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Abstract

Fernandes, Ana Beatriz Loureiro Brito; Landau, Lukas Tobias
Nepomuk (Advisor). On MIMO Communications Systems
with 1-bit Quantization and Comparator Networks at the
Receiver. Rio de Janeiro, 2021. 67p. Dissertação de mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

Multiple-input multiple-output (MIMO) systems employs an increasing
number of antennas, which leads to relevant energy consumption and hard-
ware cost of the corresponding front ends. In this context, the use of low-
resolution analog to digital converters (ADCs) is promoted as a promising
solution to this problem. In this study we consider a low-resolution MIMO
receiver which implies that the received signals simultaneously are processed
by the 1-bit ADCs and the comparator network. The input signals for the
comparator network can come from different antennas, such that the com-
parator network extension can be interpreted as virtual channels with bi-
nary outputs. Based on such low-resolution MIMO receivers, we develop
low-resolution aware linear minimum mean-squared error (LRA-LMMSE)
channel estimator and detector according to the Bussgang theorem. Two
comparator networks are proposed, namely, fully and partially connected
networks. We also devise a greedy search-based partially connected network
that can use much less comparators to approach the performance of the
fully connected network. Numerical results shows that adding virtual chan-
nels can be better than adding extra physical channels which corresponds
to additional receive antennas in terms of bit error rate (BER). Further-
more, by employing the proposed channel estimator and its corresponding
estimation error, we build up a lower bound on the ergodic sum rate for
the LRA-LMMSE receiver. Simulation results show that the systems with
the proposed network-aided MIMO systems with 1-bit quantization at the
receiver outperforms the conventional 1-bit MIMO system in terms of BER
and mean-square error (MSE) performances. Moreover, numerical simula-
tions confirm a significant advantage in terms of sum rate for the proposed
system.

Keywords
MIMO Systems; Low-Resolution Quantization; MMSE; Bussgang

theorem; Comparator Network; Greedy Search; Channel Estimation;
Achievable Rate.
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Resumo

Fernandes, Ana Beatriz Loureiro Brito; Landau, Lukas Tobias
Nepomuk (Orientador). Sistemas de Comunicação MIMO
com Quantização de 1-bit e Redes Comparadoras no
Receptor. Rio de Janeiro, 2021. 67p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

Os sistemas de múltiplas entradas e múltiplas saídas (MIMO) empregam
um número crescente de antenas, o que leva a relevantes consumo de en-
ergia e custo de hardware dos front-ends correspondentes. Nesse contexto,
o uso de conversores analógico-digitais (ADCs) de baixa resolução é pro-
movido como uma solução promissora para este problema. Neste estudo
consideramos um receptor MIMO de baixa resolução que implica que os
sinais recebidos são processados simultaneamente pelos 1-bit ADCs e pela
rede comparadora. Os sinais de entrada da rede comparadora podem vir
de antenas diferentes, de modo que a extensão da rede comparadora pode
ser interpretada como canais virtuais com saídas binárias. Com base nesses
receptores MIMO de baixa resolução, desenvolvemos um estimador de canal
e detector lineares de baixa resolução baseados no critério de mínimo erro
médio quadrático (LRA-LMMSE) de acordo com o teorema de Bussgang.
Duas redes de comparação são propostas, nomeadas, redes total e parcial-
mente conectadas. Também desenvolvemos uma rede parcialmente conec-
tada baseada em busca gananciosa que usa muito menos comparadores para
obter um desempenho bem próximo ao da rede totalmente conectada. Os
resultados numéricos mostram que adicionar canais virtuais pode ser mel-
hor do que adicionar canais físicos extras que correspondem a antenas de
recepção adicionais em termos de taxa de erro de bit (BER). Além disso,
ao empregar o estimador de canal proposto e seu erro de estimativa corre-
spondente, construímos um limite inferior na taxa de soma ergódica para o
receptor LRA-MMSE. Os resultados de simulação mostram que os sistemas
com a proposta sistemas MIMO auxiliados por rede com quantização de
1-bit no receptor superam o convencional sistema MIMO de 1-bit em ter-
mos de desempenho de BER e erro quadrático médio (MSE). Além disso,
as simulações numéricas confirmam uma vantagem significativa em termos
de taxa de soma para o sistema proposto.
Palavras-chave

Sistemas MIMO; Quantização de Baixa Resolução; MMSE; Teo-
rema Bussgang; Rede de Comparadores; Busca Gananciosa; Estimação
de Canal; Taxa Alcançável.

DBD
PUC-Rio - Certificação Digital Nº 1920848/CA



Table of contents

1 Introduction 13
1.1 Motivation and Prior Works 13
1.2 Contributions 14
1.3 Thesis Outline 15
1.4 Notation 16
1.5 List of Publications 16

2 Literature Review and Relevant Baselines 17
2.1 MU-MIMO Uplink System 17
2.2 Pilot-Based Channel Estimation Methods 18
2.2.1 Standard LS Channel Estimator 18
2.2.2 Linear LRA Channel Estimators 19
2.2.2.1 LRA-LS Channel Estimator 19
2.2.2.2 LRA-LMMSE Channel Estimator 20
2.2.3 nML Channel Estimator 20
2.3 MIMO Detection Methods 21
2.3.1 Linear Detectors 21
2.3.1.1 Standard MF Receive Filter 22
2.3.1.2 Standard ZF Receive Filter 22
2.3.1.3 Standard MMSE Receive Filter 22
2.3.2 Linear LRA Detectors 22
2.3.2.1 LRA-ZF Receive Filter 23
2.3.2.2 LRA-MMSE Receive Filter 23
2.3.3 nML Detector 24
2.3.4 One-Bit Spatial Sigma-Delta Detector 26
2.4 Sum Rate Analysis 26
2.4.1 Data Transmission with LMMSE Receiver 26
2.4.2 Lower Bounding the Sum Rate 27
2.5 Summary 27

3 System Model 29
3.1 Proposed Comparator Network-aided MIMO Receiver 29
3.2 Comparator Network Design 31
3.2.1 Fully Connected Network 31
3.2.2 Partially Connected Network 32
3.3 Summary 32

4 Linear Channel Estimation 33
4.1 Pilot-Based Channel Estimation 33
4.2 Proposed LRA-LMMSE Channel Estimator 34
4.3 Mean-Squared Error of the Channel Estimate 35
4.4 Numerical Results 35
4.5 Summary 37

DBD
PUC-Rio - Certificação Digital Nº 1920848/CA



5 Linear Detection 38
5.1 Proposed LRA-LMMSE Detector 38
5.2 Robust LRA-LMMSE Detector 39
5.3 Greedy Search Algorithm 41
5.4 Analysis 41
5.4.1 Computational Complexity 42
5.4.2 Computational and Hardware Costs 42
5.5 Numerical Results 42
5.5.1 Proof of Concept: More Antennas versus Comparator Network 43
5.5.2 Proposed LRA-LMMSE Detector 44
5.5.3 Robust LRA-LMMSE Detector 45
5.6 Summary 46

6 Sum Rate Analysis 48
6.1 Data Transmission with LRA-LMMSE Receiver 48
6.2 Lower Bounding the Sum Rate 49
6.3 Numerical Results 49
6.4 Summary 50

7 Conclusion and Future Work 52

Bibliography 54

A Linear Channel Estimation Derivations 58
A.1 Derivation of the Auto-Correlation Matrix of the Received Pilot Signal 58
A.2 Derivation of the LRA-LMMSE Optimal Filter and Channel Estimator 58
A.3 Derivation of the MSE of the Channel Estimate 59

B Linear Detection Derivations 61
B.1 Derivation of the Cross-Correlation Matrix between Received and

Transmitted Data Signals 61
B.2 Derivation of the Auto-Correlation of the Received Data Signal 61
B.3 Derivation of the MSE between the Transmitted Symbol and the Filter

Output for the Robust Detector 62
B.4 Derivation of the Robust Cross-Correlation Matrix between Received

and Transmitted Data Signals 62
B.5 Derivation of the Robust Auto-Correlation Received Data Signal 62

C Sum Rate Derivations 64
C.1 Derivation of the Quantization Noise Covariance Matrix 64
C.2 Derivation of the Ergodic Achievable Rate for Real-Valued User Channel 64

DBD
PUC-Rio - Certificação Digital Nº 1920848/CA



List of figures

Figure 2.1 System model of MU-MIMO with 1-bit ADCs. 18

Figure 3.1 System model of MU-MIMO with 1-bit ADCs and an
additional comparator network. 29

Figure 3.2 Insight of the comparator network. 30
Figure 3.3 Number of comparators required in the fully connected

network. 31

Figure 4.1 MSE comparisons of LRA-LMMSE channel estimators
in 2× 4 MIMO systems with τ = Nt = 2. 36

Figure 4.2 MSE comparisons of LRA-LMMSE channel estimators
in 2× 4 MIMO systems with τ = 2Nt = 4. 36

Figure 5.1 BER performance of LRA-LMMSE detectors in 2 × Nr

MIMO systems. 43
Figure 5.2 BER performance of LRA-LMMSE detectors in 2 × 10

MIMO systems. 44
Figure 5.3 BER performance of robust LRA-LMMSE detectors in

2× 4 MIMO systems. 45
Figure 5.4 MSE comparisons of robust LRA-LMMSE detectors in

2× 4 MIMO systems. 46

Figure 6.1 Sum Rate comparisons of LRA-LMMSE channel estima-
tors in 2× 4 MIMO systems. 50

DBD
PUC-Rio - Certificação Digital Nº 1920848/CA



List of tables

Table 5.1 Computational Complexity 42
Table 5.2 Computational and Hardware Costs 42

DBD
PUC-Rio - Certificação Digital Nº 1920848/CA



List of Abreviations

3G – Third Generation
4G – Fourth Generation
ADC – Analog-to-Digital Converter
AGC – Automatic Gain Control
AMP – Approximate Message Passing
AWGN – Additive White Gaussian Noise
BER – Bit Error Rate
BLMMSE – Bussgang Linear Minimum BPSK – Binary Phase Shift Keying
BS – Base Station
CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
CETUC – Centro de Estudos em Telecomunicações
CSI – Channel State Information
GAMP – Generalized Approximate Message Passing
IDD – Iterative Detection and Decoding
LRA – Low-Resolution Aware
LS – Least Squares
MAP – Maximum A-posteriori Probability
MF – Matched Filter
MIMO – Multiple-Input Multiple-Output
ML – Maximum Likelihood
MMSE – Minimum Mean Square Error
MRC – Maximum Ratio Combiner
MSE – Mean Square Error
MU – Multiuser
nML – near Maximum Likelihood
PSK – Phase Shift Keying
QPSK – Quadrature Phase-Shift Keying
RLS – Recursive Least Squares
Σ∆ – Sigma-Delta
SINR – Signal-to-Interference-plus-Noise Ratio
SNR – Signal-to-Noise Ratio
ZF – Zero-Forcing

DBD
PUC-Rio - Certificação Digital Nº 1920848/CA



1
Introduction

In this chapter the research background and the motivations of this thesis
are presented. Then, the main contributions and the structure of this study
are provided. Also, the notations used throughout the thesis are introduced.
The last section shows a list of the publications generated during the period
of working on this thesis.

