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Abstract

Brandão Cavalcanti Moreira, Igor; Barbosa dos Santos Guerreiro,
Thiago (Advisor). Harnessing optomechanical interactions:
From trapping organisms to entangling nanospheres. Rio
de Janeiro, 2021. 155p. Dissertação de Mestrado – Departamento
de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Over the last decades, light-matter interactions have proven to be a
versatile tool to measure and control mechanical systems, finding application
from force sensing to ground state cooling of nanospheres. In this dissertation,
we present some of the theoretical tools that describe interferometers, optical
tweezers and optical cavities, fundamental constituents of the optomechanical
toolbox.

In the classical regime, we study the circulating electromagnetic field
within linear interferometers and show how one can find the resulting trans-
mitted field, presenting examples of optical cavities with an arbitrary number
of dispersive elements. Moreover, we also study the radiation-pressure forces
that optical beams can imprint on dielectric particles and show how 3D optical
trapping is possible in both bright and dark focuses. Potential application to
trapping of living organisms is studied.

In the quantum regime, we study how the resonant field of optical cavities
can dispersivelly interact with different mechanical systems, giving rise to an
entangling closed quantum dynamics. When considering an ultracold cloud of
atoms interacting with two optical modes, we show the emergence of optical
entanglement which evidences the nonclassical nature of the macroscopic
atomic ensemble. The experimental feasibility of this experiment with current
technology is studied.

Furthermore, we investigate the scenario where a finely tuned optical
tweezer places a trapped particle inside an optical cavity such that the tweezer’s
scattered photons can survive inside the cavity. This so-called coherent scat-
tering interaction has been shown to cool nanoparticles to phonon numbers
lower than one deep into the quantum regime. We show that it also can gener-
ate mechanical entanglement between many levitated particles even in a room
temperature environment. An overview on continuous variable systems and
the custom numerical toolbox used throughout this work are presented.

Keywords
Quantum Optomechanics; Optical Tweezers; Interferometry; Entangle-

ment; Gaussian Quantum Information.
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Resumo

Brandão Cavalcanti Moreira, Igor; Barbosa dos Santos Guerreiro,
Thiago. Colocando interações optomecânicas em uso: do
aprisionamento de organismos ao emaranhamento de na-
noesferas. Rio de Janeiro, 2021. 155p. Dissertação de Mestrado –
Departamento de Física, Pontifícia Universidade Católica do Rio
de Janeiro.

Nas últimas décadas, interações entre luz e matéria provaram ser uma
ferramenta versátil para medir e controlar sistemas mecânicos, encontrando
aplicações desde detecção de forças até resfriamento ao estado fundamental
de nanoesferas. Nesta dissertação, nós apresentamos algumas das ferramentas
teóricas necessárias para descrever interferômetros, pinças ópticas e cavidades
ópticas, constituintes fundamentais da caixa de ferramentas optomecânica.

No regime clássico, estudamos o campo eletromagnético circulante em
interferômetros lineares e mostramos como encontrar o campo resultante
transmitido, apresentando exemplos de cavidades ópticas com um número
arbitrário de elementos dispersivos. Nós também estudamos as forças de
pressão de radiação que feixes ópticos podem imprimir em partículas dielétricas
e mostramos como o aprisionamento óptico 3D é possível em focos claros e
escuros. A potencial aplicação para captura de organismos vivos é estudada.

No regime quântico, nós estudamos como o campo ressonante de ca-
vidades ópticas pode interagir de forma dispersiva com diferentes sistemas
mecânicos, dando origem a uma dinâmica quântica fechada emaranhante. Ao
considerar uma nuvem ultra resfriada de átomos interagindo com dois modos
ópticos, mostramos o surgimento de emaranhamento óptico que evidencia a
natureza não-clássica do conjunto atômico macroscópico. A viabilidade expe-
rimental deste experimento com tecnologia atual é estudada.

Além disso, nós investigamos o cenário em que uma pinça óptica posiciona
uma partícula levitada dentro de uma cavidade óptica de forma que os fótons
da pinça espalhados pela partícula possam sobreviver dentro da cavidade. Já
foi demonstrado que esta interação, chamada de espalhamento coerente, pode
resfriar nanopartículas até números de fônons menores do que um, atingindo
profundamente o regime quântico. Nós mostramos que esta interação também
pode gerar emaranhamento mecânico entre muitas partículas levitadas, mesmo
em um ambiente a temperatura de 300 K. Um resumo sobre sistemas de
variáveis contínuas e a caixa de ferramentas numérica customizada usada ao
longo deste trabalho são apresentados.

Palavras-chave
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Optomecânica Quântica; Pinças Ópticas; Interferometria; Emaranha-
mento; Informação Quântica Gaussiana.
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1
Introduction

In 1900, Max Planck postulated that electromagnetic radiation could
only be emitted or absorbed in discrete packets of energy. These discrete
quanta, called photons, result in a finite blackbody spectrum, solving the so-
called ultraviolet catastrophe that haunted 19th century classical mechanics
and electromagnetism. Although at the time Planck regarded the quanta
assumption as a mere mathematical device, it set out to be one of the
cornerstones of the first quantum revolution that followed, sparking profound
changes in our understanding of nature and the laws that govern it.

More than one hundred years after Planck’s seminal work, we are entering
a new revolution. At this point in time, quantum theory is mature and has
already been formulated, put to test and survived every experimental scrutiny
it has been subject to so far [1]. Our understanding of this theory has advanced
to the point that we can use it to engineer new quantum-enabled technologies.
The most prominent example of such technology is perhaps given by the
quantum computer. These devices hold the promise of efficiently simulating
complex quantum systems and solving mathematical problems intractable
using their classical counterparts [2–4]. Beyond quantum computation, the
range of applications for these new technologies is far-reaching. Interesting
possibilities are quantum sensing [5–10], quantum cryptography [11] and the
quantum internet [12].

The field of quantum optomechanics presents itself as a resourceful
platform for quantum science and technology. This field studies the interaction
between light and mesoscopic mechanical quantum systems, relying on the
fact that light carries momentum and, thus, can exert radiation-pressure force
on mechanical objects upon momentum transfer. Typically, the momentum
transfer from a single photon is imperceptible when compared to the every-
day-life scale. However, when considering highly focused optical beams and/or
particles with masses on the orders of femtogram to nanogram, optomechanical
interactions can influence the mechanical motion.

One possibility to concentrate a high amount of photons, in order to
enhance light-matter couplings, are optical cavities. In this work, we will
mainly deal with Fabry-Pérot cavities, devices made of parallel high-reflective
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Chapter 1. Introduction 21

mirrors capable of storing resonant electromagnetic fields for long periods of
time compared to the resonant frequency. In Chapter 2, we will study how to
mathematically describe the circulating optical field within homodyne linear
interferometers, giving special attention to optical cavities containing multiple
dispersive elements.

We can also amplify light-matter interaction by employing tightly fo-
cused laser beams, which can concentrate a high laser power in micron-sized
regions. In 1986, Arthur Ashkin first showed that such beams can exert forces
upon dielectric particles [13]. If the particle’s refractive index is larger/smaller
than that of its surroundings, the laser pulls from/repels to regions of higher
intensity of light. These optical tweezers allow one to hold and control trans-
lational [14–16] and rotational [17–19] degrees-of-freedom of nanometer to
micronmeter-sized objects. These optical traps also allow exceptional environ-
mental isolation [1,14,20,21], as the trapped particle is not clamped to external
mechanical environments that can introduce unwanted vibrations [22]. Thus,
albeit these optical beams can be described classically, they can serve as build-
ing blocks for quantum sensing [10] and quantum control [16]. The theory
behind optical tweezers and its application in optical trapping are studied in
Chapter 3.

When considering quantum cavity optomechanical experiments, the res-
onating electromagnetic field inside an optical cavity can dispersivelly inter-
act with nano- and micromechanical degrees-of-freedom. The presence of the
mechanical object induces a shift on the cavity resonance frequency depen-
dent on the object’s position [23] and, thus, couples light and matter. This
interaction has been shown to give rise to squeezing in both optical [24–26]
and mechanical [27–29] modes; entanglement in optical [30], mechanical [31]
and opto-mechanical [32, 33] bipartitions; and multipartite macroscopic en-
tanglement [34]. We observe that nonclassical correlations and squeezing pose
fundamental resources to quantum technologies, from precision force measure-
ments [10,35,36] to quantum networks [31,37]. Moreover, a plethora of cavity-
based cooling mechanisms have been theoretically proposed [38–41] and experi-
mentally implemented to cool the motion of mirrors [42,43], membranes [44,45],
levitated particles [46], and silicon microchips [47]. The dispersive optome-
chanical interaction and the entanglement dynamics it entails will be studied
in Chapter 4.

Coherent scattering of photons from a trapping tweezer into an optical
cavity is a novel mechanism for creating strong optomechanical coupling
[48], mechanical squeezing [49] and entanglement [50–52]. However, the most
prominent feature that first sparked interest on this form of interaction [53]
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is the ability to cool the levitated particle. By red detuning the tweezer’s
frequency relative to the cavity, the trapped particle scatters photons into
the cavity that carries away some of its energy. This setup was first proposed
theoretically in 2001 [53] and has already been demonstrated experimentally to
give rise to 3D cooling [54–56] and achieve motional ground state cooling along
one direction [15]. Moreover, simultaneous 2D cooling to lower than one phonon
occupancy has been theorized [57]. In Chapter 5, we will study the mechanism
behind this coherent scattering interaction, the open quantum dynamics the
levitated particle follows and the generation of mechanical entanglement in
setups with many levitated nanospheres.

This dissertation is concluded in Chapter 6, with a brief overview of
the theory studied in the previous Chapters and a discussion on possible
future research directions. The list of publications carried out throughout this
Masters, a review on Gaussian Quantum Information, and a description of the
developed numerical toolbox can be found in the Appendices.
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2
Interferometry

In this chapter, we present the theoretical framework developed in
our work [58] to calculate the transmission coefficient of linear homodyne
interferometric devices through a graphical method closely related to the one
proposed in [59], aimed at analysing complex optical interferometers.

Calculating the transmission and reflection coefficients as well as the
electric field of interferometric devices may not be a straightforward task,
usually involving long matrix computations which obscure physical intuition.
As an alternative, these calculations can be performed by associating a
weighted directed graph to an optical setup. All possible optical paths leading
to a desired position in the interferometer are represented as walks in the
graph and must be taken into account, much in the spirit of the Feynman
integral. We present simplification rules by which the graph associated to
the interferometer can be reduced, and the resulting weighted directed graph
contains the information on any transmission and reflection coefficients one
wishes to obtain for the given interferometer. Similar ideas can be used both
for classical and quantum fields.

This Chapter is divided as follows. In Section 2.1, it is shown, with the
aid of examples, how to construct a weighted directed graph from a linear
optical setup. It is then defined, in Section 2.2, the general simplification rules
to transform a graph, which makes the graphical-based method suitable for a
wide range of applications. To demonstrate the power of the defined rules, a
number of examples on how to calculate the transmitted field through optical
cavities with multiple dispersive elements [60, 61] are provided in Section 2.3.
The extension of the method to setups containing multiple inputs and outputs
is presented in Section 2.4. Section 2.5 deals with the application of the
method to arbitrary quantum states of the electromagnetic field. The Chapter
is concluded in Section 2.6 with final considerations.

2.1
From an optics schematic to a weighted directed graph

We describe, with the aid of an example, how to obtain a weighted
directed graph from a standard optical schematics. Consider the Michelson
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interferometer in Figure 2.1(a).
Each arrow, labeled by a capital letter, represents a state, defined by a

position and a direction in space. A state can be defined at any boundary of
an optical element. For instance, state B in Figure 2.1(a) represents a plane
wave-front at position B moving to the right.

A

B
C

D

d1

d2

M1

M2
ΦAB ΦBD

ΦAC ΦCD

A

B

C

D

(a) (b)

Figure 2.1: (a) Optical schematics of a Michelson interferometer. Dots and
arrows define the position and direction, respectively, of states A, B, C and D.
The red lines represent light passing by the interferometer. (b) Directed graph
G corresponding to the Michelson interferometers. Green and the red circles
indicate, respectively, the input and the output vertices.

Each state is represented by a vertex in a directed graph, as seen in Figure
2.1(b). States should be defined such that: (i) every optical path leading from
the input to the output can be represented by a sequence of states and (ii)
different optical paths are represented by different sequences of states.

An edge αij joins vertex i to vertex j if, and only if, the wave-front can
go from state i to state j without passing by any other state along the way.
To each edge αij a weight Φij - the transition amplitude from state i to state
j - is assigned.

In Figure 2.1(a), for a wave-front with wave number k in state A, two
things can happen. First, it might get transmitted by the beam splitter (BS),
with transmittance t (and reflectance r), and then reflected back by the perfect
mirror M1, ending up in state C. The transition amplitude for this process is
the weight ΦAC = ite2ikd1 , and an edge connects the vertices A and C in the
graph of Figure 2.1(b). Second, the wave-front might be reflected by the BS
and the perfect mirror M2, resulting in state B; the edge connecting A and B
has weight ΦAB = re2ikd2 .

Light in state C can also be reflected by the BS, resulting in a state D
with transition amplitude ΦCD = r. Similarly, light in B can be transmitted
to D, with associated amplitude ΦBD = it.
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Since only the amplitude of the field in state D is of interest, there is no
need to define a counter propagating state at A. The resulting graph is shown
in Figure 2.1(b).

Each optical path from the input to the output of the interferometer
corresponds in Figure 2.1(b) to a walk from the source vertex, marked with a
green outline, to the sink vertex, marked with a red outline. The weight of the
walk, which is the product Γα of the weights of all the edges along it, relates
input and output electric fields Ein and Eout,α after the wave has traveled
through the path

Eout,α = Γα Ein. (2-1)
The resultant electric field at the output is then given by

Eout = Γ Ein, (2-2)
where the response factor Γ is the sum of the weights Γα of all walks from A
to D.

In the example of Figure 2.1(b), there are only two possible walks:
αAB, αBD and αAC, αCD, of respective weights ΦABΦBD and ΦACΦCD. The
response factor is

Γ = ΦABΦBD + ΦACΦCD, (2-3)
yielding the known result for the electric field at the output of a Michelson
interferometer

Eout = irt(e2ikd1 + e2ikd2)Ein. (2-4)
Throughout this chapter the convention in [44,62] for the phase gained by

reflected and transmitted waves is used. Moreover, only the case of monochro-
matic electric field with wave number k is considered.

2.2
Rules for graph simplification

The task of summing the weights of all walks in progressively more com-
plex interferometers can easily become too convoluted. In order to apply the
graphical method to a wider range of interferometers, some local simplification
rules are now presented. As for electrical circuits, elements in series and/or in
parallel are amenable to equivalent substitutions. This is the content of the
first two rules. Two graphs G and Ĝ are equivalent if they have the same factor
Γ relating input and output, Eout = ΓEin.
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Consecutive edges

Suppose a vertex P2 is connected only to two other vertices: vertex P1,
by an incoming edge α1,2, and vertex P3, by an outgoing edge α2,3. A walk
from P1 to P3 passing by P2 must contain α1,2 and α2,3, which contribute with
a factor Φ1,2Φ2,3 to the weight of the walk. An equivalent graph Ĝ is obtained
by removing the vertex P2 and joining P1 and P3 by an edge α1,3 of weight
Φ1,2Φ2,3. Similarly, for an arbitrary number of consecutive edges as shown in
Figure 2.2(a), consecutive edges may be replaced by a single edge of weight
given by the product of the weights of the individual edges.

CB

Φ1

Φ2

Φ3

...(  )
Φj

Σ
i=1

j

ΦiΦBC =

CB
ΦBC

PjP1

Φ1,2

Φ1,j

P2

Φ2,3 P3 (  )...

P1 Pj

Φ1,j = Φi,i +1Π
i=1

j-1

(a) (b)

Figure 2.2: Graphs G and Ĝ for two different rules in which multiple edges are
replaced by a single edge with equivalent weight equal to (a) the product of
the weights of each individual edge, if they are consecutive edges, or (b) the
sum of the weights of each individual edge, if they are in parallel.

Parallel edges

Consider now a graph G with two vertices B and C joined by j different
edges αi, with common orientation, and respective weights Φi, as in Figure
2.2(b). Take Ĝ to be the graph obtained from G replacing these edges by a
single one, αBC, of weight

∑
i Φi. We show that G and Ĝ are equivalent.

