level control loops. Then,
building upon the waypoint guidance, we integrate image processing techniques
to obtain the waypoint visual features from the environment.

In this chapter, we describe the methodology of design, development and
benchmarking of each of the controllers developed.

3.1
Low-level control

The first task of this work is to develop four different types of waypoint
guidance controllers, that map the position error from sensor data to motor ve-
locities. The first is a fully learned controller, trained in different environments
where some quadrotor parameters, namely mass, hub size, arm length and pro-
peller diameter, are randomized within predefined boundaries. This controller
employs only reinforcement learning to find a control policy that directly maps
the quadrotor velocities and positions to the desired motor velocities. The sec-
ond is a cascade controller, that delegates the low-level control loop to a PID
velocity controller and only learns the high-level position control, also trained
in environments with randomized quadrotor parameters. Finally, we use two
additional controllers to benchmark these control policies: a learned controller
trained on a single environment with fixed quadrotor parameters, and a simple
PID position controller with optimized gains. In this section, we describe how
each of these controllers are designed and how they integrate with the overall
system.

As mentioned, each controller should be able to control quadrotors
with different sets of physical parameters. In this section, each controller
is developed considering quadrotors with randomized parameters, as well
as a set of fixed parameters for benchmarking. This randomization ensures
the agnosticism of the controller with respect to quadrotor parameters, as
it does not overfit to a single dynamic model, which happens without this
randomization.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 3. Methods 55

3.1.1
PID gains optimization

Usually, the PID gains for the quadrotor controller are found via manual
tuning or via linear model analysis [53]. However, by employing these methods,
it becomes increasingly difficult to find gains appropriate for a quadrotor with
constant parameters, and even more difficult if the same controller is used
for quadrotors with different sets, or varying, parameters, which is the final
objective of the controllers described in this section. This occurs due to the
curse of dimensionality: the quadrotor is able to move with six degrees of
freedom (DoF), so that, to control movement in every DoF, with 6 uncoupled
controllers with proportional, integral and derivative gains each, the final
controller would have a total of 18 unique gains to be tuned. A faster, and
optimized, way of tuning PID gains consists employing an automatic search
strategy.

PID gains for both the pose and velocity PID controllers are found using a
simple hill climbing search strategy [54]: starting from a manually estimated set
of parameters, the search algorithm takes a step into a random direction in the
parameter space (a vector of PID gains) and reevaluates the controller, taking
the step if the performance is improved or returning to the previous value if
not. This is done multiple times until the evaluation reaches an apparent local
maximum, in this case, when performance is not improved after a number of
search steps. Further details on the implementation of this search algorithm
are laid out in Chapter 4.

Previous works have employed different search strategies for finding
optimized PID gains shown to be more efficient, such as genetic algorithms [55].
RL could be used also for automatically tuning PID gains [53]. However,
developing such methods is beyond the scope of this work.

3.1.2
Learning algorithm

As previously mentioned, both learning-based controllers are obtained
using the Soft Actor-Critic (SAC) algorithm, with automatic reward scale
adjustment. This algorithm was chosen for a number of reasons, the most
important being that, as an off-policy algorithm, with automatically adjusted
exploration, it benefits from greater sample efficiency than previous actor-
critic algorithms, leading to faster learning. Furthermore, it requires less
hyperparameter tuning by the user, and we expect that the maximum entropy
RL feature, presented by the algorithm, to help the control policy to easily
adapt to different quadrotor parameters.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 3. Methods 56

One of the features introduced by SAC is the automated adjustment of
the exploration rate. The algorithm introduces this feature by learning the
stochastic policy directly. Due to the entropy regularization present in the
algorithm, the stochastic policy produces a different exploration rate on a
per-state basis, stimulating exploration in regions with a larger flexibility of
actions, while reducing exploration in states with less flexibility of actions.

There is a total of five neural networks implemented in this algorithm,
which are the two Q-networks, for clipped double Q-learning, two target Q-
networks, that track the other two Q-networks, and one for the control policy.
All the networks are implemented with two hidden layers of 400 and 300
hidden neurons, using a rectified linear unit (ReLU) as activation function, as
illustrated by the architectures in figure 3.1, which is a standard architecture
for benchmarking RL algorithms, and is able to cope with a variety of problems
with a single structure [28]. The critic networks have no activation function
in their outputs and can be evaluated directly as Qi(s, a). The actor network
outputs, however, the parameters for the control policy: µ(s), with a tanh
activation function, and ln σ(s), with a sigmoid activation function.

In the actor network, µ(s) is the mean of the stochastic control policy. The
ln σ(s) output is normalized between a pre-set range of [−9; 2] and used to add
a Gaussian exploration noise ε to µ(s), with mean 0 and variance equal to the
exponential of the normalized output, resulting in the preliminary stochastic

s a

400 neurons, ReLU

300 neurons, ReLU

∑ Q(s,a)

(a)

s

400 neurons, ReLU

300 neurons, ReLU

π(s)

tanh
μ(s)

sigmoid
ln σ(s)

(b)

Figure 3.1: Network models that make up the Soft Actor-Critic, with hidden
layer size and activation functions of each layer. (a) Critic network. (b) Actor
network.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 3. Methods 57

policy in:

π(s) = µ(s) + ε, ε ∼ N (0, σ(s)). (3-1)
The functions π(s), µ(s) and σ(s) are then used to estimate the entropy of

the stochastic control policy as described by eq. (2-33). Finally, π(s) is clipped
using a tanh function and both it and µ(s) are scaled to the environment action
range, resulting in, respectively, a stochastic and a deterministic control policy
usable for training and testing.

In order to simulate the learning process that would take place with an
actual quadrotor, the neural network training is done off-line, with a fixed
amount of gradient steps, after an episode has ended, regardless of the episode
duration, as each update would take too long to be fitted in between live
control actions.

The pseudocode for the implementation of SAC used in this work is given
by Algorithm 3, found in the Appendix A.

3.1.3
Controller integration

In the same fashion as a traditional PID controller, the learning-based
controllers are guided by a waypoint by minimizing the position error of the
quadrotor with respect to this waypoint. The diagram in figure 3.2 illustrates
how the learned control policy (µ(s)) fits in the full controller, which works in
a simple feedback loop, where this µ(s) block is an implicit ANN structure,
shown in detail in figure 3.1b.

In the diagram, the error tuple that we are aiming to minimize is the
3-dimensional position (x, y, z) and the vehicle yaw (ψ). At the same time,
this controller receives the additional IMU data required to minimize attitude
angles and better observe the current state of the agent. The IMU provides,
additionally, the quadrotor roll (θ), pitch (φ), linear velocities (ẋ, ẏ, ż) and
angular rates (θ̇, φ̇, ψ̇). The fully learned controller outputs directly individual

+-
waypoint

(
system output

Figure 3.2: Control diagram for the fully learned controller. The µ(s) block
represents the ANN trained using the SAC algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 3. Methods 58

motor velocities (Ω), normalized between -1 and 1. Note that this controller
does not require command allocation to the rotors via the allocation matrix
∆, since it outputs motor velocities directly.

Figure 3.3 shows the control loop of two cascade PID controllers, that
compose the pose PID controller used in this work. This pose PID controller
consists of two control loops, as it is customary for quadrotor controllers.
The external loop calculates the pitch and roll targets (θt, φt) and throttle
force (δthrottle) of the vehicle necessary to navigate towards the waypoint. A
faster internal loop calculates the lower level attitude commands δatt, needed
to track the attitude targets, consisting in roll, pitch and yaw torques. Then,
these commands are concatenated with the throttle command, before being
allocated to individual motor velocities Ω via the control allocation matrix ∆.

The cascade controller used in this work combines a learned controller
µ(s) and a PID controller, as described by the diagram shown in figure 3.4.
This controller receives the pose error as input, along with the additional IMU
data, in the same way as the fully learned controller presented in figure 3.2.

The idea of this controller is to reproduce the control stack of com-
mercially available UAVs. Attitude setpoints, used as output of the top-level
controller of the pose PID stack (figure 3.3), are usually reserved for aerobatics
and "sport settings" of these drones. Instead, existing RL control research opt
for "higher" levels of control, such as a discrete displacement step used with
DQN-based controllers [22, 23]. To make use of the continuous action space
control capability of actor-critic methods, we opt for a control stack similar
to the Tello drone, also employed in RL research [56], which takes, as inputs,
the desired 3-dimensional linear velocities (ẋ, ẏ and ż summarized in the dia-
gram as νt) and yaw rate for the quadrotor (ψ̇t), while an underlying internal
controller calculates the low level commands needed to navigate towards the
given targets.

The forementioned underlying controller is implemented as a velocity
PID controller built with 2 control loops, equivalently to the strategy adopted

+-
waypoint

()

sys.
out.

+-
PID

(inner)

PID
(outer)

waypoint
()

PID loop

Figure 3.3: Control diagram for the pose PID controller. The µ(s) block
represents the ANN trained using the SAC algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 3. Methods 59

in the diagram show in figure 3.3, here summarized by a single "PID controller"
block. This inner PID loop returns throttle force and roll, pitch and yaw torques
as a command vector δ, allocated to individual motor velocities Ω via the
control allocation matrix ∆.

All the proposed controller loops, during experimentation, operate at a
40 Hz sampling rate.

+-
waypoint

()
sys.
out.+- PID

controller

Figure 3.4: Control diagram for the cascade controller: a learned external high-
level controller and a low-level PID loop for velocity control, with an implicit
structure similar to the diagram in figure 3.3. The µ(s) block represents the
ANN trained using the SAC algorithm.

3.2
Visual navigation

The second task of this work is to develop an RL controller that visually
detects a square gate in the environment and travels in its direction. This
controller is similar to the waypoint guidance controller developed in the
previous section, since it tries to navigate towards the center of the gate based
on sensor data, with the exception being the use of a ×-shaped quadrotor,
which is the only shape provided by the simulator used in this part. The
controller has access to the quadrotor IMU only for velocity and attitude
readings. On the other hand, it needs to extract relative position data from
an RGB-color camera and a depth camera. Thus, except for the addition of
convolutional layers, the development process for this control model is the same
as the fully learned controller.

Image processing is carried out via a convolutional neural network, which
connects directly to the input of the underlying learned controller, with its
weights adjustable with the same RL training method.

3.2.1
Baseline model

The baseline model serves as a standard of learning performance for
an ideally accurate gate position estimator. For this model, the training is

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 3. Methods 60

performed with ground truth gate features together with IMU data. The
feature vector of relevant gate position information are:

– Gate center position in the camera frame (X,Y);

– Gate distance from the camera;

– Gate rotation with respect to the camera plane; and

– Position in the camera frame of the subsequent gate (X,Y).

The position of the subsequent gate is added to the feature vector
expecting that the quadrotor will face it as soon as the current focused gate is
crossed. If the subsequent gate is not visible, this position is set to the origin
of the camera frame, or [0, 0], anticipating that the quadrotor will cross the
current gate facing forward.

Figures 3.5 and 3.6 show the visualization of the 6 key gate features. In
the leftmost picture of figure 3.6, the filled dot is the position of the next gate
and the hollow dot is the position of the subsequent gate.

Figure 3.5: Top-down view diagram representing the gate features.

Figure 3.6: Visualization of the gate features overlaid with the image input.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 3. Methods 61

The IMU provides the same data as in the waypoint guidance controller,
which are the quadrotor roll (θ), pitch (φ), linear velocities (ẋ, ẏ, ż) and angular
velocities (θ̇, φ̇, ψ̇). Hereby, we can employ the same learning approach as the
waypoint guidance controller developed in Section 3.1.2.

3.2.2
Image processing and gate detection

In order to perform visual navigation, a convolutional neural network
was added to both value functions and control policy. The architecture for
this task is the DroNet [51], an architecture based on the ResNet-8 with 3
residual blocks. This network receives, as input, an RGB-D1 320 pixels × 240
pixels image, obtained from the front camera of the quadrotor, providing, as
output, the 6-feature vector of relevant gate information, used as part of the
observation vector in the baseline model, connecting to the existing models as
highlighted in figure 3.7.

Images as states occupy much more memory than simple numerical
states. Thus, the replay buffer size is reduced, storing a maximum of 12000
samples.

Performing value and policy updates in CNNs is a very computationally
demanding process, sometimes taking up to 15 minutes per training episode,
depending on the hyperparameters used, with some models taking up to 10
days to complete the training process. This makes it exceedingly difficult to
tune training hyperparameters and choosing an appropriate feature vector size.

To speed up the training process and to facilitate the design of some high-
level hyperparameters, such as network architecture and the aforementioned
feature vector size, the CNN part of the model was trained separately, in

13 channels for color and one for depth.

st
at

es

π(s)

Q(s,a)

ac
tio

ns

Quadrotor

DroNet Features

IMU

RGB-D

Actor

Critic

Figure 3.7: The DroNet network, highlighted by the dashed block, translates
the input image into a feature vector, that is concatenated with the IMU
readings from the vehicle.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 3. Methods 62

a supervised manner, using ground truth data obtained from a simulation.
This change of strategy significantly accelerates the model convergence to a
satisfactory control policy.

3.2.2.1
Pre-trained model

Transfer learning is a common technique in machine learning, where the
weights of a previously-trained network are transferred to a portion of another
network for fine-tuning [57]. In this case, we pre-train a CNN that estimates
the gate feature vector based on the RGB-D image input. This way, we are
able to direct training for optimized results and easily evaluate the prediction
accuracy. Ground truth data is generated from the same simulation used for
training the RL model, with samples obtained from trajectories generated by
the baseline control policy. The pre-trained portion of the overall model of
figure 3.7 is highlighted by the dashed bounding box.

To increase the generalization capability of the network, an active
learning-based mechanism was employed [58]. After each network test step,
instead of selecting data based on uncertainty of prediction, the selection was
based on the prediction accuracy, since data is already labeled automatically.
With this, the 50% worst performing testing samples are added to the training
set, randomly substituting old samples, and resample a new test set from the
simulation. This refeeding loop is illustrated by the diagram in figure 3.8. This
approach seeks to improve prediction accuracy in a limited number of training
epochs by speeding up the learning process.