1.1
Motivation and Prior Works

The future of wireless communications, with networks that scale up
in speed and bandwidth, has as a promising technical candidate known as
large-scale (or massive) MIMO systems. Massive MIMO systems have many
advantages when compared to current systems and have attracted much
attention due to its large improvement in spectral efficiency and mitigation
of the propagation loss caused by channel fading, among others [1]. However,
there are still some practical challenges when it comes to the deployment of
a large number of antennas at the base station (BS), such as hardware cost
and power consumption. For instance, the power consumption of ADCs scales
exponentially in the number of quantization bits [2]. Therefore, the use of
current high-speed and high-resolution ADCs (8-12 bits) for each antenna array
would become a great burden to the BS. Consequently, the use of low-cost and
low-resolution ADCs (1-3 bits) are promoted as a solution to this problem
[3, 4, 5].

Many works have studied large-scale MIMO systems with low resolution
ADCs at the front-end. Specifically, 1-bit ADCs are of interest in such systems
due to their demand of very low power. A common used technique to mitigate
the performance loss caused by the coarse quantization is oversampling, where
the received signal is sampled at a faster than Nyquist rate [6]. In this regard,
the studies in [7, 8, 9, 10] have considered temporal oversampling at the receiver
in order to achieve better estimation and detection performances. However, for
temporal oversampling, the computational complexity is relatively high for the
receive processing.

The channel estimation is a problem that currently limits the perfor-
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Chapter 1. Introduction 14

mance of coarsely quantized systems. Several papers have investigated channel
estimation for quantized massive MIMO systems such as least squares (LS)
[11], recursive least squares (RLS) [12], approximate message passing (AMP)
[13] and generalized approximate message passing (GAMP) [14]. Another so-
phisticated channel estimator is given by the near maximum likelihood (nML)
estimator devised in [15]. The authors in [16] developed a Bussgang linear
minimum mean squared error (BLMMSE) channel estimator, where it has
also been derived lower bounds on the theoretical achievable rate for maxi-
mum ratio combiner (MRC) and zero-forcing (ZF) receivers. Moreover, maxi-
mum a-posteriori probability (MAP) channel estimators and their performance
analysis have been studied in [17, 18].

The work in [19] develops a channel estimator by taking spatial and
temporal correlations into consideration. Furthermore, the low complexity
channel estimator and its corresponding achievable rate from [20] relies on
a model with infinite number of channel taps, and independent and identically
distributed quantization noise.

For signal detection with low-resolution ADCs, different strategies exist
in literature, for example: iterative detection and decoding (IDD) [21], sphere
decoding [22] and nML [15]. Moreover, coarse quantization in large-scale
MIMO systems has been considered in a number of different aspects and
approaches. The design of a proper automatic gain control (AGC) can be
relevant for low resolution ADCs (more than 1-bit) in order to minimize the
signal distortion due to the coarse quantization [23]. Recently, the authors
in [24, 25] have used spatial oversampling by employing a 1-bit Sigma-Delta
(Σ∆) sampling scheme which have shown large performance gains on channel
estimation and signal detection. Furthermore, the studies in [26, 27, 28, 29]
have devised different precoding techniques which rely on 1-bit quantization
at the transmitter.

1.2
Contributions

The scope of this thesis lies in the design and understanding of a novel
MIMO receiver architecture that uses coarse quantization ADCs. The proposed
MIMO receiver includes a comparator network with binary outputs which
can compare signals from different antennas in terms of real and imaginary
parts. The addition of the comparator network can be interpreted as a number
of additional virtual channels which can contain additional information that
aids the detection and channel estimation processes. In this context, channel
estimation and signal detection algorithms are developed for the proposed
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PUC-Rio - Certificação Digital Nº 1920848/CA



Chapter 1. Introduction 15

system.
Two types of comparator networks are proposed, namely, fully and par-

tially connected networks. In this context, for the design of the partially con-
nected network a Greedy Search-based algorithm is devised. With the op-
timized partially connected network, much less comparators are required to
approach a comparable performance of the fully connected network. Finally,
numerical results confirm that the BER and MSE for detection and channel
estimation can be significantly reduced when adding a comparator network.
Based on the proposed detector, a sum rate analysis is presented. Simulation
results confirm that the proposed system yields significantly sum rate perfor-
mance in comparison to the conventional 1-bit MIMO receiver.

The contributions can be summarized as follows:

– Introduction of a novel MIMO receiver architecture with coarse quanti-
zation using partially or fully connected comparator networks.

– Development of LRA-LMMSE channel estimation for the novel system,
published in [30].

– Development of LRA-LMMSE detector for the novel system, published
in [31] and a robust version of it that takes into account the channel
estimation error statistics.

– Sum rate analysis in terms of construction of a lower bound, published
in [30].

1.3
Thesis Outline

This thesis is organized as follows:

– Chapter 2 gives some technical background on this thesis;

– Chapter 3 shows the overall proposed system model and describes the
insight and design of the comparator network;

– Chapter 4 derives the pilot-based LRA-LMMSE channel estimator for
the proposed system;

– Chapter 5 derives the LRA-LMMSE detector and a robust version
of it. For designing the partially connected network, a greedy search
algorithm is also devised. Moreover, computational and hardware costs
are provided;

– Chapter 6 presents the construction of the lower bound on the sum rate;

– Chapter 7 displays the conclusions and discusses possible extensions for
the presented study;
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1.4
Notation

Regarding the notation, bold upper and lower case letters such as A and
a denote matrices and vectors, respectively. In is a n× n identity matrix. The
vector or matrix transpose and conjugate transpose are represented by (·)T and
(·)H . R{·} and I{·} get the real and imaginary part from the corresponding
vector or matrix, respectively. Additionally, diag(A) is a diagonal matrix only
containing the diagonal elements of A. The inverse of sine function is denoted
by sin−1(·). Moreover, vec(A) is the vectorized form of A obtained by stacking
its columns, while the inverse of this operation is unvec(a), depending on
the context. The expectation operator is denoted as E[·]. Finally, ⊗ is the
Kronecker product.

1.5
List of Publications

The work presented in this thesis gave rise to the following papers:

1. Comparator Network Aided Detection for MIMO Receivers
with 1-bit Quantization in 2020 54th Asilomar Conference
on Signals, Systems and Computers, 2020, pp. 384-387, doi:
10.1109/IEEECONF51394.2020.9443453.

2. Comparator Network Aided Channel Estimation and Achievable Rates
for MIMO Receivers with 1-bit Quantization in IEEE Statistical Signal
Processing (SSP) Workshop 2021, Rio de Janeiro, Brazil, 2021.
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2
Literature Review and Relevant Baselines

In this chapter, we review some concepts related to this thesis, which
are important for understanding some of the techniques used in the remaining
chapters. For advanced readers, this chapter can be skipped. The following
sections briefly introduce some topics related to the MIMO systems includ-
ing pilot-based channel estimation, MIMO detection and sum rate analysis
methods.

2.1
MU-MIMO Uplink System

The multiuser multiple-input multiple-output (MU-MIMO) system al-
lows the transmission and reception of more than one data signal simultane-
ously, achieving very high data rates over wireless links. This technique has
become a key component of different wireless communication standards such
as WIFI, third generation (3G) and fourth generation (4G). The general sys-
tem model is illustrated in Fig. 2.1. An uplink single-cell MIMO system with
Nt single-antenna users and Nr receive antennas is considered, with Nr > Nt,
written as

y =
Nt∑
k=1

hkxk + n = Hx + n, (2-1)

where the vector x contains complex transmit symbols of the Nt users which
have unit power normalization, H ∈ CNr×Nt is the channel matrix and
n ∈ CNr×1 is the noise vector where each element has a variance σ2

n.
The received signal is then forwarded to the 1-bit ADCs. Letting Q(·)

represent the 1-bit quantization, the input of the detector is described by

yQ = Q(y) = Q (R{y}) + jQ (I{y}) , (2-2)

where R{·} and I{·} denote the real and imaginary parts, respectively. Then,
the real and imaginary parts are element-wisely quantized as

{
± 1√

2

}
based on

the sign.
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x1

xNt

x̂1

x̂Nr

... ... ...

y1

yNr

Detector

yQN r

...

Terminal Nt

Terminal 1

1-bit ADCs

−+

−+

yQ1

...

Figure 2.1: System model of MU-MIMO with 1-bit ADCs.

2.2
Pilot-Based Channel Estimation Methods

In a practical system, the channel state information (CSI) is estimated
at the BS and this knowledge is used to detect the data symbols transmitted
by the users. Each transmission block is divided into two sub-blocks: one
dedicated to the pilot symbols and the other to the data symbols. The part
containing the pilots can be either located at the beginning of each block or
spread according to a desired pattern [32]. During the training phase, each
terminal simultaneously transmits sequences of τ pilot symbols to the BS,
which yields

Yp = HΦT + Np, (2-3)
where Yp ∈ CNr×τ is the matrix containing the unquantized received signal,
Φ ∈ Cτ×Nt is the matrix of pilot symbols and Np is the noise matrix.
Vectorizing the received signal yields

vec(Yp) = yp = Φ̃h + np, (2-4)

where Φ̃ = (Φ ⊗ INr), h = vec(H) and np = vec(Np). Then, the quantized
signal can be expressed as yQp = Q(yp).

2.2.1
Standard LS Channel Estimator

The authors in [11] have proposed the standard LS estimator for 1-bit
non-oversampled systems, which can be computed according to

ĥLS = arg min
h̄

E
[∣∣∣∣∣∣yQp − Φ̃h̄

∣∣∣∣∣∣2
2

]
= (Φ̃HΦ̃)−1Φ̃HyQp .

(2-5)
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The main advantage of this channel estimator is that no prior information is
needed at the receiver.

2.2.2
Linear LRA Channel Estimators

According to the works in [9, 16], the quantized received signal can be
rewritten as

yQp = Φ̂h + ñp, (2-6)
where the right hand side corresponds to a linear model that relies on the
Bussgang decomposition approach. In this context, the linear model involves
the matrix Φ̂ = ApΦ̃ and the effective noise vector ñp = Apnp + nq,p, with Ap

being a well chosen square matrix and nq,p being the quantization noise. The
Bussgang-based linear operator Ap is chosen to make the quantization noise
uncorrelated with yp [33], and is given by

Ap = CH
ypyQpC

−1
yp =

√
2
π

Kp, (2-7)

where Kp = diag(Cyp)−
1
2 and the cross-correlation matrix between the received

signal yp and its quantized signal yQp is given by

CypyQp =
√

2
π

KpCyp = ApCyp , (2-8)

where the auto-correlation matrix of yp yields

Cyp = Φ̃RhΦ̃H + Cnp , (2-9)

with Rh = E
[
hhH

]
and Cnp = E

[
npnHp

]
.

Then, based on the statistically equivalent linear model in (2-6), two basic
approaches for the channel estimation are presented in the next subsections.

2.2.2.1
LRA-LS Channel Estimator

The LRA-LS channel estimator based on the Bussgang decomposition is
obtained by solving the following optimization problem

ĥLRA-LS = arg min
h̄

E
[∣∣∣∣∣∣yQp − Φ̂h̄

∣∣∣∣∣∣2
2

]
= (Φ̂HΦ̂)−1Φ̂HyQp .

