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Abstract

Cunha, J. P.; de Souza Mendes, P. R. (Advisor); Thompson, Roney
L. (Co-Advisor). Persistence of straining in the four-roll
mill flow. Rio de Janeiro, 2021. 128p. Dissertação de Mestrado
– Departamento de Engenharia Mecânica, Pontifícia Universidade
Católica do Rio de Janeiro.

The motivation of this work consists in the use of four-roll mill in order
to increase the phase separation of water-in-oil emulsions (W/O) present in
the primary process of oil industry. With mass and momentum conservation,
the continuous phase is modeled by an incompressible, bi-dimensional and
isothermal flow. Numerical simulations employing the finite element method
were implemented to reveal the influence of the several flow configurations
in the material mechanical behavior. From the obtained results, the standard
way of classifying the flow in the four-roll mill according to the literature was
proved inefficient. This work suggests local flow classifications for each position
depending if it is occupied by the continuous or dispersed phase. The effect of
the dispersed phase was described by a post-processing scheme. Microelements
in shape of vectors were inserted in the domain and their deformations
and pathlines were investigated. Thus, the deformation of droplets and their
respective influences in the emulsion instability were analyzed.

Keywords
Emulsions; Four-roll mill; Flow classification; Droplet deformation.
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Resumo

Cunha, J. P.; de Souza Mendes, P. R.; Thompson, Roney L.. Per-
sistência de deformação no escoamento no four-roll mill.
Rio de Janeiro, 2021. 128p. Dissertação de Mestrado – Departa-
mento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

A motivação deste trabalho consiste no uso do four-roll mill para au-
mentar a separação de fases de emulsões água em óleo (A/O) presente no
processamento primário da indústria de petróleo. A partir da conservação de
massa e momento, a fase contínua foi modelada como escoamento incompres-
sível, bi-dimensional e isotérmico. Simulações numéricas utilizando o método
de elementos finitos foram implementadas para revelar a influência das diver-
sas configurações de escoamento no comportamento mecânico do material. A
partir dos resultados obtidos, a habitual forma de classificar o escoamento no
four-roll mill de acordo com a literatura se demonstrou ineficiente. Este tra-
balho sugere classificações locais de escoamento a cada posição dependendo se
a mesma está ocupada pela fase contínua ou dispersa da emulsão. O efeito da
fase dispersa é descrito via pós-processamento. Microelementos no formato de
vetores foram inseridos no domínio e investigou-se suas deformações e trajetó-
rias. Consequentemente, analisou-se a deformação de gotas e a sua respectiva
influência na instabilidade da emulsão.

Palavras-chave
Emulsões; Four-roll mill; Classificação de escoamentos; Deformação de

gotas.
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1
Introduction

1.1
Motivation

Emulsions are widely found in various stages of the oil industry, such as
drilling, production, transportation, and processing of crude oils [4]. Further-
more, some techniques of enhanced oil recovery require external emulsions to
displace the oil at reservoirs [5].

The production of an oil well varies substantially over time. Initially, the
well produces an oil with a high level of purity. However, the concentration of
water gradually increases, resulting in co-production [6]. Typically, the amount
of water, in volume, that emulsifies is up to 20% for crude light oils and up to
35% for medium and heavy oils [7].

The production of oil in the form of an emulsion is a major problem for the
industry due to the increases in costs related to transportation and processing.
Water-in-oil emulsions have a greater viscosity compared to a dehydrated oil
[8]. Consequently, it increases the consumption of energy since a higher pressure
is necessary to transport the oil.

Moreover, after the transportation, emulsions must be submitted to a
primary process to separate the water from oil and avoid problems related
to the presence of water in the refineries [9]. Usually, in the primary process,
the emulsion stays at the gravity settler. It relies on the difference in density
between the fluids. The removed water from the emulsion is directed to a hy-
drocyclone before being discarded. The remaining fluid goes to an electrostatic
coalescer as can be seen in Figure 1.1. Since the oil is not conductive and the
water is, the droplets of water coalesce to form larger drops.

In order to increase the efficiency of the primary process and considering
some financial drawbacks of the electrostatic coalescer, such as high energy
consumption and high maintenance expenses, it is important to look for
alternatives that produce similar effects on the emulsions. The main motivation
of this work is to evaluate the capacity of the four-roll mill as an alternative
mechanism to provide phase separation due to the fact that it provides several
types of flow.
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Chapter 1. Introduction 12

Figure 1.1: Simplified schematics of the primary process

1.2
Objectives

The main objective of this work is to develop a numerical simulation
of the steady-state flow of a Newtonian fluid (continuous phase of emulsion)
in the four-roll mill and analyze the deformation of small droplets (dispersed
phase of emulsion) with distinct flow configurations. A local, frame-indifferent,
and not restricted to particular classes of flows, classification criteria is used
to question the classic point of view presented in the four-roll mill literature.

1.3
Outlines

This thesis is divided into four more chapters besides this first one. In
Chapter 2, the main concepts and definitions about both emulsions and four-
roll mill are presented. In the sequence, the four-roll mill, drop deformations,
and flow classification are considered in the literature review. Chapter 3
presents the complete and detailed model description developed during the
research. Following, Chapter 4 outlines the results of the simulations and
the differences with previous works are discussed. Finally, Chapter 5 reveals
the main conclusions of the present research and point out some interesting
possibilities of future works related to this research.

DBD
PUC-Rio - Certificação Digital Nº 1912750/CA



2
Background and literature

This chapter provides some basic concepts to introduce the theory related
to emulsions and the four-roll mill apparatus, followed by a review of the
literature in touch with these topics and flow classification criteria.

2.1
Emulsions

Emulsions are dispersions that characterize a mixture of two immiscible
liquids. One of the liquids is presented as droplets and is dispersed in another
liquid phase, which represent respectively the dispersed and continuous phases.
This work motivation is based on an emulsion water-in-oil (W/O), as displayed
in Figure 2.1.

Figure 2.1: Schematics of the emulsion water-in-oil (W/O)

The system of two liquid phases is thermodynamically unstable since
there is a natural energetic tendency of reducing its interfacial area, and
consequently, its interfacial energy [10, 11]. Therefore, in the absence of a
stabilization mechanism, emulsions will tend to separate the phases.

Emulsions instability appears on several spontaneous processes which
are represented in Figure 2.2. This is such a complex phenomenon to interpret
because it requires an understanding of the variety of forces involved. Besides,
many of these processes could happen simultaneously, complicating, even more,
the analysis. Typically, the relevant parameters which rule these processes are
the droplets size distribution, difference of density between the dispersed and
continuous phases, difference of magnitude among attractive and repulsive
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Chapter 2. Background and literature 14

forces, solubility of the dispersed phase in the continous, and stability of the
liquid film between droplets.

Emulsifiers are external elements introduced in an emulsion system which
modifies interfacial tension, in order to increase the stability of the liquid film
between droplets. Emulsifiers belong to a wide group of compounds defined as
surfactants that have a polar and a non-polar part. The molecular structure
and concentration of these elements play a significantly role in the formation
and stability of the emulsions [12].

Figure 2.2: Schematics related to destabilization of emulsions [1]

2.2
Four-roll mill

The four-roll mill is typically defined in the literature as four cylinders
of radius a, centered on the corners of a square of side 2b, immersed in square
tank of side 2l as depicted in Figure 2.3.
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Chapter 2. Background and literature 15

Figure 2.3: Schematics of the four-roll mill [2]

The main benefit of the four-roll mill, which justifies its recurrent use
in experimental and numerical applications, consists of providing distinct
possibilities of homogeneous two-dimensional flows in the region between
rollers. A variety of flow configurations is generated by adjusting the angular
speed and direction of the rollers.

The rollers are numbered in a clockwise direction, starting with the upper
left one, as displayed in Figure 2.3. The flow-type parameter λ is defined by
the negative ratio of angular speeds belonging to non-adjacent pairs of rollers.
Therefore, it is implied that crosswise pairs of them have the same angular
velocity, ie, ωr1 = ωr3 and ωr2 = ωr4.

λ = −ωr1,r3
ωr2,r4

(2-1)

Despite the fact that the flow-type parameter varies between -1 and 1,
i.e., λ ∈ [−1, 1], Table 2.1 exhibits the flow classification that a few specific
flow-type parameters lead. This criteria will be questioned in this work.

flow type λ

pure extensional flow 1
simple shear flow 0
rigid body motion -1

Table 2.1: Flow classification with flow-type parameter [3]

In Figure 2.4, schematics of streamlines are presented according to
each flow-type parameter [3]. Notice that for λ = 1, there are hyperbolas
with perpendicular asymptotes. In fact, for 0 < λ ≤ 1, the angle between
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asymptotes is calculated by the relationship tan
(
φ
2

)
=
√
λ. On the other hand,

for −1 ≤ λ < 0, the streamlines are closed ellipses and the ratio of the minor
axis bmin and the major axis amaj is given by the expression bmin

amaj
=
√
−λ.

Thus, for λ = −1, the streamlines are circumferences. For every single flow
type displayed, the center of the four-roll mill is a stagnation point.

Figure 2.4: Streamlines of homogeneous two-dimensional flow [3]

An important parameter that arises is the Reynolds number of the rollers,
which must suit all the flow configurations. The Reynolds number is defined
in Equation 2-2, where ωr,maxa is the modulus of the maximum angular speed
among the pairs of rollers, (2b− a) is the gap width between rollers, and ν is
the kinematic viscosity. Increasing the value of this parameter from small to
intermediate values results in three-dimensional flow patterns in the four-roll
mill.

Rerollers = ωr,max a (2b− a)
ν

(2-2)

ωr,max = max(|ωr1,r3|, |ωr2,r4|) (2-3)

2.3
Literature review
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Chapter 2. Background and literature 17

2.3.1
Four-roll mill and drop deformation

The four-roll mill was first mentioned in the literature by Taylor [13] as
a mean to study the breakup of small droplets in a viscous straining motion,
considering the interfacial tension effect. The so called "Four Roller" Apparatus
was able to provide excellent approximations of linear flows between the rollers.
His objective was to generate pure extensional flow.

Rumscheidt and Mason [14] focus their attention on expanding the
previous work of Taylor. They investigated the deformation and breakup of
fluid drops in both shear and hyperbolic flow. Their motivation was to examine
the formation, stability, and rheology of emulsions and suspensions. At low
deformations, their results were consistent with the work of Taylor. However,
for large deformations in the shear flow, they notice that drop behavior is
directly related to the viscosity ratio among the pair of fluids.

Giesekus [15] remarkably recognized that the variation of speed and
direction of the rollers defined the magnitude of rate-of-strain. This discovery
was an important step that had a powerful influence on the following works.
Cox [16] presented a theoretical model that covers steady and unsteady flows
in order to describe the shape of a fluid drop.

The capacity of generates two-dimensional linear flows by the four-roll
mill permitted Fuller and Leal [17] to analyze birefringence in polymer solutions
based on the criterion of weak and strong flows. It also contributed to the study
of flow-induced crystallization in polymer melts by some other authors [18, 19].

The works of Bentley and Leal [20, 21] were a breakthrough. Besides
the fact that all linear flows were considered (including time-dependent flows),
an automated computer-controlled mechanism system was built to maintain
droplets in the center position of the four-roll mill. Since the stagnation point
is an unstable position, many previous works were restricted due to this issue.

Grace [22] analyzed a single drop deformation on both rotational and
irrotational shear yields for high viscosity immiscible systems and their related
application on the usage of static mixers on such systems. A experimental
procedure was established to deal with static mixers on these types of flow.

Sherwood [23] included the effects of nonlinear terms of the imposed
flow in his analysis of deformation of small emulsion droplets at low Reynolds
number. This work considered the tip streaming phenomenon related to the
ejection of small drops from the pointed ends.

Feng and Leal [24] used the four-roll mill to investigate the startup flow
of dilute polymers solutions. A numeric simulation with finite element method
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was develop in order to solve the conservation of mass and momentum with
the aid of FENE dumbell models, neglecting inertial effects.

Innings et al. [25] extended the original analysis by Taylor, including
elliptic drops experiencing fast deformation. Dynamic and one-dimensional
numerical simulations were implemented to accommodate the influence of
continuous phase stress on the drop deformation, requiring the use of the
dynamic Weber number. They conclude that the dynamic Weber number is
not a function of the drop size, aspectio ratio and elongation rate.

Yang et al. [26] performed some experimental tests to interpret the
coalescence between two equal-sized drops in a linear flow generated by a
four-roll mill. In agreement with the available theoretical works, coalescence
was very hard to accomplish in linear flows. A very low capillary number
is necessary in order to provide a very subtle collision and reduce drop
deformation.

Lagnado and Leal [3] analyzed the motion of a Newtonian fluid in the
four-roll mill in order to discover Reynolds numbers of the rollers capable of
providing three-dimensional effects. The configuration used in their experi-
ments was associated with the flow-type λ = 1 in order to obtain pure ex-
tensional flow near the center of the apparatus. For their specific apparatus
dimensions, they noticed that until the Reynolds number of the rollers were
around 37, they still obtained the two-dimensional pure extensional flow. Be-
yond this value, the appearance of swirling flow or vortex indicates the presence
of three-dimensional flow.

2.3.2
Flow classification

It is essential to identify different rheological behavior that each flow
pattern presents. The possibilities are in fact extensional flow, shear flow
and rigid body motion. Astarita [27] enumerated a few properties that a
flow classification criterion must contemplate, as listed in the sequence. The
criterion can be either purely kinematic or one that additionally includes the
mechanical behavior of the fluid.

(i) Local criterion - At each position, it should provide a flow classification.

(ii) Objective criterion - It must be invariant among different reference
frames.

(iii) Generally applicable - It ought not be valid exclusively to a particular
class of flow.
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All the previous works have failed to establish an acceptable criterion.
The first criterion for flow classification was proposed by Astarita [28] years
before. The flow-type parameters, including both the purely kinematic and the
one which is not only purely kinematic, respectively were:

RIID = −trW
2

trD2 (2-4)

RIIE = Λ2tr
[
∇uT

]2
(2-5)

In these definitions, Λ is the relaxation time, ∇u = (∂uj/∂xi) eiej is the
velocity gradient, the velocity field is u = ukek, and, rate-of-deformation D =(
∇uT +∇u

)
/2 and vorticity tensor W =

(
∇uT −∇u

)
/2 are respectively

the symmetric and antisymmetric parts of the transpose velocity gradient∇uT .
However, notice that both equations are not objective, as verified by

Huilgol [29]. Since the work was also restricted to flow fields "between"
viscometric and extensional, the criterion is not generally applicable.

Astarita and Marruci [30] display another criterion valid exclusively to
motions with constant relative principal stretch history. Once again, it is not
generally applicable. However, they were able to respect both the local and
objective criterion. The flow index is defined with the aid of the tensor N ,
which represents the unit of magnitude. This tensor is used to transform the
deformation gradient F T from time t − s to the present time t according to
the following expression:

F T = Q (t− s) [exp (−ksN )] Q (t) (2-6)

where Q is a rotational time-dependent orthogonal second-order tensor
and k is a scalar parameter. The criterion proposed was:

RIIID = trN 2 (2-7)

RIIIE = Λ2k2trN 2 (2-8)

Tanner and Huilgol [31] presented a new criterion based on the classifi-
cation of weak and strong flows. The criterion parameter is defined as:

RIV D = max[Re (αkN )] (2-9)
Basically, the expression of RIV D evaluates the maximum real part of the

eigenvalues of kN and, if RIV D > 0, the flow is classified as strong. Otherwise,
flow is denominated weak. Their study is in like manner restricted to motions
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with constant stretch history (MWCSH), since they did not look up to transient
stress states. The analogous E-form was introduced by Tanner [32]:

RIV E = max[Re
(
αΛkN− 1

2 I

)
] (2-10)

Denn [33] pointed out that the analysis provided by Tanner and Huilgol
was not very accurate for lubrication flows. Despite being shearing flows with
a slight change in the cross section area, the definition classifies it as a strong
flow. Denn indicates that it is also necessary to ensure that the largest element
of ∇uT and the real part of an eigenvalue of ∇uT are of the same order of
magnitude. Consequently, it suggests, even indirectly, a new criterion:

RV D = max[Re (α∇uT )] (2-11)

Since ∇uT is not objective, RV D is not sufficient to grant a complete flow
classification criterion. In fact, none of the works managed to respect, at the
same time, local, objective, and generally applicability criterion, ie (i), (ii) and
(iii). As already mention, RII and RV are not objective and RIII and RIV are
valid for particular cases only (MWCSH).

The first attempt to accommodate all the conditions was presented by
Astarita [27]. The relative-rate-of-rotation tensor W is obtained by:

W = W −Ω (2-12)

W is the vorticity tensor and Ω is the tensor which describes the rate of
rotation from the eigenvalues of the rate-of deformation tensor D. The main
advantage of using W is that, differently from W and Ω, it is an objective
parameter. The substantial time derivative of eigenvectors of D is related to
Ω through the following expression.

ėi = Ω · ei = ω × ei , i=1, 2 or 3 (2-13)

ω is the angular velocity from the eigenvectors ei. Notice that for the
particular case in which there are two equals eigenvalues and one distinct, Ω
is not defined. An approximation provided by Drouot and Lucius [34] is used
to bypass this issue. For instance, if the eigenvalues 1, 2 are equals, i.e., λ1 =
λ2, it is necessary to add the condition that Ω12 = W12. With W completely
defined and being an objective, the criterion proposed is:

RD = −trW
2

trD2 (2-14)

RE = Λ
(
trW

2 + trD2
)

(2-15)
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In relation to Astarita’s flow classification criterion, besides taking ac-
count of property (ii), this criterion clearly provides different values and con-
sequently different flow classification at each position and, therefore achieving
property (i). Generally applicability (iii) is guaranteed since no restrictions of
any type of flow were made.

Huilgol [35] showed three examples in each Astarita’s criterion fails on
being a successful flow criterion, i.e., respecting (i), (ii) and, (iii). First, he
pointed out that for viscometric flows RD = 1. Unfortunately, other flows
that are not viscometric also have RD = 1. Hence, there is not a one-to-one
correspondence between RD and the flow type. Secondly, for the cases where
two eigenvalues of D are equal and different for the third, there is no reason for
using the approximation of Drouot and Lucius to define ω. The main problem
is that when there are two eigenvalues that are very close to each other, the
result of RD is not the same as if they were exactly the same due to the
discontinuity.

Thompson and De Souza Mendes [36] came up with a new criterion that
address these issues. They work with the velocity gradient as a measure of the
reference frame attached to the eigenvectors of D.

∇uT = ∇uT −Ω (2-16)

Huilgol examples allowed the perception of some important physical
meanings. First, the rate of deformation of a material filament aligned orthog-
onally to the plane of rotation is not influenced by relative rotation. Secondly,
the variation in intensity of persistence of straining experienced by a material
filament it is a decrescent function of the difference between the largest and
smallest rate of deformation rates that are present in the plane of relative rate
of rotation.

The persistence-of-straining tensor and its respective intensity are:

P = DW −W D (2-17)

P =
√

1
2tr

[(
DW −W D

)2
]

(2-18)

A persistence-of-straining scalar parameter is specified to classify the
flow. Thus, R = 1, R = 0 , and R = ∞ corresponds respectively to
simple shear flow, extensional flow and rigid body motion. A one-to-one
correspondence with this parameter and the flow classification is assured.

R = P

tr[D2] (2-19)
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3
Model description

3.1
Domain and meshes

In this work, two different domains were adopted. Both of the respective
meshes were implemented with the aid of the software gmsh in order to run the
desired simulations. According to the definition of the four-roll mill established
in Section 2 and with Figure 2.3, the first domain will be referred from here on
as the classic four-roll mill. This geometry is totally defined by the parameters
l, a, and b, which respectively are the side of the tank, radius of cylinders and
the gab between the cylinders.

The dimensions were chosen exactly as the work of Lagnado and Leal [3]
and an irregular triangle mesh of Nc = 4246 nodes was generated, as can be
seen in Figure 3.1. The decision to keep the dimensions of a past experimental
work on the literature is to provide an immediate comparison of results and
also ensure that the flow will not present any kind of three-dimensional effect.
Besides, the goal of this work is not to present ready-to-apply results. Rather,
it aims at bringing new qualitative descriptions of different flows in the four-roll
mill and analyze drop deformations in this context.

Figure 3.1: Classic four-roll mill mesh generated by gmsh.
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The second domain is a subtle variation from the classic four-roll mill
domain. The objective of this new domain is to allow the imposition of an
inlet constant velocity followed by a region of developed flow and consequently
institute a clear flow direction. The only change is that the cylinders are
immersed on an rectangular tank of length 6l (the triple of the previous length).
The height remains the same (2l). Thus, another irregular triangle mesh of
Ne = 4912 nodes was created.

Figure 3.2: Expanded four-roll mill mesh generated by gmsh.

The dimensions related to both domains are exhibited on table 3.1.
Furthermore, both meshes code files of gmsh, ie, 4RM_Mesh_Classic.geo and
4RM_Mesh_Expanded.geo, are available in Section A.

Parameters Values
a(m) 0.01905
b(m) 0.02465
l(m) 0.26670

Table 3.1: Dimensions used in both domains.

