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Abstract

Silva,Lucas Roberto da; COLCHER, SÉRGIO (Advisor). Unsuper-
vised multi-review summarization using fine-tuned Transformer
language models. Rio de Janeiro, 2021. 64p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

Automatic summarization is the task of generating concise, correct, and
factual summaries. The task can be applied to different textual styles, including
news, academic publications, and product or place reviews. This dissertation
addresses the summary of multiple evaluations. This type of application stands
out for its unsupervised nature and the need to deal with the redundancy of
the information present in the reviews. The automatic summarization works
are evaluated using the ROUGE metric, which is based on the comparison of
n-grans between the reference text and the generated summary. The lack of
supervised data motivated the creation of the MeanSum architecture, which
was the first neural network architecture based on an unsupervised model for
this task. It is based on auto-encoder and has been extended to other works,
but none explored the effects of using the attention mechanism and auxiliary
tasks during training. The present work is divided into two parts: the first deals
with an experiment in which we make extensions to the MeanSum architecture,
adding attention mechanisms and auxiliary sentiment classification tasks. In
the same experiment, we explore synthetic data to adapt supervised models
for unsupervised tasks. In the second part, we used the results previously
obtained to carry out a second study on fine-tuning pre-trained Transformer
language models. The use of these models showed a promising alternative to
the unsupervised nature of the problem, outperforming previous works by +
4 ROUGE.

Keywords
Summarization; Fine-Tuning; Language Models; Transformers;
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Resumo

Silva,Lucas Roberto da; COLCHER, SÉRGIO. Sumarização automá-
tica de multiplas avaliações utilizando ajuste fino de modelos de
linguagem Transformers. Rio de Janeiro, 2021. 64p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade Cató-
lica do Rio de Janeiro.

Sumarização automática é a tarefa de gerar resumos concisos, corretos e
com consistência factual. A tarefa pode ser aplicada a diversos estilos textuais,
dentre eles notícias, publicações acadêmicas e avaliações de produtos ou
lugares. A presente dissertação aborda a sumarização de múltiplas avaliações.
Esse tipo de aplicação se destaca por sua natureza não supervisionada e
pela necessidade de lidar com a redundância das informações presentes nas
avaliações. Os trabalhos de sumarização automática são avaliados utilizando
a métrica ROUGE, que se baseia na comparação de n-gramas entre o texto
de referência e o resumo gerado. A falta de dados supervisionados motivou a
criação da arquitetura MeanSum, que foi a primeira arquitetura de rede neural
baseada em um modelo não supervisionado para essa tarefa. Ela é baseada
em auto-encoder e foi estendida por outros trabalhos, porém nenhum deles
apresentou os efeitos do uso do mecanismo de atenção e tarefas auxiliares
durante o treinamento do modelo. O presente trabalho é dividido em duas
etapas. A primeira trata de um experimento no qual extensões à arquitetura
do MeanSum foram propostas para acomodar mecanismos de atenção e tarefas
auxiliares de classificação de sentimento. Ainda nessa etapa, explora-se o
uso de dados sintéticos para adaptar modelos supervisionados a tarefas não
supervisionadas. Na segunda etapa, os resultados obtidos anteriormente foram
utilizados para realizar um estudo sobre o uso de ajuste fino (fine-tuning)
de modelos de linguagem Transformers pré-treinados. A utilização desses
modelos mostrou ser uma alternativa promissora para enfrentar a natureza não
supervisionada do problema, apresentando um desempenho de + 4 ROUGE
quando comparado a trabalhos anteriores.

Palavras-chave
Sumarização; Ajuste Fino; Modelos de Linguagem; Transformers;
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1
Introduction

The internet is an incredible tool for sharing information. Users who
buy a product, hire a service, make plans for a trip or for a place to eat,
very frequently write their experiences on dedicated websites, personal blogs,
forums, or social networks. All of this review data is a valuable resource for
building opinion-based applications. One possible application is automatic text
summarization, especially Multiple Review Summarization (MRS).

Automatic Text summarization is the task of reducing the length of a
large piece of text, maintaining most of its relevant information. Review text
poses additional specific characteristics: it is opinionated, written by multiple
people without a defined style, and can vary on how the text is formally
structured (Bražinskas et al., 2020).

The process of text summarization has three key components: the input,
the model, and the scoring functions to measure the input element’s relevancy.

The input tells how many documents we have to summarize and what
features these documents have. Single document summarization is the most
popular task addressed in the research field. The popularity of this task is due
to its nature. It is a more straightforward problem due to its many annotated
datasets. Compared to Multi-Document summarization, the single-document
setting, at least in theory, does not suffer from the redundancy problem. Multi-
document summarization also suffers from its larger input size, making most
of its models challenging to scale. In MRS, multiple reviews are used as the
input to generate a concise piece of text containing some representation of the
prevalent opinions and main points taken from the various reviews.

The second piece is the model, which is where most research efforts are fo-
cused. Most models produce their summaries using one of two main approaches:
extractive or abstractive (El-Kassas et al., 2021). Extractive models weigh and
select critical pieces of text from the input and use them directly, based on
some form of ordering method, to produce the output. On the other hand, ab-
stractive methods generate new text conditioned on the input, maintaining the
original sense, but using different phrasing. While extractive models are clearly
not as flexible as we could possibly envision for a good summarization tech-
nique, abstractive systems allow a degree of freedom that might be regarded
as a double-edged sword: while the model is, in theory, capable of generating
more ”human-like” versions of the input, it can also miss key factual informa-
tion during its generation step. The default training setup comprises selecting
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Chapter 1. Introduction 12

a benchmark dataset and the development of models to transform the text. In
the supervised setting, the model can use a set of summaries generated by hu-
mans as the target. When these target summaries are not available, we have an
unsupervised setting. The release of labeled datasets such as DUC1 and CNN
news (Hermann et al., 2015) created an excellent environment for the devel-
opment of supervised models. At the same time, the unsupervised task was
still struggling to get momentum in the research community. Unlike news ar-
ticles that use an inverted pyramid structure (Kryscinski et al., 2019) and can
have summaries when shared online (Grusky et al., 2018), most of the more
general review data does not have a clear structure that makes an automatic
construction of reliable labeled datasets something that is easy to produce.
Moreover, when dealing with multiple reviews, summarizing models have to
comp with conflicting opinions, extract relevant arguments and grounding in-
formation, and manage redundancy. These characteristics make unsupervised
MRS one of the most challenging among the automatic summarization tasks
(Chu and Liu, 2019).

Lastly, to complete the basic description of automatic text summariza-
tion, we need to address the scoring system used to evaluate the model’s out-
put. ROUGE (Ganesan, 2018) has been the default metric to evaluate summa-
rization systems. It has been heavily criticized because of its lack of a better
correlation with human’s hand-made summaries. More specifically, its n-gram
based formula is incapable of scoring well for abstractive models that change
the summary words (Kryscinski et al., 2019). This weakness raises questions
about ROUGE’s usage as a guiding metric while, at the same time, better
alternatives are not widely recognized in the field.

Nevertheless, none of its challenging characteristics stopped the research
community from making significant progresses in review summarization in
recent years. With the release of new models and the democratization of deep
learning frameworks, it has never been easier to get up to speed with state-of-
the-art. Cloud providers have increased the offer to GPUs at lower costs, which
favored independent researchers who develop their models without relying on
an extensive infrastructure that years ago would only be possible in large
companies or research institutes. The research on deep learning turned into a
very competitive and dynamic environment.

In the Multi-review summarization landscape, the lack of la-
beled datasets created a good environment for extractive models. They
can work based on heuristics or more general optimization techniques
(Varalakshmi K and Kallimani, 2018) that model the selection of linguis-

1https://duc.nist.gov/duc2004/
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Chapter 1. Introduction 13

tic elements expected to be present in the summary. But, with the rise
of deep learning in other fields such as machine translation and head-
line generation, recent advances in Supervised Summarization have also
shown a progressive shift to deep learning as the main framework. Works
such as Get to the point (See et al., 2017), bottom-up summarization
(Gehrmann et al., 2018), and pre-trained language models show that Re-
current Neural Networks (RNNs) (Schuster and Paliwal, 1997) and Trans-
formers (Vaswani et al., 2017) can significantly improve ROUGE results
over their predecessors. In the same period, within the deep NLP com-
munity, fine-tuned pre-trained models dominated many Natural Language
Understanding (NLU) benchmarks. Models trained on the masked language
task,(Lewis et al., 2020, Raffel et al., 2020, Zhang et al., 2020) for example,
showed outstanding results when fine-tuned to perform a downstream task.

This progress arrived to the MRS setting with the release of MeanSum
(Chu and Liu, 2019), a multi-document unsupervised review summarization
system that uses auto-encoder concepts combining a similarity and recon-
struction loss to generate its summaries. It was the first end-to-end system
to generate abstractive summaries. Many works that followed MeanSum ex-
tended its auto-encoder approach, incorporating other strategies to push the
unsupervised review summarization benchmark results even further.

This dissertation aims to train neural network models to generate a
paragraph-sized summary from multiple reviews, maintaining the overall sen-
timent and factual consistency. To achieve that, we focus on two approaches.
The first approach implements architectural changes to the MeanSum model.
In particular, we extend its base architecture by replacing the aggregation
function from a mean to attention (Rush et al., 2015) module and include
sentiment-based auxiliary tasks. Our second approach, in its turn, adapts
some well established News Summarization Models (like (Lewis et al., 2020,
Raffel et al., 2020, Zhang et al., 2020, See et al., 2017)) using fine-tuning. This
strategy acknowledges the significant progress observed in the supervised news
summarization task and explores ways to harness its advantages in an unsu-
pervised setting using synthetic and crowd-sourced data.

We evaluate all models on both benchmarks of the Yelp dataset2. All
experiments use ROUGE (Ganesan, 2018) as the primary evaluation metric,
but Additionally, we also explore the BERTscore (Zhang et al., 2019), and
the Coverage and Density (Grusky et al., 2018) as complementary metrics to
access the model’s performance full picture.