(2-10)

Compared to the standard LS channel estimator, this estimator implicitly
takes Rh into account as Rh is used for computing the linear operator Ap.
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2.2.2.2
LRA-LMMSE Channel Estimator

The LRA-LMMSE optimal filter can be obtained through the optimiza-
tion problem formulated as

WLRA-LMMSE = arg min
W

E
[∣∣∣∣∣∣h−WyQp

∣∣∣∣∣∣2
2

]
= RhΦ̂HC−1

yQp ,
(2-11)

where the auto-correlation of the quantized signal is calculated as [34]

CyQp = 2
π

(
sin−1

(
KpR{Cyp}Kp

)
+ jsin−1

(
KpI{Cyp}Kp

))
, (2-12)

which is known as the arcsine law. Then, the resulting LRA-LMMSE channel
estimator corresponds to the linear operation

ĥLRA-LMMSE = RhΦ̂HC−1
yQpyQp . (2-13)

The LMMSE channel estimator has superior performance in terms of
MSE when compared to the LS channel estimator. However, it suffers from a
higher computational complexity.

2.2.3
nML Channel Estimator

The near Maximum Likelihood method in [15] makes use of a modified
general system model. The complex received signal y, before going into the
quantizer, is changed by the transformation from a complex into a real-valued
system. Moreover, the roles of the channel and the pilot signal are reversed.
Thus and by using the scaling factor ρ, equation (2-3) for the nth receive
antenna can be rewritten asRe(yp,n)

Im(yp,n)


︸ ︷︷ ︸

yRp,n

= √ρ
Re(Φ) −Im(Φ)
Im(Φ) Re(Φ)


︸ ︷︷ ︸

ΦR

Re(hn)
Im(hn)


︸ ︷︷ ︸

hRn

+
Re(np,n)
Im(np,n)


︸ ︷︷ ︸

nRp,n

. (2-14)

Then, the output of the quantizer is denoted by yQp,n = Q(yRp,n).
For the approach in [15], the real and imaginary parts of the unquantized
received signal yRp,n are element-wisely quantized to {±1}. With this, the first
τ received signals during the training phase can be rewritten as

yRp,n = √ρΦT
RhRn + nRp,n . (2-15)

Note that for simplification we skipped the fading block index used in [15].
In this context, the ML channel estimator is given by
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ȟRn,ML
= arg max

h́R∈R2Nt×1

2τ∑
i=1

log
(
Ψ
(√

2ρΦ̄T
Rih́R

))
, (2-16)

where Ψ(t) =
∫ t
−∞

1√
2πe
− τ

2
2 dτ and Φ̄Ri denotes the multiplication of the

correspondent ith row of the pilot matrix ΦRi and the quantized received
signal yQp,n,i at the nth receive antenna. Because Ψ(·) is a log-concave
function, equation (2-16) can be solved by using standard convex optimization
methods. By using prior knowledge about the norm of the channel, for example
E [‖hRn‖2] = Nt, which is a common assumption for channel estimation, the
channel estimator in (2-16) can be improved by taking into account the norm
constraint on h́R. Then, the corresponding optimization problem reads as

ȟRn,ML
= arg max

h́R∈R2Nt×1

‖h́R‖2≤Nt

2τ∑
i=1

log
(
Ψ
(√

2ρΦ̄T
Rih́R

))
. (2-17)

2.3
MIMO Detection Methods

For the detection process, there are several known state-of-art ap-
proaches. Some of these methods are going to be presented further.

2.3.1
Linear Detectors

The linear detectors can be considered as filtering, because the detection
process can reduce the interference. The consideration of linear detection
does not yields an optimal detection performance but corresponds to a low
computational complexity.

With a linear MIMO receiver, one can compute an estimate on the
transmit symbol by

x̃ = Gy, (2-18)
where G is the filtering (or linear receive filter) matrix with size Nt ×
Nr. The filter matrix G can be designed according to different criteria.
Next we are going to see some of this criteria. The filtering process is
followed by a mapping process which maps the symbol to a symbol in the
input alphabet. Typically, the symbols are mapped according to the smallest
Euclidean distance. According to prior literature, the most popular linear
detectors are matched filter (MF), ZF and MMSE [35].
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2.3.1.1
Standard MF Receive Filter

Let us begin with the MF-type detector for unquantized receive signals
(full resolution in amplitude and phase), which has the lowest computational
complexity among all MIMO detectors. The MF method has the objective of
maximizing the signal-to-noise ratio (SNR) at the receiver and its linear receive
filter matrix is given by

GMF = aHH , (2-19)
where a is a scalar which can be chosen arbitrarily.

2.3.1.2
Standard ZF Receive Filter

The ZF approach for unquantized receive signals implies that the equal-
izer is unbiased. The ZF optimal filter can be obtained by solving the following
optimization problem

GZF = arg min
G

E
[
||x−Gy||22

]
s.t. GH = I. (2-20)

Then, the ZF-type receive filter can be written as

GZF = (HHH)−1HH . (2-21)

2.3.1.3
Standard MMSE Receive Filter

In general, the MMSE criterion relies on minimizing the MSE between
the actual transmitted data and the equalizer’s output with the linear receive
filter matrix. In a nutshell, the MMSE filter for unquantized receive signals
corresponds to the following optimization problem and solution

GMMSE = arg min
G

E
[
||x−Gy||22

]
=
(
Ntσ

2
n

Etx
INt + HHH

)−1

HH ,
(2-22)

where a point by point system is considered with E[xxH ] = Etx
Nt

INt and Etx

being the transmit energy or power.

2.3.2
Linear LRA Detectors

Different to the prior mentioned detectors, the methods in this subsection
imply quantized data where low resolution ADCs are considered. The use of
coarse quantization is beneficial in terms of cost and power consumption but
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implicates in performance degradation in comparison to MIMO detection with
full resolution. The idea of LRA detectors is to take into account the 1-bit
quantization in the receive processing. In order to compute the LRA receive
filters, it is necessary to rewrite the quantized signal with a linear model. As
we can see in [8], based on the Bussgang decomposition the quantized received
signal yQ can be rewritten as

yQ = Ay + nq, (2-23)

where the matrix A is the linear operator which is chosen to make nq
uncorrelated with y [36, 37]. Then, the vector nq is termed the statistically
equivalent quantization noise. The linear operator is given by the equation

A = CH
yyQC−1

y =
√

2
π

K, (2-24)

with K = diag(Cy)− 1
2 . The cross-correlation matrix between the received

signal y and its quantized signal yQ is denoted by

CyyQ =
√

2
π

KCy, (2-25)

where the auto-correlation of y is given by

Cy = HCxHH + Cn, (2-26)

with Cx = E
[
xxH

]
= INt and Cn = E

[
nnH

]
= σ2

nINr .

2.3.2.1
LRA-ZF Receive Filter

The LRA-ZF filter minimizes the MSE as

GLRA-ZF = arg min
G

E
[
||G(An + nq)||22

]
s.t. GAH = I. (2-27)

By equating the gradient of the Lagrangian multiplier to zero, we obtain

GLRA-ZF = (HHAHC−1
n AH)−1HHAHC−1

n , (2-28)
where Cn = ACnAH + Cnq and Cnq = CyQ − ACyAH are the covariance
matrices of the noise and the quantization noise, respectively.

2.3.2.2
LRA-MMSE Receive Filter

The LRA-MMSE optimization problem and solution for finding the
optimal linear receiver is formulated as
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GLRA-MMSE = arg min
G

E
[
||x−GyQ||22

]
= C−1

yQCyQx,
(2-29)

where the involved covariance matrix CyQ is calculated as [34]

CyQ = 2
π

(
sin−1 (KR{Cy}K) + jsin−1 (KI{Cy}K)

)
, (2-30)

and the cross-correlation matrix CyQx is based on the Bussgang theorem [36]

CyQx =
√

2
π

KCyx =
√

2
π

KHCx. (2-31)

2.3.3
nML Detector

The nML detector is an approach for coarse quantization in terms of
1-bit quantization. The complexity of the conventional ML detector grows
exponentially with the number of users due to the exhaustive search over
all possible transmitted vectors. Therefore, the strategies presented at this
subsection try to overcome this issue by proposing a nML detector which can
provide improvement of the performance-complexity trade-off in comparison
with the conventional ML detector. The main goal is to convert the ML
estimation problem into a convex problem. Thus, the reformulation in [15]
can be done by relaxing constraints on the transmitted vector.

First of all, the complex received signal y, before going into the quantizer,
is changed by the transformation from a complex into a real-valued system.
Thus, equation (2-1) for the nth receive antenna can be rewritten asRe(yn)

Im(yn)


︸ ︷︷ ︸

yRn

=
√
P

Re(Hn) −Im(Hn)
Im(Hn) Re(Hn)


︸ ︷︷ ︸

HRn

Re(x)
Im(x)


︸ ︷︷ ︸

xR

+
Re(nn)
Im(nn)


︸ ︷︷ ︸

nRn

, (2-32)

where P is the power of the transmit data and the SNR is given by the equation
ρ = P

σ2
n
. Then, the output of the quantizer is denoted by yQn = Q(yRn). For

the approach in [15], the real and imaginary parts of the unquantized received
signal yRn are element-wisely quantized to {±1}. In this context, we have

yRn =
√
PHRnxR + nRn . (2-33)

With this, the reformulated ML detector problem can be defined as

x̂R, ML = arg max
x́R∈S

Nt
R

2∏
i=1

Nr∏
n=1

Ψ
(√

2ρh̄TRn,ix́R
)
, (2-34)
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where Ψ(t) =
∫ t
−∞

1√
2πe
− τ

2
2 dτ and SNtR is the Nt-ary Cartesian product set of

SR which is the M -ary data symbol constellation, ordered with the real parts
of the constellations first and the imaginary parts later. Moreover, the term
h̄Rn,i denote the multiplication of the correspondent ith row of the channel
hRn,i and the quantized received signal yQn,i at the nth receive antenna. By
relaxing the constraint x́R ∈ SNtR in equation (2-34) we get

x̌(1)
R, ML = arg max

x́R∈R2Nt×1

‖x́R‖2=Nt

2∑
i=1

Nr∑
n=1

Ψ
(√

2ρh̄TRn,ix́R
)
. (2-35)

Although the function Ψ(·) is log-concave, in general, the optimization
problem described above is not convex due to the norm constraint ‖x́R‖2 = Nt,
which is associated to binary phase shift keying (BPSK), quadrature phase
shift keying (QPSK) and Phase Shift Keying (PSK) modulations. In order to
overcome this challenge, the problem is reformulated as a convex optimization
problem by relaxing the constraint as

x̌(2)
R, ML = arg max

x́R∈R2Nt×1

‖x́R‖2≤Nt

2∑
i=1

Nr∑
n=1

Ψ
(√

2ρh̃TRn,ix́R
)
. (2-36)

After solving (2-36), the BS needs to perform normalization followed by
symbol-by-symbol detection. The normalization of x̌(2)

R, ML is given by

x̄R, ML =
√
Nt

x̌(2)
R, ML∥∥∥x̌(2)
R, ML

∥∥∥2

2

. (2-37)

Finally, by letting x̄R, ML,k be the kth element of x̄R, ML, we get the nML
symbol-by-symbol detection stated as

x̂nML,k = arg min
x́∈S

|(x̄R, ML,k + jx̄R, ML,Nt+k)− x́| . (2-38)

The authors in [15] also proposed a two-stage nML detector which has
performance improvement in comparison with the one described so far. Based
on the output of the one-stage nML detector the number of candidate transmit
vectors is reduced. Defining the candidate set of the kth element as

Xk =
{
x́ ∈ S

∣∣∣∣∣ |x̄R, ML,k + jx̄R, ML,Nt+k − x́|
| (x̄R, ML,k + jx̄R, ML,Nt+k)− x̂nML,k|

< c

}
, (2-39)

where c is a constant that controls the size of Xk. By setting c with a
proper value, it is possible to effectively improve the detection performance.
The reduced candidate set of the transmit vectors can be defined as X ={

[x̌1 · · · x̌Nt ]T | x̌k ∈ Xk,∀k
}
. And, the real-form vector can be stated as XR ={

[Re(x́)T Im(x́)T ]T | x́ ∈ X
}
. With this, the two-stage nML detector can be
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defined as
x̂R, two-nML = arg max

x́R∈XR

2∏
i=1

Nr∏
n=1

Ψ(
√

2ρh̃TRn,ix́R). (2-40)

The concept of the two-stage nML detector is similar to the sphere
decoding, which exploits a reduced search space.

