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Abstract

Mattos de Oliveira Santos, João Guilherme; Lopes, Hélio (Advisor);
Armando da Silva, Thuener (Co-Advisor). A method for interpreting
concept drifts in a streaming environment. Rio de Janeiro, 2021.
73p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

In a dynamic environment, models tend to perform poorly once the
underlying distribution shifts. This phenomenon is known as Concept Drift.
In the last decade, considerable research effort has been directed towards
developing methods capable of detecting such phenomena early enough so
that models can adapt. However, not so much consideration is given to
explain the drift, and such information can completely change the handling
and understanding of the underlying cause. This dissertation presents a novel
approach, called Interpretable Drift Detector, that goes beyond identifying
drifts in data. It harnesses decision trees’ structure to provide a thorough
understanding of a drift, i.e., its principal causes, the affected regions of a
tree model, and its severity. Moreover, besides all information it provides, our
method also outperforms benchmark drift detection methods in terms of false-
positive rates and true-positive rates across several different datasets available
in the literature.

Keywords
Data Mining; Drift Detection; Drift Understanding; Drift Interpre-

tation; Decision Trees
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Resumo

Mattos de Oliveira Santos, João Guilherme; Lopes, Hélio; Armando
da Silva, Thuener. Um método para interpretação de mudanças
de regime em um ambiente de streaming. Rio de Janeiro, 2021.
73p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Em ambientes dinâmicos, os modelos de dados tendem a ter desempenho
insatisfatório uma vez que a distribuição subjacente dos dados muda. Este
fenômeno é conhecido como Concept Drift. Em relação a este tema, muito
esforço tem sido direcionado ao desenvolvimento de métodos capazes de
detectar tais fenômenos com antecedência suficiente para que os modelos
possam se adaptar. No entanto, explicar o que levou ao drift e entender
suas consequências ao modelo têm sido pouco explorado pela academia.
Tais informações podem mudar completamente a forma como adaptamos os
modelos. Esta dissertação apresenta uma nova abordagem, chamada Detector
de Drift Interpretável, que vai além da identificação de desvios nos dados. Ele
aproveita a estrutura das árvores de decisão para prover um entendimento
completo de um drift, ou seja, suas principais causas, as regiões afetadas do
modelo e sua severidade.

Palavras-chave
Mineração de dados; Detecção de drift; Entendimento de drift; In-

terpretação de drift; Árvore de decisão
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1
Introduction

Along the years, the constant evolution of the CPUs, led to an extreme
reduction of its physical dimension and its market cost. Nowadays, it is possible
to embed processing power to basically any product one may wish. Simultane-
ously, the transformation of the internet, which is day-by-day becoming faster
and ubiquitous, made it possible for machines to communicate not only with
humans but also with other machines, a phenomenon known as “Internet of
Things”. Furthermore, the development of Cloud services, where CPUs and
other IT services are highly available on demand, enabled many industries to
expand the digital transformation of their businesses. Since developing and
maintaining these infrastructures is too expensive, consuming it as a service
became the appropriate option for many manufacturers. All these factors com-
bined provided the perfect scenario for the development of a world driven by
data. The Global Datasphere, which corresponds to the summation of data
generated, captured or replicated by the core (traditional and cloud data-
centers), the edge (enterprise-hardened infrastructure, like cell towers) and the
endpoints (PCs, smartphones and IoT devices), was in 2018 over 33 ZettaBytes
(ZB) of data what is equivalent to 33 billions of Terabytes. It is expected to
reach the amount of 175 ZB by 2025. Moreover, 49% of the world data is also
expected to reside in public cloud services by 2025 as well (29).

Given the portrayed scenario, being able to learn from previous data
and apply the acquired knowledge to unseen data became a crucial activity
for industries to improve productivity. Algorithms engineered to perform
these tasks are called Machine Learning algorithms. They work by identifying
relevant patterns in data and generalizing these patterns to unseen data in
order to infer a specific behaviour for them. There are three learning scenarios:

– Supervised Learning

The target variable, which the algorithm aims to learn, is available
for every observation. So patterns that correlate the target and feature
variables are learnt by the algorithm and expressed as a function that is
later used to predict the target variable for new observation.

– Semi-Supervised Learning

The target variable is not available for every observation. There are
normally much more unlabeled data than labeled data in this scenario,
what generally makes learning patterns that correlate target and feature
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Chapter 1. Introduction 16

variables much harder than in a supervised context. Algorithms normally
combine supervised and unsupervised techniques to express a function
that predicts the target for every observation.

– Unsupervised Learning

No labeled data is provided. Patterns are extracted from the relation
among the observations of the data. Normally, clustering techniques
and dimensionality reduction algorithms are used to infer groups of
observations of similar characteristics.

Nowadays, there are numerous real world applications where such algorithms
are applied, e.g., fraud detection in credit cards, email filtering, user preference
prediction, etc. Environments where data is generated by a multitude of
devices in a sequential manner and near real-time are denominated Data
Streams. Developing learning algorithms for streaming data is challenging due
to the unknown characteristics of the arriving instances in the stream. Many
assumptions that are made for static data are not valid for streaming data.

Traditional Machine Learning algorithms assume static data, i.e., their
characteristics are previously known and the algorithms are designed to process
the whole dataset at once. The dataset is first loaded into memory and then
used to feed an algorithm whose job is to fit a model according to the data
at hand and the set of hyperparameters chosen. Thus, the observations are
assumed to be i.i.d.(independent and identically distributed), the distribution
of each feature is known beforehand, there is no time constraint for fitting a
model - what favors the usage of complex techniques - and the whole dataset
can easily be retrieved by the system, enabling the model to process the same
instance several times to result in better performance. On the other hand,
Stream Learning, which is commonly referred to as “Data Stream Mining”, has
a set particularities that make developing a model a more complex task. As
anticipated, data streams generate data in a sequential and continuous fashion
(37). As new data is always arriving, the models have to process them faster
than the arrival rate in order to remain relevant for the stream. Therefore, less
time-consuming - i.e., low computational complex techniques - are required.
Another fundamental aspect of data streams is data unpredictability. Unlike
static data, where we know the behaviour of the entire dataset at the beginning,
dealing with data streams involves understanding that a given optimal model
developed at a given timestamp, may not be adequate for the current data, so
training a new model or adapting the current one may be required in order to
reestablish the proper quality for the models. In other words, if we consider
two data windows from the same Data Stream set some time apart from each
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Chapter 1. Introduction 17

other, we may observe distributions that are statistically significantly different.
Thus, we usually say that this Data Stream is non-stationary. We name this
significant variation in the distribution of the data: Concept Drift and it is the
fundamental topic of this thesis.

1.1
Concept Drift

Concept Drift is the phenomenon associated with changes on the statis-
tical properties of a target domain in a streaming environment (23). Consid-
ering a data stream that provides a sequence of tuples (xt, yt) sampled from
an unknown joint probability distribution Pt(X, y), where xt is a RD vector in
timestamp t that represents the D feature variables from the process simulated
by our data and yt is the discrete target variable at instant t. Concept Drift is
defined as the change suffered over time by the joint probability distribution
(6). Formally, given two timestamps t0 and t1, Concept Drift between them is
represented by the following inequality:

Pt0(X, y) 6= Pt1(X, y)

According to the Bayesian Decision Theory (10), one can state that a
classification problem can be described by the posterior probability of a target
variable p(y|X), its prior probability p(y), the conditional probability density
function p(X|y) and the evidence factor p(X) in the following mathematical
expression:

p(y|X) = p(y)p(X|y)
p(X) ,

where the target variable, y, assumes different discrete values, and the
evidence factor is a scale factor that constrains the sum of the posterior
probabilities of all the values y can assume to be equal to one: p(X) =∑c
i=1 p(yi)p(X|yi), where yi denotes each of the c distinct values of y. To make

appropriate decisions, a learner considers the posterior probability of each class
yi given the feature variablesX and chooses the one whose posterior probability
is the highest.

The joint probability distribution P (X, yi) is equivalent to the product
of the prior probabilities p(yi) and the conditional probability density function
p(X|yi), so it is possible to reformulate the Bayesian Decision Theory for the
joint probability distribution in the following two ways:

P (X, yi) = p(yi)p(X|yi)
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Chapter 1. Introduction 18

P (X, yi) = p(yi|X)p(X)

By looking at the problem through this perspective, since the evidence
factor, p(X), is just a scale factor in our formulation, it is evident that the
joint probability distribution is affected by three independent components: the
posterior probability, p(y|X), the prior probability, p(y), and the conditional
probability density function, p(X|y). As stated by Khamassi et al. (20), each
of these components is responsible for a specific type of Concept Drift:

1. Virtual Concept Drift

The variation of the joint probability distribution over time, Pt0(X, y) 6=
Pt1(X, y), is associated specifically with changes in the conditional prob-
ability, pt(X|y). Normally, this kind of drift is not prejudicial to the
learner, since only the distribution of the feature variables are chang-
ing, not affecting the decision boundaries for the target. This situation
is illustrated in Fig. 1.1b.

2. Real Concept Drift

In this case, Pt0(X, y) 6= Pt1(X, y) is due to changes in the posterior
probability distribution, pt(y|X). This kind of drift poses huge risk to the
learner’s performance, since class distributions are changing even though
the distribution of the feature variables remain the same. It should be
detected as soon as possible and an action should be taken in order
to reestablish appropriate decision boundaries for the classes. Normally,
adaptive techniques are used to accommodate the new concept to the
current model or a completely new model is trained in order to replace
the old one. It is illustrated in Fig. 1.1a.

3. Class Prior Concept Drift

Drifts related to prior probability, p(y), is also associated with other
common problems in the literature, i.e., class imbalance, novel class
emergence or existing class fusion. Many authors don’t differentiate these
drifts since they can be considered as Virtual Drifts - class imbalance - or
Real Drifts - novel class emergence and existing class fusion (20). These
kind of drifts are shown in Fig 1.1c.

Concept Drifts can also be classified in terms of how they appear in a
data stream. Regarding this matter, drifts can be divided into four categories:
Abrupt, Gradual, Incremental, and Recurrent and are presented in fig. 1.2.

Abrupt Drifts are associated with a sudden shift in the data, e.g., in
an Oil & Gas refinery, it could be associated with malfunctioning sensors,
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Figure 1.1: Illustration of the different types of Concept Drift: Virtual Drift,
Real Drift and Class Prior Drift. This figure was extracted from (20)

sudden change in the input composites or other factors in the process capable
of promoting a sudden shift in the joint probability distribution. These drifts
pose a huge burden on the learner, since their performance rapidly deteriorates.
As they occur in a specific timestamp, detecting these drifts are usually easier
than detecting Gradual drifts.

Gradual and Incremental Drifts represent a change from one concept to
another over some period of time. As the change happens in a slower pace,
determining exactly when it started is quite difficult. There is a transient state
where both concepts are active, therefore, the algorithms experience difficulties
distinguishing noise in the data from the gradual changes in the concept and
it slows the detection process. Many strategies have been developed to deal
with these gradual or incremental changes, we investigate them on the next
chapter.

Finally, Recurrent Drifts are normally Abrupt Drifts which appear sea-
sonally in the data stream. Dealing with these drifts, over a concept drift
detection perspective, is equivalent to dealing with Abrupt Drifts.

The latest surveys in Concept Drift pose new challenges to the area.
Instead of only focusing on identifying the specific timestamp where a drift
occurred, which is the central point of most algorithms developed for detecting
drift so far, it also emphasizes that new researches should not only aim at
Concept Drift Detection but also at Concept Drift Understanding, which is a
broader perspective. Gama et al. (24) state that Concept Drift Understanding
focus on answering three specific questions about Drifts: When, How and
Where. “When” is extensively explored in the academia and refers to answering
when the drift actually occurred. “How”, on the other hand, is appropriate for
defining the adaptation strategy that should be adopted for the learner and
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Figure 1.2: Illustration of the different types of Concept Drift: Abrupt, Grad-
ual, Incremental and Recurrent. This figure was extracted from (24).

stands for how severe the drift is. Normally, severity is measured by comparing
joint probability distributions and calculating the discrepancy between them.
Being able to quantify drift severity is very important for disqualifying a
previous model or just adapting it according to recent data. At last, “Where”
stands for the regions in the conflicting zone between the old concept and the
new concept. Identifying these regions is important in order to understand
where most error-prone observations lie in the hyperspace.

There is still a fundamental topic when dealing with Concept Drift in real
world scenarios that remains quite unexplored in the literature: “Concept Drift
Interpretability”. To the knowledge of the author, only the work of Zheng et
al. (41) explores the subject for the specific scenario of a dutch bank. Concept
Drift Interpretability relates to identifying the root causes of a drift. This sort
of information brings insights to the businesses that cannot be overlooked.
Specifically, in the context of any manufacturer, they might help elucidate
malfunctioning equipment, changes in the whole process, new characteristics
of the feedstocks and many other aspects of these dynamic environments.
Once a drift is identified, not only the models should be replaced or adapted,
what is the main concern of Concept Drift Understanding, but also their
root causes should be known, so the operators can take the proper actions in
order to avoid it from happening again or mitigating it’s consequences. Adding
interpretability to Gama et al. (24) definition of Concept Drift Understanding
could be simply summarized as posing a new question for drift detectors: "Why
did the drift happen?". Although this question has been briefly explored in the
literature, it is of great importance for the industry in general.

