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Abstract

Fernandes, André Ricardo Ducca; Lopes, Hélio Côrtes Vieira (Ad-
visor). Reservoir classification using well-testing pressure
derivative data. Rio de Janeiro, 2021. 47p. Dissertação de mestrado
– Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Identifying a reservoir model is the first step to correctly interpret
the data generated in a well-test and hence to estimate the related param-
eters to this model. The goal of this work is inversely to use the pressure
curves, obtained in a well-test, to identify a reservoir model. Since the data
obtained in a well-test can be ordered over time, we reduce this task to a
problem of time series classification, where every reservoir model represents
a class. For that purpose, we used a technique called shapelets, which are
times series’ subsequences that represent a class. From that, a new feature
space was built, where we measured the distance between every time series
and the shapelets of every class. Then we created an ensemble using the
models k-nearest neighbors, decision tree, random forest, support vector
machines, perceptron, multi-layer perceptron, and adaboost. The prepro-
cessings standard scaler, normalizer, robust scaler, power transformer, and
quantile transformer were tested. Then the classification was performed on
the new preprocessed feature space. We generated 10 analytical multiclass
reservoir models for validation. The results reveal that the use of classical
machine learning models with shapelets, using the normalizer and quan-
tile transformer preprocessing, reaches solid results on the identification of
reservoir models.

Keywords
Machine learning; Time series; Well-testing; Pressure derivative;

Shapelets.

DBD
PUC-Rio - Certificação Digital Nº 1912699/CA



Resumo

Fernandes, André Ricardo Ducca; Lopes, Hélio Côrtes Vieira. Classi-
ficação de reservatório utilizando dados da derivada de pres-
são de teste de poços. Rio de Janeiro, 2021. 47p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade Ca-
tólica do Rio de Janeiro.

Identificar o modelo de um reservatório é o primeiro passo para inter-
pretar corretamente os dados gerados em um teste de poços e desta forma
estimar os parâmetros relacionados a esse modelo. O objetivo deste traba-
lho é de forma inversa, utilizar as curvas de pressão obtidas em um teste de
poços, para identificar o modelo de um reservatório. Como os dados obti-
dos em um teste de poços podem ser ordenados ao longo do tempo, nossa
abordagem será reduzir essa tarefa a um problema de classificação de séries
temporais, onde cada modelo de reservatório representa uma classe. Para
tanto, foi utilizada uma técnica chamada shapelet, que são subsequências
de uma série temporal que representam uma classe. A partir disso, foi cons-
truído um novo feature space, onde foi medida a distância entre cada série
temporal e as shapelets de cada classe. Então foi criado um comitê de vota-
ção utilizando os modelos k-nearest neighbors, decision tree, random forest,
support vector machines, perceptron, multi layer perceptron e adaboost.
Foram testados os pré-processamentos standard scaler, normalizer, robust
scaler, power transformer and quantile transformer. Então a classificação
foi feita no novo feature space pré-processado. Geramos 10 modelos de re-
servatório multiclass analíticos para validação. Os resultados revelam que o
uso de modelos clássicos de aprendizado de máquina com shapelets, usando
os pré-processamentos normalizer e quantile trasformer alcança resultados
sólidos na identificação dos modelos de reservatório.

Palavras-chave
Aprendizado de máquina; Séries temporais; Teste de poços; De-

rivada de pressão; Shapelets.
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I have observed something else under the sun.
The fastest runner doesn’t always win the race,
and the strongest warrior doesn’t always win
the battle. The wise sometimes go hungry,
and the skillful are not necessarily wealthy.
And those who are educated don’t always lead
successful lives. It is all decided by chance, by
being in the right place at the right time.

Solomon, New Living Translation Bible, 2015, Ecclesiastes 9:11.
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1
Introduction

Well-test interpretation is an important step in inferring the properties
and parameters of a reservoir model. One of the most important information
obtained during a well-test is the pressure measured in the bottom-hole of a
well. Bourdet et al. found that the derivative of this pressure has a signature
accordingly to the type of reservoir (Bourdet et al., 1989). Since the pressure
derivative can be ordered over time, we can reduce the task of identifying
a reservoir model to a time series classification problem, using the pressure
derivative plots obtained in a well-test.

In recent years, the research on the time series classification area
has grown. Ye and Keogh proposed in 2009 a data mining primitive
to identify a signature on time series curves (Ye and Keogh, 2009). The
name of this technique is Shapelet. It has been successfully applied
in the literature (Xing et al., 2011, Lines et al., 2012, Patri et al., 2014,
Hameurlain et al., 2017, Ahmadi et al., 2017b).

In this work, we propose a system to classify the pressure derivative plots
obtained in a well-test. The proposed system can help specialists to correctly
interpret the well-test, and thus classify the reservoir model.

Our proposal differs from previous work (Athichanagorn and Horne, 1995,
Allain and Horne, 1990, Ahmadi et al., 2017b) since we use shapelets with
classical machine learning models to perform multiclass classification.

Since we use supervised Machine Learning algorithms, we need an
annotated dataset to train and evaluate the system. We have built an analytical
multiclass dataset composed of two groups of classes. The first group indicates
whether the reservoir is homogeneous, fracture, fault, or linear flow. The second
one indicates whether the reservoir is infinite radial, pseudo-steady-state, or
steady-state.

The remainder of this work is organized as follows. Chapter 2 presents
related work in the literature. We describe the methodology and the dataset
used in the experiments in Chapter 3. Chapter 4 shows the results. Finally,
we present the conclusions, examining the contributions and suggesting future
work, in Chapter 5.
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2
Related work

In this chapter, we present an overview of the existing work in the
literature related to well-testing model identification in the context of reservoir
classification.

When performing a well-testing interpretation, the first step is to identify
the underlying reservoir model and then infer the parameters related to the
model (Lee, 1982).

Allain and Horne proposed a technique to identify the well-testing model
in 1990 (Allain and Horne, 1990). They used syntactic information combined
with a rule-based approach applied to pressure derivative plots to perform the
well-testing model identification.

