

Alexandre Ferreira Novello

A Novel Solution to Empower Natural Language Interfaces

to Databases (NLIDB) to Handle Aggregations

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-
graduação em Informática of PUC-Rio in partial
fulfillment of the requirements for the degree of
Mestre em Informática.

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro

April 2021

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

Alexandre Ferreira Novello

A Novel Solution to Empower Natural Language Interfaces

to Databases (NLIDB) to Handle Aggregations

Dissertation presented to the Programa de Pós-graduação
em Informática of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Informática.
Approved by the Examination Committee.

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Prof. Antônio Luz Furtado
Departamento de Informática – PUC-Rio

Prof. Luiz André Portes Paes Leme
UFF

Rio de Janeiro, April 23th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

All rights reserved.

Alexandre Ferreira Novello

The author graduated in Computer Science from the Federal

University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil in

1999. He joined the Graduate Program in Informatics at the

Pontifical Catholic University of Rio de Janeiro (PUC-Rio) in

2019.

Bibliographic data

Novello, Alexandre Ferreira

A Novel Solution to Empower Natural Language Interfaces
to Databases (NLIDB) to Handle Aggregations Alexandre
Ferreira Novello; advisor: Marco Antonio Casanova. – Rio de
Janeiro: PUC-Rio, Departamento de Informática, 2021.

v., 85. : il. ; 29,7 cm

1. Dissertação (mestrado) – Pontifícia Universidade
Católica do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Interface de Linguagem Natural
para Banco de Dados (Natural Language Interface to Database
- NLIDB). 3. Perguntas & Respostas (Question Answering - QA).
4. Bancos de Dados. 5. Processamento de Linguagem Natural
(Natural Language Processing - NLP). 6. Agregação. 7. SQL I.
Casanova, Marco Antonio. II. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

To my parents, Carlos Alberto Novello † and Áurea Stela Ferreira Novello †.

Although they left early, they gave me my most precious asset: education. You are

sorely missed.

To Lilian “Galeguinha” Lauser Albineli Novello, my friend, girlfriend, wife,

companion, lover and life partner for all the understanding and support along this

journey, all the others we have made, and those that are yet to come.

To Angelina "Nina Biju" Albineli Novello, my beloved daughter, for being our

second sun, for all the irreverence and intelligence, and for being the person I

want to serve as a model for. You make me a better person!

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

Acknowledgements

In the first place, I would like to thank, above all, my advisor Prof. Marco Antonio

Casanova for his boundless patience, for helping me find a topic that was both

challenging and suitable for a master's degree and also for having guided me in the

steps towards the publication of an article.

Further, I would like to thank PUC-Rio and CAPES for providing a tuition

scholarship. It was an honor to be part of the “Programa de Pós-graduação em

Informática”. This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code

001.

To Michael Kelly, my friend and English guru, for helping me with the language.

For my colleagues at Grupo Santa Isabel, especially Creston Fernandes, Isabel

Ferraz Magalhães and Ferdinando Valle Magalhães for understanding the

importance of this project for me and allowing me to dedicate the needed the time

to complete it.

Thanks to all the staff, professors and my classmates from PUC-Rio, for the hours

of work, study and (of course) fun. Especially to João Pedro Pinheiro, Cláudio

Escudero, Leonardo Mariano Gravina Fonseca and Caio Barbosa.

To my friends Profa. Carla Amor Divino Delgado (UFRJ), Prof. Leonardo Gresta

Paulino Murta (UFF) and Profa. Vanessa Braganholo Murta (UFF) for being my

"academic godfathers".

To Prof. Nilton Alves Junior (CBPF) for having been my first advisor in scientific

initiation and for helping me to overcome shyness and for having taught me how to

speak in public.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

Abstract

Novello, Alexandre Ferreira; Casanova, Marco Antonio (Advisor). A Novel

Solution to Empower Natural Language Interfaces to Databases

(NLIDB) to Handle Aggregations. Rio de Janeiro, 2021. 82p. Dissertação

de Mestrado – Departamento de Informática, Pontifícia Universidade

Católica do Rio de Janeiro.

Question Answering (QA) is a field of study dedicated to building systems

that automatically answer questions asked in natural language. The translation of a

question asked in natural language into a structured query (SQL or SPARQL) in a

database is also known as Natural Language Interface to Database (NLIDB).

NLIDB systems usually do not deal with aggregations, which can have the

following elements: aggregation functions (as count, sum, average, minimum and

maximum), a grouping clause (GROUP BY) and a having clause (HAVING).

However, they deliver good results for normal queries. This dissertation addresses

the creation of a generic module, to be used in NLIDB systems, that allows such

systems to perform queries with aggregations, on the condition that the query results

the NLIDB return are, or can be transformed into, a result set in the form of a table.

The work covers aggregations with specificities such as ambiguities, timescale

differences, aggregations in multiple attributes, the use of superlative adjectives,

basic unit measure recognition, aggregations in attributes with compound names

and subqueries with aggregation functions nested up to two levels.

Keywords

 Natural Language Interface to Database (NLIDB); Question Answering

(QA); Databases; Natural Language Processing (NLP); Aggregation; SQL.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

Resumo

Novello, Alexandre Ferreira; Casanova, Marco Antonio (Orientador). Uma

Nova Solução para Capacitar Interfaces de Linguagem Natural para

Bancos de Dados (NLIDB) para Lidar com Agregações.Rio de Janeiro,

2021. 82p. Dissertação de Mestrado – Departamento de Informática,

Pontifícia Universidade Católica do Rio de Janeiro.

Perguntas & Respostas (Question Answering - QA) é um campo de estudo

dedicado à construção de sistemas que respondem automaticamente a perguntas

feitas em linguagem natural. A tradução de uma pergunta feita em linguagem

natural em uma consulta estruturada (SQL ou SPARQL) em um banco de dados

também é conhecida como Interface de Linguagem Natural para Bancos de Dados

(Natural Language Interface to Database - NLIDB). Os sistemas NLIDB

geralmente não lidam com agregações, que podem ter os seguintes elementos:

funções de agregação (como contagem, soma, média, mínimo e máximo), uma

cláusula de agrupamento (GROUP BY) e uma cláusula HAVING. No entanto, eles

fornecem bons resultados para consultas normais. Esta dissertação aborda a criação

de um módulo genérico, para ser utilizado em sistemas NLIDB, que permite a tais

sistemas realizar consultas com agregações, desde que os resultados da consulta que

o NLIDB retorna sejam, ou possam ser transformados, em um resultado no formato

tabular. O trabalho cobre agregações com especificidades como ambiguidades,

diferenças de escala de tempo, agregações em atributos múltiplos, o uso de adjetivos

superlativos, reconhecimento básico de unidade de medida, agregações em

atributos com nomes compostos e subconsultas com funções de agregação

aninhadas em até dois níveis.

Palavras-chave

Interface de Linguagem Natural para Banco de Dados (Natural Language

Interface to Database - NLIDB); Perguntas & Respostas (Question Answering -

QA); Bancos de Dados; Processamento de Linguagem Natural (Natural Language

Processing - NLP); Agregação; SQL

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

Table of contents

1. Introduction 15

1.1. Natural Language Interface to Database (NLIDB) 15

1.2. Aggregation 16

1.3. Motivation 19

1.4. Contributions 22

1.5. Dissertation structure 23

2. Literature Review 24

3. GLAMORISE – A Proposed Solution to Process Aggregations 28

3.1. Black Box Integration Architecture 28

3.1.1. Preprocessor 30

3.1.2. Interface 30

3.1.3. Postprocessor 31

3.2. Aggregation Types 31

3.2.1. Aggregation Ambiguities 32

3.2.2. Superlative Adjectives 37

3.2.3. Multiple Attribute Aggregations 38

3.2.4. Aggregations of attributes with compound names 38

3.2.5. Simple Recognition of Units of Measurement 40

3.2.6. Subquery - Aggregations with timescale differences 41

3.2.7. Subquery – Nested Aggregation Functions 44

3.2.8. Ellipsis 45

3.2.9. Having clause 45

3.2.10. Limitations 46

3.3. Technology 47

3.4. Implementation 48

3.5. Repository and Reproducibility 50

3.6. Configuration 50

3.6.1. Installation 50

3.6.2. Patterns Recognition and Configuration 51

3.6.3. Integration of a new NLIDB with GLAMORISE 60

3.7. User Interface 62

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

3.7.1. Web Interface 62

3.7.2. Terminal Script Interface 67

4. Experiments 69

4.1. A Proof-of-Concept with a Mock NLIDB 69

4.2. Real NLIDB Integration 70

4.2.1. NaLIR 70

4.2.2. DANKE 75

5. Conclusions and Future Work 78

5.1. Conclusions 78

5.2. Publications 79

5.3. Future Work 79

Appendix I – A Sample of the GLAMORISE JSON Pattern Configuration File 84

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

Abbreviations

ANP Agência Nacional de Petróleo - National Petroleum Agency

GLAMORISE GeneraL Aggregation MOdule using a RelatIonal databaSE

JSON JavaScript Object Notation

KwS Keyword Search

MAS Microsoft Academic Search

NLIDB Natural Language Interface to Database

NLP Natural Language Processing

NLQ Natural Language Query

QA Question Answering

RDBMS Relational Database Management System

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

List of figures

Figure 1 – General NLIDB Architecture ... 16

Figure 2 – Benchmark questions [Affolter et al. 2019] ... 20

Figure 3 – NLIDBs comparison & benchmark questions [Affolter et al. 2019] ... 21

Figure 4 – GLAMORISE black box integration architecture 29

Figure 5 – Aggregation ambiguity – mean as adjective. 33

Figure 6 – Aggregation ambiguity – mean as verb. .. 34

Figure 7 – Aggregation ambiguity – Preprocessor recognizes correctly............... 34

Figure 8 – Superlative adjective example.. 37

Figure 9 – Standard Spacy Pipeline ... 39

Figure 10 – Spacy Pipeline Customized by GLAMORISE 40

Figure 11 – Aggregations with timescale differences example 43

Figure 12 – Nested Aggregation Functions example .. 44

Figure 13 – Having clause example .. 46

Figure 14 – GLAMORISE Classes Diagram .. 50

Figure 15 – Web Interface – Main Screen ... 63

Figure 16 – Web Interface – NaLIR Integration – NLQ text area 64

Figure 17 – Web Interface – NaLIR Integration – Result 65

Figure 18 – Web Interface – NaLIR Integration – Configuration Files 66

Figure 19 – Web Interface – Cross-Site Scripting (XSS) 67

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

List of tables

Table 1 – ANP Table ... 17

Table 2 – ANP NLQs .. 70

Table 3 – NaLIR results with ANP dataset ... 74

Table 4 –MAS NLQs ... 75

Table 5 – NaLIR results with MAS dataset ... 75

Table 6 – DANKE results with ANP dataset .. 77

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

List of code samples

Listing 1 – SQL with just aggregation function .. 17

Listing 2 – SQL with aggregation function and grouping 18

Listing 3 – SQL with aggregation function, grouping and having clause 18

Listing 4 – “mean” rule in GLAMORISE JSON configuration file 34

Listing 5 – default pattern explained ... 35

Listing 6 – SQL with multiple attribute aggregations ... 38

Listing 7 – SQL with nested aggregation functions (Oracle standard) 41

Listing 8 – SQL with subquery instead of nested aggregation functions 42

Listing 9 – Code snippet - class GlamoriseNlidb, method __init__ 61

Listing 10 – Code snippet - class GlamoriseNlidb, method _nlidb_interface 61

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

Any sufficiently advanced technology is indistinguishable from magic

Arthur C. Clarke

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

1.
Introduction

1.1. Natural Language Interface to Database (NLIDB)

Question Answering (QA) is a field of study dedicated to building

systems that automatically answer questions asked in natural language.

