

Mengen Liu

Previsão do Fator de Concentração de Tensão à Fadiga K_f pelo Método do Gradiente de Tensões para Entalhes com Plasticidade Localizada

Projeto de Graduação

Projeto de Graduação apresentado ao Departamento de Engenharia Mecânica da PUC-Rio.

Orientador : Jaime Tupiassú Pinho de Castro Coorientador: Antônio Carlos de Oliveira Miranda

> Rio de Janeiro Julho de 2021

Agradecimentos

A Deus, por tudo.

Aos meus pais e minhas irmãs, pelo apoio incondicional, carinho e companhia em todos os momentos.

Ao Prof. Jaime Tupiassú Pinho de Castro, pela orientação, incentivo, confiança e valiosos conhecimentos compartilhados.

Ao Prof. Antônio Carlos de Oliveira Miranda, pela orientação, disponibilidade e essenciais contribuições para a realização deste trabalho.

Ao Grupo de Reologia da PUC-Rio, em especial ao Prof. Paulo Roberto de Souza Mendes e à DSc. Priscilla Varges, pela paciência e suporte durante minha pesquisa de iniciação científica.

Resumo

Previsão do Fator de Concentração de Tensão à Fadiga $\rm K_f$ pelo Método do Gradiente de Tensões para Entalhes com Plasticidade Localizada

O efeito real de entalhes na resistência à fadiga de componentes mecânicos é quantificado por fator de concentração de tensão à fadiga K_f . Este parâmetro é associado à tolerância às trincas curtas, que geralmente nascem de locais concentradores de tensões devido a elevado gradiente de tensões induzido. Quando um entalhe muito alongado escoar localmente na região próxima à sua raiz, o comportamento das trincas curtas nascidas dele deixa de ser linear elástico e precisa ser modelado considerando a plasticidade localizada. O Método do Gradiente de Tensões (SGM), baseado nos conceitos da Mecânica da Fratura e das trincas curtas, pode ser aplicado para prever o K_f. No caso de um entalhe afiado com escoamento localizado, a solução do método precisa ser modificada para levar em consideração o encruamento cíclico do material da região inelástica. A previsão do K_f a partir do SGM elastoplástico consiste em usar as propriedades do material e as dimensões características da peça e do entalhe para gerar uma distribuição do fator do gradiente de tensões (SGF) plástico no genSIF.exe, um programa de cálculo de fator de intensidade de tensões por elementos finitos e funções de peso. Em seguida, a partir da modelagem de trincas curtas desenvolvida por El Haddad-Topper-Smith, uma equação não linear é proposta para computar o K_f plástico por um método numérico iterativo que pode ser implementado e resolvido no MATLAB. Os resultados obtidos pelo SGM são comparados com dados experimentais de K_f.

Palavras-chave

Fator do gradiente de tensões; entalhes; trincas curtas; fator de concentração de tensão à fadiga; plasticidade localizada.

Area de concentração: Mecânica aplicada

Abstract

$\label{eq:constraint} \begin{array}{l} \mbox{Prediction of Fatigue Stress Concentration Factor K_f Using the Stress Gradient Method Applied to Notches with Local Yielding \end{array}$

The actual effect of notches on fatigue strength of mechanical components is quantified by fatigue stress concentration factor K_f . This parameter is associated with the tolerance to short fatigue cracks departing from stress raisers with high stress gradient effects. At sharp notches, local yielding can occur around the notch roots, thus the short crack behavior should be modeled considering localized plastic strains. The Stress Gradient Method (SGM), based on Fracture Mechanics and short crack concepts, can be used to predict the K_f . For elongated notches that locally yielded, the SGM's solution should be modified to take into account the cyclic hardening of the material around notch roots. The prediction of K_f through SGM consists in using the material properties and the geometric characteristics of both the specimen and the notch to generate the distribution of plastic stress gradient factor (SGF), which is given by **genSIF.exe**, a software that calculates stress intensity factors by means of weight functions and the finite element method. Then, from the short fatigue crack concepts developed by El Haddad-Topper-Smith, a non-linear equation is proposed to compute the plastic K_f through an iterative approach which can be implemented and solved in **MATLAB**. The results predicted by SGM are compared with experimental K_f data.

Keywords

Stress gradient factor; notches; short cracks; fatigue stress concentration factor; local plasticity.

Concentration area: Applied Mechanics

Sumário

1	Introdução	10
2	Objetivo	11
3	Fundamentos da Mecânica da Fratura	12
3.1	Concentração de Tensão	13
3.2	Balanço de energia de Griffith	15
3.3	Fator de Intensidade de Tensão	16
3.4	Correlação entre ${\cal G}$ e K	19
3.5	Integral J	19
4	Propagação de Trincas por Fadiga	22
4.1	Vida de propagação de trincas	23
4.2	Limiar de propagação	24
4.3	Efeito do K_t em fadiga	24
4.4	Modelagem das trincas curtas	25
4.5	Efeito do escoamento localizado nas trincas curtas	28
4.6	Comportamento elastoplástico cíclico	28
5	Metodologia	31
5.1	Modelo matemático do SGM	31
5.2	Programa genSIF.exe	34
5.3	Cálculo numérico do K f	40
5.4	Dados experimentais para validação da modelagem	41
5.5	Estimativa das constantes de encruamento	42
6	Resultados e Discussões	44
6.1	Testes preliminares	44
6.2	Cálculo iterativo de K _f	46
6.3	Comparação dos resultados K f	48
6.4	Resultados de a_{max}	52
7	Conclusões	55
Refe	erências Bibliográficas	55
A	Listagem de Códigos do MATLAB	60

Lista de figuras

3.1	Placa de Kirsh com um furo circular	14
3.2	Placa infinita tracionada com um furo elíptico	14
3.3	Gradiente de tensões induzido pelo entalhe	15
3.4	Modos de carregar uma trinca	17
3.5 3.6	Sistema de coordenadas polares (r, θ) com origem na ponta da trinca Diagrama $\sigma \varepsilon$ de comportamentos não linear elástico e elastoplás-	18
	tico durante a descarga	20
3.7	Linha anti-horário s em volta da ponta de uma trinca	21
4.1 4.2	Forma sigmoidal da curva da/dN× ΔK típica em escala log-log Fator de superfície livre η , de geometria f(a/w) e do gradiente de	24
	tensão $K_{gr}(a/w)$	27
4.3	Parcelas elástica e plástica da deformação total	29
4.4	Curva $\Delta\sigma\Delta\varepsilon$ do laço de um aço 1020	30
5.1	Zona plástica em torno da raiz do entalhe	33
5.2	Programa genSIF.exe iniciado na linha de comando	34
5.3	Exemplos de entrada e de geometria do genSIF.exe	35
5.4	Distribuição de $ m K_{ m gr}(a/w)$ gerada na saída em casos LE	35
5.5	Dados de entrada adicionais em casos EP	36
5.6	Distribuição de $\mathrm{K}_{\mathrm{gr} \epsilon}(a/w)$ geradas na saída em casos EP	36
5.7	Distribuição de $\mathrm{K}_{\mathrm{gr}}(a/w)$ e $\mathrm{K}_{\mathrm{gr}\epsilon}(a/w)$	37
5.8	Exemplos da visualização da distribuição de tensões Mises no	
	CalculiX GraphiX	37
5.9	Placa infinita com uma trinca lateral sob um par de forças normais concentradas P	39
5.10	Distribuição de tensão em placas finitas submetidas a força axial F	00
	e momento M	39
5.11	Fluxograma da obtenção do ${ m K_f}$	40
5.12	Geometrias dos CPs analisados	41
6.1	Cálculo iterativo de $ m K_{f}$ plástico	46
6.2	Comparação entre $\mathrm{K_{f}}$ experimentais e numéricos	51
6.3	Comprimento máximo de trinca curta tolerado em função do raio	
	do entalhe	54
A.1	Arquivo lido no código: Testes_dados.txt	66
A.2	Arquivo lido no código: Propriedades.txt	66

Lista de tabelas

5.1	Propriedades dos CPs analisados	41
5.2	Medianas das propriedades de Coffin-Manson	43
5.3	Propriedades de curvas cíclicas	43
6.1	Variação de $\mathrm{K_{f}}$ plásticos com o nível de tensão	45
6.2	${ m K_f}$ calculados pelo processo iterativo até a convergência	48
6.3	Comparação entre resultados experimentais, de L&M e de SGM	
	elástico e plástico	50
6.4	Resumo das comparações dos $ m K_{f}$	50
6.5	Resultados de comprimento máximo de trincas curtas não propa-	
	gantes a_{max}	53

Lista de símbolos e abreviaturas

CCC	Cúbico de corpo centrado
\mathbf{CP}	Corpo de prova
\mathbf{EP}	Elastoplástico
Exp.	Experimental
IND	Inspeção não destrutiva
\mathbf{LE}	Linear elástico
MFEP	Mecânica da Fratura Elastoplástica
MFLE	Mecânica da Fratura Linear Elástica
\mathbf{SGF}	Fator do gradiente de tensões (Stress gradient factor)
\mathbf{SGM}	Método do gradiente de tensões (Stress gradient method)
$\mathbf{z}\mathbf{p}$	Zona plástica
a	Comprimento de trinca
\mathbf{a}_0	Tamanho característico de trincas curtas
b	Expoente da parte elástica de Coffin-Manson
с	Expoente da parte plástica de Coffin-Manson
da/dN	Taxa de propagação de trinca por fadiga
E	Módulo de elasticidade (Young)
$\mathbf{E}_{\mathbf{P}}$	Energia potencial
$f_{ij}(\theta)$	Função adimensional
${\cal G}$	Taxa de alívio de energia
$\mathcal{G}_{\mathrm{IC}}$	Taxa de alívio de energia crítica no modo I
H_c, h_c	Coeficiente e expoente de encruamento cíclico
$\mathbf{K}_{\mathbf{f}}$	Fator de concentração de tensão à fadiga
$\mathbf{K}_{\mathbf{t}}$	Fator de concentração de tensão
$\mathbf{K}_{\mathbf{I},\mathbf{II},\mathbf{III}}$	Fator de intensidade de tensões nos modos I, II e III
$\mathbf{K}_{\mathbf{IC}}$	Fator de intensidade de tensões crítico no modo I
${ m K_{gr}}$	Fator do gradiente de tensões
$\mathbf{K}_{\mathbf{gr}\epsilon}$	Fator do gradiente de tensões plástico
$\Delta \mathrm{K_{I}}$	Gama do fator de intensidade de tensões no modo I
$\Delta { m K_{th}}$	Limiar de propagação de trincas
$\Delta \mathrm{K}_{\mathrm{0}}$	Limiar de propagação de trincas sob R=0
Ν	Número de ciclos
q	Sensibilidade ao entalhe
R	Raio de furo circular / Razão de carregamento

$\mathbf{S_E}$	Limite de escoamento
$\mathbf{S}_{\mathbf{L}}$	Limite de fadiga contra iniciação de trincas
$\mathbf{S}_{\mathbf{L_{ent}}}$	Limite de fadigade peça entalhada
$\Delta { m S_L}$	Gama do limite de fadiga contra iniciação de trincas
${\mathcal T}$	Tenacidade
U	Densidade de energia de deformação
δ	Abertura da ponta da trinca
δA	Aumento infinitesimal da área das faces da trinca
δW	Incremento do trabalho fornecido
δE_D	Variação da energia de deformação
$\epsilon, \epsilon_{\rm el, pl}$	Deformação total, da parte elástica e da parte plástica
$\Delta arepsilon, \Delta arepsilon_{ m el, \ pl}$	Gama de deformação total, da parte elástica e da parte plástica
ε _c	Coeficiente da parte plástica de Coffin-Manson
η	Correção para superfície livre
ρ	Menor raio de curvatura de elipse
σ_{a}	Amplitude de variação de tensões
σ_{c}	Coeficiente da parte elástica de Coffin-Manson
$\sigma_{ m m}$	Tensão média
$\sigma_{\rm n}$	Tensão nominal
$\sigma_{ m min}$	Tensão mínima
$\sigma_{ m max}$	Tensão máxima
$\Delta \sigma$	Gama de tensões
$\sigma_{ heta}(\mathrm{r,} heta)$	Tensões tangenciais
ν	Coeficiente de Poisson

1 Introdução

Trincas são defeitos muito comuns e especialmente danosos em componentes estruturais. Trincas longas podem ser detectadas por métodos de inspeção não destrutiva (IND) tradicionais (Leite [1]) e tratadas devidamente com facilidade. Mas aquelas trincas menores do que o limiar de detecção podem passar despercebidas mesmo em inspeções muito detalhadas. Por isso, o projeto de componentes de vidas muito longas precisa tanto dimensionar contra a iniciação de trincas quanto ser tolerante às trincas curtas indetectáveis na prática.

Porém, a maioria dos componentes estruturais são projetados para vidas longas por métodos que desconsideram a presença de trincas curtas e mesmo assim funcionam bem, o que mostra que são tolerantes às trincas curtas (Alarcón et al. [2]). Para estudar tal tolerância é necessário se basear no comportamento das trincas curtas, que difere do das trincas longas que são geralmente modeladas pela Mecânica da Fratura Linear Elástica (MFLE).

Componentes estruturais gastam grande parte da sua vida à fadiga propagando trincas curtas, que geralmente nascem a partir de variações geométricas bruscas como entalhes, furos, rasgos ou outros tipos de detalhes necessários para a fixação e/ou a operação da peça. Os entalhes concentram localmente as tensões que podem até exceder do limite de escoamento do material e então provocar a plasticidade localizada na região próxima à raiz dos entalhes. O efeito da concentração de tensão reduz a resistência à fadiga dos componentes, e deve ser considerado nos projetos à fadiga, sobretudo para casos em que há entalhes afiados.

Entretanto, ainda não há uma formulação universal de K_f que possa se aplicar para condições genéricas de carregamento, tendo em vista que dados experimentais mostraram que o K_f depende de muitos fatores como, por exemplo, propriedades do material, número de ciclos, tamanho de defeitos inerentes, entre outros. Basicamente, as expressões de K_f podem ser classificadas quanto ao fundamento do modelo, que pode ser: (a) tensão média (TM), (b) mecânicas de fratura (MF) e (c) intensidade do campo de tensões (ICT). Entre esses, o modelo MF é o único que supõe que qualquer corpo de prova contém trincas mesmo antes de ser usado, e as expressões do K_f são obtidas com base no comportamento de trincas curtas (Yao et al. [3]).

2 Objetivo

O objetivo deste trabalho é de propor uma modelagem da previsão do fator de concentração de tensão à fadiga K_f de entalhes afiados, a partir dos conceitos da Mecânica da Fratura e da Fadiga para trincas curtas. Baseandose no Método do Gradiente de Tensões previamente apresentado por Miranda et al. [4] para problemas lineares elásticos, será considerada a plasticidade em torno da raiz dos entalhes afiados, gerada devido ao fator de concentração de tensões K_t alto que resulta em tensões locais $K_t \sigma_n > S_E$, na propagação das trincas curtas nascidas ali. As estimativas de K_f obtidas serão comparadas com K_f experimentais reportados na literatura.

3 Fundamentos da Mecânica da Fratura

No século 19, engenheiros começaram a perceber que certos aspectos de comportamento de materiais não poderiam ser descritos ou previstos baseandose nos estudos clássicos de resistência de materiais, pois estes não eram capazes de resolver problemas em que há descontinuidades severas no componente, tais como trincas. Por exemplo, numa peça trincada e supostamente linear elástica, a tensão na ponta da trinca tende a ter valor infinito, porém sem causar a falha da peça. Como nenhum material possui resistência infinita, é necessário que a região em torno da ponta da trinca apresente um comportamento inelástico, o qual é complexo demais para se aplicarem as fórmulas clássicas. Em 1920, um engenheiro inglês chamado Alan Arnold Griffith (1893-1963) analisou as tensões singulares como um problema do modelo utilizado e apelou para um princípio mais forte, supondo que qualquer fenômeno físico tem que obedecer à lei de conservação de energia (Griffith [5]). Essa ideia marcou início à Mecânica da Fratura, cujo principal ponto de estudo é o comportamento do material quando há presença de uma ou mais trincas. Estas podem ser uma imperfeição inerente ao material decorrente do processo de fabricação ou desenvolvidas durante o serviço. Hoje já se sabe bem que para uma correta análise de comportamento mecânico de materiais estruturais reais, é necessário incluir o estudo da Mecânica da Fratura para prever a propagação de trincas.

A MFLE é usada em modelagem dos mecanismos de fratura de materiais frágeis, por meio dos conceitos da teoria da elasticidade linear. Estes podem ser peças metálicas grandes de alta resistência ou de microestrutura cúbica de corpo centrado (CCC) abaixo da temperatura de transição dúctil-frágil, cerâmicas e polímeros vítreos. Embora toda peça trincada sob carga apresente uma região não linear em torno da ponta da trinca, se o tamanho desta zona de perturbação na linearidade for pequeno em relação às dimensões da peça e da trinca, pode-se negligenciá-la e considerar o campo de tensões na peça como um todo predominantemente linear elástico. Assim, é o tamanho da zona plástica **zp** que determina a validade da MFLE (Castro and Meggiolaro [6]).

