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Abstract

Fernandes, Ana Beatriz Loureiro Brito; Landau, Lukas Tobias
Nepomuk (Advisor). On MIMO Communications Systems
with 1-bit Quantization and Comparator Networks at the
Receiver. Rio de Janeiro, 2021. 67p. Dissertacao de mestrado
— Departamento de Engenharia Elétrica, Pontificia Universidade
Catolica do Rio de Janeiro.

Multiple-input multiple-output (MIMO) systems employs an increasing
number of antennas, which leads to relevant energy consumption and hard-
ware cost of the corresponding front ends. In this context, the use of low-
resolution analog to digital converters (ADCs) is promoted as a promising
solution to this problem. In this study we consider a low-resolution MIMO
receiver which implies that the received signals simultaneously are processed
by the 1-bit ADCs and the comparator network. The input signals for the
comparator network can come from different antennas, such that the com-
parator network extension can be interpreted as virtual channels with bi-
nary outputs. Based on such low-resolution MIMO receivers, we develop
low-resolution aware linear minimum mean-squared error (LRA-LMMSE)
channel estimator and detector according to the Bussgang theorem. Two
comparator networks are proposed, namely, fully and partially connected
networks. We also devise a greedy search-based partially connected network
that can use much less comparators to approach the performance of the
fully connected network. Numerical results shows that adding virtual chan-
nels can be better than adding extra physical channels which corresponds
to additional receive antennas in terms of bit error rate (BER). Further-
more, by employing the proposed channel estimator and its corresponding
estimation error, we build up a lower bound on the ergodic sum rate for
the LRA-LMMSE receiver. Simulation results show that the systems with
the proposed network-aided MIMO systems with 1-bit quantization at the
receiver outperforms the conventional 1-bit MIMO system in terms of BER
and mean-square error (MSE) performances. Moreover, numerical simula-

tions confirm a significant advantage in terms of sum rate for the proposed

system.
Keywords

MIMO Systems; Low-Resolution Quantization; MMSE; Bussgang
theorem;  Comparator Network;  Greedy Search;  Channel Estimation;

Achievable Rate.
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Resumo

Fernandes, Ana Beatriz Loureiro Brito; Landau, Lukas Tobias

Nepomuk (Orientador). Sistemas de Comunicagdo MIMO

com Quantizacao de 1-bit e Redes Comparadoras no

Receptor. Rio de Janeiro, 2021. 67p. Dissertacao de Mestrado

— Departamento de Engenharia Elétrica, Pontificia Universidade

Catolica do Rio de Janeiro.
Os sistemas de multiplas entradas e multiplas saidas (MIMO) empregam
um nuamero crescente de antenas, o que leva a relevantes consumo de en-
ergia e custo de hardware dos front-ends correspondentes. Nesse contexto,
o uso de conversores analégico-digitais (ADCs) de baixa resolugao é pro-
movido como uma solugao promissora para este problema. Neste estudo
consideramos um receptor MIMO de baixa resolugdo que implica que os
sinais recebidos sao processados simultaneamente pelos 1-bit ADCs e pela
rede comparadora. Os sinais de entrada da rede comparadora podem vir
de antenas diferentes, de modo que a extensao da rede comparadora pode
ser interpretada como canais virtuais com saidas bindrias. Com base nesses
receptores MIMO de baixa resolucao, desenvolvemos um estimador de canal
e detector lineares de baixa resolugao baseados no critério de minimo erro
médio quadratico (LRA-LMMSE) de acordo com o teorema de Bussgang.
Duas redes de comparagao sao propostas, nomeadas, redes total e parcial-
mente conectadas. Também desenvolvemos uma rede parcialmente conec-
tada baseada em busca gananciosa que usa muito menos comparadores para
obter um desempenho bem proximo ao da rede totalmente conectada. Os
resultados numéricos mostram que adicionar canais virtuais pode ser mel-
hor do que adicionar canais fisicos extras que correspondem a antenas de
recepgao adicionais em termos de taxa de erro de bit (BER). Além disso,
ao empregar o estimador de canal proposto e seu erro de estimativa corre-
spondente, construimos um limite inferior na taxa de soma ergddica para o
receptor LRA-MMSE. Os resultados de simulagdo mostram que os sistemas
com a proposta sistemas MIMO auxiliados por rede com quantizagao de
1-bit no receptor superam o convencional sistema MIMO de 1-bit em ter-
mos de desempenho de BER e erro quadratico médio (MSE). Além disso,
as simulagdes numéricas confirmam uma vantagem significativa em termos
de taxa de soma para o sistema proposto.
Palavras-chave

Sistemas MIMO;  Quantizacao de Baixa Resolugao; MMSE; Teo-
rema Bussgang; Rede de Comparadores; Busca Gananciosa; Estimacao

de Canal; Taxa Alcancavel.
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1
Introduction

In this chapter the research background and the motivations of this thesis
are presented. Then, the main contributions and the structure of this study
are provided. Also, the notations used throughout the thesis are introduced.
The last section shows a list of the publications generated during the period

of working on this thesis.

1.1
Motivation and Prior Works

The future of wireless communications, with networks that scale up
in speed and bandwidth, has as a promising technical candidate known as
large-scale (or massive) MIMO systems. Massive MIMO systems have many
advantages when compared to current systems and have attracted much
attention due to its large improvement in spectral efficiency and mitigation
of the propagation loss caused by channel fading, among others [1]. However,
there are still some practical challenges when it comes to the deployment of
a large number of antennas at the base station (BS), such as hardware cost
and power consumption. For instance, the power consumption of ADCs scales
exponentially in the number of quantization bits [2]. Therefore, the use of
current high-speed and high-resolution ADCs (8-12 bits) for each antenna array
would become a great burden to the BS. Consequently, the use of low-cost and
low-resolution ADCs (1-3 bits) are promoted as a solution to this problem
3, 4, 5.

Many works have studied large-scale MIMO systems with low resolution
ADCs at the front-end. Specifically, 1-bit ADCs are of interest in such systems
due to their demand of very low power. A common used technique to mitigate
the performance loss caused by the coarse quantization is oversampling, where
the received signal is sampled at a faster than Nyquist rate [6]. In this regard,
the studies in [7, 8, 9, 10] have considered temporal oversampling at the receiver
in order to achieve better estimation and detection performances. However, for
temporal oversampling, the computational complexity is relatively high for the
receive processing.

The channel estimation is a problem that currently limits the perfor-
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mance of coarsely quantized systems. Several papers have investigated channel
estimation for quantized massive MIMO systems such as least squares (LS)
[11], recursive least squares (RLS) [12], approximate message passing (AMP)
[13] and generalized approximate message passing (GAMP) [14]. Another so-
phisticated channel estimator is given by the near maximum likelihood (nML)
estimator devised in [15]. The authors in [16] developed a Bussgang linear
minimum mean squared error (BLMMSE) channel estimator, where it has
also been derived lower bounds on the theoretical achievable rate for maxi-
mum ratio combiner (MRC) and zero-forcing (ZF) receivers. Moreover, maxi-
mum a-posteriori probability (MAP) channel estimators and their performance
analysis have been studied in [17, 18].

The work in [19] develops a channel estimator by taking spatial and
temporal correlations into consideration. Furthermore, the low complexity
channel estimator and its corresponding achievable rate from [20] relies on
a model with infinite number of channel taps, and independent and identically
distributed quantization noise.

For signal detection with low-resolution ADCs, different strategies exist
in literature, for example: iterative detection and decoding (IDD) [21], sphere
decoding [22] and nML [15]. Moreover, coarse quantization in large-scale
MIMO systems has been considered in a number of different aspects and
approaches. The design of a proper automatic gain control (AGC) can be
relevant for low resolution ADCs (more than 1-bit) in order to minimize the
signal distortion due to the coarse quantization [23]. Recently, the authors
in [24, 25] have used spatial oversampling by employing a 1-bit Sigma-Delta
(3XA) sampling scheme which have shown large performance gains on channel
estimation and signal detection. Furthermore, the studies in [26, 27, 28, 29|
have devised different precoding techniques which rely on 1-bit quantization

at the transmitter.

1.2
Contributions

The scope of this thesis lies in the design and understanding of a novel
MIMO receiver architecture that uses coarse quantization ADCs. The proposed
MIMO receiver includes a comparator network with binary outputs which
can compare signals from different antennas in terms of real and imaginary
parts. The addition of the comparator network can be interpreted as a number
of additional virtual channels which can contain additional information that
aids the detection and channel estimation processes. In this context, channel

estimation and signal detection algorithms are developed for the proposed
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system.

Two types of comparator networks are proposed, namely, fully and par-
tially connected networks. In this context, for the design of the partially con-
nected network a Greedy Search-based algorithm is devised. With the op-
timized partially connected network, much less comparators are required to
approach a comparable performance of the fully connected network. Finally,
numerical results confirm that the BER and MSE for detection and channel
estimation can be significantly reduced when adding a comparator network.
Based on the proposed detector, a sum rate analysis is presented. Simulation
results confirm that the proposed system yields significantly sum rate perfor-
mance in comparison to the conventional 1-bit MIMO receiver.

The contributions can be summarized as follows:

— Introduction of a novel MIMO receiver architecture with coarse quanti-

zation using partially or fully connected comparator networks.

— Development of LRA-LMMSE channel estimation for the novel system,
published in [30].

— Development of LRA-LMMSE detector for the novel system, published

in [31] and a robust version of it that takes into account the channel

estimation error statistics.

— Sum rate analysis in terms of construction of a lower bound, published
in [30].