The translation of a question asked in natural language into a structured

query in a database is also known as Natural Language Interface to

Database (NLIDB).

The general functioning of any NLIDB is essentially that

demonstrated in the architecture of the Figure 1. Initially, the user types

a query N in natural language in the user interface. The NLIDB

transforms N into a structured query Q, being SQL in the case of a

RDBMS or SPARQL in the case of a triplestore, and a result set R is

returned to the NLIDB and then presented in the user interface.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

16

Figure 1 – General NLIDB Architecture

To obtain the structured query (SQL or SPARQL) used to query

the database that will give the answer, the question in natural language

goes through several processing steps such as: (1) question analysis; (2)

phrase mapping; (3) disambiguation and (4) query construction.

1.2. Aggregation

Let us assume that the following database table is used in our

examples. The knowledge domain of this table is the production of oil

fields in Brazil. The data is released by the National Petroleum Agency

(ANP)1.

1 http://www.anp.gov.br/

http://www.anp.gov.br/
DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

17

Name Type

FIELD TEXT

BASIN TEXT

STATE TEXT

OPERATOR TEXT

CONTRACT_NUMBER TEXT

OIL_PRODUCTION REAL

GAS_PRODUCTION REAL

MONTH INTEGER

YEAR INTEGER

Table 1 – ANP Table

Aggregation queries could have the following elements:

aggregation functions (as count, sum, average, minimum and

maximum), a grouping clause (GROUP BY) and a having clause

(HAVING). For example, the natural language question: “How many

fields are there in Paraná? ” would be translated to the following SQL

query:

Listing 1 – SQL with just aggregation function

In this example, the aggregation function is count. Another

example involving grouping could be: “What was the maximum

production of oil in the state of Ceará per field?” The SQL query would

be:

SELECT COUNT(DISTINCT field)

FROM anp

WHERE lower(state) like '%paraná%'

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

18

 Listing 2 – SQL with aggregation function and grouping

Note that this query has the additional clause GROUP BY, that is,

in addition to the aggregation function, it also uses grouping. The

ORDER BY is just a small addition to facilitate visualization of the

results.

Another example involving the clause HAVING could be: “What

was the mean gas production per field with production greater than 100

cubic meters?” In this case the SQL query would be:

Listing 3 – SQL with aggregation function, grouping and having clause

The attentive reader will notice that the way the data is stored in

the database also influences the answer given to the natural language

questions. In this way, the modeling of the database must be designed in

order to meet the responses expected by users and, at the same time, the

lay user must have some notion of what granularity and how the

information is stored in the database.

SELECT field, MAX(oil_production) AS max_oil_production

FROM anp

WHERE lower(state) like '%ceará%'

GROUP BY field

ORDER BY field

SELECT field, AVG(gas_production) AS avg_gas_production

FROM anp

GROUP BY field

HAVING AVG(gas_production) > 100

ORDER BY field

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

19

1.3. Motivation

One of the less well-solved tasks in NLIDBs is the treatment of

questions with aggregation, especially when the question is on another

timescale in relation to the stored data and it is necessary to perform a

conversion. For example, consider the question: "What was the average

yearly compensation for employees in 2020?" If the stored data related

to compensation is on a weekly scale, it is necessary to understand that

the question is on an annual scale and perform the equivalent operation.

Note that, in this case, it is not enough to multiply the average weekly

remuneration by 52, as the salary may have changed over the year as well

as other sporadic events, such as vacations, or events with specific

periodicity, such as bonuses. It is necessary to filter the sum of all 2020

tuples of compensation per employee and only then perform the average.

How can we substantiate the statement that one of the less well-

solved tasks in NLIDBs is the treatment of questions with aggregation?

To support this statement, we present a survey that compares 26 different

NLIDBs [Affolter et al. 2019]. To validate this comparison, 10 questions

in natural language were asked that cover different possible aspects of a

structured query (join, filter, aggregation, ordering, union, subquery and

concept) shown below. Note that only (Q7) is a question with

aggregation.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

20

Figure 2 – Benchmark questions [Affolter et al. 2019]

With these questions in mind, a comparative analysis of the

NLIDBs was made, demonstrating which were capable of answering

each question correctly, or partially or with a reduced syntax, and which

could not. In some cases, it was unclear in the paper if they could answer

or not. The result is shown in Figure 3. If we look at the column referring

to Q7, we will see that, of the 26 NLIDBs, only 2 (7.69%) managed to

answer the aggregation question correctly, which supports the claim that

most NLIDBs do not handle aggregation questions well.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

21

Figure 3 – NLIDBs comparison & benchmark questions [Affolter et al. 2019]

Furthermore, the survey compared the 10 benchmark questions

with corpora questions: Yahoo! QA Corpus L62 (more than 4 million

questions) and GeoData250 (250 questions against a database). It found

that found that the majority of the corpora questions belonged to the Q1

and the Q4 types. Note that Figure 3 shows that the majority of the

NLIDBs were able to answer Q1 correctly and one third were able to

answer Q4 correctly. What if it were possible to provide NLIDBs already

capable of answering most questions with the added ability to answer

questions with aggregation? This is the proposition of GLAMORISE

(GeneraL Aggregation MOdule using a RelatIonal databaSE).

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

22

1.4. Contributions

NLIDB systems usually do not deal with aggregations, but they

produce good results for normal queries. The contribution of this

dissertation is the creation of a generic module, called GLAMORISE, to

be used in NLIDB systems. This module allows NLIDB systems to

perform queries with aggregations, on the condition that the result of the

NLIDB is, or can be transformed into, a result set in the form of a table.

Hence, it can also be used with triplestore (RDF store) NLIDBs with the

proviso that the result is presented in a tabular format. The tabular format

is returned to GLAMORISE in JSON format. The dissertation addresses

some aggregations with specificities, including ambiguities, timescale

differences, aggregations in multiple attributes, the use of superlative

adjectives, basic unit measure recognition, aggregations in attributes

with compound names and subqueries with aggregation functions nested

up to two levels.

To test the proposed approach, GLAMORISE was first integrated

with a mock NLIDB, which will be described in Section 4.1, and tested

with 22 static questions as a proof-of-concept. Then, GLAMORISE was

integrated with NaLIR [Li and Jagadish, H. V. 2014], a real NLIDB. As

shown in Figure 3, NaLIR is the NLIDB that performed best in this

comparison, including answering questions with aggregation. The

aggregation layer was removed from NaLIR, leaving GLAMORISE to

address this issue, while NaLIR addressed the remaining issues involved

in an NLIDB. This integration is described in Section 4.2.1.

To validate the results of the GLAMORISE/NaLIR integration, we

used two datasets: first, we used the 22 questions developed for the ANP

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

23

dataset as a proof-of-concept; then, we adopted 17 questions from the

Microsoft Academic Search (MAS). The original NaLIR work

considered 194 NLQs2, but one of them was duplicated (‘return me the

author who has the highest number of papers containing keyword

"Relational Database".’). Of these, 99 NLQs referred to questions with

aggregation but, within these, the linguistic and structural patterns

recurred repeatedly. So, we chose 17 NLQs that represented the universe

of questions contained in the article.

Another experiment that is being carried out is the integration of

GLAMORISE with another NLIDB called DANKE [García 2020;

Izquierdo et al. 2018, 2020; Torres Izquierdo et al. 2020], which is a

NLIDB that lacks the ability to answer aggregation questions. DANKE

is an NLIDB of the Keyword Search (KwS) type and, as such, are unable

to answer questions with aggregation [Affolter et al. 2019]. This is

described in the Section 4.2.2.

1.5. Dissertation structure

The rest of this dissertation is organized as follows. Chapter 2 is a

literature review. Chapter 3 describes our solution, its features and

limitations. Chapter 4 evaluates performance against benchmark

questions. Chapter 5 contains our conclusions. Finally, Chapter 0

contains the references.

2https://raw.githubusercontent.com/umich-dbgroup/NaLIR/master/mas_all.nlqs

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

24

2.
Literature Review

SQAK (SQL Aggregates using Keywords) [Tata and Lohman 2008] is a

framework that allows users to perform queries with aggregations using

only keywords, with no knowledge of the database schema or SQL. The

concept of Simple Query Network (SQN), which is similar to the Steiner

Tree, but with better results for this purpose, was created. A greed

algorithm was developed to find the minimal SQN, since this is an NP-

Complete problem, and used to build the SQL. Our work and SQAK

deals with similar problems, aiming at the use of keywords for the final

translation into SQL. The difference is that their work as well as others

that we will refer to in this section are complete and monolithic NLIDBs,

while ours aims at enabling existing NLIDBs to handle aggregations,

which they do not perform well.

NaLIR [Li and Jagadish, H. V. 2014; Li and Jagadish 2016; Li and

Jagadish, H. V 2014] is a generic NLIDB capable of handling

aggregations, nesting and various types of joins. The Stanford NLP

Parser is used to convert from natural language into a parser tree. The

approach followed is to get feedback from the user and return the

adjusted parse trees back to the user in the form of natural language so

that they can select the natural language question that makes the most

sense or revise accordingly. In our view, this exchange of information

jeopardizes the user experience, as they have the impression that are

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

25

carrying out work that should be done by the NLIDB, regardless of the

extent to which it ensures that the resulting query is correct after the

adjustments. However, the version we use of the NaLIR integrated in our

work does not have the layer called interactive communicator, returning

an answer automatically to the user, since in our work, we prefer the

approach of generating a structured query automatically from the natural

language query. Still, NaLIR has good results and is considered one of

the best academic NLIDBs.