Quando o tamanho **zp** for significativo em relação às dimensões da peça ou da trinca, a MFLE não será capaz de descrever bem o efeito das trincas e então torna-se obrigatório considerar o efeito da plasticidade. A Mecânica da Fratura Elastoplástica (MFEP) admite **zp** grande na ponta da trinca e é aplicada em modelagem da fratura de estruturas tenazes. Este é em geral o caso das peças feitas de ligas estruturais metálicas de tenacidade alta, as mais úteis na prática de engenharia. Esta seção apresentará os fundamentos da Mecânica da Fratura, tanto para os problemas lineares elásticos quanto para os elastoplásticos.

3.1 Concentração de Tensão

Segundo o princípio de Saint-Venant, as fórmulas clássicas da análise tradicional da Mecânica dos Sólidos só são válidas nas regiões da peça que fiquem longe das transições bruscas de geometria e dos pontos de aplicação das cargas concentradas, como nos cálculos de tensões nominais σ_n . No entanto, a grande maioria das peças reais apresenta variações localizadas da sua geometria como entalhes, furos, rasgos, e outros detalhes de fabricação ou imperfeições. Os entalhes concentram localmente as tensões, induzindo um fator de concentração de tensão K_t (Peterson [7]), definido por:

$$K_{t} = \frac{\sigma_{max}}{\sigma_{n}}$$
(3-1)

onde σ_n é a tensão nominal que ali atuaria se não houvesse perturbação no campo de tensões ao seu redor, e σ_{max} é o valor máximo da tensão no ponto mais solicitado do entalhe. Vale comentar que em caso linear elástico, K_t também é o fator de concentração de deformações. Para o correto dimensionamento mecânico a diversos tipos de mecanismos de falha de um componente, é necessário levar em consideração o efeito dos K_ts (Castro and Meggiolaro [6]). Os locais concentradores de tensões geralmente são os prováveis pontos críticos onde a solicitação em algumas vezes pode ultrapassar o limite de resistência e inicia-se um processo de falha.

3.1.1 O Problema de Kirsh

A primeira solução analítica de um problema de concentração de tensão foi obtida em 1898 por Kirsh que, ao calcular as tensões tangenciais $\sigma_{\theta}(\mathbf{r}, \theta)$ em torno de um furo circular de raio **R** numa placa infinita tracionada (Fig 3.1), obteve a expressão (Timoshenko [8]):

$$\sigma_{\theta}(\mathbf{r}, \theta) = \frac{\sigma_{\mathrm{n}}}{2} \left[\left(1 + \frac{\mathrm{R}^2}{\mathrm{r}^2} \right) - \left(1 + \frac{3\mathrm{R}^4}{\mathrm{r}^4} \right) \cos 2\theta \right]$$
(3-2)

cujos valores máximo e mínimo são:

$$\begin{split} \sigma_{\theta max} \Rightarrow \theta &= \pm \pi/2 \Rightarrow \sigma_{\theta} = \sigma_{x} = 3\sigma_{n} \\ \sigma_{\theta min} \Rightarrow \theta &= 0, \pi \Rightarrow \sigma_{\theta} = \sigma_{y} = -\sigma_{n} \end{split}$$

Logo, o furo circular introduz na placa de Kirsh um fator de concentração de tensão $K_t = \sigma_{max} / \sigma_n = 3$.

Figura 3.1: Placa de Kirsh com um furo circular [9]

A introdução de um furo não altera a tensão global na placa infinita que permanece igual a σ_n , porém faz com que a máxima tensão local na borda do furo seja 3 vezes maior que a tensão nominal. Este efeito certamente não pode ser negligenciado no dimensionamento à fadiga.

3.1.2 O Problema de Inglis

Em 1913, Inglis resolveu o problema do furo elíptico numa placa infinita tracionada (Fig 3.2) e obteve o fator de concentração de tensão (Inglis [10]):

$$K_{t} = 1 + \frac{2a}{b} = 1 + 2\sqrt{\frac{a}{\rho}}$$
 (3-3)

onde $\rho = b^2/a$ é o menor raio de curvatura da elipse, e a e b os semi-eixos da elipse.

Figura 3.2: Placa infinita tracionada com um furo elíptico [9]

A Eq.3-3 é muito importante, pois ela quantifica o efeito da concentração de tensão dos entalhes elípticos. Com raios de ponta ρ pequenos o fator K_t pode crescer muito. Ou seja, quanto mais afiado for o entalhe, maior é o efeito da concentração de tensão. No entanto, o raio muito pequeno $\rho \rightarrow 0$ como o da ponta de uma trinca induziria o K_t $\rightarrow \infty$, e qualquer valor de tensão nominal $\sigma_n \neq 0$ provocaria uma tensão máxima local $\sigma_{max} \rightarrow \infty$, o que é fisicamente absurdo. Inglis não explicou por que as peças trincadas não quebravam ao serem carregadas, mas o problema foi resolvido por Griffith a partir de um conceito termodinâmico.

3.1.3 Gradiente de tensões

Junto com o efeito da concentração de tensão quantificado pelo K_t na raiz do entalhe, outro efeito que este induz é um gradiente de tensões $\frac{d\sigma}{dx}$ que começa na raiz do entalhe em direção ao centro da peça (Dieter and Bacon [11]), conforme mostrado na Fig 3.3. De fato, num caso linear elástico, a tensão é máxima na raiz do entalhe (x=0) e decresce à medida que se afasta dela, até atingir o seu valor nominal a uma certa distância da raiz do entalhe em que o efeito concentrador de tensão não é mais sentido.

Figura 3.3: Gradiente de tensões induzido pelo entalhe

3.2 Balanço de energia de Griffith

Griffith [5] formulou o critério de fratura baseado no balanço energético, supondo que a propagação de trincas, como qualquer fenômeno físico, obedece à lei de conservação da energia. Portanto, uma trinca só pode crescer, sofrendo um aumento infinitesimal da sua área δA , se o incremento δW do trabalho fornecido à peça puder suprir a soma de variação δE_D da energia de deformação armazenada na peça com a variação da energia absorvida durante o crescimento da trinca $\mathcal{T} \cdot \delta A$:

$$\delta W \ge \delta E_{\rm D} + \mathcal{T} \cdot \delta A \tag{3-4}$$

onde, \mathcal{T} é a tenacidade, que quantifica a capacidade de um material absorver energia e deformar permanentemente sem fraturar.

Como as faces das trincas não transmitem tensões trativas, o material no entorno dessas faces precisa permanecer descarregado. Logo, a quantidade de material descarregado cresce conforme a trinca se propaga aumentando as faces livres. Desta forma, o incremento da trinca tende a reduzir a energia de deformação E_D armazenada na peça e, consequentemente, a reduzir a energia potencial E_P (Castro and Meggiolaro [6]):

$$E_{\rm P} = E_{\rm D} - W \tag{3-5}$$

onde, W é o trabalho realizado pelos esforços que atuam na peça trincada quando ela se movimenta.

O modelo de Griffith foi desenvolvido baseado em experimentos em vidro, um material frágil em que a trinca se propaga de forma instável, com pouca ou nenhuma deformação permanente. Porém, a maioria dos materiais estruturais são dúcteis e a propagação de trincas é acompanhada de uma deformação permanente.

Irwin [12] estendeu a aplicação do critério de balanço energético de Griffith para materiais dúcteis, induzindo o conceito da Taxa de Alívio de Energia \mathcal{G} , definida por:

$$\mathcal{G} = -\frac{\delta \mathcal{E}_{\mathcal{P}}}{\delta \mathcal{A}} \tag{3-6}$$

onde, \mathcal{G} é a taxa de alívio de energia potencial elástica armazenada no material por unidade de área de face de trinca, e pode ser calculada para cada incremento de trinca. É comprovável que a taxa \mathcal{G} é uma propriedade da estrutura trincada, como mostrado por Castro and Meggiolaro [6], portanto pode-se chamá-la também de força para propagar a trinca (*crack driving force*).

O cálculo analítico da taxa de alívio \mathcal{G} é uma tarefa muito trabalhosa, pois requer a análise global das tensões e deformações em toda a peça, o que limita a sua utilidade na prática. Assim, o uso de \mathcal{G} é maior em modelagens numéricas por elementos finitos. Na prática, é mais conveniente usar um outro parâmetro quantificador de trincas, que será apresentado na subseção a seguir.

3.3 Fator de Intensidade de Tensão

O conceito do fator de intensidade de tensões foi introduzido, independentemente, por Williams [13] e por Irwin [14], para quantificar o campo das tensões em torno da ponta de uma trinca numa peça predominantemente linear elástica.

Como mostrado na Fig 3.4, há três modos de carregar uma trinca:

- (a) Modo I: de abertura, carga normal ao plano da trinca gerando uma tensão de tração. Este modo é o preferido pelas trincas, pois a propagação não dissipa energia por atrito entre as duas faces, portanto ocorre com mais frequência e produz mais danos. Consequentemente, é o mais investigado em pesquisas, projetos estruturais e análises de falhas, etc.
- (b) Modo II: de deslizamento, carga de corte por cisalhamento perpendicular à ponta da trinca. É o segundo mais estudado, pois um problema de modo misto I e II continua sendo bidimensional. Este modo influencia a direção da propagação da trinca de forma que o crescimento no modo II seja reduzido enquanto o no modo I seja favorecido, fazendo a trinca tender a se propagar somente no modo I.
- (c) Modo III: de rasgamento, carga de torção ou de cisalhamento paralelo à ponta da trinca para fora do plano.

Figura 3.4: Modos de carregar uma trinca

Supondo uma peça trincada de material linear, elástico, isotrópico e homogêneo, as tensões $\sigma_{ij}(\mathbf{r}, \theta)$ que atuam num elemento localizado a $r \in \theta$ da ponta da trinca (vide Fig 3.5) são dadas por:

$$\sigma_{ij}(\mathbf{r}, \boldsymbol{\theta}) = \frac{K}{\sqrt{2\pi \mathbf{r}}} \cdot f_{ij}(\boldsymbol{\theta})$$
(3-7)

onde, $f_{ij}(\theta)$ é uma função adimensional de θ .

Cada modo de carga está associado a um fator de intensidade de tensões: K_I para o modo I; K_{II} para o modo II; e K_{III} para o modo III. O campo de tensões na ponta da trinca no modo I é dado por:

Figura 3.5: Sistema de coordenadas polares (r, θ) com origem na ponta da trinca [9]

$$\begin{cases} \sigma_{\rm x} \\ \sigma_{\rm y} \\ \tau_{\rm xy} \end{cases} = \frac{\mathrm{K}_{\mathrm{I}}}{\sqrt{2\pi\mathrm{r}}} \cos\frac{\theta}{2} \begin{cases} 1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \\ 1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \\ \sin\frac{\theta}{2}\cos\frac{3\theta}{2} \end{cases}$$
(3-8)

O campo de tensões em modo II é dado por:

$$\begin{cases} \sigma_{\rm x} \\ \sigma_{\rm y} \\ \tau_{\rm xy} \end{cases} = \frac{\mathrm{K}_{\mathrm{II}}}{\sqrt{2\pi\mathrm{r}}} \begin{cases} -\sin\frac{\theta}{2}\left(2 + \cos\frac{\theta}{2}\cos\frac{3\theta}{2}\right) \\ \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} \\ \cos\frac{\theta}{2}\left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) \end{cases}$$
(3-9)

E o campo de tensões em modo III é dado por:

$$\begin{cases} \tau_{\rm xz} \\ \tau_{\rm yz} \end{cases} = \frac{\mathrm{K}_{\rm III}}{\sqrt{2\pi\mathrm{r}}} \begin{cases} -\sin\frac{\theta}{2} \\ \cos\frac{\theta}{2} \end{cases}$$
 (3-10)

Como pode-se observar a partir das expressões dos campos de tensões em torno da ponta da trinca, a sua intensidade é controlada pelo fator de intensidade de tensões K, pois o termo adimensional $f_{ij}(\theta)$ independe da peça trincada. O fator K é associado aos efeitos da carga e da geometria da peça e da trinca. No modo I, o fator K_I pode, em geral, ser escrito na forma de:

$$K_{I} = \boldsymbol{\sigma} \cdot \sqrt{\pi a} \cdot F(a/w) \tag{3-11}$$

onde, σ é a tensão nominal aplicada na peça, a o comprimento da trinca, e F(a/w) quantifica efeitos da geometria no fator de intensidade de tensões, como o de superfície livre, da largura, entre outros.

Como o fator de intensidade de tensão K é um conceito aplicável somente para campos de tensões lineares elásticos, a função F(a/w) de um dado tipo de geometria é única. Castro and Meggiolaro [6] apresentaram uma lista extensa de fatores K para diversos tipos de geometrias. Para obter os campos de geometrias não disponíveis na literatura ou quantificar o efeito de cargas compostas sob um mesmo modo, é válido aplicar o princípio de superposição a partir de fatores conhecidos, já que estes seguem o conceito linear elástico.

3.4 Correlação entre *G* e K

Irwin [12] provou que o fator de intensidade de tensões K e a taxa de alívio de energia \mathcal{G} são conceitos equivalentes, ambos lineares elásticos, e podem ser correlacionados como:

$$\mathbf{G}_{\rm I} = \frac{{\rm K}_{\rm I}^2}{{\rm E}'}, \qquad \mathbf{G}_{\rm II} = \frac{{\rm K}_{\rm II}^2}{{\rm E}'}, \qquad {\rm e} \quad \mathbf{G}_{\rm III} = \frac{{\rm K}_{\rm III}^2}{2{\rm G}}$$
(3-12)

onde, $E' = \frac{E}{(1-\nu^2)}$ em deformação plana, E' = E em tensão plana, e $G = \frac{E}{2(1+\nu)}$, sendo E o módulo de elasticidade e ν o coeficiente de Poisson. Quando a carga induz K_I, K_{II} e K_{III} na peça, pode-se somar as respectivas taxas de alívio \mathcal{G}_I , \mathcal{G}_{II} e \mathcal{G}_{III} para obter a taxa total de alívio, já que \mathcal{G} é uma grandeza escalar:

$$\mathcal{G}_{\text{total}} = \frac{K_{\text{I}}^2}{E'} + \frac{K_{\text{II}}^2}{E'} + \frac{K_{\text{III}}^2}{2G}$$
(3-13)

Desta forma, as análises da propagação de trincas por meio do balanço da energia envolvida, quantificada pela taxa de alívio de energia (\mathcal{G}), e por meio do campo de tensões em torno da ponta da trinca, descrito pelo fator de intensidade de tensões (K) geram resultados equivalentes.

Como as trincas preferem crescer no modo I, este é o mais importante na prática da engenharia estrutural. Em materiais muito frágeis, o fraturamento (propagação instável de trinca) ocorre quando a taxa de alívio de energia potencial \mathcal{G}_{I} atingir um valor crítico $\mathcal{G}_{IC}=\mathcal{T}$ e, portanto, a trinca permanece estável enquanto $\mathcal{G}_{I} < \mathcal{G}_{IC}$. Desta forma, \mathcal{G}_{IC} é uma propriedade do material que quantifica a resistência à propagação da trinca, i.e., a tenacidade do material em condições elásticas. De forma análoga, K_{IC} também é uma propriedade mecânica do material. Tanto \mathcal{G}_{IC} quanto K_{IC} independem da forma da carga e da geometria da peça e da trinca.

3.5 Integral J

Conforme já mencionado anteriormente, a MFLE é limitada a situações onde a plastificação é restrita, pequena comparada com as dimensões da peça e da trinca. Em problemas de estruturas tenazes, o tamanho da zona plástica em torno da ponta da trinca é grande, o que invalida o uso do fator de intensidade de tensões para descrever o campo de tensões. Desta forma, torna-se necessária a aplicação de critérios da MFEP, como a abertura da ponta da trinca δ e a integral J.

A integral J foi inicialmente introduzida por Rice [15], que considerou as deformações plásticas e a hipótese de material não linear elástico (Fig 3.6). Ele propôs uma integral de linha anti-horário, independente do caminho de integração, denominada de J, em torno da ponta de uma trinca (Fig 3.7). Como a integral J independe do caminho, pode-se escolher um percurso elástico evitando as regiões com deformações plásticas para tornar o seu cálculo mais conveniente. A integral J é definida por:

$$\mathbf{J} = \oint_{s} \left(\mathbf{U} \, \mathrm{dy} - \mathbf{T}_{i} \frac{\delta \mathbf{u}_{i}}{\delta \mathbf{x}} \, \mathrm{ds} \right) \tag{3-14}$$

onde, **s** é o caminho de integração fechado, $U = \int (\sigma_x d\epsilon_x + \sigma_y d\epsilon_y + \tau_{xy} d\gamma_{xy})$ a densidade de energia de deformação armazenada em qualquer ponto de **s**, $\mathbf{T}_i = \sigma_{ij} \mathbf{n}_j = (\sigma_{\alpha}, \tau_{\alpha})$ o vetor de tração cujas componentes são as tensões normal e cisalhante no trecho infinitesimal **ds**, cuja normal unitária é \mathbf{n}_j , e \mathbf{u}_i o vetor de deslocamentos do **ds**.

Figura 3.6: Diagrama $\sigma \varepsilon$ de comportamentos não linear elástico e elastoplástico durante a descarga

Para o caso de material linear elástico, a integral J é igual à taxa de alívio de energia de Griffith $\boldsymbol{\mathcal{G}}$, portanto pode ser relacionada com o fator de intensidade de tensões K_I pela Eq 3-12.