It is worth mentioning that we developed this work when the state of the
2https://www.yelp.com/dataset
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Chapter 1. Introduction 14

art on neural abstractive multi-review summarization models shifted many
times. We adapted our work to match the latest standards. As a result, at the
moment of this writing, to the best of our knowledge, we were able to achieve
the state of art on this task using pre-trained models and the proposed fine-
tuning. Our experiments show how pre-trained Transformer models can achieve
the state of the art results after being fine-tuned with less than 100 samples.
This result goes against the overall perception that the lack of unsupervised
data is the main limitation in the field, showing that only a handful of labeled
examples are enough to outperform other models.

This dissertation is structured as follows: firstly, we describe the field of
automatic text summarization and the shift to deep learning, describing the
characteristics of the sequence-to-sequence framework and unsupervised review
summarization. Secondly, we outline the Meansum architecture, the models
developed in this work, the transformers used, and our fine-tuning strategy.
We then explain the experimental setting, the dataset, and the evaluation
metrics. Lastly, we show and discuss how the results relate to the current state
of the art and point to possible research directions.

DBD
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2
Literature Review

This work uses techniques from both summarization and language mod-
eling. Therefore, this chapter describes recent advancements on both fields. We
start by giving a general view of unsupervised multi-document summarization.
We then narrow our review to works directly related to our approach, namely,
neural unsupervised multi-review summarization and transformer-based lan-
guage modeling.

2.1
The Field of Unsupervised Multi-Document Summarization

We used academic search engines to find unsupervised summarization
articles published in conferences or journals since 2014. Since our work is
focused on neural abstractive summarization, we chose 2014 as the starting
point because it was one year before the publication of one of the first successful
models (Rush et al., 2015) that used attention with the sequence-to-sequence
framework to perform abstractive summarization. Reviewing this period, we
can assess how the field developed when attention was released. We made
a query1 for the academic search engines SCOPUS2 and dblp3 designed to
capture summarization models that do not use supervised learning. Our main
question during the review was: ’what is the current state of the field of
unsupervised multi-document summarization?’.

Based on our data, we found that most of the work was done on the
news domain, and the datasets DUC4 and TAC5 were the most widely used
by these models. Likewise, the few Models designed for opinion summarization
used Amazon (Ni et al., 2019), IMDb6, Yelp datasets 7 or IMDb 8, the last one
being the least popular – with only one use.

Most of these works explored the task using optimization and extractive
methods with a similar pipeline, which comprises: (i) the application of

1( unsupervised OR opinion OR ( ( semi OR weakly ) AND supervised ) ) AND ( (
summarization OR summarizing ) AND ( multi-document OR ( multiple AND ( reviews
OR tweets OR documents ) ) ) )

2https://www.scopus.com
3https://dblp.org
4https://duc.nist.gov/duc2004/
5https://tac.nist.gov/data/past/2011/Summ11.html
6https://www.imdb.com/interfaces/
7https://www.yelp.com/dataset
8https://www.imdb.com/interfaces/
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Chapter 2. Literature Review 16

preprocessing, such as parts of speech tagging, stop word removal, to the raw
text, followed by (ii) a scoring algorithm and (iii) a selection strategy.

Works such as (Huang et al., 2014) defined new heuristics to generate its
summaries while (Hong and Nenkova, 2014) extract and combine parts of the
sentence using Integer Programming to select the best combination. The key
point of change of the optimization approach is the ranking system to select
the best sentences.

Works published after 2016 (Chen et al., 2016, Ma et al., 2016) started
adopting word embeddings (Mikolov et al., 2013) to build dense representa-
tions of words . After that year, using dense representations from an em-
bedding has become part of most of the approaches. We found that the
availability of datasets such as DUC, TAC, and the more recent Multi-News
(Fabbri et al., 2019) was a key factor in the popularity of the supervised ap-
proach.

Our search results also showed that systems that are based on neural net-
works use the sequence-to-sequence setting in the form of an encoder-decoder.
The results returned two articles (Lebanoff et al., 2018, Zhang et al., 2018)
that propose models based on adapting single document models to work
with multiple documents. Both papers use optimization techniques to ad-
just the attention weights of the underlying model. (Lebanoff et al., 2018)
uses Maximal Marginal Relevance (MMR) (Goldstein and Carbonell, 1996)
to adjust the attention weights of a pointer-generator network model, while
(Zhang et al., 2018) uses a hierarchical encoder (Tan et al., 2017) to compute
document representations that are used as context for the decoder and then
applies the normalized PageRank (Tan et al., 2017) weights taken from the
top K sentences as an attention during the decoding steps. Both argue that
the optimization step helps the underlying model to deal with the redundancy
problem found in multiple document reviews by only attending to the K most
relevant sentences.

Only one paper (Liu and Lapata, 2019) used a Transformer to perform
multiple document summarization. More specifically, it proposes a hierarchical
transformer that can summarize long documents with the help of an LSTM
classifier (HochreiterSepp and SchmidhuberJürgen, 1997) as a content selec-
tion step, trained on the ground truth summaries. The selected paragraphs are
used as input for the transformer that has local and global layers. The local
layers encode paragraphs, while the global layers enable information exchange
between paragraphs. They also argue that a graph-based attention mechanism
can replace any of the transformer heads in the global layer.

We also searched for works that proposed augmented data as a means
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Chapter 2. Literature Review 17

to bridge the gap between the supervised and unsupervised model. The only
works that explore this king of approach are (Parida and Motlicek, 2019,
Nikolov and Hahnloser, 2020). The first article (Parida and Motlicek, 2019)
evaluates the model on a German Wiki data 9 using data extracted from Com-
mon Crawl 10 as synthetic summaries. They used a reverse model to generate
text from the summary, then used the generated text as additional information
during training. The second paper (Nikolov and Hahnloser, 2020) created its
data using two methods: (i) document and sentence alignment, in which the
authors use a hierarchical search algorithm (Nikolov and Hahnloser, 2019) to
find pseudo-parallel sentences, and (ii) an LSTM model that generates more
data based on the summary sentences.

Evaluation of summarization models has been a recurrent theme
of debate. While ROUGE has been widely used as the default metric,
(Kryscinski et al., 2019) discusses its shortcomings and argues that the lack
of better evaluation metrics may prevent an adequate assessment of the cur-
rent state of the art on summarization tasks. They claim that, since ROUGE
favors lengthy extractive summaries, a better-defined task is a way to improve
on its shortcomings.

A new metric, BERTScore (Zhang et al., 2019), based on contextual
embeddings, was proposed to address some of the limitations of word-based
evaluation metrics. It can be used for many text generation tasks such as
image captioning and neural machine translation. It uses the pairwise cosine
similarity to compare tokens from each sentence. BERTScore’s authors argue
that the model has the ability to encode semantic information and thus
provides a flexible way to match tokens compared to exact n-gram matches
used in ROUGE. Their experiments gives some support that it exhibits better
results when compared to other automatic evaluation metrics on machine
translation and image captioning tasks.

Two other metrics, Coverage and Density (Grusky et al., 2018), can be
used to measure how extractive the model is. They measure how many words
are shared between summary and reference and the average extractive length
present on the summary. A dense model is highly extractive, while a sparse
model with high coverage is more abstract. Contrary to previous metrics,
Coverage and Density do not aim to rank models; this descriptive approach
makes its scores a helper metric that gives more information about the data.
It has all the limitations of word-based metrics but, even with the limitations,
it delivers a good value on aiding the overall performance assessment.

9https://www.swisstext.org/
10http://commoncrawl.org/
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Chapter 2. Literature Review 18

2.2
Related works

In the NLP domain, similarly to what was observed in other re-
lated areas, modern unsupervised review summarization models follow the
trend of deep learning. As mentioned before, MeanSum (Chu and Liu, 2019)
was the first neural model to perform unsupervised review summariza-
tion. Even though its reign was short-lived, it was able to frame the
task as a sequence-to-sequence problem and attract the attention of the
NLP community. After its release, four new models followed its devel-
opments and extended the base auto-encoder architecture using other
types of models. For example, DenoiseSum (Amplayo and Lapata, 2020)
and CopyCat (Bražinskas et al., 2020) are based on variational and de-
noising autoencoders. OpinionDigest (Suhara et al., 2020) and Oposum
(Angelidis and Lapata, 2018) are aspect-based models, that include a sen-
timent phrase extraction step in the pipeline to guide the generation of
better summaries. Lastly, FewSum (Bražinskas et al., 2020) uses an extended
encoder-decoder structure, and includes a fine-tuning step to adjust the
writing style of the generator.

Both DenoiseSum and FewSum explore a different characteristic of the
task, taking into account that reviews are different from summaries. They argue
that reviews are more personal, describe the user’s overall experience, have
many personal pronouns. Reviews also describe the day or why the reviewer
went to a place and other additional information that cannot be used in a
summary. An example of a yelp review can be seen in Fig 2.1.

Figure 2.1: Review of Cristo Redentor. The first and third paragraph have
information mixed with personal the personal context of the writer. source:
https://www.yelp.com/biz/cristo-redentor-corcovado-rio-de-janeiro

They also claim that it is a challenge to convert all this personal
information into a summary. According to their reasoning, a summary should
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be more descriptive, capturing the many aspects of the object, and give a
realistic view of what it offers. This becomes an issue when the training data
contains only reviews while the model is asked to generate summaries. In
its approach, DenoiseSum discarded reviews that used too many unnecessary
symbols. In contrast, FewSum’s approach was two-fold: it included a fine-
tuning step to their training scheme, and developed a new dataset which
is more aligned to the task to provide a more realistic evaluation of the
models. These two models hold the highest scores on unsupervised multi-review
summarization. DenoiseSum has 30.1 ROUGE on MeanSum’s benchmark, and
Fewsum has 37.3 ROUGE on its Benchmark dataset.