Al-Kaabi and Lee, in 1993, were the first to eliminate the use of com-
plex rules to identify the well-testing model (Al-Kaabi and Lee, 1993). Their
approach was based on the use of Artificial Neural Networks (ANN) to iden-
tify the models. The dataset was composed of seven classes. The results of
their research showed that the use of artificial neural networks is effective in
identifying the well-test interpretation model. They also noted that the use of
high-quality data (without noise) to train the ANN reaches better results.

After this work, many others flourished in the field of neural networks.
In 1996, Sung et al. proposed the use of Hough Transform in conjunction with
a Backpropagation Neural Network to extract simple patterns including noise
from the full dataset and to find the correct interpretation model from the
well-test (Sung et al., 1996). The dataset used to validate their work had four
classes. They concluded that their method could be applied to any type of
data.

Deng et al. in 2000 proposed a new method to transform the data points
in binary numbers to use as input vectors to train an ANN (Deng et al., 2000).
They guarantee that the test curves are in the same model area as its training
samples, and as a result, the interpretation model can be correctly identified.
The dataset used was composed of three classes. The conclusion was that the
proposed method is more efficient than the data series approach.

Vaferi et al. presented an attempt to use a Recurrent Neural Network
(RNN) for the interpretation model classification in 2015 (Vaferi et al., 2015).
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Chapter 2. Related work 13

They used a dataset with eight classes to validate the study. As a result, they
compared the accuracy of their model with a multi-layer perceptron. The RNN
reached better results, showing better generalization capacity.

In 2016, Vaferi et al. proposed another approach where he used a
discrete wavelet transform (DWT) for reducing the amount of data that
is used to train a multi-layer perceptron to predict the interpretation
model (Vaferi et al., 2016). The dataset classes are the same as his work of
2015. This approach reached good results for the interpretation model identi-
fication task.

Ahmadi et al. in 2017 proposed a methodology for the use of ANN to
determine the conceptual reservoir model (Ahmadi et al., 2017a). They tested
different types of ANNs including multi-layer perceptrons, probabilistic neural
networks, and regression neural networks, using a dataset with seven different
classes. The result of this research was a methodology to reservoir model
identification from pressure derivative plots using ANNs.

In 2017, Ahmadi et al. did another work in the area of reservoir clas-
sification, but at this time using an ensemble of classical machine learning
models with shapelets (Ahmadi et al., 2017b). Shapelets were used to trans-
form the original data into a new feature space to identify the reservoir models.
The machine learning algorithms used were random forest, support vector ma-
chines, logistic regression, and probabilistic neural networks. The dataset used
to validate their work had five different classes. They used the one-versus-all
method to perform the classification task, creating one ensemble to classify
each class. This study concluded that shapelets are an effective technique to
extract representative features of the pressure derivative plots and are useful
for well-testing model classification.

Chu et al. in 2019 were the first to consider the use of the convolutional
neural networks (CNN) to predict the reservoir model based on pressure
derivative plots (Chu et al., 2019). They used a dataset with five different
classes to validate their research and concluded that CNNs are more suitable
for the classification of well-test derivative plots than fully connected neural
networks (FCNN).

As we observed, a large part of the literature on well-test model classifica-
tion uses a type of neural network to approach this problem. In 2017, Ahmadi
changed this strategy using shapelets to capture the different signatures in the
pressure derivative curves and create a new feature space to train an ensemble
of machine learning models (Ahmadi et al., 2017b).

The first difference between our work to the literature is the use of
only classical machine learning models in a voting fashion to make the final
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Chapter 2. Related work 14

classification. This proposal is based on the scarcity of annotated data in real
life to be used to train machine learning models, and as known, neural network
algorithms rely on plenty of annotated data for training.

The second difference is that, in our work, we tested several data
preprocessing to find the ones that best fit reservoir classification’s context.
As in real-life data is noisier and can be more dispersed, we did extensive
tests, with different data preprocessing to serve as a starting point to use
when working with real-life data.

Finally, we generated ten different multiclass scenarios and classified
them into two steps. The intuition here is to train our models to identify
a specific class even it is suffering actions of diverse flow regimes.
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3
Methodology

In this chapter, we first explain the approach used to generate the
analytical scenarios used to train, validate and test our learning models as well
as the division of classes to perform the multiclass prediction in section 3.1.
Then, we show the data preprocessing used in this work in section 3.2. In
addition, in section 3.3, we present a time-series technique called shapelets,
which was used to extract representative features of pressure derivative curves,
creating a new feature space to train our classifiers. Next, in section 3.4, we
describe the machine learning models used to compose the voting classifier
and accomplish the final classification. Lastly, we specify the metrics used to
evaluate our work in section 3.5.

3.1
Dataset Creation

We generated the set of scenarios by solving 10 differential equations of
well-test analytical models and generating 200 scenarios of each class. Table 3.1
contains a summary of the generated scenarios by class. Figure 3.1 shows
these 2000 scenarios. All the columns represent respectively the scenarios
with INFINITE RADIAL, PSEUDO-STEADY-STATE, or STEADY-STATE
flow regimes. In contrast, each row represents respectively the scenarios with
HOMOGENEOUS, FRACTURE, FAULT, or LINEAR FLOW regimes.

The infinite radial class represents the scenarios where after the wellbore
storage effects are over, and we don’t see reservoir boundaries, the reservoir
acts as if it were infinite in extent. The pseudo steady state class describes a
reservoir closed on all sides, while the steady state class represents a reservoir
enclosed for a constant pressure boundary (Horne, 1995).

The fault class represents scenarios where we have an impermeable
barrier close to the well. The fracture class describes reservoirs with a double
porosity behavior. In contrast, the homogeneous class represents reservoirs
with homogeneous properties. The linear flow class represents scenarios with a
well placed between two parallel sealing faults (Horne, 1995, Bourdet, 2002).

In Figure 3.2 we can see an example of each scenario by class.
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Chapter 3. Methodology 16

To generate the scenarios, we varied the permeability κ ∈ [500, 10000]
with a step of 500mD. We still varied the well-flow rate q ∈ [100, 1000] with
steps of 100m3/day. All scenarios were generated with a skin factor of 2 and a
wellbore storage coefficient of 10m3/(kgf/cm2). All other parameters used to
generate the scenarios were kept constant and are specified in Table 3.2.

The derivative is obtained by the derivation of the pressure measured
during a drawdown period in respect of the natural logarithm of time using
the well-known Bourdet’s algorithm (Bourdet, 2002).