Each walk in G gives rise to a monomial given by the product of its edge
weights. Each walk in Ĝ, instead, gives rise to a number of such monomials. It
turns out that there is a simple bijection between equal monomials related
to both graphs. Indeed, suppose that in G the walk goes from B to C k

times, with a contribution Φi1Φi1 . . .Φik to the overall weight of the walk.
Such walk in G corresponds to a walk in Ĝ where edge αBC is traversed k

times, contributing with (∑i Φi)k to the weight of the walk. The monomial
Φi1Φi2 . . .Φik is naturally associated with the monomial in (∑i Φi)k obtained
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by collecting Φi1 in the first term ∑
i Φi, Φi2 in the second term, . . . , Φik in

the k-th term.
Edges between B and C are not required to have the same orientation.

Collect edges with different orientations in two sets, and each set is replaced
by a single edge as above.

Loop contraction

Let a vertex C, that contains a loop, be connected to only two other
vertices B and D, as in Figure 2.3(a). Every walk from B to D starts with the
edge αBC , continues with a number n, n = 0, 1, . . .∞, of loops αCC and ends
with the edge αCD. Adding up, since |ΦCC| < 1, we have the weight from B to
D is given by

ΦBD = ΦBC

( ∞∑
n=0

Φn
CC

)
ΦCD = ΦBCΦCD

1− ΦCC
. (2-5)

Therefore, the simplification rule in this case is: the vertex C and its
adjacent edges are eliminated and a single edge αBD is left with weight
ΦBCΦCD/(1− ΦCC), provided that |ΦCC| < 1.

Take now a graph with j loops at C with weights Φ1, . . . ,Φj, as in Figure
2.3(b). As in the simplification of parallel edges, an equivalent graph Ĝ is
obtained by removing all but one loop, for which we assign weight ∑i Φi.

B C D
ΦBC

Φ1

ΦCD

...(  )
Φ2

Φ3

Φj

Σ
i=1

j

ΦiΦCC =

B C D
ΦBC

ΦCC

ΦCD

B C D
ΦBC

ΦCC

ΦCD

ΦBD = ΦBCΦCD 

1-ΦCC

B D
ΦBD

(a) (b)

Figure 2.3: (a) A loop in vertex C, connected only to vertices B and D, is
contracted by joining B and D with an equivalent edge. (b) Multiple loops at
a vertex C can be replaced by a single loop with weight equal to the sum of
the weights of each individual loop.
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Vertex detaching

As a final rule, consider a graph G where a vertex D has i incoming
edges, o outgoing edges and ` loops attached to it. From the simplification rule
for loops, ` = 1 without loss of generality; also, i, o 6= 0. In Figure 2.4, i = 2,
o = 2, ` = 1. The equivalent graph Ĝ is obtained by replacing D by i ·o vertices
Dm,n,m = 1, . . . i, n = 1, . . . o with single incoming and outgoing edges (and
the ` loops) such that the i · o pairs (incoming edge, outgoing edge) through
D are reproduced in the i · o copies Dm,n.

To show the equivalence of G and Ĝ, we again present a bijection between
the sets of walks {w} in G and {ŵ} in Ĝ which preserves the weight of each
walk. Given w in G, the corresponding ŵ is constructed by performing an
alteration in w whenever it passes through D. Each pass belongs to a short
stretch ImDOn for unique vertices Im, from which the mth edge comes, and
On, to which the nth edge goes. The pass contributes to the weight of w with
ΦImDΦDOn . To obtain ŵ, replace the stretch ImDOn by a stretch ImDm,nOn

joining the vertices of Ĝ and preserve loops, if any. Clearly, the construction
yields the desired bijection.

B

C

E

F

D

ΦDB

ΦCD

ΦDE

ΦFD

D DD

ΦCD
ΦFD

ΦDEΦDE

ΦDD

ΦDD ΦDD

ΦDD

B

C

E

F

D

ΦDD
ΦDEΦDB

ΦCD ΦFD

Figure 2.4: Vertex detaching: Ĝ is obtained by creating copies of the vertex D
so that walks are conserved; each copy of D has a single incoming and outgoing
edge, which allows for the application of previous rules.

As a final remark, notice that all simplification rules are local: they are
performed in a very limited region of the graph, and absolutely do not depend
on the graph outside of this region. Thus for example, vertex detaching is
circumscribed to one vertex (D, in the example above) and the edges which
contain it. The reader will have no difficulty in identifying the appropriate
region of each simplification rule.
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2.3
Optical cavities

An optical cavity is an arrangement of mirrors that can confine resonating
light. At this moment, consider its simplest form, the Fabry-Pérot cavity,
consisting of two highly reflecting flat parallel mirrors separated by a distance
L. These set the boundary conditions on the EM fields inside it, allowing only
a discrete set of resonance frequencies ωcav,n = nπ(c/L), where c is the speed
of light and n ∈ N.

Optical cavities are frequently used to increase the circulating power in
a interferometer [63, 64], enhance sensitivity in displacement measurements
[65–67], cool the center of mass of mechanical oscillators [15, 46, 55, 56] and
generate nonclassicality in optomechanical systems [24,68]. Here we present a
brief introduction on this topic and, in Sections 4 and 5, we describe how a
cavity field can interact with mechanical objects quantum mechanically. We
also refer the reader to [69, 70] for a more in depth classical description of
Fabry-Pérot cavities.

In this work, apart from the resonance frequency, there are three main
quantities of interest to us when theoretically modelling an optical cavity. The
separation between two consecutive resonating frequencies is called free spectral
range denoted by vFSR = πc/L, which we assume to be large enough such that
we can study only a single optical cavity mode at a time. The cavity linewidth
κ arising from imperfections in the cavity end mirrors, sometimes also defined
as full width at half maximum of the resonance peak, is the photon cavity
decay rate dictating the photon lifetime within the cavity τ = κ−1. Finally,
the cavity Finesse F = vFSR/κ only depends on the cavity losses [69] and gives
us the the average number of round-trips a photon performs before leaving the
cavity [23].

Since cavities give rise to an infinite number of possible optical paths,
summing the amplitude of the waves undergoing each possible path might
become a challenging task. To show how the graph-based method can handle
this type of calculation, different systems containing optical cavities are
studied.

Fabry–Pérot Cavity

Consider, as a second example, the Fabry–Pérot interferometer in Figure
2.5(a) with states A, B and C. The equivalent graph is shown in Figure 2.5(b),
in which ΦAB = it, ΦBB = r2e2ikd, ΦBC = iteikd. The edge αBB corresponds
to a round trip inside the cavity: the wave-front travels from the first to the
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second mirror, gets reflected by it and then travels back to the first mirror,
being reflected one more time, as indicated in the weight ΦBB.

d

A B C

M1 M2

r,t r,t

A B C
ΦAB

ΦBB

ΦBC

(a) (b)

Figure 2.5: (a) Optical schematics of a Fabry-Pérot cavity. Since in this example
the cavity’s reflection is not of interest, only the output state C is defined.
(b) Graph G corresponding to the Fabry-Pérot cavity. The loop in vertex B
corresponds to the situation in which the wave-front undergoes one round-trip
inside the cavity, going from state B back to state B.

The associated graph is equivalent to the one presented in Figure 2.3(a);
thus, we need only to perform a loop contraction to find the response factor
for a Fabry–Pérot cavity

Γ = ΦAB

( ∞∑
n=0

Φn
BB

)
ΦBC = ΦABΦBC

1− ΦBB
. (2-6)

Substituting the values of the weights in equation (2-6) yields the
expression Eout for the transmission of a Fabry–Pérot cavity [71],

Eout = − t2eikd

1− r2e2ikd Ein. (2-7)

N membranes inside an optical cavity

In optomechanics, more involved graphs arise from a Fabry-Pérot cavity
containing thin membranes. The membranes, typically made of Silicon Nitride
(Si3N4), act as dispersive optical elements, and change the cavity resonance
frequency according to their position with respect to the cavity’s nodes [44,72].

A1 A2 A3 AN+3A4 AN+2(  )...

Figure 2.6: Schematics for N membranes inside a cavity. Since one state is
defined before the input mirror and one state is defined after each optical
element, there is a total of N + 3 states.

DBD
PUC-Rio - Certificação Digital Nº 1912841/CA



Chapter 2. Interferometry 31

We now consider the general case of N membranes inside a cavity,
as illustrated in Figure 2.6. The optomechanical interaction between optical
modes and the membranes has been studied in previous works [60,61,73] and
will be examined in Section 4. At this moment the focus will be on deriving a
method for calculating the system’s transmission.

To do so draw the graph formed by the N + 3 vertices corresponding to
the states defined in Figure 2.6 and by the edges:

– αk,k+1 for 1 ≤ k ≤ N+2;

– αk,j for 2 ≤ j < k ≤ N+2;

– αk,k for 2 ≤ k ≤ N+2;

with αk,j being the edge from Ak to Aj. In particular, the state AN+2 has

– the incoming edge αN+1,N+2;

– the outgoing edges αN+2,k, for 2 ≤ k ≤ N+1, and αN+2,N+3;

– the loop αN+2,N+2.

Detaching the state AN+2 yields (i) one walk from AN+1 to Ak as the one
shown in Figure 2.7(a) for all k such that 2 ≤ k ≤ N+1 and (ii) one walk from
AN+1 to AN+3 as the one shown in Figure 2.7(b). Eliminating the loop in the
walk from AN+1 to Ak, for 2 ≤ k ≤ N+1, gives a new edge from AN+1 to Ak

that is in parallel with the initially existing edge αN+1,k. Merging these two
edges yields the final weight for the edge from AN+1 to Ak:

Φ(N)
N+1,k

′ = Φ(N)
N+1,k +

Φ(N)
N+1,N+2Φ(N)

N+2,k

1− Φ(N)
N+2,N+2

(2-8)

where the superscript (N) emphasizes that the Φ’s in this equation are the ones
defined for the N membranes in the middle case, whereas the prime symbol is
used to distinguish the weight after the simplification from the weights before
any change is made to the graph.

ΦN+1,N+2

ΦN+2,N+2

AN+2AN+1 AN+2 AN+3
ΦN+2,N+3ΦN+1,N+2

ΦN+2,N+2

AN+2AN+1 AN+2 Ak
ΦN+2,k

(a) (b)

Figure 2.7: Walks arising from the detachment of the state AN+2: (a) Walk
from vertex AN+1 to vertex Ak, for k such that 2 ≤ k ≤ N+1. This walk and
the edge αN+1,k are in parallel. (b) Walk from vertex AN+1 to the output vertex
AN+3.
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For the walk from AN+1 to AN+3, eliminating the loop yields an edge
with weight

Φ(N)
N+1,N+3

′ =
Φ(N)

N+1,N+2Φ(N)
N+2,N+3

1− Φ(N)
N+2,N+2

(2-9)

Renaming the vertex AN+3 to AN+2, the resulting graph has the same
structure, although not the same weights, of a graph for N + 1 membranes:
states Ak, with k ranging from 1 to N+2, and the edges

– αk,k+1 for 1 ≤ k ≤ N+1;
– αk,j for 2 ≤ j < k ≤ N+1;
– αk,k for 2 ≤ k ≤ N+1.

Therefore, if the response factor Γ(N-1) is known for N-1 membranes as a
function of the weights Φ(N-1)

i,j , the response factor Γ(N) for N membranes can
be easily obtained by making the following substitutions

Φ(N-1)
N+1,N+2→

Φ(N)
N+1,N+2Φ(N)

N+2,N+3

1− Φ(N)
N+2,N+2

;

Φ(N-1)
N+1,N+2→Φ(N)

N+1,k +
Φ(N)

N+1,N+2Φ(N)
N+2,k

1− Φ(N)
N+2,N+2

, for 2 ≤ k ≤ N+1;

Φ(N-1)
i,j →Φ(N)

i,j , for the remaining weights. (2-10)

The case of an empty Fabry-Pérot cavity (N-1 = 0), presented previously,
can be used as an example. By making a suitable change in the notation of
equation (2-6), the response factor for this cavity is given by

Γ(0) =
Φ(0)

1,2Φ(0)
2,3

1− Φ(0)
22
. (2-11)

Now, making the substitutions prescribed in equation (2-10), one arrives
at

Γ(1) = Φ1,2[Φ2,3Φ3,4/(1− Φ3,3)]
1− [Φ2,2 + Φ2,3Φ3,2/(1− Φ3,3)]

= Φ1,2Φ2,3Φ3,4

1− Φ2,2 − Φ3,3 + Φ2,2Φ3,3 − Φ2,3Φ3,2
, (2-12)

where the superscript (1) in all the Φ’s has been omitted. This is the right
expression for the response factor of a cavity containing one membrane, as can
be directly verified by calculating Γ(1) from the graph shown in Figure 2.8.

Note that to get the structure of the graph for N-1 membranes starting
from the graph for N membranes, N+1 loop eliminations followed by N merges
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Φ1,2

Φ2,2 Φ3,3
Φ2,3

Φ3,2 Φ3,4
A1 A2 A3 A4

Figure 2.8: Graph associated to the transmission of a cavity with a membrane
in the middle. Applying the simplification described in the present Section to
this graph yields the graph associated to a cavity with no membranes inside
of it. Conversely, applying the substitutions prescribed in equation (2-10) to
the response factor of a Fabry-Perót cavity gives the response factor for the
displayed graph.

of edges in parallel are necessary. Therefore, the number of operations in this
procedure is of order O(N). By repeating this process it is possible to simplify
the graph for N membranes to get a single edge connecting the initial and final
vertices with a number of operations that is of order O(N2).

2.4
Multiple inputs and outputs

Up to this point solely interferometers with one input and one output
have been studied, but the presented graph-based method can be easily
generalized for homodyne systems containing an arbitrary number of inputs
and outputs.

As discussed in the end of Section 2.2, the simplification rules are local,
and, therefore, must remain valid regardless of the number of I/O vertices. A
difference appears at each output, where one must sum over the fields coming
from each input port of the interferometer. In terms of the response factors,
the electric field in a given output OM is

EOm =
∑
n

ΓnmEIn (2-13)

where n must run over all input ports.
The following example serves to illustrate how to find the trans-

mitted field through an interferometer with multiple inputs/outputs. The
Mach–Zehnder interferometer displayed in Figure 2.9(a) has two BS’s, with
reflectance and transmittance r, t as well as two perfect mirrors. The phase
shift between each arm of the interferometer is taken to be θ, due to a phase
shifter.

States A through F are defined, giving rise to the graph in Figure 2.9(b),
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A

B
C

D

E

F

θ

A C E
ΦAC

B D F

ΦCE

ΦBD ΦDF

ΦAD

ΦBC

ΦDE

ΦCF

(a) (b)

Figure 2.9: (a) Optical schematics corresponding to a Mach-Zehnder inter-
ferometer. Differences between the two paths inside the interferometer are
summarized by a phase θ. (b) Graph corresponding to the Mach-Zehnder in-
terferometer, with two input states, indicated by the green circles, and two
output states, indicated by the red circles.

with the following weights

ΦAC = it ΦAD = r

ΦBC = r ΦBD = it

ΦCE = r ΦCF = it

ΦDE = iteiθ ΦDF = reiθ (2-14)

To find the transmitted field through the interferometer, first one needs to
detach the edges on vertices C and D and then replace the resulting consecutive
and parallel edges. This sequence of operation is shown in Figure 2.10.

C

C

D

F

C

D

C

D

BA

E

D
A

E

F

B

Figure 2.10: Simplification of the graph corresponding to a Mach-Zehnder
interferometer. The graph is simplified until all that remains are the input
and output vertices.

The output electric field at the output state E [F] will be the sum of the
output electric field in E [F] coming from state A and the output electric field
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in E [F] coming from state B

Eout, E =
(
ΦACΦCE + ΦADΦDE

)
Ein,A +

(
ΦBCΦCE + ΦBDΦDE

)
Ein,B ,

Eout, F =
(
ΦACΦCF + ΦADΦDF

)
Ein,A +

(
ΦBCΦCF + ΦBDΦDF

)
Ein,B . (2-15)

Plugging the edge weights from equation (2-14) into equation (2-15) the
standard result is obtained

Eout, E = irt

(
1 + eiθ

)
Ein,A +

(
r2 − t2eiθ

)
Ein,B ,

Eout, F =
(
r2eiθ − t2

)
Ein,A + irt

(
1 + eiθ

)
Ein,B . (2-16)

For an interferometer with N input ports and N output ports, the
relation in equation (2-13) can be expressed in matrix form as

vO = UvI , (2-17)

where vO = [EO1 · · ·EON
], vI = [EI1 · · ·EIN

] and U is a N × N matrix
with Unm ≡ Γmn. If all inputs and outputs of the interferometer are taken
into account, the unitarity of U follows from the conservation of energy in the
system. Therefore, the initial interferometer is a physical implementation of
the unitary matrix U . This matter has been addressed previously, and the
combination of BS and phase-shifters has been shown to be sufficient for
implementing any unitary matrix [74,75].

