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Abstract

Londe, Mariana Alves; Pessôa, Luciana de Souza (Advisor); Andrade,
Carlos Eduardo (Co-Advisor). The RSI Allocation Problem: exact
and heuristic methods. Rio de Janeiro, 2021. 126p. Dissertação de
Mestrado – Departamento de Engenharia Industrial, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Since its introduction, mobile wireless communication has grown and
changed substantially. This massive growth leads to different levels of com-
plexity, mainly concerned with the assignment of different parameters to radio
or base stations. One parameter is the Root Sequence Index (RSI), related
to the Physical Random Access Channel (PRACH) preambles, used to allo-
cate uplink channels between the user equipment and the base station. The
assignment of RSIs close-in-range to neighbor antennas may cause collisions,
which are responsible for failures on service establishment, and therefore, per-
formance degradation. Such allocation problems can be modeled as Graph Col-
oring Problems, including several additional constraints. However, few studies
focus on RSI allocation and collisions from the optimization perspective. The
objective of this study is to develop methods for allocating the RSI, trying
to lessen the risk of collision, and obeying other constraints. In this study,
both exact and heuristics methods are explored and compared. For this, sev-
eral mathematical models were made, alongside a biased random key genetic
algorithm. The results show that the utilization of an allocation strategy based
on neighbor relations is efficient for finding good solutions.

Keywords
Root Sequence Index; Mathematical Models; Biased Random Key

Genetic Algorithm.
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Resumo

Londe, Mariana Alves; Pessôa, Luciana de Souza; Andrade, Carlos Edu-
ardo. O Problema de Alocação do RSI: métodos exatos e heu-
rísticos. Rio de Janeiro, 2021. 126p. Dissertação de Mestrado – Depar-
tamento de Engenharia Industrial, Pontifícia Universidade Católica do
Rio de Janeiro.

Desde sua introdução, a comunicação móvel sem fio cresceu e se modificou
severamente. Seu crescimento acentuado significa que a alocação de diferentes
parâmetros para rádios ou estações-base ganhou diversos graus de comple-
xidade. Um parâmetro é o Root Sequence Index (RSI), relacionado com os
preâmbulos do Random Access Channel (PRACH), usado para alocar canais
de upload entre o equipamento do usuário e a estação rádio-base. A aloca-
ção de RSIs próximos a radios ou antenas vizinhas pode causar colisões, que
são responsáveis por falhas no estabelecimento do serviço de comunicação e,
portanto, degradação no desempenho da rede. Em geral, tais problemas de
alocação são modelados como um Problema de Coloração de Grafos, incluindo
diversas restrições. Contudo, não há estudos que foquem na alocação de RSI e
colisões. O objetivo deste estudo é explorar e comparar modelos exatos e heu-
rísticos para esse problema. Para isso, diversos modelos matemáticos foram
elaborados, além de um algoritmo genético de chaves aleatórias viciadas. Os
resultados apontam que a utilização de uma estratégia baseada nas relações
de vizinhança é eficaz para a obtenção de boas soluções.

Palavras-chave
Root Sequence Index; Métodos Matemáticos; Algoritmo Genético

com Chaves Aleatórias Viciadas
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But I have promises to keep;
And miles to go before I sleep.

Robert Frost, Stopping by Woods on a Snowy Evening.
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1
Introduction

Since its introduction in the late 1970s, mobile wireless communication
has grown and changed substantially. The many alterations in technological
capacity, alongside new devices such as smartphones and tablets, cause a
massive growth of internet use [1]. In 2018, 22 billion devices were connected
to networks, with a forecast of 40 billion by 2025 [2].

This growth in connection density, with many devices and requirements,
is something that the fifth generation of wireless communication systems,
known as 5G, must address [3]. 5G must also consider the advent of the Internet
of Things (IoT) [4], in which device-to-device communications (D2D) [5] are a
crucial feature. With it, it is expected that as much as 240–500 billion mobile
devices or physical entities will be connected to the internet in the future [6].

In this context of massive networks, not only the implementation of these
networks [7], but also the allocation of parameters to radios or base-stations,
gain several levels of complexity.

One such parameter is the Root Sequence Index (RSI). Related to the
random access procedure for the establishment of upload channels between
the user and the station, this parameter is used to calculate variables of the
Physical Random Access Channel (PRACH). However, if two or more neighbor
radios have the same RSI number, then a collision can occur. RSI collisions
can cause an increase in connection failures [8].

Figure 1.1 illustrates the effect of incorrect parameter allocation in
network traffic. It shows the real amount of msg3 of three different cells or
antennas of the same radio station, with each cell in a coverage angle of 120°.
On the last two days indicated in the figure, the values of both Physical Cell
Identification (PCI) and RSI parameters of the cells were incorrectly allocated.
One can note the effect of this on the amount of msg3 messages, a value
indicative of network traffic, which is drastically reduced.

Parameter allocation problems in telecommunications are, generally,
modeled as graph coloring problems (GCP) [9]. Hale [10] introduces the
frequency assignment problem (FAP), studied intensively by authors such
as Siddiqi and Sait [11], Marsa-Maestre et al. [12], Zhao et al. [13], Acedo-
Hernández et al. [14]. However, there are no studies, as far as the author is
aware, that focus on allocation of the RSI and its possible collisions.

In this context, this study focuses on solving the RSI allocation problem.
For this problem, both exact and heuristic methods are proposed and compared
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Chapter 1. Introduction 17

Figure 1.1: Effect of incorrect parameter allocation. Each cell indicates an
antenna or cell of the same radio base station. The vertical lines separate
different days. Note the last two days, in which the parameters are incorrectly
allocated, and the corresponding effect on network traffic.

in their effectiveness. The contribution of this work can be defined as follows:

– Introduction of a novel problem in telecommunications, which will have
great significance with the advent of 5G;

– Application of exact and heuristic methods to solve the aforementioned
problem, advancing the literature in graph coloring problems and its
generalizations.

To attain the aforementioned objectives, we study classical ways of
solving similar situations. Graph Coloring Problems are not, usually, tackled
with exact formulations [15]. Meanwhile, metaheuristic methods have shown
to be effective in solving Graph Coloring Problems [16].

The remainder of this document is structured as follows. In Chapter 2,
the problem is defined, alongside the proposed notation and mathematical
models. After this, Chapter 3 presents related, pertinent literature. Afterward,
Chapter 4 details the proposed heuristic. In Chapter 5 the results of the
experiments are listed, alongside a comparison between methods. Finally,
Chapter 6 shows the concluding remarks.
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2
The Root Sequence Index Problem

This chapter defines the Root Sequence Index (RSI) allocation problem.
It starts with detailing the graph notation and concepts, followed by the formal
definition of the problem and, finally, the proposed mathematical models.

2.1
Graph Concepts and Notation

Let G(V,E) be a graph, in which V identifies the set of vertices and E,
the edges. Vertices i, j ∈ V are said to be adjacent or neighbors if the edge
(i, j) ∈ E. The degree d(i) of a vertex i is the number of edges attached to
it. A subgraph H of G is a graph that has all its vertices and all its edges
contained in G [17].

The coloring of a graph is formally defined as the assignment of colors to
vertices in V that respects the constraints of the problem. The group of possible
colors of a vertex can be indicated by Λ(i) [18]. The chromatic number χ(G)
is the minimum number for which a coloring exists for a graph G [17].

The discrete number of colors used is called the order of a graph, and
the difference between the highest and the smallest color used, the span [10].
The edge span, meanwhile, is the minimum span taken over the edges of the
graph [17].

An independent set is a subgroup of vertices so that none are neighbors.
It is called maximal if it is not a subset of any other independent set [19]. A
complete subgraph of G is called a clique, and a maximum clique is a subgraph
that has all vertices connected to each other [20].

2.2
Problem Definition

First, some telecommunications concepts must be clarified. A radio can
be defined as an equipment for wireless transmission and/or reception of elec-
tromagnetic waves, especially when used to transmit sounds [21]. Meanwhile,
an antenna or aerial is a portion of a radio transmitter or station used for
radiating waves or receive them from spaces, changing electric currents into
radio waves, and vice versa [21]. Antennas are usually made of metal and can
have a wide variety of configurations [22]. Finally, a base station is defined
as a transmission and reception station in a fixed location, which serves as a
bridge between all mobile users in a cell and connects mobile calls to mobile
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switching centers. Base stations usually consist of one or more receive/trans-
mit antennas, microwave dish, and electronic circuitry [23]. In this work, we
use the words “antenna” and “base station” interchangeably.

The Root Sequence Index (RSI) is related to the random access proce-
dure, being a parameter that can suffer interference when two neighbor anten-
nas have close values. The Physical Random Access Channel (PRACH) pro-
cedure occurs when the User Equipment (UE) tries to connect to a network,
establish or reestablish a service connection, and synchronize for downlink data
transfers [8]. This procedure can be contention or non-contention based.

In contention-based access, the UE utilizes 40 preambles randomly
selected to do PRACH procedure [24]. This is the case in which RSI collisions
can happen, as the non-contention access does a different, more complex
procedure that guarantees it will not occur [25]. The principal aim of PRACH
is to synchronize UE with the eNodeB (4G radio station) or the gNodeB (5G
radio station). Meanwhile, the RSI is used to calculate the 40 preambles of the
contention-based access. If two neighbor antennas have the same RSI values,
then the same PRACH values will be obtained, hence collisions may occur [25].

The RSI can have two different sets of values. They are dependent on the
frequency used and the cell size. The Long Sequence has four preamble formats,
used in macrocells with values between 0 and 839. The Short Sequence,
meanwhile, has values between 0 and 139, indicated in nine preamble formats.

Small cells and macrocells use different frequency intervals and have
different uses. Macrocells are widely used in the coverage of wide areas, with
up to 10 kilometers with antenna heights of 25 meters [26], and use lower
frequency ranges [27]. Meanwhile, small cells are used in hotspot or indoor
coverage [26, 27] with significantly higher frequencies [1]. Interference between
cells of different sizes may happen when they are in the same frequency ranges,
however, the instances used in this work do not contemplate this possibility.

To prevent interference between close cells of the same sequence, a
minimum distance (minDist) between the values of the RSI of neighbors is
needed. This minimal distance is calculated with a value related to the division
of frequency spectrum in the network, which is the constant 64 for 5G networks,
the maximal value of the sequence called LRA or maxRSI (the smallest possible
value is called minRSI ), and the cyclic shift value NCS [25]. The cyclic
shift originates from network characteristics, therefore the minimal required
distance is the same for all antennas in the same network and sequence. The
computation of the minimal distance is shown in Equation (2-1).

minDist = 64
LRA/NCS

(2-1)
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Figure 2.1: Representation of RSI allocation. Each hexagon represents a radio
base station with three antennas in coverage angles of 120o each. The edges of
each hexagon indicate adjacent antennas, which must have at least a difference
of 10 units between their RSI. Hexagons of different colors indicate towers in
different regions or markets.

Figure 2.1 represents how a network can be configured, in which the
minimum distance between neighbor antennas is 10 units. Note that, although
in this figure there are only adjacent antennas inside a hexagon, in real life, the
signals overlap between antennas, hence the problem cannot be modeled as a
simple planar graph. In fact, this is the most common case in 5G: generally,
there is a macro cell for coverage and several small cells for network capacity
inside the coverage radius of the macro cell, as can be seen in Figure 2.2. In
this example, the small cells can interfere between themselves and between
them and the macro cell.

The 5G network is inserted in the context of ultra-dense networks [1].
Ultra-dense networks are the result of capacity enhancements needed for 5G,
and are synonym with antennas or radios stationed only few meters away from
each other, and thus potentially interfering with each other [28]. This indicates
that defining a maximal distance (maxDist) limit between the difference of the
RSI of neighbors is adequate. Such a constraint allows setting a higher number
of antennas in each network so that we would improve coverage and network
access.

Figures 2.3a and 2.3b illustrate how these characteristics influence the
RSI values for a cell X. In Figure 2.3a, cell N is the only neighbor of X, thus the
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Figure 2.2: Typical implementation of macro and small cells in 4G and 5G.
Note that the macrocells cover a big area (in green) that includes small cells of
network capacity with a smaller action radius (in blue). Observe the possibility
of other macro cells overlapping with either the macro or small cells shown in
the figure.

RSI values for X must be inside the intervals indicated by the yellow hatch.
These are the values that respect the minimal and maximal difference and
are inside the possible values for the RSI. Meanwhile, Figure 2.3b presents a
case with more than one adjacent cell. In this case, X’s RSI must respect the
differences for both neighbors, which decreases the possible RSI values and
thereby increases the complexity of allocating the RSI.
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(a) Illustration of the RSI for a vertex with
only one edge. In the intervals indicated by
the vertical yellow hatch, the possible values
for the RSI of node X in relation to the RSI
of node N.

(b) Illustration of the RSI for a vertex with
more than one edge. In the intervals with
horizontal red hatch, the possible values for
the RSI of vertex X, in relation to the RSI of
neighbor nodes N and M.

Figure 2.3: Two representations for allocation of the RSI of a cell X in relation
to its neighbor vertices.

We propose two different objectives for the RSI allocation problem. The
first objective involves the minimization of the number of changes between new
and old network configurations. This aims to increase model realism, as this
scenario occurs when new vertices are introduced in the system and the RSI
of other antennas should be modified as least as possible, to avoid disruptions
and degradation in the service quality. The second objective tries to maximize
the smallest difference between the RSI of neighbors. This scenario considers
the future need to add new vertices, and thus the necessity of having possible
RSI values available for them, which is a consideration needed for the ultra-
density expected in these networks, and the expected increase in coverage both
in urban and rural areas.

2.3
Proposed Mathematical Models

The RSI Allocation Problem can be modeled with an undirected graph
G = (V,E), in which V indicates the set of vertices (antennas) and E, the
set of existing edges. There is an edge if the antennas are neighbors and,
therefore, an incorrect allocation can cause interference between their RSI.
Consider Λ ∈ N as the possible RSI values. It is considered that the graph has
a starting coloration, which indicates a prior configuration, that can be illegal
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or infeasible with respect to the constraints, or needs to have new antennas
added and be reconfigured to accommodate them.

Purely exact models are less used for solving Graph Coloring and related
problems, in comparison to heuristic methods [15]. This is due to the NP-
Hard nature of these problems, which leads to high run time and memory
requirements. However, they have an important role in proving the optimality
of solutions, if any are found.

Here are proposed four different models for the RSI allocation problem.
The sets, parameters, and variables can be seen in Table 2.1. These models
were presented earlier in Londe et al. [29].

Table 2.1: Sets, Parameters and Variables of the model.

Set Definition
V Set of Graph Vertices
E Set of Graph Edges
Λ Set of Possible RSI values, which are between minRSI and maxRSI
Parameter Definition
valuek Numerical Value of RSI of color k
oldRSI i Old configuration of vertex i
minRSI Minimal value of RSI
maxRSI Maximal value of RSI
minDist Minimal distance between RSI of neighbor vertices
maxDist Maximal distance between RSI of neighbor vertices
M1,M2 High values
Variable Definition
newi,k Binary variable indicative of allocation of RSI k to vertex i
rsi i Non-negative integer variable indicating value of RSI allocation to vertex i
yi,j Binary variable related to distance between RSI of vertices i and j
changei Binary variable indicative if there was a change on the RSI of vertex i
min_span Minimal value of the difference between RSI of two neighbor vertices

Formulations NC, Non-linear Change model, and LC, Linear Change
model, have the objective of minimizing the amount of change between new
and old network configuration, which means fewer disruptions and performance
loss. Following are both formulations. Equations (2-2)–(2-9) compose formu-
lation NC, while (2-10)–(2-20) do the same for LC.

For NC, Objective Function (2-2) minimizes changes in network config-
uration. Constraint (2-3) guarantees that all vertices will be allocated exactly
one new RSI, while Constraint (2-4) indicates the relation between the allo-
cated RSI and its numeric value. Constraint (2-5) guarantees that the new RSI
will respect the minimal and maximal distances for all neighbor vertices, using
the absolute value of the difference between their RSI. This use of absolute
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value is what renders this formulation non-linear. Constraint (2-6) indicates
the changes in RSI of the vertices. Finally, Constraints (2-7)–(2-9) define the
possible values of the variables.

min
∑
i

changei (2-2)

s.t.
∑
k

newi,k = 1 ∀i ∈ V, (2-3)

rsi i =
∑
k

newi,k · valuek ∀i ∈ V, (2-4)

minDist ≤ |rsi i − rsij| ≤ maxDist ∀(i, j) ∈ E, (2-5)

M1 · changei ≥ |rsi i − oldRSI i| ∀i ∈ V, (2-6)

changei ∈ {0, 1} ∀i ∈ V, (2-7)

newi,k ∈ {0, 1} ∀i ∈ V, k ∈ Λ, (2-8)

rsi i ∈ N. (2-9)

For LC, the objective function is described in Equation (2-10). Con-
straints (2-11) and (2-12) are analogues to Constraints (2-3) and (2-4) of NC.
Meanwhile, Constraints (2-13) and (2-14) restrict the maximal and minimal
distances using an auxiliary variable to indicate whether the difference is pos-
itive or negative. Because of model symmetry, one of the differences must be
positive and the other negative. Constraints (2-15) and (2-16) let the model
register a change if the new value of the RSI is higher or lower than the old
configuration. Finally, Constraints (2-17)–(2-20) define the domain of the vari-
ables.
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min
∑
i

changei (2-10)

s.t.
∑
k

newi,k = 1 ∀i ∈ V, (2-11)

rsii =
∑
k

newi,k · valuek ∀i ∈ V, (2-12)

minDist · (1− yi,j)−maxDist · yi,j ≤ rsii − rsij ∀(i, j) ∈ E, (2-13)

rsii − rsij ≤ maxDist · (1− yi,j)−minDist · yi,j ∀(i, j) ∈ E, (2-14)

M1 · changei ≥ rsii − oldRSI i ∀i ∈ V, (2-15)

M1 · changei ≥ oldRSI i − rsii ∀i ∈ V, (2-16)

changei ∈ {0, 1} ∀i ∈ V, (2-17)

newi,k ∈ {0, 1} ∀i ∈ V, k ∈ Λ, (2-18)

rsii ∈ N, (2-19)

yi,j ∈ {0, 1} ∀i, j ∈ V. (2-20)

Formulations NS, Non-linear Span model, and LS, Linear Span model try
to maximize the smallest difference between the RSI of neighbors. This scenario
considers the necessity of allocating the highest possible number of antennas
in a certain space. For this, it is necessary that there are possible values for
the RSI of these vertices, and that means increasing the distance between used
RSI. NS is composed by Equations (2-21)–(2-27), and LS, by (2-28)–(2-36).

For NS, Constraints (2-22)–(2-24) and (2-26)–(2-27) are the same as the
ones shown in (2-3)–(2-5) and (2-8)–(2-9) of NC, respectively. This makes
this formulation equally non-linear. The objective function in Equation (2-21)
indicates that we want to maximize the smallest of differences, defined by
Constraint (2-25) as the absolute value of the smallest edge span.

max min_span (2-21)

s.t.
∑
k

newi,k = 1 ∀i ∈ V, (2-22)

rsi i =
∑
k

newi,k · valuek ∀i ∈ V, (2-23)

minDist ≤ |rsi i − rsij| ≤ maxDist ∀(i, j) ∈ E, (2-24)

min_span ≤ |rsi i − rsij| ∀(i, j) ∈ E, (2-25)

newi,k ∈ {0, 1} ∀i ∈ V, k ∈ Λ, (2-26)

rsi i ∈ N. (2-27)

In the case of LS, Constraints (2-29)–(2-32) and (2-34)–(2-36) are the
same as portrayed in (2-11)–(2-14) and (2-18)–(2-20) of LC, while the Objective
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Function (2-28) is the same as NS. The difference is in Constraint (2-33), which
calculates the value of the difference between the RSI of two neighbors using the
auxiliary variable. If the difference between the RSI of two vertices is negative,
it will be added to a high value that will prevent this negative number from
impacting the solution.

max min_span (2-28)

s.t.
∑
k

newi,k = 1 ∀i ∈ V, (2-29)

rsii =
∑
k

newi,k · valuek ∀i ∈ V, (2-30)

minDist · (1− yi,j)−maxDist · yi,j ≤ rsii − rsij ∀(i, j) ∈ E, (2-31)

rsii − rsij ≤ maxDist · (1− yi,j)−minDist · yi,j ∀(i, j) ∈ E, (2-32)

min_span ≤ rsii − rsij +M2 · yi,j ∀(i, j) ∈ E, (2-33)

newi,k ∈ {0, 1} ∀i ∈ V, k ∈ Λ, (2-34)

rsii ∈ N, (2-35)

yi,j ∈ {0, 1} ∀i, j ∈ V. (2-36)

It is necessary to comment that all four models are standard mathemat-
ical models, without any symmetry removing features, nor cutting features, or
more sophisticated constraints. Moreover, similar models are implemented in
ONAP platform [30] though ONAP Optimization Platform - Self-Organizing
Networks (OOF-SON) for small and medium-sized networks.
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3
Related Literature

With the RSI allocation problem described, it is logical to search for
related literature. As it is a novel question, it means locating similar problems
and their solution methods, alongside their similarities and differences to the
RSI allocation problem.

The proposed mathematical models shown in Section 2.3 consider a
characteristics of a modified graph coloring problem. In fact, many similar
studies in parameter allocation for telecommunications problems consider
variants of the graph coloring problem [11, 12, 14, 31], meaning that it may
be used as a starting point for a review of related literature.

Thus, this chapter starts with a review of related literature to the classical
graph coloring problem, and then explores generalizations of it that are closer
to the RSI problem.

3.1
Graph Coloring Problem

The graph coloring problem, or vertex coloring problem (GCP), is a
classic NP-hard problem known for its difficulty from the computational point
of view, and its many real applications [32]. This problem’s constraints are
defined as such [33]:

c(i) ∈ Λ(i) ∀i ∈ V
c(i) 6= c(j) ∀(i, j) ∈ E

(3-1)

In other words, this problem aims to color all vertices of a graph with
possible colors, so that all neighbor vertices do not have the same coloration.
In its classical form, the objective function of this problem is to minimize the
number of colors needed to do a full coloring of the graph. As such, graphs
with a known chromatic number are frequently used to check the strength of
models and algorithms.

Randall-Brown [34] develops two algorithms to solve the GCP. The basic
algorithm enumerates by backtracking, as starts with a partial solution to the
GCP, then introduces each new vertex, checking all possible permutations of
the solution in which the coloring is possible. The look-ahead algorithm, on
the other hand, determines if a possible coloring would, at some later time,
introduce an increase in the number of colors. As it is, the look-ahead has the
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aim of reducing the number of backtracks. By testing on random graphs and
a real life problem from the Massachusetts Institute of Technology, the look-
ahead algorithm is clearly superior to the basic algorithm for certain graphs
with high density or bigger graphs.

Leighton [35] introduces the recursive largest first (RLF) algorithm for
coloring graphs. This strategy recursively selects nodes for coloring so that
the resulting nodes are colorable in as few colors as possible. This is made by
starting with assigning color 1 to the node with maximal degree. After coloring
a number of nodes, then, select the uncolored node with maximal degree, such
as it does not have any colored node as an adjacent. The author also introduces
a procedure to generate test graphs with a known chromatic number, which
would be called Leighton Graphs in the following works. The author tests many
algorithms on a set of Leighton graphs and proves that the RLF algorithm is
more efficient than other procedures for coloring graphs, with fewer colors in
less time.

Brélaz [36] describes heuristic methods to solve the GCP, alongside
introducing the DSatur method. The author compares both the DSatur method
with other heuristics, and the combined Randall-Brown with look-ahead
algorithm with other exact methods. DSatur starts with ordering of the vertices
by decreasing order of degrees. Then, the first vertex receives color 1. A vertex
with maximal saturation degree, and maximal degree that is uncolored is then
colored with the least used possible color. This step repeats until all vertices
are colored. The comparison was made with randomly generated graphs. The
results point that the DSatur method is one of the best heuristics, while the
addition of the look-ahead method to the Randall-Brown algorithm improves
its performance.

Hertz and de Werra [37] introduce the TABUCOL procedure. This is the
appliance of a Tabu Search to the GCP. The TABUCOL starts by generating
a random coloring. From this coloring, random nodes are chosen, and colored
with a random color that respects the problem constraints. From a number of
possible changes, the best is picked-up and its change, as a pair (node-color), is
added to the Tabu list. However, if a move that is in the Tabu list would cause
a change to the objective, so that it would be a set percentage better than the
best result, then the move has its Tabu status dropped. The TABUCOL was
compared with a simulated annealing approach from the literature, and with a
combined approach that mixes TABUCOL with an independent set strategy.
This combined approach depended on finding the largest possible independent
sets, which are then colored with TABUCOL. The combined technique is shown
to have the best results, while the TABUCOL can find a possible coloring in
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very short CPU time in comparison with results from literature.
Johnson et al. [38] study simulated annealing approaches to different

problems, among which is the GCP. The authors describe and compare three
approaches to the GCP, each with different neighborhood and objective func-
tion characteristics. The first approach is inspired by the RLF algorithm, and
considers that a solution is any partition of a graph, even if the coloring is
non-feasible. The amount of non-feasible edges are penalized in the objective
function. The second approach only considers feasible solutions in its neigh-
borhood, and uses Kempe chains to obtain new feasible solutions. A Kempe
chain is any interconnected component in the join graph created by the union
of two independent sets. The third approach focus on minimizing the number
of non-feasible edges instead of the chromatic number. This case fixes the num-
ber of possible colors, and exchanges the coloring of vertices among those. The
authors also implement a branch-and-bound algorithm with certain shortcuts,
and a generalization of the RLF algorithm, both for comparison purposes. For
the experiments the authors generated random graphs. The results point that
for certain instance categories, like smaller or denser graphs, the simulated
annealing approaches are competitive in comparison with the other methods.
However, the authors note that it is difficult to point which methods are the
best, as the different objective functions influence in the final results.