1.2
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Concept Drift Handling Strategies

Many methods are engineered to detect Concept Drifts in data streams
and then provide appropriate adaptation mechanisms for the models: an
approach known as Active strategy, which we detail thoroughly in the next
chapter. However, Active strategies are not the only way to design learning
algorithms in non-stationary environments. If we read the literature on Data
Stream Learning, we find many authors that are more focused on developing
drift resilient algorithms. Hao et al. (17), e.g., combine different Online
Learning methods in an ensemble and weigh their predictions according to
their assertiveness to form a final prediction. Furthermore, they still bind these
techniques with Active Learning, in order to reduce the cost of querying labels.
Note that this approach by no means tries to identify where a drift actually
occurred. It only forces their algorithms to keep learning so that new concepts
are gradually incorporated to their knowledge. There are plenty of strategies
that use this methodology and they are denominated Passive strategies. This
strategy is not concerned with identifying drifting zones but maintaining an up-
to-date model at all times. It can be divided into single and ensemble classifiers.

Regarding single classifiers, an acknowledged approach for Data Stream
Mining is Very Fast Decision Trees (VFDT). This algorithm was proposed by
Hulten et al. (8) and it constructs an online tree according to the Hoeffding
bounds, which determines based on an user defined threshold the number of
examples needed to agree on a split in order for it to be consolidated in the
tree. Later on, a new algorithm called Concept-adapting Very Fast Decision
Trees (CVFDT) improved drift handling by maintaining a sliding window in
memory and using it to train an alternative sub-tree. Whenever this sub-tree
performs better than its original counterpart in the stable tree, the original
sub-tree is replaced by the new one (19).

Ensemble classifiers cope with non-stationary environments by maintain-
ing a pool of classifiers trained at different timestamps and combining their
predictive power into a single prediction. Ensembles have been widely adopted
because of their generalization ability. They can be classified by different as-
pects (20):

1. block-based or incremental-based according to how they process the
data, either in “blocks”, i.e., small chunks of data, or incrementally,
processing observations sequentially one-by-one. Normally, for block-
based strategies defining the size of the block is a bit tricky, since the
classifiers should be able to generalize seasonal characteristics of the data
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but not drifting trends, so outdated classifiers can be replaced by new
trained ones and improve the overall performance of the ensemble.

2. fixed-size or variable-size according to the number of classifiers an
ensemble accepts. Some strategies control the overall complexity of
the model by fixing the number of classifiers allowed. Others aim at
being resilient to recurrent drifts, so they allow an infinite number of
classifiers and formulate appropriate techniques to adjust their weights,
e.g. evolutionary-based optimization algorithms, in order to minimize
misclassification rates. These techniques allow an old classifier to become
relevant again once the appropriate concept emerges back into the
stream.

Kotler and Maloof (21) proposed the Dynamic Weighted Majority al-
gorithm, which is still a benchmark for recent studies in ensemble classifiers
for streaming data. In their work, they reduce the weight of every base clas-
sifier that make a mistake, and add a new classifier every time the ensemble
fails to detect the true label. The classifiers whose weights are smaller than
an user defined threshold are then removed from the ensemble. Other rele-
vant techniques in this field are Learn++.NSE, presented by (11), which are
resilient to recurrent concepts as well. These two approaches are block-based
passive strategies. Regarding incremental-based strategies, some of the most
recognized works are Streaming Ensemble Algorithm (SEA) (32), Accuracy
Weighted Ensemble (AWE) (34) and Accuracy Updated Ensemble (AUE) (4).

In general, Data Stream Learning can be segmented into the former two
main strategies: Active and Passive. The Active Strategy focus on determin-
ing drifting zones through statistical analysis of data windows or online error
rate of current learners. Some of the techniques widely used in these methods
are: statistical hypothesis tests, dissimilarity measures between distributions
(Hellinger distance, Kullback-Leibler Divergence, etc), Bootstrapping, Permu-
tation tests, among many other techniques that are deeply discussed in the
next chapter, since it is the strategy adopted for this work.

Testing these algorithms designed to work with streaming data requires
appropriate techniques. The two most common are Holdout and Interleaved
Test-Then-Train or Prequential Evaluation. Holdout Evaluation corresponds
to withholding a subset of data for training and then another one for testing
and iterate over this process while the data stream is available. There are
a few issues with this approach. First, selecting samples for training in a
streaming context. This is normally solved by selecting samples at varying time
intervals, reducing the temporal dependence of the subset. Second, determining
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the appropriate size of the train/test subsets is also a challenge. And third, the
concept during training should be the same as the one during testing, in order
to provide a fair evaluation of the models. How to guarantee that concepts are
not changing during evaluation at real-time (13). All these problems should be
considered when opting by a Holdout Evaluation process for the models.

Interleaved Test-Then-Train or Prequential Evaluation corresponds to
the process of using each instance first for testing the algorithms and then for
training them. This approach is highly used with sliding windows and decaying
factors in passive approaches for improving classification models in streaming
environments (37).

Having introduced some of the most fundamental aspects of Concept
Drift Detection methods, we are now able to dive deeper into the research
presented by this dissertation. Our work aims at identifying, understanding
and interpreting concept drifts for the available datasets in the literature,
joining together points raised in “Concept Drift Understanding” and “Concept
Drift Interpretability”. Altogether, we aim to respond the final set of questions
regarding a drift: “When”, “How”, “Where” and “Why”. “When”, “How” and
“Where” relate to understanding concept drifts and allow us to train relevant
algorithms according to the different scenarios presented at any complex
and dynamic environment, e.g., an Oil & Gas refinery. “Why” relates to
interpreting drifts, i.e., finding it’s root causes, and is of great importance
in order to develop strategies that mitigate their risks or even prevent them
from happening again. As interpretability is highly required in our research,
we opt to use decision trees as base models. Besides that, we deeply explore the
literature of Active Strategies to comprehend the dynamics of data streams,
understanding and interpreting the drifts that present themselves along the
data.

We organize this dissertation in the following way: Chapter 2 reviews
the literature on Concept Drift Detection methods (Active Strategy). Chapter
3 presents the research conducted. Chapter 4 brings the results achieved by
applying our method to synthetic and real-world datasets available in the
literature and Chapter 5 reports our findings and presents future steps for
the area.
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2
Previous Work

There are many ways for machine learning practitioners to deal with
evolving data. Nonetheless, if they wish to understand how data is evolving and
acquire knowledge from the data generating process, change detection methods
suit the purpose very well. The first detectors were based in sequential analysis,
more specifically, in Sequential Probability Ratio Test (SPRT) (26). Given
two distribution, P0 and P1, and a timestamp w, which represents the exact
moment the distribution of the sequence Xn = {x1, x2, ..., xw, xw+1, ..., xn}
switches from P0 to P1, the probability of observing subsequencies after w
under distribution P1 is significantly higher than observing subsequencies
under P0. This concept can be mathematically expressed by the log-likelihood
ratio between the two pdfs (13):

T nw = log
P (xw...xn|P1)
P (xw...xn|P0) =

n∑
i=w

log
P1(xi)
P0(xi)

= T n−1
w + log

P1(xn)
P0(xn)

A change is detected when T nw reaches a user-defined threshold. This idea
is adopted by two very famous change detectors proposed by Page in 1954 (27):

– CUSUM (Cumulative Sum)

CUSUM test is represented by gt = max(0, gt−1 +(xt−δ)), where g0 = 0.
Here, xt is the current observation, δ is the allowed magnitude of change
and gt is the cumulative test statistic. When it is higher than an user-
defined threshold, an alarm is signaled. Note that only positive changes
are reflected by the aforementioned formula. If negative changes should
be detected instead of using max in the formula, we use min.

– Page-Hinkley

PH test is represented by mT = ∑T
t=1 xt− x̄T + δ, where x̄T = 1

T

∑T
t=1 xt.

Again, δ and xt are the allowed magnitude of change and current
observation. This test compares the cumulative magnitude of change,
mT with the minimum observed value for MT = min(mt), where
t={1, 2, 3, ...T}. When mT −MT is greater than a user-defined threshold,
the test signals an alarm.

Although these algorithms are not used alone to identify drift anymore,
there are still very recent researches that combine them with other strategies
to compose relevant drift detectors.

DBD
PUC-Rio - Certificação Digital Nº 1913160/CA



Chapter 2. Previous Work 25

2.1
Concept Drift Detection

Most of the algorithms recently developed for actively detecting drifts
in data streams can be explained by the framework proposed by Gama et
al. (24), as fig. 2.1 illustrates. Their work decomposed concept drift detection
algorithms into four main stages:

– Stage I (Data Retrieval) defines how data is retrieved by the stream.
Since a single instance is not enough to infer properties from the current
pdf, data is normally retrieved in chunks. How these chunks are built is
defined by this step.

– Stage II (Data Modeling) pre-process the data in order to identify key
features that better represent the current chunk. Normally, this step
consists of applying dimensionality reduction or sample size reduction
algorithms to the data. That way, a smaller and more meaningful
representation can be abstracted from the original data. This step is
not implemented by many concept drift algorithms.

– Stage III (Test Statistic Calculation) defines a dissimilarity measurement
for comparing the historical data and the current data. In other words,
quantifies the severity of the drift between the two windows. Defining
a robust and accurate measurement has been extensively studied in the
literature, but remains an open question.

– Stage IV (Hypothesis Testing) formulates hypothesis tests for evaluating
statistical significance of the test statistic derived from the previous
stage. Some of the most used hypothesis tests are: estimating the
distribution of the test statistic, bootstrapping, permutation test and
Hoeffding’s inequality based bound identification.

According to Gama et al. (24), the different strategies for developing
active concept drift detectors can be categorized into: error rate-based, data
distribution-based and multiple hypothesis test detectors. We further analyze
each of these methodologies, point out their most acknowledged methods and
evaluate how they relate to drift understanding concepts, i.e., detecting when
drift occurs (“When”), their severity (“How”) and the regions affected by them
(“Where”).
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Figure 2.1: Illustration of the four stages that compose a concept drift detection
algorithm. This figure was extracted from (24).

2.1.1
Error Rate-Based Detectors

Methods classified as error rate-based are normally designed for super-
vised classification problems. They develop their test statistic based on metrics
from their corresponding classifier’s confusion matrix, so they need a target in
order to assess how their predictions are drifting from the real target values.
As these methods track online error rates, most of them process data incre-
mentally, i.e., they normally use landmark windows for identifying drifts.

One of the most acknowledged concept drift detectors is the DDM (Drift
Detection Method) (14). This method works as follows: first, a binary classifier
is trained on a reference window. After that, the instances of the data stream
- represented by (Xt, yt) at instant t, where yt ∈ {0, 1} - are processed
sequentially in a landmark window (Stage I). The feature variables, Xt, are
then abstracted by the learner’s prediction, ŷt, composing the pair (ŷt, yt)
that represents the data (Stage II). Once we have these pairs, a dissimilarity
measure based on the online error rate (yt 6= ŷt) is created for evaluating
possible drifts in the data through a hypothesis test (Stage III). In order to
perform the hypothesis test, it needs to estimate a Normal distribution of the
error rate. So, the algorithm simulates Bernoulli processes in order to generate
a sequence of binary random variables for representing the errors and successes
of the classifier. These Bernoulli processes form a Binomial distribution whose
mean, pt, is the error rate and the standard deviation is given by st =

√
pt(1−pt)

t
.

For a sufficient large number of examples, the Binomial distribution can be
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approximated by a Normal distribution with the same mean and variance.
That way, every time a new instance i is processed, the algorithm updates
the Normal distribution and verify if pi + si < pmin + smin. If it is true,
the current values for pmin and smin are updated. Otherwise, it checks if
pi + si ≥ pmin +αwar ∗ smin, where αwar is the boundary for the warning level.
From that point, the algorithm starts to build a new window for retraining
the model, in case a future observation j presents pj + sj > pmin + αdet ∗ smin,
where αdet > αwar and indicates the confirmation zone for a drift (Stage IV).

Under the assumption that DDM did not work very well for slowly
gradual drifts, Beana et al. (1) developed the Early Drift Detection Method
(EDDM). Instead of considering the online error rate, EDDM tracks the
average distance between two sequential classification errors. While the model
is learning the behaviour of the data, the distance between errors tend to
increase. At each error, the algorithm calculates the mean, pi, and standard
deviation, si, of the distances and stores the highest value for the sum, pi+2si,
as pmax and smax. As this sum (pi + 2si) gets smaller, it means that errors are
occurring at a higher frequency, therefore a new concept might be emerging.
For the hypothesis test, EDDM uses the ratio: pi+2si

pmax+2smax
. Warning and drifting

zones are stipulated based on this ratio.
Numerous other works were developed based on the DDM algorithm

in order to improve performance under particular conditions. For instance,
the RDDM (Reactive Drift Detection Method) (2) brings a new approach
for dealing with gradual drifts in DDM. It discards older instances during a
gradual drift to overcome memory overflows in a warning zone. The DDM-OCI
(36) seeks to improve the performance of the EDDM algorithm in imbalanced
datasets. It assumes that drift in imbalanced data occurs when the minority
class recall changes, what might not be true to all cases. There are changes
to the distribution of the data that don’t affect the minority class recall (37).
Other approaches based on the DDM algorithm are the HDDM (Hoeffding’s
Drift Detection Method) (12), which uses Hoeffding’s inequality for a two-
sample statistical test in order to identify drift and the FW-DDM (Fuzzy-
Windowing Drift Detection Method) (22) that implements a fuzzy window
instead of using a landmark one for processing the data.