2.5
Quantum interferometry

The present graph-based method can also be used to describe interfer-
ometers whose inputs are not classical electric fields, but quantum states of
light [76].

So far the effect of an interferometer upon input electric fields transform-
ing into output electric fields has been described. With second quantization, the
same principle can be applied to unravel how the input modes’ creation/anni-
hilation operators evolve to the output modes’ creation/annihilation operators.

In order to do so, note that the response factors carry information about
how much of the light that enters an interferometer trough one port leaves it
trough another, as well as the phase gained by doing so. This can be described
mathematically by a transformation of the form

â† → ΓAB b̂
† + ΓAC ĉ

† + · · · , (2-18)
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where â† is the creation operator associated with the input state A; b̂†, ĉ†, . . .
are the creation operators associated with the output states B, C, ... and ΓAB,
ΓAC , ... are the response factors between state A and states B, C, and so on.

When treating quantum states of light, all possible optical paths must
be considered, otherwise, the evolution of the input creation operators will not
be unitary. This is in contrast with the classical case, in which paths that are
not of interest might be ignored.

As a final remark, any multi-mode quantum state in the Fock basis can
be written as a function of each mode’s creation and annihilation operators
acting on the vacuum state

|ψ〉 = Ψ̂(â, b̂, ĉ, ..., â†, b̂†, ĉ†, ...)|0〉 (2-19)

and so, the effect of the interferometer upon an arbitrary input quantum
state can be obtained by transforming the input modes according to the
interferometer.

2.6
Conclusions

In summary, we have shown how to associate a directed weighted graph to
an interferometric setup. Using the so-called simplification rules, it is possible
to transform the directed graph, as to simplify it as much as possible, and
get the response factors for the interferometer’s outputs. From these response
factors, the electric field, as well as quantum states of light in the Fock basis,
within an interferometer can be obtained.

To illustrate the technique, several examples were analysed, such as the
Michelson, Fabry-Pérot and Mach-Zehnder interferometers, and the optome-
chanical setups of multiple membranes inside an optical cavity.

The graphical approach provides a clear physical picture in contrast to
the standard transfer-matrix approach, by translating the physical problem
of calculating the electrical field in an interferometer to a combinatorial
problem. This clear picture combined with our simplification rules may also
provide insight on new correspondences between physical implementations and
abstract structures such as graphs [77,78] and matrices [74,75].
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3
Optical Tweezers

Tightly focused laser beams can be used to exert forces upon dielectric
particles. If the particle’s refractive index is larger than that of its surround-
ings, the laser pulls it to regions of higher intensity of light. This technique,
introduced by Arthur Ashkin in 1986 [13] and known today as optical tweez-
ing, allows one to hold and manipulate very tiny objects and finds applica-
tions in a large number of fields ranging from biology [79–82] to fundamental
physics [83–87]. In standard optical tweezers, Gaussian beams are used to cre-
ate the trapping focus. To a good approximation, the trap can be described as
a three dimensional quadratic potential.

Notably it was also pointed out by Ashkin that air droplets immersed in
water were pushed away from the Gaussian focus [88]. This is a consequence of
the fact that when the refractive index of the particle is smaller than that of
its surroundings, the particle is repelled from the region of high intensity. One
can then envision an inverted optical trap, in which an engineered beam of
light has a high-intensity boundary and a dark focus. A particle with the
appropriate refractive index will be trapped within the dark focus by the
absence of light [89]. We refer to this type of beam, which was first proposed
as a tool to trap atoms [90–93], as bottle beams.

In this chapter, we will study how optical beams can interact and
effectively trap micron-sized particles, including living organisms. In Section
3.1, we present fundamental beam modes: Gaussian beam and Laguerre-Gauss
(LG) beam, and a composition of both: the optical bottle beam. In Section
3.2, in two different regimes, we show how transfer of momentum between an
optical beam and a particle gives rise to effective optical forces acting on the
latter. In Section 3.3, the standard optical trapping technique using a Gaussian
beam is shown to generate approximately a 3D harmonic potential close to its
focus, which can optically levitate dielectric particles. Finally, in Section 3.4,
we present the results obtained in our work [94], studying optical trapping
using bottle beams.
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3.1
Optical Beams 101

In the absence of charges, Maxwell’s equations are known to give raise
to wave equations for both the electric and magnetic fields. When modelling
laser beams it is useful to consider the paraxial approximation [95], i.e.,
beams propagating in a given direction along which its spatial profile varies
much slower than its transverse profile [69]. Under this approximation, the
electromagnetic fields obey the paraxial Helmholtz equation

∇2
⊥E(x, y, z) + 2ik∂E

∂z
(x, y, z) = 0 , (3-1)

for an optical beam with electric field amplitude E(x, y, z) propagating in the
z direction; ∇2

⊥ ≡ ∂2

∂x2 + ∂2

∂y2 denotes the Laplacian operator in the transverse
directions to the propagation. We note here that throughout this Chapter we
will consider linearly polarized electric fields only.

3.1.1
Laguerre-Gauss beam

The LG modes describe a complete orthonormal set of solutions for the
paraxial Helmholtz equation, therefore any optical beam’s spatial profile can
be decomposed into a combination of LG modes. Its electric field magnitude
is given by

ELG
`,p (ρ, φ, z) =

√
4P0

cεπω(z)2

√
p!

(|`|+ p)!

(√
2ρ

ω(z)

)|`|
L|`|p

(
2ρ2

ω(z)2

)

× exp
[
− ρ2

ω(z)2

]
exp

[
ikmz + ikm

ρ2

2R(z) − iζ(z) + i`φ

]
, (3-2)

where c is the speed of light, ε is the medium’s permittivity, P0 is the laser
power, km is the wavenumber in the medium and ω(z), R(z), ζ(z) and L|`|p are
respectively the beam width, the wavefront radius, the Gouy phase and the
associated Laguerre polynomial. These quantities are respectively given by

ω(z) = ω0

√
1 + z2

z2
R

; (3-3)

R(z) = z

(
1 + z2

R

z2

)
; (3-4)

ζ(z) = (2p+ |`|+ 1) arctan z

zR
; (3-5)

L|`|p (x) =
p∑
i=0

1
i!

(
p+ |`|
p− i

)
(−x)i (3-6)
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where the Rayleigh range (zR) and the beam waist (ω0) are defined as

ω0 = λ0

πNA , zR = nmλ0

πNA2 (3-7)

with λ0 the wavelength in vacuum, nm the medium refractive index and NA =
λ0/(πω0) the numerical aperture. In Figure 3.1, we present the transverse
intensity profile for Laguerre-Gauss beams with `, p ∈ 0, 1, 2.

p=0 p=1 p=2

l=0

l=1

l=2

Figure 3.1: Intensities for profiles for Laguerre-Gauss beams at their focal
plane, z = 0. For this simulation, we used: nm = 1.33, NA = 0.5, λ = 780 nm,
P0 = 50 mW.

3.1.2
Gaussian beam

The fundamental LG beam with ` = 0, p = 0 is shown in the first plot of
Figure 3.1. Its electric field magnitude is given by

EG(ρ, z) =
√

4P0

cεπω(z)2 exp
[
− ρ2

ω(z)2 + ikmz + ikm
ρ2

2R(z) − i arctan
(
z

zR

)
+ i`φ

]
,

(3-8)

This fundamental LG mode is also called a Gaussian mode as its intensity
profile in the plane transversal to its propagation direction follows a gaussian
distribution

I = nmε0c

2 |EG(ρ, z)|2 = 2Pnm
πω2(z) e−

2 ρ2

ω2(z) . (3-9)
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3.1.3
Optical Bottle beam

A bottle beam, such as the one proposed in [96], is one example in an
infinite number of possible engineered optical traps aimed at different purposes
such as Bessel beams [97], frozen waves [98], circular Airy beams [99–101],
radially polarized beams [102,103], and many others [104–109].

Several techniques can be employed to create bottle beams, such as
the generation of Bessel beams using axicons [110–112], the interference of
Gaussian beams of different waists [113] and the superposition of different
modes [114–116] created using Spatial Light Modulators. Here, we focus on the
bottle beam created by the superposition of a Gaussian beam and a Laguerre-
Gauss beam with ` = 0, p 6= 0, each with power P0, and a relative phase of π
presented in [96].

The intensity of such bottle beam reads

Ip(ρ, z) =I0
ω2

0
ω(z)2 exp

[
− 2ρ2

ω(z)2

]

×
[
1−2 cos

(
2p arctan z

zR

)
L0
p

(
2ρ2

ω(z)2

)
+ L0

p

(
2ρ2

ω(z)2

)2 ]
(3-10)

where I0 = 2P0/πω
2
0 is the intensity at the origin of the Gaussian beam. Figures

3.2(a) and 3.2(b) shows the intensity as a function of the transverse coordinate
x and the longitudinal coordinate z. The potential landscape in the xz plane
is shown in Figures 3.2(c) for the cases p = 1, and 3.2(d) p = 2. A dielectric
particle with the appropriate refractive index placed at the origin would be
trapped in the dark focus, since it would be repelled in all directions by the
surrounding regions of higher electromagnetic intensity.

Dimensions of the bottle

We can define the width W (height H) of the bottle as the distance
between the two intensity maxima surrounding the dark region along the x
axis (z axis). These values can be found by solving

dIp(x, 0, 0)/dx|x=W/2 = 0 , (3-11)
dIp(z, 0, 0)/dz|z=H/2 = 0 . (3-12)

The above equations admit analytical solutions for small p, yielding
W = 2ω0, H = 2zR for p = 1 and W = 2

√
2−
√

2ω0, H =
√

2zR for p = 2.
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Figure 3.2: Intensity in the (a) radial and (b) axial directions for bottle beams
with p = 1 and p = 2. Intensity landscape in the xz plane for bottle beams with
(c) p = 1 and (d) p = 2. Due to the normalization of x, z and I, these plots
depend only on p, and are independent from the remaining beam parameters.

To gain insight into H and W it is useful to make the change of variables
ρ/ω0 → ρ′, z/zR → z′ in the intensity given in Eq.(3-10). The function Ip(ρ′, z′)
has no explicit dependence on any of the beam’s parameters other than p and
I0, with its associated re-scaled width W ′ and height H ′. The pre-factor I0

does not alter the distance between maxima along the x′ and z′ axis, meaning
thatW ′ = W ′(p) and H ′ = H ′(p) depend only on p. Going back to the original
variables we find that W = ω0W

′(p) and H = zRH
′(p). From Eq. (3-7), we

observe that the width of the bottle scales with NA−1 and the height scales with
NA−2. Hence an increase in NA causes the bottle to become overall smaller
and compressed along the z direction.

Total power of a bottle beam

In order to find the exact relation between P0 and the total power of the
beam, we need to integrate equation (3-10) along some plane orthogonal to
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the propagation of the beam. Choosing the plane z = 0,

P =
∫ ∞

0
dρ
∫ 2π

0
(dθρ)I0e

−2ρ2/ω2
0

1− 2L0
p

(
2ρ2

ω2
0

)
+ L0

p

(
2ρ2

ω2
0

)2


= 2πI0

∫ ∞
0

ω2
0du

4 e−u[1− 2L0
p(u) + L0

p(u)2]

= P0

∫ ∞
0

du e−u[1− 2L0
p(u) + L0

p(u)2]. (3-13)

The Laguerre-Polynomials satisfy∫ ∞
0

x`e−xL|`|p (x)L|`|q (x) = (p+ `)!
p! δp,q, (3-14)

which implies that we have the following relation between the total power of
a bottle beam and the power of each beam in the superposition

P = 2P0 . (3-15)

3.2
Optical Forces

Light carries both energy and momentum. When an incident light beam
hits a particle, exchange of momentum between them gives raise to effective
force on the particle. Consider, for example, a single photon with wavelength
λ and wavenumber k = 2π/λ carrying momentum ~k. If a violet light photon,
λ = 380 nm, were to hit and reflect on a particle, it would result in maximal
momentum transfer of [23] |∆p| = 2~k ≈ 1.7× 10−27 kg ·m/s. Therefore, such
force is feeble in everyday life.

However, when considering very light particles and/or highly focused
light beams, this force builds up and can influence the motion of the object. In
the following, we quantitatively address these optical forces for both the cases
when a dielectric is much smaller than the wavelength of the trapping beam
and when it is comparable to it.

3.2.1
Dipole Approximation

When a dielectric particle of mass m and radius R is placed in a
monochromatic EM field of wavelength λ such thatR� λ, we can approximate
the particle as a dipole consisting of two point charges −q and +q, each of
mass m/2, at positions r− and r+, respectively. An electric dipole experiences
Lorentz forces from the external incident electric Ei and magnetic Bi fields,
therefore, its equation of motions are [117]
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m

2
d2r+

dt2
= +qRe

{
Ei(r+, t) + dr+

dt
×Bi(r+, t)

}
, (3-16)

m

2
d2r−
dt2

= −qRe
{
Ei(r−, t) + dr−

dt
×Bi(r−, t)

}
, (3-17)

We can find the optical force on the particle by summing both equations
above in order to find the equation of motion for the dielectric’s position
rd = r++r−

2 . As the particle is much smaller than the EM’s wavelength, the
electric field varies smoothly inside the dielectric and we expand it up to first
order, arriving at

m
d2rd
dt2

= +qRe
{

(r+ − r−) · ∇Ei(rd, t) + d(r+ − r−)
dt

×Bi(rd, t)
}
. (3-18)

We now assume that the particle is a linear dielectric, such that its
polarization vector p ≡ +q(r+ − r−) can be written as p = αEi, where
αs = 4πε0R3(n2

R − 1)/(n2
R + 2) is the static polarizability such that [69,118]

α = αs + i
k3

6πε0
|αs|2 (3-19)

is the complex particle polarizability with nR its refractive index, k = 2π/λ the
external incident field wavenumber, and ε0 the medium’s permittivity. After
some manipulation, we arrive at [118]

m
d2rd
dt2

= Re
{
α

2∇E
2
i (rd, t) + d

dt

[
Ei(rd, t)×Bi(rd, t)

]}
. (3-20)

We remember that the incident fields are time-harmonic, which allows us to
simplify the derivative above. More so, as the EM field oscillates much faster
than we can sample, we take the time average of the right hand side of the
above equation in order to arrive at the optical forces acting on a dielectric
particle

m
d2rd
dt2

= Re
{
α

4∇|Ei(rd)|2 − iωEi(rd)×B∗i (rd)
}
. (3-21)

Employing the formula for the complex polarizability, Equation (3-19),
and the fact that the fields propagate in the z direction, after some tedious
manipulations, we arrive at two forces [69,118,119]

F (scat)(r) = ẑ
128π5R6

3cλ4

(
m2 − 1
m2 + 2

)2

n5
mI(r) , (3-22)

F (grad)(r) = 2πnmR3

c

(
m2 − 1
m2 + 2

)
∇I(r) , (3-23)

DBD
PUC-Rio - Certificação Digital Nº 1912841/CA



Chapter 3. Optical Tweezers 44

where m = np/nm is the particle-medium refractive index ratio and I =
nmε0c

2 |Ei(r)|2 is the intensity of the incident field.
The first is called scattering force, and is proportional to the Poynting

vector. Near the origin, the scattering force points in the direction of propaga-
tion of the beam. The second is called gradient force and it is proportional to
the gradient of the intensity of the external electromagnetic field. Note that, for
m > 1, the latter points towards the region with higher light intensity, pulling
the particle closer to this region; for m < 1, this force repels the particle away
from the region with higher light intensity.

Moreover, we note that while the scattering force is non-conservative, the
gradient force is, following the optical potential given by [69,118,119]

V (r) = −2πnmR3

c

(
m2 − 1
m2 + 2

)
I(r) . (3-24)

We briefly comment that we have not included in our discussion a third
force, called spin-curl force, which is a result of polarisation gradients [120], and
can be disregarded in the case of uniform linear polarization we are interested
in.

3.2.2
Intermediate Regime

In many applications it is desirable to trap ‘large’ micron-sized particles
such as living cells [121, 122]. This presents an intermediate regime, in which
the size of the particle is comparable to the wavelength of the trapping beam
(R ≈ λ) and neither the dipole (R � λ) nor geometric optics (R � λ)
approximations can be used to calculate the optical forces. Instead, the forces
must be calculated using the so-called generalized Lorenz–Mie theory, for which
we provide a brief introduction following the treatment presented in [123].