This is a multiclass dataset and to perform the reservoir classification
task, we divided the labels into two groups. In the first group, we gather
the classes FAULT, FRACTURE, HOMOGENEOUS, or LINEAR FLOW,
shown in Figure 3.3a. The second group contains the rest of the classes, which
are INFINITE RADIAL, PSEUDO STEADY STATE, or STEADY STATE,
represented in Figure 3.3b.

Thus, we modeled our task to have two classification steps, in the first
one is predicted the class for the first group of labels and in the second one is
predicted the class for the second group of labels.

We divided our dataset into two parts, 80 percent of the scenarios to
train and 20 percent to test our machine learning models.

Table 3.1: Summary of the generated scenarios by class.

Examples Reservoir model
200 Homogeneous Infinite Radial
200 Homogeneous Pseudo Steady State
200 Homogeneous Steady State
200 Fracture Infinite Radial
200 Fracture Pseudo Steady State
200 Fracture Steady State
200 Fault Infinite Radial
200 Fault Pseudo Steady State
200 Fault Steady State
200 Linear flow Infinite Radial

3.2
Data Preprocessing

Kotsiantis et al., in their work about data preprocessing in 2006, showed
that many elements affect the success of a Machine learning model, and
the quality of the dataset is one of the main factors. We can have noisy
data, redundant data, missing values, magnitude difference data etc., af-
fecting the training step. Thus, data preprocessing becomes an essential
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Figure 3.1: Logarithmic pressure derivatives of the scenarios generated solving
the 10 differential equations. All the columns represent respectively the sce-
narios with INFINITE RADIAL, PSEUDO-STEADY-STATE, and STEADY-
STATE flow regimes. In contrast, each row represents respectively the scenarios
with HOMOGENEOUS, FRACTURE, FAULT, and LINEAR FLOW regimes.

Table 3.2: Nomenclature and standard values for the variables used in the
dataset creation.

Variable Value(s) Description
q Specified by model Well flow rate (m3/day)
µ 1.0 Fluid viscosity (cP)
B 1.0 Formation Factor Volume (m3/m3)
φ 0.3 Porosity
ct 200× 10−6 Total system compressibility ((kgf/cm2)−1)
pi 300.0 Reservoir initial pressure (kgf/cm2)
rw 0.1 Wellbore radius (m)
κ Specified by model Reservoir permeability (mD)
h 100 Layer width (m)
αp 19.03 Constant
αt 3.484× 10−4 Constant

step to create a final training dataset that correctly generalizes the initial
dataset (Kotsiantis et al., 2006).
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Chapter 3. Methodology 18

Figure 3.2: An example of each analytically generated scenario.

In this work, we tested several data preprocessing to evaluate which
one reaches better results with this data. We evaluated the following data
preprocessing: standard scaler, normalizer, robust scaler, power transformer,
and quantile transformer. For each preprocessing, we present visualizations
using the training sets.

Let X be a feature vector X = {x1, x2, ..., xn} for the following data
preprocessing formulations.

3.2.1
Standard Scaler

In this preprocessing, the first step is to center the data. For that, we
remove the mean µ of each feature xi of X. After that, we divide this feature
by the standard deviation σ to scale them. Figure 3.4 shows the scaled training
set. The standard score zi for a sample xi of X is:

zi = xi − µ
σ
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(a) Logarithmic pressure derivative of
the scenarios divided by the classes
FAULT, FRACTURE, HOMOGE-
NEOUS, and LINEAR FLOW.

(b) Logarithmic pressure derivative
of the scenarios divided by the classes
INFINITE RADIAL, PSEUDO
STEADY STATE, and STEADY
STATE.

Figure 3.3: Logarithmic pressure derivatives of the scenarios grouped by the
classes that were predicted in each step by the machine learning models.

3.2.2
Normalizer

Here we choose the maximum norm to scale the dataset. It is expressed
by each feature divided by the maximum feature value of the dataset. Thus all
the feature values lie on between [−1, 1]. Figure 3.5 presents the normalized
training set. Let m be the maximum value of the vector X, then m =
max{x1, x2, ..., xn}. The normalized value zi of an element xi of the vector
X is:

zi = xi
m
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(a) Training set divided by the classes
FAULT, FRACTURE, HOMOGE-
NEOUS, and LINEAR FLOW.

(b) Training set divided by the classes
INFINITE RADIAL, PSEUDO
STEADY STATE, and STEADY
STATE.

Figure 3.4: Standard scaling of the training set.

3.2.3
Robust Scaler

In some cases, outliers can negatively influence a machine learning model.
So, the use of this preprocessing is a good option because it is robust to outliers.
First, we center the features of X by removing the median md of each element.
Then, we scale X, dividing their features by the interquartile range (IQR) as
shown in Figure 3.6. The IQR is the first quartile q1 subtracted from the third
quartile q3. Thus, the robust score zi for a sample xi of X is:

zi = xi −md
q3 − q1
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(a) Training set divided by the classes
FAULT, FRACTURE, HOMOGE-
NEOUS, and LINEAR FLOW.

(b) Training set divided by the classes
INFINITE RADIAL, PSEUDO
STEADY STATE, and STEADY
STATE.

Figure 3.5: Normalization of the training set.

3.2.4
Power Transformer

It is a monotonic transformation applied to make the data as close as
possible to a Gaussian distribution. As we have positive and negative numbers
in our dataset, we used the Yeo-Johnson transformation given by:

x
(λ)
i =



[(xi + 1)λ − 1]/λ if λ 6= 0, xi ≥ 0,

ln (xi + 1) if λ = 0, xi ≥ 0

−[(−xi + 1)2−λ − 1]/(2− λ) if λ 6= 2, xi < 0,

− ln(−xi + 1) if λ = 2, xi < 0

,

where λ is determined by the maximum likelihood estimation and xi are the
features of X. Figure 3.7 presents the power transformed training set.
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(a) Training set divided by the classes
FAULT, FRACTURE, HOMOGE-
NEOUS, and LINEAR FLOW.

(b) Training set divided by the classes
INFINITE RADIAL, PSEUDO
STEADY STATE, and STEADY
STATE.

Figure 3.6: Robust scaling of the training set.