The feature vector has entries with largely differing magnitudes. For
example, the gate center position in the camera frame is given as an angle,
in radians, while the distance between the gate and the camera can reach up
to 30 m. Thus, the loss function L(θ) is weighted according to these differences

Simulation Training set

Testing set

Network
training

Evaluation

Ranked testing set

50% best 50% worstDiscard

Generate new Substitute
randomly

Figure 3.8: Training data resampling loop.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 3. Methods 63

in scale and according to the importance of each feature for accurate detection
(e.g. the center of the next gate is more relevant than other features), with a
weight vector λ:

L(θ) = 1
|D|

∑
D

(λyi − λŷi)2, (3-2)

where, out of a minibatch D, yi are the ground truth features and ŷi are the
predicted features. The weights correspond to the gate features, in order: hori-
zontal position, vertical position, distance, rotation, subsequent gate horizontal
position and subsequent gate vertical position, being λ = [5, 5, 0.5, 1, 1, 1] if two
or more gates are visible in the frame, and λ = [5, 5, 0.5, 1, 0, 0] otherwise.

The pre-trained CNN is integrated with the existing baseline model in
two ways: with trainable and with frozen weights. With trainable weights,
the CNN weights, including its final dense layer, are frozen for the first 200
episodes, allowing the baseline weights to adapt to the new input, then, all
trainable variables are unfrozen and fine-tuned. When integrated by the latter
manner, the CNN weights are frozen for the entire training process, allowing
only the baseline weights to be fine-tuned.

The prediction accuracy of a deep learning model with transferred
weights depends on the similarity between the original environment where
training takes place and the environment where the model performs prediction
after receiving the transferred weights [57]. Since the CNN pre-training is done
in the same racing courses as the control tasks, its prediction accuracy are
not expected to reduce significantly, allowing further training to take place
with is weights frozen. On the other hand, visual estimation introduces noise
and disturbances to the observation vector. Thus, even if both control tasks,
using real and estimated gate features, take place in the same racing courses,
the introduced disturbances throw off the pre-trained baseline control model
(actor and critic blocks in figure 3.7), making further training (fine-tuning) of
these layers mandatory, both with and without trainable CNN weights.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

4
Simulations

In this chapter we describe the details of implementation of the learning
routine, learning environments, network architecture and hyperparameters.
Additionally, we describe in detail the implementation of other algorithms, such
as the PID gains optimization, quadrotor dynamics and the AirSim simulator.

The deep learning models developed are processed at the institution’s
remote GPU cluster, with 4× Nvidia GTX 1080Ti 12 GB VRAM GPUs, 2×
Intel Xeon E5-2669 v3 CPUs and 128 GB RAM. Some simpler models were
processed, in parallel, in a personal computer, with an Nvidia GTX 1660Ti 6
GB VRAM GPU, an AMD Ryzen 5 2600 CPU and 16 GB RAM.

4.1
Low-level control

We consider two low-level control tasks performed by the quadrotor: a
waypoint guidance task and payload pickup course. The former is mainly used
for training the controllers, while the latter is used for evaluation of these
controllers, presenting a sudden mass change during payload pickup and drop.

The controllers are trained and tested in a simulated environment, con-
sisting of the dynamic model of a quadrotor, without accounting for aerody-
namic effects and sensor disturbances. This dynamic model takes as input the
desired angular velocities of each rotor, while providing, as observations, the
linear and angular velocities of the quadrotor in the local frame, and the linear
and angular positions in the setpoint frame. Additionally, the dynamic model
allows, at any time, the adjustment of five key quadrotor parameters: propeller
diameter, propeller pitch, arm length, hub size and vehicle mass.

4.1.1
Training environment

The task for the quadrotor during training is to navigate towards the
origin starting from a random point. For different training episodes, the
environment parameters are randomized, following the bounds and constraints
described by Table 4.1. The table includes, as well, the description of the fixed
environment parameters for the benchmark learned controller. Arm length

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 65

is constrained with respect to the propeller diameter in order to properly
accommodate it, while vehicle mass is constrained with respect to the same
parameter in order to maintain a reasonable thrust-weight ratio, particularly
around a mean rotor velocity of 5323 RPM, which was found to be the hover
point of the quadrotor with fixed parameters described in Table 4.1.

Table 4.1: Upper and lower bounds of randomized quadrotor parameters
used for waypoint controller development and PID gains optimization. Fixed
parameters are used for training the single-environment benchmark controller.

Parameter Lower bound Upper bound Fixed values
Propeller diameter (d) (in) 6.0 12.0 10.0
Propeller pitch (in) 4.5 4.5 4.5
Hub size (m) 0.05 0.15 0.10
Arm length (m) 0.0167d+ 0.05 0.0334d+ 0.05 0.3
Vehicle mass (kg) 0.1d− 0.3 0.265d− 0.9 1.2

The training hyperparameters used for the learned controllers are de-
scribed by Table 4.2. Optimizer, replay buffer size, initial training steps and
target update interval were chosen based on existing literature. The other
hyperparameters were found by manual tuning, aiming to strike a balance be-
tween steady state guidance error and computational time, tested in ranges
approximately one order of magnitude (×10) below and above the values de-
scribed by the same table. In our implementation, different target entropies
(h) did not significantly affect the learning performance, therefore this pa-
rameter is set at −4, as suggested by the original author of the algorithm for
4-dimensional action spaces [37].

Table 4.2: Hyperparameter and experiment configuration for the control tests.

Parameter Value
Optimizer Adam
Learning rate (Actor) 3 · 10−5

Learning rate (Critic) 3 · 10−4

Discount (γ) 0.99
Replay buffer size 107

Initial training steps 104

Number of samples per minibatch 256
Entropy target (h) −4
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient steps per episode 128

The ANNs are structured as described by figure 3.1, where the critic
networks receive, as input, the state-action pair, for which they output its

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 66

predicted value. The actor network receives, as input, the state for which it
predicts an appropriate action. As output, the network provides the determin-
istic action prediction and the natural logarithm of the appropriate exploration
rate, with which a stochastic control policy can be computed. Further details
of the training process are laid out in the SAC pseudocode in the Appendix A.

4.1.1.1
PID gains optimization

Here we consider the 18 different PID gains for a quadrotor controller.
These gains are classified in categories with respect to which variable it
controls (linear space: x, y, z, angular space: θ, φ, ψ) and to which term it
refers to (proportional: p, integral: i, derivative: d). For example, the pitch
angle proportional controller is denoted as kp,φ.

Prior to initiating the search algorithm, 100 evaluation environments are
generated using randomized parameters within the bounds and constraints de-
scribed in Table 4.1. This is done to maintain consistency between evaluations
of different sets of PID gains.

For each search step, a random Gaussian noise with mean 0 and variance 1
is added to the gains vector. This vector is then clipped between a lower bound
and an upper bound. The lower bounds are kp,x, kp,y:0.1, kp,z:0.5, kp,θ, kp,φ:1.0,
kp,ψ:0.5 and 0 for all other gains. The upper bound is set to 10 for all gains.
Lower bounds were initially chosen as 0 for all gains. However, the search
would result in 0 for some of the gains, including some proportional gains and,
sometimes, eliminating completely the control feedback loop. This happened
especially with the yaw gains, due to its uncoupled nature not affecting overall
stability. Because of this, the lower bounds were raised to adequate values for
the indispensable proportional gains. Upper bounds were chosen arbitrarily as
10. Since gains were not clipped at 10 during search, it was left as is.

Finally, after a new set of gains is found, it is evaluated. If performance is
improved, this set becomes the "current" set of gains, else it is discarded. The
search is terminated if after 200 steps there is no improvement in performance.

Evaluation - position controller: The performance of a set of controller
gains is evaluated on how many tests end with the quadrotor hovering at the
waypoint. For consistency, this waypoint is always set to the origin, with a
starting point set to a fixed distance of 1 m, with initial quadrotor attitude
angles ranging from -0.064π to 0.064π radians (approximately 11.5°) for pitch
and roll, which are reasonable ranges for non-acrobatic quadrotors, and from
-0.3π to 0.3π radians (approximately 54°) for yaw, which is a reasonable range

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 67

to account any need for turning left or right. Starting points are randomized
in advance and are the same for every iteration of the search algorithm.

Evaluation - velocity controller: Starting from the origin, the quadrotor
follows a predefined trajectory, acting in all four action dimensions: roll, pitch,
yaw and throttle. The performance is evaluated as the sum of the error signal
along this trajectory.

Search dimensionality reduction: To further speed up the search time,
we employ a number of optimizations to trim the search space from the 18
aforementioned PID gains. As the quadrotor is symmetric, the gains for pitch
and roll angles are the same, as well as gains for the movement along the X
and Y axes. Furthermore, as the linear approximation of the quadrotor is a
double integrator [38], we can forego the integral gains, except for the vertical
movement along the Z axis. With these optimizations, the search space is
effectively reduced to only 9 parameters: kp,xy, kp,z, ki,z, kd,xy, kd,z, kp,θφ, kp,ψ,
kd,θφ and kd,ψ.

4.1.1.2
Integrating dynamics with the environment

For the training phase, the quadrotor is subject to a 20 Hz control rate
and a maximum episode time of 60 seconds (1200 time steps). For testing and
experimentation, the same controller is subject to a 40 Hz control rate and
maximum episode time of 60 seconds (2400 time steps). This is done to prevent
a jittering behaviour we found during experiments, that occurs if the control
rate is too low, likely caused by overfitting in some of the models trained.

The learning-based controller takes as input the pose error of the quadro-
tor with respect to the setpoint in terms of 3-dimesional errors (x, y, z) and yaw
(ψ), as well as IMU data, such as roll, pitch, attitude rates and linear velocities.
As output, the controller yields a normalized motor velocity vector, mapped
to the range [1000 ; 9500] RPM. Due to the variability of vehicle parameters,
the action is not always centered around the hover point. Consequently, the
controller must learn this offset, an especially useful ability for handling the
picking up and dropping of the payload.

The equations of motion in the local and inertial frames are, then, eval-
uated in the discrete-time environment using the ODE integrator included in
Python’s scipy1 library, employing the Real-valued Variable-coefficient Ordi-
nary Differential Equation solver (VODE) and a method based on backward

1<https://www.scipy.org/> Accessed: 12 Mar. 2021

https://www.scipy.org/
DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 68

differentiation formulas (BDF). The system is integrated in up to 500 steps per
control step, but sampled at the desired control rate for training or testing.

4.1.1.3
Starting conditions

For the origin guidance task, for both training and testing, the starting
points are chosen in the same fashion as in the PID gains search, described in
the paragraph "Evaluation - position controller", but sampled randomly
at every episode, instead of being chosen from a set of predefined parameters.

4.1.1.4
Reward function

To complete this task, we define a reward function which is densely
distributed through states, unless a state is terminal, in other words, if the
quadrotor crosses the environment boundaries, in which then a reward of -80
is given. The reward function thus is described by:

r(s, a, s′) =

−80 if the state is terminal;

−1.0
√
p2
x + p2

y + p2
z − 0.1

√
θ2 + φ2 − 0.5

√
ψ2 otherwise,

(4-1)

based on the position errors (px, py, pz) and the attitude angles: roll (θ), pitch
(φ) and yaw error (ψ). Defining the reward function in terms of the inverted
quadratic error is customary in control problems [59]. However, we found in
preliminary experiments that, for this environment, the root-squared error
produces a more accurate control policy, when compared to the quadratic
error. The reward term for roll and pitch angles aims to improve stability by
minimizing the pitch and roll of the quadrotor during training. The weight
factors for the positions and angles terms were found by manual tuning, where
we did not want the angle terms to dominate the final reward too much.

4.1.2
Testing environment and experiment setup

The payload pickup course consists in navigating towards 2 waypoints in
3D space. This task is designed to take advantage of the parameter-agnostic
capability of the controller by changing the vehicle size and mass mid-flight
in the following fashion: upon arriving at the first waypoint, the quadrotor
receives an additional mass corresponding to 30% of its current mass and an
increased hub size of an extra 10 centimeters radius to simulate the extra
size of the payload, which is a reasonable payload-mass ratio considering real

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 69

life payload-carrying multi-rotor (non-winged) drones. Then, it proceeds to
the second waypoint, where this additional mass is removed, and, finally, flies
back to the first waypoint. Each waypoint represents the origin of the setpoint
frame, which can be moved within the inertial frame to the desired waypoint.

The controller is not guided by the payload pickup and drop waypoints
directly, instead it is guided by a vector that points towards the desired
waypoint, but with norm clipped to the maximum length of 1 m, as shown in
figure 4.1. This is done to ensure the controller operates within the boundaries
used for training or searching, especially because the output of neural networks
outside the planned boundaries can be unpredictable.

The quadrotor is considered to have reached a waypoint when it is at
most 0.15 m from its destination, which is set considering the steady state
errors of the controllers, and is considered stable. The stability requirement
is that the squared root sum of squared angular positions and rates errors is
below a threshold which is defined by manual tuning, in this case, 0.15, where
angular positions are measured in radians and angular rates are measured in
rad/s.

For ease of visualization and evaluation, the experiments are performed in
environments varying with respect to only propeller diameter and vehicle mass,
with the arm length adjusted accordingly to a mean between the upper and
lower bounds set for the training phase, with no randomization. This way, the
controller performance can be evaluated in a 2-dimensional visualization. The
ranges and constraints of these three parameters are described in Table 4.3.

For the payload pickup task, the vehicle mass upper bound is reduced
to approximately 76% of the value used for the training task, in order to
accommodate the extra 30% payload weight, without burdening the vehicle to
a point it cannot hover. When the extra mass is added, the total mass equals
the upper bound set for the training task.

True
setpoint

Clipped
setpoint

1.0 m

Training
spawn range

Figure 4.1: Diagram showing how a setpoint is clipped if it is >1 m away from
the quadrotor.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 70

Table 4.3: Range of quadrotor parameters used in experiments.