Fleurent and Ferland [39] examine the performance of hybrid genetic
algorithms for GCP. Their approach depends of a greedy algorithm that
colors the individual vertices, based on the ordering of the nodes given by
a chromosome. This algorithm picks the smallest color than can be given,
respecting the restrictions, or the least used color if none respect them. Another
scheme availed was the string-based encoding, which is well suited to be
combined with local and Tabu search. In particular, TABUCOL is noted as
an efficient algorithm for graph coloring. The tests were made on random
and Leighton graphs. For the first case, the hybrid approach was efficient in
finding excellent results, but the Tabu Search was proven to be more effective
in a smaller time, and the bigger graphs needed the combined Tabu-genetic
approach to be solved. On the Leighton graphs, the hybrid Tabu-genetic
algorithms managed to color some instances that the Tabu approach could
not.

Costa and Hertz [40] study ant colony algorithms for CGP. The authors
defend that the ant colony algorithm is well suited to solve assignment type
problems, such as traveling salesman, job shop, and graph coloring problems.
Their ANTCOL algorithm, in which each ant colors the entire graph in
a constructive way, uses derivatives of the DSatur and RLF algorithm as
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constructive methods. The experiments were made with Random graphs, in
comparison with the results of other constructive methods. The combination
of ANTCOL and RLF is shown to be much more effective than the one with
DSatur, even though the algorithms were not able to surpass the best results
of literature.

Galinier and Hao [41] design a hybrid evolutionary algorithm for the
GCP. Their algorithm applies a local search to the child that results from
the crossover on every generation. This local search is an improvement of the
TABUCOL algorithm, with this addition being a change in the function of
the best result, that indicates if a Tabu move can be accepted or not. For
the experiments, the authors used DIMACS benchmarks and compared the
hybrid evolutionary algorithm with Tabu Searches and best known records
from literature. The hybrid outperforms the simple Tabu Searches in quality
and speed of the solution, and is competitive in relation with the best known
algorithms from literature.

Kassotakis et al. [42] try a hybrid genetic approach for channel reuse in
telecommunication networks, a problem that can be modeled as a GCP. The
proposed algorithm represents an individual as a binary matrix of dimension
channels×nodes, and is combined with a local search algorithm that works as
a local operator. This local search procedure modifies an existing chromosome
by examining each node and checking if a change to the first possible channel
causes a decrease of at least 25% of the initial fitness value. If no, then the
algorithm checks the next possible channel until one is found. The simulations
were made on two scenarios, one with static parameters and other, with
dynamic ones. The experiments indicate that the hybrid GA reaches better
solutions in a lower computational time in comparison with results from
literature.

Chiarandini and Stützle [43] apply an Iterated Local Search (ILS) to
the GCP. In this ILS, they identify three phases: the initialization phase
that consists on an already existing algorithm and gives a feasible coloring;
the color number decreasing phase, in which one color is removed from the
graph, and the vertices with this color are all reassigned with a heuristic
that focus on the vertices with higher degree; and the local search phase,
that happens when the coloring returned by the color decreasing phase is not
feasible. This local search uses 1-change neighborhood and has two possible
strategies: it can choose at random a conflicted vertex and change its color;
or it can see all combinations of vertices and colors, and choose the one that
reduces the maximal number of conflicts. Those strategies are also enhanced
with a Tabu search. The perturbation has three different possibilities, being
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the random recoloring of a certain number of nodes, a heuristic recoloring
of a certain number of nodes, and a randomly change which can be a Tabu
search move of a random search. The authors test the algorithm on large or
difficult instances from COLOR02/03/04. The comparison between algorithms
shows that the heuristic reconstruction is the best perturbation strategy, with
the all-combination analyzing local search being shown to be better than the
alternative.

Barbosa et al. [44] introduce two evolutionary formulations of the GCP.
The first formulation searches for the chromatic number of a graph as a
problem of finding an acyclic orientation of the graph, according to the longest
direct, from the highest degree to smallest, path that is shortest among all
acyclic orientations. The second formulation is loosely inspired by the DSatur
heuristic, and thus permutes the vertices in decreasing order of degrees, that are
colored with the an pre-specified ordering of colors. The authors experimented
on DIMACS instances, and the results are competitive when compared with
other results from literature.

Galinier and Hertz [45] perform a survey of local search methods for
GCPs, with the aim of explaining the still popularity of the old TABUCOL
algorithm. The authors do this by dividing the search strategies for GCPs into
four categories: the legal strategy has a search space with all legal colorings and
minimizes the number of used colors; the penalty strategy has the same goal
as the former, but its search space contains all colorings possible; the k-fixed
partial legal and k-fixed penalty aim to color all vertices with a fixed number of
colors k. Between these strategies, and the possibility of more neighborhoods,
the authors conclude that the TABUCOL is very easy to implement and offers a
compromise between quality and computational effort that the other strategies
cannot compare with.

Méndez-Díaz and Zabala [46] propose a branch-and-cut algorithm for the
GCP. The algorithm starts with the identification, with a simple heuristic, of
a large clique as possible. Then, a coloring is generated using the Dsatur al-
gorithm which gives an upper bound to the instances. After this, the authors
relax and strengthen the linear programming constraints with valid inequali-
ties. The branching rule is related to all sub problems generated by a yet un-
colored vertex, and the cutting planes are based on the inequalities presented
before. The experiments used DIMACS benchmarks and were implemented
using C++ and CPLEX6.0. In comparison with Dsatur, the branch-and-cut
algorithm managed to obtain optimality certificates faster.

Bui et al. [47] present an ant-colony strategy for GCP. In this strategy,
the ants do not color the entire graph, but only a portion of it using local
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information, with the sum of all individual colorings being the complete graph.
The experiments were implemented in C++ in a Linux environment, with 119
benchmarks from COLOR02/03/04. The algorithm is shown to perform well in
comparison with the best results in the literature, and is particularly consistent
with a small standard deviation across all its runs.

Méndez-Díaz and Zabala [48] use cutting planes to diminish the number
of symmetric solutions and have a more tractable model. The cutting plane
strategy is made of a linear relaxation of the different constraints, followed
by the introduction of strong valid inequalities, in order to have a smaller
solution space. Their model manages to obtain better results than the classical
maximum clique size strategy, except for cases made deliberately difficult to
solve.

Caramia and Dell’Olmo [49] develop an iterated local search to solve the
GCP. The heuristic starts with a greedy phase to generate the so called lowest
and highest solutions. The highest can pass by another procedure which is
equivalent to a simple local search. If the solution has not improved for a set
number of iterations, then a perturbation that can find infeasible solutions,
corrected afterwards, is made. The authors experimented with 119 instances
from COLOR02/03/04 in a C environment. The algorithm manages to find
solutions comparable to the state-of-art and improves the best known results
for some.

Dowsland and Thompson [50] focus on an ant colony heuristic to solve
the GCP. The heuristic updates the trail between vertices with the sum of
the inverse of the total number of colors used on each solution. It also chooses
between different colorings by the inverse of the number of uncolored vertices,
after a number of chromatic classes are completed, number equivalent to the
chromatic number of the graph. In the case of graphs in which the number is
unknown, the chromatic number is considered dynamic and equal to the upper
bound of the solution. The presented version enhances an already existing one
and is shown not to be particularly robust. The experiments were made on
the G300,0.5 graphs already used in the literature, and point that this version
is a dramatic improvement over the original, and that the approach is not
competitive on larger graphs.

Malaguti et al. [9] propose a metaheuristic approach that starts with
an evolutionary algorithm and ends with a post optimization phase based on
the set covering model of the GCP. The evolutionary phase tries to improve
the best found solution by performing a tabu search alongside crossover and
mutation, with the focus on finding a solution with the known upper bound
of a graph. If found, then the algorithm is reiterated with the upper bound
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minus one as its new target. If the solution is not proven to be equal to
the lower bound of the graph, then the column optimization algorithm is
made. The authors note that this approach avoids symmetries in the solution.
The algorithms were compared with the state-of-art algorithms on DIMACS
instances. The evolutionary algorithm is shown to be very efficient, while the
complete two-phase algorithm only performs slightly better in solution quality
than the EA.

Mabrouk et al. [51] are interested in a parallel genetic-tabu search
algorithm for the GCP. In this case, the tabu search replaces the mutation
operator of the GA, while a RLF initializes the number of needed colors.
They parallel the algorithm by considering a number of sub-populations, which
behave independently. The master processor distributes the best results to the
slave ones and is then sent new solutions to evaluate for each interaction.
The tests were made on 13 DIMACS benchmarks for the non-parallel version,
and those plus three Random graphs for the parallel version. The non-
parallel version is shown to be very time consuming, otherwise performing
competitively according to other literature results. The parallel version, on
the other hand, does not perform well for small graphs, but is very efficient for
larger ones, surpassing the non-parallel version.

Lü and Hao [52] develop a memetic algorithm for the GCP. This memetic
algorithm combines a genetic algorithm with a tabu search procedure. The
tabu search is used to improve an initial population of illegal individuals,
minimizing the existing conflicts. Then, after the crossover, the children are
also subjected to a tabu search. The tabu search procedure simply changes the
color of a conflicting node and blocks the change for groups of ancient color-
new color-nodes. The authors also propose a multi-parent crossover operator
which builds a the color of a gene by considering the color of all parents.
The authors test the algorithm on a set of DIMACS instances, having been
implemented in a C language environment. In comparison with the best known
results in literature, the memetic algorithm is shown to be highly competitive.
The authors also tested the power of the multi-parent crossover and prove that
it is more powerful than the classical 2-parent crossover in this context.

Hu et al. [53] studies the maximum differential graph coloring problem.
In this, the aim is to maximize the difference along the edges of a colored
graph, being thus a version of the classical GCP. This problem is noted as
related to that of finding a k-Hamiltonian path, and the authors propose exact
and heuristic algorithms for the problem.

Malaguti et al. [54] introduces a branch-and-price algorithm for the GCP.
This algorithm starts with a MMT algorithm, that is at the root node of
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the branch decision tree and generates both a tight upper bound and a set
of columns that are used for the continuous relaxation of the model. Then,
the authors generate those columns by relaxing an integrality constraint,
obtaining the slave problem. This problem is then executed with a Tabu
Search algorithm, in order to obtain a maximal stable set of the graph. If
the Tabu Search cannot find a column with negative reduced cost, then the
slave problem is tackled with CPLEX. This obtains a lower bound for the
master problem. The authors then compare two branching schemes, one that
branches on variables and the other, on edges. The experiments were made on
DIMACS and show that the proposed algorithm proved optimal solutions to
previous open instances and reduced the optimality gap of many others.

Douri and Elbernoussi [55] study a hybrid genetic algorithm based on
a local search called DBG to the GCP. The DBG approximates the maximal
independent set of the graph which is then used to initialize the number of
possible colors. The evaluation of the algorithm was made with the DIMACS
benchmarks, and the results were compared with other results of literature. It is
shown that the algorithm is competitive in comparison with other approaches.

Guo et al. [20] explore a cluster resource allocation problem, formulated
as a dynamic graph coloring problem, to assign resources for a device-to-
device network. They propose an algorithm with three parts: first, the graph
is decomposed into maximal cliques. Then, the cliques are ordered so that
the ones with more inter-relations are first. Finally, the vertices are colored
in order of their appearance in each suit. DIMACS graphs were used in the
experiments, which show that the algorithm requires less run time than others
in the literature.

Shukl and Garg [56] present a list-based solution to the GCP. The
algorithm initiates with a vertex-color list with all vertices. The first node is
assigned randomly with a possible color, while the other nodes depend on a list
of all available colors, which is updated every time a neighbor pair color-node
is assigned. The authors do not test the heuristic on instances.

Marappan and Sethumadhavan [57] try genetic and tabu search proce-
dures to solve the GCP. For this, they introduce a new genetic operator called
Advanced Local Guided Search. This takes a gene that selected to be crossed-
over, goes to each of its conflicting vertices, and re-colors each of them with the
smallest valid possibility. Then, the pair (color-node) is added to the tabu list.
There are three methods compared for crossover and mutation, first the Sin-
gle Parent Conflict Gene Extended Crossover (SPCGEX) and Conflict Gene
Mutation (CGM), second, the Extended SPCGEX (ESPCGEX) and extended
CGM (ECGM), and, thirdly, the Multipoint SPCGEX (MSPCGEX) and Mul-
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tipoint CGM (MCGM) . The experiments were made with different categories
of benchmark graphs, and show that the algorithm runs well even for small
graphs, with the MSPCGEX and MCGM being the most satisfactory.

Sharma and Chaudhari [19] propose a different method for solving the
GCP using the maximal independent set. They propose an algorithm that has
three phases: create the complementary edge table by exploration, find the
maximal independent sets, and, finally, color independent sets, each with a
unique color. Implementation was made with Java for experiments on DIMACS
instances, and results show that the algorithm always finds the chromatic
number of the graphs, no matter the vertices’ sequencing.

As it is shown, the GCP’s solution methods are often heuristical in
nature, as its difficulty is notorious. However, this problem’s constraints are
not as restricted as the RSI’s - the colors of neighbors in the GCP must only
be different, while the RSI has a range of possible differences.

3.2
Frequency Assignment Problem

A generalization of the previous problem, the frequency assignment
problem (FAP) indicates that the difference between the labels of two adjacent
vertices should be higher than the minimum weight of the edge between the
two nodes [18]. Therefore, it is closer to the RSI problem than the GCP in
nature. The problem can be characterized by those two constraints[18]:

f(i) ∈ Λ(i) ∀i ∈ V
|f(i)− f(j)| ≥ w(i, j) ∀(i, j) ∈ E

(3-2)

The variable w(i, j) in Constraints 3-2 indicates the weight present on an
edge. This is the formulation for the simpler FAP, which restrains the so called
collision but not confusion. Collision occurs if two neighbors have the same
assigned channel, while confusion happens when two neighbors of the same
node have the same assigned channel [8]. Aardal et al. [58] classify FAPs by
their objective function and two constraint types: assignment and interference.

This problem and many of its generalizations were introduced by Hale
[10]. The author exemplifies different cases to prove certain characteristics of
the problem and the relationship between generalized problems, in order to
unify the theory of frequency assigned problems.

Cuppini [59] applies a genetic algorithm to the channel assignment
problem. In this, the author represents a possible solution as a binary sequence
of m ∗ n dimension, in which 1 indicates that the channel can be used for
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that node. The algorithm was implemented in many different instances and
indicates that the fitness function should be chosen carefully, as it strongly
influences the performance of the heuristic.

Dorne and Hao [60] study evolutionary algorithms and their application
to FAP. The authors present a hybrid evolutionary approach with a local search
which was used with either a population of 1 individual or of 20 individuals.
The approach was tested with 18 FAP instances provided by the French
National Research Center on Telecommunications. They compared the results
with a simulated annealing (SA) and a constraint programming (CP) approach.
Both evolutionary algorithms perform better than the SA or CP, while the 20
individuals population is better than the 1 individual one.

Smith et al. [61] affirm that maximal cliques and subgraphs can improve
known solutions to the FAP. The authors propose an algorithm that starts with
the largest clique of a graph, which is then colored using any heuristic, and then
the clique is extended with nodes to create a near clique and, again, is colored
by some heuristic. The authors use the Philadelphia problems to compare the
performance with existing results and demonstrate that their approach can
have better results than the direct application of heuristics.

Chakraborty [62] proposes a heuristic algorithm for the channel assign-
ment problem. The heuristic creates a pool of valid solutions to a given prob-
lem. The algorithm creates a matrix m× n, in which each line, indicating the
possible colors, is computed one by one. The column order that indicates the
nodes is randomized for each line. The first free channel is given a +1, indi-
cating that it is assigned to the node. Then, the other nodes are analyzed and
given a 0 if the frequency is assignable, -1 if not, and +9 if unused. This goes to
all columns. The experiments were made with several instances from previous
works in literature. The algorithm is shown to be very fast and can in most
cases reach the known optimum or vert close to it.

Krumke et al. [63] study the channel assignment problem for packet radio
networks. They approximate a solution using the distance-2 coloring problem,
a generalization of the frequency assignment problem that considers a square
edge between two vertices if there is a path between then of at most two
edges. This square edge must obey certain restrictions, like a normal edge.
The algorithm starts by selecting a random vertex and assigning levels to the
other vertices, corresponding to the number of nodes between the selected and
the others. The coloring of the resulting tree for a certain level considers the
two anterior levels which can be reused.

Alabau et al. [64] present hybrid genetic algorithms to the FAP. Their
individual is made of genes coded by integers that indicate the color of each
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individual. The authors developed two original crossover operators, one that
passes all the good genes to the child and operates on part or all the genes in
conflict, and one that performs jumps in the space solution to escape from the
uniformity of the population. Two mutation operators were also developed, the
first that classifies the genes in decreasing order of their objective function and
randomly mutates a number of then, and the second that uses a probabilistic
tabu search, in which changes in the tabu list are possible. The authors make
experiments with several instances provided by TDF-C2R Broadcasting and
Wireless Research Center. The results point that the probabilistic tabu search
alongside the first crossover operator is the best choice in comparison with
other results in literature.

Kendall and Mohamad [65] propose a hyper-heuristic methodology for
the channel assignment problem. This is a knowledge-poor metaheuristic that
chooses which heuristic to call at each decision point. The authors compare
with the results of previous studies in already existing benchmarks. It is
indicated that this approach is better than other existing ones, and that
the the acceptance criteria that permits worse solutions is the one with best
performance.

Bandh et al. [66] analyze how the proprieties of a colored graph can
be used to extend an already existing network with new cells. For this, the
authors use a greedy algorithm to create solutions, followed by the extension
of the graph, so that it also contains the cells of the neighbors of neighbors. To
add new cells, the algorithm proposes that only the neighbors of the new cell
can have their colors changed, thus affecting the least the current configuration.
This approach has tested in two data sets, one from Vodafone Germany‘s 3G
sites, and another artificial, although the results are not compared with other
approaches.

Ahmed et al. [67] apply both local search and complete algorithms to
primary component carrier selection and Physical Cell Identification (PCI)
assignment. The local search algorithms differ in the ordering of the nodes
and the selection of them; the ordering can be by the number of conflicts or
the strength of the conflicts, while the selection can be random or greedy.
The complete algorithms are based on a complete search tree and use global
identification to break the symmetry between agents. One of them orders
the resources in alphanumerical order, while the other reorder agents during
computation to minimize constraints. To evaluate the algorithms, an office
Manhattan scenario was developed. The authors concluded that the complete
algorithms tend to outperform the local searches when the number of colors is
small, and that the number of components is strongly related to the number
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of neighbors.
Xu et al. [68] model a PCI configuration scheme based on hypergraph

coloring. The authors describe this approach as trying to find the forbidden
set, composed by a group of cells that cannot have the same PCI. The proposed
model focuses on the inclusion of new nodes by allocating its PCI in accordance
with the algorithm. The authors do not test the algorithm on instances.

Sun et al. [69] propose a genetic algorithm to solve the PCI assignment
problem. For this, they use as chromosomes a binary matrix n∗m, with n being
the number of nodes and m, the number of colors. In this case, an antenna
needs to have a certain number of assigned PCIs. The algorithm was coded
with C# and compared with the simulation results of manual and automatic
PCI plans. This assignment of PCIs is shown to reduce the interference in the
network.

Klincewicz [70] uses GRASP to solve a particular cell site assignment
problem. The objective of the problem is to minimize the sum of the weights
of nodes with the same colors. The GRASP algorithm starts with the ordering
of the nodes by their degree, followed by the random choice of one of the
first L nodes from the candidate list. This node is assigned the color that
would increase the least the objective function. After constructing a solution,
the algorithm then would do a local search, in which the nodes are listed
arbitrary, then each node is chosen and has all possible exchanges evaluated. If
there is an advantageous exchange, then it is made. A double exchange is also
evaluated, in which all pairs of colors are evaluated together. The heuristic was
implemented in a C environment and tested on four instances with real data
of four US areas. The results presented indicate that the double exchange is
better for larger instances, while the single is preferred for smaller ones. The
GRASP CPU time also is shown to be always smaller than the CPLEX time.

Ahmed and Tirkkonen [71] discuss the PCI assignment for densely
deployed heterogeneous networks. The authors analyze local search methods,
each modifying the PCI of one cell, and focused search algorithms, which only
allow local moves to the unsatisfied nodes. The proposed algorithms were tested
on instances simulated with a plethora of parameters, and the results show that
the proposed algorithms can satisfactorily obtain conflict and confusion free
colorings.

Pratap et al. [31] propose an algorithm to allocate the PCI of femtocells
which tries to satisfy the collision and confusion free assignment, as well as to
accommodate the maximum number of femtocells possible. As femtocells are
deployed by client requirements, thus having a strong random component, the
authors model this problem with random graphs, and as a k-coloring problem.
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The k-coloring limits the used colors to set k number, so that two neighbors do
not have the same color. The algorithm first creates the femtocellular network
topology, then identifies each femtocell as a node, with neighbors connected
via edges, as well as second degree neighbors. The resulting graph is used to
the PCI allocation. The tests were made with a real dataset from Vodafone
Germany 3G sites. The proposed algorithm lets a higher number of femtocells
be deployed in comparison with the existing PMM-GRS method, and a lower
number of PCI‘s are used in a lower computational time.

Kowalik and Socała [72] apply the meet-in-the-middle approach to the
channel assignment problem and the generalized t-coloring problem. The meet-
in-the-middle technique finds partial solutions for all possible halves of the
vertex set, then merging the partial solutions in order to solve the full instances.
This algorithm is also applied to the generalized T-coloring problem, in order
to improve the known upper bound of the problems. The article focuses on the
theoretical ramifications of the algorithm, not on an application.

Acedo-Hernández et al. [14] study the PCI allocation problem. The
authors model it as a graph partitioning problem, in which the graph is
simplified many successive times until the number of vertices is equal to
the desired number of subdomains. In this simplest graph, the partitioning
is then built. Then, the graph is unfolded until the original one, with each
unfolding being succeeded by a local refinement algorithm. The authors test
the algorithm with a real instance, composed of 620 nodes and six different
configurations to the planning method of the algorithm. The results indicate
that the algorithm can eliminate PCI collision and confusion and minimize the
collision for other parameters in most cases, in comparison with the current
solution.

Zhao et al. [13] introduce a greedy channel-based assignment algorithm to
solve the interference in device-to-device communications. After presenting the
exact model for the problem, the authors then show an algorithm that assigns a
color to an uncolored vertex based on the current coloring of the entire system.
The heuristic assigns colors based on the sum of the suffered interference of
a device, allocating the color that has been used last in the neighborhood. A
tabu search is also made for the robust version of the problem. It is shown that
the greedy heuristic has better results and is fairer than the robust, random
and classic heuristics for this problem.

Siddiqi and Sait [11] propose a neighborhood search-based heuristic for
the fixed spectrum frequency assigned problem. This problem has constraints
that specify the needed separation between frequencies in order to minimize
interference. The heuristic has two components: a local search, in which only
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the frequency of one transmitter is changed and whose positivity is evaluated
with a lookup table; and a compound move, which shifts the local search
to a new location in the solution space after a certain number of iterations
without improvement. The algorithm also uses an archive of solutions which
stores the best options found. The authors implemented the code in C++ and
R, the first for the local search and the second to maintain the archive and
compound move. The comparisons on benchmarks with two existing single
solution heuristics show that the proposed one is better in most cases, with its
worst result being, in some cases, better than the best reported result for the
others.

Marsa-Maestre et al. [12] tackle the channel assignment in Wireless Local
Area Network, which is similar to the well-known FAP and GCP. They model
the Wi-Fi infrastructure network as a three layered graph and analyze the
use of nonlinear negotiation approaches with graph properties. The authors
characterize the problem as a negotiation process, in which two protocols
interact in order to improve the candidate coloring. The negotiators have
different decision mechanisms that can be hill-climber, in which the agents
only accept a proposal if its utility is at least the same as the anterior; or
annealer, that follows the simulated annealing strategy. The comparison as
made with the other two strategies, the random and Augmented Lagrangian
Particle Swarm Optimization. The experiment, made on a realistic Wi-Fi
configuration network, show that there is no difference in performance for
simpler graphs, but the annealer SA becomes the best choice as the network
gets more complex.

As can be seen in this section, the FAP is also frequently solved using
heuristics. In fact, genetic algorithms are frequently used, alongside local
searches and greedy algorithms. Like the GCP, the FAP’s constraints are easier
than the RSI’s, as the latter problem calls for a more limited interval of possible
differences between the color of neighbors in comparison with the former.

3.3
T-Coloring Problem

Introduced by Liu [73], this problem indicates that the difference between
the labels of two neighbors must not be a value inside of a set called T. As
the set can be non-sequential, this can be considered a generalization of the
Frequency Assignment Problem. If the possible assigned colors are restricted
to a set, this problem becomes a List T-Coloring [18]. This problem has been
proved as NP-Hard [18].