1.3
Thesis Outline

This thesis is organized as follows:

— Chapter 2 gives some technical background on this thesis;

— Chapter 3 shows the overall proposed system model and describes the

insight and design of the comparator network;

— Chapter 4 derives the pilot-based LRA-LMMSE channel estimator for
the proposed system:;

— Chapter 5 derives the LRA-LMMSE detector and a robust version
of it. For designing the partially connected network, a greedy search
algorithm is also devised. Moreover, computational and hardware costs
are provided;

— Chapter 6 presents the construction of the lower bound on the sum rate;

— Chapter 7 displays the conclusions and discusses possible extensions for

the presented study;
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1.4
Notation

Regarding the notation, bold upper and lower case letters such as A and
a denote matrices and vectors, respectively. 1,, is a n x n identity matrix. The
vector or matrix transpose and conjugate transpose are represented by ()7 and
(). R®R{-} and J{-} get the real and imaginary part from the corresponding
vector or matrix, respectively. Additionally, diag(A) is a diagonal matrix only
containing the diagonal elements of A. The inverse of sine function is denoted
by sin~! (). Moreover, vec(A) is the vectorized form of A obtained by stacking
its columns, while the inverse of this operation is unvec(a), depending on
the context. The expectation operator is denoted as E[-]. Finally, ® is the

Kronecker product.

1.5
List of Publications

The work presented in this thesis gave rise to the following papers:

1. Comparator  Network  Aided Detection for MIMO  Receivers
with  1-bit  Quantization in 2020 54th  Asilomar Conference

on Signals, Systems and Computers, 2020, pp. 384-387, doi:
10.1109/TEEECONF51394.2020.9443453.

2. Comparator Network Aided Channel Estimation and Achievable Rates
for MIMO Receivers with 1-bit Quantization in IEEE Statistical Signal
Processing (SSP) Workshop 2021, Rio de Janeiro, Brazil, 2021.
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2
Literature Review and Relevant Baselines

In this chapter, we review some concepts related to this thesis, which
are important for understanding some of the techniques used in the remaining
chapters. For advanced readers, this chapter can be skipped. The following
sections briefly introduce some topics related to the MIMO systems includ-
ing pilot-based channel estimation, MIMO detection and sum rate analysis
methods.

2.1
MU-MIMO Uplink System

The multiuser multiple-input multiple-output (MU-MIMO) system al-
lows the transmission and reception of more than one data signal simultane-
ously, achieving very high data rates over wireless links. This technique has
become a key component of different wireless communication standards such
as WIFI, third generation (3G) and fourth generation (4G). The general sys-
tem model is illustrated in Fig. 2.1. An uplink single-cell MIMO system with
N, single-antenna users and N, receive antennas is considered, with N, > N,

written as N,
y =Y hyz, + n=Hx+n, (2-1)
k=1
where the vector x contains complex transmit symbols of the N; users which
have unit power normalization, H € CM*M is the channel matrix and
2

ne

The received signal is then forwarded to the 1-bit ADCs. Letting Q(-)
represent the 1-bit quantization, the input of the detector is described by

yo=Qy) = QR{y}) +72(Hy}), (2-2)

n € CN*1 is the noise vector where each element has a variance o

where R{-} and J{-} denote the real and imaginary parts, respectively. Then,
the real and imaginary parts are element-wisely quantized as {:I:%} based on

the sign.
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1-bit ADCs
I
f i | I
Terminal 1 |>—¢— >
1 Y1 :_I:' I YQ, &1
| I
! I
! I
[ | Detector
I
| I
! I
I
Terminal Ny j Y I_E,lli/ : L
TN, N 1 YQwn, N
: -

Figure 2.1: System model of MU-MIMO with 1-bit ADCs.

2.2
Pilot-Based Channel Estimation Methods

In a practical system, the channel state information (CSI) is estimated
at the BS and this knowledge is used to detect the data symbols transmitted
by the users. Each transmission block is divided into two sub-blocks: one
dedicated to the pilot symbols and the other to the data symbols. The part
containing the pilots can be either located at the beginning of each block or
spread according to a desired pattern [32]. During the training phase, each
terminal simultaneously transmits sequences of 7 pilot symbols to the BS,
which yields

Y,=H®" + N, (2-3)
where Y, € CV*7 is the matrix containing the unquantized received signal,
® c C™M is the matrix of pilot symbols and N, is the noise matrix.

Vectorizing the received signal yields
vec(Y,) =y, = ®h +n,, (2-4)

where ® = (® ® Iy,), h = vec(H) and n, = vec(N,). Then, the quantized
signal can be expressed as yg, = Q(yp)-

2.2.1
Standard LS Channel Estimator

The authors in [11] have proposed the standard LS estimator for 1-bit

non-oversampled systems, which can be computed according to

hig = arg ml_lin E mygp - &)EHE}
(25)
— (®7®) 'y,

p*
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The main advantage of this channel estimator is that no prior information is

needed at the receiver.

2.2.2
Linear LRA Channel Estimators

According to the works in [9, 16], the quantized received signal can be

rewritten as N
yo, = ®h +n,, (2-6)

where the right hand side corresponds to a linear model that relies on the
Bussgang decomposition approach. In this context, the linear model involves
the matrix & = A,® and the effective noise vector i, = A,n,+n,,, with A,
being a well chosen square matrix and n,, being the quantization noise. The
Bussgang-based linear operator A, is chosen to make the quantization noise

uncorrelated with y, [33], and is given by

2
H -1 _
Ap=Cyy0,Cy, = ;KP’ (2-7)

where K, = diag(CyP)’% and the cross-correlation matrix between the received

signal y, and its quantized signal yg, is given by

2
Cypygp = \/;Kpcyp = A,Cy,, (2-8)

where the auto-correlation matrix of y, yields

Cy,, = ®R,®" + C,,, (2-9)

with R, = F [hhH} and C,, = I {npnﬂ.
Then, based on the statistically equivalent linear model in (2-6), two basic

approaches for the channel estimation are presented in the next subsections.

2.2.2.1
LRA-LS Channel Estimator

The LRA-LS channel estimator based on the Bussgang decomposition is
obtained by solving the following optimization problem
A A =112
hiraLs = argmin £ wygp - (I)h‘u
h (2-10)
= (®7®) 'y, .
Compared to the standard LS channel estimator, this estimator implicitly

takes Ry, into account as Ry, is used for computing the linear operator A,,.
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2.2.2.2
LRA-LMMSE Channel Estimator

The LRA-LMMSE optimal filter can be obtained through the optimiza-

tion problem formulated as

2
WiraA-LMMSE = argmin  E [ h — Wyg, }

= R, ®7C!

Yop’

where the auto-correlation of the quantized signal is calculated as [34]
2. _ - ~
Cyo, = - (sin™" (K,R{Cy,}K, ) + jsin " (K,3{Cy,}K,)),  (2-12)

which is known as the arcsine law. Then, the resulting LRA-LMMSE channel

estimator corresponds to the linear operation
hira-LMMSE = Rh‘I’HC;;p}’Qp- (2-13)

The LMMSE channel estimator has superior performance in terms of
MSE when compared to the LS channel estimator. However, it suffers from a

higher computational complexity.

2.2.3
nML Channel Estimator

The near Maximum Likelihood method in [15] makes use of a modified
general system model. The complex received signal y, before going into the
quantizer, is changed by the transformation from a complex into a real-valued
system. Moreover, the roles of the channel and the pilot signal are reversed.
Thus and by using the scaling factor p, equation (2-3) for the nth receive

antenna can be rewritten as

Re(ypn)| _ Re(®) —Im(®)| |Re(h,) Re(n,,,)
Im(yﬂ%”] oV Im(®) Re(®) | |Im(h,) Im(np,n)]' (2-14)

Then, the output of the quantizer is denoted by yo,, = Q(¥r,.)-
For the approach in [15], the real and imaginary parts of the unquantized
received signal yg, , are element-wisely quantized to {£1}. With this, the first

T received signals during the training phase can be rewritten as

pr,n = \/ﬁéﬁhRn + an,n' (2_15)

Note that for simplification we skipped the fading block index used in [15].

In this context, the ML channel estimator is given by
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27
fan‘ML = arg ﬁRgllg;Vin ; log <\Il (@i’ﬁiﬁR)) , (2-16)
where U(t) = [*_ ﬁe‘édT and ®g, denotes the multiplication of the
correspondent ¢th row of the pilot matrix ®g, and the quantized received
signal yg, ., at the nth receive antenna. Because V() is a log-concave
function, equation (2-16) can be solved by using standard convex optimization
methods. By using prior knowledge about the norm of the channel, for example
E[||hg,||?] = N;, which is a common assumption for channel estimation, the
channel estimator in (2-16) can be improved by taking into account the norm

constraint on flR. Then, the corresponding optimization problem reads as

27
v B .
hg, ,,, = arg };Rg@?@xl ; log <\If (\/2:0(I)R¢hR)) . (2-17)
[hg|? <N

2.3
MIMO Detection Methods

For the detection process, there are several known state-of-art ap-

proaches. Some of these methods are going to be presented further.

2.3.1
Linear Detectors

The linear detectors can be considered as filtering, because the detection
process can reduce the interference. The consideration of linear detection
does not yields an optimal detection performance but corresponds to a low
computational complexity.

With a linear MIMO receiver, one can compute an estimate on the

transmit symbol by
x = Gy, (2-18)

where G is the filtering (or linear receive filter) matrix with size N; x
N,. The filter matrix G can be designed according to different criteria.
Next we are going to see some of this criteria. The filtering process is
followed by a mapping process which maps the symbol to a symbol in the
input alphabet. Typically, the symbols are mapped according to the smallest

Euclidean distance. According to prior literature, the most popular linear
detectors are matched filter (MF), ZF and MMSE [35].


