

Janaina Barreto Santos

Estudo Experimental dos Mecanismos de Produção de Areia Empregando Tomografia Computadorizada de Raios-X

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil da PUC-Rio. Área de Concentração: Geotecnia.

Orientadores: Eurípedes do Amaral Vargas Júnior Emílio Velloso Barroso

Rio de Janeiro, maio de 2004

Janaina Barreto Santos

Estudo Experimental dos Mecanismos de Produção de Areia Empregando Tomografia Computadorizada de Raios-X

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Eurípedes do Amaral Vargas Júnior Orientador Departamento de Engenharia Civil - PUC-Rio

> > Prof. Emílio Velloso Barroso Co-Orientador IGEO/UFRJ

Prof. Franklin dos Santos Antunes Departamento de Engenharia Civil - PUC-Rio

Prof. Jaime Tupiassú Pinho de Castro Departamento de Engenharia Mecânica- PUC-Rio

> Dr. Armando Prestes de Menezes Filho CENPES/PETROBRAS

Prof. Sérgio Augusto Barreto da Fontoura Departamento de Engenharia Civil - PUC-Rio

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 05 de maio de 2004

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Janaina Barreto Santos

Graduada em Engenharia Civil pela UFV - Universidade Federal de Viçosa - MG, em 2001

Ficha Catalográfica

Santos, Janaina Barreto

Estudo Experimental dos Mecanismos de Produção de Areia Empregando Tomografia Computadorizada de Raios-X / Janaina Barreto Santos; Orientadores: Eurípedes do Amaral Vargas Jr; Emílio Velloso Barroso - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2004

v., 142f.: il. ; 29,7 cm

Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil

Inclui referências bibliográficas.

1. Engenharia Civil - Teses. 2. Produção de areia. 3. Tomografia Computadorizada de Raios-X. 4. Mecanismos de ruptura. I. Vargas Jr., Eurípedes do Amaral. II. Barroso, Emílio Velloso. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

PUC-Rio - Certificação Digital Nº 0124944/CA

A minha família e ao meu querido professor Franklin Antunes

Agradecimentos

À Deus.

Aos meus orientadores, Prof. Vargas e Prof. Emílio, por todo suporte dado a este trabalho.

À minha amiga Eng. Sueli por sua dedicação e conhecimentos transmitidos.

À Elisabete Campos e André Tavares, do Laboratório de Tomografia Computadorizada de Raios-X do CENPES, pela atenção, carinho e pela disponibilidade de recursos imprescindíveis para a realização deste trabalho.

Aos funcionários do CENPES: Marcos Dantas, Rodrigo Barra, Clemente Gonçalves, Celso de Jesus Júnior, João Ribeiro, Júlio César Beltrami, Antônio Cláudio, Armando Prestes, Jacques Coelho, por cederem recursos fundamentais para esta pesquisa.

A todos os professores e funcionários do Departamento de Engenharia Civil da PUC-Rio e, em especial aos Prof. Franklin Antunes e Sérgio Fontoura pelo apoio e constante incentivo. Ao Professor Dr. Jaime Tupiassú Pinho de Castro do Departamento de Engenharia Mecânica da PUC-Rio.

Aos meus pais por todo o apoio e amor que me foram dados ao longo da minha vida.

Ao meu Amor, Rogério, pelo companheirismo.

Aos meus amigos e amigas pela solidariedade e otimismo e pela compreensão pelo meu afastamento nos últimos tempos.

A PUC e a CAPES pelos recursos financeiros a pesquisa.

Enfim, a todos que de uma forma ou de outra me ajudaram a chegar até aqui.

Resumo

Santos, Janaina Barreto; Vargas Jr, Eurípedes do Amaral (orientador); Barroso, Emílio Velloso (co-orientador). Estudo Experimental dos Mecanismos de Produção de Areia Empregando Tomografia Computadorizada de Raios-X. Rio de Janeiro, 2004. 142p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Durante a fase produtiva de um poço de petróleo ou gás, muitas vezes há a produção simultânea de partículas sólidas arrancadas da matriz da rocha reservatório. Este fenômeno recebe o nome de produção de areia. Neste caso as tensões e as condições de fluxo nas vizinhanças do poço são fatores fundamentais para a deflagração do processo. As tensões que se concentram na parede do poço com a perfuração do mesmo, pode ser de tal magnitude que pode causar a perda da coesão entre os grãos e criando , assim , uma região de material granular susceptível ao arraste pelas forças de percolação derivadas do fluxo.