In [Gupta et al. 2012] a novel approach was presented to building

NLIDB based on dependency trees with the use of Computational

Paninian Grammar (CPG) [Bharati et al. 2014] in which the relationships

are syntactic-semantic. CPG was originally developed for Indian

languages and afterwards gained an English version. They argued that

the use of this technique makes the trees more semantic than other kinds

of dependency trees, thus making them easier to map to a SQL. In the

following article [Gupta and Sangal 2013], the framework was extended

to handle aggregation processing with different types of aggregation

operations in natural language, including quantitative and qualitative

aggregations, and those combining quantifiers or relational operators

with aggregations. A separate layer in the querying process was devised:

first the SQL query is generated and processed in the RDBMS without

the aggregation and then the aggregation is processed in the returned

result set. The whole concept is explained in detail in Gupta’s master’s

dissertation [Abhijeet Gupta 2013]. This work served as an inspiration

regarding the isolation and classification of the parts that compose the

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

26

aggregation and the processing of the aggregation in the returned result

set described in Section 3.

Another work was also developed that followed the two-stage

strategy. First, an NLIDB was created without the ability to process

aggregations (or subqueries) [Pazos R et al. 2016], called ITCM NLIDB,

and a second work [Pazos R et al. 2018] added a module capable of

carrying out these activities. The NLIDB kernel is composed of three

main modules: a lexical analyzer (tags the words in the lexicon with their

syntactic categories); a syntactic module (leaves only one syntactic

category for each lexical component and disregards irrelevant ones); and

a semantic module (maps the result of the previous steps in tables and

columns in the database). Although simpler than previous works, the

main contribution of this work was to identify recurring problems in how

aggregations (and subqueries) are stated in natural language, and to

propose solutions to these problems. The problem is that, as in NaLIR,

they did not seek an automatic solution, but returned the ambiguities for

the user to resolve, which, in our opinion, makes the process less user-

friendly. Nevertheless, this work was useful as it confirmed various

recurring problems when dealing with queries in natural language with

aggregations, which were also identified by us.

One survey on the subject also entered our literature search.

[Affolter et al. 2019] was published in the 2019 VLDB. It has already

been commented on in Section 1.3 when discussing the motivation for

our work. In addition to the comparison of the 26 different NLIDBs, the

contribution of this paper to our work was the confirmation that

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

27

questions with aggregation are in fact a problem that NLIDBs have

difficulty dealing with.

While ours and most of the works related to NLIDB that deal with

the problem of aggregation focus on questions, an interesting paper is

[Pinheiro et al. 2020]. Rather than focusing on questions with

aggregation, aggregation is leveraged as one of the techniques to be

employed when presenting answers to users should there be a sizable

result set. Moreover, another technique used in the presence of a large

result set is to establish a dialogue with the user in order to reduce the

size of said set by refining it.

Two additional papers that are tangential to our undertaking were

also read. These handle natural language queries converted into

structured queries to address other problems. TiQi, solution for Software

Traceability, enables users to build natural language trace queries that

are converted into SQL [Pruski et al. 2015]. In SpeakQL the approach is

to facilitate the construction of SQL queries using spoken queries in

mobile devices [Shah et al. 2019].

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

28

3.
GLAMORISE – A Proposed Solution to Process
Aggregations

3.1. Black Box Integration Architecture

As mentioned previously, NLIDB systems usually do not deal with

aggregations, but they return good results for normal queries. In this

work, we propose a generic module, called GLAMORISE, to be used in

NLIDB systems. This module allows NLIDB systems to perform queries

with aggregations, as long as the result is, or can be transformed into, a

result set in the form of a table.

The integration of GLAMORISE with a NLIDB can be done in

two ways. If it is possible to have access to the NLIDB source code, the

proposed GLAMORISE functionalities can be integrated into its source

code. This solution is called white box and the architecture would be the

same as in Figure 1. If it is not possible to have access to the source code

of the integrated NLIDB, a black box solution should be adopted, as

shown in Figure 4.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

29

Figure 4 – GLAMORISE black box integration architecture.

Initially, the user types a query N in natural language in the user

interface (arrow 1). The GLAMORISE Preprocessor removes the

aggregation elements and transforms N into a query N’ without

aggregation, in natural language, and registers all the elements related to

the aggregation, to be subsequently used by the Postprocessor. Then, N’

is sent to the Interface layer (arrow 2), which is responsible for the

integration with the conventional NLIDB (arrow 3). After which, the

query is processed by the conventional NLIDB and converted into a

structured query Q (arrow 4), being SQL in the case of a RDBMS or

SPARQL in the case of a triplestore, and a result set R without any

aggregations is returned in a tabular format (arrows 5, 6 and 7).

Additionally, the metadata of the data result set can be retrieved to

process more intricate questions. To improve the result given by

conventional NLIDB and depending on the implementation of the

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

30

integration made in the Interface layer, the steps corresponding to

arrows 3, 4, 5 and 6 could be iterated more than once until the result

achieved is satisfactory. Following this, the GLAMORISE

Postprocessor stores R as a table in a local SQLite RDBMS, processes

the aggregation over the stored result set R by creating a SQL query

Q’(arrow 8), resulting in the final result set with aggregations R’(arrow

9), and presents R’ to the user interface (arrow 10).

3.1.1. Preprocessor

The purpose of the Preprocessor is to map the keywords in natural

language to the respective aggregation functions, identify whether the

query in natural language also has a grouping clause (GROUP BY) or a

having clause (HAVING).

These keywords are removed or substituted from the query to

guarantee that the conventional NLIDB will not be confused by their

presence, leading to incorrect mapping. More examples will be shown

later on in this section.

3.1.2. Interface

The Interface layer is responsible for the integration with the

conventional NLIDB. Its implementation is dependent on the underlying

conventional NLIDB. More details of the implementation will be

described in Section 3.4.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

31

3.1.3. Postprocessor

The Postprocessor is responsible for constructing the SQL query,

for analyzing the metadata saved in the Preprocessor stage and

including the aggregation functions (sum, max, min, avg and count), as

well as recognizing the fields in which these functions should be applied

in the received result set. Then, an identical process is undertaken for

grouping clause (GROUP BY), reading the metadata to determine if

there is a grouping, which fields are involved, and mapping them in the

result set.

All fields identified as belonging to the GROUP BY clause are

inserted in the SELECT and the ORDER BY clauses, the latter for the

user's convenience only.

In this layer we also detect if there is a having clause (HAVING)

and its conditions.

Another step is conducted to analyze any timescales and nested

aggregation that should be converted to a subquery.

It is important to say that it is possible that some fields are only

found by the conventional NLIDB. For these fields, this layer also

analyzes their inclusion in the SELECT clause of and GROUP BY, the

latter if it exists.

3.2. Aggregation Types

We first note that the version of GLAMORISE considered in this

dissertation is prepared to accept questions only in English. Nothing

prevents it from being extended to other languages, since the linguistic

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

32

patterns used exist in most languages and there are packages of different

languages in the NLP libraries used by GLAMORISE and integrated

NLIDBs.

This section describes all specificities related to the aggregations

covered by GLAMORISE. All examples are based on the sample table

shown in Table 1 of Section 1.2.

Examples of how to configure these patterns in the GLAMORISE

configuration file are shown in Appendix I.

3.2.1. Aggregation Ambiguities

We must separate the two types of ambiguities that may occur.

First, there are ambiguities that can be resolved directly by the NLIDB,

such as a keyword that is mapped to more than one element of the

database (table, attribute, data). Second, there are those which involve

aggregation, i.e., a word that should be understood as part of the

aggregation, but that can be of another syntactic-semantic nature. Any

ambiguity to be addressed by the NLIDB will be resolved without our

module even being aware of it. For ambiguities directly related to

aggregations, the solution applied is to recognize the true nature of the

word according to the pattern of the utterance.

The two sentences below have the same intent and should be

translated to the same query. The only difference between them is the

word order:

What was the mean gas production per month per field?

What was the per month mean gas production per field?

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

33

We adopt spaCy3 to parse the NL sentences. spaCy outperforms

other libraries, such as NLTK and the Stanford NLP Parser, but it is not

perfect. The following two figures show the spaCy parse trees of these

sentences and the interpretation of our system:

Figure 5 – Aggregation ambiguity – mean as adjective.

3 https://spacy.io/

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

34

Figure 6 – Aggregation ambiguity – mean as verb.

The word “mean” was recognized in the first parse tree as ADJ,

which means an adjective; but it was wrongly recognized in the second

parse tree (corresponding to the second question) as VERB, which means

a verb, despite the Preprocessor recognizing the true intent of “mean”

and converting it to an avg (average) aggregation function, as shown in

the figure below.

Figure 7 – Aggregation ambiguity – Preprocessor recognizes correctly.

This behavior is possible because, in our experiments, we realized

that the best results were not in the analysis of the Part-Of-Speech (POS)

of the keyword, in the above case "mean", but the POS of the words that

come after the keyword. The mechanism of operation and configuration

of keywords and patterns will be explained in detail in Section 3.6.2.

We will use this case to demonstrate how GLAMORISE settings

in JSON work. To recognize "mean" we have a rule with the following

linguistic pattern.

"mean example": {

 "reserved_words": ["mean"],

 "pre_aggregation_functions": "avg",

 "pre_cut_text": true

}

Listing 4 – “mean” rule in GLAMORISE JSON configuration file

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

35

The first declaration is the name of the rule, in this case "mean

example". Then, we have the definition of the reserved words of this rule,

using the "reserved_words" parameter; in the example, only "mean" is

set as a reserved word. Next, the "pre_aggregation_functions" parameter

indicates which aggregation functions to use, in the case "avg". Finally,

since the "pre_cut_text" parameter is set to true, GLAMORISE cuts the

reserved word "mean" so as not to confuse the integrated NLIDB that is

not prepared to deal with aggregations.

Within each rule, after each reserved word, a set of words is

expected, and they must have certain Part-Of-Speech (POS) and relations

in the dependency tree. This is indicated through the "specific_pattern"

parameter, or by the parameter "default_pattern", which is valid for all

rules that do not have a "specific_pattern" defined, as is the case with the

rule in Listing 5. The "default_pattern" is defined below.

"default_pattern": [{"POS": "ADV", "OP": "*"},

 {"POS": "ADJ", "OP": "*"},

 {"POS": "NOUN", "LOWER": {"NOT_IN":

["number"]}}

]

Listing 6 – default pattern explained

This parameter defines the standard way in which a field is found.