3.2.5
Quantile Transformer

This is also a monotonic transformation, but in this case, it makes
the data transformed to follow a uniform or a normal distribution. This
preprocessing conduces to separate the most frequent values. Firstly, we
map the original values to a uniform distribution using an estimation of the
cumulative distribution function. Then, the obtained values are mapped to
the desired output distribution, applying the associated quantile function. In
Figure 3.8, we have the uniform quantile transformation, while in Figure 3.9,
we have the normal.
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(a) Training set divided by the classes
FAULT, FRACTURE, HOMOGE-
NEOUS, and LINEAR FLOW.

(b) Training set divided by the classes
INFINITE RADIAL, PSEUDO
STEADY STATE, and STEADY
STATE.

Figure 3.7: Power transforming of the training set.

3.3
Shapelets

Shapelets are time series’ subsequences that represent a class. In 2009,
Ye and Keogh proposed this data mining primitive to identify a signature on
time series curves (Ye and Keogh, 2009). In our context, we construct a new
feature space using the distance of the time series from the shapelets. Then
we use that as a feature to perform a time series classification using classical
machine learning models.

Shapelets has been successfully applied in the literature. Xing
et al. in 2011 did early classification in time series data using
shapelets (Xing et al., 2011). In 2012, Lines et al. proposed to create
a new data space transforming data by calculating the distances from
a time series to each shapelet and then use this to perform the clas-
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(a) Training set divided by the classes
FAULT, FRACTURE, HOMOGE-
NEOUS, and LINEAR FLOW.

(b) Training set divided by the classes
INFINITE RADIAL, PSEUDO
STEADY STATE, and STEADY
STATE.

Figure 3.8: Quantile uniform transforming of the training set.

sification (Lines et al., 2012). Patri et al. in 2014 and 2016 employed
shapelets for failure detection and failure prediction from oilfield sensor
data (Patri et al., 2014, Patri et al., 2016). In 2017, Ahmadi et al. applied
shapelets to perform well-testing model identification from pressure derivative
plots (Ahmadi et al., 2017b).

Suppose we have a set of n time series, T = {T1, T2, ..., Tn}, and each
time series Ti has a class value ci, where ci is a value from the label set
l = {l1, l2, ..., lk}. First, we need to generate the candidates to find a shapelet.
A subsequence S of length q of a time series Ti of length m is a contiguous
sequence of q points in Ti, where m ≥ q. The set of all subsequences of
length q for series Ti is Wi,q and all subsequences of length q for T are
Wq = {W1,q,W2,q, ...,Wn,q}.

The Euclidian distance between two subsequences S and R of length q is
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(a) Training set divided by the classes
FAULT, FRACTURE, HOMOGE-
NEOUS, and LINEAR FLOW.

(b) Training set divided by the classes
INFINITE RADIAL, PSEUDO
STEADY STATE, and STEADY
STATE.

Figure 3.9: Quantile normal transforming of the training set.

dist(S,R) =

√√√√( q∑
i=1

(si − ri)2

)
.

We need to define a distance measure between a subsequence S and a
time series Ti. We define that as the minimum distance between S and all
subsequences of Ti of length q (Wi,q)

di,S = min
R∈Wi,q

dist(S,R).

We specify the Shanon Entropy of a subset T′ of the set of time series T
as

I(T′) = −p0 log p0 − p1 log p1

where p1 is the fraction of the subset T′ that has the class l1 and p0 is the
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fraction of the subset that has a different class. It is also performed for l2, ..., lk.
A smaller entropy reflects a more homogeneous set concerning the categories
of its time series.

Given a subsequence S and a positive value p, let

T<p = {i|dist(S, Ti) < p} and T>p = {i|dist(S, Ti) > p}

be, respectively, the time series that have smaller and larger distance to S than
p. Now, we define a measure of the discriminatory power for a subsequence S
and the set of time series T as

max
p>0

{
I(T)− |T<p|

|T|
· I(T<p)−

|T>p|
|T|

· I(T>p)
}
.

The discriminatory power increases when we have a p that splits T into
subsets that are more homogeneous concerning the dataset’s categories.

With that proposed, we can define a shapelet for T as a subsequence S
with maximum discriminatory power.

We utilize in this research the classical shapelet algorithm that is de-
scribed in Algorithm 1.

Algorithm 1 Shapelet Algorithm, adapted from Lines et
al. (Lines et al., 2012).
Require: T as the time-series dataset, min is the minimum subsequence

length and max is the maximum subsequence length
1: best ← 0
2: bestShapelet ← ∅
3: W ← genCandidates(T)
4: for l = min to max do
5: for all subsequences S in Wl do
6: quality, dist ← calcDistances(S,Wl)
7: if quality > best then
8: best ← quality
9: bestShapelet ← S

10: end if
11: end for
12: end for
13: label ← getLabel(bestShapelet)
14: return bestShapelet, label

One of the advantages of shapelets is the gain of interpretabil-
ity (Ye and Keogh, 2009, Lines et al., 2012). When using the new feature space
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based on the distance between a pressure derivative curve and a shapelet, as
input to train a machine learning model, the practitioner can interpret the
predictions of the model, comparing the shapelets with the curves and observe
if the extracted shapelet for a class is representative.

In Figure 3.10, we have an example of a shapelet extracted from our
train dataset to represent the linear flow class. Firstly, we recognize that the
shapelet captures the effect at the end of the pressure derivative that describes
this class. Secondly, we observe that the shapelet is closer to the linear flow
curve than other classes’ curves. Due to that, we see that this shapelet correctly
represents the linear flow class.

With a specialist in our workflow, he can identify if a shapelet is not
detecting, for example, the desired flow regime, and based on that, choose not
to use it. After the prediction, the specialist can also verify the shapelets used
to form the feature space used to train the machine learning model, giving
graphic insights into the problem domain.

Another advantage is that the use of shapelets makes the classification
faster because the new feature space used to train our model is more com-
pact (Ye and Keogh, 2009, Lines et al., 2012).

Despite the use of shapelets gives more accuracy to some datasets in
literature, we hypothesize that for our domain, shapelets may be more robust
to outliers and noise during the tests, at the cost of slightly lower classification
scores. The increased robustness would allow the trained models to generalize
better on new data.