Generalized Lorenz-Mie Theory

Regardless of the size of the trapped particle, optical forces arise from the
exchange of momentum with the photons from the trapping beam. Therefore,
the total momentum transferred to the particle is equal to the change in
momentum of the scattered electromagnetic field. It is then useful to separate
the field in incoming Ein and outgoing Eout parts, which in turn can be
expanded in terms of vector spherical wave-functions (VSWFs) defined in a
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coordinate system centered at the particle’s center,

Ein =
∞∑
i=1

i∑
j=−i

aijM
(2)
ij (kr) + bijN

(2)
ij (kr), (3-25)

Eout =
∞∑
i=1

i∑
j=−i

pijM
(1)
ij (kr) + qijN

(1)
ij (kr), (3-26)

where M (1)
ij ,N

(1)
ij ,M

(2)
ij and N (2)

ij are the VSWFs, with the upper index (1)
standing for outward-propagating transverse electric and transverse magnetic
multipole fields and (2) for the corresponding inward-propagating multipole
fields.

The coefficients aij and bij can be calculated for the incident beam and
used to obtain the pij and qij coefficients for the scattered field by a simple
matrix-vector multiplication between the so-called T -matrix and a vector
containing the coefficients of the incoming field. The T -matrix depends only
on the characteristics of the trapped particle, which we assume spherical. Once
the coefficients are calculated, the force along the axial direction z is given by

Fz = 2nmdP
cS

∞∑
i=1

i∑
j=−1

j

i(i+ 1)Re(a
∗
ijbij − p∗ijqij)−

1
i+ 1

√√√√i(i+ 2)(i− j + 1)(i+ j + 1)
(2i+ 1)(2i+ 3) ×

Re(aija∗i+1,j+bijb∗i+1,j−pijp∗i+1,j−qijq∗i+1,j) (3-27)

with
S =

∞∑
i=1

i∑
j=−i

(|aij|2 + |bij|2). (3-28)

Forces acting along the x and y axis have more complicated formulae and
can be more easily calculated by rotating the coordinate system. The effect of
displacing the particle can be taken into account by appropriate translations
of the trapping beam.

Due to the linearity of Eqs. (3-25) and (3-26), the expansion coefficients
for a superposition of different beams can be found by adding the expansion
coefficients for each beam, and subsequently substituted in Eq. (3-27) to
calculate the resultant force. In the following Sections, we shall use the latest
version of the toolbox developed in [123] to perform these computations for
the case of a particle trapped by a bottle beam.
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3.3
Optical Trapping in a Bright Focus

We know that a gaussian beam will be able to 3D trap a dielectric
nanosphere with m = np/nm > 1. This can be promptly noticed by the
intensity profile of a gaussian beam, Equation (3-9), and the form of the forces
acting on it in the dipole regime, Equations (3-22) and (3-23). The condition
m > 1 sets the gradient force to point towards the higher-intensity region, i.e.,
the center of the gaussian beam. If the particles moves away from the focus of
the beam, this force pull it back, effectively trapping it in any direction.

Close to the focus of a gaussian beam, we can Taylor expand its intensity
up to second order as

I(ρ, z) ' 2Pnm
πω2

0
− 2Pnm
πω2

0z
2
R

z2 − 4Pnm
πω4

0
ρ2 , (3-29)

from which we observe that the optical potential, Equation (3-24), acts as a
3D harmonic well that traps dielectric particles close to the focus of a gaussian
beam.

As an example, consider a nanosphere of silica, refractive index np = 1.46
and radius R = 50 nm, in suspension in water, nm = 1.33. These pair of particle
and medium are chosen such that we have m > 1 implying that the sphere
will be attracted to the higher-intensity region. We choose to shine a gaussian
beam in this particle, with the same parameters present as in the first plot of
figure 3.1.
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Figure 3.3: Forces generated by a Gaussian optical trap: (a) in the radial
direction x; (b) in the longitudinal direction z.

The gradient force in the x direction is plotted in figure 3.3(a) as a
function of the displacement in that same direction when y = z = 0. As it
can be seen, the force is approximately linear for small displacements, which
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could be approximated by a harmonic force, F = −kxx, with spring constant
kx ≈ 0.47pN/µm, and analogously for the y direction as the beam intensity is
symmetric in the plane transversal to the propagation. The same is true for the
gradient force in the z direction (kz ≈ 0.033pN/µm), plotted in figure 3.3(b)
together with the scattering force and the resultant force. As it can be seen, the
scattering force shifts the equilibrium position (Fres(z) = 0 → z ≈ 123nm),
while maintaining an harmonic approximation, k′z ≈ 0.032pN/µm.

We observe that as the density of silica is approximately twice the density
of water [54], although the nanosphere is suspended in a liquid, it would not
float due to buoyancy. More so, for the case in question, the weight of the
particle would only account for a gravitational force 3 orders of magnitude
lower than the resultant optical force in the z direction that the particle feels.
Thus, the particle particle would be trapped.

3.4
Optical Trapping in a Dark Focus

The bottle beam, defined in Section 3.1.3, is an interesting choice for a
trapping potential for a number of reasons. First, as we will show, it yields
a simple mathematical description from which the trapping potential can be
readily obtained. Moreover, description of the trap in terms of its width, height
and shape are simple and clearly defined. Furthermore, such superposition is
promptly obtained by the use of a Spatial Light Modulator (SLM), a well
established technique for engineering structured light beams available in the
laboratory [124–127].

Because optical trapping can be applied to particles in a wide size range
[128, 129], we analyse both the cases of small Rayleigh particles and of larger
micron-sized particles, following our discussion in Section 3.2. In the former,
the optical forces and potential are derived from the dipole approximation
and thoroughly analysed under different assumptions, which are verified by
simulating the motion of the trapped particle in a viscous medium. In the
latter, generalized Lorenz–Mie theory is employed to calculate the forces caused
by the beam, with the aid of the tools introduced in [123]. Constraints on the
numerical aperture, particle size and relative refractive index are found.

Understanding particle dynamics under the influence of a bottle beam
can lead to striking applications. Notably, the bottle is an interesting tool for
trapping experiments requiring little or no light scattering upon the trapped
object. This is of particular interest in biology, where trapping a living cell or
organelles within the cell without the constant influence of laser light might
be crucial to reveal mechanical properties of the organism without excessive
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heating and laser interference [130–132]. We thus propose a set of experimental
parameters that could be used to trap living organisms in the dark focus of a
bottle beam.

3.4.1
Radiation forces in the Dipole Approximation

Following our discussion in Section 3.2, we are interested in situations
in which the parameter m = np/nm is smaller than 1, in such a way that
the particle is repelled by light. From the intensity given by Eq. (3-10),
the scattering force F (scat)

p (r), the gradient force F (grad)
p (r) and the optical

potential Vp(r) acting on a trapped particle with radius R and refractive index
np can be readily calculated using Equations (3-22 – 3-24).

The forces acting on a spherical water droplet (np =1.33) with 70 nm
radius trapped in oil (nm =1.46) by a bottle beam (λ =780 nm, P0 =200 mW
for each beam in the superposition) focused by an objective lens (NA = 0.5)
are displayed in Figure 3.4. Latter on we will also consider the environmental
effects on the dynamics of the particle. As expected, the gradient forces
point to the origin. Note that the scattering force, which points along the
propagation direction, is null at the equilibrium position. This is in strong
contrast to standard Gaussian traps and presents an advantage since the
imbalance between scattering and gradient forces often poses challenges to
optical trapping [133].

Another interesting feature of the bottle beam trap is the flat bottom of
the intensity well in the z = 0 plane, seen in Figure 3.2(a), and the approximate
null derivative of the force along the radial direction at the origin. This can be
understood by looking at the potential near the origin (ρ � ω0, z � zR). It
can be approximated to 4th order as

Vp(ρ, z)
V0

≈ 4p2

ω4
0
ρ4

︸ ︷︷ ︸
Tρ4

− 8p2(p+ 1)
ω2

0z
2
R

ρ2z2

︸ ︷︷ ︸
Tρ2z2

+ 4p2

z2
R

z2

︸ ︷︷ ︸
Tz2

, (3-30)

where V0 = 2πnmR3(m2 − 1)/[c(m2 + 2)]I0 and the term of order O((z/zR)4)
has been neglected since (z/zR)4 � (z/zR)2 for z � zR. At the plane z = 0
the potential scales with ρ4. Therefore, the force scales with ρ3 and has
vanishing first and second derivatives. For z 6= 0, Eq. (3-30) has a crossed
term ρ2z2 that couples motion along the axial and radial directions. Because
the scattering force is proportional to the intensity, it also has null derivatives
at the equilibrium position and hence vanishes for a particle placed at and
near the origin.

Finally, the potential in the xz plane is displayed in Figures 3.4(c) and
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Figure 3.4: Forces acting on a trapped sphere in the (a) x direction and (b) z
direction for p = 1 and p = 2. Solid lines are gradient forces, while dashed lines
are scattering forces. Potential landscape in the xz plane for a sphere trapped
by a bottle beam with (c) p = 1 and (d) p = 2. The parameters used for these
plots are: NA = 0.5, R = 70 nm, λ0 = 780 nm, nm = 1.46, np = 1.33, P0 =
200 mW, T = 300 K.

3.4(d) for the cases of p = 1 and p = 2. As it can be seen, a trapped particle
does not need to go through the high intensity peaks along the x or z axis in
order to escape the trap. Smaller potential barriers have to be climbed if the
particle undergoes paths like the yellow dashed ones. We will call the lowest
potential energy needed for the particle to leave the trap Vmin. Because the
potential scales with V0, we have Vmin ∝ V0.

3.4.2
Decoupling approximation

The axial and radial movements can be decoupled if the coupling term
in Eq.(3-30) is much smaller than the remaining terms. The conditions under
which this assumption holds true can be found by estimating the magnitude
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of the particle’s displacements under the influence of the trap. Neglecting the
cross term and considering thermal equilibrium we may write

〈ρ4〉 = 1
Z0

∫
d3rρ4 exp

{[
−4V0p

2

kBT

(
ρ4

ω4
0

+ z2

z2
R

)]}
(3-31)

〈z2〉 = 1
Z0

∫
d3rz2 exp

{[
−4V0p

2

kBT

(
ρ4

ω4
0

+ z2

z2
R

)]}
, (3-32)

where kB is the Boltzmann constant, T is the temperature and Z0 is given by

Z0 =
∫
d3r exp

{[
−4V0p

2

kBT

(
ρ4

ω4
0

+ z2

z2
R

)]}
. (3-33)

From Eqs. (3-31)-(3-33) we find that

4
√
〈ρ4〉 = 4

√√√√ω4
0kBT

8p2V0
(3-34)

√
〈z2〉 =

√√√√z2
RkBT

8p2V0
. (3-35)

Although Eqs. (3-34) and (3-35) were derived by neglecting the cross
term, they can be used to estimate the magnitude of the three different terms
in Eq. (3-30). Through simple scaling we are led to

Tρ2z2

Tρ4
∼ Tρ2z2

Tz2
∼ 1 + p√

2p

(
V0

kBT

)−1/2
. (3-36)

Because Vmin/kBT � 1 is required for the particle to be confined in the
presence of a thermal bath [119] and Vmin ∝ V0, fulfillment of the decoupling
condition is associated with increased trap stability.

In the decoupling regime the optical potential becomes

Vp(ρ, z) ≈
k(3)
ρ

4 ρ4 + kz
2 z

2, (3-37)

with the constants k(3)
ρ and kz given by,

k(3)
ρ = 64nmP0R

3

c

(
πNA
λ0

)6 (1−m2

2 +m2

)
p2 (3-38)

kz = 32P0R
3λ2

0
π2nmc

(
πNA
λ0

)6 (1−m2

2 +m2

)
p2. (3-39)
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Figure 3.5: Comparison between the values of 4
√
〈ρ4〉 in (a),(c) and of

√
〈z2〉

in (b),(d) obtained from the approximated potential in Eq.(3-37) and from
simulation of the particle’s motion subject to the exact potential in Eq.(3-24)
for different laser powers. The motion was simulated during 10s with time steps
of 0.5µs using NA = 0.5, R = 70 nm, λ0 = 780 nm, nm = 1.46, np = 1.33, T =
295 K, p = 1.

3.4.3
Trapped particle dynamics

To further evaluate the validity of the above estimates and approxima-
tions, it is useful to simulate the dynamics of a particle trapped by the potential
of a bottle beam in its exact form, calculated from Eqs. (3-10) and (3-24). The
equation of motion for a spherical particle under this condition is

M r̈(t) = −γṙ(t)−∇V (r(t)) +
√

2γkBTW (t), (3-40)

where η is the medium’s viscosity, γ = 6πηR is the drag coefficient andM is the
particle’s mass. The environmental fluctuations are modelled using a Gaussian,
white and isotropic stochastic processW (t) = (Wx(t),Wy(t),Wz(t)), with zero
mean and no correlations among different directions. We have that

〈Wi(t)Wi(t′)〉 = δ(t− t′) , (3-41)

where δ(t− t′) is the Dirac delta in the time-domain.
For a sufficiently small particle the inertial term M r̈ is negligible in

comparison to the viscous term γṙ. In this so-called over-damped regime we
can numerically integrate equation (3-40) using
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r(t+ ∆t) = r(t)− ∇V (r(t))
γ

∆t+
√

2kBT∆t
γ

eta(t) (3-42)

where eta(t) = is the Wiener process, ∆t = τ/n is the time interval between
iterations, τ the total time of simulation and n the total number of iterations.

Numerical integration of the motion of a water droplet (np = 1.33, R =
70 nm) trapped in oil (nm = 1.46) by a bottle beam (p = 1, λ = 780 nm)
focused using an objective lens (NA = 0.5) was performed for different trapping
powers. Note that the total trapping power is two times larger than the power
P0 of each beam, as discussed in Section 3.1.3.

The motion was simulated for a period of 10 s using time steps of 0.5
µs. This resulted in 20 × 106 position values for each trapping power. The
values of 4

√
〈x4〉 and

√
〈z2〉 obtained from this simulation of the exact potential

and the curves predicted using the approximated potential in Eq. (3-37)
together with Eqs. (3-31) and (3-32) are displayed in Figure 3.5. The largest
values of 4

√
〈x4〉/ω0 and

√
〈z2〉/zR obtained are approximately 0.27 and 0.067,

respectively. This justifies the fourth order approximation leading to Eq. (3-30)
for the entire simulated range of trapping powers.

Moreover, we can see from Figure 3.5 that agreement between the
simulated dynamics of the exact potential and the approximate potential of
Eq. (3-37) increases with P0. For P0 > 1 W, exact and approximate values differ
by less than 3%, and hence Eq. (3-37) can be considered a good approximation
of the potential. This behavior is consistent with the previous estimate that
the ratios Tρ2z2/Tρ4 and Tρ2z2/Tz2 scale with V −1/2

0 , and hence, the larger the
trapping power the smaller the cross term in comparison to the remaining
relevant terms.

This can be further verified in Figure 3.6, where we plot the ratios

r1 = 〈Tρ2z2〉
〈Tρ4〉

, r2 = 〈Tρ2z2〉
〈Tz2〉

, (3-43)

obtained from the simulations. The decreasing behavior of r1 and r2 with
respect to P0 confirms that increasing the trapping power is an effective way
of decoupling the radial and axial directions.

Another consequence of the interplay between a radial quartic and a
longitudinal quadratic potential is that elongation of the trap can be adjusted
by tuning the laser power. This is illustrated in Figure 3.7, in which the
positions of the trapped particle obtained from the numerical simulation are
displayed in a scatter plot, for P0 = 100 mW and P0 = 5 W. As it can be
seen, the trap is appreciably compressed along the z axis in the latter case,
but not in the former. This feature is not present in regular Gaussian tweezers:
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Figure 3.6: Ratios r1 = 〈Tρ2z2〉 / 〈Tρ4〉 and r2 = 〈Tρ2z2〉 / 〈Tz2〉 obtained by
simulating the motion of a particle subject to the exact potential in Eq.(3-
24) for different laser powers. The motion was simulated during 10s with time
steps of 0.5µs using NA=0.5, R = 70nm, λ0 = 780nm, nm = 1.46, np = 1.33,
T = 295K.

since the potential is quadratic along the three axis, the expected value of the
displacement along all axes scale equally with

√
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Figure 3.7: Positions of the particle obtained by simulating the motion of a
particle trapped by the exact potential in Eq.(3-24) for (a) P0 = 100 mW and
(b) P0 = 5 W. The motion was simulated during 10s with time steps of 0.5µs
using NA = 0.5, R = 70 nm, λ0 = 780 nm, nm = 1.46, np = 1.33, T = 295 K,
p = 1. To allow better visualization, the 20 × 106 positions generated by the
simulation were divided in 1000 sets, and only the first value of each set is
displayed in the figure.

We note that this compression is different from the one caused by an
increase in numerical aperture, mentioned previously. In that case we have a
compression of the overall shape of the intensity landscape along the z axis,
which happens in the case of a Gaussian beam due to the scaling of ω0 with
NA−1 and of zR with NA−2. In contrast, an increase in the trapping power of
a bottle beam compresses the region visited by the particle over time.