Another very successful approach for error rate-based detectors is the
Adaptive Window (ADWIN) algorithm (3). This algorithm is normally com-
bined with a learner, whose predictions are used in order to measure drift
by the ADWIN approach. ADWIN considers sliding windows of size W and
evaluate possible splits in W that could result in two subwindows W0 and W1

with significantly different distribution means ˆµW0 and ˆµW1 . The distance be-
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tween means is compared with a threshold, εcut, by the following inequality:
| ˆµW0 − ˆµW1| ≥ εcut, where εcut is calculated using the theory of Hoeffding’s
bounds. Whenever the inequality is satisfied, the oldest window is discarded
and only the new one is kept in memory for retraining or adapting the current
learner. That way, windows do not have fixed size, hence the name Adaptive
Windows. ADWIN evaluates W splits and discards instances one by one ac-
cording to the inequality formerly presented. Bifet et al. (3) also proposes AD-
WIN2, where instead of evaluating every instance individually, it compresses
the instances into bigger sequences and evaluates these sequences according to
their means in order to check for drifts in the data. This approach presents
a lower computational complexity, since O(logW ) splits are considered for a
binary classifier.

At last, EWMA Charts Concept Drift Detection (ECDD) (31) also
proposes a unique way of detecting drift in non-stationary data streams.
Exponentially Weighted Moving Average (EWMA) was first proposed by
Roberts et al.(30) for detecting a significant increase in the mean of a sequence
of random variables: X1, ..., Xt. Suppose this sequence has mean µ0 up to a
change point and µ1 after that point. It downweights the older data, using a
parameter λ, in order to come up with an estimate of the mean more biased
towards the recent values of the sequence. It is described by the following
formulation:

Z0 = µ0,

Zt = (1− λ)Zt−1 + λXt

The sequence of random variables, X1, ..., Xt, represents the misclassifi-
cation rate of the learner and can be viewed as a sequence of Bernoulli random
variables, where the mean represents the probability of incorrectly classifying
an example in the stream. Besides that estimation, ECDD develops another
estimate for the same mean that does not downweight older values, given by:

ˆp0,t = 1
t

t∑
i=1

Xi = t− 1
t

ˆp0,t−1 + 1
t
Xt

That way, Zt is more sensitive to changes in the mean and hence
represents an accurate measure of it’s current value, while ˆp0,t is less sensitive
to recent changes, therefore representing an estimate of the pre-change value.
These two estimate are then combined in order to raise drifts in the distribution
of the misclassification rate, when the following inequality is satisfied: Zt >
ˆp0,t + LσZt , where L is a time-varying threshold and σZt is the standard
deviation of the EWMA estimation. ECDD has a very competitive performance
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when compared to other error-rate based detectors. Besides that, this approach
allows the rate of false positive detection to be controlled.

Although these algorithms have proven to be effective in identifying the
moment a drift occurs, their ability to quantify drift and to detect drift regions
are still very limited. Drift quantification could be measured by comparing
overall accuracy in the historical window and the recent window, but the fact
is that none of these approaches have successfully come up with an adequate
technique for assessing drift severity or the appropriate region a drift occurs.
Therefore, it is harder to gain deeper insights on the drift by only applying error
rate-based techniques. Other approaches have proven to be more successful
in analyzing drifts, nevertheless they might not be as accurate on detecting
the time instant a drift occurs. As we investigate in the next section, data
distribution-based detectors can be very useful for understanding drifts.

2.1.2
Data Distribution-Based Detectors

A concept drift can also be evaluated by the distributional characteristics
of a non-stationary data stream. Data distribution-based detectors propose
to measure dissimilarity between historical and current data distributions by
using distance metrics and comparing them through distribution estimation
or other techniques, as we further investigate on this section. Drifts detected
by these methods are also referred to as Distribution Drifts and are known to
represent their root cause. That way, besides detecting the time it occurs, most
of them also provide knowledge regarding their severity and a few identify the
main regions of the models that are affected by the drifts. Nevertheless, all
this information also incurs in higher computational cost.

Under the perspective of the framework, illustrated by Fig 2.1, we can
summarize most of the works developed in Data Distribution-Based methods
by their main characteristics for each stage.

Normally, these methods adopt sliding windows techniques in Stage I,
since they need to infer current characteristics of the data stream. They
keep a fixed window - used to train models running in production - and a
sliding window for capturing current concepts of the stream. These windows
are compared and once a drift is detected, the fixed window is replaced and
the models are retrained or adapted according to the new fixed window.

Although Stage II is not implemented by every method, the ones designed
to work with high-dimensional datasets, normally, tend to abstract the real
data by adopting multidimensionality reduction algorithms. This approach
enables these methods to lower their computational burden to the system.
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Nevertheless, abstracting real data may compromise drift interpretability,
which is a disadvantage for these methods.

The most suitable dissimilarity measuresments for these detectors, de-
fined in Stage III, are based on distance metrics between distributions. As
Goldenberg et al. (15) reinforces in their work, a distance metric should satisfy
the following rules:

– D(x, y) ≥ 0 (Non-Negativity)

– D(x, y) = 0 ⇐⇒ x ≡ y (Identity of indiscernibles)

– D(x, y) = D(y, x) (Symmetry)

– D(x, y) +D(y, z) ≥ D(x, z) (Triangle inequality)

Based on these rules, the different techniques used for quantifying dissim-
ilarity between distributions are also investigated in (15). The most common
ones exploited by data distribution-based methods are:

– Kullback-Leibler divergence

KL divergence measures disparity between distribution - P and Q -
through an information-based criteria:

DKL(P,Q) = E(− log2(P
Q

))

It can be interpreted as the amount of information lost for approximating
P to Q. This measurement does not satisfy symmetry nor triangle
inequality rules. Hence, it is not a distance metric. Authors normally
adapt KL divergence in order to use it as a distance metric in their
researches.

– Hellinger distance

Given two probability measures, P and Q, which are continuous with
respect to λ in a measurement space Ω, the Hellinger integral (also known
as Bhattacharya coefficient) is defined as:

H(P,Q) =
∫

Ω

√
dP

dλ

√
dQ

dλ
dλ

The Hellinger distance is defined based on this integral as:

DH(P,Q) =
√

1−H(P,Q)

The Hellinger distance has a closed-form calculation for univariate Nor-
mal and Poisson distributions. Furthermore, it can be approximated
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for multivariate Normal distribution and unknown distribution of low-
dimensional data. Thus, it is a very appropriate distance metric for esti-
mating concept drift between two time windows.

– Kolmogorov-Smirnov statistic

The Kolmogorov-Smirnov statistic can be used as a distance, a goodness
of fit measure or a hypothesis test. The KS distance is defined as
the difference between two univariate distributions. Suppose we have a
distribution X of n i.i.d. observations. We denote the cumulative density
function (CDF) from this distribution by F (x). Furthermore, we also
calculate an empirical cumulative distribution function (ECDF) based

on the following indicator function: I[−∞,x](Xi) =

1, ifXi > x

0, ifXi ≤ x

. The

ECDF can then be represented by the following formula:

Fn(x) = 1
n

n∑
i=1

I[−∞,x](Xi)

The KS distance between the CDF and ECDF is given by the norm
L-infinity of their difference:

Dn = sup
x
|F (x)− Fn(x)|

– Hotelling’s T 2 distance

Hotelling’s T 2 distance has a few similarities with the Mahalanobis
distance. Suppose we want to test if a p-dimensional sample X of size n
comes from a distribution with mean µ. Given the sample mean X̄ and
variance-covariance matrix S - assumed to be singular -, we calculate the
T 2 distribution with dimension p and n degrees of freedom through the
following formula:

T 2(p, n) = n(X̄ − µ)′S−1(X̄ − µ)

This distribution is proportional to the following F-distribution:

Fp,n−p = n− p
p(n− 1)T

2

This distribution can then be used for a hypothesis test in order to
assess if the sample mean X̄ is statistically significantly different than
distribution mean µ. Furthermore, when n is sufficiently large, the T 2
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distribution can be approximated to a Chi-Squared (χ2) distribution with
p degrees of freedom and hence be used as a distance metric between the
distributions. This distance is unitless and is measured according the
standard deviation of the Chi-Squared distribution.

Having presented all these metrics, finally, the last stage, Stage VI,
is responsible for developing the hypothesis test. At this stage, different
strategies are considered, e.g., bootstrapping, permutation tests, distribution
estimation and even algorithms based on sequential probability ratio test
as the Page-Hinkley algorithm. Next, we bring the core ideas behind a few
acknowledged data distribution-based methods and analyze how they relate to
drift understanding concepts.

Dasu et al. (5) propose an information theoretic approach for detecting
drifts in multidimensional data. Their research works with two sliding window
models: adjacent windows and fix-slide windows. The first better captures
rate-of-change, while the second is suitable for cumulative changes over time.
We focus our explanation in the second model. Their approach uses a space
partitioning scheme, called kdq-tree, that subdivides the hypercube composed
by the features into cells. The kdq-tree algorithm is applied to the fixed window
and, according to the resulting rules of this tree, the instances of the sliding
window are placed into the appropriate leaves. For each leaf, the Kullback-
Leibler divergence, d̂, between samples of the fixed and the sliding windows
is calculated. After that, Bootstrapping techniques are used to recalculate the
Kullback-Leibler divergence several times. Based on the distribution of these
KL-divergence estimates, which is a Normal distribution, a critical interval,
(dhi,∞), is inferred according to a statistical parameter α for which the null
hypothesis that both samples come from the same distribution is rejected.
So, if d̂ falls in the interval (dhi,∞), k consecutive times, where k is defined
according to the number of instances in the sample and a threshold parameter,
the algorithm assumes that a drift has occurred. Once a drift has occurred,
by applying Kulldorf spatial scan statistic, it is possible to identify the regions
that differ the most between the fixed window and the sliding window. All in
all, this method is appropriate for detecting when and where a drift occurrs.
Nevertheless, since Kullback-Leibler is not a distance metric, it does not
provide any information regarding the severity of the drift.

Hellinger Distance Drift Detection Method (HDDDM) is another ap-
proach for identifying drift by analyzing data distribution (7). Ditzler et al.
propose to approximate the baseline window and the sliding window distribu-
tion by a histogram with

√
N bins, where N is the cardinality of the current

data batch. The Hellinger distance is computed for each feature of the dataset
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and then the average of these distances: δH(t) is stored. Next, the algorithm
calculates the difference between the current average distance and previous
average distance: ε(t) = δH(t) − δH(t − 1). The difference between the dis-
tances, ε(t), is compared to an adaptive threshold in order to claim whether
the change is really a drift or not.

Dos Reis et al. (9) propose a drift detection method through an incre-
mental Kolmogorov-Smirnov Test. They adopt the same strategy of fixed-slide
windows. Considering the reference set, A, and the current set, B, with n and
m observations respectively, the KS-test is defined as: D > c(α)

√
n+m
nm

, where
c(α) comes from a known table for a given significance level α and D is the
KS-statistic (D = supx |FA(x) − FB(x)|) as previously introduced. Once the
inequality is satisfied, the algorithm rejects the null hypothesis the two samples
A and B come from the same distribution. The proposed incremental KS-test
is applied to each feature of the dataset individually. If the test fails for a given
attribute, a drift is signaled. One downside of this approach is that drifts may
happen without failing any of the tests. A multivariate test would result in
more accurate results in drift detection. Nevertheless, it does not provide any
information regarding drift regions or drift severity.

A PCA-Based change detection framework is proposed by Qahtan et al.
(28). Their work uses the reference and sliding window paradigm for comparing
data distribution. They suggest the utilization of PCA for extracting the
k most important principal components of the reference window, i.e., the k
components accounting for 99,9% of data variance. After that, the data of the
reference and current windows are projected into these k principal components
and their PDFs are approximated by a density estimator - histograms and
KDE-Track are the ones used by their work. Furthermore, the method still
proposes 3 different divergence metrics for comparing the current and reference
sets: a modified symmetric KL-divergence; the intersection area under the
curve of the two density functions; and a modified version of the LLH metric,
which measures the likelihood of data samples from current window belonging
to the density function estimated for the reference window. A change detector
is created by selecting one of these metrics and testing it to the univariate
estimated density functions of the projected reference and current sets into
each principal component. A change-score, based on the selected metric, is
then computed for each component and the highest one is kept in memory and
represents the level of disagreement between the windows at that time. The
Page-Hinkley algorithm is then applied for the series of highest change-scores
in order to detect drift. This approach also relies on univariate distribution
comparison for detecting drifts. That way, many gradual drifts and smaller
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drifts might go undetected. The metrics, considered by the authors, can be
used as a measure of drift severity in order to appropriately handle model
adaptation.