3.4
Classification Models

One of the goals of this work is the use of classical machine learning
models to perform the pressure derivative plots classification, since, in the
real world, we do not always have an abundance of scenarios to train them.
We restricted our experiments to the following models: k-Nearest Neighbors
(k-NN), Decision Tree, Random Forest, Support Vector Machines (SVM),
Perceptron, Multi-layer Perceptron, and Adaptive Boosting. We also used the
ensemble learning method Voting Classifier to perform the final classification.

3.4.1
k-Nearest Neighbors

This algorithm considers all dataset examples, points in the n-
dimensional space. The nearest neighbors of a point are defined in terms of
distance, and the most common measure is the Euclidean distance. To deter-
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Figure 3.10: Linear flow shapelet plotted with one curve of FAULT, FRAC-
TURE, HOMOGENEOUS and LINEAR FLOW, all with INFINITE RADIAL
flow regime, for the unprocessed training dataset.

mine a class of one example, the algorithm takes the k closest samples from the
training set. The most frequent class of the neighbors is then assigned to the
example that is being evaluated. Usually, the distance between the elements is
weighted, in such a way that the nearer neighbors contribute more to the class
determination than the more distant ones (Mansbridge et al., 2018).

3.4.2
Decision Tree

Decision Tree is a method where the classification process is performed
using a set of hierarchical decisions on the feature space, and it has the
arrangement of a tree. The decision at a node of the tree (split criterion)
is a condition on one or more features in the training data. Each node in a
decision tree represents a subset of the data, and the goal is to identify a split
criterion that minimizes the different classes in each branch (Aggarwal, 2015).

3.4.3
Random Forest

This method is a combination of multiple Decision Trees trained on
variations of the training set. The result of the prediction is the combination
of the prediction of their Decision Trees in a manner of majority voting or the
application of weights (Mansbridge et al., 2018).
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3.4.4
SVM

SVM is a classifier that creates a hyperplane that separates the samples
of the training set in order to produce the best separation between two classes,
known as maximum margin hyperplane. The points that define the margin
are the support vectors. If the data points are linearly separable, a linear
hyperplane is constructed to separate the classes. Otherwise, it is used a
mapping function, known as kernel, that take the original data points to a much
higher-dimensional space where they are linearly separable (Aggarwal, 2015,
Mansbridge et al., 2018, Ahmadi et al., 2017b). To deal with n-class datasets,
it is built n SVM classifiers using the one-versus-all approach.

3.4.5
Perceptron

Perceptron is a basic neural network architecture. It contains only two
layers of nodes, the input nodes, and a unique output node. Each input node
is connected by a weighted connection to the output node and receives and
transmits a single numerical value to the output node. A mathematical function
is applied on the inputs received by the output node to produce the output
value. So the learning is achieved by adjusting the weights of the connections
between the input nodes and the output node whenever the predicted label is
wrong (Aggarwal, 2015).

3.4.6
Multi-layer Perceptron

The main difference from the Perceptron is that between the input and
the output layer, we have a hidden layer. The nodes in the hidden layer can
be connected with multiple layers, and it is assumed that the nodes in a layer
are fully connected with the nodes of the next layer (Aggarwal, 2015).

3.4.7
Adaptive Boosting

In this algorithm, for every training instance, we have an associated
weight, and the training is guided by the use of these weights. The purpose is to
concentrate on the misclassified instances by increasing their relative weight
after each interaction and decreasing the weights of the correctly classified
instances. Adaptive Boosting is an ensemble learning that works with base
classifiers and combines their outputs in a voting manner to determine the
output at each step (Aggarwal, 2015).
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3.4.8
Voting Classifier

Accordingly to Polikar, a set of classifiers trained in the same dataset
can have different generalizations. In fact, he goes further and shows that even
classifiers with comparable generalization may perform differently in the test
dataset. To mitigate the risk of a poorly classification, he proposes combining
the output of several classifiers (Polikar, 2006).

Our approach using the Voting Classifier combines different machine
learning models, where each model’s prediction represents one vote. We use
the majority of votes to predict the class label.

3.5
Evaluation Metrics

To evaluate a classifier, we generally use a confusion matrix as illustrated
in Figure 3.11. It has information about the predicted classification and actual
classes. The entries in the confusion matrix are divided in:

– True Positives (TP) are the number of positive samples rightly classified
as positive.

– False Positives (FP) are the number of negative samples misclassified as
positive.

– True Negatives (TN) are the number of negative samples rightly classified
as negative.

– False Negatives (FN) are the number of positive samples misclassified as
negative.

Figure 3.11: Illustration of a confusion matrix, where TP is true positives, TN
is true negatives, FP is false positives, and FN is false negatives.

Based on the confusion matrix, we calculate some metrics. The first one
is precision that can be considered as a measure of exactness. It is the number
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of positive samples that were correctly classified divided by the number of
samples classified as positive (Han et al., 2011). Let precision be

precision = TP

TP + FP

.
Next, we have recall that is a measure of completeness. It is the number

of positive samples that were correctly classified divided by the number of
positive samples (Han et al., 2011). Based on that, recall is defined as

recall = TP

TP + FN

.
The last measure is the harmonic mean of precision and recall, where

we have equal weight for both. It is called F-measure – also known as F1 or
F-score. It is defined as

F1 = 2 ∗ precision ∗ recall
precision+ recall

.
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4
Experiments

We divided the experiments into two parts. In the first one, we use the
dataset already described in section 3.1 to perform the reservoir classification,
while in the second part, we added a sine noise S ∈ [0.1; 0.5] to the dataset. In
section 4.1, we describe the calibration of our models. In section 4.2, we show
the results using the raw dataset and, in section 4.3, we present the outcomes
using the dataset with sine noise.

4.1
Models Calibration

In order to calibrate our models, we performed a 10-fold cross-validation
over the training set, testing each different hyperparameter combination. In
this technique of model calibration, we divide the training set into k-folds –
F1, F2, ..., Fk – of the same size. Then we train and test k times, ensuring that
each time the test subset is from a different fold. For instance, in iteration i, fold
Fi is retained as the test set, and the other folds are used to train the model.
This is used to avoid overfitting during the training step (Han et al., 2011).

Now we show the evaluated hyperparameters for each model.