3.2
Modeling the flow

The incompressible, bi-dimensional and isothermal flow of a Newtonian
fluid in the four-roll mill at the steady-state is initially analyzed. The velocity
field is defined as u = ux (x, y) ex + uy (x, y) ey where ex and ey are the
basis vectors of the cartesian coordinate system. Therefore, physics is governed
by the equations of conservation of mass and momentum, which respectively
require that

∇·u = 0 (3-1)

u · ∇u− ν∇2u = −1
ρ
∇p (3-2)
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where ∇ = ∂/∂x is the standard gradient operator in physical space in
which x is the position vector, ρ is the specific mass, ν = µ

ρ
is the kinematic

viscosity and p is the pressure.

3.3
Weak formulation

This flow will be solved by the finite element method. Equations 3-1 and
3-2 represent the strong formulation. In order to solve this set of equations
with the finite element method, it is necessary to rewrite the equations in the
weak form. Therefore, the equations are multiplied by the respective weight
functions v and q and also integrated over the domain Ψ:∫

Ψ

[
(u · ∇u) · v − ν

(
∇2u

)
· v
]
dΨ =

∫
Ψ

[
−1
ρ
∇p · v

]
dΨ (3-3)∫

Ψ
(∇ · u) q dΨ = 0 (3-4)

The next aim is to eliminate second derivatives of velocity and any kind
of derivatives of pressure, considering the element described in the sequence.
A vector calculus identity was adopted to vanish the velocity laplacian.∫

Ψ
(∇2u) · v dΨ = −

∫
Ψ
∇u : ∇v dΨ +

∫
Ψ
∇ · (∇u · v) dΨ (3-5)

Using the divergence theorem for the equation above:∫
Ψ

(∇2u) · v dΨ = −
∫

Ψ
∇u : ∇v dΨ +

∮
Γ

n · (∇u · v) dΓ (3-6)

On the other hand, integration by parts is the key to replace the gradient
pressure. ∫

Ψ
∇p · v dΨ =

∮
Γ
p (n · v) dΓ−

∫
Ψ
p ∇·v dΨ (3-7)

Substituting the respective terms on equation 3-3:

∫
Ψ

(u · ∇u) · v dΨ + ν
[∫

Ψ
∇u : ∇v dΨ−

∮
Γ

n · (∇u · v) dΓ
]

=
1
ρ

[
−
∮

Γ
p (n · v) dΓ +

∫
Ψ
p ∇·v dΨ

] (3-8)

3.4
Element

In order to increase the solver speed and facilitate convergence, a mixed
element is used. The Taylor-Hood element is composed by two standard
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Lagrange elements, one for the velocity components, which are ux and uy, and
one for the pressure calculation p. Therefore, the coupled solution between
velocity and pressure is defined by the Pr−Λk family, where r = 1, 2 and k = 0.

Hence, the pressure is continuous and varies linearly with the position x

over each cell on the mesh. However, the degree of the basis function related
to the velocity element is quadratic. Pressure is evaluated at each cell vertex,
while velocities are evaluated also at middle of cell facet.

This element is commonly used to solve Navier-Stokes equations in the
literature. The stability and accuracy of this element were previous analyzed
by Bercovier and Pironneau [37], Lee and Li [38] and Guzmán and Sánchez
[39].

Figure 3.3: Mixed lagrange element

3.5
Boundary conditions

Each domain has its own boundary conditions. On both of them, the
borders are called "West", "North", "East", and "South". On the classic four-roll
mill, every border corresponds to an impermeable slippery wall. Therefore, at
each border, the normal velocity to the current border is null and the derivative
of the tangent velocity (to the border) in the normal direction (to the border)
is also null. The tangent velocity of the cylinder i is naturally u · t = ωr,ia,
with i varying from 1 to 4. Since this flow is not driven by a pressure gradient,
it is set that the pressure is null for every border.
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Figure 3.4: Borders of the classic four-roll mill.

West North East South Cylinders
n = (−1, 0) n = (0, 1) n = (1, 0) n = (0,−1) u · t = ±ωr,ia
ux = 0 uy = 0 ux = 0 uy = 0
∂uy

∂x = 0 ∂ux
∂y = 0 ∂uy

∂x = 0 ∂ux
∂y = 0

pW = 0 pN = 0 pE = 0 pS = 0

Table 3.2: Boundary conditions in the classic four-roll mill.

The expanded four-roll mill work with different boundary conditions. In
the West border, which is the inlet, a constant velocity is imposed in the ex

direction. It is worth mentioning that this non-null inlet velocity is essential
to ensure the flow direction from West to East. The borders North and South
correspond to impermeable slippery walls. Thus, it is valid to claim that the
derivative of the tangent velocity in the normal direction is also null. Lastly,
the condition of developed flow at the outlet (East) is used. Therefore, the
velocity field at this border does not vary in the x direction. In this case, since
there is a imposed velocity, it is important to define a level of pressure. Thus,
it was adopted that pE = 0 in the "East" border.
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Figure 3.5: Borders of the expanded four-roll mill.

West North East South Cylinders
n = (−1, 0) n = (0, 1) n = (1, 0) n = (0,−1) u · t = ±ωr,ia
u = U∞ex uy = 0 n · ∇u = 0 uy = 0

∂ux
∂y = 0 pE = 0 ∂ux

∂y = 0

Table 3.3: Boundary conditions in the expanded four-roll mill.

In both meshes, the boundary conditions result in:

∮
Γ

n · (∇u · v) dΓ =
∮
N

n · (∇u · v) dΓ +
∮
W

n · (∇u · v) dΓ+∮
S

n · (∇u · v) dΓ +
∮
E

n · (∇u · v) dΓ = 0 + 0 + 0 + 0 = 0

The term that involves the pressure in the borders are also null. For the
"West", "North" and "South" borders, a essential boundary condition is imposed
for the velocity. Therefore, the residual term is abandoned and replaced by this
condition. In its turn, for the "East" border it is already imposed that pE = 0.

∮
Γ
p (n · v) dΓ =

∮
W
pW (n · v) dΓ +

∮
E
pE (n · v) dΓ

+
∮
S
pS (n · v) dΓ +

∮
N
pN (n · v) dΓ = 0 + 0 + 0 + 0 = 0

Replacing the expressions above in equation (3-8), the weak formulation
related to the conservation of momentum can be written as:

∫
Ψ

(u · ∇u) · v dΨ + ν
∫

Ψ
∇u : ∇v dΨ− 1

ρ

∫
Ψ
p ∇·v dΨ = 0 (3-9)

The equation of mass conservation remains almost the same, being
multiplied by the scalar weight function q and integrated over the domain
Ψ:
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∫
Ψ

(∇ · u) q dΨ = 0 (3-10)

The nonlinear variational problem was solve with the Newton-Raphson
method according to FeniCs project libraries. Despite being a pretty robust
method, as literature suggest [40, 41, 42], it heavily relies on a reasonable
initial guess to converge. In the code, the solver was set with both absolute
and relative tolerances of 10−8 and a number maximum of iterations of 100.

3.6
Persistence of straining

The flow classification criterion proposed by Thompson and de Souza
Mendes [36] is employed as a part of the post-processing scheme. The advan-
tages of this choice is related to obtain a local classification, independent from
the frame of reference and not restricted to a set of particular flows.

The pesistence-of-straining tensor P is defined as:

P = D ·W −W ·D (3-11)

where D = 1
2

(
∇u +∇uT

)
is rate-of-deformation tensor, W =

1
2

(
∇u−∇uT

)
is the vorticity tensor, W = W − Ω is the relativity vor-

ticity tensor and, Ω is the tensor that provides the rates of rotation from the
eigenvectors of D.

Notice that P may be rewritten as:

P = (D ·W −W ·D)− (D ·Ω−Ω ·D) (3-12)

As long as the velocity field is obtained, D e W are easily evaluated.
The difficulty resides in achieving Ω. For this purpose, D is initially written in
its own eigenvectors coordinate system, and hence in a diagonal matrix form.

D =
3∑
i=1

ξiêiêi

where ξ1 ≥ ξ2 ≥ ξ3 are the eigenvalues of D and ê1, ê2, and ê3 are their
respective eigenvectors.

In sequence, the material time derivative of D is displayed:

Ḋ =
3∑
i=1

ξ̇iêiêi +
3∑
i=1

ξi ˙̂eiêi +
3∑
i=1

ξiêi ˙̂ei (3-13)

According to the definition of Ω, it follows that ˙̂ei = Ωêi. Therefore:
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Ḋ =
3∑
i=1

ξ̇iêiêi +
3∑
i=1

ξiΩêiêi +
3∑
i=1

ξiêiΩêi =

3∑
i=1

ξ̇iêiêi + Ω
( 3∑
i=1

ξiêiêi

)
+
( 3∑
i=1

ξiêiêi

)
ΩT =

3∑
i=1

ξ̇iêiêi + Ω ·D + D ·ΩT (3-14)

Since Ω is antisymmetric, i.e. ΩT = −Ω, the previous expression may be
rewritten as:

Ḋ =
3∑
i=1

ξ̇iêiêi + Ω ·D −D ·Ω (3-15)

Combining equations (3-12) and (3-15):

P = D ·W −W ·D +
[
Ḋ −

3∑
i=1

ξ̇iêiêi

]
(3-16)

It is important to recognize that the eigenvectors êi vary with the position
and time. u,∇u, D, and W are typically written on a system coordinate which
basis is {̂ii}. Therefore, the final objective is to write P in terms of the basis
{̂ii}. Q is the rotation tensor which transforms {̂ii} in {êi}. Thus:

{Ḋ −
3∑
i=1

ξ̇iêiêi}
{̂ii}

= {QT}{Ḋ −
3∑
i=1

ξ̇iêiêi}
{êi}
{Q} = Ḋ − QT

3∑
i=1

λ̇iêiêi Q

(3-17)
Combining equations (3-16) and (3-17), and considering that Ḋ =

∂D
∂t

+ u · ∇D, P is finally written in terms of {̂ii}.

P = D ·W −W ·D + ∂D

∂t
+ u · ∇D − QT

3∑
i=1

λ̇iêiêi Q (3-18)

The flow-type parameter R is readily obtained.

R = P

tr[D2] (3-19)

In order to obtain values in a finite range, the following normalization is
proposed:

R∗ = 1−R
1 +R (3-20)

Pure extensional flows correspond to the maximum intensity to
persistence-of-straining, R∗ = 1. The viscometric flow implies on the value
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of persistence-of-straining R∗ = 0. The motion of rigid body is associated to
R∗ = −1. Intermediate values represent transition regions that contains the
presence of both behaviors. This parameter does not quantify which behavior
is predominant. Every single mesh node will have its own flow classification
and thus an R∗ field is going to be available. Notice that for these specific 2D
application analyzed in this work: ξ3 = 0.

3.7
Microelement’s deformation

As a second post-processing scheme, the behavior of microelements
is analyzed on different flows generated by the four-roll mill. It represents
the dispersed phase of the emulsion. The microelement and its respective
microstructure is characterized by a passive vector R. Consequently, it does
not influence the velocity field. However, despite following a predetermined
pathline, the microelement does not deform as another element from the
continuous phase would do at the same pathline. In order to predict the
microelement deformation, the work of Olbricht is required [43]. The form
and magnitude of the velocity gradient tensor are evaluated to provide the
strength of the flow. The deformation of the microelement is based on the
classical linear stability analysis. Another important limitation of this analysis
is to consider only simple flows with constant stretch history.

As already mentioned, the vector follows its path according to the flow
velocity field:

x =
∫

u (x) dt (3-21)

The deformation of the microelement is dictated by:

Ṙ = W ·R +G
[
D ·R− F

F + 1 (r ·D · r) R
]
− α

F + 1R (3-22)

where r = R
R

and R ≡ |R|. The coefficients G, α, and F are parameters
which depend on the properties of both fluids, i.e., continuous and dispersed
phases.

For convenience, equation (3-22) is rewritten in a new format:

Ṙ = (W + Dmod) ·R (3-23)

Therefore, Dmod is automatically defined as:

Dmod = G
[
D − F

F + 1 (r ·D · r) I
]
− α

F + 1I
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The combination of the parameters G, α e F describes the microelement
and reflects the physical meaning of its microstructure. Notice the particular
case in which G = 1, α = 0, and F = 0 implies that Dmod = D and therefore
the microelement behaves exactly the sames as another fluid element from
the continuous phase. In the vast majority of cases, rigid and axisymmetric
particles contain G < 1. In order to consider a model with internal viscosity,
commonly known in the literature as elastic dumbbell, non-null values of F are
necessary.

Another advantage of bringing the work of Olbricht is the possibility of
immediately providing a new flow classification depending on which phase is
present on each node at a specific time. In order to display a flow classification
for the dispersed phase, it is necessary to repeat the procedure presented
in Section 3.6, using Dmod instead of D. Thus, the field R∗mod is obtained,
which at every node provides a new flow classification if the current position
is, in fact, occupied by the dispersed phase. Along these lines, it is possible
to visualize completely different scenarios of deformation on the same mesh
position, depending if the fluid is from dispersed or continuous phase.

Rmod = P

tr[Dmod
2]

(3-24)

Rmod
∗ = 1−Rmod

1 +Rmod

(3-25)

To deal with these equations, a simple numerical procedure is sufficient
to accomplish the goal of the post-processing scheme. Given an initial position
x1 at time t = 0, the pathline of the vector that represents a microelement of
the dispersed phased is determined by the Euler method:

xn+1 = xn + ∆t
2
[
ux

n + ux
n+1

]
, n = 1, ..., N − 1 (3-26)

yn+1 = yn + ∆t
2
[
yx
n + yx

n+1
]
, n = 1, ..., N − 1 (3-27)

On other hand, the initial values of the vector R in the directions ex and
ey must be consistent with the fact that the theory predict small deformations
(|R| << 1). Given an initial value R1 and consequently the components
associated a initial inclination θ1, ie Rx

1 = R1cos (θ1) and Ry
1 = R1sin (θ1).

Thus, the temporal evolution of Rx and Ry by the Crank-Nicolson method:

Rx
n+1 = Rx

n+∆t
2 {

(
W11 +G

[
D11 −

F

F + 1(r ·D · r)
]
− α

F + 1

)
(Rx

n+Rx
n+1)+

(W12 +G12) (Ry
n +Ry

n+1)} (3-28)

DBD
PUC-Rio - Certificação Digital Nº 1912750/CA



Chapter 3. Model description 32

Ry
n+1 = Ry

n+∆t
2 {

(
W22 +G

[
D22 −

F

F + 1(r ·D · r)
]
− α

F + 1

)
(Ry

n+Ry
n+1)+

(W21 +G21) (Rx
n +Rx

n+1)} (3-29)

The numeric procedure is repeated while the position of the vector is still
inside the domain, i.e., −l ≤ xn+1 ≤ l and −3l ≤ yn+1 ≤ 3l , and throughout
the time that the size of the vector does not reach any limited values associated
with its deformation. As a consequence, maximum and minimum relative
values of deformation interrupt the code, as well as the vector leaving the
domain, and therefore the number of steps N − 1 is determined. The modulus
of the vector, at each time step, is naturally obtained as R =

√
Rx

2 +Ry
2 and

it indicates the size of the microelement.

3.8
Non-dimensionalization

Aiming to obtain non-dimensional results, the first step is to define the
characteristic parameters. The characteristic length, velocity and time are
respectively xc = a, uc = ωr,max a, and tc = 1/ωr,max. Consequently, the
dimensionless parameters become x∗ = x/a, y∗ = y/a, u∗ = u/ (ωr,max a),
and t∗ = ωr,max t. Analogously with the Reynolds number of the rollers defined
on equation 2-2, an entrance Reynolds number is evaluated by equation 3-30.
Therefore, the ratio between both of the Reynolds number is reduced to a ratio
of velocities.

Reent = U∞ (2b− a)
ν

(3-30)
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4
Results

This chapter presents the results of the numerical simulations on the
four-roll mill. First, the classic four-roll mill is considered in order to compare
its results with the literature. Thus, Reent = 0 is fixed in this case. In the
sequence, the expanded four-roll mill provides additional analysis about the
microelement deformation. This time, non-null inlet velocities are analyzed.

The fluid that is originally used on equations 3-9 and 3-10 is a New-
tonian oil with viscosity µ = 34 × 10−3 Pa·s and density ρ = 887.2 kg/m3.
Both of these parameters were obtained with a rheological characterization by
Naccache, J. P. A. [44] at the temperature of T = 40◦C. The non-dimensional
parameters, based on Table 3.1 and the non-dimensionalization scheme pre-
sented on Chapter 3, are displayed in Table 4.1. All the results are presented
in dimensionless form.

Parameters Values
b∗ 1.294
l∗ 14

Rerollers 20

Table 4.1: Dimensionless parameters used in the four-roll mill simulations.

4.1
Classic four-roll mill

As already mentioned, Reent = 0 for this mesh configuration. This section
covers the results of non-dimensional velocity fields, streamlines, normalized
persistence-of-straining parameter field, and modified normalized persistence-
of-straining parameter field for the classic four-roll mill. Different flow config-
urations are investigated.

4.1.1
Velocity fields

The velocity fields obtained with different flow configurations are pre-
sented in Figure 4.1. They represent a standard and expected output, accord-
ing to the literature related with the four-roll mill. Notice that the origin is a

DBD
PUC-Rio - Certificação Digital Nº 1912750/CA



Chapter 4. Results 34

stagnation point for every single flow configuration. Figure 4.1 i) is the only
case (λ = 1) capable of producing velocities considerably higher than the tan-
gent velocity on the cylinders borders, specifically in the region between rollers.
It also brings the particular presence of symmetry in relation of axis x∗ and
y∗. The configuration presented in Figure 4.1 ii) (λ = 0.5) is a small variation
from the plot 4.1 i) in which the angular velocity of rollers pair 1,3 is half of the
pair 2,4. In figure 4.1 iii), the pair of cylinders 1,3 is static, i.e. λ = 0, while in
Figure 4.1 iv) the angular velocity of rollers pair 1,3 is half of the pair 2,4 one
more time with λ = −0.5. What differs the cases ii) and iv) are the directions
of the angular speed of the rollers. In a few cases, such as 4.1 ii), 4.1 iii), and
4.1 iv), the tangent velocity of pair 2,4 is the maximum velocity of the field and
the presence of lower velocities results in external pathlines of fluid particles
around the cylinders. The velocity field from the configuration λ = −1, which
is presented in Figure 4.1 v), is extremely similar from the flow in which the
four cylinders are replaced by a single cylinder rotating counterclockwise with
the same angular velocity.

i) λ = 1
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ii) λ = 0.5

iii) λ = 0
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iv) λ = −0.5

v) λ = −1

Figure 4.1: Non-dimensional velocity field in the classic four-roll mill with
distinct flow configurations.
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4.1.2
Streamlines

Figure 4.2 presents the streamlines of each flow configuration. It is easy to
assure that the streamlines schematics suggested by Lagnado [3], in the region
between rollers on the four-roll mill, are quite accurate. The only discrepancy
about them and the simulations employed in this work is visible in Figure 4.2
iii), in which λ = 0, and streamlines are in fact still ellipses, but more flattened
comparing to the figure 4.2 iv), where λ = −0.5. Nonetheless, the streamlines
in the external region are also relevant to the describe the four-roll mill flow
and are frequently left aside. In the majority of cases, since it is a steady flow,
the external closed streamlines purely express a pathline around the cylinders,
as can be seen in Figures 4.2 iii), 4.2 iv), and 4.2 v). On the other hand, zones
of re-circulation appear in plot 4.2 i) near to each roller, but not around them.
Interestingly, the flow configuration displayed in the figure 4.2 ii) shows both
of these effects.

i) λ = 1
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ii) λ = 0.5

iii) λ = 0
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iv) λ = −0.5

v) λ = −1

Figure 4.2: Streamlines in the classic four-roll mill with distinct flow configu-
rations.
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4.1.3
The normalized persistence-of-straining parameter field

Previous works make use of the flow classification described in Table 2.1.
However, they do not elucidate the details related to the local classification.
Most of the times, different regions of the four-roll mill have completely
distinct flow types. Even the exact same region usually display simultaneous
behaviors, for instance extension and shear at the same time. Therefore, a
global classification is too much vague to understand and describe the local
kinematic behaviors in the four-roll mill.

Figure 4.3 shows the normalized persistence-of-straining parameter field
for each flow configuration. The arrangement of angular velocities provided in
Figure 4.3 i) is defined in the literature as pure extensional flow, i.e., associated
with λ = 1. As it can be seen, extensional flow is in fact dominant near
the center of the four-roll mill. Between the rollers, where the velocities are
higher, a clear rigid body movement is obtained. Since the rollers have the same
tangent velocity, this context is analogous to a flow between walls moving with
identical velocities. Near the cylinders borders, the fluid simultaneously deal
with extension and shear flow. Although it is evident that the four-roll mill
favors elongation in this specific configuration, the local classification is able
to identify some regions that simple shear flow is in fact dominant.

Figure 4.3 iii) presents the classification known as simple shear flow. As a
matter of fact, simple shear flow is experienced at the borders from the static
cylinders. On the other side, at the rotating rollers, a combination of shear
and extensional flow is identified. In the regions near where the boundaries
intersect, the tangent velocity slowly decreases until becoming zero at the
wall. This particularity results in regions of extension near the border due to
the local stagnation flow.