2.1.3
Multiple Hypothesis Test Detectors

Multiple Hypothesis Test Detectors are also either online error-rate based
or data-distribution based detectors. Their main difference to these approaches
are the multiple hierarchical or parallel layers used for detecting drift.

Weng et al. (35) propose the Linear Four Rates (LFR) drift detector.
This method relies on a binary classifier for identifying drifts, that way it
is also an online error-rate based detector. It uses a landmark window that
grows incrementally as new observations arrive. The LFR algorithm monitors 4
rates of a classifier’s confusion matrix: True Positive Rate, True Negative Rate,
Positive Predicted Value and Negative Predicted Value. For each of these rates,
it keeps in memory a test statistic which numerically translates information
from the sequence of prediction errors and successes. At each iteration, the
algorithm performs a parallel verification on each monitored rate. The ones
that have changed from one iteration to the next are subjected to a hypothesis
test where Bernoulli random variables are used to simulate a sequence of
predictions according to the current rate. The test statistic is then compared
with the numerically approximated Normal distribution translated from the
simulated sequences in order to test the hypothesis that the it actually comes
from this distribution (Null Hypothesis) or not (Alternative Hypothesis). The
null hypothesis is rejected if the test statistic lies beyond a user-defined
threshold for the distribution, and hence a new drift is acknowledged. A less
restrictive user-defined threshold is the drift warning zone, i.e., where the
algorithm starts to build a new window with the arriving data. If the null
hypothesis is rejected later, the model is retrained with the new window.

In order to reduce the rate of false positive detection raised by the LFR,
Yu et al. (38) developed the Hierarchical Linear Four Rates (HLFR). Besides
the parallel tests implemented by the LFR, HLFR performs hierarchical tests.
The first layer applies the LFR algorithm to the data in order to detect drift.
Once a drift is detected, it follows to a second layer, where the drift is validated.
The second layer performs a permutation test with the window built by the
first layer. It first divides the window into training and testing sets, then it
trains a benchmark classifier in the training set and tests it in the testing set,
and computes the zero-one loss for this classifier, ˆEord. After that, the same
process is repeated P times for other new classifiers with the observations of
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the window shuffled. Ultimately, the user defines a threshold η to validate the
drift by verifying the following inequality: η ≥ 1+

∑P

i=1 1[ ˆEord≤Êi]
1+P , where Êi is

the ith classifier zero-one loss. This approach significantly reduces the number
of false positives from the LFR algorithm.

The work proposed by Yu et al. (39) adopts a similar Hierarchical
Hypothesis Testing (HHT) framework. In their research, two different methods
are designed: HHT with Classification Uncertainty (HHT-CU) and HHT with
Attribute-wise “Goodness-of-fit” (HHT-AG). These methods avoid requiring
true labels at every iteration, since they might not be immediately available
depending on the application. Furthermore, although they mostly work in
an unsupervised manner, they were developed specifically for classification
problems.

The first method, HHT-CU, uses the Hoeffding’s inequality in its Layer-I
to monitor the moving average of the classification uncertainty measurement
ut, which is calculated by the l2-norm of the difference between the model’s pre-
diction, ŷt, and the posterior probability estimated by the classifier, P̂ (yt|Xt):
ut = ||ŷt− P̂ (yt|Xt)||2. Hoeffding’s inequality does not require any assumption
regarding the probabilistic distribution and is therefore appropriate in data
stream learning scenarios. Once a drift is suspected, Layer-II runs a permuta-
tion test based on the zero-one loss the same way as formerly explained to the
HLFR algorithm.

HHT-AG compares a baseline window, W1, and a sliding window, W2,
with the same size N . For each feature of the data stream, xk|dk=1, a “Goodness-
of-fit” test, based on Kolmogorov-Smirnov distance measure, is conducted in
order to determine whether the features of sets W1 and W2 come from the
same distribution. If the test concludes that they don’t come from the same
distribution, Layer-I signals a drift to Layer-II. The second layer requires the
true label of each instance from both windows, W1 and W2, and based on the
features and true labels a 2D Kolmogorov-Smirnov test is now conducted to
validate the drift.

2.2
Summary

Although error rate-based methods are the best option for precisely de-
termining a concept drift, their accuracy is tightly coupled to the corresponding
learner’s performance. Therefore, they are very limited in terms of applicabil-
ity, being suited for fully supervised classification problems where true labels
are immediately available after a new instance is processed, which is not com-
mon in real world scenarios. Despite its limited applicability in the real world,
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it lacks in understanding properties of the detected drift which may also be
a problem since it becomes difficult to come up with an adequate strategy to
restore a model’s performance, rather than retraining the whole model. Data
distribution-based methods, on the other hand, could perfectly be applied to
non-supervised or semi-supervised scenarios as well as fully supervised scenar-
ios, too. They rely on larger windows for capturing properties in the data and
use these properties to infer drifts, not needing a particular model to assist
them. Nevertheless, they are more exposed to false alarms, since changes in
the data distribution may not necessarily affect the overall performance of
these models. They could simply represent a purely virtual drift. These meth-
ods provide a lot more information regarding a drift than the ones based on
learners.

The algorithm we propose in this work, as we detail in the next chapter,
brings aspects from both sort of drift detectors: error rate-based and data
distribution-based. Error rate-based, since our algorithm analyzes how the
accuracy of distinct nodes in a decision tree varies along time, resembling
what is defined as “real drifts”, and data distribution-based, since it also takes
into account how the behaviour of the variables associated with these nodes’
rules is changing along time, what resembles the definition of “virtual drifts”.
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3
Proposal

In complex and dynamic environments, understanding the behavior of
the data brings a lot of advantages to the related businesses. Apart from
being able to detect a drift rapidly - which is crucial to keep models updated
with the underlying distribution of the data - measuring drift severity and the
main regions affected by it are also very important to provide mechanisms for
adapting models more accurately than retraining them entirely. Furthermore,
if we can relate a drift to a specific variable or to a set of variables, we are
actually providing insights for businesses to correlate the real-world with the
data that translates it. That way, drifts could be handled accordingly, not
needing necessarily an algorithmic intervention to correct them, e.g., the drift
could be associated with an uncalibrated sensor or a specific change in the
sensor’s position. In both cases, an operational approach could be adopted to
replace the bad sensor with a calibrated one or moving the sensor back to its
original position. So, understanding what led to the drift is crucial in order to
adopt the right strategy for dealing with it. Our method aims at providing all
this information by leveraging the structure of tree models.

Our method looks for drifts inside each node of the trained decision tree.
That way, our knowledge regarding the whole scope of variables provided by
the dataset is restricted to the ones selected by the algorithm to be a part of the
tree. Consider the scenario of an Oil & Gas refinery. These environments are
highly sensorized. Hence, analyzing their data brings a lot of information on the
diverse sensitive operating conditions of a refinery. Imagine for instance that in
a given moment the crude oil feedstock changed and their new characteristics
imposed different temperatures and pressures to the distillation towers and
other processes of the plant. If our model selected the features responsible for
measuring the characteristics of the feedstock, it is probable that our method
would be able to detect the root causes of this drift, which is indeed the
changed oil feedstock. Nevertheless, if these features are not selected, but
affected pressures and temperatures are, we would still be able to infer the
root causes with the help of expert operators, since the model would accuse
drifts on variables highly correlated with the type of feedstock used, i.e., the
pressures and temperatures. On the other hand, if none of these variables
were actually selected by the model, our method would then accuse drifts in
nodes that have little or almost no relation to the true root causes themselves
providing no real knowledge for the operators of a refinery. In other words,
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by abstracting the feature data by the tree model, we are actually amplifying
the universe of non-observable variables, even though some of them might be
inferred indirectly by variables of the model. These non-observable variables,
which could be inferred indirectly by observable variables, are called latent or
hidden variables. Nonetheless, there are still other variables that will remain
unknown to the digital modelling of the refinery and drifts occurring to them
might go undetected or poorly detected by our method. It is a clear limitation
of the strategy adopted by our research.

Despite the discussion on non-observable variables, capturing drifts in
the data is crucial for developing models that remain as accurate as possible
over extensive periods of time without any human intervention. By capturing
the drifts, we aim at not only determining the moment it occurred, but also
understanding its severity and assessing the most affected regions of the current
learning model - an area presented by Gama et al. (24) as Drift Understanding.
By processing this information, it is possible to develop accurate strategies for
adapting the current model or retraining a new one. Furthermore, this research
also addresses another relevant question to this matter: “why has the drift
actually occurred?”. To this specific question, we suggest a new term: Drift
Interpretation. We observe that most research in the field of Concept Drift
Detection has no intent in informing the real reasons behind a specific drift.
However, comprehending these reasons makes a huge difference for businesses,
since it translates to more information for the operation teams in the most
diverse industries. We believe that concepts like Drift Understanding and Drift
Interpretation are still not fully explored and can be used by businesses to have
a massive impact on the way they operate on a daily basis.

3.1
Assessing Drift Criticality

In order to present the ideas behind our algorithm, we use a known stream
generator, called Random Radial Basis Function. We define 10 features and 50
different centroids with random central positions, a standard deviation and a
class label - we use a binary target variable for our analysis. The samples are
then generated by randomly picking one centroid and offsetting the attributes
in some direction farther from the center of this centroid. This generator creates
a hypersphere of data around each centroid. Fig. 3.1 illustrates the generated
dataset with 20000 samples. The number of instance were chosen in order to
produce 4 distinct periods of significant length to train a decision tree or to
analyze drifts along them. Indexes 0 to 9 correspond to a single feature in the
dataset, and the last row (index 10) represents the target variable. In order
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to evaluate the behaviour of each variable along the stream, we normalize the
features to a [0, 1] interval by applying a min-max scaler to each of them. That
way, we are able to analyze the behaviour of each feature in relation to the
others as well.

Figure 3.1: The heat map illustrates the features (indexed 0 to 9) and target
(index 10) variables along all the 20000 observations of the dataset. The
variables were scaled to the [0, 1] interval by a min-max scaler. The target
only assumes values 0 or 1 and so does not need to be scaled.

In order to analyze drifts appropriately, we perturb variables indexed
by 0, 3, 5 and 8. Each of these variables were perturbed by adding a specific
Gaussian noise. Variables 0 and 5 received a signal with mean, µ, equal to
−1 and standard deviation, σ, equal to 0.2, while variables 3 and 8 received
noises with µ = 1 and σ = 0.2. Furthermore, the target variable (index 10)
is also perturbed. In order to perturb this discrete variable, we use Bernoulli
trials with success probability of 0.9. Fig. 3.2 illustrates the drifts added to the
data. Note that each variable is perturbed during a specific interval: variable
0, during the interval [6000, 9000]; variable 3, for the interval [12000, 15000]; 5,
from 10000 to 13000; 8, from 7000 to 9000; and the target variable is perturbed
for the interval [16000, 19000].

The dataset is divided into 4 distinct windows with 5000 instances each.
The first window is used to train our base model, which is a decision tree. The
training set is separated from the test set in fig. 3.2 by the red vertical line.
The following three windows encompass the test set: second window, interval
[5000, 10000]; third window, [10000, 15000], and fourth window, [15000, 20000].
We aim to analyze how the trained decision tree performs on the test data on
two specific aspects: accuracy and frequency. Note that for the last window,
we only leave the perturbation on the target variable. That way, we are able to
measure how the change in the labels influenced the different nodes in the tree
and assess how the tree behaves when such a drift presents itself. The noises
added to the feature variables should impact only the sub-trees rooted by the
nodes that use these variables for their hyperspace segmentation. A node’s
rule may become inadequate, with frequencies for its child nodes completely
different from the trained scenario, i.e., the first window. Thus, their accuracies
may also deviate from previous standards.
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The decision trees used in this exploratory analysis were trained with
maximum depth of 4 and minimum number of samples per leaf of 5%. The
maximum depth is chosen in order to enable a visual comprehension of
the model, while the samples per leaf is a pruning parameter that avoids
the generation of unsubstantial leaves in the tree. That way, we limit the
complexity of our model and are able to interpret what is happening to it.
Decision trees are actually constructed by using an heuristic for splitting the
feature space that maximizes node purity. Every time a split is made, it is
guaranteed that the variable and threshold chosen are the ones that yield the
maximum combined node purity of the resulting child nodes. Therefore, the
addition of a split to a node not necessarily means that the resulting nodes
have different predictions. It only means that the overall node purity increased
by the segmentation. The node purity is calculated either by the Gini index
criterion or by the Cross-Entropy criterion. Our decision tree uses the Gini
index, which is a measure of the total variance of a node’s data across the
different labels of the underlying target variable.