The aim of this problem is to find a coloring of a graph, such as [18]:
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φ(i) ∈ Λ(i) ∀i ∈ V
|φ(i)− φ(j)| 6∈ T (i, j) ∀(i, j) ∈ E

(3-3)

In the constraints above, the set indicated by T is the number of
values there are forbidden for the edge span. If this set is composed only by
consecutive numbers, then the T-coloring problem (TCP) becomes a FAP.
Otherwise, if the set T only comprises of 0, then the problem becomes a
classical GCP [18]. Lastly, if the set is composed as shown in Equation 3-
4, then the TCP describes correctly the RSI allocation problem. The TCP is,
however, a problem rarely studied in literature, whose authors focus more
on the mathematical characteristics instead of practical uses and solution
methods.

T (i) = [0, . . . ,minDist] ∪ [maxDist, . . . , LRA], ∀i ∈ V (3-4)

Costa [74] studies a generalization of the T-coloring problem, in which
each edge has a minimum difference associated. For this, he adapts both a
Tabu search and a simulated annealing procedure. The Tabu search changes
the color of conflicting nodes only if the pair color-node is not present in the
tabu list, and chooses the best option in the neighborhood. The simulated
annealing also changes the color of conflicting nodes, but can accept a worse
solution with a decreasing probability. The author compares the results with an
exact branch-and-bound algorithm in randomly generated graphs. The branch-
and-bound is only applicable in small graphs, while the tabu search is much
more efficient than the simulated annealing procedure.

Alon and Zaks [75] study algebraic and probabilistic techniques to solve
the T-coloring problem, with a focus on mobile communication networks. The
authors focus on the theoretical characteristics of this problem.

Mcdiarmid [76] applies the T-Coloring Problem for a UHF transmitters
problem with a constraint matrix model. In particular, the author discusses
many different proprieties of this problem, including the upper and lower
bounds and the span of the graph. He focus on the mathematical side of this
problem, and therefore do not experiment with instances or practical results.

Junosza-Szaniawski and Rzążewski [18] introduce an exact algorithm for
the generalized list T-coloring problem. This algorithm uses binary variables to
encode partial k-channel assignments. The authors show that the time of this
algorithm depends on the maximum forbidden difference of the input graph,
as well as present different ways to improve the bounds if the graph has some
special propriety.
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3.4
Other remarks

Table 3.1 presents the many works contemplated in this Literature
Review. As commented in Section 3.1, the Graph Coloring Problem is a
famously difficult problem, but whose constraints are markedly different than
those of the RSI problem. The Frequency Assignment Problem detailed in
Section 3.2 is closer in nature, but it is its generalization, the little explored
T-Coloring Problem, that the RSI allocation problem can be classified as.

It is noticeable that the literature studied in this chapter is very disperse.
There is a tendency to adapt the problem to the author’s circumstances, and
thus a certain difficulty in following already known works. Also of note is
the tendency of using heuristic methods instead of exact ones. This is due to
the difficulty of the problems, considered NP-Hard, and therefore demanding
more sophisticated methods or heuristics to cut the time needed to find good
solutions.

In fact, it is of note the use of genetic algorithms. They are one of the
most frequently used algorithms for graph coloring and correlated problems,
and show varying levels of success, in special when in combination with other
heuristics in hybrid genetic algorithms.

Authors are also inclined to use their own instances in experiments. This
is related to the many adaptations of this problem to real life situations. In
fact, many do start studies in this problem to solve to solve real life issues,
hence do not see a need to adapt old instances to the current settings.
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Author Year Problem Method
Randall-Brown 1972 GCP Randall-Brown
Leighton 1979 GCP RLF
Brélaz 1979 GCP Dsatur
Hale 1980 FAP N/A
Hertz and de Werra 1987 GCP TABUCOL
Johnson et al. 1991 GCP Simulated Annealing
Costa 1993 TCP Tabu Search; Simulated Annealing
Cuppini 1994 FAP Genetic Algorithm
Dorne and Hao 1995 FAP Hybrid Evolutionary Algorithm
Fleurent and Ferland 1996 GCP Hybrid Genetic Algorithm
Costa and Hertz 1997 GCP Ant Colony Algorithm
Smith et al. 1998 FAP Maximal Clique Strategy
Alon and Zaks 1998 TCP Algebraic and Probability
Galinier and Hao 1999 GCP Hybrid Evolutionary Algorithm
Kassotakis et al. 2000 GCP Hybrid Genetic Algorithm
Chakraborty 2001 FAP Many Solutions Generation
Krumke et al. 2001 FAP Distance-2 Coloring Strategy
Chiarandini and Stützle 2002 GCP Iterated Local Search
Alabau et al. 2002 FAP Hybrid Genetic Algorithm
Mcdiarmid 2003 TCP Constraint Matrix Model
Barbosa et al. 2004 GCP Evolutionary Algorithm
Kendall and Mohamad 2004 FAP Hyper-Heuristic
Galinier and Hertz 2006 GCP N/A
Méndez-Díaz and Zabala 2006 GCP Branch-and-Cut
Bui et al. 2008 GCP Ant Colony Algorithm
Méndez-Díaz and Zabala 2008 GCP Cutting Planes
Caramia and Dell’Olmo 2008 GCP Iterated Local Search
Dowsland and Thompson 2008 GCP Ant Colony Algorithm
Malaguti et al. 2008 GCP Evolutionary Algorithm, Set Covering
Mabrouk et al. 2009 GCP Hybrid Genetic Algorithm
Bandh et al. 2009 FAP Greedy Algorithm
Lü and Hao 2010 GCP Memetic Algorithm
Hu et al. 2010 GCP N/A
Ahmed et al. 2010 FAP Local Search
Malaguti et al. 2011 GCP Branch-and-Price
Xu et al. 2011 FAP Hypergraph Coloring
Sun et al. 2012 FAP Genetic Algorithm
Klincewicz 2012 FAP GRASP
Junosza-Szaniawski and Rzążewski 2014 TCP Binary-encoded Assignments
Douri and Elbernoussi 2015 GCP Hybrid Genetic Algorithm
Ahmed and Tirkkonen 2015 FAP Local Search
Pratap et al. 2016 FAP K-Coloring Strategy
Kowalik and Socała 2016 FAP;TCP Meet-in-the-middle Approach
Guo et al. 2017 GCP Cluster Allocation
Acedo-Hernández et al. 2017 FAP Graph Partitioning Strategy
Shukl and Garg 2018 GCP List-based Algorithm
Marappan and Sethumadhavan 2018 GCP Hybrid Genetic Algorithm
Zhao et al. 2018 FAP Greedy Algorithm; Tabu Search
Siddiqi and Sait 2019 FAP Neighborhood Search-based Algorithm
Marsa-Maestre et al. 2019 FAP Negotiation Process Algorithm
Sharma and Chaudhari 2020 GCP Maximal Independent Set Strategy

Table 3.1: Summary of Literature Review
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4
Solving the RSI Allocation Problem

This chapter introduces the proposed solution method for the RSI
allocation problem. As Chapter 3 shows, the Graph Coloring Problem (GCP)
and related problems are all considered NP-Hard [32], so authors tend to
use heuristics to find good solutions in tractable computer time and effort.
Metaheuristic and heuristic methods are frequently used to solve NP-Hard
problems [16]. This is due to the problem’s hardness, which can translate into
exponential computational times in general. This high complexity holds for
the GCP, the Frequency Assignment Problem (FAP), and other graph coloring
problems.

As Chapter 3 shows, heuristic methods are frequently found in the
literature. In particular, the application of Genetic Algorithms is rather
frequent, as detailed by Mostafaie et al [16]. Genetic Algorithms (GA) have
certain advantages for the GCP. They can find good, competitive solutions
in comparison with other methods, with a trend of quick convergence even
in large graphs. On the other hand, they have high exigences of memory and
processing [16]. GAs are some of the first population-based algorithms, and are
inspired in the Darwinian theory, evoking the evolution of a population and
the survival of the fittest individuals [77].

One GA in particular, the Biased Random Key Genetic Algorithm
(BRKGA), introduced by Gonçalves and Resende [78], had many successful
applications in telecommunications problems [7, 79, 80, 81]. However, it has
not yet been used for graph coloring applications.

Thus, this chapter introduces a BRKGA for the RSI allocation problem.
First, the algorithm is presented, then the adaptation of it to the RSI problem
is detailed.

4.1
Biased Random Key Genetic Algorithm

In the BRKGA, a possible solution is defined by an individual chromo-
some, a vector composed of genes indicated by random keys. The algorithm
initiates by creating a population P of |P| chromosomes, so that each gene
of each individual is initialized with a randomly selected number between 0
and 1.

The Decoder procedure obtains the fitness of a certain chromosome,
which is related to the value of the problem’s objective function. At each
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generation, the chromosomes are divided into ELITE or NON-ELITE sets,
depending on their ranking inside of the population, based on their fitness
values.

4.1.1
Evolutionary process

At each generation, three different operators act to create a new popula-
tion: Reproduction, Mutants Generation, and Crossover. Reproduction copies
all |Pe| individuals in the elite set, while Mutants Generation deletes the worst
individuals |Pm| and randomly generates the same number for the new popu-
lation. At last, Crossover creates |P| − |Pm| − |Pe| offspring chromosomes to
fill the population.

In the classical BRKGA [78], Crossover uses two randomly chosen
chromosomes, one from the elite set and the other from the non-elite set.
A new individual is then generated by the mating of the two parents, in which
the choice between genes is biased in favor of the elite one.

This study uses the BRKGA framework from Lucena et al. [82] and
Andrade et al. [83], in which multiple parents can be used for mating. The
algorithm utilizes πe elite parents and πt − πe parents from the non-elite set,
whose genes are selected with a fitness ranking/position-based bias function.
Londe et al [84] have shown the improvement in solution quality gained by
this approach, in comparison with other methods. As Lü and Hao [52] show,
a multi-parent alternative can have better results than the classical one for
genetic approaches to graph coloring.

After reproduction, mutants generation, and crossover steps, a new
cycle of evaluation-selection-evolution takes place repeatedly until a stopping
criterion is met, i.e., the BRKGA runs while a pre-specified number of
generations or a certain processing time is not reached in general. However,
other stopping criteria can be used.

4.1.2
Auxiliary Methods

Warm-start: Classical BRKGA starts by creating the population with ran-
domly generated individuals. Nonetheless, recent works [79, 85, 86] have
shown that the introduction of good solutions on the initial population
increases the performance of the algorithm. This procedure, thus, cre-
ates one or several initial good solutions – normally based on a greedy
algorithm – and introduces them to the initially generated population as
an individual.
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Shaking: Introduced in Andrade et al. [86], this procedure partially re-
initializes the population, so that good genes originated from the con-
vergence will not be lost, as happens in a full resetting. This method
involves the application of random modifications to elite chromosomes
and the re-initialization of the non-elite ones. Thus, the structure of the
elite chromosomes is partially preserved, and the diversity of the non-elite
set is guaranteed.

Resetting: If the shaking procedure does not manage to re-introduce ade-
quate genetic diversity, i.e., the algorithm finds itself stuck on a local op-
timum for a high number of generations, then a full reset may be needed
[87, 88]. This procedure re-initializes the full population with randomly
generated individuals, losing the benefits of convergence but potentially
finding yet unexplored solutions. Resetting prevents premature conver-
gence [89].

Island model: Another tool for preventing premature convergence [87, 89],
the island model involves the evolution of parallel populations, which ex-
change elite individuals after a set amount of generations. This procedure
also improves individual variability [83].

Implicit Path-Relinking (IPR): An intensification strategy, the path-
relinking procedure explores the neighborhood obtained in the path be-
tween two good, distinct solutions [90]. Path-relinking operations nor-
mally depend exclusively on the problem in question. However, the
BRKGA-MP-IPR framework [83] introduces the implicit path-relinking,
which creates the procedure inside the existing BRKGA solution space.
In the same framework, the path-relinking is applied in concert with the
island model, so that different good solutions from distinct populations
in a circular effort from population 1 to 2, from 2 to 3, and from 3 to
1. Those good solutions might be the best ones in the populations or
sampled randomly among the elite sets. There is more than one type of
implicit path-relinking, as show Andrade et al. [83]. Of relevance to this
work is the permutation-based IPR. A permutation-based algorithm con-
siders a permutation of the decision variables by assigning each decision
variable one index of the random-key vector and sorting this vector to
find a possible solution. The permutation-based IPR, thus, observes if an
element is in the same position, in this sorted vector, on both analyzed
individuals. If not, then the base solution is changed, so that the ele-
ment takes the same position as the guide solution [83]. In this case, the
distance between two individuals is calculated as the Kendall tau rank
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Figure 4.1: Flowchart detailing BRKGA for the RSI allocation problem.
Triangles indicate procedures done only once. Circles are procedures that may
happen in each generation, based on pre-specified parameters. Finally, squares
are procedures that are made in all generations.

distance [91], which considers the number of pairwise disagreements be-
tween two ranking lists.

4.2
Solution Procedures using BRKGA

In the next subsections, there are the customized procedures for the RSI
problem, whose procedure order may be observed in Figure 4.1 and parame-
ters, in Table 4.1. In it, the algorithm begins by generating p populations of
|P| random individuals. Afterward, the warm-start solution detailed in sub-
section 4.2.2 is introduced in the populations.

Those individuals pass, then, through the decoding process, obtaining
their respective fitness value. These values are used to rank the individuals as
elite or non-elite. The amount of elite individuals is given by a percentage Pe%
of the total population size.

If possible, then the IPR procedure is called. Path-relinking selects
chromosomes with minimal distance md, and performs the relinking according
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Table 4.1: Main algorithm attributes and control variables.

Parameter Description

p Number of independent populations
|P| Population(s) size
Pe% Percentage of elite individuals
typ Path-relinking type
md Minimal distance between chromosomes for IPR
sel Individual selection for IPR
ps Path percentage/size
g Interval for inter-population migrations
Is Number of iterations for shake calling

Rm Reset iteration multiplier
Pm% Percentage of mutant individuals
πe Number of elite parents in mating
πt Number of total parents in mating

Φ(r) Bias function for mating

to type typ. The elite individuals are selected depending on criteria sel, while
ps controls the maximum path size. This maximum path size is computed as
a percentage of the chromosome size.

After path-relinking, it is possible to migrate elite individuals between
different populations. This happens after g generations without a betterment
of the optimal solution. Similarly, if Is generations have passed without an
improvement, then the shaking procedure may be called. Finally, if there are
Is · Rm generations without improvement, then a full reset of the populations
is performed.

The algorithm, then, checks if the stopping rule has been satisfied. If
not, then the evolutionary process is performed, with reproduction, mutant
generation, and crossover phases. In reproduction, all elite chromosomes are
copied, while mutant generation deletes a percentage Pm% of the worst
chromosomes and creates the same amount with randomly generated keys.
Finally, crossover performs mating between πt parents, of which πe are elite
individuals. As a criterion for selecting genes in mating, the algorithm uses
the bias function indicated as Φ(r), which considers the rank r of the selected
parents in relation to each other. Afterward, the algorithm goes back to the
decoding phase and performs its procedures until the stopping criteria is
satisfied.

Six different decoders were customized for this problem, each using
a different strategy. These decoders use several ways of interpreting the
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chromosome, or even different chromosome characteristics, in order to obtain
a possible coloring for the graph.

One may note that all decoders permit illegal colorings, i.e. colorings
in which the minimum-maximum difference is not respected. These conflicting
edges are penalized in the optimal function by a constant factor C. In addition,
a procedure for correcting the illegal colorings can be performed as a part of
all decoders. This procedure is detailed in Subsection 4.2.10.

4.2.1
Fitness Value Calculation

The decoders obtain the coloring cost separately, as shown in Algo-
rithm 1. In it, lines 3–5 detail the procedure to identify the number of conflict-
ing edges, by checking if the minimum-maximum difference is not respected.
Then, between lines 6–16 the coloring cost is calculated. In the first case, the
number of changes in configuration is obtained by comparing the old and new
RSI configuration of each vertex (Lines 6–10). For the second case, the cost is
calculated with the minimal edge span in Lines 12–16. It is of note that the
minimal edge span has to be the value of a legally colored edge.

After the cost is first calculated, two procedures can be performed, the
correction procedure, and the local search. These procedures are detailed in
Subsections 4.2.10 and 4.2.11.

4.2.2
Warm Start

For the RSI allocation problem, the warm start procedure colors the ver-
tices with the smallest possible color, considering the minimum and maximum
difference between the RSI of vertices. This procedure colors the vertices in
non-increasing degree order, i.e., the vertices with higher degrees are colored
first. The solution generated by this procedure may be infeasible.

This procedure uses the initial coloration for both objectives. The initial
coloration is more important for the minimize changes objective, but it is also
considered for the maximize minimal span case.
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Algorithm 1: Obtaining the coloring cost.
Input: Vector RSI ∈ Zn where n is the number vertices; type of objective.
Output: Total coloring cost.

1 Initialize NumChanges, NumConflicts as zero;
2 Initialize MinEdgeSpan as MaxDist;
3 foreach (i, j) ∈ E do
4 if (MaxDist < |RSIi − RSIj |) or (MinDist > |RSIi − RSIj |) then
5 NumConflicts← NumConflicts + 1;

6 if Objective is “minimize Changes” then
7 foreach i ∈ V do
8 if RSIi 6= OldRSIi then
9 NumChanges← NumChanges + 1;

10 ColoringCost← NumChanges + C · NumConflicts;
11 else // Objective is maximize minimal edge span
12 foreach (i, j) ∈ E do
13 if MaxDist ≥ |RSIi − RSIj | ≥ MinDist then
14 if |RSIi − RSIj | ≤ MinEdgeSpan then
15 MinEdgeSpan← |RSIi − RSIj |;

16 ColoringCost← MinEdgeSpan− C · NumConflicts ;
17 if NumConflicts ≥ 0 then
18 ColoringCost← Correction(RSI);
19 ColoringCost← Local Search(RSI, ColoringCost);
20 return ColoringCost

4.2.3
Logic Direct decoder (LD)

The Logic Direct decoder (LD) is named as such due to its use of logical
variables for the relationship between the values of the RSI of neighbor nodes.
These boolean variables indicate, in the end, whether a vertex can or cannot
be colored with a given RSI. This decoder interprets the chromosome as the
order in which vertices are colored, being thus n-sized, with n indicating the
number of vertices in the instance.

Algorithm 2 shows the procedure of this decoder. The decoder starts
by assigning the old configuration to the first vertex in the non-increasing
order. All other vertices pass by a check, seeing if the previous configuration
is possible with aid of the logical relation in Line 9. If the old configuration is
not possible (Line 12), then all possible colors are checked in increasing order,
with the loop in Line 16. If the vertex could not be colored with any of the
other possible RSI values, the vertex is allocated its previous configuration
regardless of its impossibility.
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Algorithm 2: Coloring the graph – decoder LD.
Input: Chromosome/vector v ∈ [0, 1]n where n is the number of vertices.
Output: Total coloring cost.

1 Let γ to be a permutation of vertices induced by the non-decreasing order
of corresponding keys in v;

2 Initialize RSI as zero-vector;
3 foreach i ∈ γ in the given order do
4 if i is first in order then
5 RSIi ← OldRSIi;
6 else
7 CandidateColor← OldRSIi;
8 Possible← true;
9 foreach j adjacent to i and RSIj 6= 0 do

10 if (|RSIj − CandidateColor| > MaxDist) or
(|RSIj − CandidateColor| < MinDist) then

11 Possible← false;

12 if Possible then
13 RSIi ← CandidateColor;
14 else
15 CandidateColor← minRSI;
16 while CandidateColor ≤ maxRSI do
17 foreach j adjacent to i and RSIj 6= 0 do
18 if (|RSIj − CandidateColor| > MaxDist) or

(|RSIj − CandidateColor| < MinDist) then
19 Possible← false;

20 if Possible then
21 RSIi ← CandidateColor;
22 break;
23 else
24 CandidateColor← CandidateColor + 1;

25 if RSIi = 0 then
26 RSIi ← OldRSIi;

27 ColoringCost← CalculateCost(RSI);
28 return ColoringCost

4.2.4
Logic Indirect Decoder (LI)

Similar to the Logic Direct Decoder, the Logic Indirect Decoder also
considers the logical constraints. However, in this variant, indirect neighbors
(i.e., neighbors of neighbors) are also taken into consideration. This is the only
difference between these two logic decoders.

The relationship between neighbors of neighbors can be defined as
follows: Let i, k ∈ V be two vertices so that (i, j), (j, k) ∈ E exist for at
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least one vertex j ∈ V . The values for RSIi and RSIk must obey the relation
shown in either Equations (4-1a) and (4-1b), or (4-2), which depends of the
values of MinDist and MaxDist.

2 ·MaxDist ≥ |RSIi − RSIk| ≥ 2 ·MinDist (4-1a)

MaxDist−MinDist ≥ |RSIi − RSIk| (4-1b)

2 ·MaxDist ≥ |RSIi − RSIk| (4-2)

To better illustrate this relationship, Figures 4.2–4.4 show the process
to obtain these mathematical relations for the case shown in Equations (4-1a)
and (4-1b). First, as shown in Figure 4.2, the possible values for X’s RSI in
relation to A, and Y’s in relation to X.

The objective is to obtain Y’s possible RSI in relation to A, which will be
done by moving the center of Y’s range to each of the diamonds named α, δ, η,
and ζ in X’s range, with Y’s ranges being indicated in a blue left-inclined
hatch. This is shown, for each diamond, in Figure 4.3. The last range of this
figure indicates the union of the four previous ranges.

Finally, this last object of Figure 4.3 is explored in Figure 4.4, which
shows the relations between the blue zones and the center of the interval. As
such, Y’s RSI in relation to A’s must be in the blue left-inclined hatch, which,
when considering the hole of the absolute operator, means one of two zones.

For Equation 4-2, the difference between the maximal and minimal
distance or the RSI of neighbors must be higher than twice the minimal
distance. This would cause the two intervals to intercept each other, and thus
only the maximal distance would be a restriction.

Algorithm 3 presents the pseudo-code for this decoder. It starts similarly
to the previous decoder, with the addition of the indirect neighbors check in
Lines 12–18. These lines guarantee that the color of an indirect neighbor will
not influence negatively in the legality of the vertex.
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Figure 4.2: Illustration of the relation between neighbors. In this, the upper
range shows X’s possible RSI values in relation to node A, and the lower, Y’s
in relation to X.

Figure 4.3: The possible mathematical relation between Y’s and A’s RSI
obtained by adding Y’s range to A’s RSI in turn. This is observed by the
blue left-inclined hatch. The lowest object is the union of the four previous
ones.

Figure 4.4: Close up of the lowest range of Figure 4.3. The mathematical
relation between the center of the range and the blue left-inclined ranges can
be observed.
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Algorithm 3: Coloring the graph – decoder LI.
Input: Chromosome/vector v ∈ [0, 1]n where n is the number of vertices.
Output: Total coloring cost.

1 Let γ to be a permutation of vertices induced by the non-decreasing order of corresponding keys
in v;

2 Initialize RSI as zero-vector;
3 foreach i ∈ γ in the given order do
4 if i is first in order then
5 RSIi ← OldRSIi;

6 else
7 CandidateColor← OldRSIi;
8 Possible← true;
9 foreach j adjacent to i and RSIj 6= 0 do

10 if (|RSIj −CandidateColor| > MaxDist) or (|RSIj −CandidateColor| < MinDist) then
11 Possible← false;

12 foreach j adjacent to i and RSIj = 0 do
13 foreach k adjacent to j and RSIk 6= 0 do
14 if |RSIk − CandidateColor| > 2 ·MaxDist then
15 Possible← false;

16 if 2 ·MinDist > MaxDist−MinDist then
17 if 2 ·MinDist > |RSIk − CandidateColor| and

|RSIk − CandidateColor| > MaxDist−MinDist then
18 Possible← false;

19 if Possible then
20 RSIi ← CandidateColor;

21 else
22 CandidateColor← minRSI;
23 while CandidateColor ≤ maxRSI do
24 foreach j adjacent to i and RSIj 6= 0 do
25 if (|RSIj − CandidateColor| > MaxDist) or

(|RSIj − CandidateColor| < MinDist) then
26 Possible← false;

27 foreach j adjacent to i and RSIj = 0 do
28 foreach k adjacent to j and RSIk 6= 0 do
29 if |RSIk − CandidateColor| > 2 ·MaxDist then
30 Possible← false;

31 if 2 ·MinDist > MaxDist−MinDist then
32 if 2 ·MinDist > |RSIk − CandidateColor| and

|RSIk − CandidateColor| > MaxDist−MinDist then
33 Possible← false;

34 if Possible then
35 RSIi ← CandidateColor;
36 break;

37 else
38 CandidateColor← CandidateColor + 1;

39 if RSIi = 0 then
40 RSIi ← OldRSIi;

41 ColoringCost← CalculateCost(RSI);
42 return ColoringCost

4.2.5
Simple Coloring Decoder (SC)

The Simple Coloring Decoder also uses an n-sized chromosome, but
instead of ordering the vertices, this decoder uses directly the value of each
gene. The possible RSI values are normalized so that each gene correspond
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Algorithm 4: Coloring the graph – decoder SC.
Input: Chromosome/vector v ∈ [0, 1]n where n is the number of vertices.
Output: Total coloring cost.