DBD
PUC-Rio - Certificação Digital Nº 1920848/CA


PUC-RIo- CertificagaoDigital N° 1920848/CA

Chapter 2. Literature Review and Relevant Baselines 22

2.3.1.1
Standard MF Receive Filter

Let us begin with the MF-type detector for unquantized receive signals
(full resolution in amplitude and phase), which has the lowest computational
complexity among all MIMO detectors. The MF method has the objective of
maximizing the signal-to-noise ratio (SNR) at the receiver and its linear receive

filter matrix is given by
Gyr = aHY, (2-19)

where a is a scalar which can be chosen arbitrarily.

2.3.1.2
Standard ZF Receive Filter

The ZF approach for unquantized receive signals implies that the equal-
izer is unbiased. The ZF optimal filter can be obtained by solving the following

optimization problem
Gyzr = arg min E [Hx - GyH;} st. GH=1 (2-20)
Then, the ZF-type receive filter can be written as

Gzr = (HPH)'H". (2-21)

2.3.1.3
Standard MMSE Receive Filter

In general, the MMSE criterion relies on minimizing the MSE between
the actual transmitted data and the equalizer’s output with the linear receive

filter matrix. In a nutshell, the MMSE filter for unquantized receive signals

corresponds to the following optimization problem and solution

Gunse = argmin B {HX - Gy”ﬂ
(2-22)

N,o? -
- ( SRy, +HHH> H",

tx

where a point by point system is considered with F[xx| = %IM and E,,

being the transmit energy or power.

2.3.2
Linear LRA Detectors

Different to the prior mentioned detectors, the methods in this subsection
imply quantized data where low resolution ADCs are considered. The use of

coarse quantization is beneficial in terms of cost and power consumption but
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implicates in performance degradation in comparison to MIMO detection with
full resolution. The idea of LRA detectors is to take into account the 1-bit
quantization in the receive processing. In order to compute the LRA receive
filters, it is necessary to rewrite the quantized signal with a linear model. As
we can see in [8], based on the Bussgang decomposition the quantized received
signal yo can be rewritten as

yo = Ay +n,, (2-23)

where the matrix A is the linear operator which is chosen to make n,
uncorrelated with y [36, 37]. Then, the vector n, is termed the statistically

equivalent quantization noise. The linear operator is given by the equation

2
A=C] C;'= \/;K (2-24)

with K = diag(Cy)_%. The cross-correlation matrix between the received

signal y and its quantized signal yo is denoted by

2
Cyyo = \/;KCy, (2-25)

where the auto-correlation of y is given by
C, = HC,H"” + C,, (2-26)
with Cx = FE {XXH] =1Iy, and C, =E [nnH} = 021y,.

2.3.2.1
LRA-ZF Receive Filter

The LRA-ZF filter minimizes the MSE as
GLrAzr = arg min E {||G(An + nq)H;} st. GAH =L (2-27)
By equating the gradient of the Lagrangian multiplier to zero, we obtain

Grrazr = (HYAPC'AH)'HY A CH, (2-28)
where C,, = ACLA" + C,,, and C,, = C

matrices of the noise and the quantization noise, respectively.

vo — ACyA" are the covariance

2.3.2.2
LRA-MMSE Receive Filter

The LRA-MMSE optimization problem and solution for finding the

optimal linear receiver is formulated as
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Grra-mmse = argmin £ [||X - GYQH;}

X (2-29)
= Gy Cyoxs
where the involved covariance matrix Cy, is calculated as [34]
2
Cy, = = (sin™! (KR{Cy}K) + jsin~' (KI{Cy}K)), (2-30)
T

and the cross-correlation matrix Cyx is based on the Bussgang theorem [36]

2 2
Cyox = \/;Kny = \/;KHCX. (2-31)

2.3.3
nML Detector

The nML detector is an approach for coarse quantization in terms of
1-bit quantization. The complexity of the conventional ML detector grows
exponentially with the number of users due to the exhaustive search over
all possible transmitted vectors. Therefore, the strategies presented at this
subsection try to overcome this issue by proposing a nML detector which can
provide improvement of the performance-complexity trade-off in comparison
with the conventional ML detector. The main goal is to convert the ML
estimation problem into a convex problem. Thus, the reformulation in [15]
can be done by relaxing constraints on the transmitted vector.

First of all, the complex received signal y, before going into the quantizer,
is changed by the transformation from a complex into a real-valued system.

Thus, equation (2-1) for the nth receive antenna can be rewritten as

Re(yn)| _ Re(H,) —Im(H,)| [Re(x)] [Re(n,) _
Im(y,) _\/]_D Im(H,,) Re(H,) Im(x) Im(l’ln)]’ (2-32)

where P is the power of the transmit data and the SNR is given by the equation
p = 0%. Then, the output of the quantizer is denoted by yo, = Q(yr,,). For
the approach in [15], the real and imaginary parts of the unquantized received

signal yg, are element-wisely quantized to {£1}. In this context, we have
YR, = \/EHRTLXR + ng,. (2-33)

With this, the reformulated ML detector problem can be defined as

2 N,

}A(R, ML = arg Iﬂa}}(\] H H v (\/%Egnﬂ),(R) > (2—34)

*RESR' i=1n=1
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where U(t) = [* 1 vorll T dr and 8x' is the Ny-ary Cartesian product set of
Sr which is the M-ary data symbol constellation, ordered with the real parts
of the constellations first and the imaginary parts later. Moreover, the term
BRM denote the multiplication of the correspondent ith row of the channel
hg,; and the quantized received signal yg, . at the nth receive antenna. By

relaxing the constraint Xg € 8&' in equation (2-34) we get

2 N, B
%\ = arg L max ijlfy (V2phl, %x) . (2-35)
lnle=N, 1"

Although the function ¥(-) is log-concave, in general, the optimization
problem described above is not convex due to the norm constraint ||%g||* = N,
which is associated to binary phase shift keying (BPSK), quadrature phase
shift keying (QPSK) and Phase Shift Keying (PSK) modulations. In order to
overcome this challenge, the problem is reformulated as a convex optimization

problem by relaxing the constraint as

2 Ny
2 7 ,
%2\ = arg L max > 1:21:\P(\/2ph£n’ixR>. (2-36)
Tenlz<n, 1S

After solving (2-36), the BS needs to perform normalization followed by

symbol-by-symbol detection. The normalization of kg}ML is given by

- (2)
X
Xe, ML = \/ Ny—a M (2-37)

Xg, MLH

Finally, by letting Zg, i x be the kth element of xg i, we get the nML
symbol-by-symbol detection stated as

TnML,k = arg glelgl |(Zr, MLk + JZR, ML N, +k) — ©] - (2-38)

The authors in [15] also proposed a two-stage nML detector which has
performance improvement in comparison with the one described so far. Based
on the output of the one-stage nML detector the number of candidate transmit
vectors is reduced. Defining the candidate set of the kth element as

Xy = {x € 5| 7R i 5, ML Ntk . c} , (2-39)
| (Zr, MLk + JTR, ML N, +k) — TnML k|

where ¢ is a constant that controls the size of X,. By setting ¢ with a
proper value, it is possible to effectively improve the detection performance.
The reduced candidate set of the transmit vectors can be defined as X =
{[fl N A = ka,wf}. And, the real-form vector can be stated as Xg =
{[Re(f()T Im((%)T)T| x € .')C} With this, the two-stage nML detector can be
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defined as 2 N, )
)A(R, two-nML — al'g ,ma% H H \I/(\/ 2ph£n7l)/(R) (2—40)

XREIR oy )
The concept of the two-stage nML detector is similar to the sphere

decoding, which exploits a reduced search space.

2.3.4
One-Bit Spatial Sigma-Delta Detector

Different from the approaches aforementioned, the 1-bit spatial sigma
delta approach relies on spatial oversampling. Some characteristics of the XA
approach are: it includes quantization error feedback loops and uses a modified
Bussgang solution because the standard one leads to a linear model that is
inconsistent with the corresponding hardware implementation.

The authors in [24, 25] have used spatial oversampling by employing
a one-bit YA sampling scheme. In order to reduce the effects of the noise
quantization with low-pass spatial filters or beamformers, it is shifted to higher
spatial frequencies. Moreover, with optimal quantizer output settings the power
of the quantization noise does not grow with the number of antennas (despite
the fact that is propagated from one antenna to the next), but it converges to
a constant value of approximately 1.33 times the input power.

Simulation results of the papers mentioned in this section have shown
large performance gains on channel estimation and signal detection offered by

this approach.

2.4
Sum Rate Analysis

2.4.1
Data Transmission with LMMSE Receiver

In this subsection it is considered that in the data transmission stage the
N, users simultaneously transmit their data symbols represented by the vector
x to the BS. After processed by the comparators, the quantized signal can be

expressed as
Vo, = 9Qy4) = QHx +ny) = AjHx + Ayn,; +n, 4, (2-41)

where the same definitions from Section 2.2 apply, but with the subscript p
replaced by d, since we changed from the pilots to the data transmission stage.
Then, the LRA-LMMSE channel estimate in (2-13) is used to compute a linear
receiver which provides an estimate of the data symbols transmitted from the

N, users. Thereby, we obtain
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% = Gyo, = G(AHX + Ay + 1) (2-42)

GAd(ﬂLRA-LMMSEX + &x) + GAyn, + Gn, 4,

where Hpra-tvuse = unvec(hpra-pvmse). Finally, € = H — Hiranvuse 18
the channel estimation error. Then, the kth element represents an estimate of

the signal of the kth user, similarly as in [16], with k& € [1, V;], which reads

K K
S T " T " T T T
Xp = gpAdxp+gr Y Aghixi+  gp Y Awex; + grAumng + ging ,
. 1#£k i=1 %/—/‘ —
desired signal AWGN noise  quant. noise
user interference channel estimation error

(2-43)

where gg is the kth row of G and flk is the kth column of ﬂLRA_LMMSE.