The last topic explored in our literature review is the use of pre-
trained language models in NLP. The use of pre-trained models to ease
the training of new models is not a new tactic. Models such as word2vec
(Mikolov et al., 2013) have a widespread use for both researchers and practi-
tioners. They replace the bag-of-word approach on most modern NLP prob-
lems. More recently, such embeddings were also used to perform extractive
summarization (Rossiello et al., 2017). These representations are more power-
ful than their bag of words counterpart, but still have a significant limitation:
its representation is static. After the model is trained, every word has the
same vector regardless of the context it appears. This issue motivated the de-
velopment of contextual embeddings. These embeddings deliver representations
that are sensitive to context and can adapt the final representation depending
on the usage of the word in the text. The contextual representation BERT
(Devlin et al., 2019) is one of the most successful contextual representation
models. With its release, many text classification benchmarks were beaten just
by adding BERT embeddings. Contextual embeddings can also replace static
embeddings in the centroid approach to build an extractive summarization
model (Miller, 2019).

However, BERT was not designed to perform text generation tasks. Its
architecture lacks a decoder element to transform the contextual embeddings
into a sequence of text. The models that followed the success achieved by
BERT (Lewis et al., 2020, Raffel et al., 2020, Zhang et al., 2020) included this
decoder element and extended the Masked Language modeling task to perform
text generation. A detailed description of these models is given in chapter 6.1.

With the increase in popularity of large-scale models, much work has
been put on the associated discussions about the training of these models,
their increasing demand for computational power, their data security risk, and
the ethical concerns (Bender et al., 2021, Carlini et al., 2020). Nevertheless,
researchers still explore the inner workings of BERT (Rogers et al., 2020) and,
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even after analyzing 150 papers, it seems that the community does not fully
understand how the model learns and uses its linguistic capabilities.
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3
Baseline models

This chapter gives a detailed description of all models used directly
in this work, diving into their inner workings and the significant elements,
contributing to their notoriety. We include it to give the appropriate attention
to the models’s parts that are essential to the development of this dissertation.
It gives a complete description of the Transformer (Vaswani et al., 2017) and
MeanSum (Chu and Liu, 2019), as they are the base for all other models
described herein. For the derived models, such as BERT (Devlin et al., 2019)
and Copycat (Bražinskas et al., 2020), we describe the improvements over the
base. The chapter is composed of two sections: one describing the models based
on MeanSum and the other covering the models based on the Transformer.

3.1
Meansum-related Models

As the pioneer, MeanSum quickly went from state-of-the-art status to a
baseline model. The model is praised because it framed the task as a sequence-
to-sequence problem, allowing the application of a wide range of deep learning
techniques. As table 3.1 depicts, MeanSum outperforms the extractive baseline
but is 10 ROUGE behind the current state of the art.

Model Rouge 1 Rouge 2 Rouge L
FewSum (Bražinskas et al., 2020) 37.72 9.92 22.76
Copycat (Bražinskas et al., 2020) 28.12 5.89 18.32
MeanSum (Chu and Liu, 2019) 27.5 3.54 16.09
TextRank (Pan et al., 2019) 26.96 4.93 16.13

Table 3.1: The table shows the gap between ROUGE scores on MeanSum and
FewSum, source: (Bražinskas et al., 2020)

3.1.1
MeanSum

MeanSum proposes an end-to-end LSTM encoder-decoder model that
does not need any kind of supervision. Training is possible because of a combi-
nation of a similarity loss between the summary and the input representations,
and a reconstruction loss (cross-entropy) to predict the next token of the input
using its representation. The data flow can be divided in two paths; each loss
has its path and data is transformed accordingly.
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The preprocessing phase uses a WordPiece model (Sennrich et al., 2016),
which is a tokenization scheme that splits the words into sub-words units that
can be combined to reconstruct the original word. With this strategy one can
have a small vocabulary of sub-word units (32k) that can represent every word
in the vocabulary. The language model is an LSTM with the same size as
the encoder module, trained using a cross-entropy loss on the prediction of the
next token. After training, this weights are used to initialize the summarization
module.

During training, the summarizer encodes the input reviews (Xenc), takes
the mean of the representations (Xmean), and uses it as a context vector for
the decoder. The decoder is then trained with two loss functions.The first
loss function is a cross-entropy loss, that uses Xenc to reconstruct the input
using cross-entropy comparing the predicted token with the input token, as
depicted in Figure 3.1. For the second loss, the decoder uses Xmean to produce

Figure 3.1: Reconstruction loss dataflow

a summary (S) using the Gumbel Softmax (Jang et al., 2016), which can
produce differentiable samples from a discrete distribution, and then encode
back the produced summary (Senc). Then, it takes the average cosine similarity
between Senc and Xenc as depicted in Figure 3.2. These losses ensure that the

Figure 3.2: Similarity loss dataflow

generated summaries stay inside the domain of the reviews and are similar to
the source content. Figure 3.3 shows the complete diagram for the architecture.
Figure 3.4 shows an example of a summary generated by MeanSum. It shows
that MeanSum included three aspects of the source ( service, food quality, and
size of the restaurant) while the extractive summary (Rossiello et al., 2017)
has very little useful information. We can also note that MeanSum makes a
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Figure 3.3: MeanSum Complete architecture

mistake when summarizing the fact that the place is small, it generates a
sentence without much sense or connection with the rest of the summary.

Figure 3.4: Comparison between MeanSum and Centroid; source:
(Chu and Liu, 2019)

3.1.2
CopyCat

Copycat (Bražinskas et al., 2020) uses a variational auto-encoder (VAE)
based on the text-VAE model(Bowman et al., 2016). It trains an hierarchical
representation to encode both reviews and products. The model also uses the
pointer-network mechanism (See et al., 2017) to enable access to individual
reviews during inference.

3.1.3
OpinionDigest

OpinionDigest (Suhara et al., 2020) is a summarization pipeline (Fig 3.5)
that combines an opinion phrase extractor and a Transformer to generate
summaries conditioned on reviews, and a set of opinion phrases. The phrases
can be used to control which aspects of the reviews the generator should focus.
Their complete pipeline has three steps: opinion extraction, selection, and
generation. The opinion extractor is a pre-trained model (Miao et al., 2020)
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Figure 3.5: OpinionDigest pipeline source: (Suhara et al., 2020)

that outputs opinion phrases, their polarity, and aspect categories. The opinion
selection creates opinion clusters based on the cosine similarity of phrases.
Clusters only keep novel phrases and discard repeated content. The generation
step uses a transformer to reconstruct the input review based on its phrases.
Picture 3.6 shows example input/output pairs.

Figure 3.6: OpinionDigest input/output example source: (Suhara et al., 2020)

3.1.4
DenoiseSum

DenoiseSum (Amplayo and Lapata, 2020) builds a denoise autoencoder
trained on a synthetic dataset. The dataset is built using token, chunk, and
document level noising functions. All the noising functions replace the content
of the input with similar text based on a language model. During training, a
sample of the reviews is used as a summary, while its corrupted versions are
used as input. The same denoising model is used during generation. Figure 3.7
shows an example of noise variations of the same review.

3.1.5
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Figure 3.7: Noise examples, a candidate summary is used to generate alterna-
tive versions changing tokens, chunks and documents based on their similarity
to the input. source: (Amplayo and Lapata, 2020)

FewSum

FewSum (Bražinskas et al., 2020) employs a transformer and a plug-in
feed-forward network to generate summaries. Its transformer is trained using
a regularization term that controls the use of words that do not appear in
previous reviews. After the unsupervised training, the plug-in network is fine-
tuned to adjust the generator model’s style to output text that is similar to
a summary instead of a review. This paper also introduced a new benchmark
dataset. This new dataset’s main change is that reviewers were asked to create
a more abstract summary with less copied content and a more appropriate
text style.

3.2
Transformer Language Models

The Transformer is the base for the large language models that hold the
current state of the art in many language generation tasks, including summa-
rization. They are trained on the masked language modeling task introduced
by BERT (Devlin et al., 2019) and extended in various ways in other articles
1. All these models follow the same pre-training then fine-tune paradigm in-

1https://huggingface.co/transformers/
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troduced by BERT. They also extend SpanBERT (Joshi et al., 2020) on the
use of spans instead of single tokens during the pre-training phase. BART and
T5 were released around the same time and are both inspired by SpanBERT.
While they both try to find a model that solves many tasks, Pegasus is fo-
cused only on abstractive summarization.Table shows Rouge results for the
CNN Daily Mail dataset (Hermann et al., 2015) 3.2, we can see that pegasus
is the best model by a very small margin.

R1 R2 RL
T5 43.52 21.55 40.69
BART 44.16 21.28 40.9
Pegasus 44.17 21.47 41.11

Table 3.2: Transformer results on CNN Daily Mail dataset

3.2.1
The Transformer Architecture

The transformer architecture (Vaswani et al., 2017) was proposed as an
alternative for LSTMs as the base model used in sequence-to-sequence tasks.
They argue that the attention mechanism is enough to retain long range
dependencies in sequences and that the sequential nature of recurrent models
make its computational requirements too high for long inputs.The architecture
is built using a multi-head attention block followed by a position wise feed
forward neural network that can be trained parallely. Since it does not rely
on convolutions or recurrence it uses a positional encoding to give the model
relative information about its input position in the sequence. Figure 3.8 show
a general views of the model and Figure 3.9 shows its Multi-Head attention
and Point-wise Feed forward network.

3.2.1.1
Multi-Head attention

After the positional encoding, the input X is projected by a set of
projection matrices to form the Query,Key and Value vectors used by the
attention block.

Q = XWq (3-1)

K = XWk (3-2)

V = XWv (3-3)
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Figure 3.8: Overview of the Transformer architecture; source:
(Vaswani et al., 2017)

Figure 3.9: Transformer main modules; source: (Vaswani et al., 2017)

where Wq, Wk, Wv are the learnable projection matrices. The atten-
tion weights are computed using a scaled version of the dot attention
(Luong et al., 2015).