The rotational flow described by the literature is exhibited in Figure 4.3
v). In the internal region, the result is almost the opposite from case i). Near
the origin, we have a rigid body movement related to a internal rotational
flow. Between the rollers, a mix of shear and extensional flow is established. In
the external region, another rotational movement is recognized with velocities
close to the average from the velocity field, resulting in regions of shear flow
and rigid body motion combined and other regions with exclusive rigid body
motion.

Notice that the flow configurations presented in Figures 4.3 ii) and 4.3
iv) are sightly variations of 4.3 i) and 4.3 v) respectively. Interestingly, the
presence of shear flow in these variations (λ = 0.5 and λ = −0.5) increases
comparing to the case defined as simple shear flow (λ = 0) in the literature. The
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reason is related to the intensification of the occurrence of angular strain due to
differences between the velocity of rollers. This shows one more inconsistency
of the global criteria for flow classification currently used.

i) λ = 1

ii) λ = 0.5
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iii) λ = 0

iv) λ = −0.5
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v) λ = −1

Figure 4.3:R∗ field in the classic four-roll mill with distinct flow configurations.

4.1.4
The modified normalized persistence-of-straining parameter field

The modified normalized persistence-of-straining parameter field inter-
prets the flow classification of the dispersed phase. There are different kine-
matic behaviors, at the same position, depending on which phase of emulsion
is currently at this region. The results related to this specific field are an at-
tempt to provide a flow classification if every single mesh node was filled with
a microelement of the dispersed phase. The coefficients G, α, and F describe
the microstrucutre of the microelement. For simplicity, F = 0 is assumed. Oth-
erwise, the modified normalized persistence-of-straining parameter field would
change at each time step. Thus, the aim is to analyze the influence of the
parameters G and α on the microelement flow classification scheme.

For each flow configuration, distinct combinations of G and α were sim-
ulated to obtain different modified normalized persistence-of-straining param-
eter fields. Figures 4.4, 4.5, and 4.6 show these fields for λ = 1, λ = 0, and
λ = −1 respectively. As already mentioned, the particular case in which G = 1,
α = 0, and F = 0 represents the only case where the dispersed phase behaves
exactly as the continuous phase, i.e., R∗mod = R∗. Consequently, the cases
presented in Figures 4.4 vii), 4.5 vii), and 4.6 vii) match exactly respectively
with 4.3 i), 4.3 iii), 4.3 and v).

DBD
PUC-Rio - Certificação Digital Nº 1912750/CA



Chapter 4. Results 44

Notice that for each flow configuration, the increase of the parameter α
or G results in the spread and rise of regions that represent pure extension or a
mix of shear and extensional flow, i.e. R∗mod ∈ (0, 1]. This trend of extensional
flow at first does not specify an elongation or compression behavior. On the
other hand, the decrease of G endorse the appearance of regions of rigid body
motion and sometimes it is mixed with shear flow, i.e. R∗mod ∈ [−1, 0). It
is essential to emphasize that the transformation of the modified normalized
persistence-of-straining parameter field with the variation of α and G is totally
gradual. For instance, the comparison of figures 4.4 vii), 4.4 viii), and 4.4 ix)
illustrates the increase of α with G = 1 fixed. As α is increased, the region
that is initially classified as rigid body change to a classification of simple
shear flow, while regions originally of shear flow become a mix of shear and
extensional flow. Analogously, the region that initially represents a mix of shear
and extensional flow shifts to a classification of pure extensional flow.

Other interesting cases are the ones with the minimum G and maximum
α. In theses cases, i.e. plots 4.4 xv), 4.5 xv), and 4.6 xv), it can be seen that
the extreme behaviors are both present. Near the rollers, the behavior of rigid
body motion is dominant while near the borders, extensional flow is dominant
instead.
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i) G = 4; α = 0 ii) G = 4; α = 0.2 iii) G = 4; α = 0.5

iv) G = 2; α = 0 v) G = 2; α = 0.2 vi) G = 2; α = 0.5

vii) G = 1; α = 0 viii) G = 1; α = 0.2 ix) G = 1; α = 0.5

x) G = 0.5; α = 0 xi) G = 0.5; α = 0.2 xii) G = 0.5; α = 0.5

xiii) G = 0.2; α = 0 xiv) G = 0.2; α = 0.2 xv) G = 0.2; α = 0.5

Figure 4.4: R∗mod field in the classic four mill with λ = 1 and distinct
microelements.
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i) G = 5; α = 0 ii) G = 5; α = 0.1 iii) G = 5; α = 0.4

iv) G = 2; α = 0 v) G = 1; α = 0.1 vi) G = 1; α = 0.4

vii) G = 1; α = 0 viii) G = 1; α = 0.1 ix) G = 1; α = 0.4

x) G = 0.5; α = 0 xi) G = 0.5; α = 0.1 xii) G = 0.5; α = 0.4

xiii) G = 0.2; α = 0 xiv) G = 0.2; α = 0.1 xv) G = 0.2; α = 0.4

Figure 4.5: R∗mod field in the classic four mill with λ = 0 and distinct
microelements.
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i) G = 4; α = 0 ii) G = 4; α = 0.2 iii) G = 4; α = 0.5

iv) G = 2; α = 0 v) G = 2; α = 0.2 vi) G = 2; α = 0.5

vii) G = 1; α = 0 viii) G = 1; α = 0.2 ix) G = 1; α = 0.5

x) G = 0.4; α = 0 xi) G = 0.4; α = 0.2 xii) G = 0.4; α = 0.5

xiii) G = 0.2; α = 0 xiv) G = 0.2; α = 0.2 xv) G = 0.2; α = 0.5

Figure 4.6: R∗mod field in the classic four mill with λ = −1 and distinct
microelements.
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4.2
Expanded four-roll mill

The main point of the expanded four-roll mill is to get closer to the
motivation of using the four-roll mill as a system to contribute to phase sep-
aration. Analogously, distinct flow configurations are investigated on the non-
dimensional velocity fields, streamlines, normalized persistence-of-straining pa-
rameter field, and modified normalized persistence-of-straining parameter field
from the expanded four-roll mill. Non-null entrance Reynolds numbers are ex-
amined. Therefore, it allows the inspection of the deformation of several mi-
croelements with distinct behaviors that are initially placed at the inlet border.

4.2.1
Velocity fields

Figures 4.7, 4.8, and 4.9 represent respectively the velocities fields on
the expanded four-roll mill of λ = 1, λ = 0, and λ = −1 with different sets
of entrance Reynolds numbers. Notice that Figures 4.7 i), 4.8 i), and 4.9 i)
represent the cases of different flow configurations with Reent = 0. Notice that
these specific cases differ from the analogous cases related to plots 4.1 i), 4.1
iii), and 4.1 v) of the classic four-roll mill mainly because of the domain size.
However, in the internal region, the results of velocity field are almost the
same, both from the quantitative and qualitative points of view.

In each flow configuration, the effect of the entrance Reynolds is analyzed.
As it can be seen more clearly in Figures 4.7 v), 4.8 v), and 4.9 v), which are
cases with Reent = 10, as the entrance Reynolds number is increased the
flow becomes more similar to the flow around a rotating cylinder. Despite the
different flow configurations, these outputs are very much alike. Besides the
internal region, the location which has the higher flow velocity is what mainly
differs the results for each flow configuration. For instance, in Figure 4.9 v), the
region below the roller has higher velocities than the region above the rollers.
On the other hand, the opposite is clearly visible in Figure 4.8 v), while the
plot 4.7 v) displays the exact same velocities above and below the cylinders.
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i) Reent = 0

ii) Reent = 1
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iii) Reent = 3

iv) Reent = 5
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v) Reent = 10

Figure 4.7: Velocity field in the expanded four-roll mill with λ = 1 and distinct
entrance Reynolds number.

i) Reent = 0
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ii) Reent = 1

iii) Reent = 2
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iv) Reent = 3

v) Reent = 10

Figure 4.8: Velocity field in the expanded four-roll mill with λ = 0 and distinct
entrance Reynolds number.
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i) Reent = 0

ii) Reent = 2
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iii) Reent = 3

iv) Reent = 5
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v) Reent = 10

Figure 4.9: Velocity field in the expanded four-roll mill with λ = −1 and
distinct entrance Reynolds number.

4.2.2
Streamlines

Figures 4.10 and 4.11 exhibit the streamlines of each flow configuration
on the expanded four-roll mill with Reent = 0 and Reent = 5 respectively.
Comparing both meshes with a null inlet velocity, i.e. Figures 4.2 and 4.10,
the outputs are very close in the internal region. Nonetheless, it is clear that
the expanded four-roll mill enlarges the recirculation zones in cases 4.10 i) and
4.10 ii). In the specific case of 4.10 iii), a recirculation zone that did not exist
in the classic mesh appeared right after the rollers in the expanded mesh. On
the other hand, cases 4.10 iv) and 4.10 v) reveal closed streamlines both in
internal and external regions. Both of them present a trend reciprocal with the
cases 4.1 iv) and 4.1 v).

As already commented, the velocity fields with the Reent = 5 become
very similar and consequently the same happens for the streamlines. The
general pattern of Figures 4.11 i) to 4.11 v) is typical of streamlines of a
flow around static or rotating cylinder. The major difference among the cases
displayed concerns the regions of re-circulation right after the rollers. It is worth
mentioning that, in the specific case of the plot 4.11 i), the fluid particles access
the internal region by the sideways and leave vertically exactly as desired from
the application point of view in this configuration.
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i) λ = 1

ii) λ = 0.5

iii) λ = 0
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iv) λ = −0.5

v) λ = −1

Figure 4.10: Streamlines in the expanded four-roll mill with Reent = 0 and
distinct flow configurations.
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i) λ = 1

ii) λ = 0.5

iii) λ = 0
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iv) λ = −0.5

v) λ = −1

Figure 4.11: Streamlines in the expanded four-roll mill with Reent = 5 and
distinct flow configurations.

4.2.3
The normalized persistence-of-straining parameter fields

Figure 4.12 shows the normalized persistence-of-straining parameter field
with Reent = 0 and different flow configurations. It is interesting to superpose
these figures with the original results from the classic four-roll mill. Thus,
analyzing the results in the range of −l ≤ x ≤ l for each flow configuration,
they are almost the same as the ones for the classic four-roll mill presented in
Figure 4.3. Outside this range, the results show different flow classifications.
Near to the "West" and "East" borders, all the flow configurations present a
mix of every single type of classifications. Therefore, it is clear that the use of
the four-roll mill as an mechanism to expose the fluids to different kinds of flow
is efficient. Specifically near the "West" border all the configurations display a
small entrance region of simple shear flow. Despite the fact that Re = 0, this
shear region occurs due to the velocities of the rollers.
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i) λ = 1

ii) λ = 0.5
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iii) λ = 0

iv) λ = −0.5
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v) λ = −1

Figure 4.12: R∗ field in the expanded four-roll mill with Reent = 0 and distinct
flow configurations.

The normalized persistence-of-straining parameter field with Reent = 5
and distinct λ parameters, in turn, are indicated in Figure 4.13. Due to the
fact that the results on each flow configuration converge for a solution close
to the flow around a rotating cylinder, a clear pattern is established. Near the
inlet region ("West" border), there is a relevant region with rigid body motion.
In the areas close to the rollers, there is a transition where besides the rigid
body motion, shear flow is also present. Naturally, huge areas after the rollers
are shear wakes. Thus, in these areas, the normalized persistence-of-straining
parameter R∗ → 0, representing simple shear flow.
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i) λ = 1

ii) λ = 0.5
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iii) λ = 0

iv) λ = −0.5
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v) λ = −1

Figure 4.13: R∗ field in the expanded four-roll mill with Reent = 5 and distinct
flow configurations.

4.2.4
The modified persistence-of-straining parameter fields

The results of modified persistence-of-straining parameter field for the
expanded four roll mill are quite analogous from the ones of the classic four-
roll mill. The same pattern is observed in which the increase of parameters
α or G are directly related to the increase of the presence of regions with
extension, while the decrease of G corresponds to more regions of rigid body
motion, even with a non-null imposed velocity. Therefore, to avoid repetition,
the decision was to only plot the modified persistence-of-straining parameter
field for the flow configuration λ = 1 both with Reent = 0 and Reent = 5,
which are respectively displayed in Figures 4.14 and 4.15.
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i) G = 4; α = 0 ii) G = 4; α = 0.2 iii) G = 4; α = 0.5

iv) G = 2; α = 0 v) G = 2; α = 0.2 vi) G = 4; α = 0.5

vii) G = 1; α = 0 viii) G = 1; α = 0.2 ix) G = 1; α = 0.5

x) G = 0.5; α = 0 xi) G = 0.5; α = 0.2 xii) G = 0.5; α = 0.5

xiii) G = 0.2; α = 0 xiv) G = 0.2; α = 0.2 xv) G = 0.2; α = 0.5

Figure 4.14: R∗mod field in the expanded four-roll mill with Reent = 0, λ = 1,
and distinct microelements.
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i) G = 6; α = 0 ii) G = 6; α = 0.2 iii) G = 6; α = 0.5

iv) G = 2; α = 0 v) G = 2; α = 0.2 vi) G = 2; α = 0.5

vii) G = 1; α = 0 viii) G = 1; α = 0.2 ix) G = 1; α = 0.5

x) G = 0.4; α = 0 xi) G = 0.4; α = 0.2 xii) G = 0.4; α = 0.5

xiii) G = 0.2; α = 0 xiv) G = 0.2; α = 0.2 xv) G = 0.2; α = 0.5

Figure 4.15: R∗mod field in the expanded four-roll mill with Reent = 5, λ = 1,
and distinct microelements.
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4.2.5
Pathline and deformation of microelements

A few examples were selected to illustrate the deformation of microele-
ments corresponding to the dispersed phase. First, four distinct microelements
with different values of G and α were considered. These cases lead to dis-
tinct modified persistence-of-straining parameter fields. Additionally, for each
one of these cases, the microelements were initially placed (at t∗ = 0) at the
"West" boundary at different vertical positions yo∗. Their respective pathlines
are presented with the modified persistence-of-straining parameter fields in
the background. The initial size of the vector is defined as R1 = 10−5 and the
respective inclination θ1 = π/4. The fixed time step is ∆t = 10−2.

Notice that it is not the aim of this work to define a criterion for
drop breakup. The breakage is associated with large deformations. Therefore,
the code is interrupted whenever the microelement reaches some assigned
maximum deformation. Otherwise, the microelement will just reach the "East"
boundary in order to stop the code. The drop is considered to be an ellipsoid of
axis a1, a2, and a3. The vector R is aligned with the direction of a1. Thus, the
deformation analyzed is exclusively in this specific direction. For simplicity, it is
assumed that a2 = a3 and consequently the volume of the drop is V = πa1a2

2.
Considering that the volume of the drop is conserved, the resistance of the
vector R is higher to compression than to elongation. The compression of
the direction of a1 results in the elongation of the other two directions. The
maximum deformation will be associated with R∗ = R∗crit. Thus, the drop is
assumed to break if R∗ ≥ R∗crit or R∗ ≤ 1

R∗
crit

2 .
Since the flow configuration λ = −1 does not facilitate the access of

the microelements into the internal region, the microelement deformation is
analyzed for λ = 1 and λ = 0 only, both of them with Reent = 5. Figure 4.16
shows the same microelement placed at different vertical positions and their
respective pathlines. The background is the modified persistence-of-straining
parameter field and it is based on the choice of G and α on each case.
Notice that for the scenario in Figure 4.16 iv) where the rigid body motion is
predominant each pathline reaches the outlet ("East" border) since the drop
maximum deformation is not achieved. In the other cases, many microelements
positioned in different vertical positions break up before reaching the "East"
border mainly because of shear and extension.
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i) G = 2, α = 0

ii) G = 1, α = 0

iii) G = 1, α = 0.2

iv) G = 0.4, α = 0

Figure 4.16: Pathlines in the expanded four-roll mill with Reent = 5, λ = 1,
and distinct microelements placed at different initial vertical positions.
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At this point, the initial vertical position yo∗ = 0 is selected to illustrate
some interesting mechanical behaviors of emulsions. Figure 4.17 gives the non-
dimensional position x∗ versus time t∗ and non-dimensional position y∗ versus
time t∗ for yo∗ = 0, and with λ = 1 and Reent = 5. Notice that the plots contain
the same paths for both directions because the pathline depends only on the
velocity field. The criterion of maximum deformation causes interruption at
different times for each microelement, based on its properties. For instance,
for the case G = 1 and α = 0 represented on figure 4.17 iii), the code is
interrupted right after the microelement reaches the origin of the domain,
which corresponds to the center of the four-roll mill. Horizontal black dashed
lines were plotted to highlight the x∗ position range which contains the internal
region of the four-roll mill. In addition, three vertical yellow dashed lines
were drawn to indicate when the inlet, middle and outlet positions of the
internal region of the four-roll mill, i.e. the positions at x∗4RM_inlet = − b+a

a
,

x∗4RM_center = 0, and x∗4RM_outlet = b+a
a
, are reached. These specific markers

are in fact reached (if the deformation is lower than the maximum) at the
dimensionless times t∗ = 51.12, 55.29, and 66.81. In the case represented in
figure 4.17 i), i.e. G = 2 and α = 0, the microelement reaches the inlet of the
internal region at time t∗ = 51.12 and breaks right after at time t∗ = 52.16,
never reaching the center.

i) G = 2; α = 0 ii) G = 2; α = 0

iii) G = 1; α = 0 iv) G = 1; α = 0
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v) G = 1; α = 0.2 vi) G = 1; α = 0.2

vii) G = 0.4; α = 0 viii) G = 0.4; α = 0

Figure 4.17: x∗ versus t∗ (left column) and y∗ versus t∗ (right column) in
expanded four-roll mill, for Reent = 5, λ = 1, yo∗ = 0, and distinct
microelements.

The time evolution of the deformation of the vector aligned in the a1

direction is plotted in Figure 4.18 for the respective combinations of G and α.
An arbitrary critical deformation is defined as R∗crit = 10. Consequently, the
drop will break if R∗ ≥ 10 or R∗ ≤ 0.01. A few other values are indicated
with black dots on the Figures in order to accommodate future drop breakup
criteria, for illustration purposes. They are R∗crit = 3, 5, and 7. It means that
the drop will break if R∗ ≥ 3 or R∗ ≤ 1

9 , R
∗ ≥ 5 or R∗ ≤ 1

25 , and R
∗ ≥ 7 or

R∗ ≤ 1
49 , respectively.
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i) G = 2; α = 0 ii) G = 1; α = 0

iii) G = 1; α = 0.2 iv) G = 0.4; α = 0

Figure 4.18: R∗ versus t∗ in the expanded four-roll mill with Reent = 5, λ = 1,
yo
∗ = 0, and distinct microelements.

For the pair of G = 2 and α = 0 represented in the figure 4.18 i), the
microelement experiences a huge and sudden extension right after reaching the
inlet of the internal region of the four-roll mill. As already mentioned, the non-
dimensional time pertaining to the internal region inlet is t∗ = 51.12. The drop
breakage times are respectively t∗breakage = 51.70, 51.95, 52.09, and 52.16 for
the critical deformations associated with R∗crit = 3, 5, 7, and 10. These results
are justified by the fact that the microelement goes through a region of almost
pure extension near the center of the four-mill, which can be seen in Figure
4.16 i). Recalling the application of this work, this is an unfavorable scenario
due to the fact that the breakup results in smaller drops, which reduces the
probability of droplets coalescing and favors the stability of the emulsion.

In the case shown in Figure 4.18 ii) (G = 1 and α = 0), it happens
the same, from the emulsion point of view. In the case displayed in the
figure 4.18 iii), i.e., G = 1 and α = 0.2, the drop initially experiences
compression associated with the region of almost pure extension near the
"West" boundary that might be visualized in Figure 4.16 iii). In the sequence,
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the drop experiences no major deformation for a period of time before reaching
the internal region of the four-roll mill. Then, it suddenly starts to elongate
mainly because the combination of angular velocities of the rollers pulls the
microelement both upwards and downwards in this region. As the microelement
is moved to the upper region of the four-roll mill, it starts to experience a
combination of shear and compression. After leaving the four-roll mill, the
drop faces another region of mainly pure extension, which is associated with
compression. Then, the microelement vector length keeps decreasing until the
final breakage. Notice that during this distinct moments, a few dot markers
were plotted. First, R∗ = 1

9 at time t∗ = 40.75 is a indication as possible
breakage. In the fast elongation right after the center of the four-roll mill, the
markers of R∗ = 3, 5, and 7 are respectively reached at times t∗ = 58.84,
59.38, 59.74. After the four-roll mill and long periods of compression we have
the analogous values for compression R∗ = 1

25 and 1
49 at respective times

t∗ = 116.10 and 128.09, and finally, according to our chosen criterion R∗ = 0.01
at t∗ = 141.30, interrupting the code. Thus, in most cases examined, the drop
will eventually break up and will favor the stability of the emulsion.