Moreover, €; is the ith column of the matrix £.

2.4.2
Lower Bounding the Sum Rate

Since the Gaussian noise case corresponds to the worst case scenario, we
can find a lower bound for the achievable rate by interpreting the quantization
noise as Gaussian, with an equivalent noise covariance matrix [33]. In this

regard, the equivalent noise covariance matrix is given by

Cn,, = Cyo, — AuCy, Al (2-44)

Ng,d Q

where Cde is the auto-correlation matrix of the quantized data signal, like in
(2-30), and Cy, is the auto-correlation matrix of the received data signal, as
calculated in (2-26). Using this approach, the ergodic achievable rate of user
k relates to the differential entropy and is lower bounded by [16]

2

)dkﬁk

[k: =F 10g2 1+ 2 K 9 2 T
+ 25 dies]” + o7 [|dill; + 8k Cn, 8k

(2-45)

SIS |dihy

where d;, = gl A, and the expectation operator is taken with respect to channel

realizations and channel estimation realizations. Finally, the sum rate is lower-
bounded by Sk Ii.

2.5
Summary

In this chapter we have presented a review on the technical background of

this thesis. Some of the basic knowledge about MIMO systems was illustrated,
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including pilot-based channel estimation, detection and sum rate analysis

approaches.
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3
System Model

In this chapter, the system model for the proposed MIMO receiver archi-
tecture with 1-bit quantization which has an additional comparator network
is illustrated. Next, the design of the comparator network, including two types

of networks: fully and partially connected, is introduced and described.

3.1
Proposed Comparator Network-aided MIMO Receiver

The general system model for the proposed comparator network-aided
MIMO system with 1-bit ADCs at the receiver is illustrated with blocks in
Fig. 3.1, where the received signal y for the uplink single-cell MIMO system

with NV, single-antenna users and NN, receive antennas is written as
y = Hx + n. (3-1)

The vector x contains complex transmit symbols of the N, users which
have unit power normalization, H € CM>*" is the channel matrix and

n € CN*! is the noise vector where each element has a variance o2.

1-bit ADCs
Terminal 1 j R{-} L | — ¥ |
~ ! + !
H r | ling > ' |LRA-MMSE
| | : Detector/ | &, }AL
: : Channel |
‘ ! Estimat
Terminal NV, j R PO | — + | stimator
~S N, + ]
j{} ‘Cr ! _E;_ I
L a
Comparator
Network a

Figure 3.1: System model of MU-MIMO with 1-bit ADCs and an additional
comparator network.
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Using the transformation from a complex into a real-valued system, we

%{y}] _ [m{H} —J{H}] [m{x}] . [%{n}] (32
Iy} J{H} R{H} | |3{x} I{n} ]’
where R{-} and J{-} denote the real and imaginary parts, respectively. A more

obtain [

compact notation for equation (3-2) reads as
yr = Hgrxg + ng. (3-3)

The received signal is then forwarded to the 1-bit ADCs and the comparator

network (shown in Fig. 3.2). Each comparator compares two received signals

and quantizes the difference as {:i:%}

AT
pis
I

I

—_

Figure 3.2: Insight of the comparator network.

Letting Q(-) represent the 1-bit quantization, the output of the ADCs
and the comparator network is described by
YR) ) (3_4)

o[-l

B/
where B’ € R¥*2Vr refers to the comparator network and has the form

Yr
B/YR

1 -10 0
~1 0

B'=[By Bij=[0 0 0 -1 - 1] (3-5)
(0 1 0 0 —1]

In each row of B’, there is only one pair of 1 and -1 and the remaining entries
are zeros. With B = [IQNT; B’}, (3-4) reads as

zg = Q(zr) = Q(Byg).- (3-6)

Besides the introduction of the novel MIMO receiver architecture, the
contribution of the present study relies on the development of MIMO detection
and channel estimation algorithms for the proposed system. Moreover, a sum

rate analysis is presented using the aforementioned receive processing.
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3.2
Comparator Network Design

The matrix design of the comparator network in (3-5) is illustrated in
this section. Two types of networks are considered, namely, fully and partially

connected networks.

3.2.1
Fully Connected Network

In this network, every two of the received signals are compared, meaning
that the number of comparators needed is oy = (2]2\”) = N,.(2N, — 1). This

reasoning is illustrated in Fig. 3.3.

800 11—

600 |-

200 -

Total number of comparators
>~
)
S
I

| | |

i A | N I N O N S B
23456 78 910111213141516 171819 20

Ny
Figure 3.3: Number of comparators required in the fully connected network.

For instance, if we consider a system with N, = 2 receive antennas,
afp = <;1) = 6 comparators are needed in this network. Then, the corresponding

matrix B’ is described by

1 -1 0 0
1 0 -1
1 0 0 -1
B=10 1 1 o (3-7)
01 0 -1
00 1 -1

The main drawback of the fully connected network is the massive use
of the comparators, where the number of comparators a; is approximately
proportional to the square of the number of receive antennas N,. Therefore,
in large-scale MIMO systems a much larger number of comparators will be

required.
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3.2.2
Partially Connected Network

In order to increase the usage efficiency of the comparators, the partially
connected network is proposed, where the number of utilized comparators a,,
is only a small fraction of what is required for the fully connected network.
For the same scenario described in the last subsection, one possibility for the

corresponding matrix B’ap can be described by

B/ (3-8)

o
<
O = ==
e}
o
|
[

In this section, two types of network design are considered, random and
greedy search based. The former approach criteria is to randomly select «;, out
of ay comparators (o, << o), while the selection criterion of the latter is the
MSE when using an LRA-LMMSE filter which will be developed in Chapter
5.

3.3
Summary

In this chapter, the proposed system model was illustrated and the
design of the comparator network was described. Furthermore, two types of
networks are introduced, namely, fully and partially connected networks. The
partially connected network refers to comparator networks of «,, comparators
with input signals from any two antennas in terms of real or imaginary parts.
The fully connected network refers to comparator networks where all possible

combinations are considered, meaning oy comparators.
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4
Linear Channel Estimation

In this chapter, we develop an LRA-LMMSE channel estimator based
on the Bussgang theorem for the proposed comparator network-aided MIMO
systems with 1-bit ADCs at the receiver. Additionaly, the mean-squared error
of the channel estimate is derived. At last, numerical results of the developed

schemes, are presented.

4.1
Pilot-Based Channel Estimation

A common technique for channel estimation is to let the users transmit
orthogonal pilot sequences of 7 pilot symbols and evaluate the effect of the

channel on these symbols at the BS. During the training phase, all the terminals

simultaneously transmit these sequences, which yields
Y, =H®" +N,, (4-1)

where Y, € CV*7 is the matrix containing the unquantized received signal
P g q g )
® € C™M is the matrix of pilot symbols and N, is the noise matrix.

Vectorizing the received signal yields
vec(Y,) =y, = ®h +n,, (4-2)

where & = (® ® Iy.), h = vec(H) and n, = vec(N,). However, due to
the addition of the comparator network, we need to consider a real-valued

representation of the system. In this case, the received signal yr, is defined by

g _ |PM@) —3(2} %{h}] . [%{np}]
©o(@) ®(@y] [am}]  [Ifn,}) (4-3)
= ®phg + ng,,

where yg, € R™ N> ig the real-valued received signal vector. Then, when we
multiply equation (4-3) with an effective comparator network matrix Beg, we

get N
zr, = Begyr, = Bes®rhr + Begnry,, (4-4)

where Beg € RT@Nr+0)x7(2Nr) 5 described by
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IT(QNT-)
Blir Bl
where Big g = (Bg ® I)) and Big 1 = (B ® L), with By and By denoting

respectively the parts of the matrix B’ which are associated to the real and

Lo,

/
eff

Beff - ’ (4_5>

imaginary parts of the received signal, as shown in (3-5). After being processed

by the comparators, the quantized signal can be expressed as
ng = Q(ZRP) = @RhR + ﬁRp, (4—6)

where the right hand side corresponds to a linear model that relies on
the Bussgang decomposition approach. In this context, the linear model
involves the matrix @R = ARpBeﬁ@R and the effective noise vector ng, =
AR, Ber, + 14, with Ag, being a well chosen square matrix and ng, being
the quantization noise. The Bussgang-based linear operator Ag, is chosen to

make the quantization noise uncorrelated with zg, [33], and is given by

2
AR, = CprzQp CZ‘RIP = \/;KRP, (4-7)

with Kg, = diag(Csz)_%, where C

between the received signal zg, and its quantized signal zg, is given by

2R, 70, denotes the cross-correlation matrix
2
CZRpZQp = \/;KRPCZRP = ARpCsza (4-8)

and G, denotes the auto-correlation matrix of zg,

Cuy, = Beg®rRu, 4Bl + BegCup Bl

ZRp
1 o 2 (4—9)
— 5Bu®r®{Bl; + 7 BuBl,
where it is assumed that Ry, = FE [thQ = %IQNtNr and Can

E [annﬁp} = %IT(Q ~,)- Note that the factor % is due to the real-valued nota-
tion of the system.

Derivation: See Appendix A.1.