1 Let τ to be the gene value of vertices induced by the value of corresponding
keys in v;

2 Initialize RSI as zero-vector;
3 foreach i ∈ τ do
4 RSIi ← τi · (maxRSI−minRSI) + minRSI;
5 ColoringCost← CalculateCost(RSI);
6 return ColoringCost

directly to a RSI, which is then allocated to its vertex. This decoder is presented
in Algorithm 4.

This decoder has the characteristic of generating many infeasible solu-
tions, in comparison with its counterparts, due to the strong random compo-
nent in its generation.

4.2.6
Ordered Restricted Coloring Decoder (OR)

The Ordered Restricted Coloring Decoder uses a 2n-sized chromosome,
in which n refers to the number of vertices in the instance. In this case, genes
between [0, n−1] are used to extract an ordering of vertices and genes [n, 2n−1]
correspond to a position inside the set of allowed RSI of a vertex. These
allowed RSI are obtained by the neighborhood relationships between colored
and uncolored neighbors of a vertex, and they are updated each time a vertex
is colored.

Algorithm 5 presents this approach. In Lines 5–14, either the vertex
receives the color indicated by gene value, or, if the list of allowed RSI is
empty, the color of its previous configuration. Then, as shown in Lines 15–28,
the list of allowed RSI of neighbor vertices is updated.

4.2.7
Color Ordered by Degrees Decoder (KD)

Differing from the previous decoders, the Color Ordered by Degrees
Decoder uses a k + 1-sized chromosome, with k indicating the number of
possible colors. This decoder gives an ordering of colors. The vertices are
ordered by decreasing values of degrees. This is so that vertices with the
potential to create more conflicts (i.e., more difficult vertices) are colored
preferably before the others.
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Algorithm 5: Coloring the graph – decoder OR.
Input: Chromosome/vector v ∈ [0, 1]2n where n is the number of vertices.
Output: Total coloring cost.

1 Let γ to be a permutation of vertices induced by the non-decreasing order
of corresponding [0, n− 1] keys in v;

2 Let τ to be the gene value of vertices induced by the value of corresponding
[n, 2n− 1] keys in v;

3 Initialize RSI as zero-vector;
4 Initialize AllowedRSI with all values from minRSI to maxRSI for each vertex;
5 foreach i ∈ γ in the given order do
6 if i is first in order then
7 RSIi ← OldRSIi;
8 else
9 if AllowedRSIi 6= Empty then

10 position← τi· size of AllowedRSIi;
11 RSIi ← AllowedRSIi,position
12 else
13 RSIi ← OldRSIi;

14 AllowedRSIi ← Empty;
15 foreach j adjacent to i do
16 if AllowedRSIj 6= Empty then
17 foreach k ∈ AllowedRSIj do
18 if |k − RSIi| < MinDist or |k − RSIi| > MaxDist then
19 Remove k from AllowedRSIj ;

20 foreach l adjacent to j do
21 if AllowedRSIl 6= Empty then
22 foreach k ∈ AllowedRSIl do
23 if 2 ·MinDist ≤ MaxDist−MinDist then
24 if |k − RSIi > 2 ·MaxDist| then
25 Remove k from AllowedRSIl;

26 else
27 if |k − RSIi| > 2 ·MaxDist or

((|k − RSIi| < 2 ·MinDist) and
(|k − RSIi| > MaxDist−MinDist)) then

28 Remove k from AllowedRSIl;

29 ColoringCost← CalculateCost(RSI);
30 return ColoringCost

The Welsh-Powell [92] algorithm for graph coloring is similar to this
decoder. This algorithm consists of the iterative coloring of non-adjacent
vertices, whose degrees are non-increasing, with the same colors. Note that
the Welsh-Powell algorithm is used for the classical GCP to find an upper
bound for the chromatic number of graphs. Moreover, its strategy depends
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heavily on a GCP-specific characteristic, that of differing values for adjacent
vertices. However, this characteristic is not useful for generalizations of the
GCP, such as the RSI allocation problem.

Algorithm 6 presents this decoder. By following the order of colors and
the order of degrees, the decoder checks each vertex to verify the feasibility of
using the color as in the previous configuration (Lines 4–13). Afterward, all
still uncolored vertices have the other possible colors checked as possibilities,
as show Lines 14–23. If a vertex is still uncolored, then it is assigned its old
configuration, as presented in Lines 24–26.

4.2.8
Color and Vertex Ordered Decoder (KC)

Similar to the previous decoder, the Color and Vertex Ordered Decoder
uses both orders of colors and vertices to obtain a coloring for a graph. However,
instead of obtaining the order of vertex from the network configuration, this
decoder obtains it from the chromosome. The first part of the chromosome
[0, k + 1] has the order of the colors, while the second part [k + 2, k + n + 1]
becomes the order of the vertices. Note that k indicates the number of colors,
and n indicates the number of vertices in the instance.

Algorithm 7 presents this decoder. With the order of colors and the
order of degrees, the decoder starts by checking, in order, each vertex with
the color as the previous configuration (Lines 4–13). Afterward, all still
uncolored vertices have the other possible colors checked as possibilities, as
show Lines 14–23. If a vertex is still uncolored, then it is assigned its old
configuration, as presented in Lines 24–26.

4.2.9
Shaking and reset

As the shaking procedure is correlated with chromosome representation,
the different interpretations of the developed decoders must be considered in
this approach. Thus, two types of shaking procedures were implemented in
this work. Algorithm 8 brings the shaking procedure applied with decoders
LD, LI, KD, KC, and the first n genes of OR. Algorithm 9 details the shaking
procedure applied with decoders SC and the last n genes of OR.

Both reset and the shaking procedures are called if a given number of
iterations has happened without any improvement in the best solution. The
amount of iterations for reset is a multiple of the number of iterations until
shaking, i.e., shaking always occurs first and more frequently than reset.
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Algorithm 6: Coloring the graph – decoder KD.
Input: Chromosome/vector v ∈ [0, 1]k+1 where k + 1 is the number of

possible colors.
Output: Total coloring cost.

1 Let κ be a permutation of colors induced by the non-decreasing order of
corresponding keys in v;

2 Let δ to be a permutation of vertices induced by the non-increasing order of
corresponding degrees;

3 Initialize RSI as zero-vector;
4 foreach k ∈ κ in the given order do
5 foreach i ∈ δ in the given order do
6 if OldRSIi = k and RSIi = 0 then
7 Possible← true;
8 foreach j adjacent to i do
9 if RSIj 6= 0 then

10 if |RSIj − k| > MaxDist or |RSIj − k < MinDist| then
11 Possible← false;

12 if Possible then
13 RSIi ← k;

14 foreach k ∈ κ in the given order do
15 foreach i ∈ δ in the given order do
16 if OldRSIi 6= k and RSIi = 0 then
17 Possible← true;
18 foreach j adjacent to i do
19 if RSIj 6= 0 then
20 if |RSIj − k| > MaxDist or |RSIj − k < MinDist| then
21 Possible← false;

22 if Possible then
23 RSIi ← k;

24 foreach i ∈ δ in the given order do
25 if RSIi = 0 then
26 RSIi ← OldRSIi;

27 ColoringCost← CalculateCost(RSI);
28 return ColoringCost

4.2.10
Correction Procedure

The corrective procedure only happens if there are conflicts, i.e., the
coloring is illegal for a certain solution. This procedure was inspired by the one
in Krumke et al. [63] and interprets the chromosome as a tree-like structure.
The procedure visits the adjacent nodes of all already visited vertices and
changes the coloring of these neighbors if the edge is in conflict. All vertices
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Algorithm 7: Coloring the graph – decoder KC.
Input: Chromosome/vector v ∈ [0, 1]k+1+n where k + 1 is the number of

possible colors and n, the number of vertices.
Output: Total coloring cost.

1 Let κ to be a permutation of colors induced by the non-decreasing order of
corresponding [0, k + 1] keys in v;

2 Let γ to be a permutation of vertices induced by the non-decreasing order
of corresponding [k + 2, k + 1 +N ] keys in v;

3 Initialize RSI as zero-vector;
4 foreach k ∈ κ in the given order do
5 foreach i ∈ γ in the given order do
6 if OldRSIi = k and RSIi = 0 then
7 Possible← true;
8 foreach j adjacent to i do
9 if RSIj 6= 0 then

10 if |RSIj − k| > MaxDist or |RSIj − k < MinDist| then
11 Possible← false;

12 if Possible then
13 RSIi ← k;

14 foreach k ∈ κ in the given order do
15 foreach i ∈ γ in the given order do
16 if OldRSIi 6= k and RSIi = 0 then
17 Possible← true;
18 foreach j adjacent to i do
19 if RSIj 6= 0 then
20 if |RSIj − k| > MaxDist or |RSIj − k < MinDist| then
21 Possible← false;

22 if Possible then
23 RSIi ← k;

24 foreach i ∈ γ in the given order do
25 if RSIi = 0 then
26 RSIi ← OldRSIi;

27 ColoringCost← CalculateCost(RSI);
28 return ColoringCost

are visited, and coming back to an already visited vertex is not allowed. The
correction procedure ends when all vertices have been visited.

This procedure is effective in finding feasible solutions from infeasible
ones, but it may still result in infeasible solutions.
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Algorithm 8: Shaking for permutation genes.
1 foreach Chromosome ∈ Elite Set do
2 NumberGenes ← ShakingStrenght · n ·Random;
3 for 0 ≤ i ≤ NumberGenes do
4 target← Random · n;
5 Chromosome[target]← Chromosome[target+ 1];
6 Chromosome[target+ 1]← Chromosome[target];

7 Reset all non-elite chromosomes;

Algorithm 9: Shaking for non-permutation genes.
1 foreach Chromosome ∈ Elite Set do
2 NumberGenes ← ShakingStrenght · n ·Random;
3 for 0 ≤ i ≤ NumberGenes do
4 target← Random · n;
5 Chromosome[target]← 1− Chromosome[target];

6 Reset all non-elite chromosomes;

4.2.11
Local Search

The local search procedure occurs at the end of every decoding and tries
to find better solutions in the 1-color exchange solution space. The local search
for both objectives can be based on either Best Improvement (BI) or First
Improvement (FI) strategies. In addition, local search BI may be performed
on only part of the solution space. This characteristic is defined by a percentile
LS% of the available vertices in each instance.

For the minimizing changes objective, the local search procedure changes
the new color of a vertex to its old coloring and then recalculates the related
coloring cost. If a vertex already has its old configuration, then the procedure
skips it.

The maximize minimal span objective has a different procedure. For each
vertex, it identifies its smallest legal edge. Then, the adjacent vertex related
to this edge has its color changed to the best available value, which would be
the one that increases the most the edge value without violating the maximal
possible difference of the instance. In the case of the vertex having no legal
edges, then it is skipped by the procedure. This case is illustrated in Figure 4.6.
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Figure 4.5: Representation of the Correction Procedure. In it, the procedure
starts at vertex C, then visiting its neighbors A and E. As the edges (C,A)
and (C,E) are legal, then the procedure goes to the not visited neighbors of
both A and E in turn. It is of note that there is an edge (A,E) in the graph -
and that it would be recolored if analyzed, but in this case, by starting with
C, the procedure ignores that edge.

Figure 4.6: Representation of Local Search for the maximizing minimal span
objective. In this, the smallest legal edge of vertex A corresponds to the edge
(A,D). Thus, vertex D has its color changed, so that the difference is the
maximum possible while considering instance maximal edge and possible color
values. Note that edge (A,E) is the smallest of A, but it has a smaller value
than the minimal possible and, thus, it is ignored by the procedure.
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5
Results and Discussion

This chapter shows the results of this work. First, the characteristics of
the used instances are detailed. Then, the results of the mathematical models
proposed in Chapter 2 are explained. Afterward, the results of the BRKGA
described in Chapter 4 are discussed.

5.1
Instances

The developed methods are applied on 139 novel instances based on real
scenarios of a global telecommunications company. They are divided into two
groups which indicate whether the RSI is in the long or short sequence, with
82 long sequence instances and 57 short sequence instances. Each instance
has a number of vertices, the minimum and maximum distances, the old
configuration of each node, and the existing edges. As for nomenclature, the
instances are named by instance group, followed by the number of vertices,
minimal distance, and maximal distance between the RSI of neighbors. For
example, instance long_n0030_r030_150 is a 30-vertex-sized instance of the
long sequence group, with a minimal distance of 30 and maximal distance of
150. The instances are described in Appendix A.

Tables 5.1 and 5.2 summarize statistical characteristics of those instances.
In Table 5.1, the number of vertices is explored, with “Mean” being the average
number of vertices in the instances of the sequence, while “σ” is the standard
deviation of the vertices, “Median” is the median number of vertices, and
“Min” and “Max,” the the minimal and maximal amount of vertices among
the instances of the sequence. Table 5.2 uses the same statistical characteristics
in relation to the density of the graphs. The density of a graph is defined as
shown by Equation 5-1, in which |E| is the number of edges and |V |, the
number of vertices.

Density = 2 · |E|
|V | · (|V | − 1) (5-1)

As can be seen in Table 5.1, the instances of different groups clearly
differ in size, with long sequence instances being larger and more distributed
regarding the number of vertices in comparison with the short sequence ones.

On the other hand, Table 5.2 indicates that the sequences have similar
characteristics, as they have close numbers in all metrics noted in the table.
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Table 5.1: Comparison between instances of the short and long sequence, in
vertex characteristics.

Vertices
Sequence # inst. Mean σ Median Min Max
Long 82 497.44 763.21 188 30 4125
Short 57 228.37 261.64 95 30 1348

Table 5.2: Comparison between instances of the short and long sequence, in
density characteristics.

Density
Sequence # inst. Mean σ Median Min Max
Long 82 0.10 0.089 0.073 0.005 0.36
Short 57 0.12 0.092 0.093 0.012 0.36

As density is calculated by the relation between vertex and edge amounts, this
indicates that the instances are similarly constructed. This may be related
to the fact that, as the antennas are distributed on the earth’s surface, they
represent almost-plane graphs. They are not completely plane graphs, as the
intersection of the different antennas is a characteristic of this problem and
non-compatible with the definition of a plane graph.

Note that the amount of possible integer solutions for each instance is
calculated by nk (with n as vertex number and k the number of possible colors).
This amount considers both feasible and infeasible solutions.

The amount of optimal solutions for each instance is influenced by
the objective function analyzed, as the presence of symmetrical solutions
cannot be ignored. The minimizing changes objective will have a number of
optimal solutions related to the number of vertices with non-zero RSI as old
configuration. Meanwhile, the maximizing minimal edge span objective has a
dependency on the number of edges. This second objective has, thus, a higher
amount of possible symmetrical optimal solutions in comparison to the first
one.

5.2
Computational Environment and parameters

The experiments were conducted on a cluster of identical machines, each
with processor Intel Xeon E5-2650 CPU 2.0 GHz (12 cores / 24 threads)
and 128 GB of RAM, running CentOS Linux 6.9. For the mathematical
models, solver IBM ILOG CPLEX 12.10 was used, while BRKGA-MP-IPR
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was programmed on C++, both on a maximum of one hour, four threads, and
100 GB of RAM.

As BRKGA-MP-IPR has a higher amount of parameters for tuning than
classical BRKGA, the application of design of experiments for tuning each
parameter is too complex and time-consuming. Therefore, the iterated racing
procedure was used to perform the parameter tuning. This method consists
of three steps: the sampling of configurations from a particular distribution,
the selection of the best ones using a statistic method, and the refining of the
sampling distribution.

The irace package [93] was used for the tuning, with a budget of 3,000
experiments over 30 of the available instances, with 15 of each instance group.
Each experiment, i.e. BRKGA-MP-IPR run, was limited to 1,800 seconds. To
tune the BRKGA-MP-IPR parameters, the following ranges were used:

– population size |P| ∈ [100, 500];

– percentage of elite individuals Pe% ∈ [0.1, 0.5];

– percentage of mutants introduced at each generation Pm% ∈ [0.1, 0.5];

– number of elite individuals and total number of parents for mating pro-
cedure (πe, πt) ∈ {(1, 3), (2, 3), (2, 6), (3, 6), (4, 6), (3, 10), (5, 10), (7, 10)};

– bias function for mating Φ(r) ∈ {1/ log(r + 1), r−1, r−2, r−3, e−r, 1/πt};

– number of independent populations p ∈ [1, 3];

– minimum distance between chromosomes for path-relinking md ∈
[0.0, 0.3];

– individual selection sel ∈ {RE,BS}, where RE indicates random elite
individuals, and BS indicates best solutions from different populations;

– path percentage/size ps% ∈ [0.01, 1.00];

– interval for exchange individuals between populations g ∈ [50, 500];

– shake interval without an improvement in the population’s best solution
(population stall) Is ∈ [20, 100];

– reset multiplier Rm ∈ [1.1, 2.0];

– local search type LS ∈ {NLS,FI,BI}, in which NLS indicates no local
search, FI means first improvement strategy, and BI means best improve-
ment strategy;

– percentage of neighbors the local search LS% ∈ [0.1, 1.0], which indicates
the percentage of the available vertices in each instance to be explored
in the local search BI;
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– correction procedure CR ∈ {TRUE ,FALSE}, in which TRUE indicates
that the correction procedure is performed inside the decoder, and
FALSE, that it is never performed.

We use “permutation” path relinking type (typ) since almost all decoders
are permutation-based. The maximum IPR time is given by the remaining time
when it is called.

Tables 5.3 and 5.4 show the suggestions made by irace that were used
in the experiments. Those suggestions are the first line of the tables shown in
Appendix B. We picked the values of the first line of each table, rounded up
to two digits for real values, and round to the next multiple of ten, in the case
of integer values.

Table 5.3: Best parameter configurations suggested by irace for decoders of
the minimizing change objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

LD 772 0.39 0.14 3,10 r−2 2 0.12 RE 0.86 242 180 3.34 NLS 0.46 FALSE
LI 963 0.36 0.14 3,10 r−2 1 0.08 BS 0.41 223 123 3.88 NLS 0.11 TRUE

OR 277 0.42 0.19 3,6 e−r 1 0.27 BS 0.45 475 164 1.67 NLS 0.49 TRUE
SC 1752 0.37 0.14 7,10 r−1 1 0.06 BS 0.94 325 276 4.00 FI 0.62 FALSE
KD 609 0.41 0.20 3,10 r−2 1 0.04 BS 0.07 229 198 2.84 FI 0.51 TRUE
KC 1647 0.40 0.12 3,10 r−2 1 0.15 BS 0.41 176 153 2.91 NLS 0.38 FALSE

Table 5.4: Best parameter configurations suggested by irace for decoders of
the maximizing minimal span objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

LD 1010 0.38 0.10 5,10 r−2 1 0.02 BS 0.30 107 270 2.93 FI 0.97 TRUE
LI 1010 0.38 0.10 5,10 r−2 1 0.02 BS 0.30 107 270 2.93 FI 0.96 TRUE

OR 619 0.35 0.12 3,10 e−r 1 0.06 BS 0.88 398 167 3.64 FI 0.39 TRUE
SC 4902 0.27 0.13 2,6 e−r 2 0.02 RE 0.38 307 144 4.99 NLS 0.45 FALSE
KD 1268 0.13 0.31 1,3 e−r 2 0.18 BS 0.45 463 128 1.31 FI 0.86 TRUE
KC 2304 0.34 0.23 5,10 e−r 1 0.01 RE 0.33 441 123 1.65 FI 0.51 TRUE

5.3
Results of the proposed mathematical models

The results of the mathematical models are separated by objective and
sequence and compared among themselves. The preliminary results were also
shown in Londe et al. [29].
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Recall that formulations NC and NS are composed of non-linear restric-
tions, while LC and LS are linear. NC and LC try to minimize the number
of changes in RSI allocation, and thus their results are compared in Subsec-
tion 5.3.1, whilst NS and LS maximize the smallest edge span and are shown
in Subsection 5.3.2. More detailed results can be seen in Appendix D.

To clarify what a expected result should be, Figure 5.1 portrays the
optimal solution for instance long_n0030_r030_150. In this case, the objective
was to minimize RSI changes.

Figure 5.1: Optimal solution for instance long_n0030_r030_150. RSI values
are indicated on each node, and a gray coloring implies that the configuration
of the vertex was not changed.

According to our experiments, 40 instances (28%) had no feasible solution
found by, at least, one of the formulations. Of these 40 instances, 17 (12%) we
did not find at least one feasible solution with any of the proposed exact
models, which is an indicator of the hardness of this problem. These instances
with no solutions can be seen in Appendix D and are, thus, not considered in
the comparison, with eight in the short sequence and nine in the long sequence.
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5.3.1
Objective: minimize changes

In this subsection, the results for the mathematical models regarding the
minimizing change objective are introduced. This subsection shows the results
separately for the short and long sequence instance groups.

5.3.1.1
Short Sequence

For the 49 short sequence instances that have at least one feasible result
found, a summary of the results can be seen in Table 5.5.

Table 5.5: Summary of results for the short sequence, in the minimizing change
objective function. We consider 49 instances that had at least one feasible
result.

Unsolved Optima Non-optima

# Avg. vertex # Avg. time(s) # Avg.GAP(%)

LC 0 NA 10 1900 39 22.98
NC 4 479.00 6 822 39 25.49

Comparing both models, it is observable that models LC and NC have
quite similar performances among the different instances. One may note that
the set of 39 non-optima instances differ between the two models – in fact,
only 15 instances had an optimum found in this case. It can be seen that the
LC model found feasible solutions for all 49 possible instances, while NC had
a slightly worse performance, with only 45 instances. LC also had a higher
amount of optima found but with approximately the double average time than
that of NC - something surprising when considering the linear nature of LC.

In fact, model NC found the optimal solutions to the easiest instances
and did not find the optima for the hardest ones due to the time constraint of
one hour. Meanwhile, LC found more optimal solutions close to the time limit,
thus increasing its average time for the optimal solutions.

Both models have similar performances for the non-optima solutions,
with 39 instances and a close average GAP. This indicates that the solution
quality of both, for the non-optima, is quite close, with LC solutions being
slightly better.
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5.3.1.2
Long Sequence

For the 73 short sequence instances that had at least one result feasible
found, a summary of the results can be seen in Table 5.6.

Table 5.6: Summary of results for the long sequence, in the minimizing change
objective function. We consider 73 instances that had at least one feasible
result.

Unsolved Optima Non-optima

# Avg. vertex # Avg. time(s) # Avg.GAP(%)

LC 10 609.40 11 538 52 23.55
NC 10 465.00 5 362 58 34.40

The results indicate that model LC managed to find optimal results for
more than the double of instances that NC. In fact, this behavior happened
with higher average times – as did also for the short sequence ones. Again,
this probably is a reflection of the higher times needed to find the solution for
more difficult instances.

This result is corroborated by the fact that, for the same amount of
unsolved instances, the average number of vertices for LC was considerably
higher than NC. This measure is related to instance size and can be considered
indicative of the instance difficulty.

Finally, model LC had a significantly smaller average GAP among the
non-optimal solutions than NC. This is another indication of LC’s higher
solution quality in relation to its counterpart NC.

Also, note that the models performed similarly in the long sequence in
comparison with the short sequence. The percentile of non-optimal instances is
close for both LC (71% in the long sequence versus 79% in the short sequence)
and NC (79% in both sequences).

The average time to reach optimal solutions is smaller for both models
in the long sequence, in comparison with the short sequence. That is curious,
as the long sequence appears to need more computational time and effort to
find better solutions, and, yet, the optima were found in less average time.
The need for more processing time in the long sequence mentioned would be
related to the increase in both variable and restraint amounts, in comparison
with the short sequence.
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5.3.2
Objective: maximize minimum edge span

In this subsection, the results for the mathematical models regarding the
maximizing minimal edge span objective are introduced. This subsection shows
the results separately for the short and long sequence instance groups.

5.3.2.1
Short Sequence

Table 5.7 presents the results for the maximizing minimal span objective
of the short sequence instances.

Table 5.7: Summary of results for the short sequence, in the maximizing
minimal edge span objective function. We consider 49 instances that had at
least one feasible result.

Unsolved Optima Non-optima

# Avg. vertex # Avg. time(s) # Avg.GAP(%)

LS 0 NA 4 957 45 274.16
NS 5 354.60 2 1524 42 265.66

LS and NS results show that those models have similar difficulties in
finding optimal solutions for this objective and sequence. In fact, NS difficulties
are of note, as it has a considerably worse performance in comparison with its
counterpart NC for the other objective. Similar to its counterpart LC in the
short sequence, LS also found feasible solutions for all 49 possible instances. LS
found also higher amounts of optimal solutions, with a smaller average time,
and similar GAP for the non-optimal solutions.

5.3.2.2
Long Sequence

Table 5.8 presents the results for the maximizing minimal span objective
of the long sequence instances.

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Chapter 5. Results and Discussion 70

Table 5.8: Summary of results for the long sequence, in the maximizing minimal
edge span objective function. We consider 73 instances that had at least one
feasible result.

Unsolved Optima Non-optima

# Avg. vertex # Avg. time(s) # Avg.GAP(%)

LS 5 973.80 6 1124 62 587.97
NS 11 589.91 0 NA 62 1004.25

On this sequence and objective, the linear model LS appears to have
a better performance when compared with its counterpart NS. In fact, not
only was LS the only one that found optimal solutions in this case, but also
a smaller by half average GAP for the non-optima, lower number of unsolved
instances, and higher number of vertices on those unsolved instances, which
indicates bigger and harder instances.