Hutchinson [16] e Rice and Rosengren [17] mostraram que os campos de tensões e deformações na ponta da trinca em um material não linear elástico podem ser caracterizados pela integral J, estes são conhecidos como campos de HRR. Além disso, a integral J pode ser útil tanto como um parâmetro de energia (J= \mathcal{G} no caso linear elástico), quanto como um parâmetro de intensidade de tensões. Assim, o campo de HRR de tensões e deformações elastoplásticas em torno da ponta da trinca é escrito como:

Figura 3.7: Linha anti-horário ${\bf s}$ em volta da ponta de uma trinca

onde, σ_0 é em geral a tensão de escoamento, I_n é uma constante de integração dependente do expoente de encruamento n = 1/h, $r \in \theta$ as coordenadas polares do ponto, e $\tilde{\sigma}_{ij}(n, \theta)$ e $\tilde{\varepsilon}_{ij}(n, \theta)$ funções adimensionais.

4 Propagação de Trincas por Fadiga

A fadiga é um processo de ruptura progressivo de um material submetido a carregamentos que produzem tensões e deformações cíclicas, dando origem a uma trinca de fadiga, que cresce a cada ciclo até atingir um tamanho crítico provocando a fratura final. A vida à fadiga pode ser dividida em dois momentos: a vida de iniciação de trincas e a vida da sua propagação até fratura final de uma estrutura.

Como já foi visto, trincas são defeitos estruturais particularmente danosos por causa do seu alto fator de concentração de tensão K_t . Embora haja uma série de técnicas de IND tradicionais usadas para descobrir trincas em aplicações reais no campo (Leite [1]), ainda existe um limiar de detecção da ordem de **1mm**, abaixo do qual as trincas pequenas podem passar despercebidas nas inspeções (Castro and Meggiolaro [6]). Por esse motivo, um projeto estrutural só é considerado seguro quando for possível garantir que a estrutura resistirá a cargas e sobrecargas de serviço durante o tempo operacional projetado, tolerando todas as possíveis trincas que não teriam sido detectadas na última inspeção. Como as trincas detectáveis pelos métodos IND tradicionais são da ordem de 1mm, é conveniente em projetos considerar que a vida de iniciação inclui a nucleação e a propagação de trincas pequenas, e termina quando estas atinjam um tamanho ordem detectável.

Em projetos para vidas longas à fadiga que visam dimensionar peças estruturais resistentes a um grande número de ciclos sob cargas reais de serviço, são usados métodos de dimensionamento contra a iniciação de trincas por fadiga. Um destes é o método de curva **SN** (ou de Wöhler), desenvolvido por engenheiro alemão August Wöhler (1819-1914) e usado até hoje. Castro and Meggiolaro [6] fizeram uma revisão sobre os conceitos do método e a sua aplicação na prática. Uma outra contribuição importante do Wöhler foi identificar a possível existência de um limite de resistência à fadiga S_L a partir de uma vida longa. Portanto, tensões de amplitudes menores que $\sigma_{\rm a} = \Delta \sigma/2 < S_{\rm L}$ não causam nenhum dano por fadiga nos corpos de prova, que poderiam ter assim vida infinita à fadiga.

Como os mecanismos que atuam na vida de iniciação e na de propagação são distintos, é necessário avaliar os dois regimes por meio de critérios diferentes. Esta seção abordará especificamente uma fase da vida de propagação de trincas.

4.1 Vida da nyan

Vida de propagação de trincas

A propagação das macrotrincas por fadiga em estruturas lineares elásticas é controlada pelas gamas ΔK e máximos K_{max} do fator de intensidade de tensões induzidos pela carga de serviço. A Eq 3-11 pode ser escrita como abaixo para definir a gama de variação do fator de intensidade de tensões:

$$\Delta K_{\rm I} = \Delta \sigma \cdot \sqrt{\pi a} \cdot F(a/w) \tag{4-1}$$

onde, $\Delta \sigma = \sigma_{max} - \sigma_{min}$ é a variação das tensões alternadas.

Paris and Erdogan [18] comprovaram que a taxa de propagação de trincas por fadiga da/dN era controlada pela gama ΔK , apesar desta ser um parâmetro linear elástico. Além disso, mostraram que o cálculo da vida residual de uma peça trincada à fadiga pode ser modelado por integração a partir da curva $da/dN \times \Delta K$ do material, hoje conhecido como a regra de Paris:

$$\frac{\mathrm{da}}{\mathrm{dN}} = \mathbf{A} \cdot \Delta \mathbf{K}^{\mathrm{m}} \tag{4-2}$$

onde, **A** e **m** são parâmetros experimentais dependentes do material. Como as trincas preferem se propagar em modo I, em que não dissipam energia por atrito entre as suas faces, omite-se o índice I nas anotações de ΔK , exceto quando os modos II ou III forem relevantes. Por outro lado, o K_{max} controla os mecanismos de falha estáticos.

Na verdade, a regra do Paris da Eq 4-2 descreve somente a fase intermediária da curva $da/dN \times \Delta K$ (Fig 4.1). Nesta fase II, a derivada da curva $log(da/dN) \times log(\Delta K)$ é aproximadamente constante. Na fase I, pode-se observar que a curva possui derivada decrescente e é limitada por um limiar de propagação ΔK_{th} (Frost [19]), abaixo do qual a força motriz ΔK é pequena demais para uma trinca longa conseguir crescer, logo a taxa de propagação da/dN=0. O índice "th" vem de *threshold*, "limiar" em inglês. Na fase III, a derivada da curva é crescente, e a peça fratura quando o valor máximo do fator de intensidade de tensões atinge a tenacidade do material, ou seja, $K_{max} = K_C$.

Além da regra de Paris, existem diversas outras regras de propagação que consideram o efeito de outros parâmetros importantes para as taxas de propagação, como K_{max} , $R=K_{min}/K_{max}$ (R quantifica o efeito da carga média), ΔK_{th} e K_C , para fazer melhores previsões da vida residual de estruturas trincadas. Castro and Meggiolaro [6] fizeram um breve resumo de várias regras da/dN× ΔK , incluindo as fenomenológicas tradicionais, mais versáteis e semiempíricas. Todas as três fases merecem estudos específicos, mas o presente trabalho foca nos fenômenos que acontecem na fase I.

Figura 4.1: Forma sigmoidal da curva da/ $dN \times \Delta K$ típica em escala log-log

4.2 Limiar de propagação

A ideia do limiar de propagação de trincas longas ΔK_{th} foi proposta por Frost [19] ao descobrir que havia um valor crítico da gama ΔK abaixo do qual as trincas existentes eram não propagantes. ΔK_{th} é uma propriedade que depende de material e da razão de carregamentos R. Normalmente o valor do $\Delta K_{th}(R)$ diminui à medida que R cresce, ou seja, $\Delta K_{th}(R > 0) \leq \Delta K_0 \leq$ $\Delta K_{th}(R < 0)$, onde $\Delta K_0 = \Delta K_{th}(R = 0)$. Isso é justificado pelo fato de que as cargas médias σ_m trativas tendem a separar as faces da trinca, favorecendo o seu crescimento, enquanto as σ_m compressivas fecham as faces da trinca, retardando o crescimento. Além do efeito da carga média quantificada por R, o ΔK_{th} também pode ser influenciado por outros fatores como a microestrutura da peça e o meio ambiente de serviço.

4.3 Efeito do K_t em fadiga

Como visto anteriormente, o efeito do fator de concentração de tensão K_t de entalhe pode ser grande, e está sempre presente em torno da raiz do entalhe, podendo gerar o escoamento localizado nesta região. Como isso raramente causa falhas relevantes, os entalhes em geral não são críticos no dimensionamento estático de peças dúcteis. Por outro lado, o efeito do K_t é relevante em fadiga, pois as trincas em geral nascem a partir de pontos críticos como entalhes devido às gamas de tensões locais $\Delta \sigma$. Isso significa que o limite de resistência à fadiga é severamente reduzido quando há um entalhe na peça.

O efeito real do entalhe na vida à fadiga de uma peça é quantificado pelo fator de concentração de tensão à fadiga, K_f , dado pela razão entre os limites

de fadiga S_L e $S_{L_{ent}}$, medidos em testes de curva **SN** para CPs padrão (polidos e isentos de entalhes) e CPs entalhados, respectivamente:

$$K_{f} = \frac{S_{L}}{S_{L_{ent}}}$$
(4-3)

Em geral, $K_f \leq K_t$ e a razão K_f/K_t decresce à medida que K_t cresce. Por isso, um entalhe muito afiado tem menos influência na resistência à fadiga do que o esperado devido ao seu K_t muito alto. Isso é importante na prática, pois se não fosse assim, qualquer arranhão ou fissura (com K_t altíssimo) causaria a falha da peça por fadiga.

Pode-se estimar o valor de K_f a partir de um fator de sensibilidade ao entalhe q, onde $0 \le q \le 1$:

$$K_{\rm f} = 1 + q \cdot (K_{\rm t} - 1) \tag{4-4}$$

Quando um entalhe não afeta o limite de fadiga contra a iniciação de trincas da peça, ou seja, a sensibilidade ao entalhe q=0, tem-se que $K_f = 1$. Por outro lado, quando um entalhe tem o seu efeito concentrador de tensões teórico totalmente exercido no limite de fadiga da peça, tem-se que q=1 e, portanto, $K_f = K_t$. A sensibilidade ao entalhe q depende da severidade e tipo geométrico do entalhe, do tamanho do CP e do tipo de carregamento (Dieter and Bacon [11]).

Peterson [7] sugeriu estimar a sensibilidade ao entalhe por:

$$q = \left(1 + \frac{\alpha}{\rho}\right)^{-1} \tag{4-5}$$

onde, α é uma constante dependente do material, e pode ser ajustada experimentalmente. Em casos de entalhes muito alongados, será mostrado adiante que a sensibilidade ao entalhe deve ser obtida considerando o comportamento das trincas curtas que nascem nesses entalhes. Desta forma, é necessário recorrer a outros métodos para obter a estimativa de K_f em peças com entalhes afiados.

4.4 Modelagem das trincas curtas

As trincas não longas podem ser de comprimento comparável ao tamanho do grão **gr** (microestruturalmente curtas), à escala da plasticidade local **zp** do entalhe crítico ou da ponta da trinca, ou fisicamente curto sendo indetectável pelos métodos IND tradicionais (Suresh and Ritchie [20]). As duas primeiras não podem ser modeladas pelo uso de ΔK , um parâmetro elástico e isotrópico, por isso não são o foco de estudo aqui. Desta forma, esta subseção discutirá sobre o comportamento das trincas curtas, em particular daquelas que nascem a partir de entalhes.

Muitas peças gastam grande parte da sua vida à fadiga propagando trincas curtas. Estas nascem sob uma gama de tensões finita $\Delta \sigma > 2S_L$, possuem um tamanho a $\rightarrow 0$, e podem se propagar mesmo sob a gama $\Delta K_I(a) \rightarrow 0$, obtida pela Eq 4-1, sem atingir o limiar de propagação de trincas longas ΔK_{th} , ou seja, as trincas curtas podem crescer sob $\Delta K_I < \Delta K_{th}$.

El Haddad et al. [21] trataram essa aparente incoerência somando ao tamanho físico da trinca **a** um tamanho característico das trincas curtas, \mathbf{a}_0 . Com isso definiram a gama ΔK_I do modelo El Haddad-Topper-Smith (ETS) como abaixo:

$$\Delta K_{I} = \Delta \sigma \sqrt{\pi(a + a_{0})}, \text{ onde } a_{0} = \frac{1}{\pi} \left(\frac{\Delta K_{0}}{\Delta S_{0}}\right)^{2}$$
(4-6)

onde, $\Delta K_0 = \Delta K_{th}(R=0)$, $\Delta S_0 = 2S_L(R=0)$, e $a_0 = a_{(R=0)}$ são, respectivamente, o limiar de propagação de trincas longas, o limite de fadiga contra a iniciação de trincas e o comprimento característico das trincas curtas do material, sob cargas pulsantes (R=0). A expressão do a_0 da Eq 4-6 pode ser escrita isolandose o limiar de propagação $\Delta K_0 = \Delta S_0 \sqrt{\pi a_0}$, mostrando que as trincas curtas (a \rightarrow 0) não propagam se $\Delta \sigma < \Delta S_0$, pois $\Delta \sigma \sqrt{\pi a_0} = \Delta K_I < \Delta K_0 = \Delta S_0 \sqrt{\pi a_0}$.

Como o fator de intensidade de tensões é em geral acompanhado de uma função de geometria F(a/w) como mostrado na Eq 3-11, Yu et al. [22] incluíram os efeitos da geometria para generalizar a Eq 4-6:

$$\Delta K_{I} = \Delta \sigma \sqrt{\pi(a + a_{0})} \cdot F(a/w), \text{ onde } a_{0} = \frac{1}{\pi} \left[\frac{\Delta K_{0}}{F(a/w) \cdot \Delta S_{0}} \right]^{2}$$
(4-7)

Geralmente as trincas nascem em entalhes, logo deve-se considerar como a força motriz a gama da tensão $\Delta \sigma$ na raiz do entalhe, em vez da nominal $\Delta \sigma_n$ em geral usada nas expressões de K_I. Miranda et al. [4] propôs que F(a/w) pode ser dividido como:

$$F(a/w) = \eta \cdot f(a/w) \cdot K_{gr}(a/w)$$
(4-8)

onde, $\eta = 1,1215$ é um fator de superfície livre; f(a/w) quantifica o efeito das condições de carregamento e da geometria da trinca e da peça, sendo f(a/w→0)=1 para uma peça isenta de trincas longas; e K_{gr}(a/w) é um fator do gradiente de tensões induzido por um entalhe, concentrador de tensões. O efeito quantificado por K_{gr}(a/w) será discutido mais adiante. A Fig 4.2 ilustra que: η é constante; K_{gr}(a/w) começa com um valor alto e decresce à medida que a ponta da trinca se afasta da raiz do entalhe; e f(a/w) se comporta de forma oposta, começando com um valor baixo e crescendo conforme o tamanho da trinca vai aumentando. A partir dessa ideia, pode-se definir o a_0 de uma forma mais clara:

Figura 4.2: Fator de superfície livre $\eta,$ de geometria f(a/w) e do gradiente de tensão $K_{\rm gr}(a/w)$

Observa-se que somente o efeito da superfície livre η aparece na expressão do a_0 , pois para as trincas curtas propagarem é preciso que $f(a/w \rightarrow 0) \cdot K_{gr}(a/w \rightarrow 0) \cdot \Delta \sigma$ tenda à ΔS_0 , como pode ser verificada na Eq 4-9.

Em vez de propor uma ΔK_I modificada, há uma forma operacionalmente mais conveniente de modelar as trincas curtas. Mantendo a equação tradicional da ΔK_I , supõe-se que o limiar de propagação (ainda sob cargas pulsantes, R=0) seja uma função do tamanho de trinca, resultando em (Meggiolaro et al. [23]):

$$\Delta \mathbf{K}_0(\mathbf{a}) = \Delta \mathbf{K}_0 \cdot \left(1 + \frac{\mathbf{a}_0}{\mathbf{a}}\right)^{-1/2} \tag{4-10}$$

onde, lembrando-se que ΔK_0 é o limiar das trincas longas (a $\gg a_0$). Bažant [24] propôs introduzir na Eq 4-10 um parâmetro ajustável γ para um melhor ajuste a dados experimentais:

$$\Delta K_0(a) = \Delta K_0 \cdot \left[1 + \left(\frac{a_0}{a}\right)^{\gamma/2}\right]^{-1/\gamma}$$
(4-11)

As Eqs 4-6 e 4-10 podem ser obtidas a partir da Eq 4-11 quando $\gamma=2$. Grande maioria de dados do limiar de trincas curtas disponíveis na literatura pode ser ajustada por $1.5 < \gamma < 8$ [4, 6]. O limiar de propagação de trincas curtas $\Delta \sigma(a \ll a_0) = \Delta S_0$ e o de trincas longas ΔK_0 são obtidos quando $\gamma \rightarrow \infty$.

A propagação de trincas depende de forças motrizes $\Delta K \in K_{max}$, por isso deve-se generalizar a Eq 4-11 incluindo o efeito do K_{max} no comportamento de trincas curtas, quantificado indiretamente pela razão R (Yu et al. [22]):

$$\Delta K_{th,R}(a) = \Delta K_{th,R} \cdot \left[1 + \left(\frac{a_R}{a}\right)^{\gamma/2} \right]^{-1/\gamma}, \text{ onde } a_R = \frac{1}{\pi} \left(\frac{\Delta K_{th,R}}{\eta \cdot \Delta S_{L,R}} \right)^2 (4-12)$$

4.5 Efeito do escoamento localizado nas trincas curtas

As ideias acerca das trincas curtas discutidas até aqui consideraram campos de tensões na ponta das trincas lineares elásticos, permitindo-se o uso do fator de intensidade de tensões, um conceito da MFLE. Porém, sabe-se que para um entalhe muito afiado, seu K_t elevado pode fazer a tensão local em torno da raiz do entalhe exceder ao limite de escoamento do material, até mesmo sob uma tensão nominal baixa, provocando então o escoamento localizado induzido pelo entalhe. Como as trincas curtas nascidas a partir de entalhes afiados possuem comprimentos $a\rightarrow 0$, suas pontas podem se encontrar dentro da zona plástica em torno dos entalhes. Nestes casos o tamanho da plasticidade é significativo em relação ao comprimento das trincas, logo invalida-se a condição para a aplicação da MFLE e consequentemente do fator de intensidade de tensões. Uma solução elastoplástica precisa ser estudada para tratar o problema de trincas curtas quando não se pode mais negligenciar as deformações inelásticas.