4.2
Proposed LRA-LMMSE Channel Estimator

Based on the statistically equivalent linear model in (4-6), the LRA-
LMMSE optimal filter can be obtained through the optimization problem

formulated as


DBD
PUC-Rio - Certificação Digital Nº 1920848/CA


PUC-RIo- CertificagaoDigital N° 1920848/CA

Chapter 4. Linear Channel Estimation 35

2
WR LRA-LMMSE = arg H\l;é,n E [HhR — Wzg, 2]
R 1. (4-10)
= R, @rC,5, = 5PrC,,,,

where the auto-correlation of the quantized signal is calculated as [34]

Coy = Zsin”! (Kr,Coy, Kr, ) (4-11)

ZQP T

The resulting LRA-LMMSE channel estimator corresponds to the linear oper-

ation

~ BR LRA-LMMSE, a A 1.
, - ; T -1 T ~—1
hg, Lra-LMMSE = |+ = R, ®rC,, 20, = 5PrCyp, 20,
hr LrA-LMMSE, b

A (4-12)
where hg rra-LvMsE, o Is the first half of the channel estimate which corre-

sponds to the real part and flR7 LRA-LMMSE, b 1 the second half which corre-
sponds to the imaginary part.

Derivation: See Appendix A.2.

4.3
Mean-Squared Error of the Channel Estimate

The MSE of the LRA-LMMSE channel estimate can be expressed as

N 2
hR7 LRA-MMSE — hR‘ ‘2

MR, Lra-MMsE = F

= tr (R, — Ruy 1 C;) ®rRuy ) (4-13)
1 1 fay A
= tr <212NtNr - 4‘I)£Cz_glp¢R> .

Derivation: See Appendix A.3.

4.4
Numerical Results

In this section, an uplink single-cell 1-bit MIMO system with comparator
network, NV, = 2 and N, = 4 is considered. The SNR is defined as 10 log (é),
which is the average receive SNR per user per antenna. The lines labeled
as “Analytical Result” are obtained with (4-13) while the marks labeled as
“Numerical Result” are obtained with the MSE of the simulated channel
estimator in (4-12). In both experiments, the partially connected networks have
a, = 2N, = 8 comparators, while the fully connected have a; = (212\7T) =28
comparators.

The MSE comparison between the LRA-LMMSE channel estimators with

fully and partially connected comparator networks are shown in Fig. 4.1. The
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MSE

—— Analytical Result
o Numerical Result

2 [—— No comparator network
Random selected comparator network

— Fully connected comparator network

1 T T T T | | |
-20 —15 -10 ) 0 5 10 15 20

SNR [dB]

Figure 4.1: MSE comparisons of LRA-LMMSE channel estimators in 2 x 4
MIMO systems with 7 = N; = 2.

MSE

—— Analytical Result
(0] Numerical Result

2 | —— No comparator network h
Random selected comparator network
—— Fully connected comparator network

1 T T T T | | |
-20 -15 -10 ) 0 3 10 15 20

SNR [dB]

Figure 4.2: MSE comparisons of LRA-LMMSE channel estimators in 2 x 4
MIMO systems with 7 = 2N, = 4.

pilot sequences are column-wise orthogonal with length 7 = N, = 2, i.e.,

®T® = 7Iy,. The presented performance plots are obtained by taking the
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average over 2000 different channels and 2000 noise realizations per channel.
The numerical and analytical results are aligned, which confirms the accuracy
of the proposed model. As expected, the system with the fully connected
method achieves the best MSE performance. However, it can be seen that the
approach with the comparator network using random selected inputs is also
beneficial in terms of MSE in comparison to the case without a comparator
network.

The results in Fig. 4.2 were obtained by changing the size of the pilot
sequences to 7 = 2N; = 4. The presented performance plots are obtained by
taking the average over 700 different channels and 700 noise realizations per

channel.

4.5
Summary

In this chapter, we have derived the LRA-LMMSE channel estimator for
comparator network aided 1-bit MIMO systems. The pilot-based channel esti-
mation for the real-valued system representation was proposed. The simulation
results have shown a great performance gain for the proposed channel estimator
with the additional comparator network. Moreover, the numerical simulations
match with the corresponding analytical channel estimation performance in

terms of the MSE, which corroborates the accuracy of the proposed model.
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5
Linear Detection

In this chapter, we develop the LRA-LMMSE detector based on the
Bussgang theorem for the proposed comparator network-aided MIMO system
with 1-bit ADCs at the receiver. Moreover, a robust version of the LRA-
LMMSE detector is devised, which takes into account the channel estimation
error statistics. In the sequel, we present the Greedy Search Algorithm for
the optimization of the partially connected network. Then, the computational
complexity, computational and hardware costs of the methods are calculated
for comparison purposes. Finally, numerical results of the developed schemes,

are individually and integrally illustrated.

5.1
Proposed LRA-LMMSE Detector

Based on the proposed system model in (3-6), the corresponding linear
receiver to estimate the transmitted symbols is derived as follows. The opti-

mization problem for getting the optimal linear receiver is formulated as

GR, LRA-MMSE = arg IglRH E HXR - GgZQHﬂ ) (5-1)

where Gy € RENr+e)x2Nt  The solution for this problem is given by

Gr, LRA-MMSE = CZ_QICZQXR; (5-2)
where the involved covariance matrix C,,, is calculated as [34]
2
C,, = —sin”' (KgrC,,Kr), (5-3)
T

and the cross-correlation matrix C is based on the Bussgang theorem [36]

ZoXR

2 21
CZQXR = \/;KRCZRXR = \/;2KRBHR, (5—4)

with Ky = diag(CzR)_% and the cross-correlation matrix between zg and xg

is given by 1

Capxn = BHRCx, = 5 BHp, (5-5)

ZRXR
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where due to the real-valued notation of the system Cy, = E [XRXQ = %Ig N, -
Derivation: See Appendix B.1.

Besides, the auto-correlation of zg is given by

C,, = BHRC, H;B” + BC,,B”

1 o?
= 5BHRHgBT + ?"BBT.

(5-6)
where due to the real-valued notation of the system C,, = E [anﬂ = %Ig N,

Derivation: See Appendix B.2.

5.2
Robust LRA-LMMSE Detector

In this section, a robust LRA-MMSE detector is proposed, which takes
into account the channel estimation and its corresponding error statistics. In
this context, based on the channel estimation error eg = hr — flR’ LRA-LMMSE,

we need to redefine the received signal as
[m{fc} —3{;2}] [%{h}] . lm{nd}]
HX}y ®{X} ] [I{h} 3{n4}

= Xghg + ng, = Xg (flR, LRA-LMMSE + €R> + ng,

YR, =

(5-7)
= I:IRXR + XRER + ng,,

where yg, € R? > and X = (x” @ Iy,) € CN*NeNr The subscripts = and
d stand for robust and data, respectively. Moreover, Hy € R2V-*2Ni ig the
estimated channel matrix described by

R R{H} -J{H
a [ {H} —5{H}

R = . | with H = unvec(h)
J{H} %R{H}

(5-8)

and h = {hR, LRA-LMMSE, a + JhR, LRA-LMMSE, b} )

where flR LRA-LMMSE, a corresponds to the first half of the estimated channel
lle, LRA-LMMSE and flR’ LRA-LMMSE, b to the SeCOHd, as shown in (4—12) There-

fore, the quantized signal for the robust detector is given by

Zg, = Q(pr) = Q(Bypw) = Q(BI:IRXR + BXRé'R + Bl’le)

; A (5-9)
= ARTBHRXR + ARTBXREIR + ARanRd + ngr

q,d”?

where Ay, is the Bussgang-based linear operator for the transmit data,
similarly as calculated in (4-7). Then, the linear LRA-LMMSE filter is applied

to zg,, to obtain
*r = Grzo,, (5-10)
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where the matrix Gg is chosen to minimize the MSE between the transmitted

symbol xg and the filter output, i.e.,

. ) -
GR, LRA-MMSE = arg Hé;n E MXR — Ggzg,

2
2] (5-11)
= arg IgiRn —2tr (GﬁCZQTle +tr (GPT{CZQT GR) g

where the second line describes an equivalent problem.
Derivation: See Appendix B.3.

By differentiating (5-11) with respect to G%, the solution of the LRA-
LMMSE receive filter is given by

Gr, Lramuse = G, Cag s (5-12)
where the covariance matrix is calculated as [34]

C

ZQy

= 7?rSiIl_l (KR';-CZRT KRT») ) (5_13)

and the cross-correlation matrix is based on the Bussgang theorem [36]

2 21 .
CZQTXR = \/;KRT‘CZRTXR = \/;2KRTBHR, (5—14)

with Kg, = diag(CZRr)_% and the cross-correlation matrix between zg, and
Xpg is given by

C

ZR, XR

A 1.4
= BHRC,, = -BHg, 5-15
2

where due to the real-valued notation of the system Cy, = E [XRXQ = %IQ N, -
Derivation: See Appendix B.4.

Moreover, the auto-correlation of zg, is given by

C,

Ry

1 R . 2
— ;BHRH}B" + B:B' + %BBT. (5-16)

Derivation: See Appendix B.5.

The term I'y in the last equation is calculated as follows
Ty = E [XpE [ench| XF]
= E [Xn (Ray, — Ru, ®3C;) ®rRuy ) X (5-17)
= E [XgRu, Xf — XgRu, $1C;. @rRu Xf|,

where F {sRsa = Ry, — RhRé)ng_le ®rRy,,,, similarly as previously calcu-
lated in (4-13). In the following it is considered that the modulation scheme
is QPSK. Hence, the expected value of Xy can be calculated as a uniform

discrete distribution. In this context, equation (5-17) can be rewritten as
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4N
Tr=) P (Xrs) (XnRug Xk, — X iR $1C;) @rRu, X, )

’11 o~ (5-18)
3 (XRviRthgyi — XpiRu, @ﬁc;glp@RRhRXgi) .

i=1

= 4Nt

5.3
Greedy Search Algorithm

The proposed Greedy Search algorithm implies that in each search cy-
cle, the comparator configuration with the highest MSE reduction is selected.
In a nutshell, the proposed algorithm searches for each individual compara-
tor sequentially over all possible combinations for the minimum MSE input
combination. In this process, the comparators sequentially change their in-
puts according to the MSE criterion. The detailed process is summarized in
Algorithm 1.