Attention(head) = (QKT )√
dk

V (3-4)

The model computes this attention function parallely, the
number of attention heads is a hyperparameter and dk =
outputdimension/numberofheads, they used 8 heads and the output di-
mension of 512 in the paper. The multi-head attention is the concatenation of
each attention head followed by a linear layer

MultiHeadAttention = Concat(h0, ..., hn)Wo (3-5)

The output of the MultiHead Attention block is

LayerNorm(x + MHA(x)) (3-6)
Where MHA is the MultiHead Attention layer and LayerNormis a layer

normalization described at (Ba et al., 2016).
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Objective Inputs Targets
Masked Language modeling the cat jumped [MASK] the lazy dog over
Next Sentence Prediction [CLS] the cat jumped over [SEP] the lazy dog [SEP] isNextSentence

Table 3.3: BERT uses the special tokens [MASK], [SEP] and [CLS]. [MASK]
and [SEP] are used during pre-training and [CLS] is used for sentence classifi-
cation taks.

3.2.1.2
Position-Wise Feed Forward Neural Network

This layer is a linear transformation of its input. It employs two fully
connected feed forward networks as linear transformation.

PWFFN(x) = L2(Relu(L1(x)) (3-7)

Where L1, and L2 are linear transformations. The output of the position-
wise is also fed too a residual connection followed by a layer normalization.

LayerNorm(x + PWFFN(x)) (3-8)
The self-attention between encoder layers use the input or the output previous
layer. Between encoder and decoder, the outputs of the encoder are used for
the Key and Value, and the decoder output is used for the Query. Lastly,
the inputs for the decoder are masked during training to emulate sequential
training, the transformer does not have sequential training so the masking
prevents information leakage. The transformer is the base model for state
of the art language models like BART and Pegasus, those models showed
the ability to model long range dependencies keeping the correct grammatical
structure and factual consistency when generating text unlike most abstractive
summarization systems.

3.2.2
BERT

BERT (Devlin et al., 2019) encoder only transformer model pre-trained
on masked language modeling and next sentence prediction that achieved
estate of the art GLUE (Wang et al., 2018) results when released. It introduced
the pre-train then finetune framework, were a model is trained on large text
dataset on linguistic tasks, that may not be aligned to the final task, then
finetuned on the target task. It is trained on the masked language modeling
task, where 15% of the input is masked and the model has to correclty
predict the masked tokens, and next sentence prediction, which is a binary
classification problem that given two sentences it classifies if they occur in
sequence or not, figure 3.3 shows the task description.
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The relationship between the pre-training task and the ability to learn
linguistic features is still a open question.It is undeniable that bert-like models
have amazing performance on benchmark problems but it does not translates
to a better understanding of the underling language (Rogers et al., 2020).

3.2.3
BART

BART (Lewis et al., 2020) sequence to sequence model based on BERT
and GPT (Radford et al., 2019). It extends the masked language modeling pre-
training objective by including four new tasks for the model to solve, Figure
3.10, and a general framework to train such models. This framework’s key point
is using a function that adds noise to the input, corrupting the sequence the
model has to reconstruct. The article describes four new corruption strategies
and compares their use with the masked token prediction seen in BERT.
The combination of text infilling, sentence permutation, and masked language
modeling achieved up to 3.5 ROUGE in gains on text generation tasks. The
new tasks are:

– Sentence Permutation: The pre-processor splits the input into sen-
tences and randomly change its order.

– Document Rotation: A random token is selected to be the new start
of the document. The tokens before it are moved to the end of the input.

– Token Deletion: A ratio of the input is randomly selected to be deleted.
The model has to replace the missing tokens with the correct one.

– Text Infiling: Masks a sample of continuous tokens are selected to be
masked; the model has to predict the correct number of masked tokens
it has to reconstruct from only one mask.

Figure 3.10: BART taks visual descritpion; source: (Lewis et al., 2020)
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3.2.4
T5

T5 (Raffel et al., 2020) uses a Text-to-Text framework where the model
is trained to solve many tasks at once. They accomplish this by introducing a
new training scheme using prefix conditioning. In this setting, the model is pre-
trained as a masked language model and then trained on multiple tasks. Each
task has a prefix, and the model is fine-tuned to distinguish between all tasks.
Surprisingly, the prefix’s choice did not influence the final performance of the
model. They used ’summarization:’ for text summarization, ’translate <a> to
<b>:’, as Figure 3.11 shows, for machine translation between languages a and
b.They also introduce a batch sampling scheme that balances multiple tasks
between batches.

Figure 3.11: Description of an input for varying tasks. T5 can learn how to
perform based on the prefix and expected output.; source: (Raffel et al., 2020)

3.2.5
Pegasus

Pegasus (Zhang et al., 2020) introduces the Gap Sentences Generation
that masks entire sentences instead of small text span. They also evaluate
if sentence choice impacts performance and present experiments with three
selection schemes. The first selection strategy selects the first M sentences, the
second randomly selects M sentences, and the last one uses top M sentences
ranked by Rouge. The results showed that selecting leading sentences worked
best for news datasets but worse on other domains. The author suggests that
choosing the sentences based on Rogue works best for downstream tasks.
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4
Proposed Models

This chapter describes all models developed in this work. It starts by
outlining our first experiment and what models were developed, namely: the
attention, hierarchical attention, auxiliary sentiment tasks, and training of
supervised models using augmented data. Then, we describe the fine-tuning
experiment using Transformer models.

4.1
First Experiment: MeanSum Extensions and Augmented Data

The MeanSum uses an LSTM encoder-decoder that takes multiple re-
views as input to produce an abstractive summary. The model merges these
representations fusing the mean, generating the context vector for the de-
coder. We develop two approaches to improve on MeanSum’s Results: a train-
ing scheme that uses both attention, as shown in Fig 4.1, and auxiliary tasks
use of attention instead of the mean; and the use of augmented data as a bridge
between supervised and unsupervised models.

Attention has shown great results when used in news summarization, and
we wanted to reproduce this improvement. For our second approach, since the
training data does not have paired summaries, we can use extractive models to
generate a summary and use it as the target for a supervised model. The use
of augmented data allows the training of state-of-the-art supervised models
for this unsupervised task. We train a pointer-generator (See et al., 2017)
from scratch, and fine-tune BART (Lewis et al., 2020), T5 (Raffel et al., 2020),
Pegasus (Zhang et al., 2020) using this strategy.

In more detail, this first experiment replaces the pure LSTM decoder of
the Meansum model with an attentive decoder. It also includes two sentiment
objectives to aid the model during training: a sentiment classification model
(that uses the encoder input to classify the reviews), and a sentiment regressor
that predicts the mean sentiment of the summaries. The literature review did
not show any model that combines multiple objectives during training in the
same way we are doing.

In a second study still within this experiment, we included state-of-the-
art supervised summarization models using generated data to adapt estab-
lished news summarization models to the multi-review summarization context.
We hypothesize that the extractive models can select critical information, and
the neural model can join all sentences in a human-like way. By combining
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both models, we intend to have factual consistency from extractive methods
and, at the same time, achieve the fluidity of neural models.

Figure 4.1: Proposed model

4.1.1
Additive Attention and Pointer-Generator Network

In a sequence-to-sequence setting using the encoder-decoder architecture,
the input is a source sequence X, with length n, and the target is a sequence
Y . Using a bidirectional LSTM as encoder and a LSTM as decoder, the hidden
states of the encoder are denoted as

−→
h = −→enc(X)
←−
h =←−enc(X)

hi = [hi; hi]

c = f(hi)

where c is the context vector computed using some reduction function over the
hidden states (in MeanSum the reduction function is the mean of the hidden
states). The decoding step for a timestamp t of Y uses the last hidden state
of the decoder, the context vector, and the last generated item of Y

yt, st = dec(yt−1, st−1, c) (4-1)

where st represents the hidden state of the decoder at timestamp t. This
architecture has a limitation that c has to keep all the information about
the source sentence. The decoder has to use this information during all its
decoding steps, making it difficult to generate long sentences.

The attention mechanism (Bahdanau et al., 2014) was proposed to ease
the decoder job when decoding long sequences by letting the decoder attend
to different parts of the input each step. With attention, the model can
learn a differentiable function of the encoder’s hidden states that weighs the
importance of each hidden step.

at = softmax(h̄) (4-2)
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where h̄ will be computed using the function

h̄ = vT
a tanh(Wast + Wbhi) additive attention (4-3)

where Wa, Wb are larnable weights. With attention, each decoding step has its
own context vector, the vector can be computed using the following equation:

ct =
i=t−1∑

i=0
ai

th
i
t (4-4)

Where i denotes the index of the hidden state for each input. This work also
includes the pointer-generator network model proposed by (See et al., 2017).
Let Pgen be the probability of generating a word from the vocabulary.

Pgen = sigmoid(Whh̄ + Wsst + Wxxt) (4-5)

where Wh, Ws and Wx are learnable weights. The next word is generated using
Pgen to weight the attention and vocabulary distributions,

P (w) = Pgen ∗ Pvocab + (1− Pgen) ∗ at (4-6)

where Pvocab is the distribution over the words of the vocabulary, it can be
computed by two linear layers after concatenating the attention vector with to
the decoder hidden state, Pvocab = softmax(Wb(Wa[st; h̄])) where Wa, Wb are
learnable parameters of the linear layers. The model is trained using negative
log likelihood loss over P (w). Since this loss needs a target signal we use it for
the reconstruction step of MeanSum replacing the cross entropy loss. Another
contribution from (See et al., 2017) is the coverage mechanism, and it prevents
the model from attending to the same word repeatedly. Let ct be the coverage
vetor, it is defined as the cumulative attention from all decoding step,

ct =
i=t−1∑

i=0
aihi (4-7)

The coverage vector is also included in the attention calculation

h̄ = vT tanh(Whhi + Wsst + Wcct) (4-8)

To penalize the model when it attends to the same word they included the
coverage loss

covloss =
i=t−1∑

i=0
ci (4-9)

Where i is the index of an element of the sequence. In this setup the final loss
function becomes

loss = −log(P (w∗)) +
i=t∑
i=0

aici + lsim (4-10)
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where lsim is the similarity loss.