É importante enfatizar que, sendo $K_{\sigma} = \sigma/\sigma_n$ e $K_{\varepsilon} = \varepsilon/\varepsilon_n$ fatores de concentração de tensão e de deformação, respectivamente, o fator teórico $K_t = K_{\sigma} = K_{\varepsilon}$ somente é válido enquanto o campo de tensões na raiz do entalhe permanecer linear elástico. Após o início do escoamento na raiz do entalhe, a razão K_{σ}/K_t decresce, mas por outro lado a razão K_{ε}/K_t pode crescer enquanto a ductilidade do material não se esgotar. Para problemas elastoplásticos, Neuber [25] propôs uma regra definindo a relação entre os fatores K_t , K_{σ} e K_{ε} como:

$$K_t^2 = K_\sigma K_\varepsilon \tag{4-13}$$

Nota-se que o produto $K_{\sigma}K_{\varepsilon}$ é constante para uma dada geometria do entalhe, exatamente porque K_{σ} decresce e K_{ε} cresce à medida que o material escoa. Para aplicar a regra de Neuber em problemas de fadiga, K_{f} deve ser usado no lugar do K_{t} , e K_{σ} e K_{ε} podem ser escritos em termos das gamas de tensões $\Delta \sigma$ e de deformações $\Delta \varepsilon$ (Topper et al. [26]):

$$K_{f}^{2} = \frac{\Delta\sigma}{\Delta\sigma_{n}} \frac{\Delta\varepsilon}{\Delta\varepsilon_{n}}$$
(4-14)

4.6 Comportamento elastoplástico cíclico

Além da curva SN, um outro método de dimensionamento à fadiga bastante usado é o de εN . Este método reconhece o escoamento localizado no ponto crítico da peça, correlacionando as gamas $\Delta \varepsilon$ das deformações elastoplásticas macroscópicas cíclicas com o número de ciclos N necessários para iniciar ali uma trinca por fadiga. De fato, para quantificar o dano plástico, a deformação é um parâmetro bem mais adequado do que a tensão.

Na grande maioria dos materiais estruturais, após o escoamento ocorre o processo de encruamento, que é o aumento paulatino de resistência por deformação plástica. Para quantificar o encruamento, Ramberg-Osgood supôs que qualquer deformação pode ser dividida em 2 partes: uma elástica $\varepsilon_{\rm el}$ e a outra plástica $\varepsilon_{\rm pl}$, vide Fig 4.3. A parte elástica é suposta linear e $\sigma=E\varepsilon_{\rm el}$, onde E é o módulo de Young. O encruamento da parte plástica é modelado como parabólico, mostrado como abaixo:

$$\varepsilon = \varepsilon_{\rm el} + \varepsilon_{\rm pl} = \frac{\sigma}{\rm E} + \left(\frac{\sigma}{\rm H}\right)^{1/{\rm h}}$$
 (4-15)

onde, H e h são coeficiente e expoente de encruamento de material.

Figura 4.3: Parcelas elástica e plástica da deformação total

Para medir o comportamento elastoplástico cíclico se fazem testes à fadiga controlados pela gama de deformação $\Delta \varepsilon$, com tensão e deformação médias zero. Quando submetidos a cargas cíclicas, os materiais passam por um regime transiente em que podem ficar estáveis, amolecer ou endurecer, mas depois de poucos ciclos o comportamento se estabilizad. As curvas $\Delta\sigma\Delta\varepsilon$ estabilizadas são chamadas de laços de histerese estabilizados e podem ser descritas pela regra de Ramberg-Osgood como abaixo. A Fig 4.4 ilustra uma curva $\Delta\sigma\Delta\varepsilon$ do laço de histerese de um aço 1020.

$$\Delta \varepsilon = \Delta \varepsilon_{\rm el} + \Delta \varepsilon_{\rm pl} = \frac{\Delta \sigma}{\rm E} + 2 \cdot \left(\frac{\Delta \sigma}{2 \rm H_c}\right)^{1/\rm h_c}$$
(4-16)

onde, H_c e h_c são coeficiente e expoente de encruamento cíclico.

No dimensionamento contra a iniciação de trinca por fadiga pelo método εN , a vida N pode ser correlacionada com a correspondente gama das deformações $\Delta \varepsilon$ dos testes. Uma correlação comprovada por inúmeros testes de muitos materiais estruturais é a chamada regra de Coffin-Manson, definida por:

Figura 4.4: Curva $\Delta \sigma \Delta \varepsilon$ do laço de um aço 1020

$$\frac{\Delta \varepsilon}{2} = \frac{\Delta \varepsilon_{\rm el}}{2} + \frac{\Delta \varepsilon_{\rm pl}}{2} = \left(\frac{\sigma_{\rm c}}{\rm E}\right) \cdot (2\rm N)^{\rm b} + \varepsilon_{\rm c} \cdot (2\rm N)^{\rm c}$$
(4-17)

onde, o coeficiente σ_c e o expoente **b** da parte elástica, e o coeficiente ε_c e o expoente **c** da parte plástica da curva de Coffin-Manson são propriedades do material, a serem medidos experimentalmente.

Os parâmetros de Coffin-Manson e de Ramberg-Osgood podem ser correlacionados, a partir das Eqs 4-16 e 4-17:

$$\frac{\Delta\sigma}{2} = \frac{\Delta\varepsilon_{\rm el} \cdot E}{2} = \sigma_{\rm c} \cdot (2N)^{\rm b} \qquad e \qquad \left(\frac{\Delta\sigma}{2H_{\rm c}}\right)^{1/h_{\rm c}} = \frac{\Delta\varepsilon_{\rm pl}}{2} = \varepsilon_{\rm c} \cdot (2N)^{\rm c} \quad (4-18)$$

Logo,

$$\left(\frac{\sigma_{\rm c}}{2{\rm H}_{\rm c}}\right)^{1/{\rm h}_{\rm c}} \cdot (2{\rm N})^{{\rm b}/{\rm h}_{\rm c}} = \epsilon_{\rm c} \cdot (2{\rm N})^{\rm c} \qquad \Rightarrow \qquad \begin{cases} {\rm H}_{\rm c} = \sigma_{\rm c}/\epsilon_{\rm c}^{{\rm h}_{\rm c}} \\ {\rm h}_{\rm c} = {\rm b}/{\rm c} \end{cases}$$
(4-19)

5 Metodologia

Nesta seção será abordado o modelo matemático do Método do Gradiente de Tensões (SGM [4]) e as devidas alterações para considerar os efeitos da plasticidade localizada na raiz do entalhe. Além disso, será mostrada a metodologia da solução de problemas, incluindo a explicação de ferramentas computacionais usadas na obtenção de resultados.

5.1 Modelo matemático do SGM

5.1.1 Casos lineares elásticos

A partir da formulação tradicional da gama ΔK_I (Eq 4-1) e da ideia do gradiente de tensões induzido pelos entalhes (Eq 4-8), pode-se definir o fator do gradiente de tensões $K_{gr}(a/w)$ de casos elásticos como abaixo (Miranda et al. [4]). Nota-se que $\Delta K_{I,ref}$ é de um CP padrão sem entalhe.

$$\Delta K_{I} = \underbrace{\Delta \sigma \sqrt{\pi a} \cdot \eta \cdot f(a/w)}_{\Delta K_{I,ref}} \cdot K_{gr}(a/w) \implies K_{gr}(a/w) = \frac{\Delta K_{I}}{\Delta K_{I,ref}}$$
(5-1)

Com isso, a propagação de qualquer trinca pode ser modelada a partir de uma relação entre ΔK_{I} e o limiar de propagação $\Delta K_{th,R}(a)$ definido pela Eq 4-12, dada por:

$$\Delta K_{I} = \Delta \sigma \sqrt{\pi a} \cdot \eta \cdot f(a/w) \cdot K_{gr}(a/w) > \Delta K_{th,R}(a) = \Delta K_{th,R} \cdot \left[1 + \left(\frac{a_{R}}{a}\right)^{\gamma/2}\right]^{-1/\gamma}$$
(5-2)

Para trincas curtas $f(a/w \rightarrow 0)=1$, e considerando-se que $\Delta K_{th,R} = \Delta S_{L,R} \cdot \sqrt{\pi a_R} \cdot \eta$ para uma trinca que nasceu a partir de superfície livre, pode-se reescrever o critério de propagação como abaixo (Miranda et al. [4]):

$$K_{gr}(a/w) > \underbrace{\frac{\Delta S_{L,R}}{\Delta \sigma}}_{K_{f}} \sqrt{\frac{a_{R}}{a}} \left[1 + \left(\frac{a_{R}}{a}\right)^{\gamma/2} \right]^{-1/\gamma}$$

$$\equiv g\left(\frac{\Delta S_{L,R}}{\Delta \sigma}, \frac{a_{R}}{a}, \gamma\right)$$
(5-3)

onde, $\Delta \sigma = \Delta S_{L_{ent},R}$ é a gama do limite de resistência à fadiga da peça entalhada, logo $\Delta S_{L,R}/\Delta \sigma = K_f$. Além disso, Castro et al. [27] propuseram que existe um tamanho máximo \mathbf{a}_{max} que uma trinca curta pode atingir e então

se tornar não propagante. Por isso, K_f e a_{max} estão associados à transição entre os regimes propagante e não propagante das trincas curtas sob um dado carregamento e material. Desta forma, K_f e a_{max} podem ser obtidos resolvendose o sistema de equações:

$$\begin{cases} \frac{K_{gr}}{\mathbf{g}} = 1\\ \frac{\partial}{\partial a} \left(\frac{K_{gr}}{\mathbf{g}}\right) = 0 \end{cases} \Rightarrow \begin{cases} K_{gr} \left(\frac{a_{max}}{w}\right) = \mathbf{g} \left(K_{f}, \frac{a_{R}}{a_{max}}, \gamma\right)\\ \frac{\partial}{\partial a} K_{gr} \left(\frac{a_{max}}{w}\right) = \frac{\partial}{\partial a} \mathbf{g} \left(K_{f}, \frac{a_{R}}{a_{max}}, \gamma\right) \end{cases}$$
(5-4)

Para obter a_{max} e K_f , primeiramente deriva-se a função $\mathbf{g}(K_f, a_R/a_{max}, \gamma)$ da Eq 5-3:

$$\frac{\partial K_{gr}(a_{max}/w)}{\partial a} = \frac{\partial g}{\partial a} = -K_{f} \cdot \frac{a_{R}}{2a_{max}^{2}\eta \sqrt{a_{R}/a_{max}}} \left[1 + \left(\frac{a_{R}}{a_{max}}\right)^{\gamma/2}\right]^{-\left(\frac{1+\gamma}{\gamma}\right)}$$
(5-5)

Isolando o termo de K_f a partir da Eq 5-5, obtém-se:

$$K_{f} = -\frac{\partial K_{gr}(a_{max}/w)}{\partial a} \cdot \frac{2a_{max}^{2}\eta\sqrt{a_{R}/a_{max}}}{a_{R}} \left[1 + \left(\frac{a_{R}}{a_{max}}\right)^{\gamma/2}\right]^{\left(\frac{1+\gamma}{\gamma}\right)}$$
(5-6)

Substituindo a expressão acima na Eq 5-3, obtém-se uma equação não linear, a partir da qual pode-se calcular o a_{max} :

$$K_{gr}(a_{max}/w) + 2a_{max} \left[1 + \left(\frac{a_R}{a_{max}}\right)^{\gamma/2} \right] \frac{\partial K_{gr}(a_{max}/w)}{\partial a} = 0 \qquad (5-7)$$

Na seguida, pode-se usar o a_{max} obtido para calcular o K_f pela Eq 5-3:

$$K_{f} = K_{gr}(a_{max}/w) \sqrt{\frac{a_{max}}{a_{R}}} \left[1 + \left(\frac{a_{R}}{a_{max}}\right)^{\gamma/2} \right]^{1/\gamma}$$
(5-8)

Assim, a_{max} e K_f podem ser computados a partir das Eqs 5-7 e 5-8. A Eq 5-7 pode ser solucionada por meio de qualquer programa de cálculo numérico.

5.1.2 Casos elastoplásticos

Em casos quando se consideram deformações plásticas em torno da raiz do entalhe, a solução elastoplástica usada é similar à apresentada acima para casos elásticos, mas existem algumas modificações necessárias. O escoamento localizado na raiz do entalhe não afeta uma trinca longa, cuja ponta se encontra longe da raiz do entalhe, mais precisamente fora da zona plástica do entalhe, como mostrado na Fig 5.1(b); por outro lado, o seu efeito numa trinca curta, cujas ponta e sua zona plástica se encontram dentro da zona da plasticidade do entalhe, como mostrado na Fig 5.1(a), é significativo e invalida o fator de

intensidade de tensões da MFLE na modelagem da trinca.

Figura 5.1: Zona plástica em torno da raiz do entalhe

El Haddad et al. [28] sugeriram usar um fator de intensidade baseado em deformações (*Strain-based intensity factor*), definido como abaixo para uma placa de Griffith:

$$\Delta K_{\rm I} = E \Delta e \sqrt{\pi a} \tag{5-9}$$

onde, Δe é a gama de deformação nominal e E o módulo de elasticidade. A Eq 5-9 também pode ser aplicada para peças com entalhes levando em consideração as deformações plásticas localizadas, e substituindo Δe pela gama de deformação local na ponta da trinca $\Delta \varepsilon = K_{\varepsilon} \Delta e$. Com isso também se definiu, de forma implícita, o conceito do fator do gradiente de tensões plástico, $K_{gr\varepsilon}$ ([28]), que deve ser usado em substituição ao K_{gr} na modelagem baseada em deformações.

A ideia do fator de intensidade baseado em deformações reconhece plasticidade por se basear em deformação em vez de tensão, e permite modelar a propagação de trincas curtas por fadiga, independentemente de o campo de deformações ser elástico ou inelástico, por:

$$\Delta K_{I} = \underbrace{E\Delta \varepsilon_{n} \sqrt{\pi a} \cdot \eta \cdot f(a/w)}_{\Delta K_{Lref}} \cdot K_{gr\epsilon}(a/w)$$
(5-10)

As tensões e deformações elastoplásticas locais, $\Delta \sigma \in \Delta \varepsilon$, podem ser obtidas a partir da relação cíclica de Ramberg-Osgood (Eq 4-16) e da regra de Neuber à fadiga (Eq 4-14). Entretanto, é necessário substituir o K_f da Eq 4-14 pelo fator do gradiente de tensões K_{gr}(a/w) para estimar as gamas de tensões locais $\Delta \sigma(a/w)$, induzidas pela nominal $\Delta \sigma_n$, a partir da solução da equação não linear para cargas cíclicas definida por (Rêgo et al. [29]):

$$\left[\mathrm{K}_{\mathrm{gr}}(\mathrm{a/w})\right]^{2} \Delta \sigma_{\mathrm{n}} \Delta \varepsilon_{\mathrm{n}} = \Delta \sigma \Delta \varepsilon \tag{5-11}$$

$$\left[K_{gr}(a/w)\right]^{2} \left[\Delta \sigma_{n}^{2} + \frac{2E\Delta \sigma_{n}^{(h_{c}+1)/h_{c}}}{(2H_{c})^{1/h_{c}}}\right] = \left[\Delta \sigma(a/w)\right]^{2} + \frac{2E\left[\Delta \sigma(a/w)\right]^{(h_{c}+1)/h_{c}}}{(2H_{c})^{1/h_{c}}}$$
(5-12)

Logo, as gamas de deformações locais $\Delta \varepsilon(a/w)$ podem ser calculadas pela relação cíclica de Ramberg-Osgood (Eq 4-16) a partir das $\Delta \sigma(a/w)$, e ΔK_I baseado em deformações pode ser computada usando $K_{gr\epsilon}(a/w)$. Por fim, a previsão do K_f e a_{max} em problemas elastoplásticos pode ser obtida pelas Eqs 5-7 e 5-8, simplesmente substituindo o uso do $K_{gr}(a/w)$ elástico pelo $K_{gr\epsilon}(a/w)$ plástico. Ressalta-se que $K_{gr\epsilon}(a/w)$ é um parâmetro plástico, obtido a partir da solução elastoplástica reconhecendo os efeitos da plasticidade localizada e do encruamento cíclico do material na raiz do entalhe. Por isso, mesmo nos casos elastoplásticos, é válido obter o K_f por meio das Eqs 5-7 e 5-8.

5.2 Programa genSIF.exe

As Eqs 5-7 e 5-8 para estimar o K_f envolvem o $K_{gr}(a/w)$ e sua derivada $\partial K_{gr}/\partial a$ em casos elásticos, ou $K_{gr\epsilon}(a/w)$ e $\partial K_{gr\epsilon}/\partial a$ em casos elastoplásticos. Logo, o primeiro passo é gerar a distribuição $K_{gr}(a/w)$ ou $K_{gr\epsilon}(a/w)$, e para isso, é usado um programa chamado **genSIF.exe**, que será apresentado nesta subseção.

Desenvolvido por Prof. Antônio Carlos de Oliveira Miranda, **genSIF.exe** é um programa que calcula fator de intensidade de tensões a partir do método de elementos finitos e de funções de peso. A análise por elementos finitos é processada pelo **CalculiX** [30], um programa grátis para esta finalidade. O fator de intensidade de tensões pode ser calculado simplesmente integrando uma função de peso m(x,a) e a distribuição de tensões $\sigma(x)$ nas faces da trinca.