In summary, we conclude that in the dipole regime Eq. (3-30) is a good
approximation for the optical potential generated by a bottle beam for a wide
range of trapping powers, as it only relies on ρ4/ω4

0 � 1 and z4/z4
R � 1. On

DBD
PUC-Rio - Certificação Digital Nº 1912841/CA



Chapter 3. Optical Tweezers 54

the other hand, decoupling of the radial and axial motions only occurs for
high trapping powers that make the cross term in Eq. (3-30) negligible. This
allows approximating the potential by Eq. (3-37). Furthermore, increasing the
trapping power causes squashing along the axial direction of the accessible
region for a trapped particle.

3.4.4
Decoupling by addition of an extra mode

High trapping powers are only necessary if one wishes to decouple the
radial and axial dependencies of the trapping potential, but when considering
power-sensitive samples, such as biological ones, this is not viable. An alter-
native, valid independent of the trapping power, is to add an extra Laguerre-
Gauss mode with `2 = 0 and p2 6= 0 to the superposition. Consider the intensity
I(ρ, z) of the following superposition:

E(ρ, z) = ELG
0,0 (ρ, z) + α1E

LG
0,p1(ρ, z) + α2E

LG
0,p2(ρ, z) . (3-44)

We want to obtain a relationship between the complex coefficients α1 and
α2 , and the radial orders p1 and p2 that achieve the desired decoupling and
bottle-beam profile. The LG modes with zero OAM are given by

ELG
0,p (ρ̄, z̄) = N√

1 + z̄2
e−

ρ̄2
2 L0

p

(
ρ̄2
)( 1− iz̄√

1 + z̄2

)2p+1

exp
[
ikz + ik

ρ2

2R(z)

]
,

where we defined N =
√

4P0/cεπω2
0, ρ̄ =

√
2ρ/w(z) , z̄ = z/zR and the last

term is the Gouy phase.
The trapping potential is proportional to the light intensity distribution

and, therefore, to the square modulus of the electric field

I(ρ̄, z̄) = I0

1 + z̄2 e
−ρ̄2

∣∣∣∣∣∣1 + α1L
0
p1

(
ρ̄2
)( 1− iz̄√

1 + z̄2

)2p1

+ α2L
0
p2

(
ρ̄2
)( 1− iz̄√

1 + z̄2

)2p2
∣∣∣∣∣∣
2

. (3-45)

We seek an approximate expression for the trapping potential around the
beam focus, which can be obtained from a power series expansion around this
point. The bottle-beam condition requires that the light intensity vanishes at
the focus. Note that L0

p(0) = 1 , so the light intensity at the beam focus is
proportional to

I(0) = I0

∣∣∣1 + α1 + α2

∣∣∣2, (3-46)
which implies ∣∣∣1 + α1 + α2

∣∣∣2 = 0 . (3-47)
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This condition cancels out the zero order contribution to the power series
expansion. We will keep terms up to ρ̄4 and z̄2 , which are the first non vanishing
contributions to the power series. Since the zero order term vanishes, it will be
easier to expand first the expression inside the square modulus in Eq. (3-45)
and keep terms up to ρ̄2 and z̄2 . The following approximations are assumed

e−ρ̄
2 ≈ 1− ρ̄2 , (3-48)

L0
p

(
ρ̄2
)
≈ 1− pρ̄2 , (3-49)(

1− iz̄√
1 + z̄2

)2p

≈ 1− 2ipz̄ − 2p2z̄2 . (3-50)

1
1 + z̄2 ≈ 1− z̄2 (3-51)

Applying the approximations above together with the bottle-beam condition
(3-47), we find the following approximate expression for the trapping intensity

I(ρ̄, z̄) ≈ I0

[
4|B|2

(
z2

z2
R

+ ρ4

w4
0

)
− 8

[
|B|2+Re (AB∗)

] z2ρ2

z2
Rw

2
0

]
,

where we defined

A = α1p
2
1 + α2p

2
2 , (3-52)

B = α1p1 + α2p2 . (3-53)

The two-mode bottle-beam potential is recovered by making α1 = −1 and
α2 = 0 .

Decoupling between the radial (ρ) and longitudinal (z) dependencies is
achieved by choosing α1 and α2 such that

|B|2 + Re (AB∗) = 0 (B 6= 0) . (3-54)

We can write this condition in terms of the real and imaginary parts of the
coefficients αj = aj + ibj . Including the bottle-beam condition, the following
equations must hold

1 + a1 + a2 = 0 , (3-55)
b1 + b2 = 0 , (3-56)
(a2

1 + b2
1)(p2

1 + p3
1) + (a2

2 + b2
2)(p2

2 + p3
2)

+p1p2(p1 + p2 + 2)(a1a2 + b1b2) = 0 . (3-57)
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By using (3-55) and (3-56) in (3-57), we derive the following condition:

(a2
1 + b2

1)
[
p2

1(p1 + 1) + p2
2(p2 + 1)− p1p2(p1 + p2 + 2)

]
+a1

[
2p2

2(p2 + 1)− p1p2(p1 + p2 + 2)
]

+ p2
2(p2 + 1) = 0 .

(3-58)

For example, let us set p1 = 1 and p2 = 2 , giving

a2
1+b2

1+ 7
2a1+3 = 0 ⇒ b2

1 = −
(
a2

1+ 7
2a1+3

)
≥0 . (3-59)

This condition has infinite solutions in the interval −2 ≤ a1 ≤ −3/2 . Its limits
provide real solutions for the superposition coefficients:

• α1 = −2 , α2 = 1 .

• α1 = −3/2 , α2 = 1/2 .

Note that the first real solution is useless, since it gives B = 0 and cancels out
all terms up to ρ4 and z2 in the trapping potential. The other real solution gives
A = 1/2 and B = −1/2 , resulting in the following expression for intensity of
the electric field

I(ρ, z) ≈ I0

(
z2

z2
R

+ ρ4

w4
0

)
, (3-60)

which provides the desired bottle-beam configuration with decoupled dynamics
along the transverse and longitudinal directions. Moreover, we can easily show
that this solution is optimal. Under the bottle-beam and decoupling condition,
the trapping strength is

4|B|2 = 2a1 + 4 , (3-61)

which is a linear function of a1 with positive slope. Therefore, its maximum
value is obtained at the upper limit a1 = −3/2 , yielding the maximum trap
stiffness of the three mode configuration.

3.4.5
Calibration of the optical trap

In laboratory conditions, quantitative measurements using optical tweez-
ers rely on knowledge of the trap’s parameters. In the case of a bottle trap
defined by the potential in Eq. (3-37), the relevant parameters are kz and
k(3)
ρ . To properly operate the tweezer these must be found by measuring the

particle’s position during a finite interval of time. This yields a time series
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rm(t) = β · r(t), where β = diag(βx, βy, βz) are conversion factors between
position displacements and the measured quantity, such as the voltage in a
position sensitive detector. For simplicity, we will assume βx = βy = βρ.

For a bottle beam trap the particle’s position can be measured using
a high speed camera [134], or alternatively by applying a purely Gaussian
beam at a different wavelength with respect to the bottle beam. The second
beam can be focused onto the trapped particle by the same objective lens
used for the bottle, and collected by a second objective lens after separation
from the trapping beam by a dichroic mirror. The collected Gaussian light can
then be directed onto a Quadrant Photo Detector, where the usual forward
scattering measurement is performed [135]. The Gaussian power should be
kept significantly weaker then the Bottle power to avoid disturbances due to
the presence of this auxiliary Gaussian trap.

In the decoupled regime, movement along the z axis is independent from
movement along the x and y axes and the equations of motion can be separated
from Eq. (3-40), yielding

−γż(t)− kzz(t) +
√

2γkBTWz(t) = 0, (3-62)

where once again we assume the inertial term is negligible. The constants
kz and βz can be found using the standard procedure of analysing the
autocorrelation function [136] or the power spectral density [137, 138] of the
measured axial displacements zm(t) = βzz(t).

To find the remaining relevant constants we need two independent
equations. Using Eqs.(3-31) and (3-38) we may write

k(3)
ρ 〈ρ4〉

4 = kBT

2 → 〈ρ4〉 = 2kBT
k

(3)
ρ

, (3-63)

leading to the relation,
〈ρ4
m〉 = β4

ρ

2kBT
k

(3)
ρ

. (3-64)

A second equation can be obtained from an active method of calibration
consisting of moving the sample in which the particle is immersed with a known
velocity vdrag [139, 140]. This will cause a constant drag force γvdrag on the
particle, and taking vdrag = vdragx̂ the equation of motion along the x axis
becomes

γvdrag − γẋ(t)− k(3)
ρ x(t)ρ(t)2 +Wx(t) = 0 . (3-65)

After a transient time the particle reaches an equilibrium position displaced
with respect to the trap’s center, with 〈ẋ(t)〉 = 0. Taking the time average of
Eq.(3-65) leads to

γvdrag − k(3)
ρ 〈x(t)ρ(t)2〉 = 0, (3-66)

which can then be used to obtain the relation
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〈xm(t)ρm(t)2〉 = β3
ρ

γvdrag

k
(3)
ρ

. (3-67)

Eqs.(3-64) and (3-67) together with the standard autocorrelation pro-
cedure for the axial motion enables the measurement of the four parameters
βρ, βz, k

(3)
ρ and kz in the decoupled approximation.

3.4.6
Optical forces from a bottle beam in the Intermediate Regime

We move our discussion on the trapping capability of the optical bottle
beam for particles in the intermediary regime, whose dimension are of the order
of the wavelength of the trapping beam, as discussed in Section 3.2.2. Optical
forces generated by the superposition of a Gaussian beam and a Laguerre-
Gauss beam with ` = 0, p 6= 0 are obtained with the aid of [123, 141]. For
simplicity, we focus on the p = 1 case and a particle of refractive index
np = 1.33 trapped by a 500 mW beam at λ0 = 780 nm immersed in oil of
refractive index nm = 1.46.

Figure 3.8 shows the plots of Fz(z) and Fx(x) divided by the particle’s
mass for four different NA’s and four different particle radii. The force in the z
direction is evaluated for x = y = 0, while Fx(x) is evaluated at y = 0, z = zeq,
where zeq is the equilibrium coordinate along the z direction, i.e.,Fz(zeq) = 0

dFz(z)/dz|z=zeq < 0
(3-68)

When no equilibrium position exists, Fx(x) is evaluated at z = 0.
Some general trends can be extracted from Figure 3.8. First, we note

that if the sphere is small (R = λ0/4) and the numerical aperture is low
(NA = 0.3, 0.5), the force in the x direction resembles the one calculated using
the dipole approximation, i.e., it appears to scale with x3 around the origin.
As R or NA increases, this cubic dependence starts to vanish, giving place to
a linear dependence.

We can also notice that the size of the particle and the numerical aperture
play an important role on the existence of an equilibrium position in the axial
direction, with large radius R and large NA being detrimental to the trap
stability along the z axis. For NA = 0.7, for instance, there is an equilibrium
position if R = λ0/4 or R = λ0/2, but not if R is larger. For a fixed R = λ0,
zeq doesn’t exist for NA > 0.5. This is rather different from what happens in
the regular Gaussian trap, in which increasing the NA is associated with an
increase in trap stability [119].
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Figure 3.8: Optical forces acting on a particle trapped by a bottle beam in
the intermediate regime (R ≈ λ). The force in the axial direction (Fz(z)) is
calculated for x = y = 0, while the force in the radial direction (Fx(x)) is
calculated for y = 0 and z = zeq. If no axial equilibrium position is found,
Fx(x) is evaluated at z = 0. The particle’s radius is constant within each
column, while the numerical aperture is constant within each line. The forces
are normalized by the particle’s mass, other parameters used in simulation are:
np = 1.33, nm = 1.46, λ0 = 780 nm, P = 500 mW, density of the particle =
103 kg/m3, p = 1.

3.4.7
Limitations of trapping in a dark focus

The trends observed in Figure 3.8 can be understood qualitatively by
recalling that a bottle beam is a dark region surrounded by a finite bright
light boundary. If the particle is small enough it will fit inside the dark region
and will be repelled by the boundary. In contrast, if the particle is too big it
does not fit inside the bottle and the dark focus becomes irrelevant, with the
beam effectively pushing the particle away.

This can be seen for in Figures 3.8(e)-(h): the dimensions of the bottle
when NA = 0.5 are W = 0.99 µm and H = 2.9 µm. Therefore, a particle of
diameter 0.5λ fits entirely inside the bottle and is free within the dark region,
causing the force in the x direction to have vanishing derivative near the origin.
When R = λ0, the particle no longer fits in the dark focus, and the influence
of light gives a linear scaling to Fx(x) around the equilibrium position. When
R = 2λ0 the particle has an increased overlap with the light intensity and no
longer encounter an equilibrium position.

Similarly, an increase in numerical aperture causes the dark focus to
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shrink. When the bottle becomes too small to comprise the particle the
situation in the third column of Figure 3.8 is reached and the forces eventually
turns into non-restorative ones.

This qualitative reasoning is confirmed in Figure 3.9, in which the
equilibrium position zeq and the derivative along the x direction near the
equilibrium position are displayed as a function of the particle’s radius and
the numerical aperture. Two main regions can be identified in each of the
plots. The first of them, is the region for which zeq was not found in the range
of inspected axial coordinates −6λ0 < z < 6λ0. In this region, the derivative
along the x axis was not evaluated. The remaining areas are the ones in which
an axial equilibrium position exists.
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Figure 3.9: Intermediate regime simulations for different values of NA and
R: (a) Axial equilibrium coordinate and (b) first derivative of the force in
the radial direction. Medium gray: no equilibrium position was found in
the inspected range (−6λ0 < z < 6λ0). Light (dark) gray: an equilibrium
position was found outside the bottle, at zeq < −H/2 (zeq > H/2) and the
force is non-restorative (restorative) along the radial direction. The regions in
different colors are the ones in which trapping inside the bottle is possible. The
parameters used in the simulation were λ0 = 780 nm, P = 500 mW, nm = 1.46,
np = 1.33, p = 1.

Because we wish to trap the particle in the dark focus, we need to avoid
equilibrium situations as the ones described in [142] in the context of vortex
beams, in which the scattering force is balanced by the repelling gradient force
before the focus. To exclude trapping positions outside the bottle, the regions
in which zeq > H/2 were displayed in dark grey and the regions in which
zeq < −H/2 were displayed in light grey. In the latter case, the derivative of
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the radial force was found to be positive and hence non-restorative, while in
the former this derivative was found to be negative. The coloured region, then,
is the region for which stable trapping inside the bottle is possible.

We can then conclude that for a given R, there is a maximum numerical
aperture that can be used to form a stable trap. Conversely, for a given NA,
there is a limit on the size of the particles that can be trapped. Figure 3.10(a)
shows how this limit varies for different refractive indices of the medium and
a fixed N = 0.5. The curves were chopped when zeq became larger than H/2,
and we can clearly see that the closer the refractive index gets to that of the
particle, the larger the radius of the particle that can be trapped. Figure 3.10
confirms that the radial force is restorative for the entire range of R and nm
we considered. It also shows that while decreasing nm can help trapping larger
particles, it also diminishes the force experienced by the particle, and hence
plays an important role in the trap’s stability.
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Figure 3.10: Intermediate regime simulations for different values nm: (a) Axial
equilibrium coordinate and (b) first derivative of the force in the radial
direction as a function of particle’s radius. Points for which zeq > H/2 are
not displayed. The parameters used in the simulation were λ0 = 780 nm, P =
500 mW, nm = 1.46, np = 1.33, p = 1.

3.4.8
Trapping living organisms in the dark

The bottle beam trap finds promising applications in biology. For in-
stance it has been reported that organelles with a refractive index lower than
its surroundings are repelled from standard Gaussian optical tweezers [143].
The bottle beam could then be used to manipulate such organelles within a
cell.

Similarly, a dark optical trap could also be employed to trap living
organisms without excessive laser damage onto the cell by appropriate choice
of a surrounding medium. Iodixanol has been reported as a non-toxic medium
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for different organisms, with high water solubility, in which the refractive index
can be linearly tuned in the visible to near-IR range from ∼ 1.33 to ∼ 1.40 by
changing concentration [144]. Assuming a mean refractive index for a living
cell to be within the range ∼ 1.36 to ∼ 1.39 [145,146] it is expected that stable
trapping in a dark focus can be attained.

Table 3.1: Proposed values for trapping a Mycoplasma cell using a bottle beam.