Used in conjunction with the rule of Listing 7, this use of the default

pattern says that the reserved word (or keyword) “mean” must be

followed by an optional adverb ({"POS": "ADV", "OP": "*"}), an

optional adjective ({"POS": "ADJ", "OP": "*"}) or a noun ({"POS":

"NOUN", "LOWER": {"NOT_IN": ["number"]}}), which is the field to

be identified. This noun can be simple or compound (as discussed later).

The declaration ("LOWER": {"NOT_IN": ["number"]}) indicates that

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

36

"number" and "number of" are reserved words that are often used to

mean a counting function and the word "number" is a noun, so it should

not be considered for field match purposes. For example, in the part of

the sentence "mean gas production", the "mean" is taken from the

"reserved_words" of the rule in Listing 8. This rule uses

"default_pattern" because it does not have "specific_pattern" defined and

"gas production" matches the “default_pattern”, because it is a noun.

Remembering that "default_pattern" waits for an adverb (optional), an

adjective (optional) and a noun, which "gas production" matches.

Therefore, the rule as a whole works, as "mean" matches

"reserved_words" and "gas production" matches the “default_pattern”.

Examples of how to configure these patterns in the GLAMORISE

configuration file are shown in Appendix I and the parameters of the

rules are described in the Section 3.6.2.

The second kind of ambiguity that we deal with uses terms such as

“greater than”, “more than”, “less than”. This kind of expression could

be translated into two different clauses in SQL depending on the database

schema. If the condition is directly related to the value of a field in a

table, the condition is translated into a WHERE clause. If it is related to

any grouping action, the condition is translated into a HAVING clause.

As we do not have access to the database schema that NLIDB will query,

we do not know in advance which of the two cases we are dealing with.

Bearing that in mind, we save the expression to be used later by the

Postprocessor in the HAVING clause. We also do not remove the

expression from the query communicated to the NLIDB since, if the

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

37

NLIDB can interpret it, then the expression has an impact on the

WHERE clause, otherwise the NLIDB will ignore the expression.

3.2.2. Superlative Adjectives

Superlative adjectives could be suppressed and, depending on the

type of superlative, a min or max function is added to the metadata of the

aggregation functions; the respective aggregate field is also added. The

superlative adjective is then removed from the query to not confuse the

NLIDB with a term that it cannot handle. An example is presented

below:

Figure 8 – Superlative adjective example

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

38

The min aggregation function is identified due to the presence of

the superlative adjective “lowest”; also, “gas production” is identified as

the related aggregate field due to the pattern configuration described in

Section 3.6.2.

3.2.3. Multiple Attribute Aggregations

An aggregation may have more than one attribute. For example,

consider again the questions “What was the mean gas production per

month per field?” and “What was the per month mean gas production

per field?”. The Postprocessor will construct the following SQL query:

SELECT year, month, field, AVG(gas_production) AS

avg_gas_production

FROM nlidb_result_set

GROUP BY year, month, field

ORDER BY year, month, field

Listing 9 – SQL with multiple attribute aggregations

Another variation for the question would be: “What was the mean

gas production per month and field?”. Usually, the keyword “and” is

used for conditions in the WHERE clause, but the Preprocessor could

be configured to understand that an “and” preceded by a “per | by field is

a keyword for the GROUP BY clause.

3.2.4. Aggregations of attributes with compound
names

Attributes may be expressed as compound names such as “oil

production”. A conventional NLIDB must deal with compound names to

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

39

build the query without aggregations. But, this kind of attribute name

may also be present in the aggregation functions, grouping or having

clauses. To handle this, the Preprocessor resorts to the use of a spaCy

parse tree to identify nouns that are compound names. It also identifies,

through patterns, the use of "of" connecting two nouns. Thereafter, the

Interface attempts to associate the keywords with the NLIDB result set

to identify which keywords match the corresponding attributes within the

NLIDB result set.

In fact, this treatment is done before the steps realized by

GLAMORISE described in Figure 4. spaCy natively has a pipeline for

treating NLQs. It also allows you to create your own processing steps

and include them in this pipeline. To address this issue and simplify the

treatment of compound nouns made by the later stages of GLAMORISE,

we created a processing step and added it to the end of the spaCy

pipeline. This step converts compound nouns into a single noun. We can

see below how the sentence looks in the standard spaCy tree in Figure X

and how it looks after the modification made by GLAMORISE in Figure

Y, This technique simplifies the configuration of GLAMORISE,

described in Section 3.6.2.

Figure 9 – Standard Spacy Pipeline

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

40

Figure 10 – Spacy Pipeline Customized by GLAMORISE

3.2.5. Simple Recognition of Units of Measurement

Using the same technique, another step is added to the end of

spaCy pipeline to deal with the simple recognition of units of

measurement.

The presence of units of measurement can confuse or make the

GLAMORISE configuration very laborious, since the format that they

take varies greatly. Hence, GLAMORISE allows units of measurement

to be included in the configuration file to be recognized later. It is beyond

the scope of this work, although it is an interesting topic, to perform any

manipulation of units of measurement, such as converting from one unit

to another. For example, the question could be asked in one unit of

measurement and the data could be stored in in another unit of

measurement, which would require a conversion to deliver the correct

answer.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

41

3.2.6. Subquery - Aggregations with timescale
differences

The only advanced treatment of units of measurement considered

in this dissertation is when we have time scales with each unit of time

having its own column in the database, for example, one column for year,

another for month, another for day, etc.

To the best of our knowledge, this is a special condition in

aggregation for which we did not find a solution in other works. The

problem becomes apparent when the data is stored in one timescale and

the question is asked in another. Going back to our ANP table, an

example could be: “What was the average yearly production of oil in the

state of Alagoas?” The problem would arise if the data stored in the table

is on a monthly basis. The ANP table, shown in Table 1, has two

attributes, one for the year and another for the month, in addition to

production (oil or gas). That is, each tuple associates an oil production

value to one year and one month. The equivalent SQL query on Oracle

that accepts nested aggregate functions would be:

SELECT AVG(SUM(oil_production))

 as avg_sum_oil_production

FROM nlidb_result_set

WHERE state = 'Alagoas'

GROUP BY year

Listing 10 – SQL with nested aggregation functions (Oracle standard)

The reader will notice that this query is different from the previous

examples. Namely, there are two aggregation functions: the first one

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

42

performs the sum of the oil production grouped by the attribute year,

while the second computes the average over all years.

For convenience, the first implementation of GLAMORISE (see

Section 3.3) uses SQLite4 to store the metadata and process the

aggregation in the result set. Since, at the moment, SQLite does not

support nested aggregation functions, such as “AVG(SUM(field))”, the

above NL query has to be translated to:

SELECT AVG(sum_oil_production)

 as avg_sum_oil_production

FROM(SELECT SUM(oil_production)

 as sum_oil_production

FROM nlidb_result_set

WHERE state = 'Alagoas'

GROUP BY year)

Listing 11 – SQL with subquery instead of nested aggregation functions

The Preprocessor converts the adjective, in the case of the

example, "yearly", to its corresponding noun, in this case, "year". When

it receives the NLIDB result set for this type of question, it also receives

the result set with information regarding the timescale in which the data

is stored (daily, monthly, yearly, etc.) depending on the columns

returned. If the question were asked in a different scale, the

Postprocessor would translate the aggregation accordingly (SUM(field)

and GROUP BY).

Erro! Fonte de referência não encontrada. Figure 11 shows

how the Preprocessor recognizes the sentences and separates the

"average" interpretation, which is the normal aggregation that will be

4 https://www.sqlite.org/

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

43

made, from the "yearly" interpretation, which is the timescale

aggregation that will be made, under the form of a subquery, depending

on the timescale that is stored in the database.

Figure 11 – Aggregations with timescale differences example

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

44

3.2.7. Subquery – Nested Aggregation Functions

A common pattern to be found in a NLQ is, for example, “highest

number of” or “largest number of”. This kind of pattern is translated to

an SQL query using two aggregation functions, in this case, a max

function followed by a count function, which are nested due to the

limitations of SQLite. One example is shown below:

Figure 12 – Nested Aggregation Functions example

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

45

3.2.8. Ellipsis

Ellipsis is a broad subject and difficult to treat. In this dissertation,

we tackle two types that are common in NLQs with aggregations. One

of them is when GLAMORISE is faced with the use of a max, min or

avg aggregation function over a string field. In this case, it realizes that

some term, such as "number of", is implied in the sentence and solves

the question by synthesizing a nested aggregation function subquery, as

in the previous section. In this subquery the count aggregation function

is first applied to the string field and its result is returned to the outer

query to apply the max, min or avg function. The other case that is dealt

with is when we have a having clause and the aggregation field and

function is implied by the context of the rest of the sentence, as illustrated

in Figure 13.

3.2.9. Having clause

Some NLQ patterns are translated into having clauses with

conditions. For example, in the sentence "What was the mean gas

production per field with production greater than 100 cubic meters?", the

keywords "greater than" can be configured to capture a having clause.

Figure 13 illustrates the interpretation of this sentence.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

46

Figure 13 – Having clause example

3.2.10. Limitations

It was decided not to deal with qualitative queries. Aggregation

functions can be thought of as being of two types. Quantitative

aggregation functions have a direct mapping to aggregation functions,

such as max, min, avg, count, sum, and qualitative aggregation functions,

such as good, bad, high, low, etc. , as discussed in [Abhijeet Gupta 2013;

Gupta and Sangal 2013]. Databases do not handle qualitative

aggregations natively as there is no direct mapping to aggregation

functions. The problem we identified in dealing with qualitative

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

47

aggregation functions is the lack of standardization: what is good or near

for one person is not good or near for another.

In addition, as stated earlier, it is outside the scope of this work an

advanced treatment of units of measures, such as conversions, all the

nuances involving ellipsis, and also all possible cases involving

subqueries, in addition to those treated in this section. We only dealt with

a few cases involving subqueries and only on two levels. One type of

subquery not covered, but common in natural language, is when the outer

query has no aggregation and the nested query has aggregation, such as

"Give me the fields that produce more oil than the average production of

all fields ".

3.3. Technology

The GLAMORISE prototype was implemented in Python5 with the

help of the spaCy6 library, to handle natural language processing.

Additionally, it used regular expressions (regex) to identify some

patterns that did not depend on the parse tree.

spaCy [Honnibal and Montani 2017] is an open-source software

library for advanced natural language processing, written in Python and

Cython7. Cython itself is a superset of Python and designed to give C-

like performance. Using this combination, spaCy delivers good

performance. It features convolutional neural network models for Part-

Of-Speech (POS)-tagging, parse tree [Honnibal and Johnson 2015], text

5 https://www.python.org/
6 https://spacy.io/
7 https://cython.org/

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

48

categorization and named-entity recognition (NER). In our work, the

spaCy functionalities of POS-tagging and parse tree are used.