Comparing the results from both sequences on this objective, it can be
seen that the long sequence, again, has harder instances for the models to
solve. This is indicated by the higher percentage of unsolved instances and
non-optimal instances, on both decoders, for the long sequence (93% unsolved
and non-optima for LS, 100% for NS) in comparison with the short sequence
(91% unsolved and non-optima for LS, 96% for NS).

5.4
BRKGA results

The BRKGA results are presented and discussed in this section. They
are separated by objective and sequence and are all compared with existing
CPLEX results.

It must be commented that the tuning procedure results shown in
Section 5.2 indicated, in some cases, that the lack of a corrective operation
in the decoding procedure is the best configuration. As such, those decoders
have been explored for both cases, and the decoders without the correction
procedure have a “no” following the decoder name. For example, “KCno” is
the decoder KC without the correction procedure, while “KC” includes the
procedure.

Also note that the analysis considers, in most part, the runs with feasible
final results of the decoders. Because of it, we also perform an analysis of
the feasible and infeasible solutions. The effect of the Implicit Path-Relinking
(IPR) procedure was also considered and is detailed in Appendix C.
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To compare the algorithms, the results are analyzed regarding the
solution quality and computational effort. For solution quality, the classical
Relative Percentage Deviation (RPD) and associated averages are used as
defined in Andrade et al. [86], which are reproduced here. Let I be a set of
instances. Let A be the set of algorithms, and assume that set RA enumerates
the independent runs with feasible final results for algorithm A ∈ A. CA

ir is
defined as the best cost obtained by algorithm A in instance i on run r, and
Cbest
i as the best cost found across all algorithms for instance i. The Relative

Percentage Deviation (RPD) from the best solution cost of instance i is defined
as

RPDA
ir = CA

ir − Cbest
i

Cbest
i

× 100, ∀A ∈ A, i ∈ I, and r ∈ RA. (5-2)

5.4.1
Objective: minimize changes

The BRKGA results for the minimize changes objective are presented
in the next subsections. Recall that this objective focuses on minimizing the
changes in configuration of vertices in regards to an old configuration of the
network.

5.4.1.1
Short Sequence

For the 57 short sequence instances, Table 5.9 indicates the percentage
of infeasible and feasible final results obtained by each decoder, alongside the
average amount of conflicting edges per infeasible instance.

In it, it is possible to observe that decoders LD, LDno, and LI are the
only ones with less than 10% of runs indicating an infeasible final result. These
decoders appear to quickly converge to feasible solutions in comparison with
other decoders.

On the other side of the spectrum, decoders KC and KCno suffer from
a very high number of infeasible solutions. This indicates that one hour is
not enough for these algorithms to converge to feasible solutions in the great
majority of the runs.

At last, decoder KCno finds more infeasible solutions than its counterpart
KC, and a higher number of average conflicts. The same holds true between
SCno and SC. LDno has also a higher number of average conflicts than LD,
with a close percentage of feasible runs. These are effects of the correction
procedure, which was absent in decoders KCno, SCno, and LDno.
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Table 5.9: Comparison between infeasible and feasible runs for all decoders, in
the short sequence. Consider a total of 570 runs for each decoder in this case.

Algorithm Avg. conflicts % Runs infeasible % Runs feasible

KC 57.93 99.5 0.5
KCno 58.35 99.8 0.2
KD 16.84 84 16
LD 4.94 5 95
LDno 6.62 4 96
LI 4.87 8 92
OR 31.10 95 5
SC 9.29 79 21
SCno 9.87 82 18

From here on, we only consider the results for feasible solutions. For
those, the boxplot of RPD for each algorithm is in Figure 5.2. The statistical
results of each boxplot, meanwhile, are in Table 5.10.

1

10

100

KC KD LD LI SC OR KCno LDno SCno
Algorithms

R
el

at
iv

e 
P

er
ce

nt
ag

e 
D

ev
ia

tio
n 

(%
)

Figure 5.2: Distribution of relative percentage deviations for each algorithm
considering instances of short sequence. Note that, since the data is log-
transformed before plot, the shown statistics (median, quartiles, and others)
are from the transformed data rather than the actual data. Also, note that,
for the same reason, zero deviations are not shown, although the algorithms
have reached them.

Note that the lack of distribution in the boxplot for decoders KC and
KCno is correct. Both decoders have the least amount of runs with feasible
final solutions, as it can be seen in Table 5.9. However, all these runs with
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feasible solutions, in this case, found the optimum or best solution of the
instances. Decoders KC and KCno, thus, have difficulties in converging to
feasible solutions, but when they manage to converge they quickly reach the
best available solutions. In this way, the RPD for those decoders stays at zero,
and, thus, they have no observable figure in the boxplot.

When analyzing the statistical results of the distribution, it is of note
that LD and LDno have a median of 0.00. This indicates that at least 50%
of their runs result in the best solutions. They also have similar mean and
standard deviation (σ), and the lowest values of maximal RPD. Decoder LI
also deserves a mention, as it ranks third in these characteristics if KC and
KCno cases are ignored. In this case, decoders LD, LDno, and LI also have the
highest percentage of feasible runs, and KC and KCno, the lowest.

Finally, the Wilcoxon rank test was made to check possible differences
between distributions of RPD. This test indicated that decoder KD has a
consistently better performance than the others, while decoders LD, LDno,
and LI have a good performance overall. Decoders SCno and SC, LDno and
LD, and KCno and KC do not present statistical differences.

Table 5.10: Comparison between decoders, considering RDP statistical criteria.

Decoder Median Mean σ Max

KC 0.00 0.00 0.00 0.00
KD 4.32 3.62 3.51 13.79
LD 0.00 1.18 1.55 6.90
LI 1.13 1.85 2.21 10.34
SC 47.62 47.42 23.63 88.89
OR 88.53 83.69 19.32 123.08
LDno 0.00 1.09 1.443 5.88
KCno 0.00 0.00 0.00 0.00
SCno 45.46 47.35 24.90 100.00
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Table 5.11: Algorithm’s performance for instances of short sequence, in the
minimizing changes objective. Note that one instance did not have any feasible
solutions in any algorithm, and thus it was excluded from this analysis.

Algorithm

Known Optima (15 instances) Unknown Optima (41 instances)

Optima Prop. diff. Best Prop. diff.

# Opt % Opt % Run % σ # Best % Best % Run % σ

KC 1 6.67 100.00 — — 0 0.00 — — —
KCno 1 6.67 100.00 — — 0 0.00 — — —
KD 2 13.33 100.00 3.27 1.65 1 2.44 13.89 5.38 2.96
LD 12 80.00 62.42 3.27 1.65 30 73.17 36.92 2.45 1.12
LDno 11 73.33 61.74 3.17 1.60 32 78.05 37.53 2.21 1.04
LI 9 60.00 59.59 5.90 1.72 20 48.78 29.10 3.30 1.68
OR 0 0.00 0.00 86.85 19.04 0 0.00 0.00 64.71 4.43
SC 0 0.00 0.00 38.13 21.88 0 0.00 0.00 61.25 19.07
SCno 0 0.00 0.00 39.33 21.91 0 0.00 0.00 63.85 22.69

Table 5.11 shows the algorithm performance for the instances of the short
sequence group. It is of note that instance short_n0463_r015_139 did not
have any feasible solutions on both CPLEX and BRKGA and, thus, was not
considered in this analysis. As this table confirms, decoders LD, LDno, and LI
have the best performance among all decoders, considering the used criteria.
They are also the decoders with the best performance in the previous analysis.

Note that the addition of the correction procedure does not appear to
have a powerful effect, in this case at least, on the performance of the decoders.
The results from pairs LD and LDno, KC and KCno, and SC and SCno do
not differ substantially among themselves.

At last, Figure 5.3 presents the running time for each algorithm, alongside
the cumulative probability of finding either best or optimal solutions. It is
possible to see that all decoders have better performances than CPLEX, with
decoders LD, LDno, and LI being the best. However, in the 200 seconds mark,
decoder KD appears to present the best performance, when ignoring the KC
and KCno results. Also, note that decoders KC and KCno have a very quick
performance - they reach the best solutions much faster than the others, but
also for much fewer instances and number of runs.
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Figure 5.3: Running time empirical distributions to the best or optimal solution
values for short sequence instances. The identification marks correspond to 1%
of the points plotted for each algorithm.

5.4.1.2
Long Sequence

For the 82 long sequence instances, Table 5.12 indicates the percentage
of infeasible and feasible final results obtained by each decoder, alongside the
average amount of conflicting edges per infeasible instance.

One can note the similarities between this table and Table 5.9. The
decoders appear to have similar behaviors for both long and short sequences
in this objective, but it is worth highlighting some differences.

The amount of average conflicting edges is lower for all decoders except
SC and OR. This is surprising, as the long sequence instances have higher
numbers of nodes and colors, thus needing bigger chromosomes and higher
processing times - logically, the decoders should have less time to converge.

Among the best decoders are, again, LD, LDno, and LI. They are the
only ones with less than 10% of runs indicating an infeasible final result, which
confirms their tendency of quickly converging to feasible solutions. In addition,
KC and KCno trends of higher infeasible final solutions are also confirmed,
though in smaller proportions.

For the long sequence, the pairs KC and KCno, and LD and LDno behave
similarly, as they did in the short sequence. However, SC and SCno have a very
different average number of conflicts. This may be an effect of SCno’s lack of
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Table 5.12: Comparison between infeasible and feasible runs for all decoders,
in the long sequence. Consider a total of 820 runs for each decoder in this case.

Algorithm Avg. conflicts % Runs infeasible % Runs feasible
KC 29.59 87 13
KCno 27.08 86 14
KD 5.32 24 76
LD 1.00 2 98
LDno 1.33 2 98
LI 1.06 4 96
OR 208.69 99 1
SC 58.92 76 24
SCno 7.96 79 21

a corrective procedure, as it lets the algorithm run more generations in the
given time, thus letting it converge more frequently to feasible solutions.

Figure 5.4 depicts the RPD boxplots for runs with feasible solutions only.
The statistical results of each boxplot, meanwhile, are in Table 5.13. Differently
from the short sequence results, decoders KC and KCno have only a regular
performance for the long sequence. This can be derived from the fact that
those decoders depend heavily on the number of possible colors, and thus with
a higher number of colors, their performance suffers. Another possibility is the
higher percentage of feasible runs – on the short sequence case, all 0.2% of
feasible runs found optima, which did not happen for the approximately 13%
of long sequence. At the same time, they have median values smaller than one,
indicating that most feasible runs have good RPD results.

Considering the statistical results of the distributions, decoders LD and
LDno have, again, a median of 0.00. This result indicates that at least 50%
of their results found the best solutions. They also have similar means and
standard deviation (σ), and the lowest values of maximal RPD. The LI decoder
also deserves a mention, as it ranks third in these characteristics. Decoders LD,
LDno, and LI also had the highest percentage of feasible runs, in this case.
Decoder LD has a better performance than LDno in all criteria - the addition
of the correction procedure used in LD appears to lead to better results;

A comparison with the Wilcoxon rank test was also performed. In it,
decoders LD and LDno have similar deviations, and they are shown to be the
best decoders in this case. Meanwhile, KC is indicated as better than LI –
possibly related to the median values, and KD is better than KCno, while
KCno and KC have the same performance.

Table 5.14 shows the algorithm performance for the instances of the long
sequence. In this case, all instances had a feasible solution in, at least, one
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Figure 5.4: Distribution of relative percentage deviations for each algorithm
considering instances of long sequence. Note that, since the data is log-
transformed before plot, the shown statistics (median, quartiles, and others)
are from the transformed data rather than the actual data. Also, note that,
for the same reason, zero deviations are not shown, although the algorithms
have reached them.

Table 5.13: Comparison between decoders, considering RDP statistical criteria.

Decoder Median Mean σ Max
KC 0.61 37.38 71.27 322.22
KD 0.98 31.10 72.64 320.00
LD 0.00 2.57 6.69 44.44
LI 0.56 3.18 7.19 66.67
SC 38.12 42.78 26.90 151.43
OR 222.10 223.20 11.50 220.78
LDno 0.00 3.68 10.23 66.67
KCno 11.71 38.08 62.92 220.78
SCno 45.86 54.61 52.84 325.00
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Table 5.14: Algorithm’s performance on instances of long sequence, in the
minimizing changes objective.

Algorithm
Known Optima (21 instances) Unknown Optima (61 instances)

Optima Prop. diff. Best Prop. diff.

# Opt % Opt % Run % σ # Best % Best % Run % σ

KC 0 0.00 0.00 23.04 56.43 3 4.92 27.54 62.05 84.09
KCno 0 0.00 0.00 20.56 25.05 4 6.56 25.30 61.03 77.15
KD 6 28.57 26.47 91.20 121.83 22 36.07 32.30 26.70 50.59
LD 12 57.14 38.27 6.82 11.99 39 63.93 39.67 3.95 6.15
LDno 13 61.90 40.00 13.99 21.01 41 67.21 40.37 3.83 6.17
LI 11 52.38 25.26 7.78 12.05 28 45.90 30.35 5.09 6.55
OR 0 0.00 — — — 0 0.00 0.00 223.23 11.50
SC 1 4.76 3.45 41.82 20.19 0 0.00 0.00 50.89 27.70
SCno 0 0.00 0.00 75.68 76.85 0 0.00 0.00 49.28 24.18

algorithm or mathematical model. Again, decoders LD, LDno, and LI have a
better performance than all other decoders. it is worth noting the performance
of KD, as it has also a regular performance for instances without an optimum.

The correction procedure appears to not have any significant effect on
algorithm performance. While decoder SC has a slightly better performance
than its counterpart for known optima instances, both pairs LD and LDno,
and KC and KCno have very similar performances according to the observed
criteria for all instances.

Finally, Figure 5.5 shows the cumulative probability of finding the best
or optimal solutions for each algorithm. In this case, all decoders have a better
performance than CPLEX except SC, whose performance is lacking in this case.
Again, decoders LD and LDno had the best performance, with KD and LI in
third and fourth places, respectively. LDno had a slightly better performance
than LD at all moments. This can be justified as an effect of the addition of
the correction procedure, which makes LD slower. Thus, LD would need more
time to reach the same solution as LDno.
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Figure 5.5: Running time empirical distributions to the best or optimal solution
values for long sequence instances. The identification marks correspond to 1%
of the points plotted for each algorithm.

5.4.2
Objective: maximize minimum edge span

The BRKGA results for the maximize minimal edge span objective
are presented in the next subsections. Recall that this objective focuses on
maximizing the minimal difference between the RSI of neighbor vertices.

5.4.2.1
Short Sequence

For the 57 short sequence instances, Table 5.15 indicates the percentage
of infeasible and feasible final results each decoder had, alongside the average
amount of conflicting edges per infeasible instance.

The numbers show that, except for decoders LD and LI, all others had
a higher percentage of infeasible runs than feasible. In fact, this can be seen
as an effect of the difficulty of this objective – the exact models had also
more difficulty in finding good solutions for this objective in comparison with
the other one. On the other hand, decoders LD and LI had, again, the best
numbers of average conflicts and percentage of feasible runs. The same behavior
was observed regarding the minimizing changes objective function.

In contrast, decoders KC and OR had very high amounts of no-feasible
runs (≥95%). They also had a higher amount of average conflicts in those
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Table 5.15: Comparison between infeasible and feasible runs for all decoders,
in the short sequence. Consider a total of 570 runs for each decoder in this
case.

Algorithm Avg. conflicts % Runs infeasible % Runs feasible
KC 55.83 99.8 0.2
KD 16.75 86 14
LD 2.04 45 54
LI 2.25 47 53
OR 22.74 95 5
SC 9.89 80 20
SCno 9.56 84 16

infeasible solutions, in comparison with the other decoders.
Considering the pair SC and SCno, the correction procedure does not

appear to have a significant effect in obtaining more feasible solutions, as
shown by the close values in both average conflicting edges and percentage
of feasible runs.

From now on, the analysis will only consider the runs with feasible final
results. For those, the boxplot of RPD for each algorithm is in Figure 5.6. The
statistical results of each boxplot, meanwhile, are in Table 5.16.

Again, decoder KC had a similar performance to the other short sequence
case, finding the optimum or best solutions for all runs with feasible final
results. As such, it does not have a visible performance in the boxplot of
Figure 5.6. One must note that, again, KC only had 0.2% of all runs analyzed
and, thus, its results tend to be somewhat skewed.

As Table 5.16 shows, all decoders except OR had a median of 0.00, which
indicates that at least half of their feasible runs found the best available results
for the short sequence instances. Also, again excluding OR, all decoders had
a mean RPD below 10%. With these criteria, LD, LI, and KD had the best
performances, with KD having the best results among them.

Comparison with the Wilcoxon rank test is in Table 5.17, in which a value
of less than 0.05 indicates that the column algorithm has significantly better
deviations than the row algorithm. As expected, decoder OR was indicated as
worse than all others. Meanwhile, decoder KD had, again, better deviations
than all other decoders except KC, whose showing with almost all zeros would
have skewed the results.

Table 5.18 shows the algorithm performance for the instances of the short
sequence. In this case, all instances had one feasible solution in, at least, one
algorithm. For this objective and sequence, decoders KC and KD appear to
have a bad performance, while LD, LI, SC, and SCno have the best results in
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Figure 5.6: Distribution of relative percentage deviations for each algorithm
considering instances of short sequence. Note that, since the data is log-
transformed before plot, the shown statistics (median, quartiles, and others)
are from the transformed data rather than the actual data. Also, note that,
for the same reason, zero deviations are not shown, although the algorithms
have reached them.

Table 5.16: Comparison between decoders, considering RDP statistical criteria.

Decoder Median Mean σ Max
KC 0.00 0.66 7.67 89.47
KD 0.00 1.70 4.14 15.79
LD 0.00 4.17 7.92 95.74
LI 0.00 4.01 7.06 28.57
SC 0.00 7.66 11.49 37.50
OR 10.06 22.42 31.59 100.00
SCno 0.00 7.16 211.23 37.50

Table 5.17: p-values from pairwise Wilcoxon rank-sum test (with Bonferroni
p-value correction) of RPDs.

KC KD LD LI SC OR

KD � 0.05 — — — — —
LD � 0.05 � 0.05 — — — —
LI � 0.05 � 0.05 1.00 — — —
SC � 0.05 � 0.05 1.00 1.00 — —
OR � 0.05 � 0.05 � 0.05 � 0.05 � 0.05 —
SCno � 0.05 � 0.05 1.00 1.00 1.00 � 0.05
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Table 5.18: Algorithm’s performance on instances of short sequence, in the
maximizing minimal span objective.

Algorithm
Known Optima (5 instances) Unknown Optima (51 instances)

Optima Prop. diff. Best Prop. diff.

# Opt % Opt % Run % σ # Best % Best % Run % σ

KC 0 0.00 — — — 0 0.00 0.00 672.73 —
KD 0 0.00 — — — 9 17.65 100.00 — —
LD 2 40.00 100.00 — — 31 60.78 99.66 718.18 —
LI 2 40.00 100.00 — — 29 56.86 100.00 — —
OR 1 20.00 100.00 — — 5 9.80 73.91 637.47 309.03
SC 3 60.00 65.52 6.00 2.11 10 19.61 91.57 6.67 0.00
SCno 2 40.00 55.00 5.00 0.00 12 23.53 90.41 6.67 0.00

comparison with others.
The correction procedure has an improving effect on SC performance

when comparing with SCno performance. SCno had a higher number of
best solutions for instances with unknown optima, and a lower percentage
of proportional difference for the ones with known optima, but in all other
criteria SC had better results.

Figure 5.7 presents the cumulative probability of finding the best or
optimal solutions in a certain time for each algorithm. In this case, all decoders
had a better performance than CPLEX. The decoders also have, in general,
good performances, reaching >80% chance in less than one hour. In special,
decoders LD, LI, and KD have very good performances, eventually reaching
100% probability.

On the other hand, decoders SC and SCno have similar performance,
with SC being consistently better than its counterpart. Meanwhile, OR is the
worst among all decoders, but also manages to reach almost 80% cumulative
percentage in one hour.
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Figure 5.7: Running time empirical distributions to the best or optimal solution
values for short sequence instances. The identification marks correspond to 1%
of the points plotted for each algorithm.

5.4.2.2
Long Sequence

For the 82 long sequence instances, Table 5.19 indicates the percentage
of infeasible and feasible final results each decoder had, alongside the average
amount of conflicting edges per infeasible instance.

In this case, all decoders had a higher percentage of infeasible runs
than feasible. Although it is not the highest in total among all sequences and
objectives, it is still a high percentage that indicates the difficulty to approach
this objective. In this case, decoders LD and LI had the best performances,
with KD in a close third place.

In this case, decoder OR had the worst performance among all decoders,
with 99% of runs with infeasible final results. It also has a very high amount of
average conflicting edges – by far, the highest among all decoders, objectives,
and sequences.

While comparing decoders SC and SCno, one can observe a similar
phenomenon as in the long sequence of minimizing changes objective function.
That is, decoder SC presents a much higher number of conflicts than SCno.

From now on, the analysis will only consider the runs with feasible final
results. For those, the boxplot of RPD for each algorithm is in Figure 5.8.
The statistical results of each boxplot, meanwhile, are in Table 5.20. In this
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Table 5.19: Comparison between infeasible and feasible runs for all decoders,
in the long sequence. Consider a total of 820 runs for each decoder in this case.

Algorithm Avg. conflicts % Runs infeasible % Runs feasible
KC 30.82 84 16
KD 3.94 64 36
LD 1.24 59 41
LI 1.52 58 42
OR 261.15 99 1
SC 61.75 78 22
SCno 7.19 80 20

Table 5.20: Comparison between decoders, considering RDP statistical criteria.

Decoder Median Mean σ Max
KC 5.73 18.37 31.43 100.00
KD 3.95 15.50 31.32 100.00
LD 0.00 9.30 24.49 100.00
LI 0.00 8.69 23.14 100.00
SC 5.73 9.58 17.73 100.00
OR 0.00 4.34 7.11 17.96
SCno 5.69 8.02 16.09 100.00

case, decoders LD and LI appear to have the best performances, while OR
is the most concentrated of all decoders. Note that, although its results are
concentrated above the results of the other decoders, decoder OR does have
the smallest maximum RPD.

Truly, decoder OR has the best statistical RPD results, as shown in
Table 5.20. LD, LI, and OR had the median of 0.00, but OR had the smallest
maximum, smallest mean, and smallest deviation. Also, it is of note that the
addition of a correction procedure did not cause a significant change in the
statistics of SC and SCno.

Comparison with the Wilcoxon rank test is in Table 5.21, in which a
value of less than 0.05 indicates that the column algorithm has significantly
better deviations than the row algorithm. As it can be seen, OR, LD, and LI
have similar deviations among themselves.

Table 5.22 shows the algorithm performance for the instances of
the short sequence. In this case, instances long_n0259_r030_510 and
long_n0323_r040_640 did not have any feasible result on any algorithm or
mathematical model and were, thus, excluded from this analysis.

In this case, decoders LD and LI are, again, the best decoders for both
known and unknown optima. On the other hand, OR had bad performances
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Figure 5.8: Distribution of relative percentage deviations for each algorithm
considering instances of long sequence. Note that, since the data is log-
transformed before plot, the shown statistics (median, quartiles, and others)
are from the transformed data rather than the actual data. Also, note that,
for the same reason, zero deviations are not shown, although the algorithms
have reached them.

Table 5.21: Pvalues from pairwise Wilcoxon rank-sum test (with Bonferroni
Pvalue correction) of RPDs.

KC KD LD LI SC OR

KD 0.02 — — — — —
LD � 0.05 � 0.05 — — — —
LI � 0.05 � 0.05 1.00 — — —
SC 0.11 1.00 � 0.05 � 0.05 — —
OR 0.003 0.44 1.00 1.00 0.38 —
SCno 1.00 � 0.05 � 0.05 1.00 0.60 � 0.05

Table 5.22: Algorithm’s performance on instances of long sequence, in the
maximizing minimal span objective. Note that two instances did not have any
feasible solutions in any algorithm, and thus they were excluded from this
analysis.

Algorithm
Known Optima (10 instances) Unknown Optima (70 instances)

Optima Prop. diff. Best Prop. diff.

# Opt % Opt % Run % σ # Best % Best % Run % σ

KC 2 20.00 55.00 3.33 0.00 6 8.57 39.13 187.99 431.87
KD 3 30.00 75.00 6.00 1.41 11 15.71 35.43 149.12 299.50
LD 5 50.00 98.04 50.00 — 28 40.00 89.79 533.53 289.16
LI 5 50.00 100.00 — — 29 41.43 91.47 478.17 248.88
OR 0 0.00 — — — 2 2.86 27.27 16.25 8.02
SC 3 30.00 100.00 — — 22 31.43 69.14 20.91 48.70
SCno 2 20.00 100.00 — — 18 25.71 61.74 11.32 28.06
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Figure 5.9: Running time empirical distributions to the best or optimal solution
values for long sequence instances. The identification marks correspond to 1%
of the points plotted for each algorithm.

on both. This contrast regarding the RPD distribution statistics may be
attributed both to the very high number of runs without feasible final solutions
(only 1% of runs were feasible), and the fact that it has the absolute lowest
deviation among unknown optima instances. Consequently, it does not reach
optimal or best results often, but has a high amount of good solutions, thus
ending with good statistics of the RPD.