2.3.4
One-Bit Spatial Sigma-Delta Detector

Different from the approaches aforementioned, the 1-bit spatial sigma
delta approach relies on spatial oversampling. Some characteristics of the Σ∆
approach are: it includes quantization error feedback loops and uses a modified
Bussgang solution because the standard one leads to a linear model that is
inconsistent with the corresponding hardware implementation.

The authors in [24, 25] have used spatial oversampling by employing
a one-bit Σ∆ sampling scheme. In order to reduce the effects of the noise
quantization with low-pass spatial filters or beamformers, it is shifted to higher
spatial frequencies. Moreover, with optimal quantizer output settings the power
of the quantization noise does not grow with the number of antennas (despite
the fact that is propagated from one antenna to the next), but it converges to
a constant value of approximately 1.33 times the input power.

Simulation results of the papers mentioned in this section have shown
large performance gains on channel estimation and signal detection offered by
this approach.

2.4
Sum Rate Analysis

2.4.1
Data Transmission with LMMSE Receiver

In this subsection it is considered that in the data transmission stage the
Nt users simultaneously transmit their data symbols represented by the vector
x to the BS. After processed by the comparators, the quantized signal can be
expressed as

yQd = Q(yd) = Q(Hx + nd) = AdHx + Adnd + nq,d, (2-41)

where the same definitions from Section 2.2 apply, but with the subscript p
replaced by d, since we changed from the pilots to the data transmission stage.
Then, the LRA-LMMSE channel estimate in (2-13) is used to compute a linear
receiver which provides an estimate of the data symbols transmitted from the
Nt users. Thereby, we obtain
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x̂ = GyQd = G(AdHx + Adnd + nq,d)

= GAd(ĤLRA-LMMSEx + Ex) + GAdnd + Gnq,d,
(2-42)

where ĤLRA-LMMSE = unvec(ĥLRA-LMMSE). Finally, E = H − ĤLRA-LMMSE is
the channel estimation error. Then, the kth element represents an estimate of
the signal of the kth user, similarly as in [16], with k ∈ [1, Nt], which reads

x̂k = gTk Adĥkxk︸ ︷︷ ︸
desired signal

+ gTk
K∑
i 6=k

Adĥixi︸ ︷︷ ︸
user interference

+ gTk
K∑
i=1

Adεixi︸ ︷︷ ︸
channel estimation error

+ gTk Adnd︸ ︷︷ ︸
AWGN noise

+ gTk nq,d︸ ︷︷ ︸
quant. noise

,

(2-43)

where gTk is the kth row of G and ĥk is the kth column of ĤLRA-LMMSE.
Moreover, εi is the ith column of the matrix E .

2.4.2
Lower Bounding the Sum Rate

Since the Gaussian noise case corresponds to the worst case scenario, we
can find a lower bound for the achievable rate by interpreting the quantization
noise as Gaussian, with an equivalent noise covariance matrix [33]. In this
regard, the equivalent noise covariance matrix is given by

Cnq,d = CyQd −AdCydA
H
d , (2-44)

where CyQd is the auto-correlation matrix of the quantized data signal, like in
(2-30), and Cyd is the auto-correlation matrix of the received data signal, as
calculated in (2-26). Using this approach, the ergodic achievable rate of user
k relates to the differential entropy and is lower bounded by [16]

Ik = E

log2

1 +

∣∣∣dkĥk∣∣∣2∑K
i 6=k

∣∣∣dkĥi∣∣∣2 +∑K
i=1 |dkεi|

2 + σ2
n ||dk||

2
2 + gTk Cnq,dgk


 ,

(2-45)

where dk = gTk Ad and the expectation operator is taken with respect to channel
realizations and channel estimation realizations. Finally, the sum rate is lower-
bounded by ∑K

k=1 Ik.

2.5
Summary

In this chapter we have presented a review on the technical background of
this thesis. Some of the basic knowledge about MIMO systems was illustrated,
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including pilot-based channel estimation, detection and sum rate analysis
approaches.
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3
System Model

In this chapter, the system model for the proposed MIMO receiver archi-
tecture with 1-bit quantization which has an additional comparator network
is illustrated. Next, the design of the comparator network, including two types
of networks: fully and partially connected, is introduced and described.

3.1
Proposed Comparator Network-aided MIMO Receiver

The general system model for the proposed comparator network-aided
MIMO system with 1-bit ADCs at the receiver is illustrated with blocks in
Fig. 3.1, where the received signal y for the uplink single-cell MIMO system
with Nt single-antenna users and Nr receive antennas is written as

y = Hx + n. (3-1)

The vector x contains complex transmit symbols of the Nt users which
have unit power normalization, H ∈ CNr×Nt is the channel matrix and
n ∈ CNr×1 is the noise vector where each element has a variance σ2

n.

Terminal 1

•

•

•

Terminal Nt

R{·}

I{·}

R{·}

I{·}

•

•

•

α

Comparator

Network

LRA-MMSE

Detector/

Channel

Estimator

•

•

•

•

•

•

α

x̂, ĥ

1-bit ADCs

Figure 3.1: System model of MU-MIMO with 1-bit ADCs and an additional
comparator network.
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Using the transformation from a complex into a real-valued system, we
obtain R{y}

I{y}

 =
R{H} −I{H}
I{H} R{H}

 R{x}
I{x}

+
R{n}
I{n}

 , (3-2)

where R{·} and I{·} denote the real and imaginary parts, respectively. A more
compact notation for equation (3-2) reads as

yR = HRxR + nR. (3-3)

The received signal is then forwarded to the 1-bit ADCs and the comparator
network (shown in Fig. 3.2). Each comparator compares two received signals
and quantizes the difference as

{
± 1√

2

}
.

•
•
•

•

•
•
•

•
•

•

•

•

•••

Figure 3.2: Insight of the comparator network.

Letting Q(·) represent the 1-bit quantization, the output of the ADCs
and the comparator network is described by

zQ = Q
 yR

B′yR

 = Q
I2Nr

B′

yR

 , (3-4)

where B′ ∈ Rα×2Nr refers to the comparator network and has the form

B′ =
[
B′R B′I

]
=



1 −1 0 0 · · · 0
−1 0 1 0 · · · 0
0 0 0 −1 · · · 1
... ... ... ... ... ...
0 1 0 0 · · · −1


. (3-5)

In each row of B′, there is only one pair of 1 and -1 and the remaining entries
are zeros. With B =

[
I2Nr ; B′

]
, (3-4) reads as

zQ = Q(zR) = Q (ByR) . (3-6)

Besides the introduction of the novel MIMO receiver architecture, the
contribution of the present study relies on the development of MIMO detection
and channel estimation algorithms for the proposed system. Moreover, a sum
rate analysis is presented using the aforementioned receive processing.
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3.2
Comparator Network Design

The matrix design of the comparator network in (3-5) is illustrated in
this section. Two types of networks are considered, namely, fully and partially
connected networks.

3.2.1
Fully Connected Network

In this network, every two of the received signals are compared, meaning
that the number of comparators needed is αf =

(
2Nr

2

)
= Nr(2Nr − 1). This

reasoning is illustrated in Fig. 3.3.
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Figure 3.3: Number of comparators required in the fully connected network.

For instance, if we consider a system with Nr = 2 receive antennas,
αf =

(
4
2

)
= 6 comparators are needed in this network. Then, the corresponding

matrix B′ is described by

B′ =



1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1


. (3-7)

The main drawback of the fully connected network is the massive use
of the comparators, where the number of comparators αf is approximately
proportional to the square of the number of receive antennas Nr. Therefore,
in large-scale MIMO systems a much larger number of comparators will be
required.
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3.2.2
Partially Connected Network

In order to increase the usage efficiency of the comparators, the partially
connected network is proposed, where the number of utilized comparators αp
is only a small fraction of what is required for the fully connected network.
For the same scenario described in the last subsection, one possibility for the
corresponding matrix B′αp can be described by

B′αp =


1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0

 . (3-8)

In this section, two types of network design are considered, random and
greedy search based. The former approach criteria is to randomly select αp out
of αf comparators (αp << αf ), while the selection criterion of the latter is the
MSE when using an LRA-LMMSE filter which will be developed in Chapter
5.

3.3
Summary

In this chapter, the proposed system model was illustrated and the
design of the comparator network was described. Furthermore, two types of
networks are introduced, namely, fully and partially connected networks. The
partially connected network refers to comparator networks of αp comparators
with input signals from any two antennas in terms of real or imaginary parts.
The fully connected network refers to comparator networks where all possible
combinations are considered, meaning αf comparators.
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4
Linear Channel Estimation

In this chapter, we develop an LRA-LMMSE channel estimator based
on the Bussgang theorem for the proposed comparator network-aided MIMO
systems with 1-bit ADCs at the receiver. Additionaly, the mean-squared error
of the channel estimate is derived. At last, numerical results of the developed
schemes, are presented.