Parameter Lower bound Upper bound
(waypoint tracking)

Upper bound
(payload pickup)

Propeller diameter
(d) (in) 6.0 12.0 12.0

Arm length (m) 0.025d+ 0.05 0.025d+ 0.05 0.025d+ 0.05
Vehicle mass (kg) 0.1d− 0.3 0.265d− 0.9 0.2d− 0.66

The waypoints for the payload pickup task are the same for all exper-
iments for consistency. The pickup point is [−0.8,−0.3,−0.5]m, in the lower
half of the environment, whereas the drop point is [0.8, 0.3, 0.5]m, in the upper
half, requiring the quadrotor to climb while carrying the extra weight, posing
an interesting challenge for the designed controllers.

The quadrotor spawns close to the pickup point, anywhere within a 0.5 m
cube centered on it and with the same initial attitude angles used in training,
which range from -0.064π to 0.064π radians for pitch and roll and from -0.3π
to 0.3π radians for yaw.

For each controller, enough tests are performed until it reaches 100
successful samples. A payload pickup test is considered successful if the
quadrotor manages to reach all the waypoints defined in the trajectory within
a time limit, set to 500 time steps (12.5 seconds at 40 Hz) for each waypoint.

4.2
Visual navigation: AirSim

For the visual navigation controller, we use an Unreal Engine-based
simulator, AirSim2 [60]. This simulator generates a 3D world where the drone
navigates and allows spawning a camera, which creates a rendering of the
environment for visual processing tasks. The simulator also models the drone
flight and collision physics, for accurate real-world representation. For the
racing courses used, the simulator does not allow the exchange of quadrotor
models. Thus, in this part, the quadrotor parameters are left as default and
do not change.

The main objective of the visual navigation controller is to complete a
racing course by crossing square gates laid along the race path, in sequence,
without colliding with them. In order to teach the agent to cross a gate, we
define a sub-task that consists in navigating towards the center position of the
gate, similarly to how the low-level controller developed in this work navigates
towards a waypoint in the environment.

2<https://microsoft.github.io/AirSim/> Accessed: 12 Mar. 2021

https://microsoft.github.io/AirSim/
DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 71

In this sub-task, the controller has no access to externally available
information on the racing course, such as in which section of the course the
quadrotor is, how many gates have been traversed, etc. The controller also
does not know the shape and size of each gate beforehand, being required to
learn these by itself as it trains. Aside from navigating towards the gate 3D
position, the quadrotor is taught to cross it facing the next gate to be crossed.

The training hyperparameters used for this environment are the same
used for the low-level control environment, described in Table 4.2, and the
same network architecture, except the CNN prior to the feature vector input,
is used for the actor and critic networks. The only exception is the maximum
buffer size, which is reduced to 1.2 · 104 if it is storing images, since they
demand a larger memory space. Carrying over these characteristics from the
previous training algorithms yields satisfactory results, especially considering
that manual tuning is unmanageable for this environment, as training takes a
notoriously long time to complete.

The actions are sent to the simulation via a moveByAngleRatesThrot-
tleAsync method, the lowest-level command available for this simulator, which
sends angular velocities setpoints in rad/s, as well as a throttle command be-
tween 0 and 1. These angular velocities are limited by the simulator to the
range [−1 ; 1], the same output range used by the control policy network, so
there is no need to adjust these commands. On the other hand, for throttle
commands, the control policy output is normalized to the range [0.2 ; 1], since
its midpoint, 0.6, is the hover point of the quadrotor in the simulation, so that
a zero throttle output by the control policy corresponds to a hover behavior.

4.2.1
Racing courses

The racing courses are based on the NeurIPS2019 Drone Racing3 com-
petition, more specifically, the Soccer_Field_Training tracks. In these tracks,
the racing path is marked with large square gates (figure 4.2). The colored
checkered sides indicate the direction of crossing.

The Soccer_Field_Easy course is simply circular, with gates vertically
aligned and equally spaced. The course map is shown in figure 4.3. On the
other hand, the Soccer_Field_Medium course is more complex. Gates are
both sparsely and tightly spaced, with tight turns, also requiring climbing
and descending. The course map is shown in figure 4.4.

3<https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/> Accessed:
12 Mar. 2021

https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/
DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 72

(a) (b)

Figure 4.2: Gate texture indicating front/back side and correct crossing direc-
tion. (a) Front side. (b) Back side.

40 30 20 10 0
X (m)

10

5

0

5

10

15

20

25

30

Y
(m

)

00

01

02

0304

05

06

07

08

09 10

11

Soccer Field Easy Map

Figure 4.3: "Easy" race course top-down view. Gates are numbered according
to the order of crossing and crossing direction is indicated.

The medium course presents a few choke points, that pose a challenge for
the navigation controllers. When navigating through the sparse sections, the
depth camera will not be able to pick up the gates reliably. On the other hand,
in the crowded sections, the camera will not be able to capture the next gate
entirely, especially during ascent/descent or tight curves. Figure 4.5 shows a
crowded descent section and figure 4.6 shows an ascent section, both of which
presenting a challenge to the developed navigation controllers. The visual
estimator is unable to tackle the challenges present in these sections reliably
without an external aiding mechanism. Thus, the baseline RL controller needs
to learn how to manage the estimation disturbances during the fine-tuning
phase.

Training takes place in both racing courses. For each training or testing

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 73

140 120 100 80 60 40 20 0
X (m)

20

0

20

40

60

80

100
Y

(m
)

00

01

02

03

04
0506070809

10

11

12

13

14
15

16

17

18

19 20 21 22

23

24

Soccer Field Medium Map

Figure 4.4: "Medium" race course top-down view. Gates are numbered accord-
ing to the order of crossing and crossing direction is indicated.

episode, one of the courses is chosen randomly for spawning the quadrotor.
After loading and prior to training or testing, the simulation environment is
cleared of any objects except the gates, the quadrotor and the skybox.

4.2.2
Training environment

The training environment is an interface between the simulation and the
training algorithm. This interface processes the state of the simulation in order
to issue observations and rewards to the learning algorithm, as well as to serve
as mission control (i.e. detect gate crossings and early termination conditions).

While the simulation operates with real-time control actions, the envi-
ronment operates through a lockstep logic, in a sample rate of 10 Hz. In other
words, the simulation remains paused until a control action is issued. Then, it
runs for 100 ms until it is paused again and the new simulation state is ob-
served along the reward signal. In this way, we guarantee the action is issued at
the same time, and same state s, the control policy is evaluated. Additionally,
any further computations can be done while the simulation is paused, avoiding
disruption of this cycle.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 74

Figure 4.5: Steep descent section of the medium course.

Figure 4.6: Steep ascent section of the medium course.

The baseline layers, denoted by the Actor and Critic blocks in the
diagram in figure 3.7, are ANNs structured as described by figure 3.1, where
the critic networks receive, as input, the state-action pair, for which they
output its predicted value. The actor network receives, as input, the state for
which it predicts an appropriate action. As output, the network provides the
deterministic action prediction and the natural logarithm of the appropriate
exploration rate, with which a stochastic control policy can be computed.
For both networks, the state vector contains true gate features during the
"baseline" training phase of this controller, while it contains estimated gate
features output by the DroNet during the "visual" training phase. During the
latter phase, the DroNet receives, as input, the FPV camera feed, and its
output is connected directly to the first 6 entries of the state vector.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 75

4.2.2.1
Starting conditions

To generalize detection for the different gates, especially during early
steps of training, the quadrotor is spawned in a random position along the
course. This position is chosen as follows:

1. A random gate from the course (except the last) is chosen to be the first
the quadrotor attempts to cross;

2. Find the previous gate, or a fixed point in case the quadrotor starts at
the first gate, and find the line that connects this gate to the next;

3. Begin at any point along this line between the previous gate and middle
point; and

4. If the length of the line is larger than 10 m, shift the quadrotor position
2 m towards the next gate and add a random position noise along axes
X and Y of 1.5 m.

4.2.2.2
Reward function

The reward is densely distributed through states and corresponds to the
absolute distance between the state and the center of the gate, or:

r(s, a, s′) = −0.1d = −0.1
√
p2
x + p2

y + p2
z, (4-2)

which is, as seen by the guidance controller, the position error between the
quadrotor and the setpoint.

In certain states, the distance-based reward is substituted by a more
substantial value that indicates the desirability of that state. In case a gate is
crossed, the agent receives, instead, a reward of 100, the only positive reward
possible for this environment. In case a state is terminal, the agent receives,
instead, a negative reward based on the cause of termination.

– If the quadrotor collides with a gate, the episode ends with a terminal
reward of -5;

– If the next gate to be crossed is not visible, the episode ends with a
terminal reward of -20, even if other gates are still visible (otherwise, the
agent learns to follow the course while ignoring the gates).

The completion of the course is not considered a terminal state, even if
it is a termination condition, as we wish the learning algorithm to understand
the course as infinite, at least theoretically.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 76

There are other termination conditions that do not entail extra rewards
and are not considered terminal states. These are included to limit the episode
length, when termination by other means seem unlikely. One condition is a
maximum distance towards the gate to be crossed, if the quadrotor moves
past 50 m from the gate. Another condition is a maximum amount of time for
a gate to be crossed (timeout) of 600 time steps, or 60 seconds at 10 Hz.

4.2.2.3
Camera properties

The visual observations are provided by the simulation of an RGB-D
camera, that provides a 3-channel color image (red, green and blue) with an
extra channel for depth measurements. The image resolution is 320×240 pixels
and the field of view angle is 90◦.

The color images are requested from the simulator as uncompressed
matrices with each pixel encoded as an unsigned 8-bit integer (values ranging
from 0 to 255) and this image is normalized to values between -1 and 1 prior
to being fed to the actor-critic networks.

The depth images are requested from the simulator as an uncompressed
depth perspective, in other words, each pixel represents the length, in meters, of
a projection ray between the camera and the object in that pixel. Measurements
provided by the simulation are not capped, thus, as we wish to emulate a
real depth camera, we clip the measurements to 20 m. Then, this image is
normalized to values between -1 and 1, prior to being fed to the actor-critic
networks4.

Further, the images are stabilized with the help of a gimbal, which is
a device that mechanically stabilizes the camera of a quadrotor, a common
feature of commercial photography and racing UAVs5. This device maintains
the camera pitch and roll at 0◦ with respect to the inertial coordinate frame.

4.2.3
CNN pre-training

The convolutional section of the model is trained separately in the same
environment as the baseline model. In this training process, the dataset is
generated on-the-fly by following the baseline control policy in a new simulation
instance. Once the initial dataset, consisting of a replay buffer, is filled, a
supervised training process begins. During this stage, the final dense layer of

4In fact, the normalized image is multiplied by −1, as the normalization function is the
same used for visualization. Mathematically, there should be no difference in performance.

5All but one of the top-selling quadrotors in <https://www.techradar.com/news/bes
t-drones> (Accessed: 15 Apr. 2021) feature a gimballed camera.

https://www.techradar.com/news/best-drones
https://www.techradar.com/news/best-drones
DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 77

the DroNet architecture has a dropout rate of 0.2. This dropout is removed
(factor set to 0) during testing and once the CNN is integrated with the existing
actor-critic model, even when fine-tuned.

In this part of training, the CNN receives, as input, the FPV camera
feed. As output, it provides a prediction of the features of the nearest gate. The
network is trained by comparing these predicted features to the true features.

For the model testing, the samples are generated again from the sim-
ulation. In order to improve the model generalization, we select the testing
samples which results in low accuracy predictions and add those to the replay
buffer, substituting older samples at random.

Algorithm 2: CNN pre-training
Fill a replay buffer R with samples
for epoch = 1,Nepochs do

Train the network for every minibatch from R
if evaluation step then

Generate Nt new samples from the simulation
Evaluate the network on these new samples
↪→ Store the prediction loss for each individual sample
Find the median ỹ of these losses
for each test sample do

Store in R if loss > ỹ, replacing a random sample
end

end
end

The hyperparameters used for training this network are described in
Table 4.4.

Table 4.4: Hyperparameters for the supervisioned training of the DroNet.

Parameter Value
Optimizer Adam
Learning rate 3 · 10−4

Replay buffer (dataset) size 12800
Batch size 128
Test interval (epochs) 100
Test samples 2000

4.2.3.1
Grad-CAM

Grad-CAM [52] is a special class activation map visualization tool used
to verify how CNNs evaluate inputs and calculate their outputs. This tool

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 4. Simulations 78

generates a heatmap highlighting the sections of an input mage with the most
relevance for the model, as shown in figure 4.7. This tool lets one check if
the model correctly identifies the next gate to be traversed and the gate that
follows.

Figure 4.7: Grad-CAM overlay over RGB (left) and depth (right) camera. Red
overlay indicates higher relevance regions, while blue overlay indicates less
relevant regions.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

5
Results

In this chapter, the results of the proposed experiments are laid out and
commented in detail. Similarly to Chapters 3 and 4, this chapter is divided in
two sections, one for each part of the dual objective, namely "low-level control"
and "visual navigation".

For the low-level control section, experiments are carried out using the
dynamic model of the quadrotor as the virtual environment. The tasks consist
of navigating to setpoints in space while introducing variations in the vehicle
parameters before and during experiments.

And, for the visual navigation section, experiments are carried out in
the 3D simulator AirSim, containing one of the two predefined gate arrange-
ments, namely Soccer_Field_Easy and Soccer_Field_Medium. The task of
the quadrotor in this environment is to attempt to cross the gates in order. In
this section, two controllers are evaluated: a "baseline" controller which takes,
as part of its input, real position data of the gates, and a "visual" controller
which estimates the gates’ positions from an FPV camera feed.

5.1
Low-level control results

In this section, we lay out the results of development and testing of the
proposed low-level controllers. The key experiments found in this section are:

– The resulting PID gains for the PID controllers;

– Learning performance of the RL controllers; and

– Performance in carrying out the proposed tasks, which are:

– Simple waypoint guidance experiments; and
– The payload pickup and drop course.