Algorithm 1 MMSE based Greedy Search
1: Find the fully connected network B’ in (3-7) and get the number of rows, defined by ay

2: Extract the first a;, rows of B’, defined by By,
3: Constitute B in (3-6) and calculate Gg in (5-2)
4: Compute the MSE with E [||XR - GRzQHg}, defined by lmin
5: fori=1:0p do
6:  Take the ith row of B, and freeze the other oy, — 1 rows
7. forj=1:a¢do
8: if the jth row of B’ is already in B, then
9: j=7+1
10: else
11: Replace the ith row of By, with the jth row of B’
12: Constitute B and calculate Gr
13: Compute the MSE value, defined by [
14: if | < lnin then
15: Imin = {
16: Update By,
17: end if
18: end if
19:  end for
20: end for
5.4

Analysis
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5.4.1
Computational Complexity

In this subsection the computational complexity of the presented ap-
proaches is examined. The corresponding complexity orders are summarized
in Table 5.1, where O(-) is the big O notation. Note that the complexity order
can be calculated as functions of the numbers of receive and transmit antennas

N, and N; and additional comparators oy or a,.

Table 5.1: Computational Complexity
[ Approach [ Network Design [ LRA-MMSE Detection ]
No Network - O((2Ny)2 + 2N (2N,)? + 4N, Ny)
O((2Ny + af)3 + 2N (2N, + a5)? +
2N:(2N; + ay))
O((2Nr + ap)® + 2N:(2N; + ap)? +
2N¢ (2N, + ap))
O((2Nr + ap)® + 2N (2N, + ap)? +
2N, (2N, + ap))

Full Connection

MMSE based

Greedy Search Oap(ay —ap)(2Nr +ap)?)

Random Selection

5.4.2
Computational and Hardware Costs

The required computational and hardware costs in terms of additional
comparators are approximately calculated in Table 5.2. The values presented
for the computational cost (arithmetic operations) are calculated using Table
5.1 and considering the following parameters: N, = 10, N; = 2, ay = 190
and «,, = 20. The hardware cost values are based on the number of additional

comparators needed in each approach.

Table 5.2: Computational and Hardware Costs

[ Approach [ Computational Cost [ Hardware Cost* ]
No Network O(9680) -
Full Connection 0(9438240) 190
MMSE based Greedy Search O(217670560) 20
Random Selection O(70560) 20

*The presented hardware costs don’t include the crossbar switch required

to select which antennas will be used as inputs on each comparator.

5.5
Numerical Results

In this section, an uplink single-cell 1-bit MIMO system with comparator
network, N, = 2 is considered. The modulation scheme is QPSK and the SNR

is defined as 10 log (J%), which is the average receive SNR per user per antenna.
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5.5.1
Proof of Concept: More Antennas versus Comparator Network

In this subsection, systems with different number of receive antennas
(N,) and perfect CSI at the receiver are considered. While performing the
signal detection, the LRA-LMMSE detector from Section 5.1 is applied in the
system. The BER performance plots are obtained by taking the average over

1000 different channels and 1000 noise realizations per channel.
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Figure 5.1: BER performance of LRA-LMMSE detectors in 2 x N, MIMO
systems.

In order to verify the advantage of the addition of the comparator
network, the performance of systems with partially connected networks are
compared to systems with additional receive antennas. The configuration
schemes with N, and N, + 1 receive antennas are considered, which means
the addition of a single antenna element. Since each extra antenna would
correspond to two comparators, to make a fair comparison, the total number
of extra comparators utilized by the partially connected networks is always
o, = 2 in the presented simulations.

As we can see from Fig. 5.1, the random selected comparator network only
has a benefit in comparison to the system without comparator network in a
scenario with the same number of antennas. However, at high SNR the MMSE

based Greedy Search outperforms the larger array because the extra virtual
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channels are selected with the lowest MSE approach, making the added virtual

channels better than the extra physical channel for all different simulated N,..

5.5.2
Proposed LRA-LMMSE Detector

In this subsection, it is considered a system with N, = 10. For the
signal detection, the LRA-LMMSE detector is applied in the system. The
BER performance plots are obtained by taking the average over 2000 different

channels and 2000 noise realizations per channel.

1071 F i — ]
= —6— No comparator network H
q —o— Fully connected comparator network, ay = 190
) c' Random selected comparator network, o, = 20 ||
10~ d —o— MMSE based comparator network, oy, = 20 H
1073 | s

F D
. L i
M 1074 | =
A g §
107° | s
1070 1 E

10-7 | | | | | | | | | | | | | |
O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

SNR [dB]

Figure 5.2: BER performance of LRA-LMMSE detectors in 2 x 10 MIMO
systems.

The LRA-LMMSE detector BER performance of fully and partially
connected networks under perfect CSI are shown in Fig. 5.2, where partially
connected refers to comparator networks of, in this case, o, = 2N, = 20

comparators. The case of fully connected networks refers to comparator

2N,
2

Simulation results show that the system with fully connected network

networks with, in this case, ay = ( ) = 190 comparators.

achieves the best BER performance with the cost of a large number of
comparators and high computational complexity. In the partially connected
networks, the MMSE based Greedy Search outperforms the random selection
approach especially at high SNR, where the error floor is eliminated. A

surprising observation is that the Greedy Search approach has almost the
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same BER performance as the fully connected method but with much less
comparators. This shows great advantages of the greedy search based partially
connected network. However, also the approach with the comparator network
using random selected inputs is beneficial in terms of BER. While making
comparison with the approach without additional comparator network, it can
be seen that by adding extra 20 comparators the performance gain is significant
and the error floor goes down largely.

However, it should be mentioned that although the greedy search ap-
proach yields comparable good BER performance with less required compara-
tors, its computational complexity is the highest among all the approaches due

to its sequential search for the least MSE values.

5.5.3
Robust LRA-LMMSE Detector

In this subsection, it is considered a system with N, = 4. The pilot
sequences are column-wise orthogonal with length 7 = N, = 2, i.e., ®T® =
7In,. The BER performance plots are obtained by taking the average over 2000

different channels and 2000 noise realizations per channel.

100

101

BER

5 - -- Perfect CSI DN
10~ —— Imperfect CSI DINEEN

= ~

O LRA-LMMSE Detector A RS
A Robust LRA-LMMSE Detector AN re

No comparator network I
Random selected comparator network ~o
—— Fully connected comparator network

1073

—— MMSE based comparator network

—20 -15 —10 -5 0 5 10 15 20
SNR [dB]

Figure 5.3: BER performance of robust LRA-LMMSE detectors in 2 x4 MIMO
systems.

The BER performance of the robust LRA-LMMSE detector with fully

and partially connected networks is illustrated in Fig. 5.3. In these experiments,
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Figure 5.4: MSE comparisons of robust LRA-LMMSE detectors in 2 x4 MIMO
systems.

the partially connected networks have o, = 2N, = 8 comparators, while
the fully connected have a; = (2]2\[’“> = 28 comparators. The LRA-LMMSE
detector is based on the channel estimate while the robust LRA-LMMSE
detector combines the proposed channel estimate with the corresponding
estimation error statistics. As expected, simulation results show that the
robust LRA-LMMSE detector obtains a moderate performance advantage in
comparison to the non-robust detector. This benefit is not only in terms of
BER but also MSE as shown in Fig. 5.4, which is the design objective of the

detectors.

5.6
Summary

In this chapter, expressions for the proposed comparator network based
LRA-LMMSE detectors with 1-bit quantization are derived. The Greedy
Search algorithm based on the MSE selection criterion is presented. The
additional comparator network provides additional information about the
received signal which can be used to reduce the BER performance with only
a slight increase in hardware cost and required computational complexity.
Numerical results show that adding virtual channels by using a comparator

network can be better than adding extra physical channels which corresponds
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to additional receive antennas in terms of BER. Moreover, simulation results
show that the proposed partially connected networks, especially the MMSE
based Greedy Search approach, require less comparators while introducing
small performance degradation compared with the proposed fully connected
networks. Furthermore, numerical results show that the proposed robust LRA-
LMMSE detector have moderate performance advantage when compared to the

non-robust one.
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6

Sum Rate Analysis

In this chapter, a data transmission stage is considered and a lower bound
on the ergodic sum rate is build up for the LRA-LMMSE receiver by employing
the proposed channel estimator from Chapter 4 and its corresponding estima-
tion error. Then, the numerical results are demonstrating the potential of the

proposed system.

6.1
Data Transmission with LRA-LMMSE Receiver

It is considered that in the data transmission stage the N; users simulta-
neously transmit their data symbols represented by the vector xg to the BS,
which is a stacked vector with real and imaginary parts. In the present study,
real and imaginary parts represent independent data symbols. After processed

by the comparators, the quantized signal can be expressed as

zg, = Q(zr,) = Q(Byr,) = Q(BHrxg + Bng,)

(6-1)
= ARdBHRXR + ARdBan + ngr

q,d?

where the same definitions from Chapter 4 apply, but with the subscript p
replaced by d, since we changed from the pilots to the data transmission stage.
Then, the LRA-LMMSE channel estimate (4-12) is used to compute a linear
receiver which provides an estimate of the data symbols transmitted from the
N, users. In this context, the quantized signal is separated into 2N, streams
by multiplying the signal with the receiver filter matrix defined in (5-2) as
Ggr = Cz_QldC

channel. Thereby, we obtain

Z0, xR which in this case is computed based on the estimated

)A(R = GRZQd = GR(ARdBHRXR + ARdBan + an,d) (6 2)
= GRARdB(I:IRXR + 8RXR) + GRARdBan + GRan,d’

where Hy is the estimated channel matrix described by (5-8) and &r =
Hgi — ﬂR is the channel estimation error matrix.