Figure 3.2: The heat map of the dataset with the Gaussian noises added to
the feature variables: 0, 3, 5 and 8, and the noise added to the discrete target
variable through Bernoulli trials.

3.1.1
Node Frequency Analysis

The Node Frequency Analysis aims at monitoring how frequent each
node is accessed across the different periods in the dataset. By identifying
periods where a node is much less accessed than it was during the training
set, we suspect that the given rule attributed to that node no longer is a valid
rule for appropriately segmenting the hyperspace in the stream. That way, we
state that high variations to the frequencies of a node are correlated to the
occurrences of drifts in the data. Fig. 3.3 shows how the node frequencies of
a tree model behaves for the training set. The blue color becomes lighter the
less frequent a node is. As expected, the tree is very well balanced since it was
trained on this subset of the data.

Fig. 3.4 indicates the first period of the test set. During this period two
distinct features (index 0 and 8) were perturbed. These features are used by
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Figure 3.3: Node frequency visualization of the trained decision tree. A palette
that goes from blue to white is used to represent the frequency a node is
accessed. The less frequent a node is the lighter it’s internal color becomes.

nodes #8 and #18. If we compare the data segmentation of these nodes for
the first test set and the training set, we observe that it changed drastically for
node #8, but not the same happened for node #18. Nodes #9 and #14, which
are child nodes from #8, have respectively 50.04% and 16.82% of the data in
the current period, while 21.82% and 44.54% during the training set. Although
we already know that a drift happened for “att_num_0” - the variable used by
#8 -, just observing these drastic variations in the frequencies of it’s child nodes
is sufficient to suspect the occurrence of a drift in this period. The same logic
is applicable for node #18 that uses variable 8 (“att_num_8”). Nevertheless,
it is harder to visualize the data segmentation change for this node, since the
drift in “att_num_8” is shorter than the one in “att_num_0” and the node is
deeper in the tree, so less observations pass through it. Furthermore, the effect
of the first analyzed drift is also reflected into this second drift, since node
#18 resides in the lighter sub-tree of node #8. If we compare the frequencies
of nodes #19 and #20, which are child nodes from #18, for this period and
for the training set, we observe that their ratio changed slightly from 25, 86%
(#19) and 5, 64% (#20) in the training set to 9, 4% (#19) and 2, 44% (#20)
in the current period.

During the second period of the test set, drifts were added to variables
3 (“att_num_3”) and 5 (“att_num_5”). The variable “att_num_5” is used
twice in the tree for nodes #0 and #9, while “att_num_3” is not used by any
node at all. That way, since this last variable is not reflected in the model,
perturbations happening to it are not acknowledged by our node frequency
analysis, i.e., it is a non-observable variable for us. On the other hand, the
drift added to “att_num_5” drastically impacts the tree model changing the
whole configuration of it’s node frequencies. By observing fig. 3.5, we are able to
identify severe changes in the frequencies of the child nodes from #0 (nodes #1
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Figure 3.4: Node frequency visualization of the trained decision tree for the
first period of the test set.

and #8). During the training set, illustrated by fig. 3.3, nodes #1 and #8 had
respectively 33, 64% and 66, 36%, while in this period, these values changed to
74% and 26%. In the lighter sub-tree of node #0, variable “att_num_5” is also
used in #9. Nevertheless, the majority of instances that reside in this lighter
sub-tree are posterior to the drift in “att_num_5”, so no drastic variations in
the frequencies of nodes #10 and #11(child nodes from #9) are noticed.

Figure 3.5: Node frequency visualization of the trained decision tree for the
second period of the test set.

Fig. 3.6 shows the behaviour of the tree model for the last period of the
test set. No drifts were added to the feature variables during this period, so it
is expected that no drastic variations in the nodes’ frequencies are noticed in
this tree. Although there were perturbations to the target variable, they did
not impact the node frequency analysis, and are therefore not identified in fig.
3.6. The tree reestablished the frequency behaviour observed for the training
set.

Visually inspecting the trees can help understand where drifts are hap-
pening in the data. Nevertheless it can be a very overwhelming task, since
in a real scenario, we would not know which variables are drifting and when
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Figure 3.6: Node frequency visualization of the trained decision tree for the
third period of the test set.

they are drifting. That way, in order to develop a thorougher analysis on drifts
that does not rely on a visual inspection of the trees, we use bootstrapping
techniques to estimate confidence intervals for a given test statistic during the
training set, and then determine whether the same statistic computed for the
test set lies inside the stipulated interval. We start our approach by collecting
the instances from the training data passing through the nodes that contain a
feature chosen for drift evaluation. We then extract 500 samples - a parameter
that was chosen empirically - by block-bootstrapping each node’s data subset
and calculate for each sample it’s child nodes’ frequencies based on the feature
rule of the parent node. The sampling distribution of these frequencies forms
a Normal distribution, based on which we estimate the appropriate confidence
intervals. For this analysis, 95% confidence intervals are stipulated (2−σ rule).

This statistical analysis is conducted on one child node from each of the
following nodes: #0, #8, #9 and #18. As visually inspected, the rules of these
nodes are based on variables that have drifted along the stream: “att_num_0”
is used by #8; “att_num_5” is used by #0 and #9; and “att_num_8” is used
by node #18. That way, selecting one of their child nodes and conducting the
formerly explained statistical analysis on them is sufficient to assert that a drift
happened. We just need one child since the frequencies are complementary, i.e.,
the instances passing through the parent node can either go to the left child or
to the right child, so analyzing any of them is the same. We selected the right
child from each node: #8 (right child of #0), #14 (right child of #8), #11
(right child of #9) and #20 (right child of #18). Fig. 3.7 shows the sampling
distribution for the frequency of each child node. These sampling distributions
were generated by calculating the test statistic - i.e. the frequency of a node
in the tree - in each block-bootstrapping sample of the training set. These
samples are of size equal to 2

3 the size of the training subset passing through
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Figure 3.7: Sampling distribution of the frequency of each node selected for
drift evaluation based on the training data. The red vertical lines denote the
2.5 and 97.5 percentiles of the distributions. The area between these lines
correspond to accepting values for the true frequencies on the test set in order
to reject the hypothesis that a drift happened.

the corresponding node. If during the test set we observe frequencies that lie
outside the 95% confidence intervals, we have a more reliable indication that
a drift happened.

Training Data Testing Data
Nodes 95% CI [5000, 10000] [10000, 15000] [15000, 20000]

Node #8 [0.648, 0.679] 0.668 0.260 0.658
Node #14 [0.652, 0.690] 0.251 0.662 0.666
Node #11 [0.587, 0.658] 0.569 0.635 0.641
Node #20 [0.155, 0.204] 0.206 0.177 0.189

Table 3.1: The 95% confidence intervals for the training data and the true
frequencies for the different segments of the test data are shown by the distinct
nodes analyzed. The frequencies of the test set periods that lie outside the
intervals are marked in bold and they mean that a drift might have happened
for the given node at the given period.

By analyzing Table 3.1, we observe that the frequencies that crossed
the boundaries of the two-sigma interval are marked in bold. It happened for
three nodes in two distinct periods. Note that the frequencies for Node #8
in the second period and for node #14 in the first period deviate extremely
from their expected intervals. These are clear indications that drifts occurred
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to the features attributed to their parent nodes. Furthermore, there is still
a slight deviation for node #20, which one could argue that a three-sigma
interval would not have considered it as a drift. So it could definitely be
due to normal variations in the data and not actually a tendency itself,
as a drift suggests. Nevertheless, if we refer back to fig. 3.2, we observe
that features “att_num_0” and “att_num_8” drifted for the first period of
the test set, while “att_num_3” and “att_num_5” drifted for the second
period. The variables “att_num_0”, “att_num_5” and “att_num_8” are
used respectively by nodes #0 (parent of node #8), #8 (parent of node #14)
and #18 (parent of node #20). That way, we can definitely state that node
#20 crossed the boundary due to a drift in the variable “att_num_8”. Since
this node is very deep in the tree less data pass through it and hence analyzing
drifts the same way as we do for shallower nodes is a bit unfair. We discuss a
better approach for this issue further on this chapter.

3.1.2
Node Accuracy Analysis

The Node Accuracy Analysis is highly correlated to real drifts in the data.
A significant drop in the accuracy of a specific node means that the set of rules
that compose the path to this node is not reliable anymore to approximate the
target set passing through the node. That way, if a node’s frequency has not
changed for the period but the accuracy has, it basically means that a real
drift happened to the data, which is not associated with a change in a node’s
frequency.

Figure 3.8: Node accuracy visualization of the trained Decision Tree. A palette
that goes from green to red is used for representing the accuracy of a node. If
the accuracy is lower than 60%, we use a red palette, otherwise a green palette
is used.
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Fig. 3.8 illustrates the decision tree for the training set with respect to
their nodes’ accuracies. The accuracy of the decision tree is 80, 24% and is
represented by the accuracy of the root node (node #0). The colors used to
represent these accuracies are green and red. Once they drop below 60% a
red palette is used, otherwise the nodes are painted in a green palette. Note
that some leaves - specifically nodes #7, #10 and #20 - are painted in red,
indicating that not every prediction is highly reliable even for the training set.
Although they are less trustworthy, their accuracies are obviously above the
50% threshold, otherwise the algorithm would choose the complementary value
of the binary target to classify them.

Figure 3.9: Node accuracy visualization of the trained decision tree for the first
period of the test set.

The nodes’ accuracies of the trained decision tree on the first test
set are illustrated by fig. 3.9. Note that the overall accuracy of the tree
dropped to 72%. It is a clear evidence that the drifts attributed to variables
“att_num_0” and “att_num_8” affected the overall performance of the tree.
If we look deeper into the tree, we observe that the highest drop in accuracy is
associated with the sub-tree rooted by node #8 that uses the drifting variable
“att_num_0”. Their child nodes’ frequencies are significantly impacted by the
drift, what makes them more error-prone to the new observations they classify.
It happened for node #9, a child node from #8, which received around 22%
of the data for the training set and started receiving around 50% of the data
for the first period of the test set. It affected it’s accuracy which dropped
from 77, 09% to 62, 55%. On the contrary, node #18, which uses the drifting
variable “att_num_8”, did not suffer any loss in accuracy. It is due to a lower
frequency for this node during the period and to it’s already poor performing
child node #20.

For the second period of the test set, illustrated by fig. 3.10, we observe
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Figure 3.10: Node accuracy visualization of the trained decision tree for the
second period of the test set.

that the other sub-tree from the root node #0, the sub-tree rooted by #1, is
deeply affected by the drifts added during this period. Node #1, which used
to receive 33% of the data - as figs. 3.8 and 3.9 illustrate - received 74% of the
data during this period. It is a clear consequence of the drift added to variable
“att_num_5”, used by the root node #0. As previously explained, this sudden
change to a node’s frequency can also jeopardize it’s accuracy, affecting the
whole tree. Specially when it happens to the shallower nodes of the model,
since they commonly receive a higher percentage of the data.

Although we separate the accuracy analysis from the frequency analysis,
it is very common to see them both happening at the same time. Normally,
the changing behaviour of a variable can jeopardize the accuracy of the whole
sub-tree rooted by the node that makes use of that variable, and so both
frequency and accuracy are indeed impacted. Further, we analyze the effects
of another sort of drift: the drifts added to the target variable. Our synthetic
dataset contains this sort of drift for the third period of the test set, which can
be visualized by analyzing the inteval [16000, 19000] in fig. 3.2. Note that the
target variable for this interval is mostly painted in violet with thin yellow lines,
what denotes a region of imbalanced target. Our last tree focus on identifying
the effects of this sort of drift to the accuracies of the nodes.

Fig. 3.11 shows the tree for the last period of the test set. At first glance,
we notice that the nodes’ accuracies dropped drastically in comparison to the
training set tree. A more careful analysis would also imply that the frequencies
from the training set tree have been preserved, evidencing that only the target
variable was perturbed for the period. If we isolate the sub-tree rooted by
node #8, we observe that every red painted node is comprised by this sub-
tree, making them the main responsible for the drastic drop in accuracy. At
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Figure 3.11: Node accuracy visualization of the trained decision tree for the
third period of the test set.

this tree, it is also possible to observe nodes where accuracy is below 50%, as
it is the case for nodes #10, #17, #18, and #19. Although they seem a bit
more problematic, if we compare the overall accuracies of the resulting trees
for all the drifting periods, we observe that they actually did not vary that
much: 72, 56%, 67, 36% and 67, 06%, respectively. That way, whether the drift
manifest itself as a change to the target variable or to the feature variables,
the tree accuracy can indeed be drastically impacted, so none of these drifts
should be disregarded by any drift detection algorithm.