For the waypoint guidance experiments, starting conditions are the same
used during training, described in Section 4.1.1. Success and failure conditions
are also the same: in a successful test, the quadrotor is capable of remaining
within the environment boundaries for 12.5 seconds. If these boundaries are
crossed before this time, the experiment is considered a failure. Note that

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 80

this does not take into account the quadrotor stability, errors and oscillatory
responses.

For the payload pickup experiments, starting conditions are also the same
used during training, described in Section 4.1.1. Successful experiments consist
of the quadrotor reaching the pickup point again after dropping the payload in
the designed drop point. If the quadrotor crosses the environment boundaries,
or is unable to reach any waypoint within 12.5 seconds from spawning or
from the previous waypoint, the experiment is considered a failure. Further
details on the criterions used for convergence to a waypoint can be found
under Section 4.1.2.

One of the metrics used to evaluate the performance of each controller in
carrying out the proposed tasks is its expectation (E[x]) to do so, is estimated
for different combinations of the quadrotors size (propeller diameter and arm
length) and mass. The experiments for each controller are distributed in a
2D parameter space, composed by the propeller diameter and the vehicle
mass, according to the parameter combination used for each test. Then, the
expectation map is computed using a moving window filter of size [1× 0.417]
(propeller size×mass) in a 100×100 grid in the parameter space. For each
point in the map, the expectation of success is estimated by the amount of
successful tests under a window around this point, with respect to the total
tests under this window, or nsuccess/ntotal. Points outside the limits established
by Table 4.3 and points in which there are no tests under its respective window
are left blank.

Figure 5.1 illustrates how this filter works in a dummy experiment
distribution. In the figure, blue dots represent successful experiments, while
red dots represent unsuccessful experiments. Under a window centered in
parameters (m, pd), the expectation of success for this parameter combination
is computed by:

E(m, pd) = successful tests
total tests = 6/8 = 0.75, (5-1)

and can be visually evaluated in figure 5.1b.

5.1.1
PID tuning and performance

The resulting gains for the controllers after the search is concluded are
described by Table 5.1, for the position PID gains, and Table 5.2, for the
velocity PID gains, the latter composing part of the cascade controller. These
gains are obtained from an initial gain vector of [0.1, 3.0, 3.9, 0.0, 0.0, 10., 1.0,
0.71, 0.0] for, respectively, the gains kp,xy, kp,z, ki,z, kd,xy, kd,z, kp,θφ, kp,ψ, kd,θφ,

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 81

6 7 8 9 10 11 12
Propeller diameter (in)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ve
hi

cle
 m

as
s (

kg
)

(a)

9.4 9.5 9.6 9.7 9.8 9.9 10.0
Propeller diameter (in)

1.25

1.30

1.35

1.40

1.45

1.50

Ve
hi

cle
 m

as
s (

kg
)

(b)

Figure 5.1: Visual representation of the moving window filter for a dummy
experiment success distribution. The winow size in this representation does
not correspond to the actual window size used.

and kd,ψ. The initial gains are obtained from manual tuning, set to values that
allow the controller to complete the waypoint guidance task successfully at
least once, in order to obtain a non-minimum final reward and to a "gradient"
to be perceivable (i.e. a search step that results in clear improvement in
evaluation). Otherwise, search steps need to rely on chance to find a set of
gains that result in a different, non-minimum evaluation.

Table 5.1: PID gains for the quadrotor position control.

P I D
Longitudinal position (X,Y) 0.125 0.0 0.247
Vertical position (Z) 3.707 0.877 0.841
Roll (θ), Pitch (φ) 6.107 0.0 2.828
Yaw (ψ) 0.521 0.0 1.683

Figure 5.2 shows the resulting performance of these gains for the pose
PID in the waypoint guidance task. This controller obtained 100 successful
tests out of 131. Figure 5.2b shows the position over time of all successful
experiments broken down in each direction of movement, X, Y and Z. Note
that the horizontal and vertical movements behave differently. Figure 5.2c
shows the attitude over time of all successful experiments broken down in each
direction of rotation, θ, φ and ψ.

The position axes have been symmetrically log-scaled1 so that the
quadrotor behaviour around the origin is highlighted. The red dashed line
represents the extent of the linear scaling area, which is 0.05 m around 0,

1The plot is log-scaled (and − log-scaled) for most of the plot area, except a small region
around the axis origin, where the plot is linearly scaled. This scale is appropriate for data
points with negative values in the scaled axis.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 82

Table 5.2: PID gains for the quadrotor velocity control.

P I D
Longitudinal velocity (X,Y) 0.379 0.0 0.0
Vertical velocity (Z) 2.872 4.237 0.0
Roll (θ), Pitch (φ) 9.493 0.0 1.148
Yaw (ψ) 0.5 0.0 0.0

where 95% of the initial distance has been covered. This visualization, though
unrefined, contains abundant information for the behaviour of the controller.

A preliminary highlight in the success expectation of the pose PID
controller is the red region in figure 5.2a. A larger concentration of failed
experiments with high-mass vehicles show that this controller may have
problems with saturating commands sent to the vehicle. Further inquiries into
this aspect are contained in Section 5.1.3, in direct comparison to the results
obtained from the main learning-based controllers.

5.1.2
Single environment training and performance

Figure 5.3 shows the performance of 10 different training runs of 3000
episodes using fixed environment parameters.

Despite the learning converging quickly to a satisfactory control policy
with low steady state errors, training the waypoint guidance controller with
fixed environment parameters put this controller at risk of overfitting to this
particular environment. Without the randomization of training environment
parameters, we can observe in figure 5.4 the performance metrics of the
controller which attained the best success rate out of 10 training runs with
the mentioned training conditions. In this case, the controller obtained 100
successful tests out of 109.

Figure 5.4a shows how this controller overfits to a certain range of
quadrotor parameters, displaying poor performance for heavier vehicles. In
figure 5.4b, which displays the position of the quadrotor during the waypoint
guidance, we can observe how the position error, especially the height (Z) error,
increases with respect to the error observed during training. This happens
because the propeller diameter to mass ratio differs between environments, so
does the base motor input required for the quadrotor to hover. This aspect is
managed by the integral component of the vertical position PID controller (see
Table 5.1), which, despite being slower than the horizontal position guidance,
it clearly converges to the waypoint as time goes to infinity (see figure 5.2b).
However, the learned benchmark controller does not converge. This is expected,

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 83

6 7 8 9 10 11 12
Propeller diameter (in)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

V
e
h

ic
le

 m
a
ss

 (
k
g
)

Pose PID - s.r.: 76.3%

0.0

0.2

0.4

0.6

0.8

1.0

E
(x

)

(a)

1.0
0.1

0.0

0.1
1.0

X
 (

m
)

Pose PID - s.r.: 76.3%

1.0
0.1

0.0

0.1
1.0

Y
 (

m
)

0 2 4 6 8 10 12
Time (s)

1.0
0.1
0.0
0.1
1.0

Z
 (

m
)

(b)
0.30
0.03
0.00
0.03
0.30

(ra
d)

Pose PID - s.r.: 76.3%

0.30
0.03
0.00
0.03
0.30

(ra
d)

0 2 4 6 8 10 12
Time (s)

1.0
0.1
0.0
0.1
1.0

(ra
d)

(c)

Figure 5.2: Statistics for the pose PID controller. (a) Expected success rate
(s.r.) in the waypoint guidance task. (b) Position of the quadrotor over time.
(c) Attitude of the quadrotor over time.

0 500 1000 1500 2000 2500 3000
Episode

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Re
wa

rd
/s

te
p

Reward per episode step

0 500 1000 1500 2000 2500 3000
Episode

10 2

10 1

100

Er
ro

r (
m

)

Mean position error of successful runs

Learned ctrl. (single env.)

Figure 5.3: Training metrics for the fixed environment controller. The lines refer
to the median metric from the 10 samples, while the shaded region denotes
the minimum and maximum metrics from samples. Each data point represents
the moving average of the 100 previous tests (50 previous episodes).

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 84

6 7 8 9 10 11 12
Propeller diameter (in)

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

Ve
hi

cle
 m

as
s (

kg
)

Single env. controller - s.r.: 91.7%

0.0

0.2

0.4

0.6

0.8

1.0

E(
x)

(a)

1.0
0.1
0.0
0.1
1.0

X
(m

)

Single env. controller - s.r.: 91.7%

1.0
0.1
0.0
0.1
1.0

Y
(m

)

0 2 4 6 8 10 12
Time (s)

1.0
0.1
0.0
0.1
1.0

Z
(m

)

(b)
0.30
0.03
0.00
0.03
0.30

(ra
d)

Single env. controller - s.r.: 91.7%

0.30
0.03
0.00
0.03
0.30

(ra
d)

0 2 4 6 8 10 12
Time (s)

1.0
0.1
0.0
0.1
1.0

(ra
d)

(c)

Figure 5.4: Statistics for the controller trained in a single set of environment
parameters. (a) Expected success rate (s.r.) in the waypoint guidance task. (b)
Position of the quadrotor over time. (c) Attitude of the quadrotor over time.

as the controller has overfitted to a limited set of environment parameters,
thus being unable to generalize commands for quadrotors with different base
actuations.

Notice that, even if these results indicate that this controller may
have overfitted to a single set of environment parameters, it still attains
superior performance with respect to the pose PID controller. However, as
the development of the former is not the aim of this work, it is left out of
further experiments.

5.1.3
Performance evaluation of the waypoint guidance task

Figure 5.5 shows the training performance of 10 different training runs
of 3000 episodes for each of the main learned controllers, the fully learned and
cascade controllers, compared to the training performance of the controller
learned on a fixed environment.

In figure 5.5, while the learning performance of the fully learned controller
(blue line) and the cascade controller (red line) are similar, the learned

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 85

0 500 1000 1500 2000 2500 3000
Episode

3.0

2.5

2.0

1.5

1.0

0.5

0.0
Re

wa
rd

/s
te

p
Reward per episode step

0 500 1000 1500 2000 2500 3000
Episode

10 2

10 1

100

Er
ro

r (
m

)

Mean position error of successful runs

Cascade controller Fully learned controller Learned ctrl. (single env.)

Figure 5.5: Training metrics for the learned controllers. The lines refer to
the median metric from the 10 samples, while the shaded region denotes the
minimum and maximum metrics from samples. Each data point represents the
moving average of the 100 previous tests (50 previous episodes).

controller trained on a single environment parameter (green line) manages to
achieve higher returns after convergence. However, as previously mentioned,
these higher returns occur only within a limited set of quadrotor parameters,
while other curves account for different parameters.

For the simulations performed in this work, the best controller of each
kind is chosen. The chosen controller must have, among the other trained
instances, the lowest steady-state error in navigating towards the origin, while
maintaining a success rate of 100% over 100 tests specifically in the payload
pickup task, which is the final goal of these controllers. Both the fully learned
controller and the cascade controller take about the same amount of training
episodes to converge to a locally optimal policy, both displaying very proximate
position errors.

Figure 5.6 shows the expectation of success in completing the waypoint
guidance task for the learned controllers and the baseline pose PID controller.

6 7 8 9 10 11 12
Propeller diameter (in)

0.5

1.0

1.5

2.0

V
e
h

ic
le

 m
a
ss

 (
k
g

)

Fully learned controller (100.0%)

6 7 8 9 10 11 12
Propeller diameter (in)

Cascade controller (96.2%)

6 7 8 9 10 11 12
Propeller diameter (in)

Pose PID (76.3%)

0.0

0.2

0.4

0.6

0.8

1.0

E
(x

)

Figure 5.6: Expected success rate (s.r.) in the waypoint guidance task for each
controller by combination of quadrotor parameters.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 86

The experiments using the fully learned controller obtained full success
out of 100 tests, while the experiments using the cascade controller obtained
100 successful tests out of 104 and the ones using the pose PID controller
obtained 100 out of 131.

RL controllers trained on multiple environment parameters perform
better in the waypoint guidance task with higher robustness to a variety of
environment parameters, as observable in figure 5.6, than the controller trained
on a single environment, in figure 5.4a.

Additionally, in figure 5.6, we observe another expected result: the pose
PID controller, despite having gains optimized for the displayed range of
quadrotor parameters, is not as robust as the learned, non-linear controllers,
achieving lower success rate than an RL controller trained on a single set of
parameters.

As a further inquiry into this task, for all 100 successful tests for each
controller, over time, figure 5.7 shows the position of these tests, figure 5.8
shows the attitude and figure 5.9 shows motor commands sent.

The first highlight would be the settling time of the quadrotor. Both
the fully learned controller and the pose PID have a smooth approach to the

1.0
0.1

0.0

0.1
1.0

X
 (

m
)

Fully learned controller (100.0%)

1.0
0.1

0.0

0.1
1.0

Y
 (

m
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.0
0.1

0.0

0.1
1.0

Z
 (

m
)

1.0

0.1

0.0

0.1

1.0

Cascade controller (96.2%)

1.0

0.1

0.0

0.1

1.0

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.0

0.1

0.0

0.1

1.0

1.0

0.1

0.0

0.1

1.0

Pose PID (76.3%)

1.0

0.1

0.0

0.1

1.0

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.0

0.1

0.0

0.1

1.0

Figure 5.7: Position of the quadrotor over time for different controllers in the
waypoint guidance task.