However, the case presented in Figure 4.18 iv), in which G = 0.4 and
α = 0, the modified persistence-of-straining field indicates predominantly rigid
body motions as Figure 4.16 iv) suggests. Consequently, even the extension
region near the center is more subtle. As the plot of deformation implies, right
after the center, the elongation is enough to breakup the drop if R∗crit = 3
or 5. However for R∗crit = 7 or 10, the drop suffers deformation but is not
enough to break it. Thus, considering the adopted criterion of R∗crit = 10,
it will reach the West border at time t∗ = 231.70 with R∗ = 4.71. From the
physical point of view, we have one of the best scenarios in this case. There will
be less drops of the dispersed phase with larger sizes. Therefore, it increases
the probability of happening drop coalescence. It therefore favors the emulsion
instability which is desired for the application related with phase separation.

Figure 4.19 shows microelements placed at different vertical positions and
their respective pathlines, with λ = 0 and Reent = 5. This is the configuration
pertaining to simple shear flow. Notice that the increase of G, present in figure
4.19 i), contributes to the presence of regions of almost pure extension (near
the cylinders with non-null angular velocities) and others with the combination
of extension and shear. Hence, looking for the microelement initially placed at
yo
∗ = −1.57, its clear that the microelement breaks very close to the inlet

of the internal region. The plot 4.20 i) confirms exactly this information.
Analyzing the microelement deformation from Figure 4.21 i), it is safe to assert
that the increase of the parameter G brings elongation for the microelement
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immediately before and in the internal region of the four-roll mill. That justifies
the increases of the vector length and the following markers: R∗ = 3, 5, and
7 at times t∗ = 47.03, 51.41, 53.10 and the final breakage according to the
criterion R∗crit = 10 at time t∗ = 54.32.

i) G = 2; α = 0

ii) G = 1; α = 0

iii) G = 1; α = 0.2
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iv) G = 0.5; α = 0

Figure 4.19: Pathlines in the expanded four-roll mill, for Reent = 5, λ = 0 and
distinct microelements.

Image 4.19 ii) shows that the microelement placed at the same original
position yo

∗ = −1.57 now faces, in its pathline, more regions of combined
extension and shear than pure extension in the internal region of the four-roll
mill. After leaving the internal region, it deals with a large region of almost
simple shear flow, which is responsible for breaking the microelement actually
very close to the "East" boundary. Figure 4.20 iii) provides the values of the
internal region time markers: t∗ = 54.78, 62.75, 80.63. Once again, according
to Figure 4.21 ii), the microelement is exposed to elongation inside the four-
roll mill. The following markers are obtained in this region R∗ = 3, 5, and 7
at times t∗ = 67.60, 70.44, and 73.02. Nonetheless, following the criterion of
R∗crit = 10, the microelement only breaks after long periods of shear flow at
time t∗ = 217.91.

i) G = 2; α = 0 ii) G = 2; α = 0
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iii) G = 1; α = 0 iv) G = 1; α = 0

v) G = 1; α = 0.2 vi) G = 1; α = 0.2

vii) G = 0.5; α = 0 viii) G = 2; α = 0

Figure 4.20: x∗ versus t∗ (left column) and y∗ versus t∗ (right column) in
the expanded four-roll mill, for Reent = 5, λ = 0, yo∗ = −1.57, and distinct
microelements.
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i) G = 2; α = 0 ii) G = 1; α = 0

iii) G = 1; α = 0.2 iv) G = 0.5; α = 0

Figure 4.21: R∗ versus t∗ in the expanded four-roll mill, for Reent = 5, λ = 0,
yo
∗ = −1.57, and distinct microelements.

The increase of α also brings more extension as can be seen in Figure
4.19 iii). Not only near the "West" border, but also after the rollers between the
range of −2.5 ≤ y∗ ≤ 2.5. Every single dash marked is reached in Figure 4.20
v) and vi). The microelement leaves the internal region at time t∗ = 80.63 and
breaks at t∗ = 84.72. According to the deformation plot in Figure 4.21 iii), the
microelement is compressed since the beginning. Thus the increase of α brings
compression to the external region. During this time, the following markers
were reached: R∗ = 1

9 ,
1
25 , and

1
49 at times t∗ = 51.41, 55.64, and 82.58 (the

first marker right before the internal region, the second in the internal region
and the last one right after the internal region). Finally the microstructure
breaks with R∗ = 1

100 at time t∗ = 84.72.
Figure 4.19 iv) illustrates the effect of decreasing the parameter G.

The modified persistence-of-straining field becomes predominantly rigid body
motion before the rollers and a combination of rigid body motion and shear flow
after the rollers. In the internal region, near the static cylinders, there is also the
combination of rigid body motion and shear flow, while the rotating cylinders
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cause a combination of shear and extensional. Therefore, the deformations
are smaller in this case. Notice from Figure 4.21 iv) that the microelement
is exposed to a lot of shear in many directions, which leads to a sequence of
increase and decrease of the respective length vector. The microelement does
not break and reaches the "East" border at time t∗ = 223.66 with R∗ = 0.80.

From the emulsion point of view, a few scenarios are repeated. For the
cases with the pairs G = 2 and α = 0, G = 1 and α = 0, the drop breaks
up by elongation. Notice that for the microelement with G = 2 and α = 0 it
was exposed to a extension region, while for G = 1 and α = 0 it was exposed
to a shear region and both of them were able to provide enough elongation.
For the case with G = 1 and α = 0.2, the drop reaches the critical value
of compression and consequently leads to elongation in the other orthogonal
directions (a2 and a3). In both of these conditions, it increases the number of
drops and decreases their respective sizes. Thus, it reduces the probability of
coalescence between drops and results in a more stable emulsion. In contrast,
in the case of G = 0.5 and α = 0, the microelement does not break up. Since it
reaches the "East" boundary with R∗ = 0.80, it represents a elongation of the
drop of 11.80% in the direction of axis a2 and a3. It leads to the decrease of
the number of drops and increases their respective sizes. It is the desired case
for the application since favors the probability of coalescence.
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5
Final Remarks

In this work, simulations were implemented to analyze the mechanical
behavior of emulsions in the four-roll mill. The main benefit of using the four-
roll mill is the possibility of obtaining several flow configurations depending
on the choice of the imposed angular velocity of the rollers.

Firstly, the approach of classifying the flows of the four-roll mill is dis-
cussed. Therefore, the case of an incompressible, bi-dimensional and isothermal
flow of a Newtonian fluid in the four-roll mill at steady-state, representing the
continuous phase, was initially implemented. The results obtained of velocity
fields and streamlines were compatible with the literature. The flow classifi-
cation criteria proposed by Thompson and de Souza Mendes [36] was used to
investigate if the flow configuration parameter λ was suitable with the flow
classifications established in the literature such as pure extensional flow, pure
shear flow and rigid body movement respectively associated with the flow-type
parameter λ = 1, λ = 0, and λ = −1. The obtained results demonstrate that,
for several configurations, there is a local classification for each position and,
most of the time, the fluid experiences more than one mechanical behavior.
Therefore, it is inaccurate to use a general flow classification for a single flow
configuration.

Secondly, a post-processing was developed to consider the flow classifi-
cation of the dispersed phase. Despite of the velocity field being the same,
microelements of the dispersed phased, represented by passive vectors, display
completely distinct flow classification from the continuous phase at the same
position. Therefore, it only reinforces that it is not appropriate to use a general
classification. Each position will have its own flow classification depending on
the time and whether it is currently being occupied by which phase.

The deformation of these microelements were also examined. Employing
the work of Olbricht [43], the vectors were aligned to one of the axis from the
ellipsoid that represents the small droplet of the dispersed phase. Considering
the volume conservation, the deformation of the vector might lead to breakage.
A criterion based on maximum deformation of any of the three axis was defined.
Both successful and unsuccessful scenarios were gathered in terms of the phase
separation application. The successful case happens when the microelements
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deforms considerably without breaking the drop. Thus, it results in fewer drops
with larger sizes in the domain. It increases the probability of coalescence and
phase separation.

Therefore, this work does not provide ready to apply results. However,
it brings relevant qualitative insights about distinct flows and the deformation
of droplets from the dispersed phase of the emulsions in the four-roll mill.

5.1
Future Works

It is important to adjust and consider a few topics for future works. An
important issue in this work is the fact that just a few microelements that are
presented in the inlet border reach the internal region of the four-roll mill. A
possible solution is to insert an inclined barrier before the rollers to redirect
the particles to the internal region.

Besides, a great upgrade would be to consider the droplet as a second-
order tensor instead of a vector. Thus, deformations in other directions
according to volume conservation would be more accurate. This would also
contribute to specifying the emulsions phases. Then, it would be possible to
simulate applications cases of water-in-oil emulsions (W/O).

At last, an important and difficult task is to establish an criterion for
the drop breakup. This was not considered in this work and instead the drop
breakup was based exclusively on arbitrary values of maximum deformation.
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A
Codes

Every code used in this work is available in this section. It includes the
meshes and the main simulation.

A.1
Meshes

Both meshes were implement with the software Gmsh. First,
4RM_Mesh_Classic.geo, which is associated with the classic four-roll mill, is
presented. Then, the code associated with the expanded four-roll mill named
4RM_Mesh_Expanded.geo is shown.

Listing A.1: 4RM_Mesh_Classic.geo
// Dimensions
a = 0 .01905 ; //
b = 0 .02465 ; //
c = 0 . 1778 ; // box he ight
d = 0 . 1778 ; // box length
gap = 2∗(b−a ) ;
e l = 0 . 0 0 3 ;
// Outer Square Points
//+
Point (1 ) = {d/2 , c /2 , 0 . 0 , e l } ; // Upper r i gh t
//+
Point (2 ) = {−d/2 , c /2 , 0 , e l } ; // Upper l e f t
//+
Point (3 ) = {−d/2 , −c /2 , 0 , e l } ; // Bottom l e f t
//+
Point (4 ) = {d/2 , −c /2 , 0 , e l } ; // Bottom r i gh t
// Inner C i r c l e Points
// Upper r i g h t c i r c l e
Point (5 ) = {b , b , 0 , e l } ; //Center
//+
Point (6 ) = {b+a , b , 0 , e l } ; //Right
//+
Point (7 ) = {b−a , b , 0 , e l } ; // Le f t
//+
Point (8 ) = {b , b+a , 0 , e l } ; //Upper
//+
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Point (9 ) = {b , b−a , 0 , e l } ; //Lower
// Upper l e f t c i r c l e
Point (10) = {−b , b , 0 , e l } ; //Center
//+
Point (11) = {−b+a , b , 0 , e l } ; //Right
//+
Point (12) = {−b−a , b , 0 , e l } ; // Le f t
//+
Point (13) = {−b , b+a , 0 , e l } ; //Upper
//+
Point (14) = {−b , b−a , 0 , e l } ; //Lower
// Bottom l e f t c i r c l e
Point (15) = {−b , −b , 0 , e l } ; //Center
//+
Point (16) = {−b+a , −b , 0 , e l } ; //Right
//+
Point (17) = {−b−a , −b , 0 , e l } ; // Le f t
//+
Point (18) = {−b , −b+a , 0 , e l } ; //Upper
//+
Point (19) = {−b , −b−a , 0 , e l } ; //Lower
// Bottom r i gh t c i r c l e
Point (20) = {b , −b , 0 , e l } ; //Center
//+
Point (21) = {b−a , −b , 0 , e l } ; // r i g h t
//+
Point (22) = {b+a , −b , 0 , e l } ; // l e f t
//+
Point (23) = {b , −b+a , 0 , e l } ; //Upper
//+
Point (24) = {b , −b−a , 0 , e l } ; //Lower
// Rectangle Lines
//+
Line (25) = {1 , 2} ; // North
//+
Line (26) = {2 , 3} ; // West
//+
Line (27) = {3 , 4} ; // South
//+
Line (28) = {4 , 1} ; // East
// C i r c l e Lines
// Upper r i g h t c i r c l e
// Northeast UR
C i r c l e (29) = {6 , 5 , 8} ;
// Northwest UR
C i r c l e (30) = {8 , 5 , 7} ;
// Southwest UR
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Ci r c l e (31) = {7 , 5 , 9} ;
// Southeast UR
C i r c l e (32) = {9 , 5 , 6} ;
// Upper l e f t c i r c l e
// Northeast UL
C i r c l e (33) = {11 , 10 , 13} ;
// Northwest UL
C i r c l e (34) = {13 , 10 , 12} ;
// Southwest UL
C i r c l e (35) = {12 , 10 , 14} ;
// Southeast UL
C i r c l e (36) = {14 , 10 , 11} ;
// Bottom l e f t c i r c l e
// Northeast BL
C i r c l e (37) = {16 , 15 , 18} ;
// Northwest BL
C i r c l e (38) = {18 , 15 , 17} ;
// Southwest BL
C i r c l e (39) = {17 , 15 , 19} ;
// Southeast BL
C i r c l e (40) = {19 , 15 , 16} ;
// Bottom r i gh t c i r c l e
// Northeast BR
C i r c l e (41) = {21 , 20 , 23} ;
// Northwest BR
C i r c l e (42) = {23 , 20 , 22} ;
// Southwest BR
C i r c l e (43) = {22 , 20 , 24} ;
// Southeast BR
C i r c l e (44) = {24 , 20 , 21} ;
// Line Loops
//+
Line Loop (45) = {25 , 26 , 27 , 28} ;
//+
Line Loop (46) = {29 , 30 , 31 , 32} ;
//+
Line Loop (47) = {33 , 34 , 35 , 36} ;
//+
Line Loop (48) = {37 , 38 , 39 , 40} ;
//+
Line Loop (49) = {41 , 42 , 43 , 44} ;
// Sur f a c e s
//+
Plane Sur face (50) = {45 , 46 , 47 , 48 , 49} ;
// Subdomains
//+
Phys i ca l Line ( " NorthLine " ) = {25} ;
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//+
Phys i ca l Line ( "WestLine " ) = {26} ;
//+
Phys i ca l Line ( " SouthLine " ) = {27} ;
//+
Phys i ca l Line ( " EastLine " ) = {28} ;
//+
Phys i ca l Line ( "UP_Obstacle_NE" ) = {29} ;
//+
Phys i ca l Line ( "UP_Obstacle_NW" ) = {30} ;
//+
Phys i ca l Line ( "UP_Obstacle_SW" ) = {31} ;
//+
Phys i ca l Line ( "UP_Obstacle_SE" ) = {32} ;
//+
Phys i ca l Line ( "UL_Obstacle_NE" ) = {33} ;
//+
Phys i ca l Line ( "UL_Obstacle_NW" ) = {34} ;
//
Phys i ca l Line ( "UL_Obstacle_SW" ) = {35} ;
//+
Phys i ca l Line ( "UL_Obstacle_SE" ) = {36} ;
//+
Phys i ca l Line ( "BL_Obstacle_NE" ) = {37} ;
//+
Phys i ca l Line ( "BL_Obstacle_NW" ) = {38} ;
//
Phys i ca l Line ( "BL_Obstacle_SW" ) = {39} ;
//+
Phys i ca l Line ( "BL_Obstacle_SE" ) = {40} ;
//+
Phys i ca l Line ( "BR_Obstacle_NE" ) = {41} ;
//+
Phys i ca l Line ( "BR_Obstacle_NW" ) = {42} ;
//
Phys i ca l Line ( "BR_Obstacle_SW" ) = {43} ;
//+
Phys i ca l Line ( "BR_Obstacle_SE" ) = {44} ;
//+
Phys i ca l Sur face ( " Fluid " ) = {50} ;
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Listing A.2: 4RM_Mesh_Expanded.geo
// Dimensions
a = 0 .01905 ; //
b = 0 .02465 ; //
c = 0 . 1778 ; // box he ight
d = 0 . 5334 ; // box length
gap = 2∗(b−a ) ;
e l = 0 . 0 0 5 ;
// Center c i r c l e po in t s
// x_circ_ur = r+dx ;
// y_circ_ur = r+dy ;
// x_circ_ul = −x_circ_ur ;
// y_circ_ul = y_circ_ur ;
// x_circ_br = x_circ_ur ;
// y_circ_br = −y_circ_ur ;
// x_circ_bl = −x_circ_ur ;
// y_circ_bl = −y_circ_ur ;
// Outer Rectangle Points
//+
Point (1 ) = {d/2 , c /2 , 0 . 0 , e l } ; // Upper r i gh t
//+
Point (2 ) = {−d/2 , c /2 , 0 , e l } ; // Upper l e f t
//+
Point (3 ) = {−d/2 , −c /2 , 0 , e l } ; // Bottom l e f t
//+
Point (4 ) = {d/2 , −c /2 , 0 , e l } ; // Bottom r i gh t
// Inner C i r c l e Points
// Upper r i g h t c i r c l e
Point (5 ) = {b , b , 0 , e l } ; //Center
//+
Point (6 ) = {b+a , b , 0 , e l } ; //Right
//+
Point (7 ) = {b−a , b , 0 , e l } ; // Le f t
//+
Point (8 ) = {b , b+a , 0 , e l } ; //Upper
//+
Point (9 ) = {b , b−a , 0 , e l } ; //Lower
// Upper l e f t c i r c l e
Point (10) = {−b , b , 0 , e l } ; //Center
//+
Point (11) = {−b+a , b , 0 , e l } ; //Right
//+
Point (12) = {−b−a , b , 0 , e l } ; // Le f t
//+
Point (13) = {−b , b+a , 0 , e l } ; //Upper
//+
Point (14) = {−b , b−a , 0 , e l } ; //Lower
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// Bottom l e f t c i r c l e
Point (15) = {−b , −b , 0 , e l } ; //Center
//+
Point (16) = {−b+a , −b , 0 , e l } ; //Right
//+
Point (17) = {−b−a , −b , 0 , e l } ; // Le f t
//+
Point (18) = {−b , −b+a , 0 , e l } ; //Upper
//+
Point (19) = {−b , −b−a , 0 , e l } ; //Lower
// Bottom r i gh t c i r c l e
Point (20) = {b , −b , 0 , e l } ; //Center
//+
Point (21) = {b−a , −b , 0 , e l } ; // r i g h t
//+
Point (22) = {b+a , −b , 0 , e l } ; // l e f t
//+
Point (23) = {b , −b+a , 0 , e l } ; //Upper
//+
Point (24) = {b , −b−a , 0 , e l } ; //Lower
// Rectangle Lines
//+
Line (25) = {1 , 2} ; // North
//+
Line (26) = {2 , 3} ; // West
//+
Line (27) = {3 , 4} ; // South
//+
Line (28) = {4 , 1} ; // East
// C i r c l e Lines
// Upper r i g h t c i r c l e
// Northeast UR
C i r c l e (29) = {6 , 5 , 8} ;
// Northwest UR
C i r c l e (30) = {8 , 5 , 7} ;
// Southwest UR
C i r c l e (31) = {7 , 5 , 9} ;
// Southeast UR
C i r c l e (32) = {9 , 5 , 6} ;
// Upper l e f t c i r c l e
// Northeast UL
C i r c l e (33) = {11 , 10 , 13} ;
// Northwest UL
C i r c l e (34) = {13 , 10 , 12} ;
// Southwest UL
C i r c l e (35) = {12 , 10 , 14} ;
// Southeast UL
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Ci r c l e (36) = {14 , 10 , 11} ;
// Bottom l e f t c i r c l e
// Northeast BL
C i r c l e (37) = {16 , 15 , 18} ;
// Northwest BL
C i r c l e (38) = {18 , 15 , 17} ;
// Southwest BL
C i r c l e (39) = {17 , 15 , 19} ;
// Southeast BL
C i r c l e (40) = {19 , 15 , 16} ;
// Bottom r i gh t c i r c l e
// Northeast BR
C i r c l e (41) = {21 , 20 , 23} ;
// Northwest BR
C i r c l e (42) = {23 , 20 , 22} ;
// Southwest BR
C i r c l e (43) = {22 , 20 , 24} ;
// Southeast BR
C i r c l e (44) = {24 , 20 , 21} ;
// Line Loops
//+
Line Loop (45) = {25 , 26 , 27 , 28} ;
//+
Line Loop (46) = {29 , 30 , 31 , 32} ;
//+
Line Loop (47) = {33 , 34 , 35 , 36} ;
//+
Line Loop (48) = {37 , 38 , 39 , 40} ;
//+
Line Loop (49) = {41 , 42 , 43 , 44} ;
// Sur f a c e s
//+
Plane Sur face (50) = {45 , 46 , 47 , 48 , 49} ;
// Subdomains
//+
Phys i ca l Line ( " NorthLine " ) = {25} ;
//+
Phys i ca l Line ( "WestLine " ) = {26} ;
//+
Phys i ca l Line ( " SouthLine " ) = {27} ;
//+
Phys i ca l Line ( " EastLine " ) = {28} ;
//+
Phys i ca l Line ( "UP_Obstacle_NE" ) = {29} ;
//+
Phys i ca l Line ( "UP_Obstacle_NW" ) = {30} ;
//+
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Phys i ca l Line ( "UP_Obstacle_SW" ) = {31} ;
//+
Phys i ca l Line ( "UP_Obstacle_SE" ) = {32} ;
//+
Phys i ca l Line ( "UL_Obstacle_NE" ) = {33} ;
//+
Phys i ca l Line ( "UL_Obstacle_NW" ) = {34} ;
//
Phys i ca l Line ( "UL_Obstacle_SW" ) = {35} ;
//+
Phys i ca l Line ( "UL_Obstacle_SE" ) = {36} ;
//+
Phys i ca l Line ( "BL_Obstacle_NE" ) = {37} ;
//+
Phys i ca l Line ( "BL_Obstacle_NW" ) = {38} ;
//
Phys i ca l Line ( "BL_Obstacle_SW" ) = {39} ;
//+
Phys i ca l Line ( "BL_Obstacle_SE" ) = {40} ;
//+
Phys i ca l Line ( "BR_Obstacle_NE" ) = {41} ;
//+
Phys i ca l Line ( "BR_Obstacle_NW" ) = {42} ;
//
Phys i ca l Line ( "BR_Obstacle_SW" ) = {43} ;
//+
Phys i ca l Line ( "BR_Obstacle_SE" ) = {44} ;
//+
Phys i ca l Sur face ( " Fluid " ) = {50} ;
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A.2
Simulations