In the sum rate analysis it is considered that each user corresponds to
two real-valued channels. Then, the kth element represents an estimate of the
signal of the kth real-valued channel, similarly as in [16], with k& € [1,2N,],


DBD
PUC-Rio - Certificação Digital Nº 1920848/CA


PUC-RIo- CertificagaoDigital N° 1920848/CA

Chapter 6. Sum Rate Analysis 49

which reads as

K K
XR, = ggkARchRkXRk + gﬁk Z Agr,Bhg,xg, + gﬁk Z AR, Beg,xg,
ik i—1

desired signal

interference channel estimation error (6-3)
T T
+ gr, Ar,Bngr, + gy, DR, ,,

AWGN noise quant. noise

where gﬁk is the kth row of Gy and fle is the kth column of Hg. Moreover,

€R, is the ¢th column of the matrix €g.

6.2
Lower Bounding the Sum Rate

Since the Gaussian noise case corresponds to the worst case scenario, we
can find a lower bound for the achievable rate by interpreting the quantization
noise as Gaussian, with an equivalent noise covariance matrix [33]. In this

regard, the equivalent noise covariance matrix is given by

C =C

an,d Z9,

— A, Cay AL, (6-4)

2R,
where C,, = E |:ZQ dzgd} is the auto-correlation matrix of the quantized data
signal, like in (4-11), and C,, = E {szzﬂd} = iBHRH]B” + %BBT is the
auto-correlation matrix of the received data signal, as calculated in (5-6).
Derivation: See Appendix C.1

Using this approach and by considering Gaussian signaling, the ergodic
achievable rate per real-valued channel is lower bounded by

A2
IRk =F l; lOgQ <1 + ‘deth‘ )],

K ~ 2 K 2 2
Zi;ﬁk ’de hg, +Zi:1 ‘de €R; +U%‘ ‘de ’ ’2+2g£k C“R.q,d ERy,
(6-5)
where dg, = ggkAR ,B and the expectation operator is taken with respect to

channel realizations and channel estimation realizations.

According to prior literature [33], this method provides an accurate lower
bound especially for the low SNR regime. Finally, the sum rate is lower-
bounded by Z,If:l Iy, .

Derivation: See Appendix C.2

6.3
Numerical Results

In this section, an uplink single-cell 1-bit MIMO system with comparator
network, N; = 2 and N, = 4 is considered. The pilot sequences are column-wise
orthogonal with length 7 = N; = 2, i.e., ®T® = 7Iy,. The SNR is defined as
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10log (U%), which is the average receive SNR per user per antenna. The sum
rate plots are obtained by taking the average over 2000 different channels and

2000 noise realizations per channel.

6

T
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Random selected comparator network
—— Fully connected comparator network | = ____-----=---1

—— MMSE based comparator network S T A P
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—— Imperfect CSI LT

Sum Rate [bpcu]
w
T
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Figure 6.1: Sum Rate comparisons of LRA-LMMSE channel estimators in 2 x 4
MIMO systems.

The comparison between the lower bound of the ergodic sum rate with
and without the comparator network is presented. The sum rate versus SNR
for the systems under perfect and imperfect CSI is shown in Fig. 6.1, which
indicates a significant benefit for the system that utilizes the additional
comparator networks. In this experiment, the partially connected networks
have ay, = 2N, = 8 comparators, while the fully connected have ay = (2]2\“) —
28 comparators. We can see that the system with fully connected network
achieves the best sum rate performance, followed by the MMSE based Greedy
Search and the random selected inputs. Note that the increased sum rate is
not only due to the comparator network aided receive processing but also due

to a more accurate channel estimation.

6.4
Summary

This chapter has shown that by considering that the BS employs the
linear receiver derived in Chapter 5 and using the proposed channel estimate

and the corresponding estimation error from Chapter 4, we have derived
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an expression for lower bounding the ergodic sum rate. Simulation results
show that the proposed comparator network based system outperforms the

conventional 1-bit receiver in terms of sum rates.
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7
Conclusion and Future Work

In this thesis it is proposed a novel MIMO receiver architecture with
the use of coarse quantization ADCs. Different from conventional systems, the
proposed MIMO receiver includes a comparator network with binary outputs
which can compare signals from different antennas. The resulting extension
can be interpreted as a number of additional virtual channels. The additional
virtual channels of the proposed low-resolution MIMO receiver contain addi-
tional information which aid the detection and channel estimation processes
with only a slight increase in hardware cost and required computational com-
plexity. In this context, channel estimation, signal detection and sum rate
schemes are developed for the proposed system.

Two types of comparator networks are proposed, fully and partially
connected networks. Simulation results show that the proposed partially
connected networks, especially the MMSE based greedy search approach,
require less comparators while introducing small performance degradation
compared with the proposed fully connected networks.

Based on the proposed channel estimation and decoding algorithms,
simulation results show that the proposed MIMO receiver architectures are
superior to the conventional 1-bit quantization receiver methods in terms
of BER and MSE. Moreover, numerical results show that adding virtual
channels by using comparator network can be better than adding extra physical
channels which corresponds to additional receive antennas in terms of BER.
Furthermore, the robust LRA-LMMSE detector has been developed which
is based on the channel estimation statistics. Simulation results indicate a
moderate advantage in performance in terms of BER and MSE in comparison
to the non-robust detector. Also, by considering that the base station employs a
linear receiver and using the proposed channel estimate and the corresponding
estimation error, it has been derived an expression for lower bounding the
ergodic sum rate. Numerical results show that the corresponding sum rate
increases significantly when adding a comparator network to the system.

Several future research topic are suggested:

— Investigate more sophisticated channel estimation techniques in conjunc-

tion with the comparator network.
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Investigate the proposed system model in conjunction with spatial or

temporal oversampling.

Development of efficient search algorithm: design with a lower computa-
tional cost and investigation of implementing neural networks. The main
goal would be trying to approach the fully connected network perfor-

mance.

Include a coding scheme in order to have a more practical setting. For
example, an iterative detection and decoding scheme for the comparator

network.

Consideration of imperfect 1-bit quantization with random threshold

mismatch.

Computation of theoretical limits for the channel estimation such as

Cramér-Rao lower bound.
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A
Linear Channel Estimation Derivations

A.l
Derivation of the Auto-Correlation Matrix of the Received Pilot Signal

The auto-correlation matrix of zg, from (4-9) is calculated below. By

inserting (4-4) into the expectation operator, we get

wm, = E 70,72 | = B [(Beayr,)(Beryr,)" |
= E[(Bea(®rhg + ng,))((®rhy + ng, ) Bly)|
=FE [(Beﬁ(‘i’RhR +ng,))((hg®f + ngp)Bfo)}
= E[(Ba®rhp + Bemyp,) (Wi ®EBY; + nf B (A-1)

C

= E [Byy®rhph ®}BY; + Bug®rhgnf, Bl
+Begnp, hf @} BY; + By, nf, Bl

= Beg®rRu, @Bl + BetChny B,

where it is considered that hg is uncorrelated with ng,. Thus, F [hRngp} =
E [anha} =0.

?).ezrivation of the LRA-LMMSE Optimal Filter and Channel Estimator
Recalling the optimization problem from (4-10)

)

2

- F [tr ((hg — Wazg,)(hy — Wzg,)" )]

(hy — Wzg,)(hf; — 25 W7))]

hphf — thQ wT - WzQ hR + WzszngTﬂ

WR LRA-LMMSE = arg rr\%n E U ‘hR - Wz,

I
&
—+
~

/N

AN MM/
-+
=
/~

(A-2)

Taking the partial derivative with respect to W7, we obtain
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2

oE

HhR — WZQP
OWT
Equaling (A-3) to zero and inserting (4-6), the LRA-LMMSE filter is

-1

2

] =-F [thgJ + WE {zszgJ . (A-3)

Wg, LrA-LMMsE = B [hRZSP} E [zszgJ
= E [hp(&nhp + fin,)”| B [(@rhy + fin,) (@rhy + fir,)”]
B ]+ 5] B [+ 85 )]
= E [hphf®% + hpil | E [$rhphf @] + &phpil,

A —1
+ii, hi & + fig, A, |
= B [hph}®%] B [$rhehf®h + g 0h |
= Ri @ (PrRu O + Cair,,) !
= Ry, PLC;}

ZQP’

(A-4)

where it is considered that hg is uncorrelated with ng,. Thus, E [hRﬁgp} =
E [iig,hf] = 0.
Then, the resulting LRA-LMMSE channel estimator from (4-12) is given

by
N =T ~—1
hg, pra-LMMsE = W, LRA-LMMSEZQ, = RhR‘I’RCZQPZQp‘ (A-5)

A.3
Derivation of the MSE of the Channel Estimate

Recalling the Mean-Squared Error problem from (4-13), we have

Mg, tra-MMSE = B

: BR, LRA-MMSE — hR‘ ’z]
=F :tl" <(flR, LRA-MMSE — hR) (flR, LRA-MMSE — hR)Tﬂ

=FE :tl" ((BR, LRA-MMSE — hR) (flg LRA-MMSE — hg))]
=F :tr (BR, LRA—MMSEEPT{, LRA-MMSE — flR, LrA-MysehR
_hRﬁg, LRA-MMSE T th@]