0.30
0.03

0.00

0.03
0.30

(r
a
d
)

Fully learned controller (100.0%)

0.30
0.03

0.00

0.03
0.30

(r
a
d

)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.0
0.1

0.0

0.1
1.0

(r
a
d

)

0.30

0.03

0.00

0.03

0.30

Cascade controller (96.2%)

0.30

0.03

0.00

0.03

0.30

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.0

0.1

0.0

0.1

1.0

0.30

0.03

0.00

0.03

0.30

Pose PID (76.3%)

0.30

0.03

0.00

0.03

0.30

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.0

0.1

0.0

0.1

1.0

Figure 5.8: Attitude of the quadrotor over time for different controllers in the
waypoint guidance task.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 87

1000
2500
5000
7500
9500

M
1

(R
PM

)

Fully learned controller (100.0%)

1000
2500
5000
7500
9500

M
2

(R
PM

)

1000
2500
5000
7500
9500

M
3

(R
PM

)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1000
2500
5000
7500
9500

M
4

(R
PM

)

1000

2500

5000

7500

9500

Cascade controller (96.2%)

1000

2500

5000

7500

9500

1000

2500

5000

7500

9500

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1000

2500

5000

7500

9500

1000

2500

5000

7500

9500

Pose PID (76.3%)

1000

2500

5000

7500

9500

1000

2500

5000

7500

9500

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1000

2500

5000

7500

9500

Figure 5.9: Motor commands of the quadrotor over time for different controllers
in the waypoint guidance task. The dashed red lines here represent the
minimum and maximum commands accepted by the motors.

origin, the former converging, in average, in 3.390 seconds and the latter in
5.182 seconds, taking slightly longer. The vehicle is considered to converge to
any point when its velocity does not exceed 0.05 m/s for the remainder of
the experiment. This does not happen to 44 out of the 100 successful tests for
the cascade controller, which visibly oscillates around the origin. Note that the
convergence requirement is different from the success requirement, which is less
strict than the former. In view of the wide actuation swings seen in figure 5.6,
we can assume that these oscillations result from the learned controller trying
to "subdue" the velocity PID controller in environments where its performance
is poor. This may happen because the velocity setpoint of the internal PID
controller changes rapidly, causing an increase in amplitude of these changes.

The second point to consider would be the steady-state error. This
metric, combined with the settling time, is numerically evaluated in Table 5.3.
Notice that, for the cascade controller results, we consider the settling time of
tests that did not actually settle to be the maximum test time, 12.5 seconds,
resulting in a higher mean settling time.

Table 5.3: Mean and standard deviation metrics for the waypoint guidance
task for 100 successful samples of each controller, including single environment
(non-randomized) training.

Controller Settling time
(s)

Longitudinal
position error
(m)

Vertical
position error
(m)

Fully learned controller 3.390± 0.792 0.006± 0.002 0.004± 0.001
Cascade controller 11.799± 2.027 0.046± 0.017 0.030± 0.012
Pose PID 5.182± 1.359 0.007± 0.009 0.005± 0.006
Single env. training 3.853± 1.488 0.013± 0.044 0.009± 0.031

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 88

As expected, PID or PID-aided controllers, especially with an integral
gain tuned, displays higher steady-state errors than the fully learned controller.
However, the latter (PID-aided) could still improve this error with fine tuning
of the training hyperparameters. These errors, among with the inability to
stabilize the quadrotor with certain parameters might be caused by the
saturation of PID commands (ANN controllers already have commands limited
within bounds from the tanh activation function in their output layers.), which
are, then, unable to quickly steer the quadrotor to stability. This becomes clear
in figure 5.10, where the pose PID commands are registered without saturation
(but still saturated when sent to the simulated motors). The figure shows that
the PID controller is clearly hindered by the motor velocity saturation.

The reward function is a weighted measurement of error. Because of this,
we can observe the reward distribution of experiments for a comparison of
accumulated error through each experiment, in figure 5.11 and Table 5.4.

Table 5.4: Mean and standard deviation total rewards for the waypoint
guidance task for 100 successful samples of each controller, including single
environment (non-randomized) training.

Controller Total reward
Fully learned controller −78.715± 22.465
Cascade controller −86.133± 23.822
Pose PID −125.414± 55.156
Single env. training −98.393± 59.741

20000
10000

0
10000
20000

M
1

(R
PM

)

20000
10000

0
10000
20000

M
2

(R
PM

)

20000
10000

0
10000
20000

M
3

(R
PM

)

0 2 4 6 8 10 12
Time (s)

20000
10000

0
10000
20000

M
4

(R
PM

)

Pose PID - s.r.: 76.3%

Figure 5.10: Unsaturated motor commands of the quadrotor over time for
the pose PID controller in the waypoint guidance task. The red dashed
lines indicate the velocity where commands are saturated when sent to the
quadrotor.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 89

0 5 10 15 20 25
Occurences

200

150

100

50

R
e
w

a
rd

mean

Fully learned controller (100.0%)

0 5 10 15 20 25
Occurences

mean

Cascade controller (96.2%)

0 5 10 15 20 25
Occurences

mean

Pose PID (76.3%)

Figure 5.11: Distribution of total rewards attained per experiment to perform
the waypoint guidance task (21 bins). For the pose PID, 6 of the experiments
ended up with less than -200 total reward.

Despite the lower robustness overall, the pose PID controller, given
enough time to settle, displays less steady-state errors than the controller
learned on a single set of parameters, included in Tables 5.3 and 5.4 for
comparison, further demonstrating the necessity of environment randomization
in the training process of a controller robust to these variations. However, in
terms of settling time and total reward, an RL controller is still preferable in
comparison to the pose PID.

5.1.4
Performance evaluation of the payload pickup task

Similarly to the waypoint guidance task, figure 5.12 displays the expec-
tation of a given parameter combination to perform the payload pickup and
drop task successfully.

The experiments using the fully learned controller and the cascade
controller obtained full success out of 100 tests, while the ones using the pose
PID controller obtained 100 successful tests out of 160.

For these experiments, the environment parameters are resampled from
the constraints specific for the payload pickup task. As previously mentioned,

6 8 10 12
Propeller diameter (in)

0.50

0.75

1.00

1.25

1.50

V
e
h

ic
le

 m
a
ss

 (
k
g

)

Fully learned controller (100.0%)

6 8 10 12
Propeller diameter (in)

Cascade controller (100.0%)

6 8 10 12
Propeller diameter (in)

Pose PID (62.5%)

0.0

0.2

0.4

0.6

0.8

1.0

E
(x

)

Figure 5.12: Expected success rate (s.r.) for each controller in the payload
pickup and drop course, by combination of quadrotor parameters.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 90

the criterion for selection of learned controllers out of the 10 training runs
is that it attains 100% success rate in the mentioned task, displaying an
expectation of 1 for every parameter combination.

From these results, as expected, from the previous results of waypoint
guidance task, the pose PID controller has poor flexibility to the variation of
quadrotor parameters, even if its gains are obtained using a search strategy on
the same variety of vehicle parameters.

In the payload pickup experiments, due to the criteria of convergence
to a waypoint, experiments with high position error or that take too long to
reach a waypoint are filtered out (considered a failed test). A fitting metric to
evaluate this task, further than the success rate, is the time taken to perform
it, as it encompasses both the route optimality and the waypoint settling time.
Figure 5.13 shows the histogram of this metric for each controller, where tests
are allocated in 11 bins distributed between the minimum time taken among
all 3 controllers, 6.750 seconds, and the maximum time, 24.6 seconds.

Learned controllers have proven to be clearly more time-efficient than
the pose PID controller. Analyzing the resulting distribution, we calculate the
mean and standard deviation of results in Table 5.5.

Table 5.5: Mean and standard deviation of the time taken to complete the
payload pickup and drop course, for 100 successful samples of each controller.

Controller Course completion time (s)
Fully learned controller 9.280± 1.492
Cascade controller 9.340± 1.515
Positional PID 14.499± 3.271

Figures 5.14 and 5.15 show the heatmap of the compound trajectories of
the quadrotor in each successful experiment. In the former map, the trajectory

0 10 20 30 40 50
Occurrences

5

10

15

20

25

T
im

e
 (

s)

mean

Fully learned controller (100.0%)

0 10 20 30 40 50
Occurrences

mean

Cascade controller (100.0%)

0 10 20 30 40 50
Occurrences

mean

Pose PID (62.5%)

Figure 5.13: Distribution of total time taken per experiment to perform the
payload pickup and drop course (11 bins).

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 91

is viewed from above, projected in the XY plane, while in the latter map, the
trajectory is viewed from the side, projected in the XZ plane.

In figure 5.14, we can observe the effects of the maximum entropy RL of
the SAC algorithm in action, as the trajectories taken by the quadrotor are
more spread out through the space than the trajectories generated by the PID
controller.

In figure 5.15, it becomes clear how the variation of mass heavily affects
the trajectory generated by the pose PID controller. In this trajectory, the
controller converges first horizontally, then vertically, to the waypoint, possibly
due to the apparent slowness of the integral controller to adapt to the new mass,
as evidenced in figure 5.7 by the difference in convergence speed and steady-
state error between the horizontal (X,Y) and vertical (Z) components of the
controller. In contrast, the trajectories generated by the learned controllers
are smoother, possibly because there is a single coupled black-box controller
acting in all directions, instead of the uncoupled nature of the PID controller.

In summary: The learned controllers are able to perform the guidance task
with almost all variations of propeller diameters and vehicle mass (100%

1.0 0.5 0.0 0.5 1.0
X (m)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Y
 (

m
)

pickup

drop

Fully learned controller (100.0%)

1.0 0.5 0.0 0.5 1.0
X (m)

pickup

drop

Cascade controller (100.0%)

1.0 0.5 0.0 0.5 1.0
X (m)

pickup

drop

Pose PID (62.5%)

0

20

40

60

80

100

O
cc

u
rr

e
n

ce
s

Figure 5.14: Heatmap of the route taken by each experiment in the payload
pickup and drop course, viewed from above.

1.0 0.5 0.0 0.5 1.0
X (m)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Z
 (

m
)

pickup

drop

Fully learned controller (100.0%)

1.0 0.5 0.0 0.5 1.0
X (m)

pickup

drop

Cascade controller (100.0%)

1.0 0.5 0.0 0.5 1.0
X (m)

pickup

drop

Pose PID (62.5%)

0

20

40

60

80

O
cc

u
rr

e
n

ce
s

Figure 5.15: Heatmap of the route taken by each experiment in the payload
pickup and drop course, viewed from the side.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 92

for the fully learned controller and 96.2% for the cascade controller), while
the pose PID only does so for 76.3% of these variations. Note that these
variations are within the same parameter ranges used during training and
hill-climbing parameter searches. Despite displaying similar success rate, the
learned controllers behave differently when performing the present task. The
cascade controller converges to the waypoint slower than the fully learned
controller and oscillates significantly more in the steady-state. The pose PID
controller does not display such oscillations, but it is still slower than the
fully learned controller. This is caused by a saturation in motor commands,
which slows down the convergence of the quadrotor with certain parameter
combinations. Then, we employ the waypoint guidance controllers in the
payload pickup and drop course. To complete this course, both learning-based
controllers take about the same amount of time, in average 9.280 seconds for
the fully learned controller and 9.340 seconds for the cascade controller, which
is faster than the pose PID controller, that takes, in average, 14.499 seconds
to perform the same course. This slower completion time is expected, as the
waypoint guidance controller evaluation shows that the pose PID controller
suffers from motor saturation and the lack of extra robustness mechanisms in
its designs. Further, the pose PID controller is only able to perform this course
for 62.5% of the analyzed cases, failing either due to destabilizing (the same
reason it attains a poor success rate in navigating towards a waypoint) or to
being unable to reach the distance threshold to one of the waypoints.

5.2
Visual navigation results

In this section, we lay out the results of development and testing of the
learning-based visual navigation controller. The key experiments found in this
section are:

– CNN pre-train and advantages of training data resampling;

– Learning performance of the navigation models; and

– Course navigation performance.

The navigation models evaluated are: the baseline controller, which
navigates through the race course using real gate position data, it is, without
visual data, and a visual navigation controller, which navigates through the
race course by estimating gate positions via a CNN.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 93

5.2.1
Pre-trained model

The CNN pre-training process leverages the capability of the environment
to resample new data on demand, using an active learning-based method.
This feature allows the training algorithm to populate the training dataset
gradually with more relevant data, resampled at every test step. In other words,
we direct the training process through samples that display low prediction
accuracies in order to speed up the learning process. In 4000 training epochs,
this method scores, in average, 0.492 in the weighted loss function (eq. (3-2))
for an independent dataset. On the other hand, a conventional training process
with fixed training and test sets scores, in average, 0.775 in the weighted loss
function, for the same independent dataset. The comparison between test losses
during training for each approach can be seen in figure 5.16.

For the 2000 samples independent dataset, figure 5.17 shows the root-
mean-squared prediction error for both training methods after 4000 epochs,
further demonstrating that the active learning method results in a significant
improvement in prediction accuracy.

The weights transferred to the actor-critic model are obtained after 12000
training epochs. In the independent dataset, the prediction model at this
point scores, in average, 0.337 in the weighted loss function. For the same
independent dataset, figure 5.18 shows how the prediction error at this point
compares to the prediction error shown in figure 5.17, at 4000 training epochs.

The full metrics of the training process of this network are laid out
in figure 5.19. Notice how the training loss rises when the dataset receives
particularly bad training samples, but quickly adjusts to those.

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
ei

gh
te

d
lo

ss

Testing active
Testing conventional

Figure 5.16: Test loss per training episodes of two different training strategies.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 94

Position
 (rad)

Distance
 (m)

Orientation
 (rad)

Pos. subsequent
 (rad)

0.0

0.1

0.2

0.3

0.4

0.5

RM
S

er
ro

r

Prediction RMS error for different training methods
 (2000 samples, 4000 epochs)

Active learning
Conventional learning

Figure 5.17: RMS error of prediction of two different training strategies (less
is better), with 95% confidence interval bars. Note that the gate position is
given by its angle with respect to the camera.

Position
 (rad)

Distance
 (m)

Orientation
 (rad)

Pos. subsequent
 (rad)

0.00

0.05

0.10

0.15

0.20

0.25

RM
S

er
ro

r

Prediction RMS error per training length
 (2000 samples)

4,000 epochs
12,000 epochs

Figure 5.18: RMS error of prediction of the active learning method compared
between training epochs (less is better), with 95% confidence interval bars.
Note that the gate position is given by its angle with respect to the camera.

0 2000 4000 6000 8000 10000 12000
Epoch

10 2

10 1

100

W
ei

gh
te

d
lo

ss

Training
Testing

Figure 5.19: Training curves of the pre-trained network.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 95

5.2.2
Learning performance

During the training process, the quadrotor is always spawned in a random
location along the track, including during test episodes, which happen twice
every 10 steps for every run, so that the total attained reward is not a good
metric for measuring the training performance. Hence, we opt to measure the
percentage of the course completion for each run, as the course length varies
randomly for each test.