– k-NN

– Number of neighbors: range [4, 31]

– Decision Tree

– Measure quality of a split: gini and entropy
– Split criterion: best and random
– Minimum number of samples required at a leaf node: range [2, 31]

– Random Forest

– Measure quality of a split: gini and entropy
– Minimum number of samples required at a leaf node: range [2, 31]
– Number of trees: range [10, 200] with steps of 10

– SVM - Linear
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– Penalty: l1 and l2
– Solve dual optimization problem: true and false
– Regularization parameter: range [1, 10]
– Maximum number of iterations: 10000
– Multi-class strategy: one-versus-rest and crammer singer

– SVM - RBF

– Regularization parameter: range [1, 10]
– Maximum number of iterations: 10000

– SVM - Polynomial

– Polynomial degree: 2, 3, and 4
– Regularization parameter: range [1, 10]
– Maximum number of iterations: 10000

– Perceptron

– Penalty: l1, l2 and elasticnet
– Maximum number of iterations: 10000
– Early stoping: true

– Multi-layer Perceptron

– Activation function for the hidden layer: logistic, tanh, and relu
– Solver for weight optimization: lbfgs and adam
– Early stoping: true
– Proportion of training data to set aside as validation set for early

stopping: 0.2

– Adaptive Boosting

– Maximum number of estimators at which boosting is terminated:
50

– Learning rate: 1
– Algorithm: SAMME.R

– Voting Classifier

– Voting type: hard
– Cross-validation: 10
– Number of models to compose voting: 3, 5, and 7
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4.2
Multiclass Classification Using Multiple Shapelets Without Noise Data

As stated in section 3.1, our classification is performed in two steps.
Thus we have two voting classifiers, one for each group of classes. The first
group is composed of scenarios that contain FAULT, FRACTURE, HOMO-
GENEOUS, and LINEAR FLOW regime. The second one contains scenarios
with INFINITE RADIAL, PSEUDO STEADY STATE, and STEADY STATE
flow regime.

Table 4.1 presents the precision, recall, and F1 scores for the first group
of classes. Each row represents the results for the unprocessed or preprocessed
data without or with shapelets. We verified that the normalizer preprocessing
without and with shapelets (Normalizer and Shalelets - Normalizer respec-
tively) obtain the best scores, respectively 100% and 99% of precision, recall,
and F1. Even obtaining worse results when using shapelets, for the unpro-
cessed and normalizer preprocessing, we reach more than 90% of precision,
recall, and F1 scores. It is worth mentioning that despite having a decrease
in results using shapelets, the quantile transformers preprocessing achieved a
satisfactory quality. In Figure 4.1 we can see a comparison of F1 scores for
each preprocessing by using or not shapelets.

Table 4.1: Performance measures for the Voting classifier predicting FAULT,
FRACTURE, HOMOGENEOUS, and LINEAR FLOW scenarios.

Preprocessing Precision Recall F1
Unprocessed 0.96 0.96 0.96
Standard Scaler 0.92 0.95 0.92
Normalizer 1.00 1.00 1.00
Robust Scaler 0.87 0.93 0.87
Power Transformer 0.98 0.99 0.98
Quantile Transformer Normal 0.99 0.99 0.99
Quantile Transformer Uniform 0.98 0.99 0.98
Shapelets - Unprocessed 0.92 0.94 0.93
Shapelets - Standard Scaler 0.67 0.72 0.67
Shapelets - Normalizer 0.99 0.99 0.99
Shapelets - Robust Scaler 0.78 0.85 0.78
Shapelets - Power Transformer 0.80 0.84 0.80
Shapelets - Quantile Transformer Normal 0.89 0.91 0.89
Shapelets - Quantile Transformer Uniform 0.88 0.90 0.88

In Table 4.2, we show the results for the classification of the second
group of classes. The normalizer preprocessing (Normalizer and Shalelets -
Normalizer respectively) continue reaching the best scores, 100% when using
or not shapelets. The unprocessed and quantile transformers preprocessing
remain to obtain solid results, more than 95% of precision, recall, and F1
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Figure 4.1: Comparison of F1 scores for each preprocessing by using or not
shapelets for the Voting classifier predicting FAULT, FRACTURE, HOMO-
GENEOUS, and LINEAR FLOW scenarios.

scores, with or without shapelets. In Figure 4.2 we can see a comparison of F1
scores for each preprocessing by using or not shapelets.

As noted, the normalizer preprocessing achieved the best quality predict-
ing the two groups of classes, regardless using shapelets or not. Based on that,
we show in Table 4.3 the configurations of the best models used in the voting
classifier to predict the first group of classes, using normalizer and normalizer
with shapelets preprocessing.

Similarly, in Table 4.4, we present the configurations of the best models
used in the voting classifier to predict the second group of classes, using the
normalizer preprocessing with and without shapelets.

It is worth mentioning that in both cases the best scores were found using
only the three best models in the voting classifier.

We can see that two simple models were used in both voting classifiers, k-
NN and decision tree. The other models used were random forest – to compose
the voting classifier of the first group of classes – and SVM with linear kernel
– to compose the voting classifier for the second group of classes.

For this first experiment, the use of multiple shapelets with normalizer
preprocessing proved to be an effective approach. Unprocessed, quantile trans-
former normal and uniform preprocessing also reached solid results, even hav-
ing a decrease in the scores when using shapelets.

4.3
Multiclass Classification Using Multiple Shapelets With Noise Data

In this experiment, we added a sine noise S ∈ [0.1; 0.5] for each time
series in the dataset.
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Table 4.2: Performance measures for the Voting classifier predicting the INFI-
NITE RADIAL, PSEUDO STEADY STATE, and STEADY STATE scenarios.

Preprocessing Precision Recall F1
Unprocessed 0.99 0.99 0.99
Standard Scaler 0.62 0.63 0.56
Normalizer 1.00 1.00 1.00
Robust Scaler 0.97 0.96 0.96
Power Transformer 0.75 0.87 0.73
Quantile Transformer Normal 0.99 0.99 0.99
Quantile Transformer Uniform 0.99 0.99 0.99
Shapelets - Unprocessed 0.96 0.97 0.96
Shapelets - Standard Scaler 0.62 0.62 0.57
Shapelets - Normalizer 1.00 1.00 1.00
Shapelets - Robust Scaler 0.87 0.86 0.87
Shapelets - Power Transformer 0.74 0.84 0.72
Shapelets - Quantile Transformer Normal 0.97 0.97 0.97
Shapelets - Quantile Transformer Uniform 0.97 0.97 0.97

Figure 4.2: Comparison of F1 scores for each preprocessing by using or not
shapelets for the Voting classifier predicting INFINITE RADIAL, PSEUDO
STEADY STATE, and STEADY STATE scenarios.