5.2.1 Execução do genSIF.exe

O genSIF.exe não possui uma interface gráfica e pode ser executado diretamente na linha de comando do computador (Fig 5.2).

Figura 5.2: Programa genSIF.exe iniciado na linha de comando

Precisa-se fornecer como entrada um arquivo de texto com extensão ".txt", em que são informados o tipo de geometria de peça entalhada ou furada, as dimensões características da peça e do entalhe, a tensão nominal, algumas propriedades do material e se o estado é de σ -plano ou ε -plano, como mostra a Fig 5.3(a). O programa é capaz de tratar diversos tipos de geometrias, incluindo peças com furo circular, elíptico ou U; com entalhe único ou duplo de formato semicircular, semi-elíptico, U ou V; e alguns tipos de cordão de solda. A Fig 5.3(b) exemplifica o desenho esquemático de uma placa com duplo entalhe semicircular.

5.3(a): Exemplo de arquivo de entrada em casos LE

5.3(b): Exemplo de geometria e dimensões características

Figura 5.3: Exemplos de entrada e de geometria do genSIF.exe

O genSIF.exe calcula por funções de peso as gamas $\Delta K_{I,ref}$ para CPs padrões e as ΔK_I para peças com concentradores de tensões, e gera como resultado a distribuição de fator do gradiente de tensões $K_{gr}(a/w)$, como mostra a Fig 5.4.

1	# a/w	Stress	Kgr
2	0.000129326	11.0906	11.0926
3	0.00013104	11.0867	11.0901
4	0.000132785	11.0827	11.0875
5	0.000134563	11.0786	11.0849
6	0.000136374	11.0744	11.0823
7	0.000138219	11.0701	11.0796
8	0.000140098	11.0658	11.0768
9	0.000142012	11.0614	11.074
10	0.000143962	11.0569	11.0711
11	0.000145948	11.0523	11.0682
12	0.00014797	11.0476	11.0652
13	0.000150031	11.0428	11.0622
14	0.000152129	11.038	11.0592
15	0.000154267	11.0331	11.056

Figura 5.4: Distribuição de $K_{gr}(a/w)$ gerada na saída em casos LE

Para uma análise elastoplástica, considerando o escoamento localizado na raiz do entalhe, basta acrescentar no arquivo de entrada o coeficiente H_c e o expoente h_c de encruamento cíclico e os níveis plásticos de carregamento, como mostra a Fig 5.5. Nota-se que os níveis de tensão definidos na entrada são amplitudes de tensões alternadas $\sigma = \Delta \sigma/2$. Fazendo isso, o programa também gera as distribuições de $K_{gr\epsilon}(a/w)$ para os níveis plásticos de tensão definidos na entrada, como mostra a Fig 5.6. A Fig 5.7 exemplifica o comportamento de $K_{gr}(a/w)$ e $K_{gr\epsilon}(a/w)$ em diversos níveis de tensão nominal. Observa-se que o fator do gradiente de tensões decresce à medida que a ponta da trinca se afasta da raiz dos entalhes em direção ao centro da peça.

22	Begin = KgrDistribution
23	
24	file_model = teste_Kgr.q2d
25	file_out = teste_Kgr.out
26	file_fit_equation = teste_Kgr.eqt
27	
28	## Ramberg-Osgood properties
29	## e = S/E + (S/Hc) ^(1/hc), e = deformation and S = stress
30	hc = 0.21
31	Hc = 1258
32	
33	## stress level to compute plastic Kgr
34	S = {100, 150, 200, 250, 300}
35	
36	End

Figura 5.5: Dados de entrada adicionais em casos EP

				Kgr,ε Monotônica				Kgr,ε Cíclica					
1	# a/w	Stress	Kgr	100(Mon)	150(Mon)	200(Mon)	250(Mon)	300(Mon)	100(Cyl)	150(Cyl)	200(Cyl)	250(Cyl)	300(Cyl)
2	0.0001429	3.05762	3.05766	3.65685	4.47662	5.58998	7.2245	9.71288	3.13771	3.34339	3.65685	4.03783	4.47662
3	0.0001446	3.05752	3.0576	3.65675	4.47648	5.5898	7.22426	9.71256	3.13764	3.3433	3.65675	4.03771	4.47648
4	0.0001463	3.05742	3.05754	3.65665	4.47634	5.58962	7.22402	9.71223	3.13757	3.34322	3.65665	4.03759	4.47634
5	0.0001481	3.05731	3.05747	3.65654	4.4762	5.58943	7.22377	9.7119	3.13749	3.34313	3.65654	4.03747	4.4762
6	0.0001499	3.05721	3.05741	3.65643	4.47605	5.58924	7.22352	9.71155	3.13742	3.34304	3.65643	4.03734	4.47605
7	0.0001518	3.0571	3.05734	3.65632	4.47591	5.58905	7.22327	9.7112	3.13734	3.34294	3.65632	4.03721	4.47591
8	0.0001536	3.05699	3.05727	3.65621	4.47575	5.58885	7.22301	9.71085	3.13726	3.34285	3.65621	4.03708	4.47575
9	0.0001556	3.05688	3.0572	3.65609	4.4756	5.58865	7.22274	9.71048	3.13718	3.34276	3.65609	4.03694	4.4756
10	0.0001575	3.05677	3.05712	3.65598	4.47544	5.58844	7.22247	9.71011	3.1371	3.34266	3.65598	4.03681	4.47544
11	0.0001595	3.05665	3.05705	3.65586	4.47528	5.58824	7.22219	9.70974	3.13702	3.34256	3.65586	4.03667	4.47528
12	0.0001615	3.05654	3.05697	3.65573	4.47512	5.58802	7.22191	9.70935	3.13694	3.34246	3.65573	4.03652	4.47512
13	0.0001636	3.05642	3.0569	3.65561	4.47495	5.5878	7.22162	9.70896	3.13685	3.34235	3.65561	4.03638	4.47495
14	0.0001657	3.0563	3.05682	3.65548	4.47478	5.58758	7.22133	9.70856	3.13677	3.34225	3.65548	4.03623	4.47478
15	0.0001678	3.05617	3.05674	3.65535	4.47461	5.58736	7.22103	9.70815	3.13668	3.34214	3.65535	4.03608	4.47461

Figura 5.6: Distribuição de $K_{gre}(a/w)$ geradas na saída em casos EP

Uma das outras saídas geradas pelo **genSIF.exe** é um arquivo de extensão ".frd", o qual pode ser aberto na interface gráfica do **CalculiX** para visualizar os resultados, como por exemplo as tensões e as deformações na peça (Fig 5.8). Observa-se que a simulação por elementos finitos realizada no **CalculiX** não envolve trincas. A distribuição de tensões $\sigma(x)$ gerada é usada pelo **genSIF.exe** no cálculo do fator de intensidade de tensões a partir de funções de peso.

Figura 5.7: Distribuição de $K_{\rm gr}(a/w)$ e $K_{\rm gr\epsilon}(a/w)$

Figura 5.8: Exemplos da visualização da distribuição de tensões Mises no ${\bf CalculiX}~{\bf GraphiX}$

5.2.2 Funções de peso no cálculo de K₁

As funções de peso são específicas para cada tipo de geometria e trinca ([31, 32]). Por exemplo, uma aproximação analítica para a função de peso de uma placa infinita de largura w com uma trinca lateral sob um par de forças normais P (modo I) (Fig 5.9) foi proposta por Kaya and Erdogan [33]:

$$m(d, a) = \frac{2}{\sqrt{\pi a}} \frac{G\left(\frac{d}{a}, \frac{a}{w}\right)}{\left(1 - \frac{a}{w}\right)^{1,5} \sqrt{1 - \left(\frac{d}{a}\right)^2}}$$
(5-13)

onde,

$$G\left(\frac{d}{a}, \frac{a}{w}\right) = g_{1}\left(\frac{a}{w}\right) + g_{2}\left(\frac{a}{w}\right) \cdot \left(\frac{d}{a}\right) + g_{3}\left(\frac{a}{w}\right) \cdot \left(\frac{d}{a}\right)^{2} + g_{4}\left(\frac{a}{w}\right) \cdot \left(\frac{d}{a}\right)^{3}$$

$$g_{1}\left(\frac{a}{w}\right) = 0,46 + 3,06\left(\frac{a}{w}\right) + 0,84\left(1 - \frac{a}{w}\right)^{5} + 0,66\left(\frac{a}{w}\right)^{2}\left(1 - \frac{a}{w}\right)^{2};$$

$$g_{2}\left(\frac{a}{w}\right) = -3,52\left(\frac{a}{w}\right)^{2};$$

$$g_{3}\left(\frac{a}{w}\right) = 6,17 - 28,22\left(\frac{a}{w}\right) + 34,54\left(\frac{a}{w}\right)^{2} - 14,39\left(\frac{a}{w}\right)^{3} - \left(1 - \frac{a}{w}\right)^{1,5}$$

$$-5,88\left(1 - \frac{a}{w}\right)^{5} - 2,64\left(\frac{a}{w}\right)^{2}\left(1 - \frac{a}{w}\right)^{2};$$

$$g_{4}\left(\frac{a}{w}\right) = -6,63 + 25,16\left(\frac{a}{w}\right) - 31,04\left(\frac{a}{w}\right)^{2} + 14,41\left(\frac{a}{w}\right)^{3} + 2\left(1 - \frac{a}{w}\right)^{1,5}$$

$$+ 5,04\left(1 - \frac{a}{w}\right)^{5} + 1,98\left(\frac{a}{w}\right)^{2}\left(1 - \frac{a}{w}\right)^{2}.$$
(5-14)

Desta forma, o fator de intensidade de tensões é calculado por (Tada et al. [31]): Κ

$$\mathbf{f}_{\mathrm{I}} = \frac{\mathbf{P}}{\mathrm{t}} \cdot \mathrm{m}(\mathrm{d}, \mathrm{a}) \tag{5-15}$$

onde, t é a espessura da placa.

De uma forma mais genérica, considera-se uma peça entalhada submetida a uma força axial F e um momento M, como mostra a Fig 5.10(a). A distribuição de tensão precisa ser discretizada em trechos infinitesimais atuados nas faces da trinca. Consideram-se os correspondentes comprimentos de trinca a_i, forças P_i e distâncias entre forças e superfície livre d_i como:

$$\begin{split} a_{i} &= x_{i+1} - x_{0} \\ P_{i} &= \frac{(\sigma_{i+1} + \sigma_{i})}{2} (x_{i+1} - x_{i}) \\ d_{i} &= \frac{(x_{i+1} + x_{i})}{2} - x_{0} \end{split}$$
 $i = 0 \dots n - 1$ (5-16)

Figura 5.9: Placa infinita com uma trinca lateral sob um par de forças normais concentradas P [4]

Figura 5.10: Distribuição de tensão em placas finitas submetidas a força axial F e momento M $\left[4\right]$

Para cada comprimento de trinca a_i , o fator $K_{I,i}$ é calculado somando-se as contribuições das forças P_i atuantes nas suas faces conforme a Eq 5-15:

$$K_{I,i} = \sum_{j=0}^{j=i} K_I(P_j, t, w, d_j, a_i) \qquad \forall i = 0 \dots n - 1 \qquad (5-17)$$

Desta forma, obtém-se a distribuição de K_I ao longo de toda a trinca. O mesmo procedimento é feito para a geometria de referência da Fig 5.10(b) de modo a gerar a distribuição de $K_{I,ref}$, e por fim a do fator K_{gr} pela Eq 5-1.

5.3 Cálculo numérico do K_f

A partir das distribuições de $K_{gr}(a/w)$ e $K_{gr\epsilon}(a/w)$ geradas, podem-se calcular K_f e a_{max} conforme as Eqs 5-7 e 5-8. Embora a Eq 5-7 seja não linear, é simples resolvê-la e também a Eq 5-8 com o auxílio de qualquer programa computacional de cálculo numérico, como por exemplo o **MATLAB**. Esta subseção consiste em apresentar os principais procedimentos programados num código de **MATLAB** para a obtenção do K_f .

O primeiro passo é fornecer os dados de geometria do CP e suas propriedades. Os resultados de $K_{gr}(a/w)$ e $K_{gr\epsilon}(a/w)$ gerados pelo **genSIF.exe** (Fig 5.6) também precisam ser importados para o **MATLAB**. Como estes foram obtidos por elementos finitos, é necessário fazer o ajuste de curva para os dados por uma ferramenta de ajuste do **MATLAB**, definindo que a curva ajustada seja da seguinte forma polinomial:

$$K_{gr}(a/w) = A_2 + (A_1 - A_2) \cdot \left[1 + \exp\left(\frac{\log(a/w) - x_0}{d}\right)\right]^{-1}$$
(5-18)

onde, A_2 , A_1 , x_0 e d são coeficientes de ajuste, e lembra-se que w é uma dimensão característica referente à largura (ou à sua metade) do CP.

Obtida a curva de $K_{gr}(a/w)$, ela é derivada $\partial K_{gr}/\partial a$ para formular a Eq 5-7 (analogamente para $K_{gr\epsilon}(a/w)$), onde o comprimento característico de trincas curtas a_R é calculada pela Eq 4-12 usando as propriedades do material. A equação não linear é solucionada computando o a_{max} , que é usada na Eq 5-8 para finalmente computar o K_f . O código programado para realizar os procedimentos descritos encontra-se na Apêndice A. O fluxograma da Fig 5.11 ilustra todo o processo computacional necessário para a obtenção do K_f .

Figura 5.11: Fluxograma da obtenção do K_f

5.4 Dados experimentais para validação da modelagem

Com o objetivo de validar a modelagem proposta, será realizada uma comparação entre valores de K_f experimentais e numéricos. Os resultados experimentais foram reportados por Atzori et al. [34], que usaram CPs de três tipos de geometria: placa com furo interno (CNPT), barra cilíndrica com duplo entalhe V de ângulo de 60° (CNBT), e placa com duplo entalhe U (DNPT). A Fig 5.12 mostra as geometrias e a definição das dimensões características dos CPs, observa-se que serão analisados somente os casos de carregamento axial. A Tab 5.1 lista os materiais dos CPs e suas propriedades de fadiga.

Figura 5.12: Geometrias dos CPs analisados [4]

Material	${{\bf S_R}\atop{({\bf MPa})}}$	$\begin{array}{c} \mathbf{S_E} \\ (\mathbf{MPa}) \end{array}$	$\begin{array}{c} \Delta \mathbf{S_L} \\ (\mathbf{MPa}) \end{array}$	$\begin{array}{c} \Delta K_{th} \\ (MPa\sqrt{m}) \end{array}$	R
SAE 1045 Steel	720	466	448	6.9	0
	720	466	606	9	-1
2024-T351 Al Alloy	466	360	172	4	0
v	466	360	248	4.4	-1
G40.11 Steel	_	376	540	11.5	-1
SM41B Steel	423	194	326	12.36	-1
	423	194	274	8.36	0
Mild Steel 0.15%C	440	340	420	12.8	-1
NiCr Steel	957	845	1000	12.8	-1
2.25 Cr-1Mo Steel	530	380	440	12	-1
304 Stainless Steel	_	222	720	12	-1

Tabela 5.1: Propriedades dos CPs analisados [34, 35]

5.5 Estimativa das constantes de encruamento

Como mencionado anteriormente, as constantes de encruamento cíclico precisam ser incluídas no arquivo de entrada do **genSIF.exe** para computar $K_{gr\epsilon}(a/w)$. Elas são propriedades de material e devem ser medidas em experimentos adequados. Porém, na ausência de valores medidos experimentalmente, é inevitável estimá-los tendo-se de assumir os riscos e incertezas associadas. Este é o caso das constantes H_c e h_c dos materiais dos CPs analisados por Atzori et al. [34]. Logo, é necessário estimar tais propriedades para aplicá-las na solução numérica. Embora haja diversas estimativas das propriedades ϵN , todas apresentam dispersões elevadas (Meggiolaro and Castro [36]). Ainda assim, sendo inevitável estimar, a única opção é procurar por estimativas menos ruins.

5.5.1 Similitude

Uma forma de estimar H_c e h_c é por meio da similitude, i.e., para um material utilizado nos CPs analisados, supor que suas constantes de encruamento cíclico sejam iguais a H_c e h_c medidas para uma peça que tenha uma mesma composição química e propriedades (por ex: resistência contra escoamento) similares às respectivas listadas na Tab 5.1 para o material. Por similitude, as propriedades $h_c \in H_c$ do aço 2.25Cr-1Mo (S_R=530MPa, S_E =380MPa) são estimadas como iguais às de um aço 2.25Cr-1Mo com $S_R=498MPa \in S_E=388MPa$, medidas a 500°C (Furuya et al. [37]); analogamente para o aço inox 304 ($S_E=222MPa$), a partir das $h_c \in H_c$ de um aço inox 304 com $S_E = 242 MPa$ (Furuya et al. [38]). Além disso, o mesmo método pode ser aplicado para o aço SAE 1045 ($S_R=720MPa$, $S_E=466MPa$) a partir de um aço SAE 1045 com S_R =621MPa, S_E =382MPa; Liga de alumínio 2024-T351 (S_R =466MPa, S_E =360MPa) a partir de uma liga de Al 2024-T351 $com S_R = 479 MPa, S_E = 379 MPa;$ Aço de baixo carbono (0.15%C) (S_R = 440 MPa, $S_E=340MPa$) a partir de um aço 0.15%C com $S_R=414MPa$, $S_E=228MPa$ (Castro and Meggiolaro [6]).