About the effect of the corrective procedure, decoders SC and SCno have
good performances for both known and unknown optima instances, and they
are, again, very similar.

Finally, Figure 5.9 presents the cumulative probability of finding the best
or optimal solutions in a certain time for each algorithm. For the long sequence
instances, all decoders had a better performance than CPLEX before the one-
hour mark. Close to it, both OR and KD have lower cumulative percentages.
As for the best decoders, LD and LI have very close performances, being the
best decoders in this case and reaching more than 90% cumulative percentage
in less than 900 seconds.

Considering the effects of the correction procedure, both SC and SCno
have close performances, but in this case decoder SC reaches better cumulative
percentages after the 1,400 seconds mark and ends with an almost 10% higher
cumulative probability after one hour.
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5.5
General comments

Regarding the mathematical models, one may note that the linear
models had a smaller number of instances with no results for both types of
sequences and objectives functions, in comparison with the non-linear models.
Furthermore, those instances solved by the linear models have higher numbers
of vertices, which indicates more difficulty and a greater number of variables.
In addition, for all models, the number of unsolved long sequence instances is
higher than the amount for the short sequence for both objective functions.
Again, this is indicative of the impact of more variables and restrictions for
the long sequence in comparison with the short sequence, pointing out to a
higher level of complexity.

Regarding the BRKGA decoders, first, in relation to the number of
conflicts, the behavior of the decoders in relation to long and short sequences
is similar in both objectives. In both cases, the short sequence has a higher
percentage of infeasible runs, but a much lower amount of conflicts in those
infeasible runs.

Meanwhile, for a same objective, the amounts of runs feasible and
infeasible are close for instances on both sized-sequence groups. This indicates
that the objective function is more influential in the hardness of converging to
feasible solutions than the instances’ characteristics.

In general, the change from short to long sequence means an increase in
conflict amount for decoders OR and SC, and a reduction in all other decoders.
This is true for both objective functions.

About the corrective procedure, it appears to not have a significant
impact on solution quality – except for decoder SC in the long sequence. In both
objectives, decoder SCno has a much smaller number of average conflicts than
its counterpart. This can be explained by the fact that decoder SC procedure
has a severe increase in time requirements because of the correction procedure.
In this way, the SCno manages to run more generations and thus converge to
better solutions.

Now, going to special remarks about specific decoders, decoder KC has a
strange performance in both cases. It has a very high percentage of infeasible
solutions, and the feasible solutions tend to reach the optimal costs. This is
especially true for the short sequence cases, as all or almost all feasible solutions
are optimal. That can be caused by one of two alternatives: first, the decoder
will only converge to feasible solutions by happenstance, and always will hit
the best solution. This option could also explain why the time to reach optimal
solutions, in this decoder (as shown in the performance profile plots) is always
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low. Another reason may be that this decoder needs more time to converge to
feasible solutions when it does not in the starting minutes. That could explain
the high amount of infeasible solutions and the good performance in the feasible
ones, and also be related to the fact that decoder KC uses a n + k + 1-sized
chromosome, which would be negatively affected by any increase in size and
possible color amount of the instances.

Meanwhile, the performance of decoder OR is poor in all four cases.
Particularly in the long sequence-maximizing minimal span case, decoder OR
has surprisingly good statistics, comparable to decoder LD, but still holds its
place as the worst decoder.

Finally, among the best decoders are LD and LI. Both manage to
converge to feasible solutions quickly and have the best performances in all
cases - with LD being still better than LI in all cases.
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6
Conclusions

This study presented the RSI allocation problem, whose main application
is for 4G and 5G radio access networks. This problem is an application of the
T-coloring problem, which is a generalization of the classical graph coloring
problem and is considered NP-hard.

As Chapter 3 shows, problems such as the RSI allocation problem are
usually solved by heuristic methods. In fact, the graph coloring problem
and its generalizations are notoriously difficult to be solved optimally in
reasonable computational times. Thus, this work introduces, alongside different
mathematical models, heuristic methods to solve the RSI allocation problem.

As genetic algorithms are frequently presented in the literature to solve
similar problems, the heuristic chosen was the Biased Random Key Genetic
Algorithm (BRKGA). This type of genetic algorithm has been successfully used
in many telecommunications problems, but never for graph coloring problems
or similar. The customization of the BRKGA included six different decoders,
thus exploring several coloring strategies, as detailed in Chapter 4.

The mathematical models and BRKGA were explored in real-life derived
instances. For the mathematical models, the linear models had better perfor-
mances than their non-linear counterparts. Also, all mathematical models had
more difficulty with the long sequence instances in comparison with the short
sequence ones, something related to the higher needed amounts of constraints
and variables.

Differently, the BRKGA decoders had similar behaviors in both short
and long RSI sequences. In fact, for them, the objective function appears to
have a more significant influence on the solving difficulty. However, the short
sequence instances tend to have higher percentages of infeasible runs, and an
increase in conflict amount for all decoders except OR and SC. The corrective
procedure, built to solve these issues, does not appear to have a significant
impact on solution quality, except for the specific case of decoder SC in the
long sequence instances. In it, the procedure does the opposite of what was
expected, increasing conflict amounts by severely increasing time requirements.

Among decoding strategies, the Logic Direct Decoder (LD) has shown
the best performance in all objectives and instance groups. In fact, it has not
only high chances of having a feasible final solution, but those solutions do
have better quality than all other decoders. This indicates that the strategy
of considering vertex order and only neighbor relations has merit, something
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that may be used in future studies.
For future works, we can improve the mathematical models by ex-

tending them with symmetry-breaking constraints, in order to reduce the
pool of analyzed solutions. Another suggestion is the extension of the prob-
lem to a stochastic environment, in which the antennas would have the
possibility of being deactivated, thus changing the network design. It is
also interesting the possibility of diversification in both difference values
for each edge and the RSI possible for each vertex. Another possibility in-
cludes the study of strategies similar to the used by the decoder LD, as
this procedure showed itself to be effective and thus should be explored
in similar problems. Finally, one may consider developing coloring strategies
that do not use the old configuration for the maximize minimal span objective.

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



7
References

[1] GUPTA, A.; JHA, R. K.. A survey of 5G network: Architecture and
emerging technologies. IEEE, 3:1206–1232, 2015. 1, 2.2, 2.2

[2] STRATEGY ANALYTICS. Internet of things now numbers 22 billion
devices but where is the revenue?, 2019. Access: 16 April 2020. 1

[3] OSSEIRAN, A.; BOCCARDI, F.; BRAUN, V.; KUSUME, K.; MARSCH,
P.; MATERNIA, M.; QUESETH, O.; SCHELLMANN, M.; SCHOTTEN, H.;
TAOKA, H.; TULLBERG, H.; UUSITALO, M. A.; TIMUS, B. ; FALLGREN,
M.. Scenarios for 5G mobile and wireless communications: the
vision of the metis project. IEEE communications magazine, 52(5):26–
35, 2014. 1

[4] PALATTELLA, M. R.; DOHLER, M.; GRIECO, A.; RIZZO, G.; TORSNER,
J.; ENGEL, T. ; LADID, L.. Internet of things in the 5G era: Enablers,
architecture, and business models. IEEE Journal on Selected Areas in
Communications, 34(3):510–527, 2016. 1

[5] SHAMGANTH, K.; SIBLEY, M. J. N.. A survey on relay selection
in cooperative device-to-device (D2D) communication for 5G
cellular networks. In: 2017 INTERNATIONAL CONFERENCE ON EN-
ERGY, COMMUNICATION, DATA ANALYTICS AND SOFT COMPUTING
(ICECDS), p. 42–46, 2017. 1

[6] LIU, X.; WU, S.; GUO, Y. ; CHEN, C.. The demand and development
of internet of things for 5G:a survey. In: 2018 IEEE INTERNATIONAL
CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW), p.
1–2, 2018. 1

[7] ANDRADE, C. E.; RESENDE, M. G. C.; ZHANG, W.; SINHA, R. K.;
REICHMANN, K. C.; DOVERSPIKE, R. D. ; MIYAZAWA, F. K.. A biased
random-key genetic algorithm for wireless backhaul network
design. Applied Soft Computing, 33:150–169, 2015. 1, 4

[8] VERÍSSIMO, R.; VIEIRA, P.; RODRIGUES, A. ; QUELUZ, M. P.. PCI and
RSI conflict detection in a real LTE network using supervised
learning. URSI Radio Science Bulletin, 364:11–19, 2018. 1, 2.2, 3.2

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Chapter 7. References 92

[9] MALAGUTI, E.; MONACI, M. ; TOTH, P.. A metaheuristic approach
for the vertex coloring problem. INFORMS Journal on Computing,
20(2):302–316, 2008. 1, 3.1

[10] HALE, W. K.. Frequency assignment: Theory and applications.
Proceedings of the IEEE, 68(12):1497–1514, 1980. 1, 2.1, 3.2

[11] SIDDIQI, U. F.; SAIT, S. M.. A neighborhood search-based heuristic
for the fixed spectrum frequency assignment problem. Arabian
Journal for Science and Engineering, 44(4):2985–2994, 2019. 1, 3, 3.2

[12] MARSA-MAESTRE, I.; DE LA HOZ, E.; GIMENEZ-GUZMAN, J. M.;
ORDEN, D. ; KLEIN, M.. Nonlinear negotiation approaches for
complex-network optimization: A study inspired by wi-fi chan-
nel assignment. Group Decision and Negotiation, 28(1):175–196, 2019. 1,
3, 3.2

[13] ZHAO, L.; WANG, H. ; ZHONG, X.. Interference graph based channel
assignment algorithm for D2D cellular networks. IEEE Access,
6:3270–3279, 2018. 1, 3.2

[14] ACEDO-HERNÁNDEZ, R.; TORIL, M.; LUNA-RAMÍREZ, S. ; UBEDA, C..
A PCI planning algorithm for jointly reducing reference signal
collisions in LTE uplink and downlink. Computer Networks, 119:112–
123, 2017. 1, 3, 3.2

[15] MALAGUTI, E.; TOTH, P.. A survey on vertex coloring problems.
International Transactions in Operational Research, 17(1):1–34, 2010. 1, 2.3

[16] MOSTAFAIE, T.; KHIYABANI, F. M. ; NAVIMIPOUR, N. J.. A system-
atic study on meta-heuristic approaches for solving the graph
coloring problem. Computers & Operations Research, 120:104850, 2020.
1, 4

[17] MURPHEY, R. A.; PARDALOS, P. M. ; RESENDE, M. G.. Frequency
assignment problems. In: HANDBOOK OF COMBINATORIAL OPTI-
MIZATION, p. 295–377. Springer, 1999. 2.1

[18] JUNOSZA-SZANIAWSKI, K.; RZĄŻEWSKI, P.. An exact algorithm for
the generalized list t-coloring problem. Discrete Mathematics and
Theoretical Computer Science, 16(3):77–95, 2014. 2.1, 3.2, 3.3, 3.3, 3.3

[19] SHARMA, P. C.; CHAUDHARI, N. S.. A tree based novel approach for
graph coloring problem using maximal independent set. Wireless
Personal Communications, 110(3):1143–1155, 2020. 2.1, 3.1

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Chapter 7. References 93

[20] GUO, J.; MOALIC, L.; MARTIN, J. N. ; CAMINADA, A.. Cluster re-
source assignment algorithm for device-to-device networks based
on graph coloring. In: 2017 13TH INTERNATIONAL WIRELESS COM-
MUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), p.
1700–1705. IEEE, 2017. 2.1, 3.1

[21] GRAF, R. F.. Modern dictionary of electronics. Newnes, 1999. 2.2

[22] ENCYCLOPEDIA BRITANNICA. Antenna. 2.2

[23] CANADIAN RADIO-TELEVISION AND TELECOMMUNICATIONS COM-
MISSION. Telecommunications glossary. 2.2

[24] HOLMA, H.; TOSKALA, A.. WCDMA for UMTS: HSPA Evolution
and LTE, Fourth Edition. Wiley Publishing, New York, 2017. 2.2

[25] COX, C.. An Introduction to LTE, LTE-advanced, SAE, VoLTE
and 4G Mobile Communications, Second Edition. Wiley Publishing,
New York, 2014. 2.2

[26] CHEN, S.; ZHAO, J.. The requirements, challenges, and technolo-
gies for 5G of terrestrial mobile telecommunication. IEEE Com-
munications Magazine, 52(5):36–43, 2014. 2.2

[27] ALSHARIF, M. H.; NORDIN, R.; SHAKIR, M. M. ; RAMLY, A. M.. Small
cells integration with the macro-cell under LTE cellular networks
and potential extension for 5G. Journal of Electrical Engineering &
Technology, 14(6):2455–2465, 2019. 2.2

[28] HAO, P.; YAN, X.; RUYUE, Y.-N. ; YUAN, Y.. Ultra dense network:
Challenges enabling technologies and new trends. China Commu-
nications, 13(2):30–40, 2016. 2.2

[29] LONDE, M. A.; PESSOA, L. ; ANDRADE, C. E.. Modelos exatos para
alocação do root sequence index. In: ANAIS DO LII SIMPóSIO
BRASILEIRO DE PESQUISA OPERACIONAL. SBPO, 2020. 2.3, 5.3

[30] ONAP. Open network automation platform. 2.3

[31] PRATAP, A.; MISRA, R. ; GUPTA, U.. Randomized graph coloring
algorithm for physical cell ID assignment in LTE-a femtocellular
networks. Wireless Personal Communications, 91(3):1213–1235, 2016. 3,
3.2

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Chapter 7. References 94

[32] GAREY, M. R.; JOHNSON, D. S.. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H.Freeman&Co, New
York, 1979. 3.1, 4

[33] CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L. ; STEIN, C.. Algorit-
mos: Teoria e Prática. Editora Campus, 2002. 3.1

[34] RANDALL-BROWN, J.. Chromatic scheduling and the chromatic
number problem. Management Science, 19(4-part-1):456–463, 1972. 3.1

[35] LEIGHTON, F. T.. A graph coloring algorithm for large schedul-
ing problems. Journal of research of the national bureau of standards,
84(6):489–506, 1979. 3.1

[36] BRÉLAZ, D.. New methods to color the vertices of a graph.
Communications of the ACM, 22(4):251–256, 1979. 3.1

[37] HERTZ, A.; DE WERRA, D.. Using tabu search techniques for graph
coloring. Computing, 39(4):345–351, 1987. 3.1

[38] JOHNSON, D. S.; ARAGON, C. R.; MCGEOCH, L. A. ; SCHEVON, C..
Optimization by simulated annealing: an experimental evalua-
tion; part II, graph coloring and number partitioning. Operations
research, 39(3):378–406, 1991. 3.1

[39] FLEURENT, C.; FERLAND, J. A.. Genetic and hybrid algorithms for
graph coloring. Annals of Operations Research, 63:437–461, 1996. 3.1

[40] COSTA, D.; HERTZ, A.. Ants can colour graphs. Journal of the
Operational Research Society, 48(3):295–305, 1997. 3.1

[41] GALINIER, P.; HAO, J. K.. Hybrid evolutionary algorithms for graph
coloring. Journal of Combinatorial Optimization, 3(4):379–397, 1999. 3.1

[42] KASSOTAKIS, I. E.; MARKAKI, M. E. ; VASILAKOS, A. V.. A hybrid
genetic approach for channel reuse in multiple access telecom-
munication networks. IEEE Journal on selected areas in communications,
18(2):234–243, 2000. 3.1

[43] CHIARANDINI, M.; STÜTZLE, T.. An application of iterated local
search to graph coloring problem. In: PROCEEDINGS OF THE COM-
PUTATIONAL SYMPOSIUM ON GRAPH COLORING AND ITS GENERAL-
IZATIONS, p. 112–125, 2002. 3.1

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Chapter 7. References 95

[44] BARBOSA, V. C.; ASSIS, C. A. G. ; NASCIMENTO, J. O.. Two novel
evolutionary formulations of the graph coloring problem. Journal
of Combinatorial Optimization, 8(1):41–63, 2004. 3.1

[45] GALINIER, P.; HERTZ, A.. A survey of local search methods for
graph coloring. Computers & Operations Research, 33(9):2547–2562,
2006. 3.1

[46] MÉNDEZ-DÍAZ, I.; ZABALA, P.. A branch-and-cut algorithm for
graph coloring. Discrete Applied Mathematics, 154(5):826–847, 2006. 3.1

[47] BUI, T. N.; NGUYEN, T. H.; PATEL, C. M. ; PHAN, K.-A. T.. An ant-
based algorithm for coloring graphs. Discrete Applied Mathematics,
156:190–200, 2008. 3.1

[48] MÉNDEZ-DÍAZ, I.; ZABALA, P.. A cutting plane algorithm for graph
coloring. Discrete Applied Mathematics, 156(2):159–179, 2008. 3.1

[49] CARAMIA, M.; DELL’OLMO, P.. Coloring graphs by iterated local
search traversing feasible and infeasible solutions. Discrete Applied
Mathematics, 156(2):201–217, 2008. 3.1

[50] DOWSLAND, K. A.; THOMPSON, J. M.. An improved ant colony
optimisation heuristic for graph colouring. Discrete Applied Mathe-
matics, 156(3):313–324, 2008. 3.1

[51] MABROUK, B. B.; HASNI, H. ; MAHJOUB, Z.. On a parallel ge-
netic–tabu search based algorithm for solving the graph colour-
ing problem. European Journal of Operational Research, 197(3):1192–
1201, 2009. 3.1

[52] LÜ, Z.; HAO, J.-K.. A memetic algorithm for graph coloring.
European Journal of Operational Research, 203(1):241–250, 2010. 3.1, 4.1.1

[53] HU, Y.; KOBOUROV, S. ; VEERAMONI, S.. On maximum differen-
tial graph coloring. In: INTERNATIONAL SYMPOSIUM ON GRAPH
DRAWING, p. 274–286. Springer, 2010. 3.1

[54] MALAGUTI, E.; MONACI, M. ; TOTH, P.. An exact approach for the
vertex coloring problem. Discrete Optimization, 8(2):174–190, 2011.
3.1

[55] DOUIRI, S. M.; ELBERNOUSSI, S.. Solving the graph coloring
problem via hybrid genetic algorithms. Journal of King Saud
University - Engineering Sciences, 27(1):114–118, 2015. 3.1

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Chapter 7. References 96

[56] SHUKL, A. N.; GARG, M. L.. A list based approach to solve graph
coloring problem. In: PROCEEDINGS OF THE 2018 INTERNATIONAL
CONFERENCE ON SYSTEM MODELING AND ADVANCEMENT IN RE-
SEARCH TRENDS (SMART), p. 265–267. IEEE, 2018. 3.1

[57] MARAPPAN, R.; SETHUMADHAVAN, G.. Solution to graph coloring
using genetic and tabu search procedures. Arabian Journal for
Science and Engineering, 43(2):525–542, 2018. 3.1

[58] AARDAL, K. I.; VAN HOESEL, S. P.; KOSTER, A. M.; MANNINO, C.
; SASSANO, A.. Models and solution techniques for frequency
assignment problems. Annals of Operations Research, 153(1):79–129,
2007. 3.2

[59] CUPPINI, M.. A genetic algorithm for channel assignment prob-
lems. European Transactions on Telecommunications, 5(2):285–294, 1994.
3.2

[60] DORNE, R.; HAO, J.-K.. An evolutionary approach for frequency
assignment in cellular radio networks. In: PROCEEDINGS OF 1995
IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTA-
TION, volumen 2, p. 539–544. IEEE, 1995. 3.2

[61] SMITH, D.; HURLEY, S. ; THIEL, S.. Improving heuristics for the
frequency assignment problem. European Journal of Operational
Research, 107(1):76–86, 1998. 3.2

[62] CHAKRABORTY, G.. An efficient heuristic algorithm for channel
assignment problem in cellular radio networks. IEEE transactions
on vehicular technology, 50(6):1528–1539, 2001. 3.2

[63] KRUMKE, S. O.; MARATHE, M. V. ; RAVI, S. S.. Models and approx-
imation algorithms for channel assignment in radio networks.
Wireless Networks, 7(6):575–584, 2001. 3.2, 4.2.10

[64] ALABAU, M.; IDOUMGHAR, L. ; SCHOTT, R.. New hybrid genetic al-
gorithms for the frequency assignment problem. IEEE transactions
on broadcasting, 48(1):27–34, 2002. 3.2

[65] KENDAIL, G.; MOHAMAD, M.. Channel assignment optimisation
using a hyper-heuristic. In: IEEE CONFERENCE ON CYBERNETICS
AND INTELLIGENT SYSTEMS, 2004, p. 791–796. IEEE, 2004. 3.2

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Chapter 7. References 97

[66] BANDH, T.; CARLE, G. ; SANNECK, H.. Graph coloring based
physical-cell-ID assignment for LTE networks. In: PROCEEDINGS
OF THE 2009 INTERNATIONAL CONFERENCE ON WIRELESS COMMU-
NICATIONS AND MOBILE COMPUTING: CONNECTING THE WORLD
WIRELESSLY, p. 116–120, 2009. 3.2

[67] AHMED, F.; TIRKKONEN, O.; PELTOMÄKI, M.; KOLJONEN, J. M.; YU,
C. H. ; ALAVA, M.. Distributed graph coloring for self-organization
in LTE networks. Journal of Electrical and Computer Engineering, 2010,
2010. 3.2

[68] XU, H.; ZHOU, X. W. ; LI, Y.. Model of hypergraph colouring for
self-configuration in LTE networks. In: 2011 INTERNATIONAL CON-
FERENCE ON INFORMATION MANAGEMENT, INNOVATION MANAGE-
MENT AND INDUSTRIAL ENGINEERING, volumen 1, p. 393–396. IEEE,
2011. 3.2

[69] SUN, H.; LI, N.; CHEN, Y.; DONG, J.; LIU, N.; HAN, Y. ; LIU, W.. A
method of PCI planning in LTE based on genetic algorithm.
Progress In Electromagnetics Research, 1575:1575–1578, 2012. 3.2

[70] KLINCEWICZ, J. G.. Using GRASP to solve the generalised graph
colouring problem with application to cell site assignment. In-
ternational Journal of Mobile Network Design and Innovation, 4(3):148–156,
2012. 3.2

[71] AHMED, F.; TIRKKONEN, O.. Self organized physical cell ID
assignment in multi-operator heterogeneous networks. In: 2015
IEEE 81ST VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING),
p. 1–5. IEEE, 2015. 3.2

[72] KOWALIK, ; SOCAŁA, A.. Assigning channels via the meet-in-the-
middle approach. Algorithmica, 74(4):1435–1452, 2016. 3.2

[73] LIU, D. D.-F.. T-colorings of graphs. Discrete Mathematics, 101(1-
3):203–212, 1992. 3.3

[74] COSTA, D.. On the use of some known methods fort-colorings of
graphs. Annals of Operations Research, 41(4):343–358, 1993. 3.3

[75] ALON, N.; ZAKS, A.. T-choosability in graphs. Discrete applied
mathematics, 82(1-3):1–13, 1998. 3.3

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Chapter 7. References 98

[76] MCDIARMID, C.. Discrete mathematics and radio channel as-
signment. In: RECENT ADVANCES IN ALGORITHMS AND COMBINA-
TORICS, p. 27–63. Springer, 2003. 3.3

[77] MIRJALILI, S.. Genetic algorithm. In: EVOLUTIONARY ALGORITHMS
AND NEURAL NETWORKS, p. 43–55. Springer, 2019. 4

[78] GONÇALVES, J. F.; RESENDE, M. G. C.. Biased random-key genetic
algorithms for combinatorial optimization. Journal of Heuristics,
17(5):487–525, 2011. 4, 4.1.1

[79] ANDRADE, C. E.; MIYAZAWA, F. K. ; RESENDE, M. G. C.. Evolu-
tionary algorithm for the k-interconnected multi-depot multi-
traveling salesmen problem. In: PROCEEDINGS OF THE 15TH AN-
NUAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTA-
TION, GECCO’13, p. 463–470, New York, NY, USA, 2013. ACM. 4, 4.1.2

[80] PRASETYO, H.; FAUZA, G.; AMER, Y. ; LEE, S. H.. Survey on applica-
tions of biased-random key genetic algorithms for solving opti-
mization problems. In: INDUSTRIAL ENGINEERING AND ENGINEER-
ING MANAGEMENT (IEEM), 2015 IEEE INTERNATIONAL CONFERENCE
ON, p. 863–870. IEEE, 2015. 4

[81] DE FARIA, H., J.; RESENDE, M. ; ERNST, D.. A biased random key
genetic algorithm applied to the electric distribution network
reconfiguration problem. Journal of Heuristics, 23(6):533–550, 2017. 4

[82] LUCENA, M. L.; ANDRADE, C. E.; RESENDE, M. G. ; MIYAZAWA, F. K..
Some extensions of biased random-key genetic algorithms. In:
PROCEEDINGS OF THE 46TH BRAZILIAN SYMPOSIUM OF OPERA-
TIONAL RESEARCH, XLVI SBPO, p. 2469–2480, 2014. 4.1.1

[83] ANDRADE, C. E.; TOSO, R. F.; GONÇALVES, J. F. ; RESENDE, M. G. C..
The multi-parent biased random-key genetic algorithm with
implicit path-relinking and its real-world applications. European
Journal of Operational Research, 2021. 4.1.1, 4.1.2, C

[84] LONDE, M. A.; ANDRADE, C. E. ; PESSOA, L. S.. An evolutionary
approach for the p-next center problem. Expert Systems with
Applications, 2021. 4.1.1

[85] ANDRADE, C. E.; TOSO, R. F.; RESENDE, M. G. ; MIYAZAWA, F. K..
Biased random-key genetic algorithms for the winner determi-

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Chapter 7. References 99

nation problem in combinatorial auctions. Evolutionary computation,
23(2):279–307, 2015. 4.1.2

[86] ANDRADE, C. E.; SILVA, T. ; PESSOA, L. S.. Minimizing flowtime in a
flowshop scheduling problem with a biased random-key genetic
algorithm. Expert Systems with Applications, 128:67–80, Aug 2019. 4.1.2,
5.4

[87] WHITLEY, D.; RANA, S. ; HECKENDORN, R. B.. The island model
genetic algorithm: On separability, population size and conver-
gence. Journal of computing and information technology, 7(1):33–47, 1999.
4.1.2

[88] TOSO, R. F.; RESENDE, M. G.. A C++ application programming
interface for biased random-key genetic algorithms. Optimization
Methods and Software, 30(1):81–93, 2015. 4.1.2

[89] PANDEY, H. M.; CHAUDHARY, A. ; MEHROTRA, D.. A comparative
review of approaches to prevent premature convergence in ga.
Applied Soft Computing, 24:1047–1077, 2014. 4.1.2

[90] RIBEIRO, C. C.; RESENDE, M. G.. Path-relinking intensification
methods for stochastic local search algorithms. Journal of heuristics,
18(2):193–214, 2012. 4.1.2

[91] KENDALL, M. G.. A new measure of rank correlation. Biometrika,
30(1/2):81–93, 1938. 4.1.2

[92] WELSH, D. J.; POWELL, M. B.. An upper bound for the chromatic
number of a graph and its application to timetabling problems.
The Computer Journal, 10(1):85–86, 1967. 4.2.7

[93] LÓPEZ-IBÁÑEZ, M.; DUBOIS-LACOSTE, J.; CÁCERES, L. P.; BIRATTARI,
M. ; STÜTZLE, T.. The irace package: Iterated racing for au-
tomatic algorithm configuration. Operations Research Perspectives,
3:43–58, 2016. 5.2

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



A
Instances

Table A.1: Description of instances used for experiments. “Sequence” is in-
dicative of maximal and minimal allowed RSI. “Vertices” is the number of
antennas or nodes the instance has, while “minDist” and “maxDist” are the
minimal and maximal distance requirements.