Parameter Units Value
Particle refractive index np - 1.36-1.39
Medium refractive index nm - 1.40
Particle radius R µm 0.3
Laser wavelength λ0 nm 1064
Numerical aperture NA - 0.7
Laser power mW 500
Index p - 1

Mycoplasma are known to be among the smallest living organisms, and
perhaps the simplest cells [147]. With radii around ∼ 0.3 µm, these organisms
lack a cell wall [148], being protected from the surrounding environment
solely by their cellular membrane. This may present interesting mechanical
and elastic properties which could be probed with the bottle beam. We
propose investigating the trapping of Mycoplasma cells immersed in a non-toxic
mixture of refractive index 1.40. Iodixanol presents a possible such medium,
but further empirical tests must be carried over to fully determine how it affects
living Mycoplasma cells. Figure 3.11 shows the simulated forces acting on a
trapped Mycoplasma when the parameters shown in Table 3.1 are used. As it
can be seen, forces along radial and axial directions are restorative and should
provide stable trapping inside the bottle.

It is known that direct incidence of focused laser light onto living cells
can affect their division and growth [143]. As an interesting application of the
bottle beam one could observe the process of cell division without directly
sending a focused beam onto the trapped particle. The following experiment
could be performed: at each round of measurement, a cell undergoing division
is trapped in the dark focus by a given laser power and the complete cycle of the
division process is observed. A trapped dividing cell will occupy an increasing
volume and unavoidably encounter the boundary of the dark region, where
the trapping beam will impose a pressure against the volume expansion. By
increasing the laser power used in each round, one can look for the threshold
power for which cell division is precluded. With the proper tweezer calibration
presented in the previous section, the threshold power provides information on
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Figure 3.11: Forces acting on a trapped Mycoplasma cell, shown here centered
at the origin for size comparison, (a) along the x direction as a function
of radial displacement and (b) along the z direction as a function of axial
displacement. The solid and the dashed curves correspond to a medium’s
refractive index of 1.36 and 1.39, respectively, while the yellow area correspond
to 1.36 ≤ nm ≤ 1.39. The other parameters used in the simulation are displayed
in Table 3.1.

the forces acting during the process of cell division.
As for the trapping beam, we note that the desired superposition can

be created using a SLM, a versatile tool for shaping arbitrary amplitude and
phase distributions without the need for combining aligned multiple beams.
For the purpose of the present work, controlled preparation of a desired
superposition of Laguerre-Gaussian modes can be efficiently implemented, as
recently demonstrated in [114]. For the moderate NA of 0.7 - much smaller
than the usual value of 1.3 used when trapping particles in liquid media - we
don’t expect aberrations to pose a serious challenge for optical trapping with
the bottle beam.

3.5
Conclusions

We studied the fundamental modes that describe laser beams, LG
modes, from which any optical beam’s spatial profile can be decomposed as a
superposition. From them, we were able to build a mathematical description
of an optical bottle beam, a beam of light with a high-intensity boundary
surrounding a dark focus, generated by the superposition of a Gaussian beam
and a Laguerre-Gauss beam with ` = 0 and p 6= 0.

We have theoretically analysed the optical forces a highly-focused light
beam performs on a linear dielectric particle, for both the dipole and interme-
diate regimes. For the case of a particle with higher refractive index than its
surrounding medium, in the dipole approximation, we have show that a Gaus-
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sian beam can effectively 3D trap a silica nanosphere in water if it is close to
the beam focus.

When considering a particle of lower refractive index than its surrounding
medium, we envisioned the dark focus of a bottle beam to be able to also
act as a trapping potential. Because the size of trapped particles commonly
range from tens of nanometers [128] to several microns [129], here, we analysed
the optical forces acting on particles much smaller than and with dimensions
comparable to the wavelength of the trapping beam.

In the case of small particles, the dipole approximation was applied,
resulting in a number of distinguishing features of the investigated trap.
Scattering was found to be null at the focus of the beam, eliminating imbalance
between gradient and scattering forces [133]. The optical potential, on the
other hand, coupled the motion along the radial and axial directions. It was
shown that these could be decoupled by using a sufficiently high trapping
power. The approximated decoupled potential turns out to be quartic and
quadratic in the radial and axial directions, respectively. To test the validity of
the approximated potential, motion of a particle trapped by the exact potential
in a viscous medium was simulated and the results were confronted with those
expected from the approximation as a function of laser power. We have also
shown that by superposing a third mode, motion along the axial and radial
directions can be decoupled independently of the trap power. To guide future
experimental realizations, a calibration method was proposed.

In the case of larger objects, for which the dipole approximation is not
valid, the tools developed in [123,141] were used to calculate the optical forces.
Equilibrium positions after the focus were found, indicating a trapping regime
different form the one described in [142]. The interplay between the numerical
aperture and the sphere’s radius were explored and led to the conclusion that
there is an upper bound for both of these quantities when using bottle beams
for optical trapping. These limitations were interpreted in terms of the size
of the optical bottle in comparison to the size of the particle, and were found
to be eased by choosing a medium with refractive index close to that of the
particle.

Finally, the findings obtained through exploration of the intermediate
regime led to an experimental proposal to trap a living organism using the
bottle beam. Considering values of refractive index reported in the literature,
it is expected that trapping of small cells such as the Mycoplasma immersed
in a non toxic high-refractive index medium in a dark focus is within reach.
This could be applied to situations in which focusing a high laser power onto
the scrutinized cell is detrimental [132], as in the case of cellular division [143].
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As a final remark, we note that the present analysis could be applied to
other types of bottle beams and structured beams in general. This would be
specially interesting for applications dealing with micron-sized objects, since
many works deal only with the case of Rayleigh particles [100–102, 105, 109].
Additionally, it would be interesting to explore how the dark focus affect the
transfer of angular momentum between trapping beam and trapped particle
when a superposition of circularly polarized beams or beams possessing angular
momentum is used.
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4
Dispersive Optomechanics

Any interaction between light and a mechanical object that alters the
momentum of the former will give rise to a radiation pressure force acting
on the latter, e.g., the gradient and scattering forces studied in Chapter 3.
When considering optical cavities, such interactions can couple its optical
field with nano- and micromechanical degrees of freedom, giving rise to non-
trivial dynamics for a plethora of different optomechanical systems. The field
of quantum optomechanics studies such interaction and serves as a resourceful
platform for quantum technologies given its ability to generate nonclassical
states of both light [149, 150] and matter [151–154], perform quantum control
over matter [15–18, 47, 155], and realize precision force and displacement
measurements [10,65,83,156].

In the following sections, we will study three physical scenarios where
radiation pressure interaction emerges, which are mathematically equivalent,
in the sense that their unitary dynamics is governed by the same dispersive
Hamiltonian. A derivation of the unitary time evolution operator this Hamilto-
nian entails will be carried out and we will show that it can generate quantum
correlations between both light and matter, following our work [157].

4.1
Dispersive Hamiltonian

4.1.1
Fabry-Pérot cavity with movable end mirror

First, we consider the simplest optomechanical system: a Fabry-Pérot
cavity with bare cavity length L, bare resonant frequency ωc = πc/L and
perfect end mirrors. We let one of the mirrors of mass m to be movable,
performing a harmonic motion with natural frequency ωm, as schematically
depicted in Figure 4.1. We assume that the cavity was previously populated
by an external laser, see Section 5.2.1.1 for more details.

In the following, we present an phenomenological derivation of this
system’s Hamiltonian [158]. The formal demonstration, first performed by C.
K. Law, can be found at Ref. [159].

DBD
PUC-Rio - Certificação Digital Nº 1912841/CA



Chapter 4. Dispersive Optomechanics 67

m,ωm

ωcav

L+x

L

Figure 4.1: Schematic representation of an optical cavity with a movable
extremity following harmonic motion.

As both the optical and mechanical modes are modelled as quantum
harmonic oscillators, their Hamiltonian read

Ĥ = ~ωcav(x̂)â†â+ ~ωmb̂†b̂ , (4-1)
where â (â†) and b̂ (b̂†) are the annihilation (creation) operators of the optical
and mechanical modes, respectively. Note that the optical frequency in this
case, ωcav(x̂), is dependent on the movable mirror position, as it naturally
alters the cavity length, and it is given by

ωcav(x) = πc

(L+ x) , (4-2)

Although this Hamiltonian exactly describes the dynamics of the system,
its analytical treatment is arduous. Therefore, we only consider small ampli-
tudes for the movement of this mirror, such that we can approximate the cavity
frequency through a series expansion around its equilibrium position

ωcav(x) ≈ ωc −
ωc

L
x+ ωc

L2x
2 +O(x3) . (4-3)

In the following, we will only keep up to linear terms in this expansion.
Therefore, the Hamiltonian simplifies to

Ĥ

~
≈
(
ωc −Gx̂

)
â†â+ ωmb̂

†b̂ (4-4)
where G ≡ ωc/L. A special remark should be made at this point in order to
be no confusion in the future: the sign of the interaction reflects our choice of
coordinate system, when x > 0, the movable mirror is increasing the cavity
length and conversely decreasing the cavity frequency. If we had defined our
coordinate axis reversed, or considered the leftmost mirror to be movable, then
the sign of the interaction would also reverse.

Moreover, it is usual in the literature to expand the position operator in
terms of the mechanical annihilation and creation operators: x̂ = xZPF(b̂†+ b̂),
where xZPF =

√
~/(2mωm) is the zero point fluctuation of the moving mirror,

in order to rewrite the Hamiltonian as
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Ĥ

~
≈ ωcâ

†â+ ωmb̂
†b̂− g0,mirrorâ

†â
(
b̂† + b̂

)
(4-5)

where g0,mirror ≡ GxZPF is the single photon coupling strength, with units of
frequency, and every operator present in the Hamiltonian is now dimensionless.

It is straightforward to notice that this Hamiltonian gives rise to a
radiation pressure force if we write the Heisenberg equations of motions for the
mirror’s position operator x̂ and momentum operator p̂ = i

√
~mωm/2(b̂†− b̂):

˙̂x = +ωmp̂ , (4-6)
˙̂p = −ωmx̂+Gâ†â . (4-7)

The first term on the right hand side (RHS) of both equations together
define the harmonic motion of the mirror and the second term in the second
line is effectively a force acting on the mirror, proportional to the number of
photons inside the cavity. Thus, one example of the so-called radiation pressure
force. As a matter of fact, in a closed system dynamics, the number operator
for the optical mode commutes with the full Hamiltonian and, thus, remains
constant as time passes, making this a constant force. One should note that
if the system is allowed to follow a open quantum dynamics, this is no longer
true.

4.1.2
Levitated nanoparticle inside an optical cavity

Consider now the system shown in Figure 4.2: a nanoparticle of radius
r, mass m and refractive index np is trapped in a harmonic trap of frequen-
cies ωj=x,y,z created by an optical tweezer inside a cavity populated by a single
optical mode of frequency ωa and annihilation/creation operators â/â†, respec-
tively. At this moment, we will not derive the Hamiltonian for this system, as
an analogous proof will be carried out in Section 5.1. Here we present the main
result: if the optical tweezer is finely tuned with the cavity, the presence of the
particle causes a position dependent shift on the cavity’s resonance frequencies,
so that the Hamiltonian of this system becomes [46]

Ĥ

~
= ωaâ

†â+
∑
j=
x,y,z

ωj b̂
†
j b̂j − U0,a sin2[ka(x0 + x̂)]â†â , (4-8)

where x0 is the position of the center of the trap, x̂ is the particle’s displace-
ment, U0,a = ωâα/(2ε0Va) is the frequency shift when the particle is at an
intensity maximum of the cavity, α = 4πε0r3(n2

p − 1)/(n2
p + 2) is the polariz-
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ability of the particle, Va and ka are the volume and the wavenumber of the
optical mode, respectively, and b̂j/b̂†j is the phonon annihilation/creation oper-
ators along axis j = x, y, z. As before, we do not consider an external driving
laser and assume that the optical cavity was previously populated.

x
}

ωcav

m,ωm

L

Figure 4.2: A nanoparticle, trapped by an optical tweezer, is placed along the
axis of a cavity populated by a single optical mode of frequency ωa. If the
position x0 of the center of the optical trap is properly chosen, the coupling
between particle and light becomes linear on the particle’s displacement.

The interaction terms may yield linear coupling between the optical mode
and the sphere if x0 and ka are properly chosen. Once again, considering small
amplitude motion, we can expand sin2 ka(x0 + x̂) around x0 such that

sin2[ka(x0+x̂)] = sin2(kax0)+ka sin(2kax0)x+2k2
a cos(2kax0)x2+O(x3) . (4-9)

Now, consider the particular case in which the length of the optical cavity
is L = 2n(λa/2). Then, if the sphere is placed near the center of the cavity at
x0 = L/2 + λa/8, we have

sin2 ka(x0 + x̂) ≈ 1
2 + kax̂ . (4-10)

Substituting these approximations in equation (4-8) and disregarding the
motion along the y and z axes, we get

Ĥ/~ = ω′aâ
†â+ ωxb̂

†
xb̂x − g0,levitatedâ

†â(b̂†x + b̂x) , (4-11)
where ω′a = ωa − U0,a/2 and g0,levitated = U0,akaxZPF is the intended linear
coupling strength.

4.1.3
Ultracold atom cloud trapped inside optical cavity

In ultracold atom optomechanical experiments, an atomic ensemble is
trapped inside an optical cavity. The effective Hamiltonian describing the in-
teraction between N atoms with a single cavity optical mode is the Tavis-
Cummings Hamiltonian [160, 161]. However, in the appropriate regime [161],
the collective center-of-mass motion of the atoms acts similarly to the disper-
sive optomechanical experiments with levitated spheres described in the previ-
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ous section, with the cloud of atoms playing the role of levitated nanoparticle
altering the cavity resonance frequency. Accordingly, the Hamiltonian describ-
ing the collective center of mass motion of the atomic cloud is, once again, the
dispersive Hamiltonian

The optomechanical coupling strength between an ultracold atomic cloud
and a cavity optical mode with wavelength λa is [162]

g0,atoms = kaN
α2

0
∆ca

sin(2kaz0)
√

~
2Nmωm

, (4-12)

where ka is the wavenumber, N is the number of atoms, ∆ca is the atom-cavity
detuning, m is the mass of a single atom, ωm is the mechanical frequency and
α0 =

√
d2ωc/(2~ε0Vc) is the atom-single photon coupling rate, with d the dipole

moment for the transition between the relevant atomic levels and Vc the cavity
mode volume.

4.2
Unitary quantum dynamic

Once the dispersive Hamiltonian is found, we are able to calculate the
corresponding time evolution operator Û(t) = exp

(
− i

~Ĥt
)
that dictates the

unitary quantum dynamics of the optomechanical system. Here we will use the
following notation for the Hamiltonian

Ĥ

~
= ωmb̂

†b̂+ ωcâ
†â− g0â

†â(b̂+ b̂†), (4-13)

where â and b̂ (â† and b̂†) denote annihilation (creation) operators for the
optical mode and the mechanical oscillator, respectively. In what follows we
will work with the re-scaled time τ ≡ ωmt, and introduce the dimensionless
variables ra = ωa/ωm and k = g0/ωm.

First, we define the unitary operator [151]

Ê(k) = exp
(
k â†â(b̂† − b̂)

)
. (4-14)

The operator Ê(k) commutes with â†â, but not with b̂, such that

Ê(k)†b̂Ê(k) = b̂+ k â†â, (4-15)

which is calculated through the general identity,

e−Â B̂ e+Â = B̂ +
[
B̂, Â

]
+ 1

2!
[[
B̂, Â

]
, Â
]

+ · · · . (4-16)

Using equation (4-15) and its adjoint, we have

Ê(k)† Ĥ
~ωm

Ê(k) = b̂†b̂+ raâ
†â− k2(â†â)2. (4-17)
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Considering the number basis {|n,m〉}, we see by the equation above that
Ê(k) |n,m〉 are the energy eigenstates of the system. Given the form of the
operator Ê(k), Equation (4-14), those are of the form:

Ê(k) |n,m〉 = D̂m(k n) |n,m〉 , (4-18)

where we denote the displacement operator of the mechanical oscillator by
D̂m(κ) = exp

(
κĉ† − κ∗ĉ

)
, where κ is a complex number, see Appendix B. The

energies corresponding to the eigenstates above are

En,m = ~ωmm+ ~ωan− ~ωmk2n2. (4-19)

By exponentiation of equation (4 − 17), the unitary evolution operator
is found to be

Û(τ) = Ê(k) e−i(b̂†b̂+raâ†â−k2(â†â)2)τ Ê(k)†. (4-20)

Next, we recall that eib̂†b̂τ b̂† e−ib̂†b̂τ = eiτ b̂† and eib̂†b̂τ b̂ e−ib̂†b̂τ = e−iτ b̂, from
which we derive the following identity

eib̂†b̂τ Â(b̂† − b̂) e−ib̂†b̂τ = Â(eiτ b̂† − e−iτ b̂) (4-21)
⇒ eib̂†b̂τ eÂ(b̂†−b̂) e−ib̂†b̂τ = eÂ(eiτ b̂†−e−iτ b̂), (4-22)

where Â is any operator that commutes with both b̂ and b̂†. Letting Â = k â†â

in the identity above, we conclude that

Ê(k) e−ib̂†b̂τ = e−ib̂†b̂τ eib̂†b̂τ Ê(k) e−ib̂†b̂τ

= e−ib̂†b̂τ exp
(
k â†â(b̂† eit−b̂ e−it)

)
,

(4-23)

hence

Ê(k) e−ib̂†b̂τ Ê(k)† = e−ib̂†b̂τ × exp
(
k â†â(b̂† eit−b̂ e−it)

)
× exp

(
−k â†â(b̂† − b̂)

)
.