Listing A.3: 4RM.py
#%% Package import

from d o l f i n import ∗
from mshr import ∗
import matp lo t l i b . pyplot as p l t
from matp lo t l i b . c o l o r s import LogNorm
import matp lo t l i b . cm as cm
import numpy as np
import pandas as pd
import seaborn as sns
import s c ipy . l i n a l g as l a
import s c ipy . i n t e r p o l a t e
import cmath as cmt
from t ime i t import de fau l t_t imer as t imer
import re
from random import ∗
import os
import matp lo t l i b . patches as mpatches
from matp lo t l i b . c o l l e c t i o n s import PatchCo l l e c t i on
import sys

s t a r t = timer ( )

#_______________________________________________________________________________________________________________
# p r e t t y p l o t n d . py
#_______________________________________________________________________________________________________________

#%% Non−dimensiona l Pre t ty P lo t Function D e f i n i t i o n − Creates Ve l o c i t y \
#and Pressure P lo t s o f the Resu l t s

def pre t typ lo tnd ( f i g , mesh , t , u , p , d i cT i t l e ,R, omega , pn l e v e l s =10, r e s u l t s p a th=’ ’ , \
cbarU=0,cbarP=0):

# Mesh Ver t i c e s ’ Coordinates
x = mesh . coo rd ina t e s ( ) [ : , 0 ]
y = mesh . coo rd ina t e s ( ) [ : , 1 ]
nVer t i c e s = len ( x )
shape = ( nVert ices , 2)
# Get Pressure and Ve l o c i t y Values
uValues = u . compute_vertex_values (mesh )
pValues = p . compute_vertex_values (mesh )
uXYValues = np . z e ro s ( shape )

# Colec t v e l o c i t y data in Arrays
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for j in range (0 , nVer t i c e s ) :
uXYValues [ j , 0 ] = uValues [ j ]
uXYValues [ j , 1 ] = uValues [ j+nVer t i c e s ]

# Plot V e l o c i t i e s
p l t . f i g u r e (num=f i g +1, f i g s i z e =(10 , 10) , dpi=100 , f a c e c o l o r=’w ’ , edgeco l o r=’k ’ )
p l t . c l f ( )
uax = p lo t (u)
p l t . x l ab e l ( r ’ $x^∗$ ’ , f o n t s i z e =14)
p l t . y l ab e l ( r ’ $y^∗$ ’ , f o n t s i z e =14)
p l t . x t i c k s ( f o n t s i z e =14)
p l t . y t i c k s ( f o n t s i z e =14)
dpdx = ( ( pValues [ len ( pValues )−1]−pValues [ 1 ] ) / x .max( ) )

# Ca lcu l a t e Arrow S i z e s
C = np . hypot ( uXYValues [ : , 0 ] , uXYValues [ : , 1 ] )
minVel = ’ { : . 4 f } ’ . format (C.min ( ) / ( abs ( omega∗R) ) )
meanVel = ’ { : . 4 f } ’ . format (C.mean ( ) / ( abs ( omega∗R) ) )
maxVel = ’ { : . 4 f } ’ . format (C.max( ) / ( abs ( omega∗R) ) )

cbarU = p l t . c o l o rba r ( uax , o r i e n t a t i o n=’ ho r i z on t a l ’ )
cbarU . s e t_t i ck s ( [C.min ( ) , C.mean ( ) , C.max( ) ] )
cbarU . ax . s e t_x t i c k l a b e l s ( [ minVel , meanVel , maxVel ] )
cbarU . s e t_ labe l ( r ’ $u^∗$ ’ , f o n t s i z e =14, l abe lpad=+1)
cbarU . ax . tick_params ( l a b e l s i z e =13)

# Save Figure as .PNG f i l e
i f re su l t s_path != ’ ’ :

p l t . s a v e f i g ( re su l t s_path+’ ve loc i ty_f i e ld_lamb=’+str ( lamb)+ \
’_Re=’+str ( Re_entrance)+ ’ . png ’ , dpi=200)

return cbarU , cbarP , uXYValues , pValues , nVer t i c e s ;

#_______________________________________________________________________________________________________________
# draw_sel f_loop . py
#_______________________________________________________________________________________________________________

def draw_self_loop ( center , rad ius , f a c e c o l o r=’#2693de ’ , edgeco l o r=’#000000 ’ ,
\

theta1=−30, theta2 =180):

# Add the r ing
rwidth = 0.02
r ing = mpatches .Wedge( center , radius , theta1 , theta2 , width=rwidth )
# Triang le edges
o f f s e t = 0 .02
xcent = cente r [ 0 ] − rad iu s + ( rwidth /2)
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l e f t = [ xcent − o f f s e t , c en t e r [ 1 ] ]
r i g h t = [ xcent + o f f s e t , c en t e r [ 1 ] ]
bottom = [ ( l e f t [0 ]+ r i gh t [ 0 ] ) / 2 . , c en t e r [ 1 ] −0 . 05 ]
arrow = p l t . Polygon ( [ l e f t , r i ght , bottom , l e f t ] )
p = PatchCo l l e c t i on (

[ r ing , arrow ] ,
edgeco l o r = edgeco lor ,
f a c e c o l o r = f a c e c o l o r

)
ax . add_co l l e c t i on (p)

#_______________________________________________________________________________________________________________
# Main . py
#_______________________________________________________________________________________________________________

#%% Read the mesh from gmsh

#Mesh : ’ c ’ −> 4RM_Mesh_Classic . geo and ’ e ’ −> 4RM_Mesh_Expanded . geo
mesh_type = ’ e ’

input_data = [ ]

i f mesh_type==’ c ’ :
f i l e = open( ’ 4RM_Mesh_Classic . geo ’ , ’ r ’ )

e l i f mesh_type==’ e ’ :
f i l e = open( ’ 4RM_Mesh_Modified . geo ’ , ’ r ’ )

f i l e = f i l e . r e a d l i n e s ( )

for l i n e in f i l e :
l i n e = re . f i n d a l l ( r " [−+]?\d∗\ .\d+|\d+" , l i n e )
i f l i n e != [ ] :

input_data . append ( l i n e [ 0 ] )

#%% Input parameters

# Flu id Constant Densi ty
rho = 887 .2
# Fluid Constant V i s c o s i t y
mu = 34e−3
# Cyl inder ’ s rad ius a
R = f loat ( input_data [ 0 ] )
# Distance between cen t e r s o f r o l l e r s
b = f loat ( input_data [ 1 ] )
# Gap between r o l l e r s
d = 2∗(b−R)
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# "Box" h e i g h t
H = 0.1778
# "Box" l e n g t h
Len = 0.5334
# Entrance Reynolds number
Re_entrance = 5
U_inf = Re_entrance ∗ (mu/( rho∗d ) )
# R o l l e r s Reynolds number
Re_ro l l e r s = 20
# Flow c o n f i g u r a t i o n
lamb = 1

# Microelement f l u i d
G_mic = 1
alpha_mic = 0
F_mic = 0

#%% Flow c o n f i g u r a t i o n

# Cyl inder ’ s cen ter po in t
# UP
x_center_UR = b
y_center_UR = b
# UL
x_center_UL = −b
y_center_UL = b
# BL
x_center_BL = −b
y_center_BL = −b
# BR
x_center_BR = b
y_center_BR = −b

# Cyl inder ’ s angu lar v e l o c i t y

# Pure e x t e n s i o n a l f l ow −> lambda = 1
# Simple shear f l ow −> lambda = 0
# Rigid body motion −> lambda = −1

i f lamb==−1:
omg_UR = Re_ro l l e r s ∗ (mu/( rho∗d∗R) )
omg_UL = omg_UR
omg_BL = omg_UR
omg_BR = omg_UR

e l i f lamb==−0.5:
omg_UR = Re_ro l l e r s ∗ (mu/( rho∗d∗R) )
omg_UL = omg_UR/2
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omg_BL = omg_UR
omg_BR = omg_UR/2

e l i f lamb==0:
omg_UR = −Re_ro l l e r s ∗ (mu/( rho∗d∗R) )
omg_UL = 0
omg_BL = omg_UR
omg_BR = 0

e l i f lamb==0.5:
omg_UR = −Re_ro l l e r s ∗ (mu/( rho∗d∗R) )
omg_UL = Re_ro l l e r s ∗ (mu/(2∗ rho∗d∗R) )
omg_BL = omg_UR
omg_BR = omg_UL

e l i f lamb==1:
omg_UR = −Re_ro l l e r s ∗ (mu/( rho∗d∗R) )
omg_UL = Re_ro l l e r s ∗ (mu/( rho∗d∗R) )
omg_BL = omg_UR
omg_BR = omg_UL

#%% Set mesh and subdomains

# Define Path f o r sav ing Images
re su l t s_path = ’ /home/ joao /Desktop/Mestrado/4RM/Resu l t s / ’

i f not os . path . e x i s t s ( re su l t s_path ) :
os . makedirs ( re su l t s_path )

# Define Path where mesh i s saved
meshpath = ’ /home/ joao /Desktop/Mestrado/4RM/Codes/4RM/Mesh/ ’

i f mesh_type==’ c ’ :
meshxml f i l e = ’ 4RM_Mesh_Classic ’

e l i f mesh_type==’ e ’ :
meshxml f i l e = ’ 4RM_Mesh_Modified ’

# Create mesh from XML
mesh2d = Mesh(meshpath + meshxml f i l e + ’ . xml ’ ) ;

# Define f i g u r e s i z e and r e s o l u t i o n ( dp i s )
p l t . f i g u r e ( f i g s i z e =(8 , 8 ) , dpi=180 , f a c e c o l o r=’w ’ , edgeco l o r=’k ’ )

# Plot Mesh
d o l f i n . p l o t (mesh2d , t i t l e=" 2D␣mesh " )
p l t . show ( )

# Define subdomains− no need o f i n d i v i d u a l c l a s s e s

## I n i t i a l i z e boundar ies ( i n l e t , o u t l e t and o b s t a c l e )
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boundar ies = MeshFunction ( ’ s i z e_t ’ ,mesh2d , meshpath + meshxml f i l e +
\

" _facet_region . xml " ) ;

# I n i t i a l i z e subdomain ( channel )
markers = MeshFunction ( ’ s i z e_t ’ ,mesh2d , meshpath + meshxml f i l e + \

’ _physica l_region . xml ’ ) ;

# Both XMLs are automatic generated by d o l f i n−conver t f unc t i on on a
# mesh genera ted by s c r i p t in gmsh

# Boundaries ’ t a g s
NorthTag = 1
WestTag = 2
SouthTag = 3
EastTag = 4

UR_obstacle_NE_Tag = 5
UR_obstacle_NW_Tag = 6
UR_obstacle_SW_Tag = 7
UR_obstacle_SE_Tag = 8

UL_obstacle_NE_Tag = 9
UL_obstacle_NW_Tag = 10
UL_obstacle_SW_Tag = 11
UL_obstacle_SE_Tag = 12

BL_obstacle_NE_Tag = 13
BL_obstacle_NW_Tag = 14
BL_obstacle_SW_Tag = 15
BL_obstacle_SE_Tag = 16

BR_obstacle_NE_Tag = 17
BR_obstacle_NW_Tag = 18
BR_obstacle_SW_Tag = 19
BR_obstacle_SE_Tag = 20

f lu idTag = 21

#%% Element from FEM’ s formu la t ion

# Normal Face
n = FacetNormal (mesh2d ) # Normal v e c t o r to mesh
t = as_vector ( [ n [ 1 ] , −n [ 0 ] ] ) # Tangent v ec t o r to mesh

## Define mixed element Function Space
shape = mesh2d . u f l _ c e l l ( )
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Vel = VectorElement ( "P" , shape , 2)
Qel = FiniteElement ( "P" , shape , 1)

# Mixed Function Space W
W = FunctionSpace (mesh2d , Vel∗Qel )

# Recover independent Function Spaces f o r Pressure P and Ve l o c i t y U
(U, P) = W. s p l i t ( )

# Test and Tr ia l Function D e f i n i t i o n
# as problem w i l l be s o l v e d wi th coup led pre s sure and v e l o c i t y ,
# a s i n g l e t r i a l f unc t i on i s de f ined
dw = Tria lFunct ion (W)
(v , q ) = TestFunct ions (W)

# Ins i d e the func t i on space , o ther f u n c t i o n s d e s c r i b e how \
# the mixed space s p l i t in pre s sure and v e l o c i t y
w = Function (W)
(u , p) = ( as_vector ( (w[ 0 ] , w [ 1 ] ) ) , w [ 2 ] )

#%% Boundary cond i t i on s

## Define boundary cond i t i on s based on XML
bc = [ ]

# Upper r i g h t c y l i n d e r
# NE
UR_NE_x = Express ion ( ’−omega∗(x [1]−y_c) ’ , omega=Constant (omg_UR) , \

y_c=Constant (y_center_UR ) , degree=2)
UR_NE_y = Express ion ( ’ omega∗(x [0]−x_c) ’ , omega=Constant (omg_UR) , \

x_c=Constant (x_center_UR ) , degree=2)
bc_UR_NE_x = Dir ichletBC (U. sub (0 ) , UR_NE_x, boundaries , UR_obstacle_NE_Tag)
bc_UR_NE_y = Dir ichletBC (U. sub (1 ) , UR_NE_y, boundaries , UR_obstacle_NE_Tag)

# NW
UR_NW_x = Express ion ( ’−omega∗(x [1]−y_c) ’ , omega=Constant (omg_UR) , \

y_c=Constant (y_center_UR ) , degree=2)
UR_NW_y = Express ion ( ’−omega∗(x_c−x [ 0 ] ) ’ , omega=Constant (omg_UR) , \

x_c=Constant (x_center_UR ) , degree=2)
bc_UR_NW_x = Dir ichletBC (U. sub (0 ) , UR_NW_x, boundaries , UR_obstacle_NW_Tag)
bc_UR_NW_y = Dir ichletBC (U. sub (1 ) , UR_NW_y, boundaries , UR_obstacle_NW_Tag)

# SW
UR_SW_x = Express ion ( ’ omega∗(y_c−x [ 1 ] ) ’ , omega=Constant (omg_UR) , \

y_c=Constant (y_center_UR ) , degree=2)
UR_SW_y = Express ion ( ’−omega∗(x_c−x [ 0 ] ) ’ , omega=Constant (omg_UR) , \

x_c=Constant (x_center_UR ) , degree=2)
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bc_UR_SW_x = Dir ichletBC (U. sub (0 ) , UR_SW_x, boundaries , UR_obstacle_SW_Tag)
bc_UR_SW_y = Dir ichletBC (U. sub (1 ) , UR_SW_y, boundaries , UR_obstacle_SW_Tag)

# SE
UR_SE_x = Express ion ( ’ omega∗(y_c−x [ 1 ] ) ’ , omega=Constant (omg_UR) , \

y_c=Constant (y_center_UR ) , degree=2)
UR_SE_y = Express ion ( ’ omega∗(x [0]−x_c) ’ , omega=Constant (omg_UR) , \

x_c=Constant (x_center_UR ) , degree=2)
bc_UR_SE_x = Dir ichletBC (U. sub (0 ) , UR_SE_x, boundaries , UR_obstacle_SE_Tag)
bc_UR_SE_y = Dir ichletBC (U. sub (1 ) , UR_SE_y, boundaries , UR_obstacle_SE_Tag)

# Upper l e f t c y l i n d e r
# NE
UL_NE_x = Express ion ( ’−omega∗(x [1]−y_c) ’ , omega=Constant (omg_UL) , \

y_c=Constant ( y_center_UL ) , degree=2)
UL_NE_y = Express ion ( ’ omega∗(x [0]−x_c) ’ , omega=Constant (omg_UL) , \

x_c=Constant ( x_center_UL ) , degree=2)
bc_UL_NE_x = Dir ichletBC (U. sub (0 ) , UL_NE_x, boundaries , UL_obstacle_NE_Tag)
bc_UL_NE_y = Dir ichletBC (U. sub (1 ) , UL_NE_y, boundaries , UL_obstacle_NE_Tag)

# NW
UL_NW_x = Express ion ( ’−omega∗(x [1]−y_c) ’ , omega=Constant (omg_UL) , \

y_c=Constant ( y_center_UL ) , degree=2)
UL_NW_y = Express ion ( ’−omega∗(x_c−x [ 0 ] ) ’ , omega=Constant (omg_UL) , \

x_c=Constant ( x_center_UL ) , degree=2)
bc_UL_NW_x = Dir ichletBC (U. sub (0 ) , UL_NW_x, boundaries , UL_obstacle_NW_Tag)
bc_UL_NW_y = Dir ichletBC (U. sub (1 ) , UL_NW_y, boundaries , UL_obstacle_NW_Tag)

# SW
UL_SW_x = Express ion ( ’ omega∗(y_c−x [ 1 ] ) ’ , omega=Constant (omg_UL) , \

y_c=Constant ( y_center_UL ) , degree=2)
UL_SW_y = Express ion ( ’−omega∗(x_c−x [ 0 ] ) ’ , omega=Constant (omg_UL) , \

x_c=Constant ( x_center_UL ) , degree=2)
bc_UL_SW_x = Dir ichletBC (U. sub (0 ) , UL_SW_x, boundaries , UL_obstacle_SW_Tag)
bc_UL_SW_y = Dir ichletBC (U. sub (1 ) , UL_SW_y, boundaries , UL_obstacle_SW_Tag)

# SE
UL_SE_x = Express ion ( ’ omega∗(y_c−x [ 1 ] ) ’ , omega=Constant (omg_UL) , \

y_c=Constant ( y_center_UL ) , degree=2)
UL_SE_y = Express ion ( ’ omega∗(x [0]−x_c) ’ , omega=Constant (omg_UL) , \

x_c=Constant ( x_center_UL ) , degree=2)
bc_UL_SE_x = Dir ichletBC (U. sub (0 ) , UL_SE_x, boundaries , UL_obstacle_SE_Tag )
bc_UL_SE_y = Dir ichletBC (U. sub (1 ) , UL_SE_y, boundaries , UL_obstacle_SE_Tag )

# Bottom l e f t c y l i n d e r
# NE
BL_NE_x = Express ion ( ’−omega∗(x [1]−y_c) ’ , omega=Constant (omg_BL) , \
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y_c=Constant ( y_center_BL ) , degree=2)
BL_NE_y = Express ion ( ’ omega∗(x [0]−x_c) ’ , omega=Constant (omg_BL) , \

x_c=Constant ( x_center_BL ) , degree=2)
bc_BL_NE_x = Dir ichletBC (U. sub (0 ) , BL_NE_x, boundaries , BL_obstacle_NE_Tag)
bc_BL_NE_y = Dir ichletBC (U. sub (1 ) , BL_NE_y, boundaries , BL_obstacle_NE_Tag)

# NW
BL_NW_x = Express ion ( ’−omega∗(x [1]−y_c) ’ , omega=Constant (omg_BL) , \

y_c=Constant ( y_center_BL ) , degree=2)
BL_NW_y = Express ion ( ’−omega∗(x_c−x [ 0 ] ) ’ , omega=Constant (omg_BL) , \

x_c=Constant ( x_center_BL ) , degree=2)
bc_BL_NW_x = Dir ichletBC (U. sub (0 ) , BL_NW_x, boundaries , BL_obstacle_NW_Tag)
bc_BL_NW_y = Dir ichletBC (U. sub (1 ) , BL_NW_y, boundaries , BL_obstacle_NW_Tag)

# SW
BL_SW_x = Express ion ( ’ omega∗(y_c−x [ 1 ] ) ’ , omega=Constant (omg_BL) , \

y_c=Constant ( y_center_BL ) , degree=2)
BL_SW_y = Express ion ( ’−omega∗(x_c−x [ 0 ] ) ’ , omega=Constant (omg_BL) , \

x_c=Constant ( x_center_BL ) , degree=2)
bc_BL_SW_x = Dir ichletBC (U. sub (0 ) , BL_SW_x, boundaries , BL_obstacle_SW_Tag)
bc_BL_SW_y = Dir ichletBC (U. sub (1 ) , BL_SW_y, boundaries , BL_obstacle_SW_Tag)

# SE
BL_SE_x = Express ion ( ’ omega∗(y_c−x [ 1 ] ) ’ , omega=Constant (omg_BL) , \

y_c=Constant ( y_center_BL ) , degree=2)
BL_SE_y = Express ion ( ’ omega∗(x [0]−x_c) ’ , omega=Constant (omg_BL) , \

x_c=Constant ( x_center_BL ) , degree=2)
bc_BL_SE_x = Dir ichletBC (U. sub (0 ) , BL_SE_x, boundaries , BL_obstacle_SE_Tag )
bc_BL_SE_y = Dir ichletBC (U. sub (1 ) , BL_SE_y, boundaries , BL_obstacle_SE_Tag )