5.5.2 Método das medianas

Entre muitas estimativas de propriedades εN , Meggiolaro and Castro [36] sugeriram que o método das medianas, baseado na análise de dados de 845 ligas, é o menos ruim de todas. A Tab 5.2 mostra as medianas das propriedades de Coffin-Manson (b, c, $\sigma_c \in \varepsilon_c$) para ligas de aço, de alumínio e de titânio. A

partir dessas medianas, pode-se estimar H_c e h_c usando as correlações da Eq 4-19. É necessário enfatizar que apesar de o método das medianas ser o menos ruim, ainda não é possível negligenciar as incertezas e dispersões associadas às estatísticas, que são significativas.

Estimativas	σ_{c}	ϵ_{c}	b	С
Medianas (Aços)	$1,5 \cdot S_R$	$0,\!45$	-0,09	-0,59
Medianas (Al e Ti)	$1,9 \cdot S_R$	$0,\!28$	-0,11	-0,66

Tabela 5.2: Medianas das propriedades de Coffin-Manson [36]

Por meio dos dois métodos acima, estimam-se as constantes de encruamento cíclico para CPs testados, os valores são listados na Tab 5.3.

Material	H_c [MPa]	$\mathbf{h_c}$	Estimativa	Ref.
SAE 1045 Steel	1258	0.21	Similitude	[6]
2024-T351 Al Alloy	655	0.07	Similitude	[6]
G40.11 Steel	990	0.15	Medianas	[36]
SM41B Steel	715	0.15	Medianas	[36]
Mild Steel 0.15% C	945	0.22	Similitude	[6]
NiCr Steel	1564	0.15	Medianas	[36]
2.25 Cr-1Mo Steel	652	0.105	Similitude	[39]
304 Stainless Steel	1227	0.171	Similitude	[39]

Tabela 5.3: Propriedades de curvas cíclicas

6 Resultados e Discussões

6.1 Testes preliminares

Inicialmente, os testes reportados por Atzori et al. [34] e analisados previamente por Miranda et al. [4] com uma solução elástica foram simulados numericamente no **genSIF.exe** sob os níveis de tensão com amplitudes de $\sigma = \{100, 150, 200, 250, 300\}$ MPa, considerando as propriedades de fadiga listadas nas Tabs 5.1 e 5.3. Foram 48 testes no total, para cada qual calcularamse os K_f do caso elástico e dos elastoplásticos cíclicos, a partir de K_{gr}(a/w) e K_{grε}(a/w), respectivamente. Os resultados podem ser comparados na Tab 6.1, em que também constam os dados de geometria dos CPs.

	Dimensões (mm)			$\mathbf{K}_{\mathbf{f}}$							
Material		r	W		SGM						
	d			Exp.	Elást.	Plást. cíclico: σ (MPa)					
					Liasti	100	150	200	250	300	
				CNPT ($\mathbf{R} = 0$						
1045 Steel	0.120	0.120	44.450	1.379	1.913	1.920	1.944	1.998	2.088	2.214	
	0.250	0.250	44.450	1.455	2.359	2.378	2.439	2.554	2.721	2.936	
	0.500	0.500	44.450	1.659	2.710	2.751	2.868	3.068	3.332	3.653	
	1.500	1.500	44.450	2.113	2.963	3.030	3.209	3.491	3.841	4.249	
	2.500	2.500	44.450	2.144	3.024	3.100	3.295	3.597	3.967	4.395	
2024 - T351	0.120	0.120	44.450	1.000	1.534	1.534	1.534	1.534	1.535	1.535	
	0.250	0.250	44.450	1.522	1.883	1.883	1.883	1.883	1.881	1.876	
	0.500	0.500	44.450	1.608	2.302	2.302	2.302	2.301	2.298	2.307	
	1.500	1.500	44.450	2.005	2.824	2.824	2.824	2.826	2.851	2.970	
SM41B Steel	3.000	0.160	45.000	4.329	4.309	4.267	4.588	4.990	5.442	5.990	
				CNPT (I	R = -1)						
1045 Steel	0.120	0.120	44.450	1.698	1.953	1.960	1.986	2.045	2.140	2.273	
	0.250	0.250	44.450	1.980	2.400	2.421	2.486	2.610	2.787	3.013	
	0.500	0.500	44.450	2.220	2.737	2.780	2.902	3.110	3.383	3.713	
	1.500	1.500	44.450	2.623	2.970	3.038	3.219	3.503	3.856	4.266	
	2.500	2.500	44.450	2.612	3.028	3.103	3.300	3.603	3.974	4.403	
2024 - T 351	0.120	0.120	44.450	1.560	1.770	1.770	1.770	1.769	1.768	1.764	
	0.250	0.250	44.450	2.016	2.198	2.198	2.198	2.198	2.194	2.195	
	0.500	0.500	44.450	2.050	2.599	2.599	2.599	2.599	2.605	2.655	
	1.500	1.500	44.450	2.959	2.936	2.936	2.936	2.939	2.985	3.158	
G40.11 Steel	0.200	0.200	70.000	1.607	1.848	1.848	1.849	1.854	1.874	1.914	
	0.480	0.480	70.000	2.259	2.364	2.365	2.372	2.404	2.480	2.599	
	4.800	4.800	70.000	2.634	3.042	3.049	3.106	3.277	3.553	3.886	
SM41B Steel	3.000	0.160	45.000	3.421	3.537	3.461	3.701	4.019	4.381	4.822	
1045 Steel 2024-T351 SM41B Steel 1045 Steel 2024-T351 G40.11 Steel SM41B Steel	3.000	0.390	45.000	3.135	3.551	3.556	3.758	4.070	4.435	4.878	
	3.000	0.830	45.000	3.421	3.428	3.489	3.731	4.075	4.465	4.926	
	3.000	3.000	45.000	2.547	2.789	2.817	2.981	3.302	3.715	4.208	

	Dime	nsões (n	nm)	$\mathbf{K}_{\mathbf{f}}$						
Material					\mathbf{SGM}					
	d	r	W	Exp.	Elást.	Plást.	cíclico:	σ (MPa	a)	
					21000	100	150	200	250	300
			,	CNBT (I	R = -1)					
Mild Steel	5.080	0.050	43.000	6.105	6.427	7.249	8.263	9.491	11.091	13.264
	5.080	0.100	43.000	6.000	6.477	7.210	8.153	9.314	10.841	12.928
	5.080	0.130	43.000	6.204	6.498	7.221	8.148	9.293	10.803	12.871
	5.080	0.250	43.000	6.105	6.413	7.228	8.104	9.198	10.654	12.659
	5.080	0.640	43.000	6.105	5.658	7.254	8.119	9.188	10.608	12.568
	5.080	1.270	43.000	5.455	4.732	5.963	7.250	9.361	11.153	13.545
	5.080	5.080	43.000	3.471	2.981	3.291	3.793	4.444	5.280	6.393
NiCr Steel	0.510	0.130	22.600	4.237	4.063	4.065	4.077	4.130	4.254	4.437
	5.080	0.050	43.000	11.287	14.547	14.376	14.434	14.985	15.635	16.298
	5.080	0.130	31.800	10.352	12.775	16.016	15.896	16.299	16.897	17.540
2.25 Cr-1Mo	0.030	0.030	5.000	1.026	1.160	1.160	1.161	1.163	1.160	1.157
	0.050	0.050	5.000	1.092	1.247	1.247	1.248	1.250	1.245	1.243
	0.070	0.070	5.000	1.371	1.325	1.325	1.327	1.328	1.321	1.323
	0.200	0.200	5.000	1.857	1.731	1.731	1.732	1.730	1.734	1.769
	0.400	0.400	5.000	2.105	2.160	2.160	2.161	2.170	2.220	2.326
	0.760	0.760	5.000	2.839	2.640	2.640	2.650	2.726	2.914	3.182
304 Stainless	5.080	0.050	43.000	9.959	11.669	11.267	11.977	12.771	13.584	14.433
				DNPT (F	R = -1)					
Mild Steel	5.080	0.100	64.000	4.994	6.216	6.794	7.654	8.711	10.106	12.021
	5.080	0.250	64.000	4.621	6.196	6.843	7.648	8.660	10.008	11.868
	5.080	0.500	64.000	4.994	5.786	6.908	7.696	8.694	10.024	11.865
	5.080	1.270	64.000	4.039	4.674	5.846	7.611	8.915	10.629	12.914
	5.080	7.620	64.000	2.692	2.605	2.798	3.157	3.654	4.311	5.197

Tabela 6.1: Variação de K_f plásticos com o nível de tensão

A comparação entre os K_f experimentais e os calculados pelo SGM será discutida mais adiante. Avaliando os K_f sob diferentes níveis plásticos de tensão para cada teste, nota-se que em muitos casos obtiveram-se K_f plásticos distintos entre si e que aumentavam com o nível de carregamento. O comportamento observado é incoerente, sabendo-se que o K_f depende de diversos fatores como, por exemplo, as propriedades do material, a geometria e as dimensões do entalhe, o modo de carregamento, entre outros. Entretanto, estes fatores foram mantidos idênticos nas simulações elastoplásticas para cada teste, em que a única variante era o nível de tensão cuja amplitude variou entre $\sigma = \{100, 150, 200, 250, 300\}$ MPa, logo teoricamente as simulações deveriam resultar em um único K_f plástico para cada teste. Diante da incoerência encontrada nos testes preliminares, percebe-se que é necessário sofisticar o procedimento adotado visando a uma metodologia que preveja um único valor de K_f plástico, independentemente do nível de carregamento que causa deformações plásticas em torno da raiz do entalhe.

6.2 Cálculo iterativo de K_f

Nesta subseção propõe-se um método iterativo que calcula o valor de K_f plástico a partir de $K_{gr\epsilon}(a/w)$, como mostrado na Fig 6.1. O procedimento, descrito a seguir, tem como objetivo computar um único valor de K_f plástico para cada teste.

- i=1: Inicialmente executa-se o teste sob uma tensão nominal de σ_1 =1MPa no **genSIF.exe** para gerar a distribuição de K_{gr}(a/w), a partir da qual se calcula o valor de K_{f,el} no **MATLAB**, este é o K_f da solução elástica. Logo, obtém-se que a resistência à fadiga da peça entalhada é de $\Delta S_{L,ent} = \Delta S_L/K_{f,el}$, cuja amplitude é usada como a tensão plástica na entrada da segunda iteração (i=2), ou seja, $\sigma_2 = \Delta S_L/2K_{f,el}$.
- i=2: Executa-se novamente o teste para o nível de tensão σ₂, e a partir da distribuição de K_{grε,1}(a/w) gerada pelo programa calcula-se o valor de K_{f,pl,1} no MATLAB. Este é o primeiro K_f da solução elastoplástica e é usado para definir o nível de tensão σ₃ na entrada da terceira iteração (i=3), de forma análoga a anteriormente, ou seja, σ₃ = ΔS_L/2K_{f,pl,1}.
- i=3: Mais uma vez executa-se o teste no **genSIF.exe**, agora para o nível de tensão σ_3 , e a partir da $K_{gr\epsilon,2}(a/w)$ calcula-se o novo K_f da solução elastoplástica, $K_{f,pl,2}$. Logo, $\sigma_4 = \Delta S_L/2K_{f,pl,2}$.
- i=n+1: Dessa forma, o procedimento iterativo é repetido até o $K_{f,pl}$ convergir para um valor final, o qual é então considerado como o verdadeiro fator de concentração de tensão à fadiga plástico.

Figura 6.1: Cálculo iterativo de K_f plástico

A Tab 6.2 mostra os K_f obtidos pelo processo iterativo descrito acima. Observa-se que em todos os testes o valor de K_f plástico convergiu rápido, atingindo uma precisão de 4 casas decimais em até 6 iterações. Também foi calculada a diferença relativa entre os K_f elástico e plástico em cada teste, por $(K_{f,plast}-K_{f,elast})/K_{f,elast} \cdot 100\%$.

Dimensões (mm)			nm)	$\mathbf{K_{f}}$							
Material					\mathbf{SGM}						
	d	r	W	Exp.	Elást.	Plást.	cíclico:	iteraçõe	s		Dif.
					Liasti	1	2	3	4	5	%
				CNI	PT (R =	= 0)					
1045 84.1	0 1 9 0	0 1 9 0	44.450	1.970	1 0190	1 0059	1.0050	1 0051			0.0
1045 Steel	0.120	0.120	44.450	1.379	1.9132	1.9255	1.9250	1.9251			0.0
	0.250	0.250	44.450	1.455	2.5594	2.3730	2.3747	2.3747			0.0
	1 500	1 500	44.450	1.009	2.7105	2.7311	2.7303	2.7505			0.7
	1.500	1.500	44.450	2.113	2.9629	2.9878	2.9871	2.9871			0.8
0004 0051	2.500	2.500	44.450	2.144	3.0244	3.0503	3.0496	3.0496			0.8
2024-1351	0.120	0.120	44.450	1.000	1.5342	1.5342					0.0
	0.250	0.250	44.450	1.522	1.8827	1.8827					0.0
	0.500	0.500	44.450	1.608	2.3019	2.3019					0.0
	1.500	1.500	44.450	2.005	2.8237	2.8237					0.0
SM41B Steel	3.000	0.160	45.000	4.329	4.3094	4.3103	4.3103				0.0
				CNF	PT (R =	-1)					
1045 Steel	0.120	0.120	44.450	1.698	1.9528	1.9908	1.9882	1.9884	1.9884		1.8
	0.250	0.250	44.450	1.98	2.4003	2.4482	2.4450	2.4452	2.4452		1.9
	0.500	0.500	44.450	2.22	2.7368	2.7982	2.7937	2.7940	2.7940		2.1
	1.500	1.500	44,450	2.623	2.9698	3.0429	3.0370	3.0375	3.0374		2.3
	2.500	2.500	44.450	2.612	3.0277	3.1035	3.0973	3.0978	3.0977		2.3
2024-T351	0.120	0.120	44.450	1.56	1.7695	1.7695	0.001.0	0.0010	0.0011		0.0
	0.250	0.250	44 450	2.016	2 1984	2 1984					0.0
	0.500	0.500	44 450	2.05	2 5991	2 5991					0.0
	1 500	1 500	44 450	2.959	2.9358	2 9358					0.0
C40.11 Steel	0.200	0.200	70.000	1.607	1.8478	1 8/8/	1 8/8/				0.0
040.11 Steel	0.200	0.200	70.000	2 250	2 3637	2 3655	2 3655				0.0
	4 800	4 800	70.000	2.203	2.0007	2.0000	2.0050				0.1
SM41D Stool	2.000	4.000	45.000	2.004	2 5270	2 5974	2 5 2 70	2 5270			0.1
SM41D Steel	2.000	0.100	45.000	0.421 2.125	0.0070 9.5511	2 5407	2.5407	3.3270			-0.5
	2.000	0.390	45.000	0.100 9.401	2 4280	3.3491 2.4904	2.0497				0.0
	3.000	3.000	45.000 45.000	2.547	2.7892	2.7906	2.7906				0.0
				CNE	BT (R =	-1)					
Mild Steel	5.080	0.050	43.000	6.105	6.4268	6.2231	6.2250	6.2249			-3.1
	5.080	0.100	43.000	6.000	6.4768	6.3643	6.3632	6.3632			-1.8
	5.080	0.130	43.000	6.204	6.4978	6.4244	6.4238	6.4238			-1.1
	5.080	0.250	43.000	6.105	6.4131	6.4863	6.4840	6.4841			1.1
	5.080	0.640	43.000	6.105	5.6583	5.8235	5.8093	5.8105	5.8104		2.7
	5.080	1.270	43.000	5.455	4.7319	4.8892	4.8739	4.8753	4.8752	4.8752	3.0
	5.080	5.080	43.000	3.471	2.9812	3.0933	3.0810	3.0822	3.0821	3.0821	3.4
NiCr Steel	0.510	0.130	22.600	4.237	4.0633	4.0675	4.0675				0.1
	5.080	0.050	43.000	11.287	14.5471	14.5450	14.5450				0.0
	5.080	0.130	31.800	10.352	12.7746	12.7952	12.7950	12.7950			0.2

	Dime	Dimensões (mm)			K _f								
Material					\mathbf{SGM}	SGM							
	\mathbf{d}	r	W	Exp.	Elást.	Plást. cíclico: iterações							
					Liasti	1	2	3	4	5	%		
2.25 Cr-1Mo	0.030	0.030	5.000	1.026	1.1599	1.1629	1.1629				0.3		
	0.050	0.050	5.000	1.092	1.2467	1.2498	1.2498				0.3		
	0.070	0.070	5.000	1.371	1.3251	1.3277	1.3277				0.2		
	0.200	0.200	5.000	1.857	1.7310	1.7313	1.7313				0.0		
	0.400	0.400	5.000	2.105	2.1601	2.1601					0.0		
	0.760	0.760	5.000	2.839	2.6399	2.6400					0.0		
304 Stainless	5.080	0.050	43.000	9.959	11.6690	11.6327	11.6325	11.6325			-0.3		
				DN	PT (R =	: -1)							
Mild Steel	5.080	0.100	64.000	4.994	6.2164	6.0849	6.0827	6.0827			-2.2		
	5.080	0.250	64.000	4.621	6.1956	6.2426	6.2418	6.2419			0.7		
	5.080	0.500	64.000	4.994	5.7864	5.9351	5.9237	5.9245	5.9244		2.4		
	5.080	1.270	64.000	4.039	4.6738	4.8271	4.8124	4.8137	4.8136	4.8136	3.0		
	5.080	7.620	64.000	2.692	2.6051	2.7058	2.6944	2.6956	2.6955	2.6955	3.5		

Tabela 6.2: K_f calculados pelo processo iterativo até a convergência

Observa-se que o valor absoluto da maior diferença relativa foi de 3,5%, ou seja, em todos os testes analisados os valores de K_f elástico e plástico deram bem próximos. Isso significa que, segundo a análise do SGM, o escoamento localizado na raiz do entalhe não exerce efeito significativo sobre o fator de concentração de tensão à fadiga K_f, sendo K_f = $\Delta S_L / \Delta S_{L_{ent}}$ o parâmetro que avalia o efeito do entalhe na redução da resistência à fadiga de um componente.