Figure 4.3 presents plots of logarithmic pressure derivatives with noise
of the scenarios grouped by the classes. Figure 4.3a shows the first group of
classes that are composed of scenarios that contain FAULT, FRACTURE,
HOMOGENEOUS, and LINEAR FLOW regime. Figure 4.3b presents the
second group of classes that consists of scenarios with INFINITE RADIAL,
PSEUDO STEADY STATE, and STEADY STATE flow regime.

Table 4.5 presents the results achieved for the classification of the first
group of classes. We can verify that for data without shapelets, the quantile
transformer normal preprocessing achieves the best result, with precision,
recall, and F1 score of 99%. The normalizer preprocessing, as in the previous
experiment, obtained a solid result with an F1 score of 98%. We also need to
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Table 4.3: Configurations of the best models used to predict the classes FAULT,
FRACTURE, HOMOGENEOUS, and LINEAR FLOW, by the use or not of
shapelets.

Preprocessing Model Hyperparameters Value
k-NN Number of neighbors 16

Measure quality of a split gini

Decision Tree Split criterion best
Normalizer Minimum number of samples required 2at a leaf node

Measure quality of a split gini

Random Forest Number of tress 10
Minimum number of samples required 2at a leaf node

k-NN Number of neighbors 4

Measure quality of a split entropy

Decision Tree Split criterion random
Normalizer - Minimum number of samples required 8Shapelets at a leaf node

Measure quality of a split gini

Random Forest Number of tress 10
Minimum number of samples required 2at a leaf node

mention that the unprocessed and quantile transformer uniform preprocessing
reached satisfactory results, with a respective F1 score of 97% and 98%.
For data with shapelets, we could see a decrease in quality. The best scores
were obtained with the unprocessed and normalizer preprocessing with an
F1 score of 91% and 89% respectively. For the normal and uniform quantile
transformations preprocessing that obtained solid results without shapelets,
we reached an F1 score of 83% and 82%, respectively. In Figure 4.4 we can see
a comparison of F1 scores for each preprocessing by using or not shapelets.

In Table 4.6, we show the results for the classification of the second group
of classes. The normalizer preprocessing achieves the best scores regardless the
use of shapelets, with precision, recall, and F1 scores of 99%. The unprocessed
and quantile transformers preprocessing also achieved strong results, with an
F1 score equals to or higher than 95%, using shapelets or not. In Figure 4.5
we can see a comparison of F1 scores for each preprocessing by using or not
shapelets.

In Table 4.7, we present the configurations of the best models used in the
voting classifier to predict the first group of classes, using quantile transformer
normal preprocessing without shapelets and unprocessed data with shapelets.

Likewise, in Table 4.8, we show the configurations of the best models
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Table 4.4: Configurations of the best models used to predict the classes
INFINITE RADIAL, PSEUDO STEADY STATE, and STEADY STATE, by
the use or not of shapelets.

Preprocessing Model Hyperparameters Value
k-NN Number of neighbors 4

Measure quality of a split gini

Decision Tree Split criterion best
Normalizer Minimum number of samples required 2at a leaf node

Penalty l1
Solve dual optimization problem False

SVM - Linear Regularization parameter 6
Maximum number of iterations 10000
Multi-class strategy one-versus-rest

k-NN Number of neighbors 4

Measure quality of a split gini

Decision Tree Split criterion best
Normalizer - Minimum number of samples required 2Shapelets at a leaf node

Penalty l2
Solve dual optimization problem True

SVM - Linear Regularization parameter 1
Maximum number of iterations 10000
Multi-class strategy one-versus-rest

Table 4.5: Performance measures for the Voting classifiers predicting the
FAULT, FRACTURE, HOMOGENEOUS, and LINEAR FLOW scenarios
using data with noise.

Preprocessing Precision Recall F1
Unprocessed 0.97 0.98 0.97
Standard Scaler 0.91 0.94 0.91
Normalizer 0.98 0.97 0.98
Robust Scaler 0.82 0.88 0.83
Power Transformer 0.97 0.98 0.97
Quantile Transformer Normal 0.99 0.99 0.99
Quantile Transformer Uniform 0.98 0.99 0.98
Shapelets - Unprocessed 0.91 0.92 0.91
Shapelets - Standard Scaler 0.68 0.72 0.68
Shapelets - Normalizer 0.89 0.92 0.89
Shapelets - Robust Scaler 0.79 0.84 0.79
Shapelets - Power Transformer 0.78 0.85 0.78
Shapelets - Quantile Transformer Normal 0.83 0.85 0.83
Shapelets - Quantile Transformer Uniform 0.82 0.84 0.82

employed to predict the second group of classes, using the normalizer prepro-
cessing with and without shapelets.
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(a) Logarithmic pressure derivative
with noise of the scenarios di-
vided by the classes FAULT, FRAC-
TURE, HOMOGENEOUS, and LIN-
EAR FLOW.

(b) Logarithmic pressure derivative
with noise of the scenarios divided
by the classes INFINITE RADIAL,
PSEUDO STEADY STATE, and
STEADY STATE.

Figure 4.3: Logarithmic pressure derivatives with noise of the scenarios grouped
by the classes that were predicted in each step by the machine learning models.

Once again, in both cases, the best scores were found using only the three
best models for the voting classifier.

We observed that the most recurrent models used in the voting classifiers
were random forest and multi-layer perceptron. SVM also was considerably
used but with different kernels.

For this second experiment, if we compare the results between data
with and without shapelets, we observe a considerable decrease in the scores
for the first group of classes compared to the second one. We also noticed
that the unprocessed, normalizer, quantile transformer normal and uniform
preprocessings achieved solid results. However, the normalizer preprocessing
was again the more consistent data preprocessing with and without shapelets.
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Figure 4.4: Comparison of F1 scores for each preprocessing by using or not
shapelets for the Voting classifiers predicting FAULT, FRACTURE, HOMO-
GENEOUS, and LINEAR FLOW scenarios using data with noise.