Figure 5.20 shows the course completion rate for the baseline navigation
controller. This controller is trained in 10000 episodes, taking a total of 6 days
and 20 hours to complete. Due to the steady rise in performance, it is possible
that the course completion rate improves given enough time. However, we have
chosen to limit the training time of the controllers to a week at most.

In order to further demonstrate the suitability of this training algorithm
for this task, figure 5.21 shows the moving average of the course completion
rate for four independent training runs up to episode 4000, one of them (the
darker line) being the run of figure 5.20. All four, in average, attain similar
performance throughout the training episodes.

Then, the trained weights from the baseline controller are transferred to
the dense layers of the visual navigation model, along with the pre-trained
CNN weights. The CNN weights are frozen for the first 200 training episodes
in order to let the actor and critic dense layers adapt to this new input. The
result is shown in figure 5.22.

Notice that the model learns to properly traverse a considerable portion
of the course within the first 200 episodes, during which the CNN layers are
frozen. Then, the training promptly diverges, as evidenced by the actor and

0 2000 4000 6000 8000 10000
Episode

0

20

40

60

80

100

%
 C

ou
rs

e
co

m
pl

et
ed

Baseline training performance

Figure 5.20: Percentage of the course completed during training of the baseline
controller, with a 100-sample moving average.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 96

0 500 1000 1500 2000 2500 3000 3500 4000
Episode

0

10

20

30

40

50

%
 C

ou
rs

e
co

m
pl

et
ed

Baseline training performance comparison

Figure 5.21: Percentage of the course completed (100-sample moving average)
for 4 training runs of the baseline controller up to episode 4000.

0 100 200 300 400
Episode

0

20

40

60

80

%
 C

ou
rs

e
co

m
pl

et
ed

Visual controller (trainable) training performance

(a)

0 100 200 300 400
Episode

103

104

105

106

107
Q

Lo
ss

Actor loss and critic loss

0

5000

10000

15000

20000

25000

M
u

Lo
ss

(b)

Figure 5.22: Training metrics for the visual controller. (a) Percentage of the
course completed during training, with a 100-sample moving average. (b) Actor
and critic losses.

critic losses in figure 5.22b.
In view of the satisfactory performance of the model while the CNN

weights are frozen, we perform a training run with the CNN weights perma-
nently frozen, resulting in the course completion rate of figure 5.23.

This model is trained in 8830 episodes, taking a total of 4 days and 12
hours, until interrupted2. Despite not displaying improvement in performance
throughout training, convergence to locally optimal parameters is fast, as
evidenced by the first sample reaching 100% course completion doing so
within 70 training episodes. By episode 500, on a 100-sample average, the
completion rate is 48.4%, while the baseline average is 61.8% in the last training
episode. Hereby, we consider the loss of performance on the task at hand to be
approximately 21.7%, when predicting the gate features by a neural network

2Due to an unexpected simulator crash. Training was not resumed since it was close to
automatic termination at 10000 episodes and there was no apparent change in controller
performance in the last few thousand episodes.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 97

0 2000 4000 6000 8000
Episode

0

20

40

60

80

100

%
 C

ou
rs

e
co

m
pl

et
ed

Visual controller (frozen) training performance

Figure 5.23: Percentage of the course completed during training of the visual
controller with frozen CNN weights, with a 50-sample moving average.

compared to ground truth values.

5.2.3
Course navigation

In this task, the quadrotor relies on the trained controllers to traverse
the racing courses of figures 4.3 and 4.4. Despite being trained for longer, the
performance of the visual navigation controller is better at the 500th episode,
so that, for this controller, we use the weights of this episode. On the other
hand, for the baseline controller, we use the weights of the last episode.

For the Soccer_Field_Easy course, we perform 10 tests starting at a fixed
point 2 meters above a Start_Block object near the origin of the 3D space.
Figure 5.24 shows the trajectories and end results of the baseline controller
and figure 5.25 shows the trajectories and end results of the visual navigation
controller.

Each of the experiments using the baseline controller is able to success-
fully complete the course. Meanwhile, for the experiments using visual naviga-
tion, only 5 out of 10 managed to complete the course. Out of the 5 unsuccessful
tests, one has collided with Gate 01, 2 have lost visual contact with Gate 08,
after trying to cross it and missing, and another 2 have lost visual contact with
Gate 09, soon after crossing Gate 08. In this way, the visual navigation con-
troller manages to achieve 79.2% of the baseline performance, when starting
from Gate 00.

For the Soccer_Field_Medium course, no controller managed to complete
the task starting from the beginning (at the Start_Block). With this issue in
mind, we perform 10 tests starting from the initial point 2 meters above the
Start_Block and, wherever all these tests have failed, 10 additional tests are

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 98

40 30 20 10 0
X (m)

10

5

0

5

10

15

20

25
Y

(m
)

00

01

02

0304

05

06

07

08

09 10

11

10-experiment trajectory - Easy map - Baseline controller

Start point Completed Collided Lost visibility Timed out

Figure 5.24: Baseline controller trajectories on the easy course (top-down view).

40 30 20 10 0
X (m)

10

5

0

5

10

15

20

25

Y
(m

)

00

01

02

0304

05

06

07

08

09 10

11

10-experiment trajectory - Easy map - Visual controller

Start point Completed Collided Lost visibility Timed out

Figure 5.25: Visual controller trajectories on the easy course (top-down view).

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 99

respawned. The respawn point is the midpoint between the last gate to be
successfully crossed and the next gate. In this way, the quadrotor attempts to
cross all the gates in the course. Figure 5.26 shows the trajectories and end
results of the baseline controller and figure 5.27 shows the trajectories and end
results of the visual navigation controller.

In both experiments, we can observe three key struggle points in the
medium course. Between Gates 04 and 08 there is a steep descent, with tightly
spaced gates. The trajectories generated in this section are shown in figure 5.28,
for the baseline controller (which was successful in this section), and figure 5.29,
for the visual navigation controller.

Because of their placement, the gates are partially seen after a previous
gate is crossed, posing a challenge to the position estimator used in the
visual navigation controller. Notice how an important part of the trajectories
terminate above the gate, unable to see it. The baseline does not struggle in
this point, because it does not rely on the camera to be able to estimate gate
positions. Another interesting observation is how, in some of the successful
gate crossings, the quadrotor adjusts its position before attempting to cross.
This behaviour is not found in the baseline controller, so we assume it was
learned specifically for visual navigation in an attempt to localize the gate
before crossing.

The section between Gates 10 and 14 has some of the largest spacings
between gates in the course. From the baseline trajectories, it becomes clear
that the controller struggles to navigate towards distant gates. Nevertheless,
the quadrotor using the visual controller is able to fly farther, in average,
between gates 13 and 14, than using the baseline controller.

Between Gates 19 and 22 there is a combination of the two aforemen-
tioned issues, Gates 19 and 20 are very far apart and there is a steep ascent
between Gates 20 and 22. The trajectories generated in this section are shown
in figure 5.30, for the baseline controller, and figure 5.31, for the visual navi-
gation controller.

While all the collision incidents in this section happened using the
baseline controller, the quadrotor using the visual navigation controller flew
shorter distances in comparison, losing visual contact with the gate more
frequently. After this section of the course, all tests that manage to cross Gate
22 were able to complete the course successfully.

Neither of the controllers managed to complete the medium course
starting from Gate 00. Additionally, the visual navigation controller had to
restart the race twice the time (12 restarts) compared to the baseline controller
(6 restarts), which further evidences the difficulty of the visual estimator to

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 100

140 120 100 80 60 40 20 0
X (m)

20

0

20

40

60

80

100
Y

(m
)

00

01

02

03

04
050607080910

11

12

13

14
15

16

17

18

19 20 21 22
23

24

10-experiment trajectory - Medium map - Baseline controller

Start point Completed Collided Lost visibility Timed out

Figure 5.26: Baseline controller trajectories on the medium course (top-down
view).

140 120 100 80 60 40 20 0
X (m)

20

0

20

40

60

80

100

Y
(m

)

00

01

02

03

04
050607080910

11

12

13

14
15

16

17

18

19 20 21 22
23

24

10-experiment trajectory - Medium map - Visual controller

Start point Completed Collided Lost visibility Timed out

Figure 5.27: Visual controller trajectories on the medium course (top-down
view).

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 101

60 50 40 30 20 10 0
X (m)

15

10

5

0

5

Z
(m

)

04

05

06

07
080910

10-experiment trajectory - Medium map (side view) - Baseline controller

Start point Completed Collided Lost visibility Timed out

Figure 5.28: Baseline controller trajectories on the Gates 04-10 section of the
medium course (side view).

60 50 40 30 20 10 0
X (m)

15

10

5

0

5

Z
(m

)

04

05

06

07
080910

10-experiment trajectory - Medium map (side view) - Visual controller

Start point Completed Collided Lost visibility Timed out

Figure 5.29: Visual controller trajectories on the Gates 04-10 section of the
medium course (side view).

100 80 60 40 20
X (m)

20

15

10

5

0

Z
(m

)

20

21

22

23 24

10-experiment trajectory - Medium map (side view) - Baseline controller

Start point Completed Collided Lost visibility Timed out

Figure 5.30: Baseline controller trajectories on the Gates 20-24 section of the
medium course (side view).

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 102

100 80 60 40 20
X (m)

20

15

10

5

0
Z

(m
)

20

21

22

23 24

10-experiment trajectory - Medium map (side view) - Visual controller

Start point Completed Collided Lost visibility Timed out

Figure 5.31: Visual controller trajectories on the Gates 20-24 section of the
medium course (side view).

detect gates in the medium course. To equally evaluate the performance of
each controller, we carry out 100 extra tests for each controller starting from
random points along this course, with the starting points chosen by the same
method used during training.

Out of 100 tests in the medium course, for the baseline controller:

– The quadrotor crossed a total of 359 gates out of 447 attempts (overall
80.3% success, approximately);

– The final gate was reached 12 times. 87 experiments ended with no visual
contact with the gate and one ended with a collision.

Out of 100 tests in the medium course, for the visual navigation con-
troller:

– The quadrotor crossed a total of 128 gates out of 225 attempts (overall
56.9% success, approximately);

– The final gate was reached 3 times. 87 experiments ended with no visual
contact with the gate, 6 ended with a collision and 4 timed out;

– Considering the amount of gates attempted, compared to the baseline
controller, the visual navigation controller had a relative performance of
approximately 70.8%.

As mentioned previously, these experiments are performed using the
visual navigation controller trained until episode 500. Despite the learning
metrics, presented in figure 5.23, showing that there is no significative change in
performance throughout further training episodes, there is indication that the
model has overfitted at this point. Using the weights trained until episode 8500
for the visual navigation controller, we perform 10 tests for each course starting
from the beginning (Gate 00). This controller achieves a performance similar

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 5. Results 103

to the baseline controller in the section between Gates 04 and 08 (figures 5.28
and 5.29) for 3 out of 10 experiments. However, it fails every time at the easy
course, colliding with Gates 00 and 01.

In summary: The baseline controller manages to avoid collisions and provides
a control policy that can reliably complete the easy course and cross most
of the gates in the medium course. Combining this baseline controller with a
gate feature predictor network, we obtain the visual navigation controller. This
controller is fine-tuned through the same SAC algorithm used for the baseline
controller, with the same hyperparameters and reward function. Unexpectedly,
allowing the CNN weights to be fine-tuned by this method leads the training
process to diverge. In view of this, we fine-tune only the base actor-critic
weights, maintaining the original CNN weights fixed, resulting in a satisfactory
control policy, which is able to race through the easy course with 79.2%
performance, compared to the baseline, and 70.8% performance, compared to
the baseline, for the medium course. This drop in performance is caused by a
struggle of the visual controller to navigate in cramped sections of the course.
Eventually, with more training episodes, the controller manages to navigate
properly in these sections, at the cost of reduced performance in other sections,
highlighting a clear limitation in learning capacity of this model. Nonetheless,
even the easy racing course is challenging enough for a visual navigation
controller developed solely based on machine learning. Thus, acquiring a 79.2%
performance compared to a perfect run can be considered a satisfactory result.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

6
Conclusion

In this work, we evaluate the feasibility of employing reinforcement learn-
ing in the development of a low-level pose controller for a quadrotor, aiming
at some specific tasks. Starting from a proof-of-concept unified waypoint guid-
ance plus stability controller, we establish a development method that can be
carried over for more challenging tasks. More specifically, a payload pickup
and drop task and a racing course.

Low-level control: Development

Previous work often relies on building a dynamic model of the quadrotor
(model-based reinforced learning) or use auxiliary controllers in the control
stack. Our method, in contrast, seeks to train a controller using a Soft Actor-
Critic (SAC) algorithm, that calculates motor commands directly from sensory
input (end-to-end), using a dense 2-layer neural network, while also being
agnostic, in other words, being applicable to a range of vehicle sizes and masses.
This feature is also very useful in situations where the quadrotor parameters
change mid-flight.

To compare this method to existing approaches to RL controllers, we
train a second high-level controller which works in cascade with a low-level
velocity PID controller, investigating the effectiveness of an independent, faster
and conservative underlying control loop in learning and in task performance.
For benchmarking, we develop two additional controllers. A full RL controller,
trained in an environment with fixed parameters, and a full pose PID controller.
Both PID controllers, velocity and position, use optimized gains calculated
from a hill climbing search strategy in a randomized environment, similarly to
the training procedure of the RL controllers. This ensures well-performing gains
for fairness of comparison between experiments. For all learned controllers, we
perform 10 training runs and pick the one that results in the highest success
rate in the payload pickup task, using the lowest position error as a tiebreaker.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 6. Conclusion 105

Low-level control: Waypoint guidance results

Within the same range of testing parameters, the RL controller trained
in a single environment attained significantly higher success rate than the
pose PID controller. The trajectories generated by both controllers indicate
a struggle to climb to the height of the waypoint due to different propeller
diameter×mass ratios, causing the base motor input required for hovering to
vary between environments. While the only issue with the PID controller is
its slowness to navigate towards the vertical position, the learned benchmark
controller is unable to do so, ending episodes hovering with significant position
errors. This evidence supports the speculation that the controller trained in
a single environment is unable to generalize for different propeller diameter
× mass ratios, thus indicating it has overfitted to its training parameters.
Nevertheless, the RL controller is able to account for a wider range of quadrotor
parameters than the PID controller, even if the gains of the latter have been
optimized for the same range.