Instance Name Sequence Vertices minDist maxDist

long_n0030_r030_150 long 30 30 150
long_n0033_r020_160 long 33 20 160
long_n0038_r020_190 long 38 20 190
long_n0039_r020_150 long 39 20 150
long_n0040_r040_200 long 40 40 200
long_n0043_r020_170 long 43 20 170
long_n0045_r030_180 long 45 30 180
long_n0047_r020_180 long 47 20 180
long_n0051_r030_250 long 51 30 250
long_n0052_r020_100 long 52 20 100
long_n0059_r020_230 long 59 20 230
long_n0060_r030_240 long 60 30 240
long_n0061_r030_300 long 61 30 300
long_n0062_r020_310 long 62 20 310
long_n0065_r020_260 long 65 20 260
long_n0066_r030_330 long 66 30 330
long_n0067_r040_260 long 67 40 260
long_n0068_r020_130 long 68 20 130
long_n0069_r030_340 long 69 30 340
long_n0070_r040_280 long 70 40 280
long_n0073_r040_360 long 73 40 360
long_n0077_r040_380 long 77 40 380
long_n0081_r030_400 long 81 30 400
long_n0082_r040_320 long 82 40 320
long_n0083_r020_160 long 83 20 160
long_n0083_r040_330 long 83 40 330
long_n0084_r040_420 long 84 40 420
long_n0093_r030_180 long 93 30 180

Continue on next page. . .
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Table A.1 (continued).

Instance Name Sequence Vertices minDist maxDist

long_n0094_r040_470 long 94 40 470
long_n0095_r020_190 long 95 20 190
long_n0109_r030_540 long 109 30 540
long_n0114_r030_450 long 114 30 450
long_n0120_r030_240 long 120 30 240
long_n0122_r040_610 long 122 40 610
long_n0126_r020_250 long 126 20 250
long_n0129_r030_250 long 129 30 250
long_n0132_r020_260 long 132 20 260
long_n0135_r030_270 long 135 30 270
long_n0159_r040_310 long 159 40 310
long_n0162_r020_320 long 162 20 320
long_n0174_r030_340 long 174 30 340
long_n0202_r040_400 long 202 40 400
long_n0210_r040_420 long 210 40 420
long_n0238_r040_470 long 238 40 470
long_n0258_r030_510 long 258 30 510
long_n0259_r030_510 long 259 30 510
long_n0282_r040_560 long 282 40 560
long_n0284_r040_838 long 284 40 838
long_n0297_r030_590 long 297 30 590
long_n0323_r040_640 long 323 40 640
long_n0327_r040_650 long 327 40 650
long_n0340_r040_680 long 340 40 680
long_n0360_r040_720 long 360 40 720
long_n0365_r040_730 long 365 40 730
long_n0374_r040_740 long 374 40 740
long_n0376_r040_750 long 376 40 750
long_n0391_r040_838 long 391 40 838
long_n0405_r040_838 long 405 40 838
long_n0461_r040_838 long 461 40 838
long_n0463_r040_838 long 463 40 838
long_n0479_r040_838 long 479 40 838
long_n0499_r040_838 long 499 40 838
long_n0544_r040_838 long 544 40 838

Continue on next page. . .
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Table A.1 (continued).

Instance Name Sequence Vertices minDist maxDist

long_n0554_r040_838 long 554 40 838
long_n0596_r040_838 long 596 40 838
long_n0600_r030_838 long 600 30 838
long_n0647_r040_838 long 647 40 838
long_n0698_r040_838 long 698 40 838
long_n0728_r040_838 long 728 40 838
long_n0759_r040_838 long 759 40 838
long_n1026_r040_838 long 1026 40 838
long_n1026_r030_838 long 1026 30 838
long_n1348_r030_838 long 1348 30 838
long_n1569_r040_838 long 1569 40 838
long_n1580_r040_838 long 1580 40 838
long_n1892_r030_838 long 1892 30 838
long_n2036_r030_838 long 2036 30 838
long_n2124_r040_838 long 2124 40 838
long_n2284_r030_838 long 2284 30 838
long_n2977_r030_838 long 2977 30 838
long_n3092_r040_838 long 3092 40 838
long_n4125_r030_838 long 4125 30 838
short_n0030_r010_060 short 30 10 60
short_n0033_r010_080 short 33 10 80
short_n0038_r010_095 short 38 10 95
short_n0039_r010_075 short 39 10 75
short_n0040_r015_080 short 40 15 80
short_n0043_r010_085 short 43 10 85
short_n0045_r015_090 short 45 15 90
short_n0047_r010_090 short 47 10 90
short_n0051_r015_125 short 51 15 125
short_n0052_r010_050 short 52 10 50
short_n0059_r010_115 short 59 10 115
short_n0060_r015_120 short 60 15 120
short_n0061_r015_139 short 61 15 139
short_n0062_r010_139 short 62 10 139
short_n0065_r010_139 short 65 10 139
short_n0066_r015_139 short 66 15 139

Continue on next page. . .
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Table A.1 (continued).

Instance Name Sequence Vertices minDist maxDist

short_n0067_r010_065 short 67 10 65
short_n0068_r020_135 short 68 20 135
short_n0069_r010_135 short 69 10 135
short_n0070_r020_139 short 70 20 139
short_n0073_r015_139 short 73 15 139
short_n0077_r015_139 short 77 15 139
short_n0081_r010_139 short 81 10 139
short_n0082_r010_080 short 82 10 80
short_n0083_r010_080 short 83 10 80
short_n0084_r010_139 short 84 10 139
short_n0093_r015_090 short 93 15 90
short_n0094_r010_090 short 94 10 90
short_n0095_r015_139 short 95 15 139
short_n0120_r015_120 short 120 15 120
short_n0126_r015_139 short 126 15 139
short_n0129_r015_125 short 129 15 125
short_n0132_r010_130 short 132 10 130
short_n0135_r015_135 short 135 15 135
short_n0159_r015_139 short 159 15 139
short_n0174_r015_139 short 174 15 139
short_n0202_r015_139 short 202 15 139
short_n0210_r015_139 short 210 15 139
short_n0238_r010_139 short 238 10 139
short_n0259_r010_139 short 259 10 139
short_n0282_r010_139 short 282 10 139
short_n0284_r015_139 short 284 15 139
short_n0327_r010_139 short 327 10 139
short_n0340_r015_139 short 340 15 139
short_n0360_r010_139 short 360 10 139
short_n0365_r010_139 short 365 10 139
short_n0391_r010_139 short 391 10 139
short_n0405_r010_139 short 405 10 139
short_n0461_r010_139 short 461 10 139
short_n0463_r015_139 short 463 15 139
short_n0554_r010_139 short 554 10 139

Continue on next page. . .
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Table A.1 (continued).

Instance Name Sequence Vertices minDist maxDist

short_n0596_r010_139 short 596 10 139
short_n0647_r010_139 short 647 10 139
short_n0698_r010_139 short 698 10 139
short_n0759_r010_139 short 759 10 139
short_n1026_r010_139 short 1026 10 139
short_n1348_r010_139 short 1348 10 139
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Tuning results

Table B.1: Best parameter configurations suggested by irace for decoder LD
in the minimize change objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

772 0.39 0.14 3,10 r−2 2 0.12 RE 0.86 242 180 3.34 NLS 0.46 FALSE
2036 0.24 0.17 3,10 r−2 1 0.004 BS 0.57 89 143 4.19 NLS 0.32 TRUE
1847 0.29 0.17 3,10 r−2 2 0.16 RE 0.53 101 206 3.34 NLS 0.34 TRUE
2808 0.23 0.11 3,10 r−2 1 0.05 BS 0.18 68 119 3.04 NLS 0.57 TRUE
992 0.36 0.11 3,10 r−2 1 0.0006 BS 0.77 327 134 2.89 NLS 0.56 TRUE

Table B.2: Best parameter configurations suggested by irace for decoder LI
in the minimize change objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

963 0.36 0.14 3,10 r−2 1 0.08 BS 0.41 223 123 3.88 NLS 0.11 TRUE
1063 0.26 0.18 3,10 r−2 1 0.13 BS 0.47 280 156 3.28 NLS 0.37 TRUE
1172 0.35 0.15 3,10 r−2 1 0.03 RE 0.19 313 162 2.35 NLS 0.12 TRUE
899 0.18 0.22 3,10 r−2 1 0.15 RE 0.60 167 161 1.65 NLS 0.18 FALSE
1597 0.31 0.12 3,10 r−2 1 0.06 BS 0.22 331 157 2.88 NLS 0.45 TRUE

Table B.3: Best parameter configurations suggested by irace for decoder OR
in the minimize change objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

277 0.42 0.19 3,6 e−r 1 0.27 BS 0.45 475 164 1.67 NLS 0.49 TRUE
393 0.23 0.17 3,6 e−r 1 0.29 RE 0.49 435 188 3.13 BI 0.72 TRUE

1010 0.38 0.10 5,10 r−2 1 0.02 BS 0.30 107 270 2.93 FI 0.97 TRUE
781 0.27 0.16 5,10 r−2 2 0.004 BS 0.09 219 287 3.75 BI 0.91 TRUE
209 0.46 0.11 3,6 e−r 2 0.29 BS 0.82 307 171 1.91 NLS 0.59 TRUE
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Table B.4: Best parameter configurations suggested by irace for decoder SC
in the minimize change objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

1752 0.37 0.14 7,10 r−1 1 0.06 BS 0.94 325 276 4.00 FI 0.62 FALSE
2093 0.34 0.12 7,10 r−1 1 0.07 BS 0.61 234 295 4.26 FI 0.73 FALSE
1904 0.31 0.17 7,10 r−1 1 0.11 BS 0.81 212 251 4.73 FI 0.52 FALSE
2080 0.18 0.21 7,10 r−1 1 0.09 BS 0.88 283 268 4.33 FI 0.94 FALSE
2842 0.33 0.16 7,10 r−1 1 0.05 BS 0.77 204 257 4.74 FI 0.72 FALSE

Table B.5: Best parameter configurations suggested by irace for decoder KD
in the minimize change objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

609 0.41 0.20 3,10 r−2 1 0.04 BS 0.07 229 198 2.84 FI 0.51 TRUE
1166 0.39 0.10 3,10 r−2 1 0.08 RE 0.74 479 285 4.55 NLS 0.43 TRUE
735 0.35 0.11 3,10 r−2 1 0.09 BS 0.09 277 238 3.38 FI 0.63 TRUE
733 0.36 0.18 3,10 r−2 1 0.09 BS 0.02 125 267 2.25 FI 0.45 TRUE
437 0.18 0.14 5,10 r−1 2 0.24 BS 0.53 66 227 2.08 FI 0.49 TRUE

Table B.6: Best parameter configurations suggested by irace for decoder KC
in the minimize change objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

1647 0.40 0.12 3,10 r−2 1 0.15 BS 0.41 176 153 2.91 NLS 0.38 FALSE
963 0.36 0.14 3,10 r−2 1 0.08 BS 0.41 223 123 3.88 NLS 0.11 TRUE
1402 0.17 0.23 4,6 r−2 1 0.05 BS 0.37 345 172 4.89 FI 0.73 FALSE
1469 0.25 0.17 7,10 r−1 2 0.21 BS 0.28 296 160 4.50 FI 0.85 FALSE
1584 0.22 0.16 1,3 e−r 1 0.20 BS 0.18 383 177 1.17 NLS 0.91 TRUE
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Table B.7: Best parameter configurations suggested by irace for decoder LD
in the maximize minimal span objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

1010 0.38 0.10 5,10 r−2 1 0.02 BS 0.30 107 270 2.93 FI 0.97 TRUE
4004 0.39 0.15 7,10 r−2 3 0.08 BS 0.67 236 110 3.49 FI 0.37 FALSE
3840 0.43 0.12 3,6 r−2 2 0.13 BS 0.25 98 129 4.23 FI 0.28 TRUE
2924 0.34 0.45 3,6 e−r 1 0.02 RE 0.47 122 226 2.28 FI 0.69 FALSE
3858 0.36 0.14 1,3 r−2 2 0.13 BS 0.03 187 168 2.71 FI 0.20 TRUE

Table B.8: Best parameter configurations suggested by irace for decoder LI
in the maximize minimal span objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

1010 0.38 0.10 5,10 r−2 1 0.02 BS 0.30 107 270 2.93 FI 0.96 TRUE
4048 0.12 0.21 1,3 r−2 1 0.08 BS 0.54 354 151 1.31 FI 0.44 TRUE
4772 0.19 0.25 2,3 e−r 3 0.29 BS 0.69 473 145 3.37 FI 0.42 TRUE
935 0.35 0.17 2,3 r−1 3 0.18 RE 0.95 409 151 2.37 FI 0.91 FALSE
3131 0.28 0.38 3,10 r−2 2 0.05 RE 0.23 223 272 4.91 FI 0.72 FALSE

Table B.9: Best parameter configurations suggested by irace for decoder OR
in the maximize minimal span objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

619 0.35 0.12 3,10 e−r 1 0.06 BS 0.88 398 167 3.64 FI 0.39 TRUE
173 0.31 0.10 3,6 e−r 1 0.14 RE 0.48 446 212 4.19 FI 0.67 TRUE
355 0.29 0.12 3,6 e−r 1 0.17 RE 0.76 459 200 2.79 FI 0.72 FALSE
787 0.22 0.16 5,10 r−2 1 0.08 RE 0.31 157 238 2.34 FI 0.91 TRUE
601 0.45 0.10 5,10 e−r 1 0.07 BS 0.49 50 254 1.69 FI 0.51 TRUE
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Table B.10: Best parameter configurations suggested by irace for decoder SC
in the maximize minimal span objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

4902 0.27 0.13 2,6 e−r 2 0.02 RE 0.38 307 144 4.99 NLS 0.45 FALSE
4711 0.28 0.15 2,6 e−r 1 0.15 BS 0.13 177 150 4.56 NLS 0.35 TRUE
1936 0.22 0.12 4,6 r−1 2 0.005 RE 0.24 287 258 2.85 NLS 0.69 FALSE
2331 0.14 0.23 4,6 r−1 1 0.02 RE 0.31 52 193 2.97 NLS 0.91 FALSE
3209 0.23 0.13 2,6 e−r 2 0.09 BS 0.75 145 256 4.51 NLS 0.48 FALSE

Table B.11: Best parameter configurations suggested by irace for decoder KD
in the maximize minimal span objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

1268 0.13 0.31 1,3 e−r 2 0.18 BS 0.45 463 128 1.31 FI 0.86 TRUE
944 0.16 0.27 1,3 e−r 1 0.16 BS 0.66 347 261 1.10 FI 0.95 TRUE
1642 0.15 0.31 1,3 e−r 1 0.15 BS 0.58 338 113 2.11 FI 0.59 TRUE
3180 0.29 0.16 2,6 e−r 2 0.19 BS 0.54 431 152 2.01 FI 0.84 TRUE
4226 0.20 0.43 5,10 r−2 1 0.09 BS 0.46 364 101 2.95 FI 0.23 TRUE

Table B.12: Best parameter configurations suggested by irace for decoder KC
in the maximize minimal span objective.

BRKGA IPR Shaking Procedures

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS LS% CR

2304 0.34 0.23 5,10 e−r 1 0.01 RE 0.33 441 123 1.65 FI 0.51 TRUE
2210 0.37 0.10 2,3 e−r 1 0.25 BS 0.26 353 107 2.49 FI 0.37 FALSE
2202 0.37 0.12 2,3 e−r 1 0.22 BS 0.29 458 129 3.97 FI 0.56 FALSE
2159 0.38 0.24 5,10 e−r 1 0.01 RE 0.15 392 135 2.05 FI 0.60 TRUE
1384 0.39 0.17 2,3 e−r 1 0.20 BS 0.43 398 128 2.92 FI 0.49 FALSE
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C
Implicit Path-Relinking Results

The Implicit Path-Relinking procedure was recently introduced by Andrade
et al. [83]. The newness of this procedure means that a more detailed analysis
of its behavior and results becomes crucial, in order to clarify its potency and
effectiveness in different cases.

Thus, Tables C.1 and C.2 were made. Both detail the IPR role for the
improvement of the BRKGA procedure, separated by decoder. Column “Avg.
Calls” details the amount of times that the IPR procedure was called on average
per instance, while “Elite” indicates the times an individual of the elite set was
improved. Finally, column “Best” indicates how many times the best individual was
improved by IPR. In parenthesis is the proportion of improvement calls in relation
to the number of average calls.

For both objectives, it can be seen that decoders SC and SCno have the most
IPR calls and more improvements both in the elite and best individuals. That can
be related to the simplicity of these decoders, which lets them run more generations
and, thus, have more chances of calling the IPR procedure. Moreover, these tables
indicate how many times the improvement happened - not the quality of this
improvement. Finally, decoders SC and SCno both use larger populations than
that of the other decoders, as showed Appendix B. Larger amounts of individuals
mean that the possibility of the Path-relinking procedure of finding distant enough
individuals to compare is higher in comparison with the other decoders, further
justifying IPR effects.

Something else that is interesting to note is that the IPR effect for decoders
SC and SCno is, proportionally and in the minimize change objective, similar to
the other decoders. In fact, in this comparison, decoders LD and LDno do have a
proportionally higher number of Elite improvements, while OR has a more frequent
Best solution improvement. For decoders LD and LDno, this effect may be a
derivative of the quick convergence to good, viable solutions, in which the IPR
acts as an explorer of non-viable solutions that may lead to better results, thus
improving in, at least, the elite set. Meanwhile, the OR decoder has, amongst all
decoders, the worst results. IPR may, thus, manage to improve the best solution so
often because the initial solutions are not good in the first place, but the exploration
of the intermediate solutions may manage to improve their quality significantly by
exploring new solution spaces.

For the maximize minimal span, the OR decoder still has a higher percentage
of best individual improvement in comparison with the other decoders. This may be
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justified the same as the other objective. However, in this case, SC, SCno, and KD
have drastically higher amounts of elite improvements. KD’s case may be justified
by its higher concentration of final results. If this tendency of less varied results
was consistent amongst all generations of the algorithm run, then the IPR would
give a much-needed shake-like effect, which would let the algorithm explore new
solution spaces. Meanwhile, SC and SCno is a similar justification as the OR one,
but with one addendum: as SC and SCno manage to find regular solutions more
often, the IPR does not manage to strongly improve those solutions, but only finds
improvements relative to the elite set, i.e., the effect is not as powerful as it is on
OR individuals.

Table C.1: IPR effects by decoder in average per instance. This table refers to
the minimize changes objective.

Decoder Avg. Calls Improvement
Elite(%) Best(%)

KC 17.9 1.19(0.07) 0.12(0.006)
KCno 17.9 1.29(0.07) 0.18(0.010)
KD 76.1 7.38(0.10) 3.71(0.05)
LD 255.0 60.70(0.24) 10.90(0.04)
LDno 267.0 64.30(0.24) 11.70(0.04)
LI 223.0 14.60(0.07) 11.60(0.05)
OR 105.0 14.70(0.14) 55.60(0.53)
SC 1168.0 104.00(0.09) 133.00(0.11)
SCno 1400.0 118.00(0.08) 162.00(0.12)

Table C.2: IPR effects by decoder in average per instance. This table refers to
the maximize minimal span objective.

Decoder Avg. Calls Improvement
Elite(%) Best(%)

KC 5.2 1.00(0.19) 0.03(0.01)
KD 2.9 0.98(0.33) 0.26(0.09)
LD 295.0 9.22(0.03) 4.83(0.02)
LI 117.0 3.16(0.03) 1.56(0.01)
OR 31.2 2.12(0.07) 7.65(0.24)
SC 565.0 220.00(0.40) 24.4(0.04)
SCno 587.0 231.00(0.39) 28.1(0.05)
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D
Detailed Results - Mathematical Models

D.1
Unsolvable Instances

Table D.1: Listing of instances that at least one model could not find a solution
on the maximal time of 3,600 seconds wall-clock. A “x” indicates that the
model did not find any legal solution for the respective instance.

Instance Name NC NS LC LS

long_n0065_r020_260 x
long_n0077_r040_380 x
long_n0084_r040_420 x
long_n0114_r030_450 x x x
long_n0122_r040_610 x x x
long_n0129_r030_250 x x
long_n0162_r020_320 x x x
long_n0238_r040_470 x x
long_n0258_r030_510 x x
long_n0259_r030_510 x x x
long_n0282_r040_560 x x x x
long_n0297_r030_590 x x
long_n0323_r040_640 x x x x
long_n0499_r040_838 x x x
long_n0698_r040_838 x
long_n1026_r030_838 x x
long_n1348_r030_838 x x x x
long_n1569_r040_838 x x
long_n1580_r040_838 x x x x
long_n1892_r030_838 x x x x
long_n2036_r030_838 x x x
long_n2124_r040_838 x x x x
long_n2284_r030_838 x x
long_n2977_r030_838 x x x x
long_n3092_r040_838 x x x x
long_n4125_r030_838 x x x x

Continue on next page. . .
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Table D.1 (continued).

Instance Name NC NS LC LS

short_n0126_r015_139 x
short_n0210_r015_139 x x x x
short_n0259_r010_139 x x x x
short_n0282_r010_139 x x
short_n0327_r010_139 x
short_n0340_r015_139 x x
short_n0360_r010_139 x x x x
short_n0463_r015_139 x x x x
short_n0554_r010_139 x x x x
short_n0596_r010_139 x
short_n0698_r010_139 x x
short_n0759_r010_139 x x x x
short_n1026_r010_139 x x x x
short_n1348_r010_139 x x x x
Total 31 33 27 22

22.3% 23.7% 19.4% 15.8%

D.2
Results by model

Table D.2: Results for model NC in 3,600 seconds wall-clock. “GAP%” indi-
cates the best difference between lower and upper bounds. “# feasible” is the
amount of found legal solutions, and “Time”, the time in seconds to obtain an
optimal solution. If not found, then it is equal to the maximal time.

Instance Name GAP% # feasible Time

long_n0030_r030_150 9.09 7 3600.00
long_n0033_r020_160 14.00 8 3600.00
long_n0038_r020_190 0.00 5 651.28
long_n0039_r020_150 7.14 10 3600.00
long_n0040_r040_200 0.00 1 117.89
long_n0043_r020_170 29.03 6 3600.00
long_n0045_r030_180 0.00 6 938.75
long_n0047_r020_180 3.45 13 3600.00
long_n0051_r030_250 30.26 4 3600.00

Continue on next page. . .
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Table D.2 (continued).