6.3 Comparação dos resultados K_f

Os dados experimentais dos testes reportados por Atzori et al. [34] e analisados pelo SGM também foram usados por Liu and Mahadevan [40] para validar sua modelagem de previsão de K_f. A Tab 6.3 compara os resultados de K_f obtidos por experimentos [34], por Liu and Mahadevan [40] e pelo SGM para ambos os casos elástico e plástico. As diferenças relativas entre os K_f numéricos e os experimentais também foram calculadas, por (K_{f,num}-K_{f,exp})/K_{f,exp} · 100%. A Tab 6.4 mostra a média e o desvio padrão das diferenças relativas para cada tipo de geometria dos CPs. A Fig 6.2 compara os resultados em forma de gráficos.

	Dime	nsões (n	nm)	K _f				Dif. para Exp. (%)		
Material	d	r	W	Exp.	L&M	\mathbf{SGM}		L&M	\mathbf{SGM}	
	u	•	••	шкр.	Lain	Elást.	Plást.	Lain	Elást.	Plást.
				CNP	T (R =	0)				
1045 Steel	0.120	0.120	44.450	1.379	1.630	1.913	1.925	18.20	38.74	39.60
	0.250	0.250	44.450	1.455	2.022	2.359	2.375	38.97	62.16	63.21
	0.500	0.500	44.450	1.659	2.322	2.710	2.731	39.96	63.38	64.59
	1.500	1.500	44.450	2.113	2.637	2.963	2.987	24.80	40.22	41.37
	2.500	2.500	44.450	2.144	2.746	3.024	3.050	28.08	41.07	42.24
2024 - T351	0.120	0.120	44.450	1.000	1.196	1.534	1.534	19.60	53.42	53.42
	0.250	0.250	44.450	1.522	1.579	1.883	1.883	3.75	23.70	23.70
	0.500	0.500	44.450	1.608	1.960	2.302	2.302	21.89	43.15	43.15
	1.500	1.500	44.450	2.005	2.424	2.824	2.824	20.90	40.83	40.83
SM41B Steel	3.000	0.160	45.000	4.329	4.503	4.309	4.310	4.02	-0.45	-0.43
				CNP	Γ ($\mathbf{R} = -$	-1)				
1045 Steel	0.120	0.120	44.450	1.698	1.670	1.953	1.988	-1.65	15.00	17.10
	0.250	0.250	44.450	1.980	2.057	2.400	2.445	3.89	21.23	23.50
	0.500	0.500	44.450	2.220	2.348	2.737	2.794	5.77	23.28	25.85
	1.500	1.500	44.450	2.623	2.651	2.970	3.037	1.07	13.22	15.80
	2.500	2.500	44.450	2.612	2.757	3.028	3.098	5.55	15.91	18.60
2024-T351	0.120	0.120	44.450	1.560	1.472	1.770	1.770	-5.64	13.43	13.43
	0.250	0.250	44.450	2.016	1.878	2.198	2.198	-6.85	9.05	9.05
	0.500	0.500	44.450	2.050	2.207	2.599	2.599	7.66	26.79	26.79
	1.500	1.500	44.450	2.959	2.559	2.936	2.936	-13.52	-0.78	-0.78
G40.11 Steel	0.200	0.200	70.000	1.607	1.552	1.848	1.848	-3.42	14.99	15.02
	0.480	0.480	70.000	2.259	2.024	2.364	2.365	-10.40	4.64	4.71
	4.800	4.800	70.000	2.634	2.713	3.041	3.045	3.00	15.47	15.61
SM41B Steel	3.000	0.160	45.000	3.421	3.615	3.537	3.527	5.67	3.39	3.10
	3.000	0.390	45.000	3.135	3.479	3.551	3.550	10.97	13.27	13.23
	3.000	0.830	45.000	3.421	3.144	3.428	3.428	-8.10	0.21	0.22
	3.000	3.000	45.000	2.547	2.320	2.789	2.791	-8.91	9.51	9.56
				CNB	Γ (R = -	-1)				
Mild Steel	5.080	0.050	43.000	6.105	5.437	6.427	6.225	-10.94	5.27	1.96
	5.080	0.100	43.000	6.000	5.437	6.477	6.363	-9.38	7.95	6.05
	5.080	0.130	43.000	6.204	5.436	6.498	6.424	-12.38	4.74	3.54
	5.080	0.250	43.000	6.105	5.407	6.413	6.484	-11.43	5.05	6.21
	5.080	0.640	43.000	6.105	5.060	5.658	5.810	-17.12	-7.32	-4.83
	5.080	1.270	43.000	5.455	4.476	4.732	4.875	-17.95	-13.26	-10.63
	5.080	5.080	43.000	3.471	3.041	2.981	3.082	-12.39	-14.11	-11.20
NiCr Steel	0.510	0.130	22.600	4.237	3.444	4.063	4.068	-18.72	-4.10	-4.00
	5.080	0.050	43.000	11.287	12.435	14.547	14.545	10.17	28.88	28.87
	5.080	0.130	31.800	10.352	12.319	12.775	12.795	19.00	23.40	23.60
2.25 Cr-1Mo	0.030	0.030	5.000	1.026	1.106	1.160	1.163	7.80	13.05	13.34
	0.050	0.050	5.000	1.092	1.159	1.247	1.250	6.14	14.16	14.45
	0.070	0.070	5.000	1.371	1.211	1.325	1.328	-11.67	-3.35	-3.16
	0.200	0.200	5.000	1.857	1.526	1.731	1.731	-17.82	-6.79	-6.77
	0.400	0.400	5.000	2.105	1.979	2.160	2.160	-5.99	2.62	2.62
	0.760	0.760	5.000	2.839	2.817	2.640	2.640	-0.77	-7.01	-7.01
304 Stainless	5.080	0.050	43.000	9.959	9.705	11.669	11.633	-2.55	17.17	16.80

	Dimensões (mm)			$\mathbf{K}_{\mathbf{f}}$	$\mathbf{K}_{\mathbf{f}}$				Dif. para Exp. (%)		
Material	d	r	w	Exp.	L&M	\mathbf{SGM}	\mathbf{SGM}		\mathbf{SGM}		
		-		F :	2011	Elást.	Plást.		Elást.	Plást.	
DNPT ($R = -1$)											
Mild Steel	5.080	0.100	64.000	4.994	4.787	6.216	6.083	-4.14	24.48	21.80	
	5.080	0.250	64.000	4.621	4.756	6.196	6.242	2.92	34.08	35.08	
	5.080	0.500	64.000	4.994	4.564	5.786	5.924	-8.61	15.87	18.63	
	5.080	1.270	64.000	4.039	3.838	4.674	4.814	-4.98	15.72	19.18	
	5.080	7.620	64.000	2.692	2.381	2.605	2.696	-11.55	-3.23	0.13	

Tabela 6.3: Comparação entre resultados experimentais, de L&M e de SGM elástico e plástico

		Dif. para	Dif. para Exp. (%)			
			\mathbf{SGM}			
Geometria	Estatística	L&M	Elást.	Plást.		
$\overline{\text{CNPT} (\mathbf{R}=0)}$	Média	22.02	40.62	41.17		
	Desvio padrão	12.17	18.65	18.94		
CNPT $(R = -1)$	Média	-0.93	12.41	13.17		
	Desvio padrão	7.37	7.85	8.48		
CNBT $(R = -1)$	Média	-6.24	3.90	4.11		
	Desvio padrão	11.21	12.47	11.87		
DNPT $(R = -1)$	Média	-5.27	17.38	18.96		
	Desvio padrão	5.46	13.77	12.47		

Tabela 6.4: Resumo das comparações dos K_f

Pode-se verificar na Tab 6.3 e na Fig 6.2 que a diferença entre as previsões elásticas e plásticas do SGM é muito pequena. As piores previsões ocorreram para testes sob R=0, em que ambos os métodos L&M e SGM resultaram em diferenças relativas consideráveis, e com dispersões maiores do que em testes sob R=-1. Para CPs de CNPT sob R=-1, as estimativas de L&M ficaram mais próximas dos dados experimentais, mas suas dispersões foram similares às do SGM. Em CNBT sob R=-1, o SGM fez previsões melhores e mais conservadoras do que L&M. O método de L&M também foi mais preciso e exato do que o SGM em testes de DNPT sob R=-1. De modo geral, as estimativas do SGM foram mais conservadoras, especialmente em testes de CNPT sob R=0.

Figura 6.2: Comparação entre K_f experimentais e obtidos por (a) Liu and Mahadevan [40], (b)SGM Elástico e (c)SGM Plástico

6.4 Resultados de a_{max}

A Tab 6.5 mostra os resultados de comprimento máximo de trincas curtas não propagantes, a_{max} , obtidos a partir da Eq 5-7. As diferenças relativas foram calculadas por $(a_{max,plast}-a_{max,elast})/a_{max,elast} \cdot 100\%$. Assim como a diferença entre os K_f elástico e plástico estimados pelo SGM foi pequena em geral, a diferença entre os a_{max} associados também foi pequena, exceto que em alguns testes de aço de baixo carbono (0,15%C) os a_{max} aumentaram um pouco. Notase que os comprimentos máximos de trincas curtas não propagantes estimados pelo SGM são pequenos no geral, na faixa de $30\sim1000\mu$ m. As trincas curtas de fadiga menores que a_{max} são defeitos toleráveis em componentes mecânicos, pois elas podem parar de crescer por fadiga e assim se tornando inofensivas.

	Dimensõ	es (mm)		$a_{max}[mm]$	ı]	
Material	d	r	W	Eq 5-7		Dif.
	u	-		Elást.	Plást.	- %
		CNPT	$(\mathbf{R}=0)$			
1045 Steel	0.120	0.120	44.450	0.080	0.081	1.22
	0.250	0.250	44.450	0.074	0.075	1.43
	0.500	0.500	44.450	0.059	0.060	1.20
	1.500	1.500	44.450	0.039	0.040	1.11
	2.500	2.500	44.450	0.032	0.032	1.17
2024-T351	0.120	0.120	44.450	0.171	0.171	0.00
	0.250	0.250	44.450	0.187	0.187	0.00
	0.500	0.500	44.450	0.176	0.176	0.00
	1.500	1.500	44.450	0.121	0.121	0.00
SM41B Steel	3.000	0.160	45.000	0.550	0.541	-1.70
		CNPT	(R = -1)			
1045 Steel	0.120	0.120	44.450	0.075	0.077	3.40
	0.250	0.250	44.450	0.068	0.070	3.71
	0.500	0.500	44.450	0.054	0.055	3.08
	1.500	1.500	44.450	0.035	0.036	2.87
	2.500	2.500	44.450	0.029	0.030	3.01
2024-T351	0.120	0.120	44.450	0.106	0.106	0.00
	0.250	0.250	44.450	0.105	0.105	0.00
	0.500	0.500	44.450	0.087	0.087	0.00
	1.500	1.500	44.450	0.058	0.058	0.00
G40.11 Steel	0.200	0.200	70.000	0.154	0.154	0.15
	0.480	0.480	70.000	0.142	0.142	0.32
	4.800	4.800	70.000	0.060	0.060	0.27
SM41B Steel	3.000	0.160	45.000	0.775	0.756	-2.36
	3.000	0.390	45.000	0.688	0.685	-0.46
	3.000	0.830	45.000	0.543	0.544	0.19
	3.000	3.000	45.000	0.346	0.347	0.13

	Dimensõ	ies (mm)	Dimensões (mm)				
Material	d	r	W	Eq 5-7		Dif.	
	u	-		Elást.	Plást.	- %	
		CNBT	(R = -1)				
Mild Steel	5.080	0.050	43.000	0.740	0.859	16.08	
	5.080	0.100	43.000	0.773	0.949	22.70	
	5.080	0.130	43.000	0.710	0.942	32.56	
	5.080	0.250	43.000	0.461	0.621	34.68	
	5.080	0.640	43.000	0.297	0.314	6.00	
	5.080	1.270	43.000	0.233	0.243	4.12	
	5.080	5.080	43.000	0.146	0.151	3.69	
NiCr Steel	0.510	0.130	22.600	0.054	0.055	0.63	
	5.080	0.050	43.000	0.068	0.069	1.29	
	5.080	0.130	31.800	0.046	0.047	0.46	
2.25 Cr-1Mo	0.030	0.030	5.000	0.173	0.173	0.32	
	0.050	0.050	5.000	0.194	0.194	0.07	
	0.070	0.070	5.000	0.208	0.208	-0.07	
	0.200	0.200	5.000	0.251	0.251	-0.09	
	0.400	0.400	5.000	0.250	0.250	0.00	
	0.760	0.760	5.000	0.203	0.203	0.01	
304 Stainless	5.080	0.050	43.000	0.166	0.185	11.18	
		DNPT	(R = -1)				
Mild Steel	5.080	0.100	64.000	0.827	1.013	22.45	
	5.080	0.250	64.000	0.495	0.748	51.09	
	5.080	0.500	64.000	0.340	0.369	8.62	
	5.080	1.270	64.000	0.241	0.252	4.27	
	5.080	7.620	64.000	0.131	0.136	3.78	

Tabela 6.5: Resultados de comprimento máximo de trincas curtas não propagantes a_{\max}

A Fig 6.3 plota a_{max}/a_R , a razão entre o comprimento máximo de trinca curta não propagante e o comprimento característico de trincas curtas, em função do raio do entalhe, r, conforme mostrado na Fig 5.12. Vale lembrar que o comprimento caracterísitico, calculado pela Eq 4-12, é um parâmetro dependente das propriedades do material. Observa-se que a dependência entre a_{max} e o raio do entalhe é evidente, principalmente para os casos de CNPT (R=0/-1) e DNPT (R=-1). Quanto menor for o raio do entalhe, ou seja, quanto mais afiado este é, maior é o comprimento máximo de trinca curta tolerado pelo componente.

Figura 6.3: Comprimento máximo de trinca curta tolerado em função do raio do entalhe

7 Conclusões

O presente estudo apresentou um método para estimar o fator de concentração de tensão à fadiga K_f aplicado para entalhes afiados com escoamento localizado em torno da raiz dos entalhes. Desenvolveu-se o modelo matemático com base na ideia do gradiente de tensões induzido por entalhe, nos conceitos da Mecânica da Fratura para trincas curtas e do fator de intensidade baseado em deformações. Empregou-se o programa computacional **genSIF.exe**, baseado no método dos elementos finitos e funções de peso, para gerar os fatores de gradiente de tensões, os quais foram usados para computar o K_f no **MATLAB**. Por fim, compararam-se os resultados numéricos com dados experimentais.

De modo geral, o método foi capaz de prever satisfatoriamente os K_f para entalhes afiados, exceto sob cargas pulsantes, em que a discrepância e o desvio padrão dos resultados foram maiores. Além disso, o método se mostrou ser conservador na previsão do K_f e, portanto, pode ser aplicado com segurança em projetos à fadiga para componentes mecânicos entalhados.

Ademais, os resultados mostraram que, embora o escoamento localizado na raiz do entalhe elevou os fatores do gradiente de tensões, não teve influência significativa na previsão do K_f . Ou seja, o efeito real de um entalhe na resistência à fadiga do componente independe do campo de tensões e deformações em torno da raiz do entalhe ser elástico ou inelástico.

Referências Bibliográficas

- Paulo Gomes de Paula Leite. Ensaios não destrutivos. ABM: São Paulo, 8, 1977.
- [2] Marco Vinicio Guamán Alarcón, M. Meggiolaro, and J. Castro. Corpos de prova projetados para induzir trincas pequenas não propagantes por fadiga. 67º Congresso da ABM - Internacional / 12º ENEMET - Encontro Nacional de Estudantes de Engenharia Metalúrgica, de Materiais e de Minas, 2012.
- [3] Weixing Yao, Kaiquan Xia, and Yi Gu. On the fatigue notch factor, kf. International Journal of Fatigue, 17(4):245–251, 1995.
- [4] A. Miranda, M. Antunes, Marco Vinicio Guamán Alarcón, M. Meggiolaro, and J. Castro. Use of the stress gradient factor to estimate fatigue stress concentration factors kf. *Engineering Fracture Mechanics*, 206:250–266, 2019.
- [5] Alan Arnold Griffith. The phenomena of rupture and flow in solids. *Philosophi*cal transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221(582-593):163–198, 1921.
- [6] JT Pinho Castro and MA Meggiolaro. Fatigue design technicques under real service loads. 2016.
- [7] R.E. Peterson. Stress Concentration Factors. Wiley, 1974.
- [8] Stephen Timoshenko. Theory of elasticity. McGraw-Hill, New York, 1970.
- [9] Bob McGinty. Fracture mechanics. URL https://www. fracturemechanics.org/. Acesso em: 22 de abr de 2021.
- [10] Charles Edward Inglis. Stresses in a plate due to the presence of cracks and sharp corners. *Trans Inst Naval Archit*, 55:219–241, 1913.
- [11] George Ellwood Dieter and David J Bacon. *Mechanical metallurgy*, volume 3. McGraw-hill New York, 1986.
- [12] George Rankin Irwin. Onset of fast crack propagation in high strength steel and aluminum alloys. Technical report, Naval Research Lab Washington DC, 1956.
- [13] M. L. Williams. On the stress distribution at the base of a stationary crack. volume 24, 1956.