Este trabalho visou a realização de ensaios em amostras de arenito Rio Bonito e arenito sintético utilizando a técnica da Tomografia Computadorizada de Raios-X para acompanhamento em tempo real dos ensaios. Os ensaios tiveram por objetivo identificar a pressão de início e o modo de propagação da ruptura da parede da cavidade interna da amostra ensaiada. Estes são estágios iniciais dos processos de produção de areia em rochas.

As análises das imagens tomográficas adquiridas durante os ensaios permitiram a visualização de breakouts e arrombamentos dos poços. Estudos mais detalhados possibilitaram estimar a quantidade de areia produzida e reconstruir tridimensionalmente o processo de propagação da ruptura.

Palavras-chave

Produção de areia; Tomografia Computadorizada de Raios-X; Mecanismos de ruptura.

Abstract

Santos, Janaina Barreto; Vargas Jr., Eurípedes do Amaral (advisor); Barroso, Emílio Velloso (advisor). **Experimental Study of Mechanisms of Sand Production Using X-Ray Computerized Tomography**. Rio de Janeiro, 2004. 142p. MSc. Dissertation - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

During productive phase of the well, manytimes there is simultaneous production of the solid particles detached from matrix of the reservoir rock. This phenomenon receive the name of the sand production. In this case stress and flow conditions around of the well are fundamental factors for deflagration of the process. Stress concentration in the wall of the well lead to the loss of cohesion between grains arising, consequently, a granular material region susceptible for dragging by seepage forces derived from fluid flow.

The objective of this work was to perform sand production tests in Rio Bonito and synthetic sandstone samples using real-time X-Ray Computerized Tomography. The tests investigated the initial and the evolution of failure at the cavity wall of samples. These are initial stages of the sand production process.

The analysis of the CT-scans obtained during tests allowed the visualization of breakouts and collapses of the wells. From studies more details were possible estimate the sand production and produce 3-D images of the propagation of the failure.

Keywords

Sand production; X-Ray Computerized Tomography; Failure mechanisms.

Sumário

1. Introdução	17
2. Produção de Areia	20
2.1. Principais Aspectos da Produção de Areia	20
2.2. Mecanismos da produção de areia	22
2.3. Estudos Experimentais de Simulação da Produção de Areia	25
3. Tomografia Computadorizada de Raios -X	37
3.1. Fundamentos Teóricos Tomografia Computadorizada de Raios X	37
3.1.1. Geração de raios X e interação com a matéria:	37
3.1.2. Formação da Imagem	39
3.1.3. Unidades utilizadas em imagens tomográficas:	40
3.1.4. Escala de cores ou tons de cinza:	41
3.2. Utlização da Tomografia Computadorizada de Raios X em Rochas	3 42
4. Programa Experimental	58
4.1. Caracterização dos Arenitos	58
4.1.1. Arenito Rio Bonito	58
4.1.2. Arenito Sintético	70
4.2. Equipamentos Utilizados	72
4.2.1. Célula de Pressão	72
4.2.2. GDS	75
4.2.3. Atuador Hidráulico Manual	76
4.2.4. Tomógrafo	76
4.3. Preparação dos Corpos de Prova	77
4.4. Metodologia de Ensaio	78
5. Resultados	85
5.1. Primeira Metodologia (GDS)	85
5.2. Segunda Metodologia (Bomba Manual)	88
5.3. Terceira Metodologia (acréscimo de tensão axia)	101

 Conclusões e Sugestões para Trabalhos Futuros 	136
6.1. Conclusões	136
6.2. Sugestões para Trabalhos Futuros	137
7. Referências Bibliográficas	138