4.1
Pilot-Based Channel Estimation

A common technique for channel estimation is to let the users transmit
orthogonal pilot sequences of τ pilot symbols and evaluate the effect of the
channel on these symbols at the BS. During the training phase, all the terminals
simultaneously transmit these sequences, which yields

Yp = HΦT + Np, (4-1)

where Yp ∈ CNr×τ is the matrix containing the unquantized received signal,
Φ ∈ Cτ×Nt is the matrix of pilot symbols and Np is the noise matrix.
Vectorizing the received signal yields

vec(Yp) = yp = Φ̃h + np, (4-2)

where Φ̃ = (Φ ⊗ INr), h = vec(H) and np = vec(Np). However, due to
the addition of the comparator network, we need to consider a real-valued
representation of the system. In this case, the received signal yRp is defined by

yRp =
R{Φ̃} −I{Φ̃}
I{Φ̃} R{Φ̃}

R{h}
I{h}

+
R{np}
I{np}


= Φ̃RhR + nRp ,

(4-3)

where yRp ∈ Rτ(2Nr)×1 is the real-valued received signal vector. Then, when we
multiply equation (4-3) with an effective comparator network matrix Beff, we
get

zRp = BeffyRp = BeffΦ̃RhR + BeffnRp , (4-4)
where Beff ∈ Rτ(2Nr+α)×τ(2Nr) is described by
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Beff =
Iτ(2Nr)

B′eff

 =
 Iτ(2Nr)[

B′eff, R B′eff, I
] , (4-5)

where B′eff, R = (B′R ⊗ Iτ ) and B′eff, I = (B′I ⊗ Iτ ), with B′R and B′I denoting
respectively the parts of the matrix B′ which are associated to the real and
imaginary parts of the received signal, as shown in (3-5). After being processed
by the comparators, the quantized signal can be expressed as

zQp = Q(zRp) = Φ̂RhR + ñRp , (4-6)

where the right hand side corresponds to a linear model that relies on
the Bussgang decomposition approach. In this context, the linear model
involves the matrix Φ̂R = ARpBeffΦ̃R and the effective noise vector ñRp =
ARpBeffnRp + nq,p, with ARp being a well chosen square matrix and nq,p being
the quantization noise. The Bussgang-based linear operator ARp is chosen to
make the quantization noise uncorrelated with zRp [33], and is given by

ARp = CH
zRpzQpC

−1
zRp

=
√

2
π

KRp , (4-7)

with KRp = diag(CzRp )− 1
2 , where CzRpzQp denotes the cross-correlation matrix

between the received signal zRp and its quantized signal zQp is given by

CzRpzQp =
√

2
π

KRpCzRp = ARpCzRp , (4-8)

and CzRp denotes the auto-correlation matrix of zRp

CzRp = BeffΦ̃RRhRΦ̃T
RBT

eff + BeffCnRp
BT

eff

= 1
2BeffΦ̃RΦ̃T

RBT
eff + σ2

n

2 BeffBT
eff,

(4-9)

where it is assumed that RhR = E
[
hRhTR

]
= 1

2I2NtNr and CnRp
=

E
[
nRpnTRp

]
= σ2

n

2 Iτ(2Nr). Note that the factor 1
2 is due to the real-valued nota-

tion of the system.
Derivation: See Appendix A.1.

4.2
Proposed LRA-LMMSE Channel Estimator

Based on the statistically equivalent linear model in (4-6), the LRA-
LMMSE optimal filter can be obtained through the optimization problem
formulated as
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WR, LRA-LMMSE = arg min
W

E
[∣∣∣∣∣∣hR −WzQp

∣∣∣∣∣∣2
2

]
= RhRΦ̂T

RC−1
zQp = 1

2Φ̂T
RC−1

zQp ,
(4-10)

where the auto-correlation of the quantized signal is calculated as [34]

CzQp = 2
π
sin−1

(
KRpCzRpKRp

)
. (4-11)

The resulting LRA-LMMSE channel estimator corresponds to the linear oper-
ation

ĥR, LRA-LMMSE =
ĥR, LRA-LMMSE, a

ĥR, LRA-LMMSE, b

 = RhRΦ̂T
RC−1

zQpzQp = 1
2Φ̂T

RC−1
zQpzQp ,

(4-12)
where ĥR, LRA-LMMSE, a is the first half of the channel estimate which corre-
sponds to the real part and ĥR, LRA-LMMSE, b is the second half which corre-
sponds to the imaginary part.
Derivation: See Appendix A.2.

4.3
Mean-Squared Error of the Channel Estimate

The MSE of the LRA-LMMSE channel estimate can be expressed as

MR, LRA-MMSE = E
[∣∣∣∣∣∣ĥR, LRA-MMSE − hR

∣∣∣∣∣∣2
2

]
= tr

(
RhR −RhRΦ̂T

RC−1
zQp Φ̂RRhR

)
= tr

(1
2I2NtNr −

1
4Φ̂T

RC−1
zQp Φ̂R

)
.

(4-13)

Derivation: See Appendix A.3.

4.4
Numerical Results

In this section, an uplink single-cell 1-bit MIMO system with comparator
network, Nt = 2 and Nr = 4 is considered. The SNR is defined as 10 log

(
1
σ2
n

)
,

which is the average receive SNR per user per antenna. The lines labeled
as “Analytical Result” are obtained with (4-13) while the marks labeled as
“Numerical Result” are obtained with the MSE of the simulated channel
estimator in (4-12). In both experiments, the partially connected networks have
αp = 2Nr = 8 comparators, while the fully connected have αf =

(
2Nr

2

)
= 28

comparators.
The MSE comparison between the LRA-LMMSE channel estimators with

fully and partially connected comparator networks are shown in Fig. 4.1. The
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Figure 4.1: MSE comparisons of LRA-LMMSE channel estimators in 2 × 4
MIMO systems with τ = Nt = 2.
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Figure 4.2: MSE comparisons of LRA-LMMSE channel estimators in 2 × 4
MIMO systems with τ = 2Nt = 4.

pilot sequences are column-wise orthogonal with length τ = Nt = 2, i.e.,
ΦTΦ = τINt . The presented performance plots are obtained by taking the
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average over 2000 different channels and 2000 noise realizations per channel.
The numerical and analytical results are aligned, which confirms the accuracy
of the proposed model. As expected, the system with the fully connected
method achieves the best MSE performance. However, it can be seen that the
approach with the comparator network using random selected inputs is also
beneficial in terms of MSE in comparison to the case without a comparator
network.

The results in Fig. 4.2 were obtained by changing the size of the pilot
sequences to τ = 2Nt = 4. The presented performance plots are obtained by
taking the average over 700 different channels and 700 noise realizations per
channel.

4.5
Summary

In this chapter, we have derived the LRA-LMMSE channel estimator for
comparator network aided 1-bit MIMO systems. The pilot-based channel esti-
mation for the real-valued system representation was proposed. The simulation
results have shown a great performance gain for the proposed channel estimator
with the additional comparator network. Moreover, the numerical simulations
match with the corresponding analytical channel estimation performance in
terms of the MSE, which corroborates the accuracy of the proposed model.
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5
Linear Detection

In this chapter, we develop the LRA-LMMSE detector based on the
Bussgang theorem for the proposed comparator network-aided MIMO system
with 1-bit ADCs at the receiver. Moreover, a robust version of the LRA-
LMMSE detector is devised, which takes into account the channel estimation
error statistics. In the sequel, we present the Greedy Search Algorithm for
the optimization of the partially connected network. Then, the computational
complexity, computational and hardware costs of the methods are calculated
for comparison purposes. Finally, numerical results of the developed schemes,
are individually and integrally illustrated.

5.1
Proposed LRA-LMMSE Detector

Based on the proposed system model in (3-6), the corresponding linear
receiver to estimate the transmitted symbols is derived as follows. The opti-
mization problem for getting the optimal linear receiver is formulated as

GR, LRA-MMSE = arg min
GR

E
[∣∣∣∣∣∣xR −GT

RzQ
∣∣∣∣∣∣2

2

]
, (5-1)

where GR ∈ R(2Nr+α)×2Nt . The solution for this problem is given by

GR, LRA-MMSE = C−1
zQCzQxR , (5-2)

where the involved covariance matrix CzQ is calculated as [34]

CzQ = 2
π
sin−1 (KRCzRKR) , (5-3)

and the cross-correlation matrix CzQxR is based on the Bussgang theorem [36]

CzQxR =
√

2
π

KRCzRxR =
√

2
π

1
2KRBHR, (5-4)

with KR = diag(CzR)− 1
2 and the cross-correlation matrix between zR and xR

is given by
CzRxR = BHRCxR = 1

2BHR, (5-5)
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where due to the real-valued notation of the system CxR = E
[
xRxTR

]
= 1

2I2Nt .
Derivation: See Appendix B.1.

Besides, the auto-correlation of zR is given by

CzR = BHRCxRHT
RBT + BCnRBT

= 1
2BHRHT

RBT + σ2
n

2 BBT .
(5-6)

where due to the real-valued notation of the system CnR = E
[
nRnTR

]
= σ2

n

2 I2Nr .
Derivation: See Appendix B.2.

5.2
Robust LRA-LMMSE Detector

In this section, a robust LRA-MMSE detector is proposed, which takes
into account the channel estimation and its corresponding error statistics. In
this context, based on the channel estimation error εR = hR − ĥR, LRA-LMMSE,
we need to redefine the received signal as

yRr =
R{X̃} −I{X̃}
I{X̃} R{X̃}

R{h}
I{h}

+
R{nd}
I{nd}


= X̃RhR + nRd = X̃R

(
ĥR, LRA-LMMSE + εR

)
+ nRd

= ĤRxR + X̃RεR + nRd ,

(5-7)

where yRr ∈ R2Nr×1 and X̃ = (xT ⊗ INr) ∈ CNr×NtNr . The subscripts r and
d stand for robust and data, respectively. Moreover, ĤR ∈ R2Nr×2Nt is the
estimated channel matrix described by

ĤR =
R{Ĥ} −I{Ĥ}
I{Ĥ} R{Ĥ}

with Ĥ = unvec(ĥ)

and ĥ =
[
ĥR, LRA-LMMSE, a + jĥR, LRA-LMMSE, b

]
,

(5-8)

where ĥR, LRA-LMMSE, a corresponds to the first half of the estimated channel
ĥR, LRA-LMMSE and ĥR, LRA-LMMSE, b to the second, as shown in (4-12). There-
fore, the quantized signal for the robust detector is given by

zQr = Q(zRr) = Q(ByRr) = Q(BĤRxR + BX̃RεR + BnRd)

= ARrBĤRxR + ARrBX̃RεR + ARrBnRd + nRq,d ,
(5-9)

where ARr is the Bussgang-based linear operator for the transmit data,
similarly as calculated in (4-7). Then, the linear LRA-LMMSE filter is applied
to zQr , to obtain

x̂R = GT
RzQr , (5-10)
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where the matrix GR is chosen to minimize the MSE between the transmitted
symbol xR and the filter output, i.e.,

G̃R, LRA-MMSE = arg min
GR

E
[∣∣∣∣∣∣xR −GT

RzQr
∣∣∣∣∣∣2

2

]
= arg min

GR
−2tr

(
GT

RCzQrxR

)
+ tr

(
GT

RCzQrGR
)
,

(5-11)

where the second line describes an equivalent problem.
Derivation: See Appendix B.3.

By differentiating (5-11) with respect to GT
R, the solution of the LRA-

LMMSE receive filter is given by

G̃R, LRA-MMSE = C−1
zQrCzQrxR , (5-12)

where the covariance matrix is calculated as [34]

CzQr = 2
π
sin−1

(
KRrCzRrKRr

)
, (5-13)

and the cross-correlation matrix is based on the Bussgang theorem [36]

CzQrxR =
√

2
π

KRrCzRrxR =
√

2
π

1
2KRrBĤR, (5-14)

with KRr = diag(CzRr )
− 1

2 and the cross-correlation matrix between zRr and
xR is given by

CzRrxR = BĤRCxR = 1
2BĤR, (5-15)

where due to the real-valued notation of the system CxR = E
[
xRxTR

]
= 1

2I2Nt .
Derivation: See Appendix B.4.