Table 4.6: Performance measures for the Voting classifier predicting the INFI-
NITE RADIAL, PSEUDO STEADY STATE, and STEADY STATE scenarios
using data with noise.

Preprocessing Precision Recall F1
Unprocessed 0.99 0.99 0.99
Standard Scaler 0.72 0.74 0.70
Normalizer 0.99 0.99 0.99
Robust Scaler 0.92 0.91 0.91
Power Transformer 0.90 0.93 0.90
Quantile Transformer Normal 0.99 0.99 0.99
Quantile Transformer Uniform 0.98 0.99 0.98
Shapelets - Unprocessed 0.96 0.96 0.96
Shapelets - Standard Scaler 0.67 0.72 0.64
Shapelets - Normalizer 0.99 0.99 0.99
Shapelets - Robust Scaler 0.89 0.88 0.89
Shapelets - Power Transformer 0.85 0.90 0.85
Shapelets - Quantile Transformer Normal 0.95 0.95 0.95
Shapelets - Quantile Transformer Uniform 0.97 0.97 0.97
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Figure 4.5: Comparison between the F1 scores for each preprocessing by using
or not shapelets for the Voting classifier predicting the INFINITE RADIAL,
PSEUDO STEADY STATE, and STEADY STATE scenarios using data with
noise.

Table 4.7: Configurations of the best models used to predict the classes FAULT,
FRACTURE, HOMOGENEOUS, and LINEAR FLOWwith noise data, by the
use or not of shapelets.

Preprocessing Model Hyperparameters Value
Measure quality of a split gini

Random Forest Number of tress 110
Minimum number of samples required 2at a leaf node

Quantile Activation function for the hidden layer tanh
Transformer Multi-layer Solver for weight optimization lbfgs
Normal Perceptron Early stoping True

Proportion of training data to set aside 0.2as validation set for early stopping

SVM - RBF Regularization parameter 6
Maximum number of iterations 10000
Measure quality of a split entropy

Decision Tree Split criterion best
Minimum number of samples required 2at a leaf node

Measure quality of a split entropy
Unprocessed - Random Forest Number of tress 180
Shapelets Minimum number of samples required 2at a leaf node

Activation function for the hidden layer tanh
Multi-layer Solver for weight optimization lbfgs
Perceptron Early stoping True

Proportion of training data to set aside 0.2as validation set for early stopping
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Table 4.8: Configurations of the best models used to predict the classes
INFINITE RADIAL, PSEUDO STEADY STATE, and STEADY STATE with
noise data, by the use or not of shapelets.

Preprocessing Model Hyperparameters Value
Activation function for the hidden layer tanh

Multi-layer Solver for weight optimization lbfgs
Perceptron Early stoping True

Proportion of training data to set aside 0.2as validation set for early stopping

Normalizer SVM - RBF Regularization parameter 4
Maximum number of iterations 10000

SVM -
Polynomial

Polynomial degree 2
Regularization parameter 1
Maximum number of iterations 10000

k-NN Number of neighbors 4

Penalty l1
Solve dual optimization problem True

SVM - Linear Regularization parameter 6
Normalizer - Maximum number of iterations 10000
Shapelet Multi-class strategy crammer singer

Measure quality of a split entropy

Random Forest Number of tress 80
Minimum number of samples required. 2at a leaf node
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5
Conclusion

The fundamental tool used in the interpretation of a well-test are pressure
derivative curves. Although these curves have a signature of the reservoir, it is
a challenging task to correctly classify them, since different reservoir models
can have similar pressure derivative signatures.

In this work, we proposed a system – using several data preprocessing
in conjunction with a time series primitive named shapelets – to extract
signatures for each reservoir model and use them to create a new feature space
based on the distance between a pressure derivative curve and a shapelet. Then
we use this new feature space to train classical machine learning models and
use them in a voting classification manner to predict the reservoir model class.

For this purpose, we built an analytical multiclass dataset and divided the
classes into two groups to perform the classification. The first group indicates
whether the reservoir is homogeneous, fracture, fault, or linear flow. The
second one shows whether the reservoir is infinite radial, pseudo-steady-state,
or steady-state.

Finally, we compared the classification quality using data with shapelets
to data without shapelets.

In the literature of well-test model classification, neural networks are the
most used technique to deal with this problem. However, it demands plenty of
annotated data to train those neural networks. One of the differences of our
work to the literature is the use of only classical machine learning models to
perform the classification of the pressure derivative curves. The main reason
for our choice is the insufficiency of annotated data when dealing with real-
life problems. Based on the results of our experiments, the use of classical
machine learning in a voting manner, with or without shapelets, proved to be
an effective approach for reservoir classification using pressure derivative plots.
Among the models used, we can highlight k-NN, decision tree, random forest,
multi-layer perceptron, and SVM, which were the most used models in our
voting algorithms, achieving the best scores for each experiment.

Another difference between our work to previous works in literature was
that we extensively tested different data preprocessings. Since real-life data is
noisier and can be more dispersed, our motivation was finding those prepro-
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cessings that provide the best fit in the context of reservoir classification, using
pressure derivative plots. We found that normalizer and quartile transformers
preprocessings achieved positive results using shapelets or not. Although in one
case the unprocessed data obtained better results, it is expected that, when
working with real data, those preprocessings would be useful.

Although the use of shapelets provides a gain of quality of machine
learning models in many cases in literature, we also have many examples where
that does not happen. In cases where there is a decrease in quality, however, it is
not a restriction not to use shapelets, since when we use them, we have benefits,
such as gain of interpretability and faster training of machine learning models.
In our case, we believe that the gain of interpretability – where the specialist
can have a visual representation of the shapelets used in the training of the
machine learning model and thus can verify if they are correctly capturing the
signals of the pressure derivative – brings more benefits than the small decrease
in scores obtained when using shapelets in our experiments.

As future work, we would suggest the automatic estimation of reservoir
model-related parameters, such as permeability, skin factor, wellbore storage,
and flow rate, based only on the pressure derivative plots obtained in a reservoir
test.
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