Analogously to the Node Frequency Analysis, a statistical evaluation
of the drift is also performed for the Node Accuracy Analysis. Although the
principles are the same, this one is a bit simpler, since we are actually using
the own node’s accuracy as the test statistic for the estimation of the sampling
distribution. We again block-bootstrap 500 samples of a predefined size based
on the subset from the training set passing through the corresponding node,
and calculate that node’s accuracy for each sample, forming a sampling
distribution. Fig. 3.12 illustrates the sampling distribution for a few selected
nodes from the tree: #0, #1, #2, #8, #14, and #18. The red vertical lines
delimit the 95% confidence intervals. Based on them, we assess whether the
data drifted by analyzing corresponding nodes’ accuracies for the different
test set periods, as table 3.2 elucidates. The accuracies that fall outside
the stipulated confidence intervals are marked in bold, denoting that the
underlying variables should be analyzed since they are suspected of having
drifted for the periods. Moreover, once the drift is confirmed, the model could
be retrained in order to suit the new characteristics of the data and restore
the adequate performance.

The next subsection presents an algorithm capable of identifying regions
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Figure 3.12: Sampling distribution of the accuracy of each node selected for
drift evaluation based on the training data. The red vertical lines denote the
2.5 and 97.5 percentiles of the distributions. The area between these lines
correspond to the accepting values for the accuracy on the test set in order to
reject the hypothesis that a drift happened.

of a tree model affected by the drift, assessing the drift’s severity, estimating
the period the drift last, and foremost, diagnosing why the drift happened.
This algorithm is called Interpretable Drift Detector and is entirely based on
the analysis introduced in these subsections (3.1.1 and 3.1.2).

Training Data Testing Data
Nodes 95% CI [5000, 10000] [10000, 15000] [15000, 20000]

Node #0 [78.21, 82.11] 72.56 67.36 67.06
Node #1 [79.11, 85.18] 83.16 63.00 87.47
Node #2 [86.12, 92.07] 89.19 64.15 90.59
Node #8 [76.85, 81.56] 67.30 79.76 56.45
Node #14 [76.68, 83.29] 81.45 79.90 51.45
Node #18 [74.48, 81.14] 77.53 77.83 45.84

Table 3.2: 95% confidence intervals for the accuracy of each node selected for
drift evaluation in the training data and their accuracies for each period of
the test data. The test accuracies that lie outside the confidence intervals are
marked in bold.

3.2
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Interpretable Drift Detector

As previously stressed, the adoption of decision trees as base learners
brings a lot of interpretability to algorithms suited for drift detection. We aim
at deeply exploiting all these intrinsic characteristics of a tree model in order
to provide the most information possible regarding any drift in the data.

Although previously we were able to detect drifts by just visually
inspecting the trees (see section 3.1), it is not easy to come up with the right
intervals to plot the perfect trees that would clarify drifts along the stream.
If the drifts are not known beforehand, it would be an overwhelming task to
find these intervals, and very possibly we would never find them. Moreover, the
purpose of developing a drift detector is to be able to infer drifts in an unknown
dataset without any human intervention, so that the model’s performance is
restored to optimal standards, if it is indeed affected by a drift. The advantage
of our method is that we diagnose the drift thoroughly, instead of just detecting
it, so users are able to trace the right strategy to correct the drift, whether by
retraining the model or acting on other factors of their digital environment.

Our methodology is called Interpretable Drift Detector and is mostly
based on the concepts introduced in the previous section (see section 3.1). The
Interpretable Drift Detector defines a training set, for which the base model -
either a regression or a decision tree - is trained. We explored the case where
the base models are decision trees, since the dataset presented earlier, which is
used as an example for our explanation, brings a classification problem. Once
the model has been trained, the algorithm goes through every node of the tree,
subsetting the training set with the observations that pass through the given
node. That way, for each node, there is a subset of the training set, which is
used to block-bootstrap a fixed number of samples, nsamp, with a predefined
size chosen based on the node’s subset cardinality, |W |. For our algorithm, we
define the size of the samples to be 2

3 of |W |. Once all nsamp samples have been
generated, we calculate the appropriate test statistic, which is either one of
the child nodes’ frequencies (see subsection 3.1.1) or the node’s accuracy (see
subsection 3.1.2). After calculating both metrics for each sample of a given
node, we generate the node’s sampling distributions for both analysis. Based
on them, we calculate the means, µfreq and µacc, and the standard deviations,
σfreq and σacc. Algorithm 1 elucidates the process of computing the appropriate
test statistics for each node of the trained decision tree.
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Algorithm 1: Computing node sampling distribution parameters
Input: Training Data: (Xtrain, ytrain); Maximum tree depth:

max_depth; Number of samples: nsamp; Size of a sample: size
Output: Node array for frequency std: stdfreq; Node array for

accuracy std: stdacc; Node array for mean frequency:
meanfreq; Node array for mean accuracy: meanacc; Trained
decision tree: dtc;

1 samplingDistributionTreeStats(Xtrain, ytrain, nsamp, size):
2 dtc ← DecisionTreeClassifier(max_depth).f it(Xtrain, ytrain)
3 for i← 1 to nsamp do
4 X i

samp, yisamp ← sampleWithReplacement(Xtrain, ytrain, size)
5 end
6 samples_freq, samples_acc

← newFloat[length(dtc.nodes)][nsamp]
7 for i← 1 to nsamp do
8 W ← length(yisamp)
9 for node ∈ dtc.nodes do

10 subset ← setPassingThrough(X i
samp, y

i
samp, node)

11 freq ← size(subset)/W
12 acc ← sum(dtc.predict(subset.X) == subset.y)/W
13 samples_freq[node][i] ← freq

14 samples_acc[node][i] ← acc

15 end
16 end
17 stdfreq, stdacc, meanfreq, meanacc ← newFloat[length(dtc.nodes)]
18 for node ∈ dtc.nodes do
19 std, mean ← calcStdAndMean(samples_freq[node])
20 stdfreq[node], meanfreq[node] ← std,mean

21 std, mean ← calcStdAndMean(samples_acc[node])
22 stdacc[node], meanacc[node] ← std,mean

23 end
24 return stdfreq, stdacc, meanfreq, meanacc, dtc
25 end

The next step is a bit different than we previously did in subsections
3.1.1 and 3.1.2, when we estimated confidence intervals for the sampling
distributions. For our algorithm, we calculate the z-scores according to a sliding
window that moves through the data. That way, instead of having a fixed
threshold for determining drifts based on a node’s previous behaviour, we can
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define more flexible thresholds according to different aspects of a drift, as we
detail further on this section. After calculating the z-scores, we grade every
node for drift evaluation. We disconsider the leaves of the tree, since they
do not contain a rule for segmenting the data, and hence, are not directly
associated with any variable from the dataset.

The process of grading nodes is composed of the z-scores, a drift threshold
and a sigmoid function which normalizes the results to the [0, 1] interval. The
dataset is processed by a sliding window of a user-defined size, k. In every
slide from the window, the algorithm recalculates the frequency and accuracy
for each node, µfreqtest and µacctest . With that information, we are able to
obtain the z-scores for the Node Frequency and the Node Accuracy analysis.
The z-scores are calculated in the following way: zscoreacc = µacctest−µacc

σacc
and

zscorefreq
= µfreqtest

−µfreq

σfreq
. After the z-score calculation, we define the drift

threshold for the nodes, i.e., the maximum value for the z-score for which
we ignore the variation in the frequency or in the accuracy. The drift threshold
is calculated based on the node’s weight, w, which is the ratio between the
number of observations passed through the node and the total number of
observations from the window. The drift threshold is a linear function of the
node’s weight: dmax = α ∗w+ β, where α and β are constants in our analysis.
After empirically testing different set of values for α and β, we opted by setting
α = 4 and β = 2. That way, the dmax(w) = 4∗w+2. The grade is then initially
defined by the equation: g(w, zscore) = w ∗ 2zscore−dmax(w). At last, we apply a
sigmoid function to g(w, zscore), in order to normalize the results. So the final
grade is calculated by the following equation: grade(w, zscore) = 1

1+e−g(w,zscore) .
Note that if g(w, zscore) = 0.0, then the grade attributed to the node is 0.5.
Therefore, grades below or equal to 0.5 should not be taken into account for
drift evaluation. Algorithm 2 details the mechanics of the method.
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Algorithm 2: Interpretable Drift Detector
Input: Data: (Xt, yt)|∞t=1; trained decision tree: dtc; sliding window

size: W ;
Output: Frequency grades matrix (nodes x instances): mf ; Accuracy

grades matrix (nodes x instances): ma;
1 interpretableDriftDetector(X, y, dtc, W , meanfreq, stdfreq,

meanacc, stdacc):
2 for t← 1 to ∞ do
3 if t ≤ W then
4 mf [dtc.nodes, t]← 0.0
5 ma[dtc.nodes, t]← 0.0
6 sw[t] ← (X[t], y[t])
7 else
8 sw.remove(1)
9 sw[W] ← (X[t], y[t])

10 for node ∈ dtc.nodes do
11 subset ← setPassingThrough(sw, node)
12 freq ← size(subset)/W
13 acc ← sum(dtc.predict(subset.X) == subset.y)/W
14 z_scorefreq ← freq−meanfreq

stdfreq

15 z_scoreacc ← acc−meanacc

stdacc

16 mf [node, t]← calcGrade(zscorefreq, freq/W )
17 ma[node, t]← calcGrade(zscoreacc, freq/W )
18 end
19 end
20 end
21 return mf ,ma

22 end
23 calcGrade(z_score, w):
24 if w ≤ 0.05 then
25 return 0.0
26 else
27 dmax ← 4w + 2
28 g ← 2z_score−dmax

29 return 1/(1 + e−g)
30 end
31 end

In order to exemplify a use case of the Interpretable Drift Detector, we
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use the synthetic dataset introduced earlier in this chapter. The dataset is
particularly interesting since it presents several drifts to different variables
and a final one to the target variable (see fig. 3.2). Furthermore, recall that
this dataset contains 20000 instances, from which the first 5000 were used
for training the decision tree. The method uses a sliding window of size 2500
for processing the data. Figs. 4.1 and 4.2 bring the drifting grades from the
Node Frequency and the Node Accuracy Analysis, respectively. Note that the
nodes are shown in the y-axis, while the instances, in the x-axis. The palette
denotes grades in the interval [0.5, 1.0]. The purple color indicates the lowest
grade possible, 0.5, and represents a non drifting zone. The yellow color, on
the other hand, indicates high drifting zones and is associated with the highest
grade, 1.0.

By analyzing fig. 4.1, it is possible to observe extremely high drifting
grades for nodes #0, #1, #2, #4 (all in the second test interval: [10000, 15000])
and #8 (in the first test interval: [5000, 10000]). There are other relevant
drifting grades for nodes #9, #11(at a similar period to node #8) and #18(in
the end of the first period and beginning of the second). The last 5000 instances
do not raise any suspicion of drifts by this analysis. Note that the grades
reflect a very similar scenario to the one observed by analyzing the trees (see
subsection 3.1.1). In the first period, variables “att_num_0” (used by node
#8) and “att_num_8” (used by #18) drifted for the intervals [6000, 9000] and
[7000, 9000], respectively. In the second period, variables “att_num_5” (used
by #0 and #9) and “att_num_3” (not used by any node) drifted for intervals
[10000, 13000] and [11000, 15000], respectively as well (see fig. 3.2).

Assessing the nodes’ behaviour, we notice that node #8 presented the
highest drifting grades (≈ 1.0) during the approximate interval [6150, 11800].
So it clearly detected the drift pretty early but did take a while to acknowledge
the end of it. The high grades seen for nodes #9 and #11 are just a reflection
from the drift observed in #8. These nodes started receiving much more
data than expected, what led to changes on their child nodes’ frequencies.
On the other hand, the right sub-tree of #8 which contains node #18
received almost no data for the same period, making the drift to variable
“att_num_8” undetectable by our algorithm. A similar analysis can be made
for the second period as well. Node #0, which makes use of the drifting
variable “att_num_5”, presented maximum drifting grades approximately for
the period [10050, 15400]. Again, the start of the drift is very precise, while
the end of it is a bit inaccurate. Nodes #1, #2 and #4 are also reflections
from this drift, since node #0 forwarded almost all the data to it’s left sub-
tree. Analogously to nodes #9 and #11 in the previous analysis, these nodes
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also started receiving unexpected data, leading to heavily altered frequencies of
most nodes encompassed by the right sub-tree of #0. Although node #9, which
belongs to the left sub-tree, also uses the drifting variable “att_num_5”, no
variation in it’s drifting grades are observed in the heat map. It is an obvious
consequence of the data segmentation in #0. This data segmentation also
impacted node #18, leading to a small and short drifting behaviour. All in all,
it is possible to have a sense of most drifting behaviours from the variables
by analyzing how the frequencies of their associated nodes alter along the
stream. Nevertheless overlapping drifts can be a challenge, since one node may
influence the behaviour of another node in a tree.

Figure 3.13: Heat map of node frequency grades for the entire tree model along
the dataset. The nodes are shown in the y-axis, while the instances processed
in the x-axis. The algorithm uses a sliding window of size 2500 for determining
the grades.