4.1.2
Hierarchical Attention

The input for the model has the following shape:
(Bath size, number of Documents, max sequence Length, model

dimention).
This shape follows the same pattern present in hierarchical models

(Yang et al., 2016). An attentive hierarchical model can better handle the in-
put size and learn how to attend in two levels, as shown in (Yang et al., 2016),
the hierarchical model learns weights for both sentences and words. Since our
work deals with multiple documents, it uses both document and token atten-
tion. The final model still has the same overall architecture. The hierarchical
attention is used as a two-step reduction function, as described in the equa-
tion below, by first computing attention weights for document representations
before attending to the input at a token level. This attention is implemented
using an additive attention model to encode both token and document level
information. Given an input with the shape (B, D, L, dim), as described in
the previous paragraph.

tokencontext = Attention(input) #output shape (B, D, dim)

docmentcontext = Attention(tokencontext) #output shape (B, dim)
(4-11)

4.1.3
Sentiment and Regression models

Review summarization may be differentiated from news summarization
by the presence of a sentiment element that is not present in news context
(Chu and Liu, 2019). Therefore, a model that aims to summarize reviews
should capture and express this sentiment. To align our model to the task’s
written description, we hypothesize if a sentiment model’s inclusion during
training would improve the final performance.

Research on sentiment classification developed many models to solve the
task. The Yelp review dataset is one of the benchmarks for the task. It has two
main approaches. The first is Yelp polarity, which replaces lower star reviews
with negative sentiment and high star reviews with positive sentiment. The
other is Yelp fine-grained, which tries to classify the correct number of starts
a review has. The fine-grained problem is much more challenging than its
two labels counterpart. Some of the challenges are a class imbalance problem
and too much ambiguity between middle-range reviews. Table 4.2 shows the
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development of the polarity task; even simple models have very high accuracy
while the fine-grained task, Table 4.1, is still a challenge to the state of the art
transformer models.

model name acc
BERT Large 70.68
ULMFiT 70.02
DPCNN 69.42
DRNN 69.15
BERT large finetune UDA 67.92

Table 4.1: Top models Yelp finegrained on Paper With Codes.

model acc
BERT large 98.11
BERT large finetune UDA 97.95
ULMFiT 97.84
DPCNN 97.36
DRNN 97.27

Table 4.2: Top models polarity on Paper With Codes.

The challenge to include another model during the training is that the
sentiment model has to be good enough to classify sentiment on its own. This
way, it avoids the case where the model is too weak to identify the correct
sentiment when used with MeanSum. Simultaneously, it cannot be a large
model and take all the computation time during training. We started with
a simple architecture with an LSTM followed by only fully connected layers,
but it could not get more than 60% accuracy. We then include an attention
layer but were still not enough to learn from our sample of the dataset. Our
final model uses a batch normalization layer (Ioffe and Szegedy, 2015) before
the final projection layer, feeding normalized data to the final projection layer.
The normalized output helps to smooth the optimization problem leading to
faster and better convergence.Table 4.3 shows the results of our classification
models.In contrast to an encoder-decoder setting, classification problems do
not require a decoder. It uses an auxiliary vector to serve as context. This
vector mimics the decoder state, but it is trained together with the model
as a variable. The regression model has the same architecture and takes the
same input as the similarity loss. It uses the generated summary to predict the
reviews’ mean sentiment, outputting a single real value from its last projection
layer.
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model accuracy fscore loss
lstm_att_256_256_norm 0.716 0.647 0.685
lstm_att_128_128_norm 0.713 0.634 0.670
lstm_att_256_512 0.709 0.641 0.681
transformer_128 0.686 0.597 0.733
transformer_512 0.675 0.578 0.758
lstm_att_128_256 0.645 0.539 0.845
lstm_128_256 0.522 0.356 1.177

Table 4.3: The LSTM with attention is better than the basic transformer but
worse than its batch norm equivalent. The small model with batch norm has
better accuracy than a bigger attention only model.

4.2
Second Experiment: Fine-tuning Transformers

The fine-tuning process (Goodfellow et al., 2016) follows a standard
pipeline . This setup allows the model to leverage its linguistic power on the
first pass, then adjust the whole style and semantic knowledge when fully
trained. Training the whole model without training the last layer can lead to
worse results or divergence (Rogers et al., 2020).

Fine-Tuning Pipeline

1. Load pre-trained model with frozen weights

2. Initialize the last layer with random weights

3. Train the model

4. Unfreeze the whole model

5. Train the model

We adopt this textbook approach to further our point that fine-tuning
should be considered when developing new summarization models. We also in-
clude a domain transfer exploration to evaluate how fine-tuned models general-
ize when evaluated out of domain. An extensive overview (Rogers et al., 2020)
of what has been learned about BERT (Devlin et al., 2019) showed that there
is no best way to fine-tune these models. Every fine-tuning strategy has its pros
and cons, and a deep exploration of which fine-tuning strategy is best for this
task is beyond the scope of this work. The fine-tuning can yield comparable
results with less compute and answer the field’s main limitation: The lack of
paired summaries.
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5
Methodology

This Chapter describes how we structured our data pipeline, hardware
settings, datasets, and model configurations for our experiments. We use google
Colab 1 to train all models in a sample of the Yelp dataset using the same
optimizer settings for all models. The experiments focus on the model features,
and thus the ablation studies only change the size of the model, varying the
number and size of each layer.

5.1
Development details

The project uses Allennlp 2 as the primary deep learning framework. It is
a PyTorch-based deep learning framework designed for NLP research, making
it easy to experiment with new models. It also takes care of the training loop,
regularization, and stability methods, such as gradient clipping/normalization
and label smoothing (Szegedy et al., 2016). All the models based on MeanSum
were trained using the same scheme as the paper. First, we train the model as
a language model, predicting the next token for the sequence. We introduce
our auxiliary objectives, the similarity, sentiment classification, and mean
sentiment regression. Picture 5.1 shows the training path for the model.

Figure 5.1: Proposed model training pipeline

The main challenge during development was handling large GPU memory
usage. The multi-document nature of the problem results in long input
sequences. The size of the model is not big, but the operations it requires,
together with the nature of the input, makes it hard to train without a large
GPU memory.

Colab is an excellent tool for deep learning researchers. It provides a
jupyter-like notebook with access to a Tesla V100 GPU with 16GB VRAM
and 24GB of RAM. Due to its RAM memory size, we had to sample our

1colab.research.google.com
2https://github.com/allenai/allennlp
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dataset from 2,336,424 to 458,480 reviews. This way, we could fit all data in
memory, leading to faster training time and the possibility of batching inputs
based on sequence length. We use Evaltools (Fabbri et al., 2020) to evaluate
all models with a diverse set of metrics. This tool collects multiple metrics used
in NLP in an easy-to-use package. Offering ROUGE, BERTScore, Coverage,
Compression, and Density. For the sentiment classification, we use Huggingface
Transformers 3 pre-trained model and spacy 4 for general text processing. The
same hardware setup is used in The second experiment. The main difference
is the use of Blurr5, a fine-tuning framework that combines the functionality
of FastAi6 with the model library from Huggingface Transformers. Blurr and
AllenNLP result from the current trend of AI democratization, where new
tools are being developed to ease the access to estate of the art models and
best software engineering practices.

5.2
Evaluation

The evaluation process follows past literature and evaluates all models
using ROUGE as the primary metric, and BERTScore (Zhang et al., 2019) as
auxiliary evaluation. To get the complete picture of the results we compute
Compression, Coverage and Density (Grusky et al., 2018). This set of statis-
tics compares the amount and length of extractive segments in the summary
to deliver three metrics that can convey how extractive the model is. None of
these metrics give a complete view of the model, and there is a need for bet-
ter evaluation schemes than N-Gran-based metrics (Kryscinski et al., 2019).
Unfortunately, even the model based metrics like BERTscore also fail to give
low scores to sentences when the semantic meaning is changed, but the syntax
remains similar. For example, Comparing ’I love this place’ with ’I hate this
place’ gives 0.97 BERTScore.

5.2.1
ROUGE

The ROUGE-N formulation for a set of reference sentences R and
generated summaries S is defined by:

3https://huggingface.co/transformers/
4https://spacy.io
5https://github.com/ohmeow/blurr
6https://www.fast.ai
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Precision = #match(S, R)
#S

Recall
#match(S, R)

#R

F1 = 2 Precision ∗Recall

Precision + Recall

(5-1)

Where match() is the number of overlapping words between the sum-
mary and reference. ROUGE-L/W has similar definition but uses the longest
common substring instead:

Precision = LCS(S, R)
#S

Recall = LCS(S, R)
#R

(5-2)

#S is the size of the summary and #R is the size of the reference.

5.2.2
BERTscore

BERTscore (Zhang et al., 2019) uses BERT (Devlin et al., 2019) to gen-
erate a representation of the input text that is used for comparison. The lan-
guage model takes care of encoding the semantic features from the text, and
it can compare source and reference using a pairwise cosine similarity between
the words. It uses a greedy strategy to compute the score for each word as the
maximum similarity between itself and all words from the reference. The final
metric is the sum of all scores normalized by the norm of the reference vector.
The following formula gives a formal definition of BERTscore: Given a set of
token representations yi of a reference summary Y and xi from a generated
summary X, the score is computed as:

Rbert = 1
|X|

∑
xi∈X

max
yi∈Y

cosine(xi, yi)

Pbert = 1
|Y |

∑
yi∈Y

max
xi∈X

cosine(xi, yi)

Fbert = 2 Pbert ∗Rbert

Pbert + Rbert

(5-3)

5.2.3
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Figure 5.2: Visual representation of BERTscore’s computation; source:
(Zhang et al., 2019)

Coverage, Compression and Density

Newsroom (Grusky et al., 2018) is a news summarization dataset build
using metadata on articles pages. They scrape 38 news sources and collected
1,3 million article-summary pairs from diverse sources and a wide range of
summary types present on the article page’s HTML tag. The content scraped
can be human-made or automatically generated. They propose these three
metrics to analyze their vast dataset. A high-density model is highly extractive,
and the balance between coverage and density marks a more abstract summary.
We choose to include these metrics over other model-based because of their
clarity. Model-based metrics are helpful for ranking but not suitable for
analysis. When comparing two models using BERTscores, we can only compare
how similar they are to the source, but when we combine it with Coverage and
Density, we can say which model is more abstractive or cover the mode of the
input. Since we are yet to find the one metric to evaluate all, we argue that
the combination of multiple metrics is the better way to build a complete view
of the models. The formal definition uses the concept of Fragment F (A, S), a
shared span between source A and summary S, which is the set of extractive
phrases shared between the article and its summary.