The result is presented to the user with the help of a Pandas

Dataframe. Pandas8 is an open-source library which provides easy-to-use

high-performance data structures and data analysis tools for the program

language.

GLAMORISE uses SQLite as its internal database. SQLite9 is a

relational database management system (RDBMS) written in C.

Contrasting with many other database management systems, SQLite is

not a client–server database engine. Rather, it is embedded into the end

program. It implements most of the SQL standard, generally following

the PostgreSQL syntax.

The Web version was developed in Flask10 and used Bootstrap11 to

make it more visually pleasing.

Git12 and Github13 were used as version controller and version

control repository, respectively.

3.4. Implementation

The current code consists of 8 classes. The main class is the

Glamorise class, which is responsible for all independent

implementation of the connected NLIDB. Additionally, this class

8 https://pandas.pydata.org/
9 https://www.sqlite.org/
10 https://palletsprojects.com/p/flask/
11 https://getbootstrap.com/
12 https://git-scm.com/
13 https://github.com/

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

49

includes the Preprocessor and Postprocessor layers, illustrated in

Section 3.1.

The GlamoriseNlidb class is aware of the existence of the

integrated NLIDB and implements the Interface layer, described in

Section 3.1. This class has an instance of the class that integrates with

the NLIDB. We implemented two classes of this type: NlidbMock,

which is the class that implements the mock NLIDB used by the proof-

of-concept; and the NlidbNalir class, responsible for the integration with

the NLIDB NaLIR, used as the real NLIDB integrated in this work. A

NlidbDanke class was also implemented by the DANKE team to

perform the integration with this NLIDB. These three classes have a

common ancestor, which is the NlidbBase class that holds the part of the

code common to all NLIDB integration classes.

We still have two classes that are responsible for the steps that were

inserted in the spaCy pipeline, as mentioned before. CompoundMerger

is responsible for attributes with compound names and

UnitsOfMeasurementMerger is responsible for the treatment of units

of measurement. Both inherit from a class that has the necessary common

code, called Merger.

Figure 14 shows the hierarchy of the GLAMORISE classes.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

50

Figure 14 – GLAMORISE Classes Diagram

3.5. Repository and Reproducibility

All code, NLQs datasets and links to the databases can be found at

https://github.com/novello/GLAMORISE for reuse or reproducibility of

the experiments and results.

An online version of the ready-to-use experimental system can be

found at http://glamorise.gruposantaisabel.com.br/

3.6. Configuration

3.6.1. Installation

The root path of the project on Github has a README file with

all installation instructions.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

51

3.6.2. Patterns Recognition and Configuration

GLAMORISE pattern recognition is implemented through rules

that use reserved words followed by words that have a certain Part-Of-

Speech (POS) or a certain relationship in the dependency tree. An

intuitive way to describe how these rules work is to describe what are the

parameters in the GLAMORISE configuration files.

The entire operation of GLAMORISE is governed by two JSON

files. The main GLAMORISE configuration file defines how text

patterns will be recognized and some visual parameters concerning how

the results are exhibited, and the interface configuration file defines how

the relationship with the integrated NLIDB will be governed, as detailed

below:

Visual parameters:

 show_dependency_parse_tree – indicates whether the

dependency parse tree is going to be shown in the result.

It is a Boolean parameter.

 show_recognized_patterns – indicates whether the

patterns that are recognized by GLAMORISE will be shown

in the result in a visual way. It is a Boolean parameter.

 total_row – indicates whether the Pandas dataframe with

the result set is shown in the result with a total row line. It

is a Boolean parameter.

 debug – indicates whether the main internal properties of

GLAMORISE layers (Preprocessor, Interface and

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

52

Postprocessor) are going to be shown in the result. It is a

Boolean parameter.

Pattern parameters:

 noun_lemmatization – indicates whether the fields found

will be lemmatized or not. The main idea is to be able to

save plural nouns in the singular format, so that the logic

of the system has to deal only with singular nouns. It is a

Boolean parameter.

 count_with_distinct – indicates whether DISTINCT is

going to be applied in a field when using a count

aggregation function. The idea behind this is that,

depending on how the data is stored in the database or

how the result is given by the integrated NLIDB, there can

be repetition of values for the tuples returned to a specific

field and semantically, when it is asked how many items a

field has, the intention behind this question is to know the

number uniquely, without the repeated values. It is a

Boolean parameter.

 pre_before_replace_text – indicates some terms that

must be replaced in the NLQ in order to facilitate the

match and interpretation of the NLQ. In the case of this

option, the substitution is made before the NLQ is

delivered for the interpretation of GLAMORISE. Usually

this option is used in order to adjust some match problem

in the integrated NLIDB. We do not recommend the use of

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

53

this functionality, we believe that the best way is to

improve the way the match is made in the integrated

NLIDB, use this option only as a workaround while this is

not done. We also do not recommend using this feature

for the same reasons as above.

 pre_after_replace_text – The same as the previous one,

except that in this case the NLQ is delivered in its original

form to GLAMORISE and this replacement only happens

after the interpretation of GLAMORISE. It affects only the

prepared NLQ that will be sent to the integrated NLIDB.

 units_of_measurement – is a list of strings with all units

of measure that could appear in the domain of the specific

database.

 compound_pattern_dep and compound_pattern_of –

these parameters define how the compound names will

be identified by the step that is added by GLAMORISE in

the spaCy processing pipeline. It is a JSON object and the

format is the rule-based Matcher component of spaCy,

whether we define rules involving fixed text, Part-Of-

Speech (POS) and relation between the word tokens in the

dependency tree.

 default_pattern - this is the parameter used by most of

the subsequent parameters to identify textual patterns

that define an aggregation. This parameter defines the

standard way in which a field is found. It also uses the

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

54

SpaCy Matcher component for this, and the factory-

defined way is that a key field for GLAMORISE can be

found after a keyword, defined in the subsequent rules.

After this keyword can come an optional adverb ({"POS":

"ADV", "OP": "*"}), an optional adjective ({"POS": "ADJ",

"OP": "*"}) and finally a noun ({"POS": "NOUN",

"LOWER": {"NOT_IN": ["number"]}}), which is the field to

be identified. Recalling that this noun can be simple or

compound, considering that the previous step of

identifying compound nouns has already been undertaken

and was responsible for conjoing them into a single noun

in the dependency tree. The most attentive reader will

notice the following part in the rule ("LOWER":

{"NOT_IN": ["number"]}). The reason for this is that

"number" and "number of" are reserved words that are

often used to mean a counting function and the word

"number" is a noun, so it should not be considered for field

match purposes. This can lead to a problem if the field in

the database has the word "number" in its name, in this

case the person in charge of configuring GLAMORISE

within the database needs to choose between the tradeoff

of having a field with the word "number" in the database

or use it as a keyword for the count function and adjust

the rules accordingly.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

55

 config_glamorise – this parameter is responsible for all

the other pattern configurations involving the declaration

of keywords, the expected patterns after them, and which

triggers of aggregation clauses, aggregation functions,

group by and conditions of the having clause each

keyword triggers. Each set of rules is a JSON object within

this parameter, which is freely named, and will be

described later. Each of these objects are made up of

other object parameters that define how that pattern is

recognized. These parameters will be detailed later. Those

with the prefix "pre_" are because they have direct

mapping with GLAMORISE Preprocessor layer properties.

o reserved_words – this a string list that contains

the keywords that will be used as a trigger for that

pattern recognizer;

o pre_having_conditions – when the pattern to be

recognized is a having clause, this parameter is

used to specify a having condition for each

keyword, so it is a string list with the same size of

the reserved_words parameter and contains

strings related to the conditions: ">", ">", "<", "=",

">=" and "<=".

o specific_pattern – works in the same way as the

default pattern parameter discussed previously

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

56

and serves, specifically, to override the behavior of

this parameter for a specific rule.

o pre_cut_text – indicates whether the keyword

must be cut or not from the NLQ before sending it

to the integrated NLIDB. The purpose of cutting a

keyword is to prevent the conventional NLIDB

from being confused by the presence of an

aggregation element. It is a Boolean parameter.

o pre_group_by – indicates whether the keyword

triggers a group by condition. In this case, the field

identified is going to be inserted in the SELECT,

GROUP BY and ORDER BY clauses. It is a Boolean

parameter.

o pre_aggregation_functions - when the pattern to

be recognized is an aggregation function, this

parameter is used to specify an aggregation

function for each keyword, so it is just a string if

the same function is applied to all reserved_words

or a string list with the same size of the

reserved_words parameter and containing strings

related to the aggregation functions of each

keyword. The functions usually are: "count",

"max", "min", "avg" and "sum".

o pre_subquery_replace_text – This parameter is

used by the time-scale feature which is resolved

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

57

through the subquery functionality. In this case it

is usually necessary to replace the original word,

which is an adjective for a noun, since it is

generally easier for the integrated NLIDB to match

the related field in the form of a noun. Example

"yearly" being replaced by "year".

o use_replace_text_as_group_by – This parameter

is also used by the time-scale feature. It is a

Boolean parameter. It must be set as true when

used in a timescale subquery pattern, but it must

be set to false when used with the other type of

subquery (nested aggregation function) dealt with.

o pre_subquery_aggregation_functions – works the

same as the pre_aggregation_functions

parameter, but in this case the aggregation

functions will be used in the subquery.

o remove_external_group_by – this is a trick to get

the right answer when using the nested

aggregation function, in this case it must be set to

true, and when using the timescale it must be set

to false.

The second file has parameters that define the relationship between

GLAMORISE and the integrated NLIDB, as described below:

 nlidb_field_synonym – This is the main configuration

parameter for this file. In this parameter, the matching of

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

58

several strings with the respective fields in the database is

configured. The configuration can be thought of as a table,

where the words that must match the database fields are

in the first column, separated by underscore, and in the

second column the fields in the database itself in the

format "table.column". As the strings already arrive at this

stage with lemmatized and compound names, it is not

necessary to make variations of the same word as singular

and plural or in the case of compound names it is not

necessary to register the "noun of noun" format, just the

"noun noun" format. For example, just register

“oil_production”, which the system translates if it is stored

as “production_of_oil” in the database. If a word that is

not registered in this list appears, the spaCy similarity

function that uses word vectors will be used to search for

which word has the greatest similarity with the unknown

word and so choose the best guess of field to match.

 nlidb_nlq_translate_fields – This parameter must be

avoided being used. Its idea is to replace, in the NLQ to be

sent to the integrated NLIDB, the words referring to the

fields with the database fields themselves. This property

should only be used if the integrated NLIDB match is giving

awfully bad results, since the NLQ sent to NLIDB will

undergo significant changes in terms of natural language

semantics.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

59

 nlidb_attempt_level – This parameter is dependent on

the way the integration with the NLIDB was implemented

and more about that will be said in Section 3.6.3. In the

NLIDB Mock, only 1 attempt level is implemented and in

the NaLIR 3 attempt levels are implemented. The

parameter must be set to specify to which level it must

reach during execution.

 nlidb_aggregation – This parameter must also be avoided.