Lista de Figura

Figura 2.01 – Retração do cimento (Dusseault & Santarelli, 1989). 23

Figura 2.02 – Plastificação no canhoneamento (Dusseault & Santarelli ,1989). 23

- Figura 2.03 Interior e subestrutura da célula de pressão desenvolvida para os experimentos de ruptura em cavidades com aplicação de fluxo (Tronvoll & Fjaer, 1994). 26
- Figura 2.04 Imagens de seções transversais de duas amostras após o ensaio:
 (a) tamanho médio de grãos constituinte igual a 250 μm,e (b) 100 μm.
 (Tronvoll *et al.*,1997) 28
- Figura 2.05 Seção ao longo do eixo axial do corpo de prova de arenito Red Wildmoor. As dimensões são dadas em milímetros (Unander *et al*,1997). 29
- Figura 2.06 Duas geometrias de fluxo: no caso axial, o fluido entra na amostra através do pistão perfurado do topo.O caso radial é obtido usando uma membrana com oito furos, sendo o fluido distribuído nos 2/3 inferiores da amostra (Unander *et al*,1997) 29
- Figura 2.07 Imagem tomográficas mostrando um padrão típico de dano criado em ambos os fluxos. À esquerda o dano causado pelo fluxo radial e à direita, pelo fluxo axial.(Unander *et al*, 1997)
 30
- Figura 2.08 Imagens tomográficas representando como o fluxo de fluido remove o material rompido da cavidade. A amostra da esquerda foi ensaiada sem fluxo, enquanto a imagem a da direita foi ensaiada com fluxo radial. Os corpos de prova foram carregados radialmente no estado plano de deformação até 25,2 e 19,3 MPa, respectivamente (Unander *et al* ,1997) 30
- Figura 2.09 Aparato experimental desenvolvido para ensaios de produção de areia em TWC (Papamichos ,1999). 31
- Figura 2.10 Imagens tomográficas de seções transversais de amostras ensaiadas.(a) Arenito Red Wildmoor; (b) Arenito Sintético; (c) Testemunho A; (d) Testemunho B; e (e) Testemunho C. (Papamichos,1999).

- Figura 2.11 Imagens tomográficas de seções transversais de amostras ensaiadas:.(a) Testemunho D, (b) Testemunho E, e (c) Testemunho F (Papamichos,1999) 33
- Figura 2.12 Esquema do fluxo radial no ensaio de produção de areia com amostra de 200mm de diâmetro externo (Vardoulakis *et al*, 2001). 34
- Figura 2.13 Total acumulado da produção de areia versus tensão externa (Vardoulakis *et al*, 2001). 34
- Figura 2.14 Total acumulado da produção de areia versus tempo com várias taxas de fluxo e pressão confinante igual a 11 Mpa (Vardoulakis *et al*, 2001) 35
- Figura 2.15 Imagens tomográficas após o ensaio: (a) Seção longitudinal, (b) seção transversal do topo, (c) (meio) e (d) base do corpo de prova (Vardoulakis *et al*, 2001).

Figura 3.01.– Configuração do sistema de aquisição de imagens do tomógrafo 38

Figura 3.02.- Escala de cores (A) e de tonalidades de cinza (B). 41

- Figura 3.03 Evolução da invasão de fluido de perfuração durante um período de 10 horas. A região escura ao redor do poço indica que o fluido de saturação da rocha (alta densidade) é deslocado por uma solução menos densa que é o fluido de perfuração Os números indicam horas desde o início do ensaio.
- Figura 3.04 Exemplo de seções de uma amostra de arenito (à esquerda) e de siltito (à direita) 44
- Figura 3.05 Processo de saturação por água observado por imagens tomográficas. O avanço da região mais clara nas figuras representa o aumento da densidade pela invasão da água nos poros da rocha . 45
- Figura 3.06 Imagens ao final dos ensaios de compressão triaxial em amostras de arenito saturadas com diferentes soluções aquosas ou no estado natural:
 (a) NaCl em pH 7; (b) NaCl em pH 9; (c) NaCl em pH 12; (d) ar; (e) água do Rio Amarelo (China); (f) água destilada; (g) CaCl₂ em pH 9; (h) NaCl em pH 2; e (i) NaHCO₃ em pH 9.

Figura 3.07 – Posicionamento da célula triaxial na mesa do tomógrafo47

Figura 3.08 – Imagem longitudinal do corpo de prova apresentando o plano de cortes. 48