- [14] George R Irwin. Analysis of stresses and strains near the end of a crack transversing a plate. Trans. ASME, Ser. E, J. Appl. Mech., 24:361–364, 1957.
- [15] James R Rice. A path independent integral and the approximate analysis of strain concentration by notches and cracks. *Journal of Applied Mechanics*, 35, 1968.
- [16] JW Hutchinson. Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids, 16(1):13–31, 1968.
- [17] JRa Rice and GI F Rosengren. Plane strain deformation near a crack tip in a power-law hardening material. *Journal of the Mechanics and Physics of Solids*, 16(1):1–12, 1968.
- [18] Paul Paris and Fazil Erdogan. A critical analysis of crack propagation laws. Journal of Basic Engineering, 85:528–534, 1963.
- [19] NE Frost. A relation between the critical alternating propagation stress and crack length for mild steel. Proceedings of the Institution of Mechanical Engineers, 173(1):811–836, 1959.
- [20] So Suresh and RO Ritchie. Propagation of short fatigue cracks. International metals reviews, 29(1):445–475, 1984.
- [21] MH El Haddad, KN Smith, and TH Topper. Fatigue crack propagation of short cracks. 1979.
- [22] M.T. Yu, D.L. DuQuesnay, and T.H. Topper. Notch fatigue behaviour of sae1045 steel. *International Journal of Fatigue*, 10(2):109–116, 1988.
- [23] Marco Antonio Meggiolaro, Antonio Carlos de Oliveira Miranda, and Jaime Tupiassú Pinho de Castro. Short crack threshold estimates to predict notch sensitivity factors in fatigue. *International Journal of Fatigue*, 29(9-11):2022– 2031, 2007.
- [24] ZP Bažant. Scaling of quasibrittle fracture: asymptotic analysis. International Journal of Fracture, 83(1):19–40, 1997.
- [25] Heinz Neuber. Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. *Journal of applied mechanics*, 28, 1961.

- [26] TH Topper, RM Wetzel, and J Morrow. Neuber's rule applied to fatigue of notched specimens. Technical report, Illinois univ at Urbana dept of theoretical and applied mechanics, 1967.
- [27] Jaime Tupiassú Pinho Castro, Marco Antonio Meggiolaro, Antonio Carlos de Oliveira Miranda, Hao Wu, Abdellatif Imad, and Noureddine Benseddiq. Prediction of fatigue crack initiation lives at elongated notch roots using short crack concepts. *International journal of fatigue*, 42:172–182, 2012.
- [28] MH El Haddad, KN Smith, and TH Topper. A strain based intensity factor solution for short fatigue cracks initiating from notches. In *Fracture Mechanics: Proceedings of the Eleventh National Symposium on Fracture Mechanics: Part I.* ASTM International, 1979.
- [29] Eduardo Martins Fontes Rêgo, Marcelo Avelar Antunes, and Antonio Carlos de Oliveira Miranda. A methodology for fretting fatigue life estimation using strain-based fracture mechanics. *Engineering Fracture Mechanics*, 194:24–41, 2018.
- [30] Calculix: A free software three-dimensional structural finite element program. URL http://www.calculix.de/.
- [31] Hiroshi Tada, P Paris, and G Irwin. The analysis of cracks handbook. New York: ASME Press, 2:1, 2000.
- [32] G Glinka and G Shen. Universal features of weight functions for cracks in mode i. *Engineering Fracture Mechanics*, 40(6):1135–1146, 1991.
- [33] AC Kaya and F Erdogan. Stress intensity factors and cod in an orthotropic strip. International Journal of Fracture, 16(2):171–190, 1980.
- [34] B Atzori, P Lazzarin, and G Meneghetti. Fracture mechanics and notch sensitivity. Fatigue & Fracture of Engineering Materials & Structures, 26(3): 257–267, 2003.
- [35] B Atzori, G Meneghetti, and Luca Susmel. Material fatigue properties for assessing mechanical components weakened by notches and defects. *Fatigue & Fracture of Engineering Materials & Structures*, 28(1-2):83–97, 2005.
- [36] MA Meggiolaro and JTP Castro. Statistical evaluation of strain-life fatigue crack initiation predictions. *International Journal of Fatigue*, 26(5):463–476, 2004.

- [37] Yoshiyuki Furuya, Hideaki NISHIKAWA, Hisashi HIRUKAWA, and Nobuo NAGASHIMA. Data sheets on elevated-temperature, time-dependent lowcycle fatigue properties of scmv 4 (2.25 cr-1mo) steel plate for pressure vessels. 1989.
- [38] Yoshiyuki Furuya, Hideaki NISHIKAWA, Hisashi HIRUKAWA, Nobuo NA-GASHIMA, and Etsuo TAKEUCHI. Data sheets on elevated-temperature, time-dependent low-cycle fatigue properties of sus304-hp (18cr-8ni) hot rolled stainless steel plate. 1985.
- [39] National institute for materials science: Fatigue data sheet. URL https: //smds.nims.go.jp/MSDS/en/sheet/Fatigue.html. Acesso em: 05 de maio de 2021.
- [40] Yongming Liu and Sankaran Mahadevan. Fatigue limit prediction of notched components using short crack growth theory and an asymptotic interpolation method. *Engineering Fracture Mechanics*, 76(15):2317–2331, 2009.

A Listagem de Códigos do MATLAB

```
1 %% ------
2 %% Código principal
3
4 % Testes analisados
5 teste_i = 1;
6 teste_f = 48;
7
8 % Importar dados de geometria, material, R, Kf_exp de todos ...
      os testes
  [¬, ¬, v_R, v_Material, v_b, ¬, v_neck_w, v_Kf_exp] = ...
9
          textread('Testes_dados.txt', ...
10
              '%n%s%n%s%n%n%n', 'headerlines',1);
11
12 % Analisar os testes
13
  for teste = teste_i : teste_f
14
15
      clc; close all;
16
      syms Kgr(a) Y SL Kth E Hc hc
17
      syms A1 A2 d x0
                                        % coeficientes de ajuste
18
19
      % Número do teste
20
      fprintf(['Teste = ' num2str(teste) '\n']);
21
22
      % Definir a geometria e as propriedades do material ...
23
          para o teste
24
      % Geometria
25
      b = v_b(teste);
26
      neck_w = v_neck_w(teste);
27
      w = b + neck_w;
28
29
      % Parâmetro de Bazant
30
^{31}
      gamma = 8;
32
      % Material e R
33
      R = v_R(teste);
34
      material = string(v_Material(teste));
35
36
      \ Obter as propried
ades do material e a_R (mm)
37
```

```
[Y, SL, Kth, E, Hc, hc] = fun_Propriedades(material,R);
38
       a_R = 1/pi*(Kth/SL)^2*1000;
39
40
       % Processo iterativo para calcular Kf
^{41}
42
       % Máximo de iterações
43
44
       iter_max = 10;
45
       % Inicialização
46
       Kf = zeros(1, 10);
47
       amax = zeros(1, 10);
48
       erro = 1;
49
       iter = 1;
50
       fun_modificar_S_1(teste); % Configuração inicial: S = {1}
51
52
       while iter < iter_max && erro > 1e-4
53
54
           % Executar genSIF.exe para o teste analisado
55
           system(['E:\TCC\genSIF\genSIF.exe teste' ...
56
               num2str(teste) '.txt']);
57
           % Leitura dos resultados de Kgr(a/w) gerados
58
           dados_out = importdata('teste_Kgr.out');
59
           n_col = length(dados_out.textdata);
60
           dados_out.textdata(4:(n_col+3)/2) = []; % Apagar ...
61
               dados de monotônico
           dados_out.data(:, 4:(n_col+3)/2) = [];
62
           headline = string(dados_out.textdata);
63
           headline(3) = " LE";
64
           dados = dados_out.data;
65
           a_w = dados(:, 1);
66
67
           n_Kgr = (n_col - 1)/2;
68
           % Para cada Kgr (elástico e plástico cíclico)
69
           Kf_iter = zeros(1,n_Kgr);
70
           amax iter = zeros(1, n Kqr);
71
72
           for i = 1:n_Kgr
73
74
               % Ajuste de curva para Kgr(a/w)
75
                [A1,A2,x0,d] = fun_Kgr_fit( a_w , dados(:,i+2), ...
76
                   i );
               Kgr = simplify(A2 + (A1 - A2) / (1 + ...
77
                   exp((log(a/w) - x0) / d)));
78
               % Calcular a_max e K_f
79
               dKgr = simplify(diff(Kgr,a));
80
```

```
eq = Kgr + 2*a*(1+(a_R/a)^{(gamma/2)})*dKgr;
81
                amax_aux = double(vpasolve(eq==0));
82
                amax_iter(i) = amax_aux;
83
                Kf_iter(i) = double( subs(Kgr,a,amax_aux) / ...
84
                    sqrt(a_R/amax_aux) * ...
                    ((1+(a_R/amax_aux)^(gamma/2))^(1/gamma)));
85
            end
86
            Kf(iter) = Kf_iter(end);
87
            amax(iter) = amax_iter(end);
88
            if iter == 1
89
                erro = 1;
90
            else
91
                erro = abs(Kf(iter) - Kf(iter-1));
92
            end
93
94
            % Modificar S = {SL/Kf} para o processo iterativo
95
96
            fun_modificar_S(Kf_iter(end), SL, teste);
97
            iter = iter + 1;
98
99
        end
100
101
102
   end
103
   88 ____
104
   %% Função de ajuste de curva Kgr(a/w): fun_Kgr_fit
105
106
   function [A1,A2,x0,d] = fun_Kgr_fit(va_w, vKgr, j)
107
108
109 f=fittype('A2 + (A1 - A2) / (1 + \exp((\log(x) - x0) / d))', ...
        'independent', 'x', 'coefficients', {'A1', 'A2', 'x0', 'd'});
110
111 x = va_w;
                              % a∕w
                               % Kgr
112 y = vKgr;
113
114 % Inicialização
115 di = [-1, 1, -10, 10];
                                    % ponto inicial
116 \, \text{sse} = 100;
                                    % (sum of squared estimate of ...
      errors) inicial
117 sse_lim = [10,25,50,60];
                               % limite para ajuste
118 i = 1;
119 k = 1;
120
121 while sse > sse_lim(k) && k \leq length(sse_lim)
        while i < length(di)</pre>
122
            xi = [y(1), 1, 1, di(i)]; % ponto inicial para ...
123
               ajuste
```

```
124
            [Kgr_f, gof] = fit(x,y,f,'StartPoint',xi)
            sse = gof.sse;
125
            i = i+1;
126
127
        end
        k = k+1;
128
   end
129
130
   if sse > sse lim
131
        disp('Erro: Chute inicial dos coeficientes mal dado.');
132
        A1=0; A2=0; d=0; x0=0;
133
   else
134
       A1=Kgr_f.A1;
135
       A2=Kgr_f.A2;
136
       d=Kgr_f.d;
137
       x0=Kgr_f.x0;
138
   end
139
140
   end
141
142
   of _____
143
144
   %% Função de leitura das propriedades do material: ...
       fun Propriedades
145
   function [Y,SL,Kth,E,Hc,hc] = fun_Propriedades(material,R)
146
   syms SL Kth Y E Hc hc
147
   SL=0; Kth=0; Y=0; E=0; Hc=0; hc=0;
148
149
   % Importar Propriedades.txt
150
   [vMaterial, vY, vSL, vKth, vR, vE, vHc, vhc] = ...
151
       textread('Propriedades.txt', '%s%n%n%n%n%n%n%n%n', ...
152
           'headerlines', 1);
   vMaterial = string(vMaterial);
153
   n = length(vR);
154
155
   % Obter Y(MPa), SL(MPa), Kth(MPa_sqrt_m)
156
   i = 1;
157
   while i>0 && i≤n
158
        if material == vMaterial(i)
159
            if R==vR(i)
160
                SL = vSL(i);
161
                Kth = vKth(i);
162
                Y = vY(i);
163
                E = vE(i);
164
                Hc = vHc(i);
165
                hc = vhc(i);
166
                i = -2;
167
168
            end
```

```
169
       end
170
       i=i+1;
   end
171
172
173 end
174
   ୫୫ -----
175
   %% Função de modificar o nível de tensão plástico no ...
176
       arquivo de texto de entrada para S={SL/Kf}: fun_modificar_S
177
   function [] = fun_modificar_S(Kf,SL,teste)
178
179
   S = SL/Kf/2;
                            % SL = gama_SL
180
181
   new_contents = sprintf(['S={' num2str(S) '}']);
182
   filename_ini = sprintf(['teste' num2str(teste) '.txt']);
183
   filename_new = filename_ini;
184
185
   % Ler o arquivo de texto teste.txt
186
187
   fileID = fopen(filename_ini, 'r+');
188
   i = 0;
189
   while ¬feof(fileID)
190
       tline = fgetl(fileID);
191
       i = i+1;
192
       newline{i} = tline;
                            % Armazenar conteúdo
193
194
       \ Localizar a linha do S={} e modificar o conteúdo S
195
196
       if ¬isempty(tline)
           if tline(1) == 'S' || tline(2) == 'S'
197
                newline{i} = strrep(tline,tline,new_contents);
198
199
           end
       end
200
201
   end
202
   fclose(fileID);
203
204
   % Escrever o arquivo de texto modificado por cima do antigo
205
   fileID = fopen(filename_new, 'w+');
206
   for k = 1:i
207
       fprintf(fileID,'%s \t\n',newline{k});
208
   end
209
210
211 fclose(fileID);
212
213 end
214
```

```
215 %% ------
216 %% Função de configuração inicial, modificando o nível de ...
      tensão plástico inicial no arquivo de texto de entrada ...
       para S={1}: fun_modificar_S_1
217
   function [] = fun_modificar_S_1(teste)
218
219
_{220} S = 1;
221
222 new_contents = sprintf(['S={ ' num2str(S) '}']);
223 filename_ini = sprintf(['teste' num2str(teste) '.txt']);
224 filename_new = filename_ini;
225
226 % Ler o arquivo de texto teste.txt
227
228 fileID = fopen(filename_ini,'r+');
229 i = 0;
  while ¬feof(fileID)
230
       tline = fgetl(fileID);
231
       i = i+1;
232
       newline{i} = tline;
233
                                  % Armazenar conteúdo
234
       % Localizar a linha do S={} e modificar o conteúdo S
235
       if ¬isempty(tline)
236
            if tline(1) == 'S' || tline(2) == 'S'
237
                newline{i} = strrep(tline,tline,new_contents);
238
            end
239
240
       end
241
   end
242
243 fclose(fileID);
244
245 % Escrever o arquivo de texto modificado por cima do antigo
246 fileID = fopen(filename_new,'w+');
247
   for k = 1:i
       fprintf(fileID, '%s \t\n', newline{k});
248
249 end
250 fclose(fileID);
251
252 end
```

No 1 2 3 4 5 6 7	Geometria CNPT CNPT CNPT CNPT CNPT CNPT CNPT	R 0 0 0 0 0 0 0	Material SAE_1045_steel SAE_1045_steel SAE_1045_steel SAE_1045_steel SAE_1045_steel 2024_T351_AI_alloy 2024_T351_AI_alloy	b 0.12 0.25 0.5 1.5 2.5 0.12 0.25	r 0.12 0.25 0.5 1.5 2.5 0.12 0.25	neck_w 22.105 21.975 21.725 20.725 19.725 22.105 21.975	Kf_exp 1.379 1.455 1.659 2.113 2.144 1 1.522
8 9	CNPT	0	2024_1351_AI_alloy 2024_T351_AI_alloy	0.5 1.5	0.5 1.5	20.725	2.005
1	I	I	I	I	I	I	i
48	DNPT	-1	Mild_steel_0.15%C	5.08	7.62	26.92	2.692

Figura A.1: Arquivo lido no código: Testes_dados.txt

1	Material	Y(MPa)	SL(MPa)	Kth(MPa_sqrt_m)	R	E(MPa)	Hc(MPa	a) hc
2	SAE_1045_steel	466	448	6.9	0	200000	1258	0.21
3	SAE_1045_steel	466	606	9	-1	200000	1258	0.21
4	2024_T351_Al_alloy	360	172	4	0	73000	655	0.07
5	2024_T351_Al_alloy	360	248	4.4	-1	73000	655	0.07
6	G40.11_Steel	376	540	11.5	-1	200000	990	0.15
7	SM41B_Steel	194	326	12.36	-1	200000	715	0.15
8	SM41B_Steel	194	274	8.36	0	200000	715	0.15
9	Mild_steel_0.15%C	340	420	12.8	-1	200000	945	0.22
10	NiCr_steel	845	1000	12.8	-1	200000	1564	0.15
11	2.25_Cr_1Mo_steel	380	440	12	-1	200000	652	0.105
12	304_stainless_steel	222	720	12	-1	200000	1227	0.171

Figura A.2: Arquivo lido no código: Propriedades.txt