Both the fully learned controller and the cascade controller take about
the same amount of training episodes to converge to a locally optimal policy,
displaying very proximate position errors. The fully learned controller is able to
perform the waypoint guidance task with all tested combinations of propeller
diameter and vehicle mass, while the cascade controller managed almost all
combinations, still attaining a substantially higher success rate than the pose
PID controller. Despite displaying similar success rate, the learned controllers
behave differently when performing the task considered. The cascade controller
takes much longer to converge to the waypoint than the fully learned controller
and oscillates considerably in the steady-state, causing it to not meet the
convergence requirement (total velocity should not exceed 0.05 m/s) in almost
half of successful tests. This response is the result of the internal velocity
setpoint provided by the control policy changing too rapidly, which amplifies
the oscillations of the control actions computed by the PID controller. The pose
PID controller does not display such oscillations, despite being slower than the
other controllers. This controller, however, suffers from motor saturation, which
is believed to hinder its performance, as it is unable to steer the quadrotor using
"full force". The learning-based controllers do not suffer from this hindrance for
two reasons: the fully learned controller already provides bounded commands
due to its bounded activation function in the output layer, and these controllers
have the opportunity to learn a policy that circumvents this obstacle. Lastly, by
the accumulated position error during the episode, the fully learned controller
has the best overall performance, closely followed by the cascade controller. By

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 6. Conclusion 106

this metric, the PID controller performed poorly compared to other controllers.

Low-level control: Payload pickup results

Then, we employed the waypoint guidance controllers in the payload
pickup and drop course. This course consists of two waypoints: the first in a low
altitude where the quadrotor picks up a payload weighting 30% of its current
mass and the second in a higher altitude where the payload is released, then
prompting the quadrotor to return empty to the first waypoint. Both learned
controllers, as a requirement for selection from the training runs, achieved
100% success rate in this task for all the tested environment parameters, and
take about the same amount of time to complete it, being significantly faster
than the pose PID controller. Further, the success of the pose PID controller in
completing this task falls by 18.1% with respect to the waypoint guidance task,
failing either due to destabilizing (the same reason it attains a poor success
rate in navigating towards a waypoint) or to being unable to reach the distance
threshold to one of the waypoints before timing out.

In summary, for the first objective of this work, the fully learned controller
(trained in randomized environments) is not only able to handle a wider
variety of quadrotor sizes and masses than the benchmark controllers, but
it also performs better in the proposed tasks. This is expected, because the
quadrotor model is non-linear, while the PID controller is designed for linear
systems. Since the learned controllers are based on a neural network structure,
they better address these non-linearities. The learning-based controllers also
learned to circumvent other challenges present in the model, such as motor
command saturation. Another advantage of the RL controller is its end-to-end
learning capability, which allows, for example, to forego manual PID gains
tuning. As for the payload pickup task, both the fully learned controller and
the cascade controller take the same amount of time, in average, to complete
it. The difference between these controllers lies in the mentioned advantage of
foregoing PID tuning for the former and the oscillatory response of the latter,
which might be undesirable in some applications.

Visual navigation: Development

With the development methodology for the controllers established, we
move on to a more challenging task, a racing course, performing training
with the same RL algorithm, SAC. For this task, the RL controllers learn
to navigate towards gates in two different racing courses as if they were

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 6. Conclusion 107

the waypoints of the payload pickup task. Each course presents a different
completion difficulty: easy and medium. The racing environment does not
provide the 3-dimensional coordinates and yaw of the waypoint directly. Thus,
we develop a controller that estimates the crossing direction of the next gate
and the relative position of the two nearest gates, using visual data in order
to devise a trajectory through them. To benchmark this controller, we also
develop a baseline controller, that receives ground truth gate features as inputs.

A full end-to-end training process for the racing course was found to
be excessively lengthy and too computationally demanding, for the available
hardware. Therefore, we divided this process in two parts that are trained
independently. The first is the actor-critic controller part, which has its weights
initialized from the fully trained baseline controller. The second part is the
visual estimator for gate features, using a DroNet architecture, which is trained
in a supervised fashion using the samples from the baseline controller. The
visual estimation model leverages the capability of the simulation to generate
new data to employ an active learning based training method, that results in
a higher prediction accuracy than a conventional learning method with static
training and testing datasets. In the end, both parts are combined and put
through training again in order to fine-tune their network weights.

In four independent training runs of 4000 episodes, the learning process
of the baseline controller converges to a satisfactory course completion rate,
indicating the reliability of this method to teach a quadrotor to navigate
towards the gates in the environment. The final baseline controller is trained
further for a total of 10000 episodes and displays, in average at the end, 61.8%
course completion rate starting from random points in both courses.

After combining the baseline controller with the pre-trained visual esti-
mator, we freeze the estimator weights for the first 200 training episodes to let
the baseline network adapt. Unexpectedly, the controller becomes unable to
cross any gates as soon as the estimator weights are unfrozen and the learning
process completely diverges soon after.

Nevertheless, while the estimator weights are still frozen, the controller
managed to attain a satisfactory course completion. In view of that, the
estimator weights are left frozen for the remainder of the training process,
attaining, in average, 48.4% completion rate by episode 500, representing a
21.7% drop in performance with respect to the last training episode of the
baseline controller.

In posterior training episodes, the completion rate does not change
significantly, but the controller displays a slight change of behaviour, favouring
an improved performance in particular sections of the medium course at the

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 6. Conclusion 108

expense of a heavy performance loss in the easy course and in some other
sections of the medium course. Thus, experiments were done with the model
trained up to the 500th episode mark.

Visual navigation: Results

Both controllers, baseline and visual, managed to complete the easy
course starting from the beginning. The baseline controller attained only
perfect runs out of 10 tests. The visual controller managed 5 perfect runs
out of 10 tests, with 4 runs ending by losing visual contact with the gates,
happening around the final stretch, and one ended by a collision with a gate
near the starting point.

Both controllers struggled to complete the medium course. The 3 main
choke points present one of two key characteristics: the gates are too far apart
or the gates are too close together, in a steep ascent or descent. While both
controllers have a drop in performance with respect to the easy course, the
visual navigation controller sees a larger drop than the baseline controller.
This is caused mainly by the disturbances of the visual feature estimations
when the camera is too close to one of the gates, which is frequent in cramped
sections of the medium course.

Nonetheless, the visual controller displays a learned behaviour which
is not present in the baseline controller, possibly driven by the mentioned
struggles of the visual estimator: in an early section of the medium course,
where the gates are close together in a steep descent, the quadrotor has learned
to back up before crossing the gate, possibly to get a better visualization of it
and any subsequent gates.

In summary, despite the mentioned disturbances in the visual feature
estimator, the visual navigation controller is still able to cross a large number of
gates in succession, indicating it has learned to overcome the estimation noise
and disturbances, most of the time, with just a few episodes of fine-tuning.
Visual navigation displays about 70%∼80% efficiency compared to navigation
using ground truth gate features.

6.1
Future work

The evident next step of this work would be to investigate these con-
trollers in a real-life quadrotor. As discussed in some of the related works, the
main challenge when taking this step, assuming an adequate testing platform is
readily available, would be dealing with sensor noise and deviation, especially

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Chapter 6. Conclusion 109

if an inertial frame position sensor is required. Hopefully, the versatility of the
learned controller for different vehicle parameters smooths out this transition,
as it is very difficult to accurately model a real quadrotor in simulation.

In this work, we developed parameter-agnostic waypoint guidance con-
trollers for plus-shaped quadrotors only. We suggest that such a controller
could be modified to also account for geometrical variations of drones, such as
quadrotors with movable arms, or picking up an off-centered payload, or even
dealing with damaged parts mid-flight. This agnosticism can also prove useful
for various multitasking applications, not only restricted to payload carrying,
but any activity that imposes sudden changes in vehicle parameters.

The controller proposed in this work competes directly with the purpose
of traditional robust and adaptive controllers. These controllers were not used
for benchmarking, because of the limited time and manpower available for
the development and debugging of such algorithms. Even with the advantage
of end-to-end learning provided by RL methods contributing to a faster
development and deployment, adaptive controllers may also be an alternative
for at least the waypoint guidance and payload pickup tasks proposed in this
work.

The solution presented in this work for drone racing employs only the
visual estimation model and the RL control approach. Competition solutions
and real-life applications commonly employ other devices to improve estima-
tion accuracy and navigation reliability, such as model predictive control, gate
feature estimation with a latent state space, Kalman filters, et cetera. These
solutions also employ more than one visual estimation model, for simultaneous
object detection and scene segmentation, in order to detect obstacles and race
checkpoints of different shapes and colors. For a full completion of the medium
racing course and other challenging drone racing courses, we must employ such
devices to circumvent the limitations of the RL approach.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Bibliography

[1] TURING, A. M.. I.—Computing Machinery and Intelligence. Mind,
LIX(236):433–460, 10 1950.

[2] SUTTON, R. S.; BARTO, A. G.. Reinforcement Learning: An Intro-
duction. A Bradford Book, USA, 2018.

[3] Robots and robotic devices. Vocabulary – iso 8373:2000(e), Interna-
tional Organization for Standardization, Geneva, Switzerland, Mar. 2012.

[4] TRIPATHI, S.; DANE, G.; KANG, B.; BHASKARAN, V. ; NGUYEN, T..
Lcdet: Low-complexity fully-convolutional neural networks for
object detection in embedded systems. In: 2017 IEEE CONFERENCE
ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS
(CVPRW), p. 411–420, 2017.

[5] LILLICRAP, T. P.; HUNT, J. J.; PRITZEL, A.; HEESS, N.; EREZ, T.;
TASSA, Y.; SILVER, D. ; WIERSTRA, D.. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:cs.LG/1509.02971,
2015.

[6] GARCÍA, R.; RUBIO, F. ; ORTEGA, M.. Robust pid control of the
quadrotor helicopter. IFAC Proceedings Volumes, 45(3):229–234, 2012.
2nd IFAC Conference on Advances in PID Control.

[7] LAMBERT, N. O.; DREW, D. S.; YACONELLI, J.; LEVINE, S.; CALANDRA,
R. ; PISTER, K. S. J.. Low-level control of a quadrotor with deep
model-based reinforcement learning. IEEE Robotics and Automation
Letters, 4(4):4224–4230, 2019.

[8] DYDEK, Z. T.; ANNASWAMY, A. M. ; LAVRETSKY, E.. Adaptive con-
trol of quadrotor uavs: A design trade study with flight evalua-
tions. IEEE Transactions on Control Systems Technology, 21(4):1400–1406,
2013.

[9] OGATA, K.. Modern Control Engineering Fourth Edition. Prentice
Hall, New Jersey, 2002.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Bibliography 111

[10] MONTAVON, G.; ORR, G. B. ; MÜLLER, K.-R.. Neural Networks:
Tricks of the Trade Second Edition. Springer, 2012.

[11] GOODFELLOW, I.; BENGIO, Y. ; COURVILLE, A.. Deep Learning. MIT
Press, 2016.

[12] FUJIMOTO, S.; VAN HOOF, H. ; MEGER, D.. Addressing function
approximation error in actor-critic methods. In: Dy, J.; Krause, A.,
editors, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE
ON MACHINE LEARNING, volumen 80 de Proceedings of Machine
Learning Research, p. 1587–1596. PMLR, 10–15 Jul 2018.

[13] HAARNOJA, T.; ZHOU, A.; ABBEEL, P. ; LEVINE, S.. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In: INTERNATIONAL CONFERENCE ON MACHINE
LEARNING, p. 1861–1870. PMLR, 2018.

[14] SILVER, D.; LEVER, G.; HEESS, N.; DEGRIS, T.; WIERSTRA, D. ; RIED-
MILLER, M.. Deterministic policy gradient algorithms. In: Xing,
E. P.; Jebara, T., editors, PROCEEDINGS OF THE 31ST INTERNATIONAL
CONFERENCE ON MACHINE LEARNING, volumen 32 de Proceedings
of Machine Learning Research, p. 387–395, Bejing, China, 22–24 Jun
2014. PMLR.

[15] FLOREANO, D.; WOOD, R. J.. Science, technology and the future
of small autonomous drones. Nature International Journal of Science,
521:460—-466, 2015.

[16] BACHRACH, A.; PRENTICE, S.; HE, R.; HENRY, P.; HUANG, A. S.;
KRAININ, M.; MATURANA, D.; FOX, D. ; ROY, N.. Estimation, plan-
ning, and mapping for autonomous flight using an RGB-d cam-
era in GPS-denied environments. The International Journal of Robotics
Research, 31(11):1320–1343, Sept. 2012.

[17] NETO, M. F. S.; EDUARDO, G. S.; SILVA, E. C. ; CAARLS, W.. Computer
vision based solutions for mav target detection and flight control.
In: 10TH INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND
CONFERENCE (IMAV2018), p. 309–314, 2018.

[18] AGGARWAL, C. C.. Neural Networks and Deep Learning. Springer
International Publishing, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Bibliography 112

[19] CUI, Z.; HENG, L.; YEO, Y. C.; GEIGER, A.; POLLEFEYS, M. ; SATTLER,
T.. Real-time dense mapping for self-driving vehicles using fish-
eye cameras. In: 2019 INTERNATIONAL CONFERENCE ON ROBOTICS
AND AUTOMATION (ICRA), p. 6087–6093, 2019.

[20] KALLIOMÄKI, R.. Real-time object detection for autonomous
vehicles using deep learning. Master’s thesis, Uppsala University,
Sweden, 2019.