The idea of this parameter is that every string field is

placed in the GROUP BY, and in every numeric field the

sum function is applied to the result set returned from

NLIDB before GLAMORISE performs its aggregation. This

field gives more flexibility if the objective is to use the

system without making explicit the use of all the

aggregation keywords and also as a facilitator if the

database storage format is leading to many incorrect

answers. We advise against using this feature because we

believe that the best way to solve this problem is to

prepare the database format to match the answers that

are expected and to explicitly use aggregation keywords,

otherwise questions that do not have keywords of

aggregation will always have aggregated responses, even

if this is not the objective.

 nlidb_aggregation_exceptions – This parameter specifies

which numeric fields should not be submitted to the sum

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

60

function if the previous parameter is activated. For

example, if fields related to dates are stored in numeric

format, it does not make sense that they are submitted to

the sum function. It also uses the format "table.column".

3.6.3. Integration of a new NLIDB with GLAMORISE

One of the steps that needs to be performed for GLAMORISE to

work correctly is the integration with a conventional NLIDB capable of

processing a NLQ without the aggregation elements. Since

GLAMORISE is an open-source experimental software, the most

flexible way to allow this is by directly changing the source code. This

section describes the necessary steps to integrate GLAMORISE with

another NLIDB.

Initially, in the GlamoriseNlidb class, it is necessary to prepare

the constructor (__init__) to instantiate the new type of NLIDB, which

is done by adding one more elif with the string equivalent to the name of

the NLIDB to be passed as a parameter to the class constructor and

creating the new instance of the NLIDB. The code snippet for this part

is shown below:

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

61

Listing 12 – Code snippet - class GlamoriseNlidb, method __init__

After that, it is necessary, in the _nlidb_interface method, to add

another elif to the execute_query method of the NLIDB interface class

instance, which is responsible for processing the NLQ without

aggregation in the integrated NLIDB. The code snippet is below:

Listing 13 – Code snippet - class GlamoriseNlidb, method _nlidb_interface

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

62

The final step is the implementation of the interface class with the

integrated NLIDB. This class must have at least one public method,

execute_query, which, as mentioned previously, is responsible for

executing NLQ without aggregation in the integrated NLIDB. In the

source code made available on Github, it is possible to check the

implementation of this method in 3 different classes: NlidbMock,

NlidbNalir and NlidbDanke.

3.7. User Interface

3.7.1. Web Interface

For convenience, a simple Web interface was developed to test

GLAMORISE. Its code is located in the web_interface folder in the

Github repository and an online version is also available at

https://glamorise.gruposantaisabel.com.br/.

The first screen shows which options of integrated NLIDBs and

which datasets are available. Each option represents a duo of NLIDB and

dataset, since a previous configuration is required for each dataset. The

following figure shows the options available:

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

63

Figure 15 – Web Interface – Main Screen

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

64

On the next screen we can see, when it is loaded, a field where the

NLQ can be written. To process the NLQ, the Send Query button must

be pressed. If the user is unsure how to ask a question, he can choose the

Show Instructions option.

Figure 16 – Web Interface – NaLIR Integration – NLQ text area

The answer to the NLQ appears in a green rectangle below. If the

default configurations are used, initially the spaCy dependency tree is

shown, then the patterns recognized in the sentence by GLAMORISE,

followed by the internal GLAMORISE variables, and finally the answer,

the result set in table format.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

65

Figure 17 – Web Interface – NaLIR Integration – Result

As we can see, some tabs are available. Each tab represents a

configuration file, either from GLAMORISE or from the integrated

NLIDB. The first two files refer to GLAMORISE, the third onwards, if

any, refer to the integrated NLIDB. The GLAMORISE files have already

been presented in Section 3.6.2 and in the example image below we can

see that it is NLIDB NaLIR and that it has a configuration file, which

will be described in Section 4.2.1.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

66

Figure 18 – Web Interface – NaLIR Integration – Configuration Files

GLAMORISE does not accept in its NLQs the use of the symbols:

">" and "<". If the user wants to express these conditions, he needs to

write conditions verbatim such as "greater than" or "less than". One

reason is that textual expressions have more semantic value than symbols

in an NLQ. The other objective of this limitation is to protect the Web

interface against Cross-Site Scripting (XSS), which is when there is

injection of Javascript on the client side. Below an image is shown of the

type of XSS that could occur, a Javascript code could be passed by the

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

67

client through the NLQ to GLAMORISE and if it was able to accept this

type of symbol (“<” or “>”), the Javascript code would be returned

encapsulated as part of the answer and would be executed:

Figure 19 – Web Interface – Cross-Site Scripting (XSS)

3.7.2. Terminal Script Interface

The user can also test GLAMORISE using the terminal. There are

several scripts to help you with this task. You can use the following

scripts to test GLAMORISE with a single NLQ. You can check out the

name of the NLIDB and dataset by the script file name:

 main_mock_anp_single_nlq.py

 main_nalir_anp_single_nlq.py

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

68

 main_nalir_mas_single_nlq.py

 main_danke_anp_single_nlq.py

In order to test, it is necessary to edit the file and change the NLQ

to the one of your preference.

If you want to test a batch of NLQs, you can use the following

scripts:

 main_mock_anp.py

 main_nalir_anp.py

 main_nalir_mas.py

 main_danke_anp.py

The ANP dataset NLQs are in the file ./nlqs/anp.nlqs.txt and the

MAS dataset NLQs are in the file

./nlqs/nalir_mas_aggregation_subset.nlqs.txt.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

69

4.
Experiments

This section describes the experiments conducted to test

GLAMORISE.

4.1. A Proof-of-Concept with a Mock NLIDB

To test the performance of GLAMORISE, a mock NLIDB was

implemented to process the set of testing questions presented in Table 2.

Note that there are questions with completely different phrasings. The

tests first confirmed GLAMORISE correctly preprocessed the questions,

removing or substituting words (aggregation elements) as necessary.

Second, the tests confirmed that GLAMORISE correctly generated SQL

queries with aggregation.

Finally, GLAMORISE correctly answered all 22 questions in

Table 2.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

70

ID NLQ

Q1 What was the production of oil in the state of Rio de Janeiro?

Q2 What was the average monthly production of oil in the state of Rio de Janeiro?

Q3 What was the average yearly production of oil in the state of Alagoas?

Q4 How many fields are there in Paraná?

Q5 What was the maximum production of oil in the state of Ceará per field?

Q6 What was the minimum gas production in the state of São Paulo per basin?

Q7 What was the average monthly oil production by the operator Petrobrás?

Q8 What was the mean yearly gas production per field?

Q9 What was the mean gas production per month per field?

Q10 What was the per month mean gas production per field?

Q11 What was the per field mean gas production per month?

Q12 What was the mean monthly petroleum production by field in the state of Rio de Janeiro?

Q13 What was the mean yearly petroleum production by field by Rio de Janeiro?

Q14 What was the mean gas production per field with production greater than 100 cubic meters?

Q15 What was the mean gas production per basin with production less than 1000 cubic meters?

Q16 Which field produces the most oil per month?

Q17 Which basin has the highest yearly oil production?

Q18 Which federated state has the lowest gas production?

Q19 Which state of the federation has the lowest gas production?

Q20 What was the average yearly production of oil per field and state in the year 2015?

Q21 What was the average monthly production of oil per field in the state of Rio de Janeiro and year 2015?

Q22 Give me the operator with the highest number of fields.

Table 2 – ANP NLQs

4.2. Real NLIDB Integration

The next step was to integrate GLAMORISE with real NLIDBs. The two

NLIDBs described below were chosen.

4.2.1. NaLIR

NaLIR [Li and Jagadish, H. V. 2014] was the first NLIDB to be integrated

with GLAMORISE. As mentioned in Section 1.3, in a comparative survey

containing 26 NLIDBs [Affolter et al. 2019], NaLIR performed best, as shown in

Figure 3. Furthermore, NaLIR is capable of answering aggregation questions. So,

as to probe GLAMORISE’s ability to deal with aggregation, the aggregation layer

was removed from NaLIR, leaving GLAMORISE to address this issue, while

NaLIR addressed the remainder of the issues involved in an NLIDB.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

71

To facilitate the initial integration, the original Java implementation of

NaLIR14 was not adopted. Instead, a port to Python15 16 was employed, which is the

same language used to develop GLAMORISE. To remove the aggregation ability

of NaLIR, the original source code was slightly modified, generating another

project also available on Github17.

Another important consideration is that the original NaLIR has a layer, called

Interactive Communicator, which the user interacts with to refine the answer. The

implementation used suppressed this layer, which is consistent with the strategy

implemented with GLAMORISE.

The integration of NaLIR with GLAMORISE was done via source code and

following the precepts described in Section 3.6.3.

4.2.1.1. Configuration

Like GLAMORISE, NaLIR also has its own configuration files: two JSON

files and one in XML. The JSON files are responsible for reassembling the database

schema, although this information could be extracted directly from the database

catalog. The default for the first file name is the database name followed by Edges

(in our experiments the files are masEdges.json and anpEdges.json). This file

indicates the connections between the tables and is composed by a JSON array of

objects, each entry is one JSON object composed of four properties representing

the connection between a primary key and a foreign key. These properties are

described below:

 foreignAttribute – The table column name for the field that is the

foreign key.

 primaryAttribute– The table column name for the field that is the

primary key.

 foreignRelation– The name of the table that contains the foreign

key.

14 https://github.com/umich-dbgroup/NaLIR
15 https://sbbd.org.br/2020/tutorial-1/
16 https://github.com/pr3martins/nalir-sbbd
17 https://github.com/novello/nalir-glamorise

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

72

 primaryRelation – The name of the table that contains the primary

key.

The second JSON file is responsible for mapping the table fields that are

visible to NaLIR. The default for the file name is the database name followed by

Relations (in our experiments the files are masRelations.json and

anpRelations.json). It is composed of a JSON array of objects, each entry is a

JSON object composed of the following properties:

 name – the name of the table.

 attributes – is a JSON array of objects, each entry is a table column

that should be visible to NaLIR:

o importance – this attribute helps in the column / table match

when any word in the NLQ generates a match for the table

and it is necessary to know in which column the value should

be searched for. Usually the values "important" or "primary"

are used, the latter being the default of the table.

o name – the name of the column.

o type – the type of the column. Usually the values "pk", “fk",

"text" or "number" are used

 type – the type of table. The values “entity” or “relationship” are

used, the latter being for tables representing relationships.