# Bottom r i g h t c y l i n d e r
# NE
BR_NE_x = Express ion ( ’−omega∗(x [1]−y_c) ’ , omega=Constant (omg_BR) , \

y_c=Constant ( y_center_BR ) , degree=2)
BR_NE_y = Express ion ( ’ omega∗(x [0]−x_c) ’ , omega=Constant (omg_BR) , \

x_c=Constant ( x_center_BR ) , degree=2)
bc_BR_NE_x = Dir ichletBC (U. sub (0 ) , BR_NE_x, boundaries , BR_obstacle_NE_Tag)
bc_BR_NE_y = Dir ichletBC (U. sub (1 ) , BR_NE_y, boundaries , BR_obstacle_NE_Tag)

# NW
BR_NW_x = Express ion ( ’−omega∗(x [1]−y_c) ’ , omega=Constant (omg_BR) , \

y_c=Constant ( y_center_BR ) , degree=2)
BR_NW_y = Express ion ( ’−omega∗(x_c−x [ 0 ] ) ’ , omega=Constant (omg_BR) , \

x_c=Constant ( x_center_BR ) , degree=2)
bc_BR_NW_x = Dir ichletBC (U. sub (0 ) , BR_NW_x, boundaries , BR_obstacle_NW_Tag)
bc_BR_NW_y = Dir ichletBC (U. sub (1 ) , BR_NW_y, boundaries , BR_obstacle_NW_Tag)
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# SW
BR_SW_x = Express ion ( ’ omega∗(y_c−x [ 1 ] ) ’ , omega=Constant (omg_BR) , \

y_c=Constant ( y_center_BR ) , degree=2)
BR_SW_y = Express ion ( ’−omega∗(x_c−x [ 0 ] ) ’ , omega=Constant (omg_BR) , \

x_c=Constant ( x_center_BR ) , degree=2)
bc_BR_SW_x = Dir ichletBC (U. sub (0 ) , BR_SW_x, boundaries , BR_obstacle_SW_Tag)
bc_BR_SW_y = Dir ichletBC (U. sub (1 ) , BR_SW_y, boundaries , BR_obstacle_SW_Tag)

# SE
BR_SE_x = Express ion ( ’ omega∗(y_c−x [ 1 ] ) ’ , omega=Constant (omg_BR) , \

y_c=Constant ( y_center_BR ) , degree=2)
BR_SE_y = Express ion ( ’ omega∗(x [0]−x_c) ’ , omega=Constant (omg_BR) , \

x_c=Constant ( x_center_BR ) , degree=2)
bc_BR_SE_x = Dir ichletBC (U. sub (0 ) , BR_SE_x, boundaries , BR_obstacle_SE_Tag)
bc_BR_SE_y = Dir ichletBC (U. sub (1 ) , BR_SE_y, boundaries , BR_obstacle_SE_Tag)

bc . append (bc_UR_NE_x)
bc . append (bc_UR_NE_y)
bc . append (bc_UR_NW_x)
bc . append (bc_UR_NW_y)
bc . append (bc_UR_SW_x)
bc . append (bc_UR_SW_y)
bc . append (bc_UR_SE_x)
bc . append (bc_UR_SE_y)

bc . append (bc_UL_NE_x)
bc . append (bc_UL_NE_y)
bc . append (bc_UL_NW_x)
bc . append (bc_UL_NW_y)
bc . append (bc_UL_SW_x)
bc . append (bc_UL_SW_y)
bc . append (bc_UL_SE_x)
bc . append (bc_UL_SE_y)

bc . append (bc_BL_NE_x)
bc . append (bc_BL_NE_y)
bc . append (bc_BL_NW_x)
bc . append (bc_BL_NW_y)
bc . append (bc_BL_SW_x)
bc . append (bc_BL_SW_y)
bc . append (bc_BL_SE_x)
bc . append (bc_BL_SE_y)

bc . append (bc_BR_NE_x)
bc . append (bc_BR_NE_y)
bc . append (bc_BR_NW_x)
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bc . append (bc_BR_NW_y)
bc . append (bc_BR_SW_x)
bc . append (bc_BR_SW_y)
bc . append (bc_BR_SE_x)
bc . append (bc_BR_SE_y)

i f mesh_type==’ c ’ :
bc_W = Dir ichletBC (U. sub (0 ) , Constant ( 0 . 0 ) , boundaries , WestTag)
bc_E = Dir ichletBC (U. sub (0 ) , Constant ( 0 . 0 ) , boundaries , EastTag )
bc_N = Dir ichletBC (U. sub (1 ) , Constant ( 0 . 0 ) , boundaries , NorthTag )
bc_S = Dir ichletBC (U. sub (1 ) , Constant ( 0 . 0 ) , boundaries , SouthTag )
bc . append (bc_W)
bc . append (bc_E)
bc . append (bc_N)
bc . append (bc_S)

e l i f mesh_type==’ e ’ :
bc_W = Dir ichletBC (U, Constant ( ( U_inf , 0 . 0 ) ) , boundaries , WestTag)
bc_N = Dir ichletBC (U. sub (1 ) , Constant ( 0 . 0 ) , boundaries , NorthTag )
bc_S = Dir ichletBC (U. sub (1 ) , Constant ( 0 . 0 ) , boundaries , SouthTag )

bc . append (bc_W)
bc . append (bc_N)
bc . append (bc_S)

#%% Week formu la t ion

## Define v a r i a t i o n a l forms
# Define new measure wi th a s s o c i a t e d subdomains
ds = Measure ( ’ ds ’ , domain=mesh2d , subdomain_data=boundar ies )

# Momentum Equation
# I n e r t i a Term # Viscous Force Term

# Pressure Force Term
a = ( inner ( dot (u , nabla_grad (u ) ) , v ) + (mu/rho )∗ inner ( grad (u ) , grad (v ) ) \

− (1/ rho )∗ div (v )∗p)∗dx ( )
L = 0

# Cont inu i ty Equation
a = a + (q∗div (u ) )∗ dx ( )
L = L + 0
F = a − L

# Ca lcu l a t e Jacobian Matrix
J = de r i v a t i v e (F ,w,dw)
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# Define Problem
problem = Nonl inearVar iat iona lProblem (F ,w , bc , J )
s o l v e r = Non l i n ea rVar i a t i ona lSo l v e r ( problem )

# So lve r Parameters
prm = so l v e r . parameters
##i n f o (prm , True ) #ge t f u l l i n f o on the parameters
prm [ ’ non l inea r_so lve r ’ ] = ’ newton ’
prm [ ’ newton_solver ’ ] [ ’ abso lu te_to l e rance ’ ] = 1E−8
prm [ ’ newton_solver ’ ] [ ’ r e l a t i v e_ t o l e r an c e ’ ] = 1E−8
prm [ ’ newton_solver ’ ] [ ’ maximum_iterations ’ ] = 100

# Solve the Problem
s o l v e r . s o l v e ( ) ;

( u1 , p1 ) = w. leaf_node ( ) . s p l i t ( )
d i cT i t l e = {1 : " Pressure " , \

2 : " V e l o c i t i e s " }
cbarU , cbarP , uXYValues , pValues , nVer t i c e s = \
pre t typ lo tnd (4 ,mesh2d , 0 , u1 , p1 , d i cT i t l e ,R,omg_UR,10 , re su l t s_path )

# Mesh Ver t i c e s ’ Coordinates
x = mesh2d . coo rd ina t e s ( ) [ : , 0 ]
y = mesh2d . coo rd ina t e s ( ) [ : , 1 ]

#%% Export ing data to paraview

# Save s o l u t i o n in ParaVieW format
f i l e 1 = F i l e ( " output_u . pvd " )
f i l e 1 << u1

f i l e 2 = F i l e ( " output_p . pvd " )
f i l e 2 << p1

#%% Pers i s t ence o f s t r a i n g i n g

FS_DG0 = FunctionSpace (mesh2d , "DG" , 0)

dim = u . geometric_dimension ( )
I = Id en t i t y (dim)

r_unity = Constant ( ( 1 . 0 , 0 . 0 ) )

from u f l import ∗

D_aux = sym( grad (u ) .T)
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W_aux = skew ( grad (u ) .T)

D_dot_aux = u [ 0 ] ∗ (D_aux ) . dx(0)+u [ 1 ] ∗ (D_aux ) . dx (1 )

tr_D_aux = t r (D_aux)

det_D_aux = det (D_aux)

lambda_1_aux = (tr_D_aux + (tr_D_aux∗∗2 − 4∗det_D_aux )∗∗(1/2) )/2

lambda_2_aux = (tr_D_aux − ( tr_D_aux∗∗2 − 4∗det_D_aux )∗∗(1/2) )/2

D_mod_aux = G_mic∗(D_aux − (F_mic/(F_mic+1)) ∗ \
dot ( dot ( r_unity ,D_aux) , r_unity ) ∗ I ) \

− ( alpha_mic /(F_mic+1)) ∗ I

D_mod_dot_aux = u [ 0 ] ∗ (D_mod_aux ) . dx(0)+u [ 1 ] ∗ (D_mod_aux ) . dx (1 )

tr_D_mod_aux = t r (D_mod_aux)

det_D_mod_aux = det (D_mod_aux)

lambda_1_mod_aux = (tr_D_mod_aux + (tr_D_mod_aux∗∗2 − 4∗det_D_mod_aux)∗∗(1/2) )/2

lambda_2_mod_aux = (tr_D_mod_aux − (tr_D_mod_aux∗∗2 − 4∗det_D_mod_aux)∗∗(1/2) )/2

TFS_CG1 = TensorFunctionSpace (mesh2d , "CG" , 2)

D_TFS = pro j e c t (D_aux , TFS_CG1)

D = D_TFS. compute_vertex_values (mesh2d )

W_TFS = pro j e c t (W_aux, TFS_CG1)

W = W_TFS. compute_vertex_values (mesh2d )

D_dot_TFS = pro j e c t (D_dot_aux , TFS_CG1)

D_dot = D_dot_TFS . compute_vertex_values (mesh2d )

lambda_1_FS = pro j e c t ( lambda_1_aux , FS_DG0)

lambda_1 = lambda_1_FS . compute_vertex_values (mesh2d )

lambda_1_dot_FS = pro j e c t (u [ 0 ] ∗ lambda_1_aux . dx (0 ) , FS_DG0)

lambda_1_dot = lambda_1_dot_FS . compute_vertex_values (mesh2d )
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lambda_2_FS = pro j e c t ( lambda_2_aux , FS_DG0)

lambda_2 = lambda_2_FS . compute_vertex_values (mesh2d )

lambda_2_dot_FS = pro j e c t (u [ 1 ] ∗ lambda_2_aux . dx (1 ) , FS_DG0)

lambda_2_dot = lambda_2_dot_FS . compute_vertex_values (mesh2d )

D_mod_TFS = pro j e c t (D_mod_aux, TFS_CG1)

D_mod = D_mod_TFS. compute_vertex_values (mesh2d )

W_TFS = pro j e c t (W_aux, TFS_CG1)

W = W_TFS. compute_vertex_values (mesh2d )

D_mod_dot_TFS = pro j e c t (D_mod_dot_aux , TFS_CG1)

D_mod_dot = D_mod_dot_TFS. compute_vertex_values (mesh2d )

lambda_1_mod_dot_FS = pro j e c t (u [ 0 ] ∗ lambda_1_mod_aux . dx (0 ) , FS_DG0)

lambda_1_mod_dot = lambda_1_mod_dot_FS . compute_vertex_values (mesh2d )

lambda_2_mod_dot_FS = pro j e c t (u [ 1 ] ∗ lambda_2_mod_aux . dx (1 ) , FS_DG0)

lambda_2_mod_dot = lambda_2_mod_dot_FS . compute_vertex_values (mesh2d )

nVer t i c e s = len ( x )
print ( len ( x ) )

# Order dimension o f the problem
N = 2 # 2D

D_11_nodal = [ ]
D_12_nodal = [ ]
D_21_nodal = [ ]
D_22_nodal = [ ]

W_11_nodal = [ ]
W_12_nodal = [ ]
W_21_nodal = [ ]
W_22_nodal = [ ]

D_dot_11_nodal = [ ]
D_dot_12_nodal = [ ]
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D_dot_21_nodal = [ ]
D_dot_22_nodal = [ ]

D_mod_11_nodal = [ ]
D_mod_12_nodal = [ ]
D_mod_21_nodal = [ ]
D_mod_22_nodal = [ ]

D_mod_dot_11_nodal = [ ]
D_mod_dot_12_nodal = [ ]
D_mod_dot_21_nodal = [ ]
D_mod_dot_22_nodal = [ ]

for i in range ( 0 , (N∗∗2)∗ nVer t i c e s ) :
i f i >= 0 and i < nVer t i c e s :

D_11_nodal . append (D[ i ] )
W_11_nodal . append (W[ i ] )
D_dot_11_nodal . append (D_dot [ i ] )
D_mod_11_nodal . append (D_mod[ i ] )
D_mod_dot_11_nodal . append (D_mod_dot [ i ] )

e l i f i >= nVer t i c e s and i < 2∗ nVer t i c e s :
D_12_nodal . append (D[ i ] )
W_12_nodal . append (W[ i ] )
D_dot_12_nodal . append (D_dot [ i ] )
D_mod_12_nodal . append (D_mod[ i ] )
D_mod_dot_12_nodal . append (D_mod_dot [ i ] )

e l i f i >= 2∗ nVer t i c e s and i < 3∗ nVer t i c e s :
D_21_nodal . append (D[ i ] )
W_21_nodal . append (W[ i ] )
D_dot_21_nodal . append (D_dot [ i ] )
D_mod_21_nodal . append (D_mod[ i ] )
D_mod_dot_21_nodal . append (D_mod_dot [ i ] )

e l i f i >= 3∗ nVer t i c e s and i < 4∗ nVer t i c e s :
D_22_nodal . append (D[ i ] )
W_22_nodal . append (W[ i ] )
D_dot_22_nodal . append (D_dot [ i ] )
D_mod_22_nodal . append (D_mod[ i ] )
D_mod_dot_22_nodal . append (D_mod_dot [ i ] )

else :
print ( ’ e r r o r ’ )

D_nodal = [ ]
W_nodal = [ ]
D_dot_nodal = [ ]
lambda_dot_nodal = [ ]
e igenva lues_nodal = [ ]
e igenvector s_noda l = [ ]
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Q_T_nodal = [ ]
Q_nodal = [ ]
P_nodal = [ ]
R_nodal_num = [ ]
R_nodal_den = [ ]
R_nodal = [ ]
R_nodal_star = [ ]

D_mod_nodal = [ ]
W_nodal = [ ]
D_mod_dot_nodal = [ ]
lambda_mod_dot_nodal = [ ]
eigenvalues_mod_nodal = [ ]
eigenvectors_mod_nodal = [ ]
Q_T_mod_nodal = [ ]
Q_mod_nodal = [ ]
P_mod_nodal = [ ]
R_mod_nodal = [ ]
R_mod_num_nodal = [ ]
R_mod_den_nodal = [ ]
R_mod_star_nodal = [ ]
R_star_dif_nodal = [ ]

for i in range (0 , nVer t i c e s ) :
D_nodal . append (np . matrix ( [ [ D_11_nodal [ i ] , D_12_nodal [ i ] ] , \

[ D_21_nodal [ i ] , D_22_nodal [ i ] ] ] ) )
W_nodal . append (np . matrix ( [ [ W_11_nodal [ i ] , W_12_nodal [ i ] ] , \

[W_21_nodal [ i ] , W_22_nodal [ i ] ] ] ) )
D_dot_nodal . append (np . matrix ( [ [ D_dot_11_nodal [ i ] , D_dot_12_nodal [ i ] ] , \

[ D_dot_21_nodal [ i ] , D_dot_22_nodal [ i ] ] ] ) )
lambda_dot_nodal . append (np . matrix ( [ [ lambda_1_dot [ i ] , 0 ] , [ 0 , lambda_2_dot [ i ] ] ] ) )
eig_va_nodal , eig_ve_nodal = l a . e i g (D_nodal [ i ] )
e igenva lues_nodal . append ( eig_va_nodal )
e igenvector s_noda l . append ( eig_ve_nodal )
Q_T_nodal . append ( e igenvector s_noda l [ i ] )
Q_nodal . append ( (Q_T_nodal [ i ] ) .T)
P_nodal . append (D_nodal [ i ] ∗W_nodal [ i ] − W_nodal [ i ] ∗ D_nodal [ i ] + \

D_dot_nodal [ i ] − Q_T_nodal [ i ] ∗ lambda_dot_nodal [ i ] ∗ Q_nodal [ i ] )
R_nodal . append ( ( sq r t ( 0 . 5 ∗ ( np . t r a c e (P_nodal [ i ] ∗ P_nodal [ i ] ) ) ) ) \

/np . t r a c e (D_nodal [ i ] ∗ D_nodal [ i ] ) )
R_nodal_num . append ( sq r t ( 0 . 5 ∗ ( np . t r a c e (P_nodal [ i ] ∗ P_nodal [ i ] ) ) ) )
R_nodal_den . append (np . t r a c e (D_nodal [ i ] ∗ D_nodal [ i ] ) )
R_nodal_star . append((1−R_nodal [ i ] )/(1+R_nodal [ i ] ) )
D_mod_nodal . append (np . matrix ( [ [ D_mod_11_nodal [ i ] , D_mod_12_nodal [ i ] ] , \

[ D_mod_21_nodal [ i ] , D_mod_22_nodal [ i ] ] ] ) )
D_mod_dot_nodal . append (np . matrix ( [ [ D_mod_dot_11_nodal [ i ] , \

D_mod_dot_12_nodal [ i ] ] , \
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[ D_mod_dot_21_nodal [ i ] , \
D_mod_dot_22_nodal [ i ] ] ] ) )

lambda_mod_dot_nodal . append (np . matrix ( [ [ lambda_1_mod_dot [ i ] , 0 ] , \
[ 0 , lambda_2_mod_dot [ i ] ] ] ) )

eig_va_mod_nodal , eig_ve_mod_nodal = l a . e i g (D_mod_nodal [ i ] )
eigenvalues_mod_nodal . append ( eig_va_mod_nodal )
eigenvectors_mod_nodal . append ( eig_ve_mod_nodal )
Q_T_mod_nodal . append ( eigenvectors_mod_nodal [ i ] )
Q_mod_nodal . append ( (Q_T_mod_nodal [ i ] ) .T)
P_mod_nodal . append (D_mod_nodal [ i ] ∗W_nodal [ i ] − \

W_nodal [ i ] ∗D_mod_nodal [ i ] + \
D_mod_dot_nodal [ i ] − \
Q_T_mod_nodal [ i ] ∗ lambda_mod_dot_nodal [ i ] ∗Q_mod_nodal [ i ] )

R_mod_nodal . append ( ( sq r t ( 0 . 5 ∗ ( np . t r a c e (P_mod_nodal [ i ] ∗P_mod_nodal [ i ] ) ) ) ) \
/np . t r a c e (D_mod_nodal [ i ] ∗D_mod_nodal [ i ] ) )

R_mod_num_nodal . append ( sq r t ( 0 . 5 ∗ ( np . t r a c e (P_mod_nodal [ i ] ∗P_mod_nodal [ i ] ) ) ) )
R_mod_den_nodal . append (np . t r a c e (D_mod_nodal [ i ] ∗D_mod_nodal [ i ] ) )
R_mod_star_nodal . append((1−R_mod_nodal [ i ] )/(1+R_mod_nodal [ i ] ) )
R_star_dif_nodal . append (abs (abs (R_mod_star_nodal [ i ])−abs ( R_nodal_star [ i ] ) ) )

gamma_dot_nodal_aux = [ i ∗2∗mu for i in D_dot_nodal ]
gamma_dot_nodal = [ ]

for i in range (0 , nVer t i c e s ) :
gamma_dot_nodal . append ( sq r t ( (1/2)∗ np . t r a c e (gamma_dot_nodal_aux [ i ] ∗ \

gamma_dot_nodal_aux [ i ] ) ) )