[21] HIRZ, M.; WALZEL, B.. Sensor and object recognition technolo-
gies for self-driving cars. Computer-Aided Design and Applications,
15(4):501–508, 2018.

[22] WU, T.; TSENG, S.; LAI, C.; HO, C. ; LAI, Y.. Navigating assistance
system for quadcopter with deep reinforcement learning. In: 2018
1ST INTERNATIONAL COGNITIVE CITIES CONFERENCE (IC3), p. 16–19,
2018.

[23] WALVEKAR, A.; GOEL, Y.; JAIN, A.; CHAKRABARTY, S. ; KUMAR, A..
Vision based autonomous navigation of quadcopter using rein-
forcement learning. In: 2019 IEEE 2ND INTERNATIONAL CONFER-
ENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEER-
ING (AUTEEE), p. 160–165, 2019.

[24] ILG, E.; MAYER, N.; SAIKIA, T.; KEUPER, M.; DOSOVITSKIY, A. ;
BROX, T.. Flownet 2.0: Evolution of optical flow estimation with
deep networks. In: PROCEEDINGS OF THE IEEE CONFERENCE ON
COMPUTER VISION AND PATTERN RECOGNITION (CVPR), July 2017.

[25] CAI, S.; LIANG, J.; GAO, Q.; XU, C. ; WEI, R.. Particle image
velocimetry based on a deep learning motion estimator. IEEE
Transactions on Instrumentation and Measurement, 69(6):3538–3554, 2020.

[26] KOCH, W.; MANCUSO, R.; WEST, R. ; BESTAVROS, A.. Reinforcement
learning for uav attitude control. ACM Transactions on Cyber-Physical
Systems, 3(2):1–21, 2019.

[27] KONING, T.. Low level quadcopter control using Reinforcement
Learning . Master’s thesis, Delft University of Technology, the Netherlands,
2020.

[28] HWANGBO, J.; SA, I.; SIEGWART, R. ; HUTTER, M.. Control of a
quadrotor with reinforcement learning. IEEE Robotics and Automa-
tion Letters, 2(4):2096–2103, Oct. 2017.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Bibliography 113

[29] SALIAN, I.. Nvidia blog: Supervised vs. unsupervised learning,
Aug 2019. <https://blogs.nvidia.com/blog/2018/08/02/supervise
d-unsupervised-learning/> Accessed: 03 Apr. 2021.

[30] BOTTOU, L.. Online algorithms and stochastic approximations.
In: Saad, D., editor, ONLINE LEARNING AND NEURAL NETWORKS.
Cambridge University Press, Cambridge, UK, 1998. revised, oct 2012.

[31] O’SHEA, K.; NASH, R.. An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458, 2015.

[32] HE, K.; ZHANG, X.; REN, S. ; SUN, J.. Deep residual learning for
image recognition. In: PROCEEDINGS OF THE IEEE CONFERENCE ON
COMPUTER VISION AND PATTERN RECOGNITION, p. 770–778, 2016.

[33] BELLMAN, R.. A markovian decision process. Indiana Univ. Math. J.,
6:679–684, 1957.

[34] OPENAI. Spinning up in deep rl, 2018. <https://spinningup.ope
nai.com> Accessed: 18 Jan. 2021.

[35] MNIH, V.; KAVUKCUOGLU, K.; SILVER, D.; RUSU, A. A.; VENESS,
J.; BELLEMARE, M. G.; GRAVES, A.; RIEDMILLER, M.; FIDJELAND,
A. K.; OSTROVSKI, G.; PETERSEN, S.; BEATTIE, C.; SADIK, A.;
ANTONOGLOU, I.; KING, H.; KUMARAN, D.; WIERSTRA, D.; LEGG, S. ;
HASSABIS, D.. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, Feb. 2015.

[36] LIN, L.-J.. Reinforcement Learning for Robots Using Neural
Networks. PhD thesis, USA, 1992. UMI Order No. GAX93-22750.

[37] HAARNOJA, T.; ZHOU, A.; HARTIKAINEN, K.; TUCKER, G.; HA, S.;
TAN, J.; KUMAR, V.; ZHU, H.; GUPTA, A.; ABBEEL, P. ; LEVINE,
S.. Soft actor-critic algorithms and applications. arXiv preprint
arXiv:cs.LG/1812.05905, 2018.

[38] MOUTINHO, A.; AZINHEIRA, J. R.. Simulação e Controlo de Drones.
Instituto Superior Técnico de Lisboa, May 2018.

[39] BEARD, R.. Quadrotor dynamics and control rev 0.1. Technical
report, Ira A. Fulton College of Engineering and Technology, 2008. <http:
//hdl.lib.byu.edu/1877/624> Accessed: 12 Mar. 2021.

https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/
https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/
https://spinningup.openai.com
https://spinningup.openai.com
http://hdl.lib.byu.edu/1877/624
http://hdl.lib.byu.edu/1877/624
DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Bibliography 114

[40] STAPLES, G.. Propeller static & dynamic thrust calculation, 2014.
<https://www.electricrcaircraftguy.com/2014/04/propeller-st
atic-dynamic-thrust-equation-background.html> Accessed: 12 Mar.
2021.

[41] Cessna Aircraft Company, Wichita, KS. Model 172 and Skyhawk
Owner’s Manual, 1975.

[42] GIBIANSKY, A.. Quadcopter dynamics, simulation, and control,
November 2012. <https://andrew.gibiansky.com/downloads/pdf
/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf>
Accessed: 12 Mar. 2021.

[43] BECKER-EHMCK, P.; KARL, M.; PETERS, J. ; VAN DER SMAGT, P..
Learning to fly via deep model-based reinforcement learning.
arXiv preprint arXiv:cs.RO/2003.08876, 2020.

[44] KENDALL, A.; HAWKE, J.; JANZ, D.; MAZUR, P.; REDA, D.; ALLEN,
J.-M.; LAM, V.-D.; BEWLEY, A. ; SHAH, A.. Learning to drive in
a day. In: 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND
AUTOMATION (ICRA), p. 8248–8254. IEEE, 2019.

[45] SANG-YUN, S.; YONG-WON, K. ; YONG-GUK, K.. Report for Game
of Drones: A NeurIPS 2019 Competition. 2019. <https://micr
osoft.github.io/AirSim-NeurIPS2019-Drone-Racing/_files/Sangy
un.pdf> Accessed: 12 Mar. 2021.

[46] KINGMA, D. P.; WELLING, M.. Auto-encoding variational bayes.
arXiv preprint arXiv:stat.ML/1312.6114, 2014.

[47] REZENDE, D. J.; MOHAMED, S. ; WIERSTRA, D.. Stochastic back-
propagation and approximate inference in deep generative mod-
els. In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING, p.
1278–1286. PMLR, 2014.

[48] MOHTA, K.; WATTERSON, M.; MULGAONKAR, Y.; LIU, S.; QU, C.;
MAKINENI, A.; SAULNIER, K.; SUN, K.; ZHU, A.; DELMERICO, J. ;
ET AL.. Fast, autonomous flight in gps-denied and cluttered
environments. Journal of Field Robotics, 35(1):101–120, Dec 2017.

[49] KAUFMANN, E.; GEHRIG, M.; FOEHN, P.; RANFTL, R.; DOSOVITSKIY,
A.; KOLTUN, V. ; SCARAMUZZA, D.. Beauty and the beast: Op-
timal methods meet learning for drone racing. 2019 International
Conference on Robotics and Automation (ICRA), p. 690–696, 2018.

https://www.electricrcaircraftguy.com/2014/04/propeller-static-dynamic-thrust-equation-background.html
https://www.electricrcaircraftguy.com/2014/04/propeller-static-dynamic-thrust-equation-background.html
https://andrew.gibiansky.com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf
https://andrew.gibiansky.com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf
https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/_files/Sangyun.pdf
https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/_files/Sangyun.pdf
https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/_files/Sangyun.pdf
DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Bibliography 115

[50] KAUFMANN, E.; LOQUERCIO, A.; RANFTL, R.; DOSOVITSKIY, A.;
KOLTUN, V. ; SCARAMUZZA, D.. Deep drone racing: Learning ag-
ile flight in dynamic environments. In: CONFERENCE ON ROBOT
LEARNING, p. 133–145. PMLR, 2018.

[51] LOQUERCIO, A.; MAQUEDA, A. I.; DEL-BLANCO, C. R. ; SCARAMUZZA,
D.. Dronet: Learning to fly by driving. IEEE Robotics and Automation
Letters, 3(2):1088–1095, 2018.

[52] SELVARAJU, R. R.; COGSWELL, M.; DAS, A.; VEDANTAM, R.; PARIKH,
D. ; BATRA, D.. Grad-cam: Visual explanations from deep net-
works via gradient-based localization. International Journal of Com-
puter Vision, 128(2):336–359, Oct 2019.

[53] PARK, D.; YU, H.; XUAN-MUNG, N.; LEE, J. ; HONG, S. K.. Multicopter
PID attitude controller gain auto-tuning through reinforcement
learning neural networks. In: PROCEEDINGS OF THE 2019 2ND IN-
TERNATIONAL CONFERENCE ON CONTROL AND ROBOT TECHNOL-
OGY. ACM, Dec. 2019.

[54] SELMAN, B.; GOMES, C. P.. Hill-climbing search. Encyclopedia of
cognitive science, 81:82, 2006.

[55] LIU FAN; ER MENG JOO. Design for auto-tuning pid controller
based on genetic algorithms. In: 2009 4TH IEEE CONFERENCE ON
INDUSTRIAL ELECTRONICS AND APPLICATIONS, p. 1924–1928, 2009.

[56] BELKHALE, S.; LI, R.; KAHN, G.; MCALLISTER, R.; CALANDRA, R. ;
LEVINE, S.. Model-based meta-reinforcement learning for flight
with suspended payloads. IEEE Robotics and Automation Letters,
6(2):1471–1478, 2021.

[57] PAN, S. J.; YANG, Q.. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2009.

[58] TUIA, D.; RATLE, F.; PACIFICI, F.; KANEVSKI, M. F. ; EMERY, W. J..
Active learning methods for remote sensing image classification.
IEEE Transactions on Geoscience and Remote Sensing, 47(7):2218–2232,
2009.

[59] ENGEL, J.-M.; BABUŠKA, R.. On-line reinforcement learning for
nonlinear motion control: Quadratic and non-quadratic reward
functions. IFAC Proceedings Volumes, 47(3):7043–7048, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Bibliography 116

[60] MADAAN, R.; GYDE, N.; VEMPRALA, S.; BROWN, M.; NAGAMI, K.;
TAUBNER, T.; CRISTOFALO, E.; SCARAMUZZA, D.; SCHWAGER, M. ;
KAPOOR, A.. Airsim drone racing lab. In: NEURIPS 2019 COMPETI-
TION AND DEMONSTRATION TRACK, p. 177–191. PMLR, 2020.

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

A
SAC implementation

Algorithm 3: Soft Actor-Critic
Initialize an empty replay buffer R
Initialize the policy network with weights θ and two Q-networks
with weights φ1 and φ2

Initialize two target Q-networks with weights φtarg,1 ← φ1 and
φtarg,2 ← φ2

do
. Run an episode
for t = 1,T do

Observe s and sample an action a ∼ πθ(s)
Input a to the quadrotor and observe s′, r(s, a, s′)
Store s, a, r, s′ in R
Break this loop if s′ is terminal

end
. Perform N updates
for i = 1,N

Randomly sample a batch of transitions D ⊂ R
Perform one step ADAM from losses:

L(φ) = 1
|D|

∑
(s,a,r,s′)∈D

(Qφ1 − y(r, s′))2 + (Qφ2 − y(r, s′))2
,

where

y(r, s′)←

r, if s′ is terminal, otherwise:

r + γ
(
mini=1,2 Qφtarg,i

(s′, ã′)− α log πθ(ã′|s′)
)

where ã′ ∼ πθ(·|s′)

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

Appendix A. SAC implementation 118

L(θ) = 1
|D|

∑
(s,a,r,s′)∈D

−min
i=1,2

Qφi
(s, ãθ(s)) + α log πθ(ãθ(s)|s)

where ãθ(s) ∼ πθ(·|s)

L(α) = 1
|D|

∑
(s,a,r,s′)∈D

− lnα(log πθ(ã′|s) + h)

where ã′ ∼ πθ(·|s′)
Update the target networks

φtarg,i ← τφi + (1− τ)φtarg,i for i = 1, 2

end
until converged;

DBD
PUC-Rio - Certificação Digital Nº 1912823/CA

	Deep Reinforcement Learning for Quadrotor Trajectory Control in Virtual Environments
	Resumo
	Table of contents
	Introduction
	Background
	Deep learning
	Neural networks
	Convolutional neural networks

	Reinforcement learning
	Finite Markov decision processess
	Temporal difference learning
	Approximation methods and Deep reinforcement learning
	Playing Atari games

	Actor-critic methods
	Soft Actor-Critic
	Maximum entropy objetive
	Automated entropy adjustment

	Quadrotor dynamics
	Linear adaptation

	Related work
	Deep reinforcement learning for control applications
	Deep reinforcement learning for visual navigation
	Other control and navigation solutions
	Deep drone racing
	DroNet

	Methods
	Low-level control
	PID gains optimization
	Learning algorithm
	Controller integration

	Visual navigation
	Baseline model
	Image processing and gate detection
	Pre-trained model

	Simulations
	Low-level control
	Training environment
	PID gains optimization
	Integrating dynamics with the environment
	Starting conditions
	Reward function

	Testing environment and experiment setup

	Visual navigation: AirSim
	Racing courses
	Training environment
	Starting conditions
	Reward function
	Camera properties

	CNN pre-training
	Grad-CAM

	Results
	Low-level control results
	PID tuning and performance
	Single environment training and performance
	Performance evaluation of the waypoint guidance task
	Performance evaluation of the payload pickup task

	Visual navigation results
	Pre-trained model
	Learning performance
	Course navigation

	Conclusion
	Future work

	Bibliography
	SAC implementation