=F [tr (flR, LRA-MMSEIAIPT{, Lravivse — 2Dk, Lranseh + thﬂ)} :
(A-6)

Inserting (4-12) and (4-6) into (A-6), we get
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Mg tra-vvsE = B [tl” <(RhR‘i’£Cz_$pZQp) (RhR‘i’fT{Cz_;pZQJT
—2Rp,, ®C, ) 70, hf; + hrhy )]
=F [tr (RhR@PT{Cz_lezszng;;p PRy,
—2Rp,, ®3C,) (Prhp + fin, )by, + hyh) |
= E [tr (Ru, ®RC;) 20,20, C7 ®rRuy, — 2R, $1C;) &rhyhy
—2R,, }C; ] fig,hy + hhy) |
= tr (R ®4C,) C,p C,) ®pRiyy, — 2R, @(C, ) $Risy + Riry )
tr (RhRégcz—;p@RRhR — 2Ry, &} C;) BrRa, + Ri,)
tr (Ru, — Ruy ®5C; $rRuy)

(A7)

where it is considered that hg is uncorrelated with ng,. Thus, F [ﬁRpha =0.
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B
Linear Detection Derivations

B.1
Derivation of the Cross-Correlation Matrix between Received and Trans-
mitted Data Signals

The cross-correlation matrix between zg and xg from (5-5) is calculated

as follows
Coxn = F [ZRXQ =F {(ByR)xa =F {(B(HRXR + nR))xQ

=F [((BHRXR + BHR»XQ =FE [BHRXRXPT{ + BDRXQ (B-1)

= BHRC

XR )

where it is considered that xy is uncorrelated with ng. Thus, £ [nRxa =0.

B.2
Derivation of the Auto-Correlation of the Received Data Signal

The auto-correlation of zg from (5-6) is calculated as follows
C,, = FE :szﬁ} =F [(ByR)(ByR)T} - F [ByRyﬁBT]

= :B(HRXR + HR)(HRXR + l’lR)TBT}
= E [B(Hpxg + ngp)(xgH, + nf)B|
(BHpxg + Bng) (x{HEB” + nf;BY)]

= E [BHpxpx{ HEB” + BHyxpn}B' + BnpxHEB” + BngnfB’|
= BHRC,,H;B” + BC,,,B,
(B-2)

where it is considered that xg is uncorrelated with ng. Thus, E {XRl’lg} =

E [I’IRXIY:;} =0.
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B.3
Derivation of the MSE between the Transmitted Symbol and the Filter
Output for the Robust Detector

The MSE between the transmitted symbol xg and the filter output g

for the robust detector from (5-11) is calculated as follows

9 i
2] =E|t (xr — GLzo, ) (%R — G£ZQ,,)T>}

XR — G%ZQT) (Xg —z, GR»}

XpXf;, — XrZg, Gr — Glzo, xf; + GLzo, 25 GR)}

E U‘XR — GﬁZQT

t

t

t(
r(
t(
t(

=F :t xpxg — 2GRzo,Xg + GﬁerzngR)}

—= tr (CXR — 2G£CZQ7‘XR + cher GR)
1
=1tr (212Nt - 2G£CZQTXR + cher GR> 5

(B-3)
where due to the real-valued notation of the system Cy, = E [XRXQ = %Ig N, -

B.4
Derivation of the Robust Cross-Correlation Matrix between Received and
Transmitted Data Signals

The cross-correlation matrix between zg, and xg from (5-14) is calculated

as follows
CerxR E [ZR XR} =F [(BI:IRXR + BXRER + Ban)Xg}

: (B-4)
=F [BHRXRXR} BHRCy,,

where it is considered that xg is uncorrelated with ng, and eg.

B.5
Derivation of the Robust Auto-Correlation Received Data Signal

The auto-correlation of zg, from (5-16) s calculated as follows
Cu, = E [erzgr}
—E [(BﬂRxR + BXgeg + Bng, ) (BHrxg + BXgeg + Ban)T]
= E |(BHgxg + BXger + Bng,) (xpHEB + el X{B” + nf; B)]
= E [BHpxpx{ HEB” + BXpere,XiB” + Bng,nf, B
= BHRC,, H{B" + BE |XpE |epef| X§| B” + BCp, B”
_ ;BﬂRﬂgBT + BIyB” + UQ’%BBT,
(B-5)
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where due to the real-valued notation of the system Cy, = FE {XRXQ = %Ig N,
and C,, = F [ana = %IQNT. Moreover, by considering that Xy and eg are

independent from each other, we have 'y = E {XRE [eRsa Xﬁ].
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C
Sum Rate Derivations

C.1
Derivation of the Quantization Noise Covariance Matrix

The quantization noise covariance matrix from (6-4) is calculated as

follows

Crp,, = E {(sz — ARg,2zr,) (2o, — ARdsz)T}
=F [(sz — ARdsz)(zgd — ngARd):I
=F [szzgd — szzﬁdARd — ARdszzgd + ARdszzgdARd}
= Cyq, — Cug o, Ary — Ar,Cup 20, + Ar,Cay, AR, (C-1)
= C,g, — 2AR,Cyy ag, + Ar,Cop Ar,
= C,y, — 2AR,C,, Ag, + AR, C,, Ag,
= C,go, — Ar,Cyp Ar,.

ZRd

ZRd

Note that since Ay, is a diagonal matrix, Ag, = A%d. Moreover, it holds

C

2r, = C;. because it is a real-valued covariance matrix.
‘d

C.2
Derivation of the Ergodic Achievable Rate for Real-Valued User Channel

First, let us recall the received signal of the index k, with k € [1,2Ny],
given by (6-3)

K K
XR, = gﬁk Ag,Bhg, xg, + gﬁk > Ag,Bhgxg, + gﬁk > Ag,Beg;xg,
2k =1

interference channel estimation error

desired signal

T T
+ ngARdBan + ngan,d 9
—_—— N———

AWGN noise quant. noise

(C-2)

where gﬁk is the kth row of Gr and fle is the kth column of ﬂR. Moreover,
€R, is the ith column of the matrix Eg.
Assuming Gaussian signaling, the ergodic achievable rate per channel k,

for the real-valued notation, is lower bounded by
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1
In, = F [2 log, (1 + SINRk)] . (C-3)
Then, the sum-rate is described as
K
=Y In, = 2 E [ log, (1 + SINR,C)} (C-4)
k=1
where
E||T)|?
SINR, = T[] (C-5)

K B[Toi] + S BTl + BT + B (T3]
In the expression above, the term
T, = ggkARdBlAleka (C-6)
represents the desired signal, while the parameter
Tp; = gh Ar,Bhp,xg,, for i £k, i=1,... K, (C-7)
is the interference caused by user ¢ in user k. The quantity
Ty; = gi, Ar,Berxg,, for i =k, i=1,... K, (C-8)
refers to the channel estimation error, whilst
T, = gf,, Ar,Bng, (C-9)
corresponds to the AWGN noise and

T5 = ggk an,d (C’10>

relates to the quantizer noise.
The mean-square values of the terms 7', 15 ;, T3 ;, Ty and Ty are computed
as follows:
E||Ti/’] = B |(gh, Ar,Bhr,xr,) (g, Ar,Bhr,xx,)" |
=F [ggkARdBfleXkagkflngTAgngk}
= ggk ARdBfle Cfolgk BTAgngk
1

= §g£k ARdBfle flgk BTAgngk

(C-11)
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E[|T5:’] = E [(gh, Ar,Bhr,xr,)(gk, Ar,Bhy,xx,)"|
=F [g%kARdBflRiXRixgiflgiBTAgngk}
= g, Ar,Bhg,C,, hf B'AL gg,
(C-12)

1 ~A A
— igﬁkARchRithTAﬁngk

= ; ‘ggkARdBﬁRif
2

Y

— ; |y, by,

E||T3:%| = E |(gk, Ar,Ber xr,) (8%, Ar,Ber xxr,)" |
=F {ggkARdBERz‘XRngiegiBTAgngk}
= gakARstRiCxReﬁiBTAgngk
1

— §g£k ARdBeRisgiBTAgngk

(C-13)
1 2

== g, Ar,Be,|

1

5 |de€Ri |2

I

E||T.]’] = B |(gk, Ar,Bng,)(gh, Ar,Bng,)" |
=F [gﬁk ARdBanngdBTAﬁngk}

= gr, Ar,BCn, B'AL g,

2
_n

2
= % gt An B

0.2

2
= 22 |lde, I3

ggk ARdBBTAgngk (C—14)

E||T5P| = E|(gh,nx, ) (8k,0r,,)" |
=F [ng{kan,dnfT{q,ngk] (C-15)

_ T
- ng Can,d ng )

where due to the real-valued notation of the system Cx, = E {XRXQ = %Ig]\[t

and Cp, = FE {annﬁd] = %IQNT. Moreover, dg, = gf, Ar,B.
By replacing (C-11), (C-12), (C-13), (C-14) and (C-15) into (C-5), the
SINRj, is expressed by
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1 c 12
}|dr, by,

2
1 K
+ 2 Zi:l |de€R¢
g, by,

2
K
+ Zi:l | de ER;

SINRy = ————
3 2tk ‘de hg,

2 2 2
+ %l HdeHQ + ggkCan’ngk
2

S ‘dehRi * 4 02 [|d, |5 + 28, G, , 8.

(C-16)

Finally, by replacing (C-16) into (C-3), the ergodic achievable rate per
real-valued channel as in (6-5) reads as

Iy, =FE [é log, <1 + [dr i | )]

Zf;k |de hg, 2+Zf<:1 | dr,€R; 2+‘7721 | |de | ’§+2g§k Can,d ERy,

(C-17)
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