#%% Plo t ing R_s tar f i e l d

i f i g = 12

f i g = p l t . f i g u r e ( i f i g )
i f i g = i f i g +1
marker_size = 1
p l t . s c a t t e r ( x/R, y/R, marker_size , np . asar ray (R_nodal_star ) , marker="h " ,cmap=’ j e t ’ )
p l t . x l ab e l ( r ’ $x^∗$ ’ , f o n t s i z e =14)
p l t . y l ab e l ( r ’ $y^∗$ ’ , f o n t s i z e =14)
p l t . x t i c k s ( f o n t s i z e =14)
p l t . y t i c k s ( f o n t s i z e =14)
p l t . gca ( ) . set_aspect ( ’ equal ’ , ad ju s t ab l e=’ box ’ )
cbar= p l t . c o l o rba r ( )
cbar . s e t_ labe l ( r ’ ${\mathcal {R}}^∗$ ’ , f o n t s i z e =14, l abe lpad=+1)
cbar . ax . tick_params ( l a b e l s i z e =13)
s t y l e = " Simple , ␣ ta i l_width =0.5 , ␣head_width=4,␣head_length=8"
kw = dict ( a r rows ty l e=s ty l e , c o l o r="k " )
i f lamb==1 or lamb==0.5:

a1 = mpatches . FancyArrowPatch ((−0.5 , 1 . 294 ) , (−2.1 , 1 . 2 94 ) , \
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c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
a2 = mpatches . FancyArrowPatch ( ( 0 . 5 , 1 . 2 94 ) , ( 2 . 1 , 1 . 2 94 ) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
a3 = mpatches . FancyArrowPatch ( ( 0 . 5 , −1.294) , ( 2 . 1 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
a4 = mpatches . FancyArrowPatch ((−0.5 , −1.294) , (−2.1 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
e l i f lamb==0:

a1 = mpatches . FancyArrowPatch ( ( 0 . 5 , 1 . 2 94 ) , ( 2 . 1 , 1 . 2 94 ) , \
c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)

a2 = mpatches . FancyArrowPatch ( ( 0 . 5 , 1 . 2 94 ) , ( 2 . 1 , 1 . 2 94 ) , \
c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)

a3 = mpatches . FancyArrowPatch ((−0.5 , −1.294) , (−2.1 , −1.294) , \
c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)

a4 = mpatches . FancyArrowPatch ((−0.5 , −1.294) , (−2.1 , −1.294) , \
c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)

e l i f lamb==−1 or lamb==−0.5:
a1 = mpatches . FancyArrowPatch ((−0.5 , 1 . 294 ) , (−2.1 , 1 . 2 94 ) , \

c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
a2 = mpatches . FancyArrowPatch ( ( 2 . 1 , 1 . 2 94 ) , ( 0 . 5 , 1 . 2 94 ) , \

c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
a3 = mpatches . FancyArrowPatch ( ( 0 . 5 , −1.294) , ( 2 . 1 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
a4 = mpatches . FancyArrowPatch ((−2.1 , −1.294) , (−0.5 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
for a in [ a1 , a2 , a3 , a4 ] :

p l t . gca ( ) . add_patch ( a )
p l t . s a v e f i g ( re su l t s_path+’ R_star_field_lamb=’+ \

( str ( lamb ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+ ’ . png ’ , dpi=200)
p l t . show ( )

#%% Plo t ing R_mod_starfield

f i g = p l t . f i g u r e ( i f i g )
i f i g = i f i g +1
marker_size = 1
p l t . s c a t t e r ( x/R, y/R, marker_size , np . asar ray (R_mod_star_nodal ) , marker="h " ,cmap=’ j e t ’ )
p l t . x l ab e l ( r ’ $x^∗$ ’ , f o n t s i z e =14)
p l t . y l ab e l ( r ’ $y^∗$ ’ , f o n t s i z e =14)
p l t . x t i c k s ( f o n t s i z e =14)
p l t . y t i c k s ( f o n t s i z e =14)
p l t . gca ( ) . set_aspect ( ’ equal ’ , ad ju s t ab l e=’ box ’ )
cbar= p l t . c o l o rba r ( )
cbar . s e t_ labe l ( r ’ ${{\mathcal {R}}^∗}_{mod}$ ’ , f o n t s i z e =14, l abe lpad=+1)
cbar . ax . tick_params ( l a b e l s i z e =13)
s t y l e = " Simple , ␣ ta i l_width =0.5 , ␣head_width=4,␣head_length=8"
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kw = dict ( a r rows ty l e=s ty l e , c o l o r="k " )
i f lamb==1 or lamb==0.5:

a1 = mpatches . FancyArrowPatch ((−0.5 , 1 . 294 ) , (−2.1 , 1 . 2 94 ) , \
c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)

a2 = mpatches . FancyArrowPatch ( ( 0 . 5 , 1 . 2 94 ) , ( 2 . 1 , 1 . 2 94 ) , \
c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)

a3 = mpatches . FancyArrowPatch ( ( 0 . 5 , −1.294) , ( 2 . 1 , −1.294) , \
c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)

a4 = mpatches . FancyArrowPatch ((−0.5 , −1.294) , (−2.1 , −1.294) , \
c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)

e l i f lamb==0:
a1 = mpatches . FancyArrowPatch ( ( 0 . 5 , 1 . 2 94 ) , ( 2 . 1 , 1 . 2 94 ) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
a2 = mpatches . FancyArrowPatch ( ( 0 . 5 , 1 . 2 94 ) , ( 2 . 1 , 1 . 2 94 ) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
a3 = mpatches . FancyArrowPatch ((−0.5 , −1.294) , (−2.1 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
a4 = mpatches . FancyArrowPatch ((−0.5 , −1.294) , (−2.1 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
e l i f lamb==−1 or lamb==−0.5:

a1 = mpatches . FancyArrowPatch ((−0.5 , 1 . 294 ) , (−2.1 , 1 . 2 94 ) , \
c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)

a2 = mpatches . FancyArrowPatch ( ( 2 . 1 , 1 . 2 94 ) , ( 0 . 5 , 1 . 2 94 ) , \
c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)

a3 = mpatches . FancyArrowPatch ( ( 0 . 5 , −1.294) , ( 2 . 1 , −1.294) , \
c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)

a4 = mpatches . FancyArrowPatch ((−2.1 , −1.294) , (−0.5 , −1.294) , \
c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)

for a in [ a1 , a2 , a3 , a4 ] :
p l t . gca ( ) . add_patch ( a )

p l t . s a v e f i g ( re su l t s_path+’R_mod_star_field_G=’+(str (G_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+\
’_alpha=’+(str ( alpha_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+ ’ . png ’ , dpi=200)

p l t . show ( )

#%% Evo lu t ion equat ion f o r R fo r m u l t i p l e p a r t i c l e s

i f mesh_type==’ c ’ or Re_entrance==0:
end = timer ( )
print ( ’ time␣ e lapsed ␣=’ , end−s ta r t , ’ s ’ )
sys . e x i t ( )

L11_proj = p ro j e c t (u [ 0 ] . dx ( 0 ) , FS_DG0)
L12_proj = p ro j e c t (u [ 0 ] . dx ( 1 ) , FS_DG0)
L21_proj = p ro j e c t (u [ 1 ] . dx ( 0 ) , FS_DG0)
L22_proj = p ro j e c t (u [ 1 ] . dx ( 1 ) , FS_DG0)

dt_pathl ine = 1e−2
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x_o_lst = [ ]
y_o_lst = [ ]
theta_o_lst = [ ]

x_pathl ine_lst = [ ]
y_pathl ine_lst = [ ]

aux_a_lst = [ ]
aux_b_lst = [ ]
aux_c_lst = [ ]
aux_d_lst = [ ]

r_dot_D_dot_r_lst = [ ]

Rx_lst = [ ]
Ry_lst = [ ]

L_pathl ine_lst = [ ]
L_T_pathline_lst = [ ]
D_pathl ine_lst = [ ]
W_pathline_lst = [ ]

rx_ls t = [ ]
ry_ls t = [ ]
r_dot_r_lst = [ ]
abs_R_lst = [ ]
the ta_l s t = [ ]
theta_deg_lst = [ ]
t ime_lst = [ ]

x_pathl ine_star_lst = [ ]
y_pathl ine_star_lst = [ ]
Rx_star_lst = [ ]
Ry_star_lst = [ ]
abs_R_star_lst = [ ]
t ime_star_lst = [ ]

#d i f f e r e n t y_o

x_o_lst . append (−0.266)
x_o_lst . append (−0.266)
x_o_lst . append (−0.266)
x_o_lst . append (−0.266)
x_o_lst . append (−0.266)
x_o_lst . append (−0.266)
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i f lamb==1:
y_o_lst . append ( 0 . 0 6 )
y_o_lst . append ( 0 . 0 3 )
y_o_lst . append ( 0 . 0 2 )
y_o_lst . append (0 . 0 15 )
y_o_lst . append ( 0 . 0 1 )
y_o_lst . append ( 0 . 0 )

e l i f lamb==0:
i f Re_entrance==3:

y_o_lst . append (−0.01)
y_o_lst . append (−0.025)
y_o_lst . append (−0.035)
y_o_lst . append (−0.045)
y_o_lst . append (−0.05)
y_o_lst . append (−0.055)

e l i f Re_entrance==5:
y_o_lst . append (−0.02)
y_o_lst . append (−0.025)
y_o_lst . append (−0.03)
y_o_lst . append (−0.035)
y_o_lst . append (−0.04)
y_o_lst . append (−0.045)

e l i f Re_entrance==10:
y_o_lst . append (−0.005)
y_o_lst . append (−0.01)
y_o_lst . append (−0.015)
y_o_lst . append (−0.02)
y_o_lst . append (−0.025)
y_o_lst . append (−0.03)

e l i f lamb==−1:
i f Re_entrance==3:

y_o_lst . append (0 . 0 85 )
y_o_lst . append ( 0 . 0 8 )
y_o_lst . append ( 0 . 0 7 )
y_o_lst . append ( 0 . 0 6 )
y_o_lst . append ( 0 . 0 5 )
y_o_lst . append ( 0 . 0 4 )

e l i f Re_entrance==5:
y_o_lst . append ( 0 . 0 7 )
y_o_lst . append ( 0 . 0 6 )
y_o_lst . append ( 0 . 0 5 )
y_o_lst . append ( 0 . 0 2 )
y_o_lst . append (−0.02)
y_o_lst . append (−0.04)

e l i f Re_entrance==10:
y_o_lst . append (0 . 0 45 )
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y_o_lst . append ( 0 . 0 4 )
y_o_lst . append (0 . 0375 )
y_o_lst . append (0 . 0 35 )
y_o_lst . append (0 . 0 33 )
y_o_lst . append ( 0 . 0 3 )

kk = len ( x_o_lst )

theta_o_lst . append ( p i /4)
theta_o_lst . append ( p i /4)
theta_o_lst . append ( p i /4)
theta_o_lst . append ( p i /4)
theta_o_lst . append ( p i /4)
theta_o_lst . append ( p i /4)

for k in range (0 , kk ) :

ds = 1e−5

x_pathl ine = [ ]
y_pathl ine = [ ]

aux_a = [ ]
aux_b = [ ]
aux_c = [ ]
aux_d = [ ]

r_dot_D_dot_r = [ ]

Rx = [ ]
Ry = [ ]

L_pathline = [ ]
L_T_pathline = [ ]
D_pathline = [ ]
W_pathline = [ ]

rx = [ ]
ry = [ ]
r_dot_r = [ ]
abs_R = [ ]
theta = [ ]
theta_deg = [ ]

x_pathl ine_star = [ ]

DBD
PUC-Rio - Certificação Digital Nº 1912750/CA



Appendix A. Codes 117

y_pathl ine_star = [ ]

Rx_star = [ ]
Ry_star = [ ]
abs_R_star = [ ]

time = [ ]
t ime_star = [ ]
time . append (0)
time_star . append (0)

x_pathl ine . append ( x_o_lst [ k ] )
y_pathl ine . append ( y_o_lst [ k ] )
x_pathl ine_star . append ( x_o_lst [ k ] /R)
y_pathl ine_star . append ( y_o_lst [ k ] /R)

theta . append ( theta_o_lst [ k ] )
theta_deg . append ((180/ p i )∗ theta [ 0 ] )

Rx . append ( ds∗ cos ( f loat ( theta [ 0 ] ) ) )
Rx_star . append ( cos ( f loat ( theta [ 0 ] ) ) )
Ry . append ( ds∗ s i n ( f loat ( theta [ 0 ] ) ) )
Ry_star . append ( s i n ( f loat ( theta [ 0 ] ) ) )

abs_R . append ( sq r t (Rx[0]∗∗2+Ry [ 0 ] ∗ ∗ 2 ) )
abs_R_star . append (1 )

i = 1
itemax = 10

# whi l e ( x_path l ine [ i −1] < Len/2 and x_path l ine [ i −1] > − Len/2) and \
# ( y_path l ine [ i −1] < H/2 and y_path l ine [ i −1] > − H/2) :

while ( ( ( x_pathl ine [ i −1] < Len/2 and x_pathl ine [ i −1] > − Len/2) \
and ( y_pathl ine [ i −1] < H/2 and y_pathl ine [ i −1] > − H/2)) and \
( ( ( abs_R [ i −1] >= 10∗ds)==False ) and \
( ( abs_R [ i −1] <= 0.01∗ ds)==False ) ) ) :

x_pathl ine . append ( x_pathl ine [ i −1] + \
dt_pathl ine ∗( u1 ( x_pathl ine [ i −1] ,\

y_pathl ine [ i − 1 ] ) [ 0 ] ) )
y_pathl ine . append ( y_pathl ine [ i −1] + \

dt_pathl ine ∗( u1 ( x_pathl ine [ i −1] ,\
y_pathl ine [ i − 1 ] ) [ 1 ] ) )

L_pathline . append (np . matrix ( [ [ L11_proj ( ( x_pathl ine [ i −1] ,\
y_pathl ine [ i −1 ] ) ) , \

L12_proj ( ( x_pathl ine [ i −1] ,\
y_pathl ine [ i −1 ] ) ) ] , \

[ L21_proj ( ( x_pathl ine [ i −1] , y_pathl ine [ i −1]))\
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, L22_proj ( ( x_pathl ine [ i −1] , y_pathl ine [ i − 1 ] ) ) ] ] ) )
L_T_pathline . append (np . matrix ( [ [ L11_proj ( ( x_pathl ine [ i −1] ,\

y_pathl ine [ i −1 ] ) ) , \
L21_proj ( ( x_pathl ine [ i −1] ,\

y_pathl ine [ i −1 ] ) ) ] , \
[ L12_proj ( ( x_pathl ine [ i −1] , y_pathl ine [ i −1 ] ) ) , \
L22_proj ( ( x_pathl ine [ i −1] , y_pathl ine [ i − 1 ] ) ) ] ] ) )

D_pathline . append ( 0 . 5 ∗ ( L_pathline [ i −1] + L_T_pathline [ i −1]))
W_pathline . append ( 0 . 5 ∗ ( L_pathline [ i −1] − L_T_pathline [ i −1]))
rx . append (Rx [ i −1]/( sq r t (Rx [ i −1]∗∗2+Ry [ i −1 ]∗∗2)))
ry . append (Ry [ i −1]/( sq r t (Rx [ i −1]∗∗2+Ry [ i −1 ]∗∗2)))
r_dot_D_dot_r . append ( rx [ i −1]∗( rx [ i −1]∗D_pathline [ i −1 ] [ 0 , 0 ] + \

ry [ i −1]∗D_pathline [ i −1 ] [ 1 , 0 ] ) + \
ry [ i −1]∗( rx [ i −1]∗D_pathline [ i −1 ] [ 0 , 1 ] + \

ry [ i −1]∗D_pathline [ i − 1 ] [ 1 , 1 ] ) )
aux_a . append (W_pathline [ i −1 ] [ 0 , 0 ] + G_mic∗( D_pathline [ i −1 ] [ 0 , 0 ] − \

(F_mic/(F_mic+1))∗(r_dot_D_dot_r [ i −1])) − \
( alpha_mic /(F_mic+1)))

aux_b . append (W_pathline [ i −1 ] [ 0 , 1 ] + G_mic∗D_pathline [ i −1 ] [ 0 , 1 ] )
aux_c . append (W_pathline [ i −1 ] [ 1 , 0 ] + G_mic∗D_pathline [ i −1 ] [ 1 , 0 ] )
aux_d . append (W_pathline [ i −1 ] [ 1 , 1 ] + G_mic∗( D_pathline [ i −1 ] [ 1 , 1 ] − \

(F_mic/(F_mic+1))∗(r_dot_D_dot_r [ i −1])) − \
( alpha_mic /(F_mic+1)))

Rx . append ( ( Rx [ i −1] ∗ ( (1+0.5∗aux_a [ i −1]∗ dt_pathl ine )/ \
(1−0.5∗aux_a [ i −1]∗ dt_pathl ine ) + \

(0 . 25∗ aux_b [ i −1]∗aux_c [ i −1]∗ dt_pathl ine ∗∗2)/ \
((1−0.5∗aux_a [ i −1]∗ dt_pathl ine )∗\
(1−0.5∗aux_d [ i −1]∗ dt_pathl ine ) ) ) + \

Ry [ i −1] ∗ ( ( 0 . 5∗ aux_b [ i −1]∗ dt_pathl ine )/ \
(1−0.5∗aux_a [ i −1]∗ dt_pathl ine ) + \
(0 . 5∗ aux_b [ i −1]∗ dt_pathl ine ∗(1+0.5∗aux_d [ i −1]∗ dt_pathl ine ) )/ \
((1−0.5∗aux_a [ i −1]∗ dt_pathl ine )∗(1−0.5∗aux_d [ i −1]∗ dt_pathl ine ) ) ) ) ∗ \

( 1 − (0 . 25∗ aux_b [ i −1]∗aux_c [ i −1]∗ dt_pathl ine ∗∗2)/ \
((1−0.5∗aux_a [ i −1]∗ dt_pathl ine )∗(1−0.5∗aux_d [ i −1]∗ dt_pathl ine ) ) )∗∗(−1) )

Ry . append ( (1/(1−0.5∗aux_d [ i −1]∗ dt_pathl ine ) ) ∗ \
(Ry [ i −1]∗(1+0.5∗aux_d [ i −1]∗ dt_pathl ine ) + \

Rx [ i −1 ]∗(0 .5∗ aux_c [ i −1]∗ dt_pathl ine ) + \
Rx [ i ] ∗ ( 0 . 5 ∗ aux_c [ i −1]∗ dt_pathl ine ) ) )

abs_R . append ( sq r t (Rx [ i −1]∗∗2+Ry [ i −1]∗∗2))
i f (Ry [ i −1] > 0 and Rx [ i −1] > 0 ) :

theta . append (np . arctan (Ry [ i −1]/Rx [ i −1]))
e l i f (Ry [ i −1] > 0 and Rx [ i −1] < 0 ) :

theta . append ( p i − np . arctan (Ry [ i −1]/Rx [ i −1]))
e l i f (Ry [ i −1] < 0 and Rx [ i −1] < 0 ) :

theta . append ( p i + np . arctan (Ry [ i −1]/Rx [ i −1]))
else :

theta . append (3∗ p i /2 + np . arctan (Rx [ i −1]/Ry [ i −1]))
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theta_deg . append ((180/ p i )∗ theta [ i ] )
time . append ( time [ i−1]+dt_pathl ine )
x_pathl ine_star . append ( x_pathl ine [ i −1]/R)
y_pathl ine_star . append ( y_pathl ine [ i −1]/R)
Rx_star . append (Rx [ i −1]/ ds )
Ry_star . append (Ry [ i −1]/ ds )
abs_R_star . append (abs_R [ i −1]/ ds )
t ime_star . append ( time [ i −1]∗abs (omg_UR))

i=i+1

x_pathl ine . pop ( )
y_pathl ine . pop ( )
D_pathline . pop ( )
W_pathline . pop ( )
Rx . pop ( )
Ry . pop ( )
abs_R . pop ( )
theta . pop ( )
theta_deg . pop ( )
time . pop ( )

x_pathl ine_star . pop ( )
y_pathl ine_star . pop ( )
Rx_star . pop ( )
Ry_star . pop ( )
abs_R_star . pop ( )
t ime_star . pop ( )

x_pathl ine_lst . append ( x_pathl ine )
y_pathl ine_lst . append ( y_pathl ine )
D_pathline_lst . append ( D_pathline )
W_pathline_lst . append (W_pathline )
Rx_lst . append (Rx)
Ry_lst . append (Ry)
abs_R_lst . append (abs_R)
the ta_l s t . append ( theta )
theta_deg_lst . append ( theta_deg )
t ime_lst . append ( time )

x_pathl ine_star_lst . append ( x_pathl ine_star )
y_pathl ine_star_lst . append ( y_pathl ine_star )
Rx_star_lst . append (Rx_star )
Ry_star_lst . append (Ry_star )
abs_R_star_lst . append ( abs_R_star )
t ime_star_lst . append ( time_star )