The last file that is an XML and is responsible for designating the patterns

recognized by NaLIR. The default file name is tokens.xml. The main tag is called

<types>, below this the main tags are:

 <CMT_V> - command tokens and verbs, these patterns are used as a

trigger to an NLQ

 <OBT> - order by token, these patterns are used to specify an order

by clause

 <FT> - function token, these patterns area used to specify

aggregation functions. We deliberately eschewed entries in this tag

in our configuration to preclude NaLIR from performing this task and

thereby assigning its performance to GLAMORISE.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

73

 <OT> - operator token, these patterns area used to specify operator

tokens like: “>”, “<”, “>=”, “<=” and “=”.

 <QT> - Qualifier token.

 <NEG> - Negative token.

Each of these tags has several <phrase> entries. One entry for each textual

pattern to be recognized. Within each <phrase> tag we can have an <example> tag

that exemplifies its use in an NLQ and is only descriptive. We also have special

tags that can be used according to the parent tag as below:

 <function> inside <FT> - used to specify the aggregation function that

should be used, but as previously mentioned, we do not use these

entries in our configuration, so preventing NaLIR from performing

this task so that GLAMORISE may do so.

 <operator> inside <OT> - used to specify the operator should be

used.

 <quantity> inside <QT> - used to specify the quantity should be used.

They could be: “all”, “each” and “any”.

4.2.1.2. Agência Nacional de Petróleo (ANP) [National
Petroleum Agency] dataset results

In the scenario of GLAMORISE integrated with NaLIR, the same 22 proof-

of-concept NLQs were presented using the ANP database as a baseline. NaLIR has

a poor match with the gas production attribute, so we used a configuration property,

that we do not recommend using, pre_after_replace_text, to improve this match.

Ideally, NaLIR’s match ability should be improved, but this is outside the scope of

this work and does not interfere with the functioning and evaluation of

GLAMORISE.

GLAMORISE correctly answered 22 (100%), regarding the part under its

responsibility and NaLIR correctly answered 18 (~82%) queries, regarding the part

that was its responsibility, leading to a final result of 18 (~82%) correctly answered

queries.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

74

status/NLIDB GLAMORISE % NaLIR % Final Result %

success 22 100% 18 82% 18 82%

failure 0 0% 4 18% 4 18%

Total 22 100% 22 100% 22 100%

Table 3 – NaLIR results with ANP dataset

Most of NaLIR's errors were improper matches between one field and

another, or it was simply unable to perform a particular match. In one NLQ (Q5),

the “basin” field was incorrectly identified in the place of the “state” field, this

happens because Ceará is also the name of a basin, which leads to an improper

match. In another (Q17), it was unable to identify the “basin” field. In two other

NLQs (Q18 and Q19), it was unable to identify the “state” field.

4.2.1.3. Microsoft Academic Search (MAS) dataset results

Microsoft Academic Search (MAS) is used by NaLIR as one of its databases.

194 NLQs18 were originally created as a benchmark, but one of them is duplicated

(‘return me the author who has the highest number of papers containing keyword

"Relational Database".’). Of the 194 NLQs, 99 referred to questions with

aggregation, but within these the linguistic and structural patterns recurred

repeatedly. So, we chose 17 NLQs, presented in Table 4, that represent the universe

of questions contained in the article, to determine/evaluate GLAMORISE’s

performance.

ID NLQ

Q1 return me the author in the "University of Michigan" in Databases area whose papers have more than 5000 total citations.

Q2 return me the author in the "University of Michigan" whose papers have the most total citations.

Q3 return me the author who has the most number of papers containing keyword "Relational Database".

Q4 return me the conference that has the most number of papers containing keyword "Relational Database".

Q5 return me the keyword, which have been contained by the most number of papers in PVLDB.

Q6 return me the number of authors who have cited the papers by "H. V. Jagadish".

Q7 return me the number of authors who have more than 10 papers containing keyword "Relational Database".

Q8 return me the number of citations of "Making database systems usable" in each year.

Q9 return me the number of conferences, which have more than 60 papers containing keyword "Relational Database".

Q10 return me the number of keywords, which have been contained by more than 10 papers of "H. V. Jagadish".

Q11 return me the number of keywords.

Q12 return me the number of papers after 2000 in "University of Michigan".

Q13 return me the number of papers published in PVLDB in each year.

Q14 return me the papers written by "H. V. Jagadish" and "Divesh Srivastava" with the most number of citations.

Q15 return me the total citations of all the papers in PVLDB.

18https://raw.githubusercontent.com/umich-dbgroup/NaLIR/master/mas_all.nlqs

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

75

Q16 return me the total citations of the papers containing keyword "Natural Language"

Q17 return me the total citations of papers in PVLDB before 2005.

Table 4 –MAS NLQs

The match of NaLIR with the word “paper” to designate a publication is very

poor. Although it sometimes returns the column of the title of the publication

correctly, the existence of the word “paper” generally leads it to erroneously believe

that the title of the publication must contain the word paper. We are unaware as to

whether it is a problem with the NaLIR Python version used or with the original

version, but we believe it to be a problem of the ported version. As a result, we also

used the pre_after_replace_text property. Of these queries, GLAMORISE

correctly answered 17 NLQs (100%) regarding the part under its responsibility, and

the NaLIR correctly answered 11 NLQs (~65%) queries, regarding the part that was

its responsibility, leading to a final result of 11 NLQs (~65%) correctly answered.

status/NLIDB GLAMORISE % NaLIR % Final Result %

success 17 100% 11 65% 11 65%

failure 0 0% 6 35% 6 35%

Total 17 100% 17 100% 17 100%

Table 5 – NaLIR results with MAS dataset

Again, most of NaLIR's errors were related to its inability to perform a

particular match, or improper matches between one field and another. In Q1, it

mistakenly exchanged citations for references. In Q7, Q9 and Q10, it mistakenly

exchanged publications for references. In Q6 and Q14, it was unable to join two

instances of the author table. In Q7 and Q9, it mistakenly concluded that "Relational

Database" should be in the title of the publication and not in the keywords.

4.2.2. DANKE

The last experiment integrated GLAMORISE with an NLIDB natively

incapable of handling aggregation. We also wanted to integrate GLAMORISE with

an NLIDB that processed queries using RDF/SPARQL to prove that GLAMORISE

works independently of the structure of the NLIDB database chosen, despite the

fact that GLAMORISE uses a relational database (SQLite). DANKE [García 2020;

Izquierdo et al. 2018, 2020; Torres Izquierdo et al. 2020] offered us these two

opportunities. DANKE is an NLIDB of the Keyword Search (KwS) type and, as

such, it is unable to answer questions with aggregation. DANKE operates with

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

76

relational databases (synthesizing SQL queries) and RDF store (synthesizing

SPARQL queries). It can deal with projections and selections and is able to create

joins involving several tables. DANKE processes a keyword query without user

intervention, consistent with the GLAMORISE strategy.

A keyword query is just a list of keywords that the user wishes to search for

without the need of stop words and all the elements involved in a complete NLQ.

DANKE permits the use of some reserved terms, such as “<”, “>” (but not through

the integration with GLAMORISE).

A response to a keyword query has a tabular format whose columns or column

names contain the matches with the keywords.

The first step in using DANKE is to register the database, which is performed

only once. The main tasks are to specify which columns have indexes and to add

descriptions to the relation schemes and attributes. These descriptions provide the

terms against which DANKE will match the keywords as well as the column values.

The next step it to compile the database schema as an abstract schema, which is

independent of whether it is relational database or an RDF store.

Once DANKE receives a keyword query, the first step it to match the

keywords using the database and its schema. Then, an abstract query is created by

the exploration of the schema and the keyword matches. Finally, a structured query

(SQL or SPARQL) is compiled from the abstract query and executed.

The integration of GLAMORISE with DANKE was done by the DANKE

team. Initially, the integration made with DANKE was in the black box model, that

is, without access to its source code and was carried out via a Web service,

considering that GLAMORISE is implemented in Python, whereas DANKE is in

Java and the integration of the two via code would be costlier. On the other hand,

this path substantially compromises performance and only serves to validate the

concept of integrating GLAMORISE with a keyword search tool. Thereafter, the

idea of the DANKE team is to port GLAMORISE to Java.

4.2.2.1. Agência Nacional de Petróleo - National Petroleum
Agency (ANP) dataset results

The integration of GLAMORISE with DANKE produced excellent results.

However, we made some adjustments before running the queries. States with

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

77

compound names were enclosed in quotation marks, as DANKE does not present a

good match when there are compound names. We had to use the

pre_after_replace_text property again and also the pre_before_replace_text,

which are not recommended, given that, when DANKE matches the month, it does

not understand that it needs to return the month and year. The treatment of these

issues needs to be improved in DANKE.

In general, DANKE performed faster than NaLIR, due to the keyword search

technology used, and provides a more assertive result. Table 6 shows the results of

the NLQs in Table 2. Of these queries, GLAMORISE correctly answered 22

(100%), as per its remit, regarding the part that was its responsibility and, DANKE

correctly answered 20 (~91%) queries, regarding the part that was its responsibility,

leading to a final result of 20 (~91%) correctly answered queries.

status/NLIDB GLAMORISE % DANKE % Final Result %

success 22 100% 20 91% 20 91%

failure 0 0% 2 9% 2 9%

Total 22 100% 22 100% 22 100%

Table 6 – DANKE results with ANP dataset

DANKE only presented two errors: in queries Q12 and Q13, instead of

identifying oil production, it erroneously identified gas production.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

78

5.
Conclusions and Future Work

5.1. Conclusions

The main contribution of this work was the creation of a generic module,

called GLAMORISE, to be used in NLIDB systems and which allows the

processing of queries with aggregations on the condition that the result of the

NLIDB is, or can be transformed into, a result set in the form of a table. This work

addressed aggregations with some specificities such as ambiguities, timescale

differences, aggregations in multiple attributes, the use of superlative adjectives,

basic unit measure recognition, aggregations in attributes with compound names

and subqueries with aggregation functions nested up to two levels.

To test the performance of GLAMORISE, a mock NLIDB was implemented

to process the set of 22 testing questions using the National Petroleum Agency /

Agência Nacional de Petróleo (ANP) dataset. GLAMORISE correctly answered all

questions.

The next step was the integration of GLAMORISE with 2 real NLIDBs:

NaLIR and DANKE.