Figura 3.09 – Seções transversais do corpo de prova G-4 com tensão axial nula.49

- Figura 3.10 Seções transversais do corpo de prova G-4 com tensão axial de 2,5 MPa, após 15 minutos do início do ensaio. Notar início da ruptura nas três últimas seções. 50
- Figura 3.11 Seções transversais do corpo de prova G-4 com tensão axial de 3,3MPa, após 20 minutos do início do ensaio. 51
- Figura 3.12 Seções transversais do corpo de prova G-4 com tensão axial de 4MPa, após 25 minutos do início do ensaio. 52
- Figura 3.13 -Piloto do corpo de prova G-4 com tensão axial nula. Através da tomografia pode-se observar o acamamento da amostra provocado pela confecção em camadas 53
- Figura 3.14 Piloto do corpo de prova G-4 com tensão axial de 2,8 MPa, após 17 minutos do início do ensaio. Observa-se início de fraturas se propagando a partir da região central do corpo de prova. 53
- Figura 3.15 Piloto do corpo de prova G-4 com tensão axial de 3,8 MPa, após 23 minutos do início do ensaio. Verifica-se a extensão da fratura central e aparecimento de outras na extremidade superior. 54
- Figura 3.16 Piloto do corpo de prova G-4 com tensão axial de 5 MPa, após 30 minutos do início do ensaio. 54
- Figura 3.17 Foto do corpo de prova G-4 antes do ensaio 55
- Figura 3.18 Foto do corpo de prova G-4 após o ensaio 55
- Figura 3.19 Instantâneo da reconstrução 3D no início do ensaio. 56
- Figura 3.20 Instantâneo da reconstrução 3D com tensão axial de 3,3 MPa, após 20 minutos do início do ensaio. 56
- Figura 3.21 Instantâneo da reconstrução 3D com tensão axial de 5 MPa, após 30 minutos do início do ensaio. 57
- Figura 4.01 Roteiro para confecção de lâminas delgadas impregnadas (Cesero *et al.*,1989). 59
- Figura 4.02 Visualização da amostra 697-RB aumentada 20 vezes.61
- Figura 4.03 Visualização da região central da amostra 697-RB aumentada 100 vezes.
 Figura 4.04 Composição química do quartzo.
 62
- Figura 4.05 Composição química do feldspato potássico 62

Figura 4.06 – Composição química da caulinita.	63
Figura 4.07 – Composição química do cimento silicoso	63
Figura 4.08 – Composição química do argilomineral amorfo	63
Figura 4.09 - Composição química do poro. Estes elementos fazem parte	da
composição química da resina araltide	63
Figura 4.10 - Contato entre grãos de feldspato com aumento de 2000 vezes	64
Figura 4.11 - Estrutura de um grão de caulinita com aumento de 3000 vezes	; da
amostra 697-RB.	64
Figura 4.12 - Estrutura de um grão de feldspato com aumento de 3000 vezes	s da
amostra 697-RB.	65
Figura 4.13 – Visualização da amostra 699-RB aumentada 20 vezes	66
Figura 4.14 – Visualização da região central da amostra 699-RB aumentada	100
vezes	67
Figura 4.15 – Composição química do titânio. Este, provavelmente	foi
transportado, devido a existência de pouquíssimos grãos.	67
Figura 4.16 - Estrutura de um contato entre grãos de caulinita (região n	nais
escura) e feldspato com aumento de 3000 vezes da amostra da amo	stra
699-RB.	67
Figura.4.17 – Curva tensão x deformação axial da amostra 696-RB	68
Figura 4.18 – Projeto da célula de Pressão	73
Figura 4.19 – Detalhe da câmara de tensão axial no projeto da célula	74
Figura 4.20 – Fotografia da célula.	75
Figura 4.21 – Fotografia do controlador/atuador GDS	76
Figura 4.22 – Tomógrafo Médico	77
Figura 4.23 – Corpos de prova após a perfuração: à esquerda arenito Rio Boni	to e
à direita arenito sintético	78
Figura 4.24 – Visão transversal dos corpos de prova: à esquerda arenito Rio Bo	nito
e à direita arenito sintético	78
Figura 4.25 - Montagem do Corpo de prova. Os caps estão envolvidos com	fita
alta fusão.	79
Figura 4.26 – Soprador térmico e corpo de prova envolvido pela membrana ter	mo-
retrátil	79
Figura 4.27 – Retração da membrana devido ao calor	80