(4-24)
From the commutator

1
2[b̂† eiτ −b̂ e−iτ , b̂† − b̂] = i sin(τ), (4-25)

it becomes straightforward to compute

[k â†â(b̂† eiτ −b̂ e−iτ ), k â†â(b̂† − b̂)] = 2ik2(â†â)2 sin(τ) . (4-26)

Since this commutes with both â†â(b̂† eiτ −b̂ e−iτ ) and â†â(b̂† − b̂), equation
(4 − 24) can be simplified using the particular form of the Baker-Campbell-
Haursdoff formula

eÂ eB̂ = eÂ+B̂+ 1
2 [Â,B̂], (4-27)

valid when operators Â and B̂ commute with [Â, B̂]. Thus, the expression,
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Û(τ) = e−ib̂†b̂τ e−iraâ†âτ ek â†â(b̂η(τ)−b̂†η(τ)∗) e−i(â†â)2B(τ) (4-28)

holds for the unitary evolution operator Û(t), where η(t) = 1 − e−it and
B(t) = −k2(t− sin(t)).

Now that we have an amenable analytical formula for the time evolution
operator arising from a radiation pressure interaction, we are able to study
the closed quantum dynamics dictating the optomechanical systems presented
in the previous Section and analogous ones, once the proper auxiliar unitary
operator Ê is found.

4.3
Entanglement dynamics in dispersive optomechanics

In this Section, we present the results obtained in our work [157]. There,
we studied entanglement dynamics in dispersive optomechanical systems,
analogous systems to the ones studied in Section 4.1, consisting of two optical
cavity field modes interacting with a mechanical oscillator. In these systems,
the two optical modes interact with the mechanical object, but not directly
with each other. Thus, the appearance of optical entanglement witnesses
nonclassicality of the oscillator as shown in [163]. We studied the dependence
of the optical entanglement dynamics with the optomechanical coupling,
the mean photon number in the cavity and the oscillator temperature, and
proposed an experimental realization with ultracold atomic ensembles.

4.3.1
Introduction

Entanglement is one of the most striking phenomena of quantum theory
[164]. Generating, manipulating and measuring entanglement in systems with
many constituents and with a large number of degrees of freedom is one of
the challenges of quantum information and metrology [165], and an interesting
frontier in fundamental physics [166]. In particular, entangling massive objects
could open the way to interesting tests of quantum theory [167, 168] and
experiments aimed at probing gravitational effects of quantum mechanical
matter [169–174]. Optomechanical systems provide a resourceful platform to
this end.

It is well known that entanglement of massive objects can be realized in
quantum cavity optomechanical experiments [23]. For instance, a cavity with
a moving end mirror can be used to generate entangled “cat states” of both
light [149,150] and matter [151–154]. Similar systems have also been proposed
as an effective nonlinear medium [29,175,176] and squeezing [24–26] as well as
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optical entanglement [30] have been experimentally demonstrated in a variety
of set-ups such as cavity cold atomic ensembles [162], dispersive dielectric
membranes [44] and silicon micro-resonators [177]. In the linearized regime,
particularly, entanglement dynamics [68, 178] and stationary entanglement
[32, 36, 179, 180] have attracted much attention as these systems have a wide
applicability ranging from precision force measurements [35, 36] to quantum
networks [31,37].

Certifying quantumness of optomechanical systems, however, is a far-
from-obvious task. Relations among entanglement and nonclassicality mea-
sures of quantum states can be used to probe the quantum nature of inaccessi-
ble objects such as a harmonic oscillator in an optical cavity [181]. Recurrence
of optical squeezing in a cavity with a moving mirror has also been proposed
as a witness of nonclassicality [182] and it has been shown that when two
subsystems locally interact with a third one, but not directly with each other,
the appearance of entanglement among those subsystems is sufficient to prove
nonclassicality of the third party [163]. Building on some of these ideas, the
present Section studies the entanglement dynamics of a dispersive optome-
chanical system, how to use that dynamics to probe the quantum nature of
the oscillator through optical degrees of freedom and how to optimize the gen-
erated optical entanglement by careful choice of the optomechanical coupling
and the number of photons in an experiment.

ωa ωb

(b)

ωa ωb

La+x

m,ωm

Lb-x
(a)

Figure 4.3: (a) Schematics of coupled optical cavities sharing a “mirror-in-
the-middle” under a harmonic potential. No photon transfer from one cavity
to the other is allowed. (b) Schematics of a particle trapped by an optical
tweezer coupled to two modes of a cavity. The particle can be considered as
a Silica nano-sphere or a cloud of ultracold atoms. When the levitated object
is properly positioned, the Hamiltonian describing both systems acquires the
same form.

Considering as possible implementations levitated optomechanical sys-
tems, such as Silica nano-spheres or cold atomic ensembles, and a “two-sided”
cavity with a moving mirror in the middle, we map how entanglement appears
and evolves among the various optical and mechanical subsystems for different
optomechanical coupling strengths and optical field intensities. The appear-
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ance of mechanically induced optical entanglement and its subsequent death
and revival are generic in these systems, and thus could be used to probe the
quantization of the center-of-mass of the moving object in real experiments. We
also point out in a simplified context that under certain circumstances entan-
glement seems to “flow” through different subsystems, and such dynamics can
be used to infer nonclassicality and entanglement among different components
of the system. We consider examples of both non-Gaussian and Gaussian ini-
tial quantum states, for which we study the dynamics of concurrence and the
Duan criteria [183], respectively. An experiment using levitated cold atomic
ensembles is proposed.

4.3.2
Hamiltonian description

The system we are primarily interested in is shown in Figure 4.3(a): two
optical cavities, of lengths La and Lb, are populated by modes of frequencies
ωa and ωb and share a common perfect movable mirror of mass m subject to
a harmonic potential of frequency ωm. We refer to this as the “mirror-in-the-
middle” configuration, which is analogous to the optomechanical setup studied
in Section 4.1.1. In this system the optical modes never interact directly, except
via the dispersive coupling due to the presence of the mechanical mode.

Since we are interested in studying entanglement dynamics in optome-
chanics, we shall assume cavities can be initialized in particular states, the
laser driving-term can be turned off during the course of the experiment and
that optical losses are negligible during the time of the experiment, i.e., the
same assumptions made in Section 4.1.1 for the single cavity case. A discussion
of the conditions under which this is true and the experimental feasibility is
addressed in Section 4.3.5.

Generalizing the dispersive Hamiltonian in Equation (4-5) to account for
an additional optical mode, we get

H

~
= ωaâ

†â+ ωbb̂
†b̂+ ωmĉ

†ĉ− g0,aâ
†â(ĉ† + ĉ) + g0,bb̂

†b̂(ĉ† + ĉ) , (4-29)

where g0,i = ωixZPF/Li are the optomechanical couplings, with xZPF =√
~/(2mωm) the zero point fluctuation of the mirror and â, b̂, ĉ (â†, b̂†, ĉ†)

are the annihilation (creation) operators of each optical and mechanical modes,
denoted by A, B and C, respectively. As we have seen before, such Hamiltonian
can also be implemented using a cavity with a levitated nano-particle [14, 46,
184] or an ultracold atom cloud [162, 185, 186] properly positioned along the
cavity axis. This is illustrated in Figure 4.3(b).
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Assuming equal frequencies for the optical modes ωa = ωb, and approxi-
mately equal cavity lengths La ∼ Lb we may simplify the notation and directly
write g0 ≡ g0,a ∼ g0,b. Following the procedure outlined in Section 4.2 now with
the operator Ê(k) = exp

(
k(â†â− b̂†b̂)(ĉ† − ĉ)

)
, we are able to find the unitary

evolution operator resulting from equation (4-29)

Û(t) = e−iĉ†ĉt e−iraâ†ât e−irbb̂†b̂t ek(â†â−b̂†b̂)(ĉη(t)−ĉ†η(t)∗) e−i(â†â−b̂†b̂)2B(t) , (4-30)

where we define the dimensionless optomechanical coupling k = g0/ωm, the
“normalized frequencies” ri = ωi/ωm, the scaled time ωmt → t, and the
functions η(t) = 1 − e−it and B(t) = −k2(t − sin t). Note the evolution
operator is comprised of a Kerr-like term, responsible for an effective optical
non-linearity [187], as well as an optically-driven displacement operator acting
on the mechanical mode.

It is expected that a generic separable state will evolve into an entangled
one by virtue of the unitary evolution (4-30). We note that if an initially
separable state gives birth to optical entanglement then there will certainly be
its entanglement death. This springs from the fact that when B(t) = 2πn, n ∈
N, the term in the evolution operator responsible for entangling the optical
modes reduces to the identity operator at those times, therefore preserving
the separability of the initial state. Analogous arguments show that opto-
mechanical entanglement must also face death when η(t) = 0.

Not every state will evolve to an entangled one, as can be seen by
considering the energy eigenstates of the system

D̂C(k(nA −mB)) |nA,mB, `C〉 , (4-31)

where {|nA,mB, `C〉} denotes the number basis and D̂C(α) the displacement
operator acting on the mechanical oscillator, mode C, by a displacement α ∈ C,
in close analogy to the eigenstate discovered in Section 4.2.

4.3.3
Qubit states

Consider the cavities in Figure 4.3(a) initially populated by the state

|Ψ(0)〉 =
(
|0〉+ |1〉√

2

)
⊗
(
|0〉+ |1〉√

2

)
⊗ |0〉. (4-32)

We refer to these as ‘qubit states’ as they are restricted to the vacuum-
one-photon subspace. These states can be prepared in quantum optics in an
approximate way using photon pair sources and displacement-based detec-
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tion [188, 189] or non-linear light-matter interactions in cavity quantum elec-
trodynamics [190, 191]. In levitated quantum electrodynamics [50], it is also
possible to couple two qubits to a nano-sphere or rotor according to the in-
teraction Hamiltonian (4-29), with the qubits assuming the role of the optical
fields and the levitated object the role of the mirror-in-the-middle. Among the
advantages of this type of scheme is the fact that the optomechanical coupling
admits a wide tunability, potentially allowing tests of the optomechanical in-
teraction in novel regimes. Moreover, read-out of the “optical” modes can be
achieved through standard qubit read-out techniques [192]. The “mirror-in-the-
middle” is taken to be in the ground state for simplicity; in the next section we
shall consider the effects of a finite temperature oscillator. Notice the initial
state is separable and hence the appearance of entanglement between modes
A and B would evidence the nonclassical nature of mode C [163].

Here, it is convenient to work in the interaction picture; following
Equation (4-30), we evolve states by the unitary operator

ÛI.P.(t) = ek(â†â−b̂†b̂)(ĉη(t)−ĉ†η(t)∗) e−i(â†â−b̂†b̂)2B(t) . (4-33)

Then, time evolution of (4-32) in the interaction picture is explicitly given by

|Ψ(t)〉 = |00〉
2 |0〉+ eiB(t) |01〉

2 D̂C(kξ(t))|0〉+ eiB(t) |10〉
2 D̂C(−kξ(t))|0〉+ |11〉

2 |0〉,

(4-34)

where ξ(t) = eit η(t). The evolved state (4-34) exhibits entanglement between
modes A and B. This can be promptly seen by noticing that coherent states
are non-orthogonal and, in the limit of small coupling k, the state assumes the
form |Ψ(t)〉 ' |ϕAB〉 ⊗ |ϕC〉, where

|ϕAB〉 '
|0〉
2
(
|0〉+ eiB(t) |1〉

)
+ eiB(t) |1〉

2
(
|0〉+ e−iB(t) |1〉〉

)
(4-35)

and |ϕC〉 ' |0〉. For times t such that |B(t)| ' π/2 + 2πn, n ∈ N, the
state |ϕAB〉 becomes maximally entangled. The origin of this entanglement
can be heuristically explained by a simple argument: the ground state of the
mechanical oscillator is a Gaussian wave packet in the position basis. Each
possible position adds-up coherently introducing correlations in the lengths of
the left and right cavities in Figure 4.3(a). This imprints correlations in the
phases of the corresponding electromagnetic fields in modes A and B giving
rise to entanglement. As long as the dimensionless optomechanical coupling k
due to radiation pressure on the middle mirror is sufficiently small, mode C
will be approximately unperturbed and therefore, to a good approximation,
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disentangled from AB. On the other hand, as the coupling strength increases
mode C can become significantly entangled with modes A and B; the question
of entanglement among different subsystems as a function of k will be addressed
in the next section.

To quantitatively evaluate the entanglement in (4-34) we calculate the
three-partite density matrix ρABC = |Ψ(t)〉〈Ψ(t)|, from which we obtain the
reduced state ρAB = TrC (ρABC):

ρAB(t) = 1
4


1 eC(t) eC(t) 1

eC∗(t) 1 e−2k2|η(t)|2 eC∗(t)

eC∗(t) e−2k2|η(t)|2 1 eC∗(t)

1 eC(t) eC(t) 1

 (4-36)

with C(t) = iB(t)− k2|η(t)|2/2. Notice that for small values of k the mirror is
“weakly entangled” with modes A and B and some of the off-diagonal terms of
the reduced density matrix acquire exponentials that alternate between periods
of decay and periods of growth. This can be seen as an example of a weak form
of decoherence and “non-Markovian” evolution for the partitions of the whole
system, in which information about the optical modes leak into correlations
with the mirror and is later retrieved. The mirror introduces a “memory” in
the system [193]. Non-Markovianity springs from the fact that the mirror is
part of the system under study and hence its degrees of freedom are under
control.

Since the state ρAB(t) is restricted to the subspace spanned by {|0〉, |1〉},
we can use concurrence as a measure of entanglement, as it is an entanglement
monotone. It can be obtained from a bipartite density matrix of two qubits ρ
by calculating

C(ρ) = max (0, λ1 − λ2 − λ3 − λ4) (4-37)

where the λi’s (in decreasing order) are the square roots of the eigenvalues of

W = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) (4-38)

where σy is a Pauli matrix and ρ∗ is the element-wise complex conjugate of ρ
in the eigenbasis of σz.

As an example, plots of the concurrence CAB(t) and von Neumann
entropy SAB(t) of ρAB are shown in Figure 4.4 for coupling value k = 0.5.
The optical modes exhibit positive concurrence and hence entanglement as
a function of time. Moreover, the system exhibits sudden death and birth of
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Figure 4.4: Concurrence (blue) and von Neumann entropy (yellow) for ρAB(t)
as a function of time. For this plot k = 0.5.

entanglement. It is also possible to see that the entropy, which is initially zero,
oscillates as a function of time. This is another indication of the non-Markovian
nature of the system. A non-zero entropy of AB signals entanglement among
the three-partite system ABC. Moreover, note that the maxima of concurrence
(entanglement of AB) coincide with the minima of entropy (entanglement of
ABC). This suggests that, after emerging in the system, entanglement “flows”
(during the limited period of its lifetime) among different partitions of the
system.