Moreover, the auto-correlation of zRr is given by

CzRr = 1
2BĤRĤT

RBT + BΓRBT + σ2
n

2 BBT . (5-16)

Derivation: See Appendix B.5.
The term ΓR in the last equation is calculated as follows

ΓR = E
[
X̃RE

[
εRεTR

]
X̃T

R

]
= E

[
X̃R

(
RhR −RhRΦ̂T

RC−1
zQp Φ̂RRhR

)
X̃T

R

]
= E

[
X̃RRhRX̃T

R − X̃RRhRΦ̂T
RC−1

zQp Φ̂RRhRX̃T
R

]
,

(5-17)

where E
[
εRεTR

]
= RhR − RhRΦ̂T

RC−1
zQp Φ̂RRhR , similarly as previously calcu-

lated in (4-13). In the following it is considered that the modulation scheme
is QPSK. Hence, the expected value of X̃R can be calculated as a uniform
discrete distribution. In this context, equation (5-17) can be rewritten as
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ΓR =
4Nt∑
i=1

P
(
X̃R,i

) (
X̃R,iRhRX̃T

R,i − X̃R,iRhRΦ̂T
RC−1

zQp Φ̂RRhRX̃T
R,i

)

= 1
4Nt

4Nt∑
i=1

(
X̃R,iRhRX̃T

R,i − X̃R,iRhRΦ̂T
RC−1

zQp Φ̂RRhRX̃T
R,i

)
.

(5-18)

5.3
Greedy Search Algorithm

The proposed Greedy Search algorithm implies that in each search cy-
cle, the comparator configuration with the highest MSE reduction is selected.
In a nutshell, the proposed algorithm searches for each individual compara-
tor sequentially over all possible combinations for the minimum MSE input
combination. In this process, the comparators sequentially change their in-
puts according to the MSE criterion. The detailed process is summarized in
Algorithm 1.

Algorithm 1 MMSE based Greedy Search
1: Find the fully connected network B′ in (3-7) and get the number of rows, defined by αf

2: Extract the first αp rows of B′, defined by B′αp

3: Constitute B in (3-6) and calculate GR in (5-2)
4: Compute the MSE with E

[
||xR −GRzQ||22

]
, defined by lmin

5: for i = 1 : αp do
6: Take the ith row of B′αp

and freeze the other αp − 1 rows
7: for j = 1 : αf do
8: if the jth row of B′ is already in B′αp

then
9: j = j + 1
10: else
11: Replace the ith row of B′αp

with the jth row of B′

12: Constitute B and calculate GR

13: Compute the MSE value, defined by l
14: if l < lmin then
15: lmin = l

16: Update B′αp

17: end if
18: end if
19: end for
20: end for

5.4
Analysis
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5.4.1
Computational Complexity

In this subsection the computational complexity of the presented ap-
proaches is examined. The corresponding complexity orders are summarized
in Table 5.1, where O(·) is the big O notation. Note that the complexity order
can be calculated as functions of the numbers of receive and transmit antennas
Nr and Nt and additional comparators αf or αp.

Table 5.1: Computational Complexity
Approach Network Design LRA-MMSE Detection

No Network - O((2Nr)3 + 2Nt(2Nr)2 + 4NrNt)

Full Connection - O((2Nr + αf )3 + 2Nt(2Nr + αf )2 +
2Nt(2Nr + αf ))

MMSE based
Greedy Search O(αp(αf − αp)(2Nr + αp)3) O((2Nr + αp)3 + 2Nt(2Nr + αp)2 +

2Nt(2Nr + αp))

Random Selection - O((2Nr + αp)3 + 2Nt(2Nr + αp)2 +
2Nt(2Nr + αp))

5.4.2
Computational and Hardware Costs

The required computational and hardware costs in terms of additional
comparators are approximately calculated in Table 5.2. The values presented
for the computational cost (arithmetic operations) are calculated using Table
5.1 and considering the following parameters: Nr = 10, Nt = 2, αf = 190
and αp = 20. The hardware cost values are based on the number of additional
comparators needed in each approach.

Table 5.2: Computational and Hardware Costs
Approach Computational Cost Hardware Cost*

No Network O(9680) -
Full Connection O(9438240) 190

MMSE based Greedy Search O(217670560) 20
Random Selection O(70560) 20

*The presented hardware costs don’t include the crossbar switch required
to select which antennas will be used as inputs on each comparator.

5.5
Numerical Results

In this section, an uplink single-cell 1-bit MIMO system with comparator
network, Nt = 2 is considered. The modulation scheme is QPSK and the SNR
is defined as 10 log

(
1
σ2
n

)
, which is the average receive SNR per user per antenna.
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5.5.1
Proof of Concept: More Antennas versus Comparator Network

In this subsection, systems with different number of receive antennas
(Nr) and perfect CSI at the receiver are considered. While performing the
signal detection, the LRA-LMMSE detector from Section 5.1 is applied in the
system. The BER performance plots are obtained by taking the average over
1000 different channels and 1000 noise realizations per channel.
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B
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No comparator network
No comparator network plus antenna, Nr + 1
Random selected comparator network
MMSE based comparator network

Figure 5.1: BER performance of LRA-LMMSE detectors in 2 × Nr MIMO
systems.

In order to verify the advantage of the addition of the comparator
network, the performance of systems with partially connected networks are
compared to systems with additional receive antennas. The configuration
schemes with Nr and Nr + 1 receive antennas are considered, which means
the addition of a single antenna element. Since each extra antenna would
correspond to two comparators, to make a fair comparison, the total number
of extra comparators utilized by the partially connected networks is always
αp = 2 in the presented simulations.

As we can see from Fig. 5.1, the random selected comparator network only
has a benefit in comparison to the system without comparator network in a
scenario with the same number of antennas. However, at high SNR the MMSE
based Greedy Search outperforms the larger array because the extra virtual
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channels are selected with the lowest MSE approach, making the added virtual
channels better than the extra physical channel for all different simulated Nr.

5.5.2
Proposed LRA-LMMSE Detector

In this subsection, it is considered a system with Nr = 10. For the
signal detection, the LRA-LMMSE detector is applied in the system. The
BER performance plots are obtained by taking the average over 2000 different
channels and 2000 noise realizations per channel.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3010−7

10−6

10−5

10−4

10−3

10−2

10−1

SNR [dB]

B
ER

No comparator network
Fully connected comparator network, αf = 190
Random selected comparator network, αp = 20
MMSE based comparator network, αp = 20

Figure 5.2: BER performance of LRA-LMMSE detectors in 2 × 10 MIMO
systems.

The LRA-LMMSE detector BER performance of fully and partially
connected networks under perfect CSI are shown in Fig. 5.2, where partially
connected refers to comparator networks of, in this case, αp = 2Nr = 20
comparators. The case of fully connected networks refers to comparator
networks with, in this case, αf =

(
2Nr

2

)
= 190 comparators.

Simulation results show that the system with fully connected network
achieves the best BER performance with the cost of a large number of
comparators and high computational complexity. In the partially connected
networks, the MMSE based Greedy Search outperforms the random selection
approach especially at high SNR, where the error floor is eliminated. A
surprising observation is that the Greedy Search approach has almost the
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same BER performance as the fully connected method but with much less
comparators. This shows great advantages of the greedy search based partially
connected network. However, also the approach with the comparator network
using random selected inputs is beneficial in terms of BER. While making
comparison with the approach without additional comparator network, it can
be seen that by adding extra 20 comparators the performance gain is significant
and the error floor goes down largely.

However, it should be mentioned that although the greedy search ap-
proach yields comparable good BER performance with less required compara-
tors, its computational complexity is the highest among all the approaches due
to its sequential search for the least MSE values.

5.5.3
Robust LRA-LMMSE Detector

In this subsection, it is considered a system with Nr = 4. The pilot
sequences are column-wise orthogonal with length τ = Nt = 2, i.e., ΦTΦ =
τINt . The BER performance plots are obtained by taking the average over 2000
different channels and 2000 noise realizations per channel.

−20 −15 −10 −5 0 5 10 15 20
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100
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Imperfect CSI

LRA-LMMSE Detector
Robust LRA-LMMSE Detector

SNR [dB]

B
ER

No comparator network
Random selected comparator network
Fully connected comparator network
MMSE based comparator network

Figure 5.3: BER performance of robust LRA-LMMSE detectors in 2×4 MIMO
systems.

The BER performance of the robust LRA-LMMSE detector with fully
and partially connected networks is illustrated in Fig. 5.3. In these experiments,
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Figure 5.4: MSE comparisons of robust LRA-LMMSE detectors in 2×4 MIMO
systems.

the partially connected networks have αp = 2Nr = 8 comparators, while
the fully connected have αf =

(
2Nr

2

)
= 28 comparators. The LRA-LMMSE

detector is based on the channel estimate while the robust LRA-LMMSE
detector combines the proposed channel estimate with the corresponding
estimation error statistics. As expected, simulation results show that the
robust LRA-LMMSE detector obtains a moderate performance advantage in
comparison to the non-robust detector. This benefit is not only in terms of
BER but also MSE as shown in Fig. 5.4, which is the design objective of the
detectors.

5.6
Summary

In this chapter, expressions for the proposed comparator network based
LRA-LMMSE detectors with 1-bit quantization are derived. The Greedy
Search algorithm based on the MSE selection criterion is presented. The
additional comparator network provides additional information about the
received signal which can be used to reduce the BER performance with only
a slight increase in hardware cost and required computational complexity.
Numerical results show that adding virtual channels by using a comparator
network can be better than adding extra physical channels which corresponds
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to additional receive antennas in terms of BER. Moreover, simulation results
show that the proposed partially connected networks, especially the MMSE
based Greedy Search approach, require less comparators while introducing
small performance degradation compared with the proposed fully connected
networks. Furthermore, numerical results show that the proposed robust LRA-
LMMSE detector have moderate performance advantage when compared to the
non-robust one.
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6
Sum Rate Analysis

In this chapter, a data transmission stage is considered and a lower bound
on the ergodic sum rate is build up for the LRA-LMMSE receiver by employing
the proposed channel estimator from Chapter 4 and its corresponding estima-
tion error. Then, the numerical results are demonstrating the potential of the
proposed system.

6.1
Data Transmission with LRA-LMMSE Receiver

It is considered that in the data transmission stage the Nt users simulta-
neously transmit their data symbols represented by the vector xR to the BS,
which is a stacked vector with real and imaginary parts. In the present study,
real and imaginary parts represent independent data symbols. After processed
by the comparators, the quantized signal can be expressed as

zQd = Q(zRd) = Q(ByRd) = Q(BHRxR + BnRd)

= ARdBHRxR + ARdBnRd + nRq,d ,
(6-1)

where the same definitions from Chapter 4 apply, but with the subscript p
replaced by d, since we changed from the pilots to the data transmission stage.
Then, the LRA-LMMSE channel estimate (4-12) is used to compute a linear
receiver which provides an estimate of the data symbols transmitted from the
Nt users. In this context, the quantized signal is separated into 2Nt streams
by multiplying the signal with the receiver filter matrix defined in (5-2) as
GR = C−1

zQd
CzQdxR , which in this case is computed based on the estimated

channel. Thereby, we obtain

x̂R = GRzQd = GR(ARdBHRxR + ARdBnRd + nRq,d)

= GRARdB(ĤRxR + ERxR) + GRARdBnRd + GRnRq,d ,
(6-2)

where ĤR is the estimated channel matrix described by (5-8) and ER =
HR − ĤR is the channel estimation error matrix.

In the sum rate analysis it is considered that each user corresponds to
two real-valued channels. Then, the kth element represents an estimate of the
signal of the kth real-valued channel, similarly as in [16], with k ∈ [1, 2Nt],
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which reads as

x̂Rk = gTRkARdBĥRkxRk︸ ︷︷ ︸
desired signal

+ gTRk
K∑
i 6=k

ARdBĥRixRi︸ ︷︷ ︸
interference

+ gTRk
K∑
i=1

ARdBεRixRi︸ ︷︷ ︸
channel estimation error

+ gTRkARdBnRd︸ ︷︷ ︸
AWGN noise

+ gTRknRq,d︸ ︷︷ ︸
quant. noise

,

(6-3)

where gTRk is the kth row of GR and ĥRk is the kth column of ĤR. Moreover,
εRi is the ith column of the matrix ER.