Fig. 4.2 brings the result of the node accuracy analysis by our algorithm.
Note that the drifting variables clearly affect the accuracies of the nodes, as we
had also concluded for the plotted trees (see subsection 3.1). In the first test
set, nodes #0, #8, #9 and #11 presented extremely high drifting grades for
the accuracy. Specifically, for #8, #9 and #11 the drifting period is around
the interval [6100, 11500], with nodes #8 and #9 starting slightly later and
ending slightly earlier. For node #0 the high grades period maintains, since
it’s associated variable drifts for the second test set interval. Along with node
#0, nodes #1, #2 and #4 also exhibit high drifting grades for their accuracy
analysis. The high grades period is very similar for these nodes as well, starting
at instance 10050 and ending around 15300. Finally, the last period is the
one for which the target variable was perturbed. The perturbation lasts from
instance 16000 till 19000. The grades clearly reflect that only the right sub-
tree of #0 was affected by the target drift, since nodes #8, #9, #14, #15
and #18 are the ones with high drifting grades. The Node Accuracy Analysis
attests the same results (see subsection 3.1.2). Since this drift was performed
by substituting the real values from the target with a Bernoulli variable with
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“success” (y = 1) probability of 0.9, we conclude that the right sub-tree of
node #0 was mostly associated with the other value for the target variable
(value 0), while the left sub-tree was mainly classified by 1’s. Note that again
the nodes detect the drift pretty early - around instance 16100 -, but fail to
precisely identify the moment the drift ends. They kept the drifting grades till
the end of the dataset, or instance 20000.

Figure 3.14: Heat map of node accuracy grades for the entire tree model along
the dataset. The nodes are shown in the y-axis, while the instances processed
in the x-axis. The algorithm uses a sliding window of size 2500 for determining
the grades.

Along this section, we presented the Interpretable Drift Detector. The
algorithm was able to precisely detect the moment the drifts started, assess
their severity by the grading mechanism, understand the regions of the
tree model most affected by them, and correlate the drifts to their root
causes. Although it is capable of providing all these information, it has some
limitations, as detailed formerly. First, it presents some difficulty in detecting
concurrent drifts to different feature variables. It happens specifically for the
case, where one node that makes use of a drifting variable lies in the sub-
tree of another node associated with another drifting variable. Secondly, not
every feature is represented by the tree model. The model is an abstraction of
the feature data, and therefore may be limited to detecting drifts to variables
that are part of it or at least correlated to it. Thirdly, it took time for the
algorithm to realize that a drift had ended. It happened because the process
of reestablishing the standard behaviour of a node is much smoother than
the process of adding an abrupt drift to a node. Furthermore, the sliding
windows could also be tuned in order to reduce the inaccuracy in detecting
the end of a drift as well. Reducing the size of the sliding window would
lead to more responsive grades at the cost of adding noisier segments to the
grading heat maps. In the next chapter, we investigate this trade-off in an
experiment performed in a real-world dataset. Furthermore, we also compare
how an adaptation of our algorithm performs in relation to benchmark drift
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detectors in terms of drift identification for a set of synthetic datasets vastly
used in the literature.
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4
Results

As previously presented, our algorithm, Interpretable Drift Detector, was
designed to correlate drifts happening to different variables along the stream
to nodes of a tree model. Thus, once the behaviour of a node starts to deviate
from a previous standard behaviour stipulated during the training set, the
grades attributed to that node start to rise, elevating the probability of a drift
happening to the associated variables. In order to be able to accurately detect
most drifts, the algorithm grades a node by it’s accuracy and the distribution
of it’s data subset between it’s child nodes, i.e., it’s frequency analysis, as we
described in chapter 3. That way, in order to compare our algorithm to other
benchmark drift detectors, it is essential that we first adapt the Interpretable
Drift Detector to point drifts at exact instants, as other drift detectors do.
The adaptation of our method is done by raising a drift in the first instant
the combined mean z-score of all nodes - excluding the leaves, which are not
graded - are higher than 3 ( 3-σ rule) for either one of both analysis: frequency
and accuracy. Once the Interpretable Drift Detector detects a drift, it enters a
drifting zone, which it only exits when the combined mean z-score drops below
2.5, indicating that the drift has indeed ended. Note that, in this adaptation,
only the z-scores are used and all nodes are equally weighted, differently then
the previous approach where a grading mechanism based on their weight and
test statistic was applied (see section 3.2). Nevertheless, these simplifications
do not compromise the reliability of our method in terms of drift detection,
what is actually measured in this experiment.

In order to assess how our algorithm performs along different datasets
in relation to the variety of benchmark methods, we compare the Inter-
pretable Drift Detector to the implementations available on Scikit-Multiflow:
ADWIN , DDM , EDDM , HDDMAtest , HDDMWtest , KSWIN and Page-
Hinkley (25). These methods are used with the default parameters estab-
lished by the Scikit-Multiflow library. Furthermore, we still add the Linear Four
Rates (LFR) algorithm to the list of benchmark methods with the following
parametrization: σ∗ = 1/100, ε∗ = 1/100K and η∗ = 0.99 (35). The HLFR,
which is an improvement of the LFR algorithm, is left out of our experiment,
since it mostly represents the addition of a second layer permutation test to
the LFR. A similar approach could be easily adapted to most algorithms an-
alyzed in this experiment, therefore we opt to only compare single-layer drift
detectors. For our method, we define a sliding window with 1000 observations
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and train the decision tree with the first 10000 observations of each dataset.
The dataset generators are also available on Scikit-Multiflow. The datasets
generated in our experiment are: SEA, Sine, AGRAWAL, RandomRBF ,
Hyperplane, Mixed, RandomTree and STAGGER (25). Each of them is
generated with 40000 instances and 5 drifts, which are added to specific in-
tervals: 4 of them are added to the target variable (intervals [10500, 11500],
[14500, 15500], [19500, 20500] and [29500, 30500]), while 1 of them is added to
a randomly selected feature variable (interval [25000, 26000]).

Figs. 4.1, 4.2, 4.3 and 4.4 illustrate the performance of the drift detectors
along the synthetic data streams generated. Clearly, the default parametriza-
tion for DDM and EDDM did not manage to detect the drifts added to
the streams. DDM failed in most datasets, not raising any relevant drifts
for the first 5 ones (SEA, Hyperplane, RandomRBF , AGRAWAL and
RandomTree). It improved a little bit for the last 3 datasets (Mixed, Sine and
STAGGER), but still very far from an acceptable performance. EDDM , on
the other hand, failed miserably in every dataset. Besides these two algorithms,
Page-Hinkley, which also performed badly in most cases, at least identified
a few drifts late, what leads us to the opinion that a better parametrization
would possibly enable it to detect these late detections correctly, i.e., in the
stipulated intervals. ADWIN , which is a very well-known algorithm for drift
detection, was able to detect some drifts correctly and some others lately. It
presented a very poor performance for the RandomTree dataset, and raised a
lot of false positives for the last 3 (Mixed, Sine and STAGGER), although
it was able to correctly detect all 4 target drifts in these cases. In the upper
half performing algorithms, LFR was very assertive in the first 4 datasets,
failing only to detect the feature variable drifts. On the other hand, in the
last 4, it performed poorly, detecting only 2 drifts for the RandomTree, and
raising an enormous amount of false positives for the last 3 (Mixed, Sine
and STAGGER). KSWIN and HDDMW had very similar performances,
except for the first 2 datasets (Hyperplane and SEA), where HDDMW per-
formed significantly better than KSWIN . On RandomRBF , AGRAWAL

and RandomTree, they both managed to detect almost every drift, including
the feature variable ones. Nevertheless, they also presented a reasonable num-
ber of false positives. Curiously, their performance was stabler in the last 3
(Mixed, Sine and STAGGER), raising very few false positives then. It is the
opposite from what we observed for other benchmark methods, as LFR and
ADWIN . HDDMA had a reasonable and stable performance in most cases.
It normally detected drifts in the end of the stipulated interval with a few late
detections and some miss detections. Furthermore, it managed to keep a very
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low amount of false positives. HDDMA failed to detect feature variable drifts.
At last, our methodology performed well in almost every case. It raised almost
none false positives, and missed 1 drift for the RandomTree and 3 drifts for
the STAGGER dataset. Apart from STAGGER where our methodology was
overcome by a few other benchmark methods, it is unquestionable that our
algorithm performed best for every other dataset analyzed.

Figure 4.1: Drift identification comparison among drift detection methods
along Hyperplane and SEA data streams. The red dashed lines indicate the
beginning and the end of each target variable drift, and the green dashed lines
indicate the feature variable drift. The blue vertical lines correspond to drifts
raised by each algorithm.

Figure 4.2: Drift identification comparison among drift detection methods
along RandomTree and Mixed data streams. The red dashed lines indicate
the beginning and the end of each target variable drift, and the green dashed
lines indicate the feature variable drift. The blue vertical lines correspond to
drifts raised by each algorithm.
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Figure 4.3: Drift identification comparison among drift detection methods
along RandomRBF and AGRAWAL data streams. The red dashed lines
indicate the beginning and the end of each target variable drift, and the
green dashed lines indicate the feature variable drift. The blue vertical lines
correspond to drifts raised by each algorithm.

Figure 4.4: Drift identification comparison among drift detection methods
along Sine and STAGGER data streams. The red dashed lines indicate the
beginning and the end of each target variable drift, and the green dashed lines
indicate the feature variable drift. The blue vertical lines correspond to drifts
raised by each algorithm.

Although the results shown in the previous figures (figs. 4.1, 4.2, 4.3
and 4.4) highlight the assertiveness of our algorithm for the designed data
streams, it only corresponds to a single execution of the experiment. In order
to provide a less biased comparison of the algorithms, we execute the exper-
iment a hundred times, each time changing the seed for generating the data
streams for all the different sorts of synthetic data (SEA, Sine, AGRAWAL,
RandomRBF , Hyperplane, Mixed, RandomTree and STAGGER). At each
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AGRAWAL HYPERPLANE MIXED RANDOM_RBF
TP FP FN TP FP FN TP FP FN TP FP FN

ADWIN 2.46± 0.96 3.92± 1.82 2.54± 0.96 1.74± 1.26 2.73± 2.14 3.26± 1.26 4± 0 32.03± 3.32 1± 0 2.98± 0.96 7.35± 3.25 2.02± 0.96
DDM 0.05± 0.22 0.35± 0.72 4.95± 0.22 0.01± 0.1 0.14± 0.51 4.99± 0.1 0± 0 3.3± 0.94 5± 0 0.07± 0.26 0.8± 1.06 4.93± 0.26
EDDM 0± 0 5.72± 5.44 5± 0 0.01± 0.1 4.99± 5.73 4.99± 0.1 0± 0 3.65± 4.85 5± 0 0± 0 4.67± 4.75 5± 0
HDDM_A 0.03± 0.17 3.84± 0.61 4.97± 0.17 0.01± 0.1 2.92± 1.37 4.99± 0.1 0.02± 0.14 3.96± 0.2 4.98± 0.14 0.01± 0.1 3.74± 0.54 4.99± 0.1
HDDM_W 1.4± 0.9 15.57± 2.67 3.6± 0.9 1.01± 1.13 9.34± 4.12 3.99± 1.13 0.11± 0.31 4± 0 4.89± 0.31 0.62± 0.78 6.73± 2.49 4.38± 0.78
PAGE-HINKLEY 0.12± 0.33 2.37± 1.14 4.88± 0.33 0.2± 0.4 2.02± 1.07 4.8± 0.4 0± 0 3.84± 0.37 5± 0 0.11± 0.31 2.26± 0.97 4.89± 0.31
KSWIN 2.59± 1.26 15.13± 3.69 2.41± 1.26 1.91± 1.24 8.49± 4.32 3.09± 1.24 1.88± 1.09 4.92± 1.08 3.12± 1.09 1.58± 1.16 6.22± 2.87 3.42± 1.16
LFR 4.01± 0.27 5.7± 1.4 0.99± 0.27 3.82± 0.52 0.92± 1.35 1.18± 0.52 4.17± 0.38 147.85± 107.09 0.83± 0.38 3.97± 0.22 7.13± 9.63 1.03± 0.22
OURS 4.39± 0.83 2.24± 3.05 0.61± 0.83 4.69± 0.61 0.37± 0.93 0.31± 0.61 4.4± 0.91 3.16± 4.27 0.6± 0.91 4.54± 0.56 1.05± 1.6 0.46± 0.56