5.2.3.1
Coverage

Coverage is the ratio of words shared between source and summary
present in the summary.

Coverage(A, S) = 1
|S|

∑
f∈F (A,S)

|f | (5-4)

5.2.3.2
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Density

Density is the average length of the shared sequences between source and
summary in the summary.

Density(A, S) = 1
|S|

∑
f∈F (A,S)

|f |2 (5-5)

5.2.3.3
Compression

Compression is the size ratio between the input and the summary.

Compression(A, S) = |A|
|S|

(5-6)

5.2.4
Sentiment Classification

We use a BERT model fine-tuned on the Yelp dataset, with an accuracy
of 72%, as our sentiment classifier. The sentiment from the human-generated
summary is used as a target and compared to our summary. We also compute
the sentiment for every review in our test set and use it to get the mean
sentiment. These two measures will help us make sense of how well our models
are capturing the main tone of the review together with all other auxiliary
metrics.

5.3
Training Data

We use the Yelp dataset for our experiments. It has data about busi-
nesses, restaurants, bars, and hotels, including metadata about the attributes
of the locations. However, we do not use the metadata from the reviews since
most of them are too sparse to use without designing a model around it.
The first experiment uses the same filtering criteria described by MeanSum
(Chu and Liu, 2019). First, we filter out all reviews with more than 250 to-
kens, and then we remove all businesses/products with less than 50 reviews.
The last step is to split the data into training, validation, and testing following
the 80/10/10 ratio. We randomly sampled 458,480 reviews from the training
set and 285,448 reviews from the validation set to fit our memory constraints.

Our first experiment also extends the data using TextRank, and every
input group is summarized using the extractive model to generate the target
sequence. This summary is used during the training of copy-attention and
fine-tuning of the language models.
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For the second experiment, we use both benchmark datasets released by
FewSum (Bražinskas et al., 2020), and MeanSum (Chu and Liu, 2019) during
the fine-tuning of our language models. The MeanSum dataset is the same
used to benchmark the first experiment, and the FewSum dataset is the
new, more abstractive dataset. The new dataset was built to address the
writing style issue discussed in both FewSum and DenoiseSum. Both datasets
were created similarly, but FewSum’s included restrictions to guarantee that
summarizers would produce a summary with less copying from source and
with a more appropriated writing style. These datasets had defined splits
that we followed to maintain comparability. MenSum uses a 100/100 split
for training/evaluation, and FewSum defines their 90/90/90 split for training,
validation, and evaluation, respectively.
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6
Results

This Chapter describes the results from our experiments, each having a
dedicated section to present its results. The last section discuss all scores and
their relation with the current works.

We use the base MeanSum performance (model id 20) as the no-change
scenario: when models are just as good as the base architecture. Most of our
tables have a ’diff’ column that shows the Rouge difference between the model
and MeanSum. The base MeanSum model follows the architecture described
in Section 3.1.1 and all models listed as LM represent language models.

Table 6.1 shows that using augmented data with supervised models
gives better results than modeling the task in a completely unsupervised
way, with a 6.5 average rouge improvement over the base model. Even the
copy-generator (See et al., 2017) model, with about 10% of the transformers’
parameters, got comparable scores using augmented data. When improving the
base architecture, the attention and the use of auxiliary objectives had a lesser
impact on the final performance. Still, they all manage to get better results
than the base model, as shown in Picture 6.1. Likewise, Tables 6.8 and 6.9
show that the use of pre-trained transformers achieves better results than its
specialized counterparts when fine-tuned using less than 100 human-generated
samples.

Figure 6.1: The chart summarizes the first experiment results, showing that
all models improved when using our methods.

DBD
PUC-Rio - Certificação Digital Nº 1820996/CA



Chapter 6. Results 44

id model reg sim sent rouge1 diff bert_score coverage density accuracy summary_length
1 T5 26.9 6.8 0.855 0.424 0.558 0.49 98.75
2 pegasus 26.9 6.8 0.852 0.365 0.449 0.465 96.16
3 copy generator 26.7 6.6 0.846 0.357 0.442 0.495 170.665
4 bart 26.1 6 0.846 0.362 0.446 0.52 186.065
6 additive attention x x 23.9 3.8 0.827 0.386 0.458 0.37 63.99
7 *hierarchical attention x 22.7 2.6 0.839 0.456 0.567 0.435 43.8
8 *meansum x x 22.7 2.6 0.854 0.517 0.731 0.385 25.955
20 meansum base x 20.1 0 0.843 0.51 0.688 0.475 27.135

Table 6.1: Best models from each category. Models trained on augmented data
dominate the ranks followed by attention and auxiliary objectives.

6.1
First Experiment

This section shows the results of our first experiment grouping models
based on how they are trained. We include a section to discuss the impact
of the results and explore the similarity of generated summaries to evaluate
different architectures generate similar summaries.

6.1.1
Models Based on Meansum

The overall result, shown in Table 6.2, is that both sentiment and
regression achieve better rogue than the base. While the regression objective
works well in theory, our data showed that it is not as helpful as its sentiment
counterpart. The best way to build the model is to include additive attention
and the base model’s sentiment objective.Picture 6.2 shows the comparison
grouped by model type.

As expected, the language models performed worse than most models.
Only when using hierarchical attention that a language model performed
better than the base MeanSum. All the attention-based models have a positive
average Rouge difference from the base. With the hierarchical attention
language models having the best mean, additive attention the best max, and
additive attention language models worse performance overall.

Picture 6.3 shows the modes grouped by the number of encoder layers.
The models with one encoder layer got the best max performance while two
layers show more consistent scores. Most models that performed worse than
the base have only one encoder layer. They were trained early on the project to
show how model size impacts performance. Our first hypothesis was that bigger
models achieve better results, but table 6.3 shows that simpler models can also
be competitive with larger ones. Our final chart, Picture 6.4 shows the impact
of the auxiliary objectives. As stated before, sentiment classification is the only
objective with positive mean and max results on its own. Combining the two
tasks also yields positive results, but all additional tasks do not improve over
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Figure 6.2: Rouge difference from base MeanSum

Figure 6.3: Rouge difference split by number of encoder layers

the base model. Our initial hypothesis was that all objectives trained together
would restrain the model, making it generate better summaries than the base
model. However, our results showed that there is no gain in using all goals at
the same time.

These results are not a final answer for the impact of all auxiliary tasks.
Since we use a simple training pipeline, sequentially training the language
model then the summarization model with the combinations of the different
objectives. Other combinations and schemes could show better results inte-
grating all tasks. As far as we know, there is no standard way to measure each
objective’s interaction and influence on the final model. We hypothesize that a
more complex training pipeline that uses the theory from multi-task learning
can deliver better results when combining the tasks. The search for such a
training scheme is beyond this work scope, and it is left to future studies.
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Figure 6.4: Rouge difference grouped by auxiliary task

id model type base emb size hidden size reg sim sent rouge1 diff bert_score coverage density accuracy summary_length
6 additive attention 256 256 x x 23.9 3.8 0.827 0.386 0.458 0.37 63.99
7 *hierarchical attention 128 256 x 22.7 2.6 0.839 0.456 0.567 0.435 43.8
8 mean 256 512 x x 22.7 2.6 0.854 0.517 0.731 0.385 25.955
9 *hierarchical attention 128 128 22.2 2.1 0.84 0.471 0.589 0.455 37.71
34 *hierarchical attention 128 256 x x 22.2 2.1 0.836 0.491 0.603 0.46 38.79
35 *hierarchical attention 128 256 x x 22.2 2.1 0.836 0.491 0.603 0.46 38.79
36 hierarchical attention 128 256 x x 21.8 1.7 0.84 0.42 0.513 0.45 40.155
12 hierarchical attention 128 256 21.7 1.6 0.839 0.433 0.529 0.455 36.245
14 hierarchical attention 128 256 x 21.6 1.5 0.841 0.424 0.526 0.46 36.745
15 *hierarchical attention 256 512 21.3 1.2 0.839 0.442 0.553 0.4 39.425
16 *mean 256 512 x x 21.2 1.1 0.836 0.456 0.596 0.44 40.205
17 hierarchical attention 128 256 x 21 0.9 0.841 0.43 0.531 0.425 34.53
18 *mean 256 512 x x 20.5 0.4 0.835 0.498 0.674 0.475 32.775
19 mean 256 512 x x x 20.1 0 0.843 0.533 0.728 0.495 28.065
20 mean base 256 512 x 20.1 0 0.843 0.51 0.688 0.475 27.135
21 hierarchical attention 128 256 x 19.9 -0.2 0.838 0.431 0.528 0.44 31.89
22 mean 256 512 19.9 -0.2 0.836 0.522 0.712 0.45 28.97
23 *mean 256 512 x 19.8 -0.3 0.838 0.535 0.716 0.425 28.555
24 additive attention 128 256 19.4 -0.7 0.799 0.559 0.634 0.4 58.75
37 hierarchical attention 128 256 x x 19.4 -0.7 0.828 0.452 0.545 0.425 37.31
25 *mean 256 512 x x x 19.3 -0.8 0.845 0.454 0.623 0.425 24.755
26 additive attention 128 256 19.2 -0.9 0.821 0.415 0.474 0.455 35.94
27 mean 256 512 x x 19 -1.1 0.836 0.524 0.675 0.465 28.655
28 additive attention 128 256 x 18.7 -1.4 0.796 0.355 0.422 0.36 42.44
29 mean 256 512 17.5 -2.6 0.822 0.585 0.737 0.415 27.82
30 additive attention 128 256 17.3 -2.8 0.822 0.394 0.459 0.365 26.095
31 mean 256 512 x 16.9 -3.2 0.807 0.672 0.806 0.46 35.96
32 mean 256 512 x 15.3 -4.8 0.812 0.438 0.55 0.41 53.215
33 additive attention 128 256 12.1 -8 0.822 0.372 0.45 0.345 18.95

Table 6.2: All models based on MeanSum. The star marks models with two
encoder layers.