With NaLIR, the same set of 22 ANP NLQs were applied. GLAMORISE

correctly answered 22 (100%), regarding the part under its responsibility, and

NaLIR correctly answered 18 (~82%) queries, regarding the part that was its

responsibility, leading to a final result of 18 (~82%) correctly answered queries.

Another set of 17 NLQs testing questions was used based on a Microsoft

Academic Search (MAS) dataset. GLAMORISE correctly answered 17 NLQs

(100%), regarding the part under its responsibility, and NaLIR correctly answered

11 NLQs (~65%) queries, regarding the part that was its responsibility, leading to

a final result of 11 NLQs (~65%) correctly answered.

Finally, with DANKE, the tests were done only with the 22 NLQs of the ANP

dataset. GLAMORISE correctly answered 22 (100%), as per its remit, regarding

the part that was its responsibility and, DANKE correctly answered 20 (~91%)

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

79

queries, regarding the part that was its responsibility, leading to a final result of 20

(~91%) correctly answered queries.

5.2. Publications

The initial research involving GLAMORISE, with a prototype and proof-of-

concept with a mock NLIDB, was published in the Proceedings of the XXXV

Brazilian Symposium on Databases – SBBD. The paper was awarded second best

short paper (“menção honrosa”) [Novello and Casanova 2020]. An extended

version of this paper was submitted to the Journal of Information and Data

Management (JIDM) and is under review at the time of this writing.

One issue that deserves to be commented is that the acronym GLAMORISE

appears in the short paper as (GeneraL Aggregation MOdule for RelatIonal

databaSEs) and has been modified in this work to (GeneraL Aggregation Module

using a RelatIonal database). The rationale behind this modification is that the name

was causing confusion and led to the belief that it could only be used with relational

databases, while in fact it can be used with relational databases or RDF stores, since

the NLIDB that interfaces with the database returns the result set in a tabular format.

GLAMORISE, internally, uses a relational database to carry out the rest of the

process. This does not prevent its integration with an NLIDB using an RDF store.

5.3. Future Work

The integration with DANKE was in the black box model, that is, without

access to its source code. A first suggestion for future work is to carry out a

definitive integration with DANKE, that is, integrating the GLAMORISE source

code to that of DANKE. For that, we need to port GLAMORISE to Java and

natively integrating its ideas and functionalities with DANKE is one line of future

work.

To support a more advanced treatment of units of measures, such as

conversions, expand the cases involving ellipsis, and other possible cases involving

subqueries, in addition to those treated here, is a second fruitful suggestion for

future work.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

80

GLAMORISE is prepared, at this time, to accept questions only in English.

Another fruitful direction for future work would be to extend GLAMORISE to

other languages. This extension should not be difficult since the linguistic patterns

used exist in most languages and there are packages of different languages in the

NLP libraries used by GLAMORISE and integrated NLIDBs.

Another suggestion for future work path would be the treatment qualitative

queries. Aggregation functions can be thought of as being of two types.

Quantitative aggregation functions have a direct mapping to aggregation functions,

such as max, min, avg, count, sum, and qualitative aggregation functions, such as

good, bad, high, low, etc. , as discussed in [Abhijeet Gupta 2013; Gupta and Sangal

2013]. Databases do not handle qualitative aggregations natively as there is no

direct mapping to aggregation functions.

Another type of query that has no direct mapping in the database that would

be interesting to be treated in future work is the so-called vague queries [Motro

1988]. A question is vague when the result set is empty, but there are close results

that could be displayed. Sometimes the result set may not even be empty, but it can

be extended to display answers that do not fully contemplate the question, but that

serve to complement the answer with similar options.

As a final suggestion for future work is the creation of a complete NLIDB

system from scratch based on natural language patterns (the same technique used

in GLAMORISE) that can be coupled to GLAMORISE, which would provide the

aggregation layer and the new NLIDB the rest of the features.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

81

References

Abhijeet Gupta (2013). Complex Aggregates In Natural Language Interface

To Databases.

Affolter, K., Stockinger, K. and Bernstein, A. (2019). A comparative survey

of recent natural language interfaces for databases. VLDB Journal, v. 28, n. 5, p.

793–819.

Bharati, A., Bhatia, M., Chaitanya, V. and Sangal, R. (2014). Paninian

Grammar Framework Applied to English Paninian Grammar Framework Applied

to English PG for Indian Languages - A Review. n. May.

García, G. M. (2020). A Keyword-based Query Processing Method for

Datasets with Schemas. PhD Thesis, IT department, PUC-Rio, n. March.

Gupta, A., Akula, A., Malladi, D., et al. (2012). A novel approach towards

building a portable NLIDB system using the computational Paninian grammar

framework. Proceedings - 2012 International Conference on Asian Language

Processing, IALP 2012, p. 93–96.

Gupta, A. and Sangal, R. (2013). A Novel Approach to Aggregation

Processing in Natural Language Interfaces to Databases A Novel Approach to

Aggregation Processing in Natural Language Interfaces to Databases A Novel

Approach to Aggregation Processing in Natural Language Interfaces to Databases.

. https://www.researchgate.net/publication/282666480.

Honnibal, M. and Johnson, M. (2015). An improved non-monotonic

transition system for dependency parsing. Conference Proceedings - EMNLP 2015:

Conference on Empirical Methods in Natural Language Processing, n. September,

p. 1373–1378.

Honnibal, M. and Montani, I. (2017). spaCy 2: Natural language

understanding with Bloom embeddings, convolutional neural networks and

incremental parsing.

Izquierdo, Y. T., García, G. M., Menendez, E. S., et al. (2018). QUIOW: A

keyword-based query processing tool for RDF datasets and relational databases.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), v. 11030 LNCS, p. 259–269.

Izquierdo, Y. T., García, G. M., Novelli, B. A., et al. (2020). Integrating a

geomechanical collaborative research portal with a data & knowledge retrieval

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

82

platform. Rio Oil and Gas Expo and Conference, v. 20, n. 2020, p. 421–422.

Li, F. and Jagadish, H. V. (2014). NaLIR: An interactive natural language

interface for querying relational databases. In Proceedings of the ACM SIGMOD

International Conference on Management of Data. . Association for Computing

Machinery.

Li, F. and Jagadish, H. V (2014). Constructing an interactive natural language

interface for relational databases. Proceedings of the VLDB Endowment, v. 8, n. 1,

p. 73–84.

Li, F. and Jagadish, H. V (2016). Understanding Natural Language Queries

over Relational Databases. ACM SIGMOD Record, v. 45, n. 1, p. 6–13.

Motro, A. (1988). Vague: A User Interface to Relational Databases that

Permits Vague Queries. ACM Transactions on Information Systems (TOIS), v. 6, n.

3, p. 187–214.

Pazos R, R. A., Aguirre L, M. A., González B, J. J., et al. (2016). Comparative

study on the customization of natural language interfaces to databases.

SpringerPlus, v. 5, n. 1.

Pazos R, R. A., Verastegui, A. A., Martínez F, J. A., Carpio, M. and Gaspar

H, J. (2018). Translation of natural language queries to SQL that involve aggregate

functions, grouping and subqueries for a natural language interface to databases.

Studies in Computational Intelligence, v. 749, p. 431–448.

Pinheiro, J. P. V, Casanova, M. A. and Menendez, E. S. (2020). Improving

the Quality of the User Experience by Query Answer Modification. Proc. XXXV

Brazilian Symposium on Databases - SBBD,

Pruski, P., Lohar, S., Goss, W., Rasin, A. and Cleland-Huang, J. (1 sep 2015).

TiQi: Answering unstructured natural language trace queries. Requirements

Engineering, v. 20, n. 3, p. 215–232.

Shah, V., Li, S., Kumar, A. and Saul, L. (2019). SpeakQL: towards speech-

driven multimodal querying of structured data. p. 1–16.

Tata, S. and Lohman, G. M. (2008). SQAK: Doing more with keywords.

Proceedings of the ACM SIGMOD International Conference on Management of

Data, p. 889–901.

Torres Izquierdo, Y., Monteagudo Garcia, G., Lemos, M., et al. (28 sep 2020).

Keyword Search over the COVID-19 Data. In Anais do XXXV Simpósio Brasileiro

de Banco de Dados (SBBD 2020). . Sociedade Brasileira de Computação - SBC.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

83

https://sol.sbc.org.br/index.php/sbbd/article/view/13642.

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

84

Appendix I – A Sample of the GLAMORISE JSON Pattern
Configuration File

Default Pattern

"default_pattern": [{"POS": "ADV", "OP": "*"},

 {"POS": "ADJ", "OP": "*"},

 {"POS": "NOUN", "LOWER": {"NOT_IN": ["number"]}}

]

“More than” - Having Condition Pattern Example

“more than example”:{

 "reserved_words": ["more than"],

 "pre_having_conditions": [">"],

 "specific_pattern": [{"LIKE_NUM": true},

 {"POS": "ADV","OP": "*"},

 {"POS": "ADJ","OP": "*"},

 {"POS": "NOUN","OP": "*"},

 {"POS": "NOUN"}],

 "pre_cut_text": false

}

“by” - Group by Condition Pattern Example

"by example": {

 "reserved_words": ["by"],

 "pre_group_by": true,

 "pre_cut_text": false

},

“by” followed by an “and” - Group by Condition Pattern Example

"by / and example": {

 "reserved_words": ["by"],

 "pre_group_by": true,

 "specific_pattern": [{"POS": "ADV","OP": "*"},

 {"POS": "ADJ","OP": "*"},

 {"POS": "NOUN","LOWER": {"NOT_IN": ["number"]}},

 {"LOWER": "and"},

 {"POS": "NOUN","LOWER": {"NOT_IN": ["number"]}}],

 "pre_cut_text": false

}

“how many” – Aggregation Function Pattern Example

"how many example": {

 "reserved_words": ["how many"],

 "pre_aggregation_functions": ["count"],

 "pre_cut_text": false

}

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

85

“yearly” – Timescale Subquery Pattern Example

"yearly example": {

 "reserved_words": ["yearly"],

 "pre_subquery_replace_text": {"yearly": "year"},

 "use_replace_text_as_group_by": true,

 "pre_subquery_aggregation_functions": "sum",

 "pre_cut_text": false

}

“most” – Aggregation Function Pattern Example

"most example": {

 "reserved_words": ["most"],

 "pre_aggregation_functions": "max",

 "pre_cut_text": true

}

“most number of” – Nested Functions Subquery Pattern Example

"most number of example": {

 "reserved_words": ["most number of"],

 "use_replace_text_as_group_by": false,

 "remove_external_group_by": true,

 "pre_subquery_aggregation_functions": "count",

 "pre_cut_text": true

}

DBD
PUC-Rio - Certificação Digital Nº 1912697/CA