Figura 4.28 – Amarração com arame80
Figura 4.29 – Colocação do corpo de prova81
Figura 5.23 - Seções transversais do corpo de prova 698-RB com pressão
confinante e tensão axial nulas 111
Figura 5.24 - Seções transversais do corpo de prova 750-RB com pressão de
confinante de 10MPa e tensão axial de 5MPa 112
Figura 5.25 - Seções transversais do corpo de prova 750-RB com pressão de
confinante de 15MPa e tensão axial de 5MPa 113
Figura 5.26 - Seções transversais do corpo de prova 750-RB com pressão de
confinante de 25 MPa e tensão axial de 5MPa. 114
Figura 5.27 - Seqüência da propagação da ruptura da seção a 23 mm: estágios 0
a 3 115
Figura 5.28 – Imagens Pilotos antes e após o ensaio115
Figura 5.29 – Fotografia do corpo de prova 750-RB após o ensaio. Com o colapso
global, a membrana foi danificada permitindo que o óleo contaminasse a
amostra. 116
Figura 5.30 - Fotografia do corpo de prova 750-RB após o ensaio. Notar invasão
de partículas para o interior da cavidade. 116
Figura 5.31 - Seções transversais do corpo de prova V5-2 com pressão confinante
nula e tensão axial nula. 117
Figura 5.32 - Seções transversais do corpo de prova V5-2 com pressão de
confinante de 20 MPa e tensão axial de 10 MPa. 118
Figura 5.33 - Seções transversais do corpo de prova V5-2 com pressão de
confinante de 30 MPa e tensão axial de 12 MPa. 119
Figura 5.34 - Seções transversais do corpo de prova V5-2 com pressão de
confinante de 40 MPa e tensão axial de 5 MPa 120
Figura 5.35 - Subtração das imagens do corpo de prova V5 –2 no estágio 0 menos
as do estágio 6. 121
Figura 5.36 – Imagens Pilotos antes e após o ensaio122
Figura 5.37 – Corpo de prova V5 –2 após o ensaio123
Figura 5.38 - Corpo de prova V5-2 após o ensaio. Notar o preenchimento de toda
a cavidade interna por material granular 124
Figura 5.39 - Seções transversais do corpo de prova V8-2 com pressão confinante
nula e tensão axial nula 125

Figura 5.40 - Seções transversais do corpo de prova V8-2 com pres	são de
confinante de 20 MPa e tensão axial de 10 MPa	126
Figura 5.41 - Seções transversais do corpo de prova V8-2 com pres	ssão de
confinante de 25 MPa e tensão axial de 12,5 MPa	127
Figura 5.42 - Seções transversais do corpo de prova V8-2 com pres	são de
confinante de 40 MPa e tensão axial de 15 MPa.	128
Figura 5.43 – Visualização do material granular preenchendo a cavidade	interna
da figura 5.42	129
Figura 5.44 - Seqüência da propagação da ruptura da seção 32,5 mm. Esta	ágios de
0 a 6 .	130
Figura 5.45 – Subtração de imagens estágio 0 menos estágio 6	131
Figura 5.46 - Pilotos antes e após o ensaio do corpo de prova V8-2	133
Figura 5.47 – Corpo de prova V8-2 após o ensaio.	133
Figura 5.48 – Corpo de prova V8-2 após o ensaio. Notar o preenchimento	de toda
a cavidade interna por material granular (seta).	134
Figura 5.49 – Instantâneo da reconstrução 3D no início do ensaio	135
Figura 5.50 – Instantâneo da reconstrução 3D no estágio 5	135
Figura 5.51 – Instantâneo da reconstrução 3D no estágio 6	135

Lista de Tabelas

Tabela 2.01 - Parâmetros que influenciam a produção de areia.	25
Tabela 2.02 - Produção de areia com fluxo radial. (Papamichos,1999)	32
Tabela 4.01 - Composição mineralógica do arenito Rio Bonito.(Barroso,2002)	60
Tabela 4.02 - Porosidade aparente das amostras de Rio Bonito	69
Tabela 4.03 - Porosidade aparente das amostras do Arenito Sintético.	71
Tabela 5.01 - Características dos corpos de prova	85
Tabela 5.02 - Características dos corpos de prova	88
Tabela 5.03 - Estágios de carregamento.	89
Tabela 5.4 - Características dos corpos de prova	101
Tabela 5.05 - Estágios de carregamento	102
Tabela 5.06 - Estimativa da área do breakout e da quantidade de areia prod	uzida
para o corpo de prova 698 -RB	109
Tabela 5.07 - Estimativa da área do breakout e da quantidade de areia prod	uzida
para o corpo de prova V5-2.	122
Tabela 5.08 - Estimativa da área do breakout e da quantidade de areia prod	uzida
para o corpo de prova V8-2	132