6.1.2
Models Trained on TextRank Summaries

Our second group, from our first experiment, has the models trained
with augmented data. The copy-generator attention performed surprisingly
well, achieving better results than all un-tuned transformers and BART fine-
tuned. Copy-generator can learn when to generate or copy words from the
input. It was unexpected for it to perform better than the out-of-the-box
transformer models, and even a fine-tuned BART, only having around 10%
of the number parameters. T5 and Pegasus got the same result, 26.9 ROUGE,
only 0.2 more ROUGE than copy-generator. These two are the largest models
in our experiment, and it was expected of them to perform well. T5 base got
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the highest density and coverage, indicating that it is highly extractive, while
BART fine-tuned got the best accuracy.

The use of augmented data can be a promising way to leverage un-
supervised data. Our data showed that the use of model-based data aug-
mentation is limited. Still, more contemporary research suggests that lin-
guistically motivated heuristics may perform better, as shown in DenoiseSum
(Amplayo and Lapata, 2020), where they trained its model on synthetic sum-
maries with great success. The evaluation of augmentation schemes is also an
interesting future direction.

model attention type rouge1 bert_score coverage density accuracy summary_length
T5 sample self-attention 26.9 0.855 0.424 0.558 0.49 98.75

Pegasus sample self-attention 26.9 0.852 0.365 0.449 0.465 96.16
copy-generator copy-generator 26.7 0.846 0.357 0.442 0.495 170.665
Bart sample self-attention 26.1 0.846 0.362 0.446 0.52 186.065
T5 base self-attention 25 0.849 0.446 0.575 0.45 70.93

Pegasus base self-attention 22 0.851 0.376 0.468 0.4 42.605
Bart base self-attention 21.9 0.855 0.412 0.531 0.375 32.32

Transformer base self-attention 21.7 0.838 0.362 0.445 0.405 45.49

Table 6.3: Transformer results.

Extending this exploration, we evaluate how well transformer models can
capture style by fine-tuning them with a small sample of labeled data. Contrary
to our augmented data, human-made summaries have all the elements we want
our models to capture. BART got the best results in all sample sizes. Pegasus
was designed for summarization and got worse results than T5. Table 6.4 shows
that Rouge scales linearly with the sample size, increasing for T5 and Pegasus
and decreasing for BART. T5 was the most extractive model when trained
with 50 and 100 samples. BART got the highest Coverage and Density on
ten samples. Pegasus was the most consistent model when conveying the same
sentiment as the target summary, achieving the best accuracy on all samples.

Sample model N params rouge1 coverage density accuracy summary_length

100
bart 406M 31.6 0.448 0.631 0.45 62.27
T5 770M 31.6 0.498 0.717 0.43 76.41

pegasus 568M 31.2 0.474 0.675 0.49 130.05

50
bart 406M 32.3 0.447 0.654 0.507 67.6
T5 770M 30.4 0.49 0.703 0.433 76.887

pegasus 568M 29.1 0.417 0.554 0.507 104.24

10
bart 406M 32.5 0.472 0.68 0.474 65.495
T5 770M 27.5 0.472 0.658 0.453 77.274

pegasus 568M 25.3 0.376 0.477 0.489 65.858

Table 6.4: Transformer results grouped by Sample size.
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6.1.3
First Experiment Discussion

Table 6.7 show the results of all models evaluated on MeanSum bench-
mark. The Transformers achieved the best results, followed by copy-generator
attention. The additive and hierarchical attention were not enough to beat
transformer models, but they were better than the base MeanSum almost ev-
ery time. The same table shows that BERTScore ranks two models with the
same score as the best. These two models have a 5 ROUGE gap between them.
This result indicates that this metric does not have any easy way to interpret
the score, and its contextual representations are not enough to distinguish
between positive and negative sentences, leading to very high scores for very
distinct sentences.

When we look at the coverage and density, the MeanSum base combined
with sentiment classification (model id 31) is the most extractive model. Its
short length helps to get high scores. By definition, these metrics are computed
using sentence length, and contrary to ROUGE, they favor brief summaries.
With this length, shared fragments represent a more significant portion of
the total summary resulting in a higher score. The accuracy reveals that our
models are not enough to capture the source’s overall sentiment, with the most
accurate model having around 45% accuracy.

When we evaluate summary similarity, we see that models generate sum-
maries that are similar to their group. We select only models that have more
than .6 mean similarity between summaries. Similar architectures generate the
most similar summaries, even with a varying range of rouge scores, and using
WordPiece (Wu et al., 2016), the models use the same set of words to com-
pose their summaries. The biggest surprise was that the base Transformer has
the highest mean similarity with the large transformer models, suggesting that
even with later models’ improvements, the underlying architecture still chooses
similar words to compose the summaries.

Our fine-tuning experiment showed that only the Transformers trained
on human summaries compare to current models. A fine-tuned BART achieve
32.5 ROUGE with ten summaries and T5 scores 30.4 with 50 summaries. It
shows how valuable the human-generated dataset is. These models do not fail
to deliver outstanding results in text generation tasks and show a promising
research direction.

6.2
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source_id target_id similarity source_type target_type
3 4 0.784 augmented data augmented data
14 17 0.755 meansum variation meansum variation
1 1 0.752 augmented data augmented data
17 36 0.751 meansum variation meansum variation
12 17 0.742 meansum variation meansum variation
14 36 0.738 meansum variation meansum variation
12 14 0.734 meansum variation meansum variation
12 36 0.730 meansum variation meansum variation
21 17 0.685 meansum variation meansum variation
24 13 0.683 augmented data transformer
24 13 0.683 augmented data transformer
21 36 0.671 meansum variation meansum variation
12 21 0.666 meansum variation meansum variation
7 15 0.657 meansum variation meansum variation
21 14 0.653 meansum variation meansum variation
28 17 0.636 meansum variation meansum variation
4 2 0.633 augmented data augmented data
9 34 0.632 meansum variation meansum variation
9 35 0.632 meansum variation meansum variation
17 27 0.629 meansum variation meansum variation
3 2 0.627 augmented data augmented data
9 15 0.620 meansum variation meansum variation
23 25 0.617 meansum variation meansum variation
4 1 0.616 augmented data augmented data
3 1 0.613 augmented data augmented data
28 27 0.610 meansum variation meansum variation
10 2 0.609 augmented data augmented data
15 34 0.607 meansum variation meansum variation
15 35 0.607 meansum variation meansum variation
9 7 0.604 meansum variation meansum variation
7 34 0.603 meansum variation meansum variation
7 35 0.603 meansum variation meansum variation

Table 6.5: Similarities between the summaries generated by each model.

source_type target_type similarity
augmented data augmented data 0.662
augmented data transformer 0.683
meansum variation meansum variation 0.660

Table 6.6: Mean similarity between models type.
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id model attention type emb size hidden size reg sim sent rouge1 diff bert_score coverage density accuracy summary_length
1 T5 sample self-attention 26.9 6.8 0.855 0.424 0.558 0.49 98.75
2 Pegasus sample self-attention 26.9 6.8 0.852 0.365 0.449 0.465 96.16
3 opennmt-py-Bottom-Up copy-generator 26.7 6.6 0.846 0.357 0.442 0.495 170.665
4 Bart sample self-attention 26.1 6 0.846 0.362 0.446 0.52 186.065
5 T5 base self-attention 25 4.9 0.849 0.446 0.575 0.45 70.93
6 MeanSum additive attention 256 256 x x 23.9 3.8 0.827 0.386 0.458 0.37 63.99
7 *MeamSum hierarchical attention 128 256 x 22.7 2.6 0.839 0.456 0.567 0.435 43.8
8 MeanSum mean 256 512 x x 22.7 2.6 0.854 0.517 0.731 0.385 25.955
9 *MeamSum hierarchical attention 128 128 22.2 2.1 0.84 0.471 0.589 0.455 37.71
34 *MeanSum hierarchical attention 128 256 x x 22.2 2.1 0.836 0.491 0.603 0.46 38.79
35 *MeanSum hierarchical attention 128 256 x x 22.2 2.1 0.836 0.491 0.603 0.46 38.79
10 Pegasus base self-attention 22 1.9 0.851 0.376 0.468 0.4 42.605
11 Bart base self-attention 21.9 1.8 0.855 0.412 0.531 0.375 32.32
36 MeanSum hierarchical attention 128 256 x x 21.8 1.7 0.84 0.42 0.513 0.45 40.155
12 MeanSum hierarchical attention 128 256 21.7 1.6 0.839 0.433 0.529 0.455 36.245
13 Transformer base self-attention 512 21.7 1.6 0.838 0.362 0.445 0.405 45.49
14 MeanSum hierarchical attention 128 256 x 21.6 1.5 0.841 0.424 0.526 0.46 36.745
15 **MeamSum hierarchical attention 256 512 21.3 1.2 0.839 0.442 0.553 0.4 39.425
16 *MeamSum mean 256 512 x x 21.2 1.1 0.836 0.456 0.596 0.44 40.205
17 MeanSum hierarchical attention 128 256 x 21 0.9 0.841 0.43 0.531 0.425 34.53
18 *MeamSum mean 256 512 x x 20.5 0.4 0.835 0.498 0.674 0.475 32.775
19 MeanSum mean full 256 512 x x x 20.1 0 0.843 0.533 0.728 0.495 28.065
20 MeanSum mean base 256 512 x 20.1 0 0.843 0.51 0.688 0.475 27.135
21 MeanSum hierarchical attention 128 256 x 19.9 -0.2 0.838 0.431 0.528 0.44 31.89
22 MeanSum mean 256 512 19.9 -0.2 0.836 0.522 0.712 0.45 28.97
23 *MeamSum mean 256 512 x 19.8 -0.3 0.838 0.535 0.716 0.425 28.555
24 lstm beam additive attention 128 256 19.4 -0.7 0.799 0.559 0.634 0.4 58.75
37 MeanSum hierarchical attention 128 256 x x 19.4 -0.7 0.828 0.452 0.545 0.425 37.31
25 *MeamSum mean 256 512 x x x 19.3 -0.8 0.845 0.454 0.623 0.425 24.755
26 MeanSum additive attention 128 256 19.2 -0.9 0.821 0.415 0.474 0.455 35.94
27 MeanSum mean 256 512 x x 19 -1.1 0.836 0.524 0.675 0.465 28.655
28 MeanSum additive attention 128 256 x 18.7 -1.4 0.796 0.355 0.422 0.36 42.44
29 MeanSum mean 256 512 17.5 -2.6 0.822 0.585 0.737 0.415 27.82
30 MeanSum additive attention 128 256 17.3 -2.8 0.822 0.394 0.459 0.365 26.095
31 MeanSum mean 256 512 x 16.9 -3.2 0.807 0.672 0.806 0.46 35.96
32 MeanSum mean 256 512 x 15.3 -4.8 0.812 0.438 0.55 0.41 53.215
33 LSTM greddy additive attention 128 256 12.1 -8 0.822 0.372 0.45 0.345 18.95

Table 6.7: Compilation of all results.