6.2
Lower Bounding the Sum Rate

Since the Gaussian noise case corresponds to the worst case scenario, we
can find a lower bound for the achievable rate by interpreting the quantization
noise as Gaussian, with an equivalent noise covariance matrix [33]. In this
regard, the equivalent noise covariance matrix is given by

CnRq,d
= CzQd −ARdCzRd

AT
Rd , (6-4)

where CzQd = E
[
zQdzTQd

]
is the auto-correlation matrix of the quantized data

signal, like in (4-11), and CzRd
= E

[
zRdzTRd

]
= 1

2BHRHT
RBT + σ2

n

2 BBT is the
auto-correlation matrix of the received data signal, as calculated in (5-6).
Derivation: See Appendix C.1

Using this approach and by considering Gaussian signaling, the ergodic
achievable rate per real-valued channel is lower bounded by

IRk = E

[
1
2 log2

(
1 + |dRk ĥRk |

2∑K

i 6=k|dRk ĥRi |
2+
∑K

i=1|dRkεRi |
2+σ2

n||dRk ||
2
2
+2gTRkCnRq,d

gRk

)]
,

(6-5)
where dRk = gTRkARdB and the expectation operator is taken with respect to
channel realizations and channel estimation realizations.

According to prior literature [33], this method provides an accurate lower
bound especially for the low SNR regime. Finally, the sum rate is lower-
bounded by ∑K

k=1 IRk .
Derivation: See Appendix C.2

6.3
Numerical Results

In this section, an uplink single-cell 1-bit MIMO system with comparator
network, Nt = 2 and Nr = 4 is considered. The pilot sequences are column-wise
orthogonal with length τ = Nt = 2, i.e., ΦTΦ = τINt . The SNR is defined as
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10 log
(

1
σ2
n

)
, which is the average receive SNR per user per antenna. The sum

rate plots are obtained by taking the average over 2000 different channels and
2000 noise realizations per channel.
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Figure 6.1: Sum Rate comparisons of LRA-LMMSE channel estimators in 2×4
MIMO systems.

The comparison between the lower bound of the ergodic sum rate with
and without the comparator network is presented. The sum rate versus SNR
for the systems under perfect and imperfect CSI is shown in Fig. 6.1, which
indicates a significant benefit for the system that utilizes the additional
comparator networks. In this experiment, the partially connected networks
have αp = 2Nr = 8 comparators, while the fully connected have αf =

(
2Nr

2

)
=

28 comparators. We can see that the system with fully connected network
achieves the best sum rate performance, followed by the MMSE based Greedy
Search and the random selected inputs. Note that the increased sum rate is
not only due to the comparator network aided receive processing but also due
to a more accurate channel estimation.

6.4
Summary

This chapter has shown that by considering that the BS employs the
linear receiver derived in Chapter 5 and using the proposed channel estimate
and the corresponding estimation error from Chapter 4, we have derived
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an expression for lower bounding the ergodic sum rate. Simulation results
show that the proposed comparator network based system outperforms the
conventional 1-bit receiver in terms of sum rates.
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7
Conclusion and Future Work

In this thesis it is proposed a novel MIMO receiver architecture with
the use of coarse quantization ADCs. Different from conventional systems, the
proposed MIMO receiver includes a comparator network with binary outputs
which can compare signals from different antennas. The resulting extension
can be interpreted as a number of additional virtual channels. The additional
virtual channels of the proposed low-resolution MIMO receiver contain addi-
tional information which aid the detection and channel estimation processes
with only a slight increase in hardware cost and required computational com-
plexity. In this context, channel estimation, signal detection and sum rate
schemes are developed for the proposed system.

Two types of comparator networks are proposed, fully and partially
connected networks. Simulation results show that the proposed partially
connected networks, especially the MMSE based greedy search approach,
require less comparators while introducing small performance degradation
compared with the proposed fully connected networks.

Based on the proposed channel estimation and decoding algorithms,
simulation results show that the proposed MIMO receiver architectures are
superior to the conventional 1-bit quantization receiver methods in terms
of BER and MSE. Moreover, numerical results show that adding virtual
channels by using comparator network can be better than adding extra physical
channels which corresponds to additional receive antennas in terms of BER.
Furthermore, the robust LRA-LMMSE detector has been developed which
is based on the channel estimation statistics. Simulation results indicate a
moderate advantage in performance in terms of BER and MSE in comparison
to the non-robust detector. Also, by considering that the base station employs a
linear receiver and using the proposed channel estimate and the corresponding
estimation error, it has been derived an expression for lower bounding the
ergodic sum rate. Numerical results show that the corresponding sum rate
increases significantly when adding a comparator network to the system.

Several future research topic are suggested:

– Investigate more sophisticated channel estimation techniques in conjunc-
tion with the comparator network.
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– Investigate the proposed system model in conjunction with spatial or
temporal oversampling.

– Development of efficient search algorithm: design with a lower computa-
tional cost and investigation of implementing neural networks. The main
goal would be trying to approach the fully connected network perfor-
mance.

– Include a coding scheme in order to have a more practical setting. For
example, an iterative detection and decoding scheme for the comparator
network.

– Consideration of imperfect 1-bit quantization with random threshold
mismatch.

– Computation of theoretical limits for the channel estimation such as
Cramér-Rao lower bound.
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A
Linear Channel Estimation Derivations

A.1
Derivation of the Auto-Correlation Matrix of the Received Pilot Signal

The auto-correlation matrix of zRp from (4-9) is calculated below. By
inserting (4-4) into the expectation operator, we get

CzRp = E
[
zRpzTRp

]
= E

[
(BeffyRp)(BeffyRp)T

]
= E

[
(Beff(Φ̃RhR + nRp))((Φ̃RhR + nRp)TBT

eff)
]

= E
[
(Beff(Φ̃RhR + nRp))((hTRΦ̃T

R + nTRp)B
T
eff)
]

= E
[
(BeffΦ̃RhR + BeffnRp)(hTRΦ̃T

RBT
eff + nTRpB

T
eff)
]

= E
[
BeffΦ̃RhRhTRΦ̃T

RBT
eff + BeffΦ̃RhRnTRpB

T
eff

+BeffnRphTRΦ̃T
RBT

eff + BeffnRpnTRpB
T
eff

]
= BeffΦ̃RRhRΦ̃T

RBT
eff + BeffCnRp

BT
eff,

(A-1)

where it is considered that hR is uncorrelated with nRp . Thus, E
[
hRnTRp

]
=

E
[
nRphTR

]
= 0.

A.2
Derivation of the LRA-LMMSE Optimal Filter and Channel Estimator

Recalling the optimization problem from (4-10)

WR, LRA-LMMSE = arg min
W

E
[∣∣∣∣∣∣hR −WzQp

∣∣∣∣∣∣2
2

]
= E

[
tr
(
(hR −WzQp)(hR −WzQp)T

)]
= E

[
tr
(
(hR −WzQp)(hTR − zTQpW

T )
)]

= E
[
tr
(
hRhTR − hRzTQpW

T −WzQphTR + WzQpzTQpW
T
)]

= E
[
tr
(
hRhTR − 2hRzTQpW

T + WzQpzTQpW
T
)]

= tr (RhR)− 2tr
(
E
[
hRzTQpW

T
])

+ tr
(
E
[
WzQpzTQpW

T
])
.

(A-2)

Taking the partial derivative with respect to WT , we obtain
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∂E
[∣∣∣∣∣∣hR −WzQp

∣∣∣∣∣∣2
2

]
∂WT

= −E
[
hRzTQp

]
+ WE

[
zQpzTQp

]
. (A-3)

Equaling (A-3) to zero and inserting (4-6), the LRA-LMMSE filter is

WR, LRA-LMMSE = E
[
hRzTQp

]
E
[
zQpzTQp

]−1

= E
[
hR(Φ̂RhR + ñRp)T

]
E
[
(Φ̂RhR + ñRp)(Φ̂RhR + ñRp)T

]−1

= E
[
hR(hTRΦ̂T

R + ñTRp)
]
E
[
(Φ̂RhR + ñRp)(hTRΦ̂T

R + ñTRp)
]−1

= E
[
hRhTRΦ̂T

R + hRñTRp
]
E
[
Φ̂RhRhTRΦ̂T

R + Φ̂RhRñTRp
+ñRphTRΦ̂T

R + ñRpñTRp
]−1

= E
[
hRhTRΦ̂T

R

]
E
[
Φ̂RhRhTRΦ̂T

R + ñRpñTRp
]−1

= RhRΦ̂T
R(Φ̂RRhRΦ̂T

R + CñRp
)−1

= RhRΦ̂T
RC−1

zQp ,

(A-4)

where it is considered that hR is uncorrelated with ñRp . Thus, E
[
hRñTRp

]
=

E
[
ñRphTR

]
= 0.

Then, the resulting LRA-LMMSE channel estimator from (4-12) is given
by

ĥR, LRA-LMMSE = WR, LRA-LMMSEzQp = RhRΦ̂T
RC−1

zQpzQp . (A-5)

A.3
Derivation of the MSE of the Channel Estimate

Recalling the Mean-Squared Error problem from (4-13), we have

MR, LRA-MMSE = E
[∣∣∣∣∣∣ĥR, LRA-MMSE − hR

∣∣∣∣∣∣2
2

]
= E

[
tr
((

ĥR, LRA-MMSE − hR
) (

ĥR, LRA-MMSE − hR
)T)]

= E
[
tr
((

ĥR, LRA-MMSE − hR
) (

ĥTR, LRA-MMSE − hTR
))]

= E
[
tr
(
ĥR, LRA-MMSEĥTR, LRA-MMSE − ĥR, LRA-MMSEhTR

−hRĥTR, LRA-MMSE + hRhTR
)]

= E
[
tr
(
ĥR, LRA-MMSEĥTR, LRA-MMSE − 2ĥR, LRA-MMSEhTR + hRhTR

)]
.

(A-6)

Inserting (4-12) and (4-6) into (A-6), we get
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MR, LRA-MMSE = E
[
tr
((

RhRΦ̂T
RC−1

zQpzQp
) (

RhRΦ̂T
RC−1

zQpzQp
)T

−2RhRΦ̂T
RC−1

zQpzQph
T
R + hRhTR

)]
= E

[
tr
(
RhRΦ̂T

RC−1
zQpzQpz

T
QpC

−1
zQp Φ̂RRhR

−2RhRΦ̂T
RC−1

zQp (Φ̂RhR + ñRp)hTR + hRhTR
)]

= E
[
tr
(
RhRΦ̂T

RC−1
zQpzQpz

T
QpC

−1
zQp Φ̂RRhR − 2RhRΦ̂T

RC−1
zQp Φ̂RhRhTR

−2RhRΦ̂T
RC−1

zQp ñRphTR + hRhTR
)]

= tr
(
RhRΦ̂T

RC−1
zQpCzQpC

−1
zQp Φ̂RRhR − 2RhRΦ̂T

RC−1
zQp Φ̂RRhR + RhR

)
= tr

(
RhRΦ̂T

RC−1
zQp Φ̂RRhR − 2RhRΦ̂T

RC−1
zQp Φ̂RRhR + RhR

)
= tr

(
RhR −RhRΦ̂T

RC−1
zQp Φ̂RRhR

)
,

(A-7)

where it is considered that hR is uncorrelated with ñRp . Thus, E
[
ñRphTR

]
= 0.
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B
Linear Detection Derivations

B.1
Derivation of the Cross-Correlation Matrix between Received and Trans-
mitted Data Signals

The cross-correlation matrix between zR and xR from (5-5) is calculated
as follows

CzRxR = E
[
zRxTR

]
= E

[
(ByR)xTR

]
= E

[
(B(HRxR + nR))xTR

]
= E

[
((BHRxR + BnR))xTR

]
= E

[
BHRxRxTR + BnRxTR

]
= BHRCxR ,

(B-1)

where it is considered that xR is uncorrelated with nR. Thus, E
[
nRxTR

]
= 0.