Instance Name GAP% # feasible Time

long_n0052_r020_100 0.00 3 50.61
long_n0059_r020_230 36.69 3 3600.00
long_n0060_r030_240 31.56 10 3600.00
long_n0061_r030_300 29.26 1 3600.00
long_n0062_r020_310 11.17 3 3600.00
long_n0066_r030_330 23.49 13 3600.00
long_n0067_r040_260 13.33 5 3600.00
long_n0068_r020_130 0.00 5 54.89
long_n0069_r030_340 35.00 5 3600.00
long_n0070_r040_280 13.36 11 3600.00
long_n0073_r040_360 35.12 7 3600.00
long_n0077_r040_380 46.63 2 3600.00
long_n0081_r030_400 29.12 8 3600.00
long_n0082_r040_320 26.45 5 3600.00
long_n0083_r020_160 26.08 12 3600.00
long_n0083_r040_330 20.65 5 3600.00
long_n0084_r040_420 42.10 7 3600.00
long_n0093_r030_180 34.50 6 3600.00
long_n0094_r040_470 37.16 10 3600.00
long_n0095_r020_190 21.43 18 3600.00
long_n0109_r030_540 52.48 16 3600.00
long_n0120_r030_240 31.07 13 3600.00
long_n0126_r020_250 38.46 7 3600.00
long_n0132_r020_260 40.81 1 3600.00
long_n0135_r030_270 48.24 4 3600.00
long_n0159_r040_310 11.11 16 3600.00
long_n0174_r030_340 34.81 22 3600.00
long_n0202_r040_400 38.48 22 3600.00
long_n0210_r040_420 70.04 17 3600.00
long_n0258_r030_510 42.56 13 3600.00
long_n0284_r040_838 6.33 22 3600.00
long_n0297_r030_590 49.35 18 3600.00
long_n0327_r040_650 25.64 16 3600.00
long_n0340_r040_680 52.15 4 3600.00
long_n0360_r040_720 26.98 66 3600.00

Continue on next page. . .
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Table D.2 (continued).

Instance Name GAP% # feasible Time

long_n0365_r040_730 30.81 30 3600.00
long_n0374_r040_740 43.36 5 3600.00
long_n0376_r040_750 40.36 6 3600.00
long_n0391_r040_838 26.47 34 3600.00
long_n0405_r040_838 33.03 42 3600.00
long_n0461_r040_838 14.10 12 3600.00
long_n0463_r040_838 34.90 25 3600.00
long_n0479_r040_838 38.25 7 3600.00
long_n0544_r040_838 38.72 12 3600.00
long_n0554_r040_838 42.09 27 3600.00
long_n0596_r040_838 50.77 4 3600.00
long_n0600_r030_838 40.23 2 3600.00
long_n0647_r040_838 59.49 3 3600.00
long_n0698_r040_838 60.29 8 3600.00
long_n0728_r040_838 48.16 3 3600.00
long_n0759_r040_838 45.54 33 3600.00
long_n1026_r040_838 55.65 4 3600.00
long_n1569_r040_838 58.24 2 3600.00
long_n2284_r030_838 60.64 2 3600.00
short_n0030_r010_060 14.29 7 3600.00
short_n0033_r010_080 14.18 14 3600.00
short_n0038_r010_095 0.00 5 161.73
short_n0039_r010_075 9.09 14 3600.00
short_n0040_r015_080 0.00 11 156.36
short_n0043_r010_085 21.98 11 3600.00
short_n0045_r015_090 0.00 13 1088.77
short_n0047_r010_090 0.00 16 1136.09
short_n0051_r015_125 34.29 7 3600.00
short_n0052_r010_050 0.00 14 2247.36
short_n0059_r010_115 28.95 10 3600.00
short_n0060_r015_120 25.71 17 3600.00
short_n0061_r015_139 26.32 7 3600.00
short_n0062_r010_139 18.18 9 3600.00
short_n0065_r010_139 27.24 18 3600.00
short_n0066_r015_139 36.35 8 3600.00

Continue on next page. . .
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Table D.2 (continued).

Instance Name GAP% # feasible Time

short_n0067_r010_065 10.00 8 3600.00
short_n0068_r020_135 0.00 6 146.3
short_n0069_r010_135 36.26 8 3600.00
short_n0070_r020_139 8.33 20 3600.00
short_n0073_r015_139 32.07 10 3600.00
short_n0077_r015_139 39.22 9 3600.00
short_n0081_r010_139 8.76 33 3600.00
short_n0082_r010_080 9.52 10 3600.00
short_n0083_r010_080 11.90 8 3600.00
short_n0084_r010_139 43.10 14 3600.00
short_n0093_r015_090 16.55 19 3600.00
short_n0094_r010_090 37.43 22 3600.00
short_n0095_r015_139 4.26 11 3600.00
short_n0120_r015_120 41.57 30 3600.00
short_n0126_r015_139 41.25 4 3600.00
short_n0129_r015_125 43.16 6 3600.00
short_n0132_r010_130 43.12 18 3600.00
short_n0135_r015_135 37.09 6 3600.00
short_n0159_r015_139 5.13 12 3600.00
short_n0174_r015_139 27.87 9 3600.00
short_n0202_r015_139 23.91 17 3600.00
short_n0238_r010_139 27.21 39 3600.00
short_n0284_r015_139 28.63 40 3600.00
short_n0327_r010_139 28.80 50 3600.00
short_n0365_r010_139 12.82 63 3600.00
short_n0391_r010_139 12.94 89 3600.00
short_n0405_r010_139 45.55 34 3600.00
short_n0461_r010_139 16.59 66 3600.00
short_n0647_r010_139 44.60 38 3600.00
Average 27.68 13 3298.03
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Table D.3: Results for model NS in 3,600 seconds wall-clock. “GAP%” indicates
the best difference between lower and upper bounds. “# feasible” is the amount
of found legal solutions, and “Time”, the time in seconds to obtain an optimal
solution. If not found, then it is equal to the maximal time.

Instance Name GAP% # feasible Time

long_n0030_r030_150 143.33 1 3600.00
long_n0033_r020_160 142.42 3 3600.00
long_n0038_r020_190 313.04 4 3600.00
long_n0039_r020_150 134.36 2 3600.00
long_n0040_r040_200 98.58 3 3600.00
long_n0043_r020_170 304.76 2 3600.00
long_n0045_r030_180 200.00 1 3600.00
long_n0047_r020_180 309.09 3 3600.00
long_n0051_r030_250 168.82 1 3600.00
long_n0052_r020_100 150.00 1 3600.00
long_n0059_r020_230 397.83 4 3600.00
long_n0060_r030_240 300.00 1 3600.00
long_n0061_r030_300 354.55 4 3600.00
long_n0062_r020_310 559.09 3 3600.00
long_n0065_r020_260 471.43 2 3600.00
long_n0066_r030_330 358.33 7 3600.00
long_n0067_r040_260 202.33 3 3600.00
long_n0068_r020_130 106.35 3 3600.00
long_n0069_r030_340 466.67 1 3600.00
long_n0070_r040_280 204.35 6 3600.00
long_n0073_r040_360 670.99 6 3600.00
long_n0081_r030_400 506.06 4 3600.00
long_n0082_r040_320 250.00 1 3600.00
long_n0083_r020_160 700.00 1 3600.00
long_n0083_r040_330 607.32 2 3600.00
long_n0084_r040_420 882.81 3 3600.00
long_n0093_r030_180 200.00 1 3600.00
long_n0094_r040_470 814.89 8 3600.00
long_n0095_r020_190 608.33 4 3600.00
long_n0109_r030_540 1447.83 4 3600.00
long_n0120_r030_240 700.00 1 3600.00
long_n0126_r020_250 468.18 3 3600.00

Continue on next page. . .
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Table D.3 (continued).

Instance Name GAP% # feasible Time

long_n0132_r020_260 766.67 1 3600.00
long_n0135_r030_270 600.00 1 3600.00
long_n0159_r040_310 206.82 7 3600.00
long_n0174_r030_340 1000.00 1 3600.00
long_n0202_r040_400 376.19 5 3600.00
long_n0210_r040_420 950.00 3 3600.00
long_n0238_r040_470 1046.34 2 3600.00
long_n0258_r030_510 1600.00 3 3600.00
long_n0284_r040_838 897.62 5 3600.00
long_n0327_r040_650 1296.67 3 3600.00
long_n0340_r040_680 1558.54 4 3600.00
long_n0360_r040_720 1600.00 3 3600.00
long_n0365_r040_730 1680.49 4 3600.00
long_n0374_r040_740 1750.00 3 3600.00
long_n0376_r040_750 1536.00 3 3600.00
long_n0391_r040_838 1733.12 3 3600.00
long_n0405_r040_838 1757.77 4 3600.00
long_n0461_r040_838 1296.67 1 3600.00
long_n0463_r040_838 1296.67 1 3600.00
long_n0479_r040_838 1695.71 3 3600.00
long_n0499_r040_838 1915.00 3 3600.00
long_n0544_r040_838 1575.00 3 3600.00
long_n0554_r040_838 1895.00 3 3600.00
long_n0596_r040_838 1945.00 3 3600.00
long_n0600_r030_838 2510.00 3 3600.00
long_n0647_r040_838 1945.00 3 3600.00
long_n0728_r040_838 1695.00 3 3600.00
long_n0759_r040_838 1895.00 3 3600.00
long_n1026_r040_838 6307.92 2 3600.00
long_n2284_r030_838 2693.33 3 3600.00
short_n0030_r010_060 50.00 2 3600.00
short_n0033_r010_080 142.42 2 3600.00
short_n0038_r010_095 115.91 2 3600.00
short_n0039_r010_075 87.50 1 3600.00
short_n0040_r015_080 66.67 2 3600.00

Continue on next page. . .

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Appendix D. Detailed Results - Mathematical Models 118

Table D.3 (continued).

Instance Name GAP% # feasible Time

short_n0043_r010_085 180.00 1 3600.00
short_n0045_r015_090 0.00 3 1998.92
short_n0047_r010_090 104.55 3 3600.00
short_n0051_r015_125 164.76 1 3600.00
short_n0052_r010_050 20.00 1 3600.00
short_n0059_r010_115 248.48 3 3600.00
short_n0060_r015_120 166.67 3 3600.00
short_n0061_r015_139 131.67 3 3600.00
short_n0062_r010_139 360.00 2 3600.00
short_n0065_r010_139 304.55 2 3600.00
short_n0066_r015_139 195.56 3 3600.00
short_n0067_r010_065 62.50 1 3600.00
short_n0068_r020_135 104.55 3 3600.00
short_n0069_r010_135 261.04 2 3600.00
short_n0070_r020_139 0.00 4 1049.73
short_n0073_r015_139 133.61 5 3600.00
short_n0077_r015_139 208.89 3 3600.00
short_n0081_r010_139 527.27 3 3600.00
short_n0082_r010_080 100.00 2 3600.00
short_n0083_r010_080 166.67 2 3600.00
short_n0084_r010_139 256.41 5 3600.00
short_n0093_r015_090 100.00 3 3600.00
short_n0094_r010_090 172.73 3 3600.00
short_n0095_r015_139 143.86 5 3600.00
short_n0120_r015_120 300.00 3 3600.00
short_n0129_r015_125 177.78 1 3600.00
short_n0132_r010_130 456.00 1 3600.00
short_n0135_r015_135 318.75 2 3600.00
short_n0159_r015_139 170.18 5 3600.00
short_n0174_r015_139 273.33 1 3600.00
short_n0202_r015_139 263.40 3 3600.00
short_n0238_r010_139 522.94 3 3600.00
short_n0284_r015_139 133.61 3 3600.00
short_n0365_r010_139 709.68 2 3600.00
short_n0391_r010_139 730.00 2 3600.00
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Table D.3 (continued).

Instance Name GAP% # feasible Time

short_n0405_r010_139 590.00 1 3600.00
short_n0461_r010_139 590.00 2 3600.00
short_n0596_r010_139 755.77 1 3600.00
short_n0647_r010_139 590.00 1 3600.00
Average 692.65 2 3561.85

Table D.4: Results for model LC in 3,600 seconds wall-clock. “GAP%” indicates
the best difference between lower and upper bounds. “# feasible” is the amount
of found legal solutions, and “Time”, the time in seconds to obtain an optimal
solution. If not found, then it is equal to the maximal time.

Instance Name GAP% # feasible Time

long_n0030_r030_150 0.00 5 697.81
long_n0033_r020_160 0.00 8 450.77
long_n0038_r020_190 0.00 7 91.32
long_n0039_r020_150 0.00 8 868.91
long_n0040_r040_200 0.00 3 20.65
long_n0043_r020_170 10.71 8 3600.00
long_n0045_r030_180 0.00 15 451.04
long_n0047_r020_180 3.45 8 3600.00
long_n0051_r030_250 26.81 7 3600.00
long_n0052_r020_100 0.00 4 9.81
long_n0059_r020_230 26.97 5 3600.00
long_n0060_r030_240 14.27 12 3600.00
long_n0061_r030_300 25.00 12 3600.00
long_n0062_r020_310 0.00 5 1268.66
long_n0065_r020_260 10.56 6 3600.00
long_n0066_r030_330 8.53 10 3600.00
long_n0067_r040_260 0.00 3 667.79
long_n0068_r020_130 0.00 3 35.07
long_n0069_r030_340 32.35 7 3600.00
long_n0070_r040_280 2.13 10 3600.00
long_n0073_r040_360 30.79 6 3600.00
long_n0077_r040_380 37.87 7 3600.00
long_n0081_r030_400 26.18 21 3600.00
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Table D.4 (continued).

Instance Name GAP% # feasible Time

long_n0082_r040_320 12.66 14 3600.00
long_n0083_r020_160 12.43 12 3600.00
long_n0083_r040_330 6.81 12 3600.00
long_n0093_r030_180 22.71 12 3600.00
long_n0094_r040_470 31.37 7 3600.00
long_n0095_r020_190 19.27 13 3600.00
long_n0109_r030_540 31.84 5 3600.00
long_n0120_r030_240 20.82 11 3600.00
long_n0126_r020_250 18.31 9 3600.00
long_n0129_r030_250 23.39 1 3600.00
long_n0132_r020_260 38.46 2 3600.00
long_n0135_r030_270 38.79 7 3600.00
long_n0159_r040_310 0.00 19 1365.41
long_n0174_r030_340 18.30 18 3600.00
long_n0202_r040_400 15.19 17 3600.00
long_n0210_r040_420 38.78 21 3600.00
long_n0259_r030_510 37.23 19 3600.00
long_n0284_r040_838 5.19 8 3600.00
long_n0327_r040_650 21.98 42 3600.00
long_n0340_r040_680 9.20 36 3600.00
long_n0360_r040_720 19.46 54 3600.00
long_n0365_r040_730 13.25 22 3600.00
long_n0374_r040_740 26.30 37 3600.00
long_n0376_r040_750 25.98 36 3600.00
long_n0391_r040_838 14.45 44 3600.00
long_n0405_r040_838 11.49 35 3600.00
long_n0461_r040_838 18.74 39 3600.00
long_n0463_r040_838 21.89 42 3600.00
long_n0479_r040_838 39.61 22 3600.00
long_n0544_r040_838 35.05 42 3600.00
long_n0554_r040_838 24.65 20 3600.00
long_n0596_r040_838 22.44 48 3600.00
long_n0600_r030_838 32.52 31 3600.00
long_n0647_r040_838 18.03 65 3600.00
long_n0698_r040_838 18.43 47 3600.00
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Table D.4 (continued).

Instance Name GAP% # feasible Time

long_n0728_r040_838 35.85 38 3600.00
long_n0759_r040_838 49.00 3 3600.00
long_n1026_r030_838 18.46 22 3600.00
long_n1026_r040_838 47.29 3 3600.00
long_n1569_r040_838 53.52 11 3600.00
short_n0030_r010_060 0.00 5 2542.87
short_n0033_r010_080 0.00 8 2598.13
short_n0038_r010_095 0.00 7 37.14
short_n0039_r010_075 9.09 9 3600.00
short_n0040_r015_080 0.00 7 1117.59
short_n0043_r010_085 18.40 10 3600.00
short_n0045_r015_090 0.00 12 3199.85
short_n0047_r010_090 0.00 13 215.67
short_n0051_r015_125 30.94 8 3600.00
short_n0052_r010_050 0.00 8 1661.3
short_n0059_r010_115 25.70 13 3600.00
short_n0060_r015_120 24.18 15 3600.00
short_n0061_r015_139 27.13 20 3600.00
short_n0062_r010_139 20.59 4 3600.00
short_n0065_r010_139 26.47 12 3600.00
short_n0066_r015_139 27.91 19 3600.00
short_n0067_r010_065 10.34 8 3600.00
short_n0068_r020_135 0.00 10 1892.98
short_n0069_r010_135 28.95 14 3600.00
short_n0070_r020_139 8.33 13 3600.00
short_n0073_r015_139 21.74 19 3600.00
short_n0077_r015_139 31.34 17 3600.00
short_n0081_r010_139 8.57 22 3600.00
short_n0082_r010_080 2.94 19 3600.00
short_n0083_r010_080 5.12 11 3600.00
short_n0084_r010_139 17.91 31 3600.00
short_n0093_r015_090 19.64 22 3600.00
short_n0094_r010_090 32.56 17 3600.00
short_n0095_r015_139 0.00 19 3464.23
short_n0120_r015_120 38.89 21 3600.00
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Table D.4 (continued).

Instance Name GAP% # feasible Time

short_n0126_r015_139 39.02 11 3600.00
short_n0129_r015_125 38.19 10 3600.00
short_n0132_r010_130 39.80 6 3600.00
short_n0135_r015_135 38.03 12 3600.00
short_n0159_r015_139 0.00 14 2277.9
short_n0174_r015_139 14.34 36 3600.00
short_n0202_r015_139 18.51 20 3600.00
short_n0238_r010_139 22.05 48 3600.00
short_n0282_r010_139 26.59 24 3600.00
short_n0284_r015_139 26.06 49 3600.00
short_n0327_r010_139 17.65 61 3600.00
short_n0340_r015_139 33.51 11 3600.00
short_n0365_r010_139 6.12 65 3600.00
short_n0391_r010_139 13.56 55 3600.00
short_n0405_r010_139 34.07 43 3600.00
short_n0461_r010_139 5.21 41 3600.00
short_n0596_r010_139 28.37 95 3600.00
short_n0647_r010_139 34.88 100 3600.00
short_n0698_r010_139 23.62 104 3600.00
Average 18.94 19 3149.25

Table D.5: Results for model LS in 3,600 seconds wall-clock. “GAP%” indicates
the best difference between lower and upper bounds. “# feasible” is the amount
of found legal solutions, and “Time”, the time in seconds to obtain an optimal
solution. If not found, then it is equal to the maximal time.

Instance Name GAP% # feasible Time

long_n0030_r030_150 0.00 1 473.24
long_n0033_r020_160 137.48 5 3600.00
long_n0038_r020_190 106.52 5 3600.00
long_n0039_r020_150 138.10 4 3600.00
long_n0040_r040_200 0.00 6 110.1
long_n0043_r020_170 169.84 2 3600.00
long_n0045_r030_180 0.00 1 1458.29
long_n0047_r020_180 104.55 3 3600.00
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Table D.5 (continued).

Instance Name GAP% # feasible Time

long_n0051_r030_250 168.82 1 3600.00
long_n0052_r020_100 0.00 3 489.72
long_n0059_r020_230 150.00 4 3600.00
long_n0060_r030_240 166.67 1 3600.00
long_n0061_r030_300 127.27 4 3600.00
long_n0062_r020_310 369.70 5 3600.00
long_n0065_r020_260 312.70 2 3600.00
long_n0066_r030_330 129.17 7 3600.00
long_n0067_r040_260 0.00 2 2977.31
long_n0068_r020_130 32.15 3 3600.00
long_n0069_r030_340 183.33 1 3600.00
long_n0070_r040_280 0.00 5 1240.2
long_n0073_r040_360 121.11 6 3600.00
long_n0077_r040_380 200.00 3 3600.00
long_n0081_r030_400 304.04 6 3600.00
long_n0082_r040_320 166.67 1 3600.00
long_n0083_r020_160 166.67 3 3600.00
long_n0083_r040_330 101.22 2 3600.00
long_n0084_r040_420 233.33 3 3600.00
long_n0093_r030_180 50.00 1 3600.00
long_n0094_r040_470 233.33 8 3600.00
long_n0095_r020_190 134.57 10 3600.00
long_n0109_r030_540 650.00 7 3600.00
long_n0114_r030_450 650.00 1 3600.00
long_n0120_r030_240 220.00 3 3600.00
long_n0122_r040_610 598.33 1 3600.00
long_n0126_r020_250 220.51 8 3600.00
long_n0129_r030_250 254.84 2 3600.00
long_n0132_r020_260 276.81 4 3600.00
long_n0135_r030_270 300.00 1 3600.00
long_n0159_r040_310 76.14 7 3600.00
long_n0162_r020_320 700.00 1 3600.00
long_n0174_r030_340 233.33 5 3600.00
long_n0202_r040_400 166.67 12 3600.00
long_n0210_r040_420 412.20 4 3600.00
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Table D.5 (continued).

Instance Name GAP% # feasible Time

long_n0238_r040_470 446.51 4 3600.00
long_n0284_r040_838 173.86 50 3600.00
long_n0297_r030_590 883.33 1 3600.00
long_n0327_r040_650 673.81 5 3600.00
long_n0340_r040_680 593.88 11 3600.00
long_n0360_r040_720 495.00 3 3600.00
long_n0365_r040_730 1028.42 6 3600.00
long_n0374_r040_740 825.00 3 3600.00
long_n0376_r040_750 814.63 4 3600.00
long_n0391_r040_838 1221.85 10 3600.00
long_n0405_r040_838 981.12 11 3600.00
long_n0461_r040_838 831.11 8 3600.00
long_n0463_r040_838 1189.29 8 3600.00
long_n0479_r040_838 1470.00 3 3600.00
long_n0544_r040_838 1431.71 4 3600.00
long_n0554_r040_838 1347.39 3 3600.00
long_n0596_r040_838 1360.47 6 3600.00
long_n0600_r030_838 1296.67 1 3600.00
long_n0647_r040_838 1395.24 5 3600.00
long_n0698_r040_838 1360.47 6 3600.00
long_n0728_r040_838 1470.00 3 3600.00
long_n0759_r040_838 1470.00 1 3600.00
long_n1026_r030_838 1293.33 1 3600.00
long_n1026_r040_838 945.00 3 3600.00
long_n2036_r030_838 2690.00 3 3600.00
short_n0030_r010_060 20.00 1 3600.00
short_n0033_r010_080 45.45 2 3600.00
short_n0038_r010_095 43.94 2 3600.00
short_n0039_r010_075 50.00 1 3600.00
short_n0040_r015_080 0.00 3 102.2
short_n0043_r010_085 70.00 1 3600.00
short_n0045_r015_090 50.00 1 3600.00
short_n0047_r010_090 36.36 2 3600.00
short_n0051_r015_125 177.78 1 3600.00
short_n0052_r010_050 20.00 1 3600.00

Continue on next page. . .

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Appendix D. Detailed Results - Mathematical Models 125

Table D.5 (continued).

Instance Name GAP% # feasible Time

short_n0059_r010_115 248.48 2 3600.00
short_n0060_r015_120 100.00 3 3600.00
short_n0061_r015_139 131.67 1 3600.00
short_n0062_r010_139 360.00 1 3600.00
short_n0065_r010_139 305.41 2 3600.00
short_n0066_r015_139 126.67 1 3600.00
short_n0067_r010_065 0.00 1 2018.22
short_n0068_r020_135 0.00 2 895.68
short_n0069_r010_135 309.09 2 3600.00
short_n0070_r020_139 0.00 3 812.09
short_n0073_r015_139 170.59 3 3600.00
short_n0077_r015_139 206.67 1 3600.00
short_n0081_r010_139 321.21 4 3600.00
short_n0082_r010_080 166.67 1 3600.00
short_n0083_r010_080 290.00 3 3600.00
short_n0084_r010_139 384.48 6 3600.00
short_n0093_r015_090 50.00 1 3600.00
short_n0094_r010_090 104.55 4 3600.00
short_n0095_r015_139 143.86 5 3600.00
short_n0120_r015_120 100.00 3 3600.00
short_n0126_r015_139 186.67 1 3600.00
short_n0129_r015_125 161.11 1 3600.00
short_n0132_r010_130 490.91 4 3600.00
short_n0135_r015_135 200.00 1 3600.00
short_n0159_r015_139 143.86 5 3600.00
short_n0174_r015_139 346.67 1 3600.00
short_n0202_r015_139 172.55 3 3600.00
short_n0238_r010_139 434.62 6 3600.00
short_n0282_r010_139 363.33 1 3600.00
short_n0284_r015_139 172.55 5 3600.00
short_n0327_r010_139 589.88 3 3600.00
short_n0340_r015_139 286.67 1 3600.00
short_n0365_r010_139 527.27 2 3600.00
short_n0391_r010_139 813.45 1 3600.00
short_n0405_r010_139 680.00 1 3600.00

Continue on next page. . .

DBD
PUC-Rio - Certificação Digital Nº 1913174/CA



Appendix D. Detailed Results - Mathematical Models 126

Table D.5 (continued).

Instance Name GAP% # feasible Time

short_n0461_r010_139 590.00 1 3600.00
short_n0596_r010_139 595.00 1 3600.00
short_n0647_r010_139 790.00 1 3600.00
short_n0698_r010_139 760.00 3 3600.00
Average 417.02 4 3383.28
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