Second Experiment

We explore Transformer language models’ capability to learn a new style
by fine-tuning, evaluating the models on current Yelp benchmark datasets,
and comparing our previous models’ scores. Table 6.8 shows the scores for
Yelp dataset on FewSum’s benchmark and Table 6.9 reports the evaluation on
MeanSum’s data.

The fine-tuned models achieved better results in both settings using less
computational resources. The current trend on Transformer language models
is to release new models to be used by the community, enabling this fine-tuning
approach to evolve with the general advance of NLP.

Our results show that BART has the highest Rouge in both datasets
achieving new SOTA results, followed by FewSum on its benchmark, and T5
and Pegasus when evaluated on MeanSum data.

6.2.1
FewSum Benchmark

Our model achieves comparable results to the state-of-the-art on Yelp
dataset using only 90 training examples. Figure 6.5 compares summaries from
FewSum and BART. From our models, BART achieved better results in all
metrics while T5 got better RL and R2.

6.2.2
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model fine tuning rouge1 rouge2 rougeL
BART full 37.5 11.6 23.5
FewSum 37.3 09.9 22.8

T5 full 36.1 10.3 23.1
Pegasus full 35.1 09.4 22

T5 last 29.2 06.9 17.6
Copycat 28.1 05.9 18.3
MeanSum 28 03.5 16.1
Pegasus last 25.8 04.4 16.4
BART last 25.1 04.7 16.3

Table 6.8: Rouge results on Yelp dataset.

MeanSum benchmark

When evaluated on MeanSum’s data, all Transformers achieved better
results than previous models. These results show that we can still improve our
fine-tuning schemes. This evaluation favors models trained only using the last
layer despite the whole model’s higher generalization capacity.

model fine tuning rouge1 rouge2 rougeL
Bart last 34.2 07.6 19.7

Pegasus last 33.9 07.4 19.5
Pegasus full 33.7 07.2 19.2
Bart full 31.1 05.6 17.9

DenoiseSum 30.1 05.0 17.7
OpinionDigest 29.3 05.7 18.5

T5 full 27.6 04.3 15.8
T5 last 27 03.4 14.8

Table 6.9: Rouge results on MeanSum’s benchmark dataset.

6.2.3
Domain transfer

Another lens we can look at the performance of transformer models is to
evaluate how they perform out-of-domain.

We perform two experiments fine-tuning the model on the MeanSum data
to evaluate on FewSum dataset, and vice versa. Tables 6.10 and 6.11 showed
the results on FewSum and MeanSum evaluation data when the model was
fine-tuned only using the other dataset and a combined version of the training
data.

The overall result is that more data does not mean more performance.
All models performed worse than their in-domain variant, and only BART got
higher results than previous models.
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Figure 6.5: The passages highlighted in green show what pieces from the input
are present in the summary. We can see that most of the input is repeated or
personal information. The red text show mistakes generated by the models.
BART mentioned the price twice and FewSum generated the same sentence,
just changed the positive adjective used to describe the beer. The blue text
shows the use of casual expressions in the correct context. We can see that
both models are able to generate comparable text to the golden summary, but
BART’s mistake does not make the text less believable.
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dataset model rouge1 rouge2 rougeL

combined
Pegasus 35.9 09.2 21.8
T5 35.8 08.9 22
BART 24.6 01 15.6

meansum
BART 34.2 07.7 20.6
T5 33.9 08.4 21.2
Pegasus 33.8 07.8 20.6

Table 6.10: Domain transfer results evaluated on the FewSum benchmark.

dataset model rouge1 rouge2 rougeL

combined
BART 32.8 06.5 18.6
T5 29.2 04.9 16.8
Pegasus 26.8 03.4 15.6

fewsum
BART 29.6 06.9 18.8
T5 27.2 04 15.6
Pegasus 26.8 03.7 15.2

Table 6.11: Domain transfer results evaluated on the MeanSum benchmark.

6.3
Results Discussion

The data shows that training models from scratch demand many re-
sources and take a long time to converge. However, with the realization that
recent MRS articles fail to mention large Transformers, we wonder why there
was no adoption of the models. Both BART and T5 were released before 2020.
With GPT-2 (KDE Group et al., 2018) release, the world became aware of the
power of this type of model1. They are also readily available in deep learning
libraries, Huggingface Transformers 2 an incredible job cataloging and sharing
Transformer based models. Their library is easy to use and offers both dataset
and custom model repositories, where users can share their experiments with
the whole NLP community.

In this environment where powerful language models are widely known
by the media and access to these models is easily obtainable using specialized
libraries, it is unlikely that the authors of current models did not know about
Transformers. This work tries to fill the gap between transformers and MRS by
directly comparing current models to transformers. The results indicate that
large language models should be on the radar for future research and argue
that future models can gain from integrating transformers in developing new
approaches.

1https://www.theverge.com/2019/11/7/20953040/openai-text-generation-ai-gpt-2-full-
model-release-1-5b-parameters

2https://huggingface.co
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Not only that, the lack of discussion about model size or scaling in papers
about MRS only furthers our argument that the field is not connected to or con-
cerned about using large models. As our first experiment showed, it is hard to
scale MeanSum architecture. The paper used 4 GPUs to train their model. The
only work that mentioned model size was FewSum (Bražinskas et al., 2020).
They keep their new model to the same size as the previous model claiming
it would be a fairer comparison but don’t show how big their model can be
scaled and what results the unrestrained model might achieve.

We acknowledge that pre-trained transformers are about ten times larger
than the other models explored in this work, and the large parameter count
is a double-edged sword. For one side, we have large models that take GPU
space and may prove to be a challenge to deploy, and at the same time, it has
faster and cheaper training using fine-tuning in a handful of examples.

The deployment of such models is not an issue discussed in any paper
about MRS with deep learning models, and the resource requirements to
train specialized models are higher than what is need to fine-tune pre-trained
Transformers. Both MeanSum and FewSum were trained using multiple GPUs
just like the transformers, but transformers were designed to be reused for
many downstream tasks. Unlike MRS models, Transformers are also readily
available in specialized libraries, making it even easier to pursue a research
object using such models instead of relying on each paper’s custom code.

Nevertheless, LSTMs are the base model for most previous works on
MRS. It is known (Kaplan et al., 2020) that recurrent models do not scale
that well when increasing the parameter count or sequence length. Not only
that, the practice of scaling up models is not a standard practice methodology
of MRS. Even recent models that use Transformers do not provide experiments
increasing the model’s size or mention scaling properties or limitations their
model might have. However, the bleeding edge research in NLP is scaling
models to trillion parameters (Fedus et al., 2021) while unsupervised review
summarization still works with 50k parameters. It is worth mentioning that
current MRS models employ very innovative strategies to make the most of
unsupervised data but lacks the number of parameters required to meet scaling
laws to achieve optimal performance (Kaplan et al., 2020).

This work’s results provide evidence to support that it is time to look
at large models and harness their capabilities to capture linguistic information
in large unsupervised datasets, suggesting exploring the combination of both
strategies to develop better summarization models as a future research path.
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Conclusion

This work explored alternatives to the current research approach on
MRS. It extended the base MeanSum architecture with attention, hierarchical
attention, and sentiment-based auxiliary tasks, showing that these methods
can improve the base results. The experiments also evaluated the use of
augmented data to train supervised models on unsupervised tasks, showing
that this strategy can deliver similar results to specialized models and harness
the power of current supervised summarization models.

This study also showed that fine-tuning large transformer language
models achieve better results than current models. Suggesting that the pre-
train then fine-tune approach can be used to perform the task using less
computational power than training custom models from scratch.

All models were evaluated on ROUGE, the default metric on the field.
The experiments also used BERTscore and the Coverage and Density pair as
additional metrics. The use of these metrics can bring a better understanding
of the results, but none of them is good on their own. The use of many metrics
can also lead to an information overload scenario where even with four metrics,
it is unclear what model is the best one. The search for a more comprehensive
way to evaluate these models is a challenge that is left to future research.

Current developments on MRS shows that the field of MRS is starting
to adopt Transformer models as part of modern architectures but is still
training every model from scratch. These domain-specific models are excellent
at leveraging the characteristics of user reviews, but our results suggest that
large Transformers can learn these aspects using the masked language modeling
training scheme and large quantities of data.

This work presents evidence to push the adoption of larger models in
MRS research to shorten the gap between unsupervised multi-review summa-
rization and general NLP practices by applying pre-trained models on the MRS
task. We also discuss expanding the current research framework to accommo-
date larger transformer models to build unsupervised review summarization
systems.

Further exploration of the use of pre-trained models is needed to uncover
the full potential of this approach. Likewise, there is also a need to extend
the works to other languages other than English. Most research is done using
English datasets and the development of other data sources is also left to future
work.
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We conclude this work hopeful about the future of the field. Models are
getting better and more accessible every year. Furthermore, even with many
challenges, the research community thrives and pushes current architectures’
limits, generating summaries with ever-increasing quality.
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