DBD
PUC-Rio - Certificação Digital Nº 1912750/CA



Appendix A. Codes 120

#%% 4RM borders

i n l e t_ l s t = [ ]
middle_lst = [ ]
o u t l e t_ l s t = [ ]
e a s t_ l s t = [ ]

i n l e t_ index_l s t = [ ]
middle_index_lst = [ ]
out l e t_index_ls t = [ ]
east_index_lst = [ ]

t o l = 1e−4

for l in range (0 , kk ) :
i f ( x_pathl ine_lst [ l ] [ len ( x_pathl ine_lst [ l ] )−1] > (−b−R) ) :

i n l e t_ l s t . append (True )
else :

i n l e t_ l s t . append ( Fa l se )
i f ( x_pathl ine_lst [ l ] [ len ( x_pathl ine_lst [ l ] )−1] > 0 ) :

middle_lst . append (True )
else :

middle_lst . append ( Fa l se )
i f ( x_pathl ine_lst [ l ] [ len ( x_pathl ine_lst [ l ] )−1] > (b+R) ) :

ou t l e t_ l s t . append (True )
else :

o u t l e t_ l s t . append ( Fal se )
i f (abs (max( x)−x_pathl ine_lst [ l ] [ len ( x_pathl ine_lst [ l ] ) −1 ] ) < t o l ) :

e a s t_ l s t . append (True )
else :

e a s t_ l s t . append ( Fa l se )

in l e t_ index_l s t . append (0 )
middle_index_lst . append (0)
out l e t_index_ls t . append (0)
east_index_lst . append (0)

for l in range (0 , kk ) :
i f ( i n l e t_ l s t [ l ] == True ) :

i=1
while ( x_pathl ine_lst [ l ] [ i −1] < (−b−R) ) :

i=i+1
in l e t_ index_l s t [ l ] = i−1

for l in range (0 , kk ) :
i f ( middle_lst [ l ] == True ) :

i=1

DBD
PUC-Rio - Certificação Digital Nº 1912750/CA



Appendix A. Codes 121

while ( x_pathl ine_lst [ l ] [ i −1] < 0 ) :
i=i+1

middle_index_lst [ l ] = i−1

for l in range (0 , kk ) :
i f ( ou t l e t_ l s t [ l ] == True ) :

i=1
while ( x_pathl ine_lst [ l ] [ i −1] < (b+R) ) :

i=i+1
out l e t_index_ls t [ l ] = i−1

for l in range (0 , kk ) :
i f ( e a s t_ l s t [ l ] == True ) :

i=1
while (abs (max( x)−x_pathl ine_lst [ l ] [ len ( x_pathl ine_lst [ l ] ) −1 ] ) > t o l ) :

i=i+1
east_index_lst [ l ] = i−1

#%% Marking abs_R_star

tol_abs_R_star = 1e−5

#Elongat ion
e longat ion_parameters = [ ]
e l onga t i on_ ind i c e s = [ ]
e_aux = [ ]

e longat ion_parameters . append (3)
e longat ion_parameters . append (5)
e longat ion_parameters . append (7)
e longat ion_parameters . append (10)

for cont_e in range (0 , kk ) :
e l onga t i on_ ind i c e s . append ( [ ] )
e_aux . append (0)
cont_e = cont_e + 1

#Compression
compression_parameters = [ ]
compress ion_indices = [ ]
c_aux = [ ]

compression_parameters . append (1/9)
compression_parameters . append (1/25)
compression_parameters . append (1/49)
compression_parameters . append (1/100)
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for cont_c in range (0 , kk ) :
compress ion_indices . append ( [ ] )
c_aux . append (0)
cont_c = cont_c + 1

for l in range (0 , kk ) :
abs_R_star_max = max( abs_R_star_lst [ l ] )
abs_R_star_min = min( abs_R_star_lst [ l ] )
j = 0
while ( e_aux [ l ] == 0 and j < len ( e longat ion_parameters ) ) :

i f ( abs_R_star_max < elongat ion_parameters [ j ] ) :
e_aux [ l ] = j + 1

j = j + 1
k = 0
while ( c_aux [ l ] == 0 and k < len ( compression_parameters ) ) :

i f ( abs_R_star_min > compression_parameters [ k ] ) :
c_aux [ l ] = k + 1

k = k + 1

for l in range (0 , kk ) :
i f e_aux [ l ] == 1 :

pass
e l i f e_aux [ l ] == 2 :

( e l onga t i on_ ind i c e s [ l ] ) . append (next ( e [ 0 ] \
for e in enumerate( abs_R_star_lst [ l ] ) \

i f e [ 1 ] > elongat ion_parameters [ 0 ] ) )
e l i f e_aux [ l ] == 3 :

( e l onga t i on_ ind i c e s [ l ] ) . append (next ( e [ 0 ] \
for e in enumerate( abs_R_star_lst [ l ] ) i f \
e [ 1 ] > elongat ion_parameters [ 0 ] ) )

( e l onga t i on_ ind i c e s [ l ] ) . append (next ( e [ 0 ] \
for e in enumerate( abs_R_star_lst [ l ] ) i f \
e [ 1 ] > elongat ion_parameters [ 1 ] ) )

e l i f e_aux [ l ] == 4 :
( e l onga t i on_ ind i c e s [ l ] ) . append (next ( e [ 0 ] \
for e in enumerate( abs_R_star_lst [ l ] ) i f \
e [ 1 ] > elongat ion_parameters [ 0 ] ) )

( e l onga t i on_ ind i c e s [ l ] ) . append (next ( e [ 0 ] \
for e in enumerate( abs_R_star_lst [ l ] ) i f \
e [ 1 ] > elongat ion_parameters [ 1 ] ) )

( e l onga t i on_ ind i c e s [ l ] ) . append (next ( e [ 0 ] \
for e in enumerate( abs_R_star_lst [ l ] ) i f \
e [ 1 ] > elongat ion_parameters [ 2 ] ) )

for l in range (0 , kk ) :
i f c_aux [ l ] == 1 :
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pass
e l i f c_aux [ l ] == 2 :

( compress ion_indices [ l ] ) . append (next ( c [ 0 ] \
for c in enumerate( abs_R_star_lst [ l ] ) i f \
c [ 1 ] < compression_parameters [ 0 ] ) )

e l i f c_aux [ l ] == 3 :
( compress ion_indices [ l ] ) . append (next ( c [ 0 ] \
for c in enumerate( abs_R_star_lst [ l ] ) i f \
c [ 1 ] < compression_parameters [ 0 ] ) )

( compress ion_indices [ l ] ) . append (next ( c [ 0 ] \
for c in enumerate( abs_R_star_lst [ l ] ) i f \
c [ 1 ] < compression_parameters [ 1 ] ) )

e l i f c_aux [ l ] == 4 :
( compress ion_indices [ l ] ) . append (next ( c [ 0 ] \
for c in enumerate( abs_R_star_lst [ l ] ) i f \
c [ 1 ] < compression_parameters [ 0 ] ) )

( compress ion_indices [ l ] ) . append (next ( c [ 0 ] \
for c in enumerate( abs_R_star_lst [ l ] ) i f \
c [ 1 ] < compression_parameters [ 1 ] ) )

( compress ion_indices [ l ] ) . append (next ( c [ 0 ] \
for c in enumerate( abs_R_star_lst [ l ] ) i f \
c [ 1 ] < compression_parameters [ 2 ] ) )

#%% Plo t s Pa th l i n e s f o r d i f f e r e n t y_o

c o l o r s_ l s t = [ ]
co lo r s_l s t_2 = [ ]

c o l o r s_ l s t . append ( ’ bo ’ )
c o l o r s_ l s t . append ( ’mo ’ )
c o l o r s_ l s t . append ( ’ go ’ )
c o l o r s_ l s t . append ( ’ co ’ )
c o l o r s_ l s t . append ( ’ ro ’ )
c o l o r s_ l s t . append ( ’ yo ’ )

co lo r s_l s t_2 . append ( ’b ’ )
co lo r s_l s t_2 . append ( ’m’ )
co lo r s_l s t_2 . append ( ’ g ’ )
co lo r s_l s t_2 . append ( ’ c ’ )
co lo r s_l s t_2 . append ( ’ r ’ )
co lo r s_l s t_2 . append ( ’ y ’ )

y_o_str_lst = [ ]

y_o_star_lst = [ x/R for x in y_o_lst ]
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i f lamb==1:
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 3 .15 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 1 .57 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 1 .05 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 0 .79 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 0 .52 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣0$ ’ )

e l i f lamb==0:
i f Re_entrance==3:

y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−0.52$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.31$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.84$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−2.36$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−2.62$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−2.89$ ’ )

e l i f Re_entrance==5:
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.05$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.31$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.57$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.84$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−2.10$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−2.36$ ’ )

e l i f Re_entrance==10:
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−0.26$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−0.52$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−0.79$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.05$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.31$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.57$ ’ )

e l i f lamb==−1:
i f Re_entrance==3:

y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 4 .46 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 4 .20 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 3 .67 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 3 .15 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 2 .62 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 2 .10 $ ’ )

e l i f Re_entrance==5:
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 3 .67 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 3 .15 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 2 .62 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 1 .05 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−1.05$ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣−2.10$ ’ )

e l i f Re_entrance==10:
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 2 .36 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 2 .10 $ ’ )
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y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 1 .98 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 1 .84 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 1 .73 $ ’ )
y_o_str_lst . append ( r ’ ${y_o}^∗␣=␣ 1 .57 $ ’ )

for i in range ( len ( y_o_lst ) ) :
y_o_str_lst . append ( r ’ ${y_o}^∗␣=$ ’ + str (round ( ( y_o_lst [ i ] /R) , 3 ) ) )
i = i+1

f i g = p l t . f i g u r e ( i f i g )
i f i g = i f i g +1
marker_size_1 = 1
marker_size = 2
p l t . s c a t t e r ( x/R, y/R, marker_size_1 , np . asar ray (R_mod_star_nodal ) , \

marker="h " ,cmap=’ j e t ’ )
p l t . x l ab e l ( r ’ $x^∗$ ’ , f o n t s i z e =14)
p l t . y l ab e l ( r ’ $y^∗$ ’ , f o n t s i z e =14)
p l t . x t i c k s ( f o n t s i z e =14)
p l t . y t i c k s ( f o n t s i z e =14)
p l t . gca ( ) . set_aspect ( ’ equal ’ , ad ju s t ab l e=’ box ’ )
for l in range (0 , kk ) :

p l t . s c a t t e r ( x_pathl ine_star_lst [ l ] , y_pathl ine_star_lst [ l ] , \
marker_size , marker = " o " , c = co lor s_l s t_2 [ l ] , \
l a b e l=y_o_str_lst [ l ] )

p l t . l egend ( bbox_to_anchor=(1.85 , 1 . 0 5 ) , l o c=’ upper␣ r i g h t ’ , \
nco l =2, markersca le=2, f o n t s i z e =12)

s t y l e = " Simple , ␣ ta i l_width =0.5 , ␣head_width=4,␣head_length=8"
kw = dict ( a r rows ty l e=s ty l e , c o l o r="k " )
i f lamb==1:

a1 = mpatches . FancyArrowPatch ((−0.5 , 1 . 294 ) , (−2.1 , 1 . 2 94 ) , \
c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)

a2 = mpatches . FancyArrowPatch ( ( 0 . 5 , 1 . 2 94 ) , ( 2 . 1 , 1 . 2 94 ) , \
c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)

a3 = mpatches . FancyArrowPatch ( ( 0 . 5 , −1.294) , ( 2 . 1 , −1.294) , \
c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)

a4 = mpatches . FancyArrowPatch ((−0.5 , −1.294) , (−2.1 , −1.294) , \
c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)

e l i f lamb==0:
a1 = mpatches . FancyArrowPatch ( ( 0 . 5 , 1 . 2 94 ) , ( 2 . 1 , 1 . 2 94 ) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
a2 = mpatches . FancyArrowPatch ( ( 0 . 5 , 1 . 2 94 ) , ( 2 . 1 , 1 . 2 94 ) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
a3 = mpatches . FancyArrowPatch ((−0.5 , −1.294) , (−2.1 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
a4 = mpatches . FancyArrowPatch ((−0.5 , −1.294) , (−2.1 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=−.5 " , ∗∗kw)
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e l i f lamb==−1:
a1 = mpatches . FancyArrowPatch ((−0.5 , 1 . 294 ) , (−2.1 , 1 . 2 94 ) , \

c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
a2 = mpatches . FancyArrowPatch ( ( 2 . 1 , 1 . 2 94 ) , ( 0 . 5 , 1 . 2 94 ) , \

c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
a3 = mpatches . FancyArrowPatch ( ( 0 . 5 , −1.294) , ( 2 . 1 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
a4 = mpatches . FancyArrowPatch ((−2.1 , −1.294) , (−0.5 , −1.294) , \

c onne c t i on s t y l e=" arc3 , rad=.5 " , ∗∗kw)
for a in [ a1 , a2 , a3 , a4 ] :

p l t . gca ( ) . add_patch ( a )
p l t . s a v e f i g ( re su l t s_path+’ pathline_G=’+(str (G_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+\

’_alpha=’+(str ( alpha_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+\
’ . png ’ , dpi = 200 , bbox_inches=’ t i g h t ’ )

#lamb =1 −> 5 and lamb=0 −> 2
pos_plot = 0
i f lamb==1:

pos_plot = 5
e l i f lamb==0:

pos_plot = 2

f i g = p l t . f i g u r e ( i f i g )
i f i g = i f i g +1
p l t . p l o t ( t ime_star_lst [ pos_plot ] , x_pathl ine_star_lst [ pos_plot ] , \

c o l o r s_ l s t [ pos_plot ] , markers i ze=3, l a b e l=y_o_str_lst [ pos_plot ] )
p l t . x l ab e l ( r ’ $t ^∗$ ’ , f o n t s i z e =14)
p l t . y l ab e l ( r ’ $x^∗$ ’ , f o n t s i z e =14)
p l t . x t i c k s ( f o n t s i z e =14)
p l t . y t i c k s ( f o n t s i z e =14)
p l t . axh l ine ( y=(b+R)/R, c o l o r=’k ’ , l i n e s t y l e=’−− ’ )
p l t . axh l ine ( y=(−b−R)/R, c o l o r=’k ’ , l i n e s t y l e=’−− ’ )
p l t . l egend ( bbox_to_anchor=(0.08 , 1 . 0 1 ) , f o n t s i z e =12, l o c=’ lower ␣ l e f t ’ , nco l=1)
i f ( i n l e t_ l s t [ pos_plot ] == True ) :

p l t . axv l i n e (x=time_star_lst [ pos_plot ] [ i n l e t_ index_l s t [ pos_plot ] ] , \
c o l o r=co lo r s_l s t_2 [ pos_plot ] , l i n e s t y l e=’−− ’ )

i f ( middle_lst [ pos_plot ] == True ) :
p l t . axv l i n e (x=time_star_lst [ pos_plot ] [ middle_index_lst [ pos_plot ] ] , \

c o l o r=co lo r s_l s t_2 [ pos_plot ] , l i n e s t y l e=’−− ’ )
i f ( ou t l e t_ l s t [ pos_plot ] == True ) :

p l t . axv l i n e (x=time_star_lst [ pos_plot ] [ out l e t_index_ls t [ pos_plot ] ] , \
c o l o r=co lo r s_l s t_2 [ pos_plot ] , l i n e s t y l e=’−− ’ )

p l t . s a v e f i g ( re su l t s_path+’ x_versus_time_star_G=’+(str (G_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+\
’_alpha=’+(str ( alpha_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+ ’_yo∗= ’+\
( str (round( y_o_lst [ pos_plot ] /R, 2 ) ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+ ’ . png ’ ,\
dpi=200 , bbox_inches=’ t i g h t ’ )
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f i g = p l t . f i g u r e ( i f i g )
i f i g = i f i g +1
p l t . p l o t ( t ime_star_lst [ pos_plot ] , y_pathl ine_star_lst [ pos_plot ] , \

c o l o r s_ l s t [ pos_plot ] , markers i ze=3, l a b e l=y_o_str_lst [ pos_plot ] )
p l t . x l ab e l ( r ’ $t ^∗$ ’ , f o n t s i z e =14)
p l t . y l ab e l ( r ’ $y^∗$ ’ , f o n t s i z e =14)
p l t . x t i c k s ( f o n t s i z e =14)
p l t . y t i c k s ( f o n t s i z e =14)
p l t . axh l ine ( y=(b+R)/R, c o l o r=’k ’ , l i n e s t y l e=’−− ’ )
p l t . axh l ine ( y=(−b−R)/R, c o l o r=’k ’ , l i n e s t y l e=’−− ’ )
p l t . l egend ( bbox_to_anchor=(0.08 , 1 . 0 1 ) , f o n t s i z e =12, l o c=’ lower ␣ l e f t ’ , nco l=1)
i f ( i n l e t_ l s t [ pos_plot ] == True ) :

p l t . axv l i n e (x=time_star_lst [ pos_plot ] [ i n l e t_ index_l s t [ pos_plot ] ] , \
c o l o r=co lo r s_l s t_2 [ pos_plot ] , l i n e s t y l e=’−− ’ )

i f ( middle_lst [ pos_plot ] == True ) :
p l t . axv l i n e (x=time_star_lst [ pos_plot ] [ middle_index_lst [ pos_plot ] ] , \

c o l o r=co lo r s_l s t_2 [ pos_plot ] , l i n e s t y l e=’−− ’ )
i f ( ou t l e t_ l s t [ pos_plot ] == True ) :

p l t . axv l i n e (x=time_star_lst [ pos_plot ] [ out l e t_index_ls t [ pos_plot ] ] , \
c o l o r=co lo r s_l s t_2 [ pos_plot ] , l i n e s t y l e=’−− ’ )

p l t . s a v e f i g ( re su l t s_path+’ y_versus_time_star_G=’+\
( str (G_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+ ’_alpha=’+\
( str ( alpha_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+ ’_yo∗= ’+\
( str (round( y_o_lst [ pos_plot ] /R, 2 ) ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+\
’ . png ’ , dpi=200 , bbox_inches=’ t i g h t ’ )

f i g = p l t . f i g u r e ( i f i g )
i f i g = i f i g +1
p l t . p l o t ( t ime_star_lst [ pos_plot ] , abs_R_star_lst [ pos_plot ] , \

c o l o r s_ l s t [ pos_plot ] , markers i ze=3, l a b e l=y_o_str_lst [ pos_plot ] )
p l t . x l ab e l ( r ’ $t ^∗$ ’ , f o n t s i z e =14)
p l t . y l ab e l ( r ’$R^∗$ ’ , f o n t s i z e =14)
p l t . x t i c k s ( f o n t s i z e =14)
p l t . y t i c k s ( f o n t s i z e =14)
p l t . l egend ( bbox_to_anchor=(0.08 , 1 . 0 1 ) , f o n t s i z e =12, l o c=’ lower ␣ l e f t ’ , nco l=1)
i f ( i n l e t_ l s t [ pos_plot ] == True ) :

p l t . axv l i n e (x=time_star_lst [ pos_plot ] [ i n l e t_ index_l s t [ pos_plot ] ] , \
c o l o r=co lo r s_l s t_2 [ pos_plot ] , l i n e s t y l e=’−− ’ )

i f ( middle_lst [ pos_plot ] == True ) :
p l t . axv l i n e (x=time_star_lst [ pos_plot ] [ middle_index_lst [ pos_plot ] ] , \

c o l o r=co lo r s_l s t_2 [ pos_plot ] , l i n e s t y l e=’−− ’ )
i f ( ou t l e t_ l s t [ pos_plot ] == True ) :

p l t . axv l i n e (x=time_star_lst [ pos_plot ] [ out l e t_index_ls t [ pos_plot ] ] , \
c o l o r=co lo r s_l s t_2 [ pos_plot ] , l i n e s t y l e=’−− ’ )

i f ( e l onga t i on_ ind i c e s [ pos_plot ] i s not [ ] ) :
for l l in range (0 , len ( e l onga t i on_ ind i c e s [ pos_plot ] ) ) :

DBD
PUC-Rio - Certificação Digital Nº 1912750/CA



Appendix A. Codes 128

p l t . p l o t ( t ime_star_lst [ pos_plot ] [ e l onga t i on_ ind i c e s [ pos_plot ] [ l l ] ] , \
abs_R_star_lst [ pos_plot ] [ e l onga t i on_ ind i c e s [ pos_plot ] [ l l ] ] , \
’ ko ’ , markers i ze=4)

i f ( compress ion_indices [ pos_plot ] i s not [ ] ) :
for l l in range (0 , len ( compress ion_ind ices [ pos_plot ] ) ) :

p l t . p l o t ( t ime_star_lst [ pos_plot ] [ compress ion_indices [ pos_plot ] [ l l ] ] , \
abs_R_star_lst [ pos_plot ] [ compress ion_indices [ pos_plot ] [ l l ] ] , ’ ko ’ )

p l t . s a v e f i g ( re su l t s_path+’ abs_R_star_versus_time_star_G=’+\
( str (G_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+ ’_alpha=’+\
( str ( alpha_mic ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+ ’_yo∗= ’+\
( str (round( y_o_lst [ pos_plot ] /R, 2 ) ) ) . r ep l a c e ( ’ . ’ , ’ d ’ )+\
’ . png ’ , dpi = 200 , bbox_inches=’ t i g h t ’ )

#%% Time e l ap sed

end = timer ( )
print ( ’ time␣ e lapsed ␣=’ , end−s ta r t , ’ s ’ )

DBD
PUC-Rio - Certificação Digital Nº 1912750/CA


	Persistence of straining in the four-roll mill flow
	Resumo
	Table of contents
	Introduction
	Motivation
	Objectives
	Outlines

	Background and literature
	Emulsions
	Four-roll mill
	Literature review
	Four-roll mill and drop deformation
	Flow classification


	Model description
	Domain and meshes
	Modeling the flow
	Weak formulation
	Element
	Boundary conditions
	Persistence of straining
	Microelement's deformation
	Non-dimensionalization

	Results
	Classic four-roll mill
	Velocity fields
	Streamlines
	The normalized persistence-of-straining parameter field
	The modified normalized persistence-of-straining parameter field

	Expanded four-roll mill
	Velocity fields
	Streamlines
	The normalized persistence-of-straining parameter fields
	The modified persistence-of-straining parameter fields
	Pathline and deformation of microelements


	Final Remarks
	Future Works

	Codes
	Meshes
	Simulations