B.2
Derivation of the Auto-Correlation of the Received Data Signal

The auto-correlation of zR from (5-6) is calculated as follows

CzR = E
[
zRzTR

]
= E

[
(ByR)(ByR)T

]
= E

[
ByRyTRBT

]
= E

[
B(HRxR + nR)(HRxR + nR)TBT

]
= E

[
B(HRxR + nR)(xTRHT

R + nTR)BT
]

= E
[
(BHRxR + BnR)(xTRHT

RBT + nTRBT )
]

= E
[
BHRxRxTRHT

RBT + BHRxRnTRBT + BnRxTRHT
RBT + BnRnTRBT

]
= BHRCxRHT

RBT + BCnRBT ,

(B-2)

where it is considered that xR is uncorrelated with nR. Thus, E
[
xRnTR

]
=

E
[
nRxTR

]
= 0.
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B.3
Derivation of the MSE between the Transmitted Symbol and the Filter
Output for the Robust Detector

The MSE between the transmitted symbol xR and the filter output x̂R

for the robust detector from (5-11) is calculated as follows

E
[∣∣∣∣∣∣xR −GT

RzQr
∣∣∣∣∣∣2

2

]
= E

[
tr
(
(xR −GT

RzQr)(xR −GT
RzQr)T

)]
= E

[
tr
((

xR −GT
RzQr

) (
xTR − zTQrGR

))]
= E

[
tr
(
xRxTR − xRzTQrGR −GT

RzQrxTR + GT
RzQrzTQrGR

)]
= E

[
tr
(
xRxTR − 2GT

RzQrxTR + GT
RzQrzTQrGR

)]
= tr

(
CxR − 2GT

RCzQrxR + GT
RCzQrGR

)
= tr

(1
2I2Nt − 2GT

RCzQrxR + GT
RCzQrGR

)
,

(B-3)

where due to the real-valued notation of the system CxR = E
[
xRxTR

]
= 1

2I2Nt .

B.4
Derivation of the Robust Cross-Correlation Matrix between Received and
Transmitted Data Signals

The cross-correlation matrix between zRr and xR from (5-14) is calculated
as follows

CzRrxR = E
[
zRrxTR

]
= E

[
(BĤRxR + BX̃RεR + BnRd)xTR

]
= E

[
BĤRxRxTR

]
= BĤRCxR ,

(B-4)

where it is considered that xR is uncorrelated with nRd and εR.

B.5
Derivation of the Robust Auto-Correlation Received Data Signal

The auto-correlation of zRr from (5-16) s calculated as follows

CzRr = E
[
zRrzTRr

]
= E

[
(BĤRxR + BX̃RεR + BnRd)(BĤRxR + BX̃RεR + BnRd)T

]
= E

[
(BĤRxR + BX̃RεR + BnRd)(xTRĤT

RBT + εTRX̃T
RBT + nTRdB

T )
]

= E
[
BĤRxRxTRĤT

RBT + BX̃RεRεTRX̃T
RBT + BnRdn

T
RdB

T
]

= BĤRCxRĤT
RBT + BE

[
X̃RE

[
εRεTR

]
X̃T

R

]
BT + BCnRd

BT

= 1
2BĤRĤT

RBT + BΓRBT + σ2
n

2 BBT ,

(B-5)
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where due to the real-valued notation of the system CxR = E
[
xRxTR

]
= 1

2I2Nt

and CnR = E
[
nRnTR

]
= σ2

n

2 I2Nr . Moreover, by considering that X̃R and εR are
independent from each other, we have ΓR = E

[
X̃RE

[
εRεTR

]
X̃T

R

]
.
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C
Sum Rate Derivations

C.1
Derivation of the Quantization Noise Covariance Matrix

The quantization noise covariance matrix from (6-4) is calculated as
follows

CnRq,d
= E

[
(zQd −ARdzRd)(zQd −ARdzRd)T

]
= E

[
(zQd −ARdzRd)(zTQd − zTRdARd)

]
= E

[
zQdz

T
Qd − zQdz

T
RdARd −ARdzRdz

T
Qd + ARdzRdz

T
RdARd

]
= CzQd −CzQdzRd

ARd −ARdCzRdzQd + ARdCzRd
ARd

= CzQd − 2ARdCzRdzQd + ARdCzRd
ARd

= CzQd − 2ARdCzRd
ARd + ARdCzRd

ARd

= CzQd −ARdCzRd
ARd .

(C-1)

Note that since ARd is a diagonal matrix, ARd = AT
Rd . Moreover, it holds

CzRd
= CT

zRd
because it is a real-valued covariance matrix.

C.2
Derivation of the Ergodic Achievable Rate for Real-Valued User Channel

First, let us recall the received signal of the index k, with k ∈ [1, 2Nt],
given by (6-3)

x̂Rk = gTRkARdBĥRkxRk︸ ︷︷ ︸
desired signal

+ gTRk
K∑
i 6=k

ARdBĥRixRi︸ ︷︷ ︸
interference

+ gTRk
K∑
i=1

ARdBεRixRi︸ ︷︷ ︸
channel estimation error

+ gTRkARdBnRd︸ ︷︷ ︸
AWGN noise

+ gTRknRq,d︸ ︷︷ ︸
quant. noise

,

(C-2)

where gTRk is the kth row of GR and ĥRk is the kth column of ĤR. Moreover,
εRi is the ith column of the matrix ER.

Assuming Gaussian signaling, the ergodic achievable rate per channel k,
for the real-valued notation, is lower bounded by
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IRk = E
[1
2 log2 (1 + SINRk)

]
. (C-3)

Then, the sum-rate is described as

IR =
K∑
k=1

IRk =
K∑
k=1

E
[1
2 log2 (1 + SINRk)

]
, (C-4)

where

SINRk = E [|T1|2]∑K
i 6=k E [|T2,i|2] +∑K

i=1 E [|T3,i|2] + E [|T4|2] + E [|T5|2]
. (C-5)

In the expression above, the term

T1 = gTRkARdBĥRkxRk (C-6)

represents the desired signal, while the parameter

T2,i = gTRkARdBĥRixRi , for i 6= k, i = 1, . . . ,K, (C-7)

is the interference caused by user i in user k. The quantity

T3,i = gTRkARdBεRixRi , for i = k, i = 1, . . . ,K, (C-8)

refers to the channel estimation error, whilst

T4 = gTRkARdBnRd (C-9)

corresponds to the AWGN noise and

T5 = gTRknRq,d (C-10)

relates to the quantizer noise.
The mean-square values of the terms T1, T2,i, T3,i, T4 and T5 are computed

as follows:

E
[
|T1|2

]
= E

[
(gTRkARdBĥRkxRk)(gTRkARdBĥRkxRk)T

]
= E

[
gTRkARdBĥRkxRkx

T
Rk ĥ

T
RkB

TAT
RdgRk

]
= gTRkARdBĥRkCxRĥTRkB

TAT
RdgRk

= 1
2gTRkARdBĥRkĥ

T
RkB

TAT
RdgRk

= 1
2
∣∣∣gTRkARdBĥRk

∣∣∣2
= 1

2
∣∣∣dRkĥRk

∣∣∣2 ,

(C-11)
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E
[
|T2,i|2

]
= E

[
(gTRkARdBĥRixRi)(gTRkARdBĥRixRi)T

]
= E

[
gTRkARdBĥRixRixTRiĥ

T
RiB

TAT
RdgRk

]
= gTRkARdBĥRiCxRĥTRiB

TAT
RdgRk

= 1
2gTRkARdBĥRiĥTRiB

TAT
RdgRk

= 1
2
∣∣∣gTRkARdBĥRi

∣∣∣2
= 1

2
∣∣∣dRkĥRi

∣∣∣2 ,

(C-12)

E
[
|T3,i|2

]
= E

[
(gTRkARdBεRixRi)(gTRkARdBεRixRi)T

]
= E

[
gTRkARdBεRixRixTRiε

T
RiB

TAT
RdgRk

]
= gTRkARdBεRiCxRεTRiB

TAT
RdgRk

= 1
2gTRkARdBεRiε

T
RiB

TAT
RdgRk

= 1
2
∣∣∣gTRkARdBεRi

∣∣∣2
= 1

2 |dRkεRi |
2 ,

(C-13)

E
[
|T4|2

]
= E

[
(gTRkARdBnRd)(gTRkARdBnRd)T

]
= E

[
gTRkARdBnRdn

T
RdB

TAT
RdgRk

]
= gTRkARdBCnRd

BTAT
RdgRk

= σ2
n

2 gTRkARdBBTAT
RdgRk

= σ2
n

2
∣∣∣∣∣∣gTRkARdB

∣∣∣∣∣∣2
2

= σ2
n

2 ||dRk ||
2
2 ,

(C-14)

E
[
|T5|2

]
= E

[
(gTRknRq,d)(gTRknRq,d)T

]
= E

[
gTRknRq,dn

T
Rq,dgRk

]
= gTRkCnRq,d

gRk ,

(C-15)

where due to the real-valued notation of the system CxR = E
[
xRxTR

]
= 1

2I2Nt

and CnRd
= E

[
nRdnTRd

]
= σ2

n

2 I2Nr . Moreover, dRk = gTRkARdB.
By replacing (C-11), (C-12), (C-13), (C-14) and (C-15) into (C-5), the

SINRk is expressed by
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SINRk =
1
2

∣∣∣dRk ĥRk

∣∣∣2
1
2
∑K
i 6=k

∣∣∣dRkĥRi

∣∣∣2 + 1
2
∑K
i=1 |dRkεRi |

2 + σ2
n

2 ||dRk ||
2
2 + gTRkCnRq,d

gRk

=

∣∣∣dRkĥRk

∣∣∣2∑K
i 6=k

∣∣∣dRkĥRi

∣∣∣2 +∑K
i=1 |dRkεRi |

2 + σ2
n ||dRk ||

2
2 + 2gTRkCnRq,d

gRk

.

(C-16)

Finally, by replacing (C-16) into (C-3), the ergodic achievable rate per
real-valued channel as in (6-5) reads as

IRk = E

[
1
2 log2

(
1 + |dRk ĥRk |

2∑K

i 6=k|dRk ĥRi |
2+
∑K

i=1|dRkεRi |
2+σ2

n||dRk ||
2
2
+2gTRkCnRq,d

gRk

)]
.

(C-17)
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