STAGGER SINE SEA RANDOMTREE
TP FP FN TP FP FN TP FP FN TP FP FN

ADWIN 4.01± 0.1 41.62± 3.57 0.99± 0.1 4.03± 0.17 36.31± 2.36 0.97± 0.17 2.22± 0.93 3.2± 1.68 2.78± 0.93 1.62± 1.44 2.91± 3.37 3.38± 1.44
DDM 0± 0 4± 0 5± 0 0.04± 0.2 3.69± 0.68 4.96± 0.2 0.02± 0.14 0.36± 0.7 4.98± 0.14 0.03± 0.17 0.31± 0.71 4.97± 0.17
EDDM 0± 0 0± 0 5± 0 0.22± 0.42 9.4± 6.01 4.78± 0.42 0± 0 4.31± 5.58 5± 0 0± 0 7.15± 7.54 5± 0
HDDM_A 0.02± 0.14 3.93± 0.26 4.98± 0.14 0.01± 0.1 3.98± 0.14 4.99± 0.1 0.01± 0.1 3.48± 0.67 4.99± 0.1 0.03± 0.17 2.92± 1.39 4.97± 0.17
HDDM_W 0.16± 0.44 3.99± 0.1 4.84± 0.44 0.03± 0.17 4.01± 0.1 4.97± 0.17 0.77± 0.79 7.95± 2.11 4.23± 0.79 1.5± 1.14 16.43± 6.35 3.5± 1.14
PAGE-HINKLEY 0± 0 3.01± 0.1 5± 0 0± 0 3.91± 0.29 5± 0 0.2± 0.4 1.8± 1.01 4.8± 0.4 0.12± 0.33 2.18± 1.21 4.88± 0.33
KSWIN 1.3± 1.1 4.2± 0.49 3.7± 1.1 1.83± 1 4.48± 0.72 3.17± 1 1.75± 1.04 6.37± 2.68 3.25± 1.04 2.35± 1.13 15.68± 6.58 2.65± 1.13
LFR 5± 0 985.6± 15.34 0± 0 4.15± 0.36 187.91± 85.91 0.85± 0.36 3.91± 0.29 6.65± 5.71 1.09± 0.29 3.74± 0.69 4.44± 15.07 1.26± 0.69
OURS 2.51± 1.94 1.36± 1.93 2.49± 1.94 4.95± 0.22 3.16± 4.96 0.05± 0.22 4.74± 0.46 0.61± 1.48 0.26± 0.46 4.02± 1.23 1.2± 3.1 0.98± 1.23

Table 4.1: Results of a hundred executions of the experiment. All data sets
have 40000 instances and the drifts are set always on the same intervals. For
each method and data set, we monitor three distinct metrics: True Positive
(TP), False Positive (FP) and False Negative (FN). The best results in each
one are marked in bold.

round, we calculate three distinct parameters: the true positive rates (TP),
which indicates the drifts an algorithm correctly identifies; the false positive
rates (FP), which indicates the number of times an algorithm raises a false
drift detection, and the false negative rate (FN), which represents the number
of drifts an algorithm missed. After the completion of all the rounds, we esti-
mate the mean and standard deviation for the three metrics. Table 4.1 shows
the results from all the hundred executions of the experiment. For each metric
in each dataset, the best results are marked in bold. Nevertheless, the best
algorithm for each dataset is defined by combining both metrics: TP and FP ,
since one wants it’s detector to identify the most number of drifts with the
least number of false positives. Based on this trade-off, we can state that the
Interpretable Drift Detector performs best for all datasets in the experiment,
except for STAGGER. For this one, the answer is a bit more subjective, since
there are algorithms capable of identifying more drifts at the cost of a lot more
false positives. However, if we consider the ratio TP/FP to base the decision,
it would still indicate our method as the best one for this dataset as well.

In order to evaluate how our algorithm performs on real-world datasets,
we conduct another experiment using the Electricity dataset (18). This dataset
is a time-series, collected from the Australian New South Wales Electricity
Market, which contains variables related to demand, transfer and price for
electricity from two neighboring states: New South Wales and Victoria. The
class label measures whether the price for electricity in New South Wales
increased (UP) or decreased (DOWN) in relation to a moving average of
the last 24 hours. The whole dataset contains 45312 and each observation
corresponds to a period of 30 minutes. The time related variables are left out
of the model, since they are not related to drifts and would only add noise to
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our analysis.
This experiment starts by training a simple decision tree with maximum

depth of 2 for the first 10000 observations. The resulting decision tree can be
visualized in fig. 4.5. Note that it only uses two features from the dataset:
“nswdemand” (node #0) and “nswprice” (nodes #1 and #4). Based on the
tree model, we run the Interpretable Drift Detector three times, varying the
size of the sliding window parameter (5000, 2500 and 1000). We then compare
the results and choose the most appropriate size for the sliding window. At
last, we verify if the results could be explained by inspecting the time-series
data of the feature variables.

Figure 4.5: Decision tree trained with the first 10000 observations of the
Electricity dataset. Note that only the variables “nswdemand” and “nswprice”
are used.

The results from the execution of our algorithm to the Electricity dataset
are illustrated on figs. 4.6 and 4.7. Fig. 4.6 shows how the tree nodes’
frequencies behave along the stream (Node Frequency Analysis) when we run
the algorithm with three specific values for the sliding window W (5000, 2500
and 1000). It becomes evident that there are two major drifts on the data: one
on node #1 starting around the interval [14000, 18000] and lasting till the end
of the stream, and another one, on node #4 starting around [18000, 23000]
till [36000, 38000]. There are other minor drifts, specially for the middle and
bottom charts from fig. 4.6 (W = 2500 and W = 1000 respectively), but they
seem to be a bit irrelevant and could actually be attributed to noisier segments
of the data. Fig. 4.7 brings the results of the Node Accuracy analysis, also
performed by our algorithm. By comparing these heat maps, it becomes clear
that the grades in node #0 are actually a reflection from a drift in #4, which
lasts from [19000, 23000] till [35000, 38000]. From observing both analysis, we
can state that the noisiness reflected in the grading heat maps are tightly
coupled with the size of the sliding window. At first sight, it seems for us
that the execution of our algorithm with W = 5000 is the one that suits the
data best. It brings a cleaner visualization of the grading heat map with more
homogeneous drifting segments. On the other hand, larger sliding windows
tend to be less responsive to changes in the data, and hence their drifting
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periods tend to be larger, becoming less accurate than smaller choices for the
sliding window. Tuning the sliding parameter is a crucial activity for the best
performance of our algorithm, since it controls the trade-off between accuracy
and noisiness in the resulting heat maps.

Figure 4.6: The grading heat maps from the node frequency analysis of the
Interpretable Drift Detector with 3 specific values for the sliding window size,
W . The top chart represents the execution of the algorithm with W = 5000;
the middle one the execution where W = 2500, and for the bottom chart, the
algorithm is run with W = 1000.

Figure 4.7: The grading heat maps from the node accuracy analysis of the
Interpretable Drift Detector with 3 specific values for the sliding window size,
W . The top chart represents the execution of the algorithm with W = 5000;
the middle one the execution where W = 2500, and for the bottom chart, the
algorithm is run with W = 1000.
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Fig. 4.9 illustrates the 48 observations moving averages for the feature
data of every node that segments the dataset in the tree model (#0, #1 and
#4). The horizontal line represents the rule set for the node (magenta), while
the vertical lines represent the separation of the training set from the test set
(black), and the start (green) and end of a drift (red). We consider that a
drift starts for a node once its grades are higher than 0.95 and it ends when
it gets smaller than 0.70. We only evaluate the execution of the Interpretable
Drift Detector with W = 5000. It is possible to correlate the drifts detected
for nodes #1 and #4 (middle and bottom charts respectively) to changes in
the behaviour of the feature data. Specifically for node #1, it is clear that
the rule learned during the training set is not appropriate for the test set,
since the moving average of the feature data lies almost entirely under the
horizontal line after the black vertical line. The algorithm detected this drift
on instance 18357 and it last till the end of the stream. For node #4, the drift
is less obvious, nevertheless it is possible to observe a change in the pattern of
the feature data for the interval around [20000, 36000]. The algorithm detects
the drift on instance 23647 and reports it’s end on instance 38453. Although
the detections are a bit late, the drifts are very stable and no false positive
detections are found. That way, running the algorithm with a sliding window
of size equal to 5000 is actually a good choice.

Figure 4.8: Each chart represents a moving average with 48 observations of the
feature data entering the corresponding node along the stream. The vertical
lines denote the end of the training set (black), the start of a drift (green) and
the end of a drift (red), which are estimated based on the grades resulting from
the node frequency analysis of the Interpretable Drift Detector.

Fig. 4.9 illustrates correct predictions (attributed the value 0) and the
wrong predictions (attributed the value 1) through a heat map. The yellow
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color represents the correct predictions, while the purple represents the wrong
ones. There are also three distinct vertical lines: the black line, which denotes
the separation between training and test set; the green line, which shows the
start of a drift, and the red line, which represents it’s end. By observing the
changes between the density of both colors (yellow and purple) along the
stream, it is possible to distinguish drifting zones from non drifting zones. We
only need to project the training set pattern onto the test set and observe if
they actually match. It is however very difficult to precisely determine the
starting point of a drift by that analogy. The Interpretable Drift Detector
identifies a drift starting at instance 23207 and ending at 38141, which are
very similar to the period determined by the node frequency analysis for node
#4, what leads us to the conclusion that this behavioral change in the feature
variable “nswprice” deeply affected the accuracy of the tree as well.

Figure 4.9: Heat map shows the correct (yellow) and wrong (purple) predictions
of the tree model for the Electricity dataset. There are other 3 vertical lines
that denote the separation of the training and test set (in black), the start of
a drift (in green) and the end of a drift (in red).

This experiment brings a real-world scenario for which the application of
the Interpretable Drift Detector reveals interesting facts regarding the target
variables and how they affected the predictions of the tree model. By inspecting
figs. 4.5 and 4.6, we observed that nodes #1 and #4 suffered severe frequency
drifts, but specially the one suffered by node #4 impacted the accuracy of the
entire tree model. Then, we were able to confirm these points by observing the
moving average of the feature variable “nswprice”, segmented by the nodes
for which it is used (middle and bottom charts of fig. 4.7). By comparing the
moving average before and after the black vertical line, it becomes evident that
the distribution of the variable “nswprice” suffered changes along the stream.
So, the algorithm was able to return the instant the drift started, the affected
regions of the model, the severity of the drift and after all the root causes of
the drift as well. It proves the effectiveness of adopting the Interpretable Drift
Detector for data stream mining.
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Tree-based models are the utmost technique for acquiring interpretability
on how feature and target variables are related. Ultimately, these models have
been largely used in the academia with the focus of enhancing interpretability
of other complex models. Thibaut et al. (33), for instance, developed an
algorithm capable of approximating tree ensembles by a single tree, Zhang et al.
(40) proposed to interpret the predictions of a CNN model through a decision
tree, and many other researchers are developing great works centered on
interpretability and tree-based models. In other words, Interpretable Machine
Learning has been gaining a lot of attention from the academia, and our
research relates to that topic in the sense that it leverages tree models in
order to enhance interpretability of a fundamental topic in data stream mining:
concept drifts.

Concept Drift Interpretability is still an unexplored topic. Although there
are methods capable of providing a lot of information regarding a drift - as it is
the case for most “Data Distribution-based Drift Detectors” -, most methods
are actually only concerned about identifying the moment the drifts occur,
taking for granted all the extra information relevant to properly deal with
them. Our research introduces a new method, the Interpretable Drift Detector,
which aims at providing answers to a set of questions regarding a drift: “When”
(the moment the drift happened); “How” (the severity of the drift); “Where”
(the parts of the model affected by the drift), and “Why” (the root causes of
the drift). The first three questions are first introduced by the work of Gama
et al. (24), while the last one is a step forward into diagnosing the drift, i.e.,
identifying the main variables responsible for it.

We compare our method to benchmark drift detectors, available on
Scikit-Multiflow library with their default parametrization (25). The methods
are compared on eight synthetic datasets generated with five distinct drifts:
four, added to the target variable, and one to a randomly selected feature
variable (see chapter 4). The results of this experiment clearly shows that our
method outperforms benchmark detectors in terms of false-positive and true-
positive rates for the majority of the datasets analyzed. Moreover, another
experiment conducted on a real-world dataset presents how the different sorts
of drifts detected by our method correlates to a variable of the dataset,
therefore providing the proper understanding of what is actually happening
in the data that led to the drift. Besides all these advantages, our method also
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has its drawbacks. First, it is computationally more expensive than the other
methods, since it navigates through each node of the tree in order to compare
the frequency and accuracy metrics of the current sliding window to these same
metrics calculated during the training set. Another drawback is that it is only
capable of detecting drifts to variables that are selected by the tree model, or
at least correlated to the selected ones.

Identifying drifts is a valuable information, however deciding to retrain
a model based on that information alone has many shortcomings. Since the
root causes are not known, a retraining scheme may actually lead to a worse
model after a short period of time. Moreover, knowing a model’s most affected
regions and the intensity of the drift are also relevant information in order
to provide an appropriate retraining scheme for the tree-based model. Besides
developing better models, we strongly believe that a thorougher analysis on
drifts can considerably benefit a lot of manufacturers. It exposes possible
problems in their data, new behaviours for the feature and target variables, and
enables the correlation between the real-world scenario and the one translated
by the data. A drift may actually raise attention to problems occurring in
the manufacturer’s processes and therefore require a better investigation on
their real-world scenario. The Interpretable Drift Detector is a step forward
into conducting a deeper analysis on concept drifts. We aggregate distinct
concepts inside the algorithm, i.e., Concept Drift Identification, Concept Drift
Understanding and our main goal, Concept Drift Interpretability.

As future works, we intend to further exploit the visual representation
of concepts drifts and develop effective mechanisms of retraining a tree-based
model, leveraging all the extra information provided by the algorithm presented
by this dissertation, the Interpretable Drift Detector.
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