4.3.4
Continuous Variable states and finite temperature

We now consider a scenario in which initially the optical modes are
populated by monochromatic coherent states and the moving object (sphere,
cloud of atoms or mirror) is in a thermal state at temperature T

ρ(0) = |α〉〈α| ⊗ |β〉〈β| ⊗ 1
Z

∑
n

e
−n~ωm

kBT |n〉〈n| , (4-39)

where Z = ∑
n e
−n~ωm

kBT is the thermal partition function. Note that although
the initial state here considered is Gaussian, the Hamiltonian (4-29) has
cubic terms in creation and annihilation operators and, therefore, does not
preserve Gaussianity [194]. In order to study the dynamics of entanglement
for Continuous Variable states, we turn our attention to the time-dependent
Duan Criteria [183], as presented in Appendix B.4. At this moment, we need
to lay out some definitions: first, we define the quadratures for each mode
(j = A,B,C)

x̂j = 1√
2

(â†j + âj) , p̂j = i√
2

(â†j − âj), , (4-40)
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obeying the commutation relations [x̂j, p̂k] = iδjk, j, k = A,B,C, such that we
can define the EPR operators

ûjk = x̂j + x̂k , (4-41)
v̂jk = p̂j − p̂k . (4-42)

Finally, we define Dij as an average of the Einstein-Podolski-Rosen
(EPR) variance for modes i, j

Dij ≡
1
2

[(
∆ûij

)2
+
(
∆v̂ij

)2
]
. (4-43)

The Duan Criteria states that any separable state satisfies

Dij ≥ 1 . (4-44)

Therefore, if at any time t a violation of the above inequality is observed,
modes i and j are necessarily entangled at that time. As the Duan criteria
is written in terms of field quadratures, it can be promptly measured with
homodyne detection techniques readily available in the laboratory [195]. We
also note that when t = 2πn/ωm, n ∈ N, the unitary evolution (4-30) acts
analogous to a χ(3) interaction in nonlinear optics [196]. In these moments,
the optomechanical system behaves as a nonlinear optical source of squeezing,
verified numerically, from which quantum correlations can be readout from the
leaking fields of the cavity [197].

Given the time evolution operator in equation (4-30) we are able to find
analytical expressions for the EPR variance of every bipartition of the system.
For the optical modes we have

DAB(t) = 1+
[
|α|2 + 2αβ cos

(
(ra + rb)t

)
+ |β|2

]

−
[
|α|2 + 2αβ cos

(
(ra + rb)t+ 2B(t)

)
+ |β|2

]

× e−2
[
|α|2+|β|2

][
1−cos(2B(t))

]
e−k

2|η(t)|2
[

2n+1
]
,

(4-45)

where n̄ =
[

e~ωm/(KBT )−1
]−1

is the thermal occupation number for the
mechanical oscillator.

Figure 4.5 shows the time evolving EPR variances for different biparti-
tions of the system: AB (opto-opto), BC (opto-mechanical) and AC (opto-
mechanical). We once again observe periodic birth of entanglement and, from
the discussion in Section 4.3.2, we can assert that there is death and revivals
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Figure 4.5: Time-dependent EPR variances Dij(t) (yellow) for the various
bipartitions of the system, with its envelope (blue) and threshold for the Duan
Criteria (black dashed line). We use ωa = ωb ' 2π · 1.59× 1014 Hz and the
remaining parameters as in Table 4.3.

of entanglement for every bipartition of the system. Moreover, as in the qubit
case, the appearance of entanglement between optical modes given the initially
separable state can be used in experiments to probe the nonclassicality of the
mechanical mode [163]. Although the analytical formulas for the EPR vari-
ance are rather involved, it is possible to obtain insight into the entanglement
dynamics by looking into their periodicity.

For typical optical and mechanical frequencies, the term cos((ra + rb)t)
represents fast oscillations that do not contribute significantly to the overall
envelope of the EPR variances. Consequently, when k � 1/

√
2, equation (4-45)

is dominated by the term exp
{
−2
[
|α|2 + |β|2

][
1− cos(2B(t))

]}
which has a

period of τ = π/k2. We call this the “low coupling” regime. On the other hand,
if k � 1/

√
2 the variance is dominated by the term exp

{
−k2|η(t)|2

[
2n+ 1

]}
, of

period τ = 2π. We refer to this as the “high coupling” regime. The periodicity
of these functions dictates the overall periodicity of the envelope of the EPR
variances. We now move back to non-scaled time we make the substitution
τ → τ/ωm. Then, for values in the low coupling regime, observation of EPR
variance revivals are only possible when π/ωmk

2 � κ−1, where κ−1 is the
inverse cavity linewidth, or the approximate photon lifetime in the cavity.
This translates into the so-called photon blockade condition g2

0/(ωmκ) � 1
[185, 198]. For the high coupling regime, observation of full entanglement
dynamics is conditioned on satisfying 2π/ωm � κ−1, which translates into
the resolved-sideband regime ωm � κ [199].
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Knowledge of the behavior of the EPR variance as a function of optome-
chanical coupling and temperature is useful when designing an experiment. We
observe that the optical entanglement in modes AB is strongly affected by the
dimensionless coupling k in a non-trivial way. Figure 4.6(a) shows the mini-
mum of the EPR variance for the optical modes within the photon lifetime κ−1

inside the cavity as a function of coupling k and oscillator initial temperature
T . In the low coupling regime, where k � 1/

√
2, above a threshold coupling of

k ≈ 0.1, min(DAB(t)) generally falls bellow one and hence the system always
exhibits entanglement. In contrast, the Duan criteria is very sensitive to k in
the high coupling regime k � 1/

√
2, presenting min(DAB(t)) ≥ 1 in the vicin-

ity of 2k2 = N , where N is a positive integer. Under this condition the criteria
becomes greater than 1 and no entanglement can be certified regardless of the
oscillator temperature. An immediate implication is that as k grows, the sepa-
ration between inconclusive regions becomes smaller. At high coupling values,
small uncertainties in the coupling can then place the system in a parameter
region in which the Duan criteria is inconclusive, presenting challenges to an
experiment. Therefore, increasing coupling may not be the best strategy for
an experiment aimed at verifying optical entanglement.

Moreover we observe that entanglement persists well above the micro-
kelvin temperatures reported in current optomechanical experiments [15, 55,
56,162], consistent with the theoretical results for the linearized regime in [34].
Conversely, from our numerical calculations, we have observed that although
the minimum value of DAB(t) remains well below 1, the time spent below
this threshold becomes increasingly smaller as the temperature grows higher,
making it effectively harder to experimentally verify entanglement with the
Duan Criteria at micro-kelvin temperatures.

The mean number of photons in the cavity also plays an important
role in optical entanglement generation. Figure 4.6(b) shows a surface plot
of min(DAB(t)) within the photon lifetime as a function of the coherent state
amplitudes α and β, taken to be real numbers for simplicity. The Duan Criteria
can only be conclusive when the energy is approximately evenly distributed
among the two optical modes, which happens when α ∼ β. For the parameters
used, the optimal coherent amplitudes that minimizes DAB(t) are found to be
α ∼ β ∼ 0.91.

4.3.5
Experimental proposal

With increasing advances in the field of quantum cavity optomechanics
[15,55,56], experiments in the high coupling and long coherence time regimes
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Figure 4.6: (a) Minimum value of DAB(t) within the photon lifetime inside the
cavity, τ = κ−1 ∼ 15.6µs, as a function of (a) dimensionless coupling k and
mechanical oscillator’s temperature T , and (b) coherent state amplitudes of
α and β. The optimal coherent amplitudes that globally minimizes the Duan
criteria are found to be α ∼ β ∼ 0.91. We use ωa = ωb ' 2π · 1.59× 1014 Hz
and every other parameter as in in Table 4.3.

are expected, although observing entanglement as described in the present
work remains challenging. One notable exception and a promising candidate
is optomechanics with ultracold atomic ensembles, where a coherent cloud of
atoms is trapped within an optical cavity by a standing wave (trap beam)
and the collective center of mass coordinate effectively behaves as a quantum
mechanical oscillator which can be monitored by a second optical mode (probe
beam). Couplings as high as k ≈ 10 have been reported in such ultracold
experiments [162], and the system allows wide tunability of the relevant
parameters.

We remind that the optomechanical coupling between an ultracold
atomic cloud and a cavity optical mode is given in Equation (4-12) and, in
Table 4.1, we present the reported values from Ref. [162] for the experimental
quantities needed to determine it. We chose sin (2kaz0) = 1 and the wavelength
λb, for the optical mode B, should be chosen so that sin (2kbz0) = −1, as to
provide g0,a = g0,b.
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Table 4.1: Values reported in [162].
Parameter Units Value
Number of atoms - 105

Trap frequency ωm kHz 2π×40
Coupling k = g0

ωm
- 9.50

Cavity Finesse F - 5.8× 105

Cavity Length L µm 194
Cavity mirror’s radius R cm 5
Cavity Linewidth κ MHz 2π×0.66
Temperature T µK 0.8

For the entanglement dynamics experiment to be feasible, the photon-
lifetime τp must be greater than the entanglement period τe. One of the main
constraints in fulfilling this condition is set by the Finesse of the cavity.
Therefore, we look for the minimum value of τe/τp by varying the cavity
length L, the number of atoms N and the mechanical frequency ωm around
the values in Table 4.1, and then calculate the minimum Finesse necessary to
make τe/τp < 1 given the optimal values of L, N and ωm.

In doing these calculations, it is necessary to account for the changes in
the mode volume, given by Vc = πw2

aL, where

wa =
√
λa
2π
√
L(2R− L) (4-46)

is the mode’s waist, and the changes in the cavity linewidth

κ = F
νFSR

(4-47)

with νFSR = c/2L the cavity’s free spectral range. Finally, it is important to
make sure that k = g0/ωm 6=

√
n/2, n a positive integer, when the Duan

Criteria is inconclusive. We find that for L = 783 µm, N = 5.43 × 105

and ωm = 2π × 95 kHz ≈ 2π × 95.49 kHz the dimensionless optomechanical
coupling is k = 0.743 and the entanglement period to photon lifetime ratio
is τe/τp = 3.46. The Finesse should then be increased to 2.01 × 106, so that
τe/τp ' 1 and entanglement becomes measurable. The proposed Finesse is
about 1.5 times larger, so that τe/τp = 0.669.

Another parameter that could be varied are the radii of the cavity
mirrors. Considering 1 cm, 2.5 cm, 5 cm and 10 cm as possible radii, we find
the values presented in Table 4.2. As we can see, the Finesse constraint can be
relaxed provided that a smaller radius is used. Overall, the necessary values for
N , ωm and F differ by less than one order of magnitude from reported values
in the literature.
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Table 4.2: Optimal parameters for different cavity mirror’s radii.
R(cm) L(µm) N(105) ωm(kHz) F(106)

1 1211 3.85 2π×95 1.30
2.5 1035 5.64 2π×92 1.57
5 783 5.43 2π×95 2.01
10 669 5.80 2π×91 2.47

Therefore, in order to observe entanglement dynamics, we propose the
parameters presented in Table 4.3. With these values the resulting photon
lifetime is τp = 15.7 × 10−6 s and within this lifetime the minimum value for
the optical EPR variance is found to be DAB(t) ≈ 0.8. This suggests that in
these systems the observation of mechanically-induced optical entanglement
can be within reach.

Table 4.3: Proposed values for the experimental implementation with ultracold
atoms.

Parameter Units Value
Number of atoms N - 5.43× 105

Trap frequency ωm/2π kHz 95.49
Coupling k = g0

ωm
- 0.74

Mechanical dissipation Γ/2π kHz 1
Cavity Finesse F - 3× 106

Cavity Length L µm 783
Cavity Linewidth κ/2π kHz 10.19
Temperature T µK 0.8
Mean photon number |α|2 = |β|2 - 0.25

Once DAB(t) < 1, predicted by equation (4-30) and shown in Figure
4.5, the optomechanical interaction can be switched off by acting on the trap
beam and moving the oscillator with respect to the nodes of the probe beam.
Quantum correlations can then be readout from the leaking probe field of the
cavity by using homodyne detection techniques [197,200].

Moreover, following [162] where the motion of an ultracold gas of 87Rb
was studied, we estimate the maximal heating rate of a cloud of atoms due
to backaction from each optical mode, Rc = Ng2

0/(4Γκ)Rfs, and due to
spontaneous emission, Rfs = ~2k2

pg
2
0ncavΓ/(m∆2

ca), where kp ' 2π/780 nm−1

is the probe wave vector, m ' 1.44× 10−25 kg is the atomic mass of 87Rb, ncav

is the mean photon number for each optical mode and ∆ca/(2π) ' 209.16 GHz
is the detuning between the frequencies for the optical modes and the atomic
resonance frequency. Given the proposed parameters, heating is dominated by
the backaction heating rate, Rfs � Rc ' 5.98× 10−32 J/s. We note that when
compared to the phonon energy, the maximal heating rate is much smaller than
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phonon and photon loss decoherence rates,Rc/(~ωm) ' 9.45× 10−4 Hz� κ,Γ.
Therefore, reheating of the mechanical oscillator should play a negligible role
during the course of the experiment.

4.4
Conclusions

In this Chapter, we have seen how the so-called radiation pressure
interaction arises in three different optomechanical setups following the same
Hamiltonian. We also discovered the corresponding unitary time evolution
operator describing the closed dynamics of these systems. This allowed us to
study the entanglement dynamics of a “mirror-in-the-middle" optomechanical
system, where two optical modes interact dispersivelly with a single mechanical
mode.

We have seen that an initially separable quantum state can evolve to
an entangled one, exhibiting birth, death and revivals of entanglement and
entropy for qubit and continuous variable states; moreover, the appearance
of entanglement in this setting evidences the nonclassical nature of the me-
chanical oscillator. Therefore, optical entanglement will arise if and only if the
mechanical oscillator is quantum mechanical.

The entanglement dynamics is strongly influenced by the system param-
eters, notably the dimensionless optomechanical coupling k = g0/ωm and the
mean number of photons in the experiment. We have shown the existence of
two distinct regimes depending on whether k < 1/

√
2 or k ≥ 1/

√
2. In ad-

dition, we have observed that optical entanglement is maximized when the
energy is evenly distributed in the optical modes and that it persists at micro-
kelvin temperatures of the mechanical mode. These are valuable informations
when designing an experiment. Optomechanics with ultracold atomic ensem-
bles presents an interesting candidate for implementing the studied entangle-
ment dynamics.

Although a promising candidate, the dispersive Hamiltonian is not the
only available platform to untangle the dynamics of entanglement and informa-
tion flow in optomechanical systems. Exploring alternatives such as coherent
scattering [48, 49, 51, 55, 56, 201] might prove to be a very fruitful approach
to observe entanglement and nonclassicality in experimental optomechanical
systems.
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5
Coherent Scattering

Testing quantum mechanics in novel regimes, such as observing quan-
tum effects in systems with many constituents or a large number of degrees-
of-freedom, is one of the cornerstones of fundamental science and a promising
achievement towards new technologies. A number of experiments have con-
tributed along that direction by studying the quantum mechanics of nano- and
microscale objects. For instance, entanglement of hundreds of ions has been
observed and controlled [202], interferometric systems have achieved micron-
spaced superposition of atomic wavefunctions [203], coherence in Bose-Einstein
condensates has been observed [204] and ground state cooling of micron-sized
cantilevers and their coupling to superconducting quantum electronics demon-
strated [205].

Optically levitated nanoparticles allow exceptional control over transla-
tional [15, 16, 47] and rotational [17–19] degrees-of-freedom and achieve excel-
lent environmental isolation [1,21], thus providing a promising setup for push-
ing the boundaries of quantum theory towards unexplored regimes. Proposals
for generating spatial superpostion of levitated nanoparticles have been put
forward [10,184,206], as well as for testing collapse models [207] and witness-
ing nonclassicality through recurrence of optical squeezing [182] and optical
entanglement [157]. Moreover, levitated systems can give rise to steady-state
entanglement [32–34,51,208] and help in the search for new physics [209]. On
the experimental front, the possibility of detecting nonclassical correlations in
levitated particles has been demonstrated [68]. Effective 3D cooling [55, 56],
ground state cooling [15, 16] and strong light-matter coupling have been real-
ized [48]. All of these are essential requirements towards entering and control-
ling the mesoscopic quantum regime.

Ground state cooling of levitated nanoparticles along a single axis was
first enabled through the so-called coherent scattering interaction [15,53], and
it has been theoretically shown that simultaneous 2D ground state cooling is
possible with the same technique [57]. In this cooling scheme, motion of the
particle coherently scatters photons from the trapping beam into an optical
cavity tuned to enhance scattering of photons that carry away energy from the
trapped object [15,54]. Following the recent interest on entanglement dynamics
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in optomechanical systems [157, 210–213], coherent scattering has also been
considered as a platform for generating mechanical entanglement [50,51].

We begin this Chapter by deriving the many-particle coherent scattering
Hamiltonian in close analogy to [54, 214], where an arbitrary number of
nanoparticles share a common optical cavity. We will see that by appropriate
positioning of the particles with respect to the cavity nodes one can minimize
the dispersive optomechanical interaction and favor the coherent scattering
terms. Although the unitary dynamics is generated by the Hamiltonian, real-
life quantum systems, however, are open. For this reason, we proceed to model
the environmental interactions through a set of quantum Langevin equations,
associated Lyapunov equation and decoherence mechanisms. We conclude
this Chapter studying the entanglement generation in both closed and open
dynamics, simulated with a custom numerical toolbox [215], see Appendix C.

5.1
Levitated nanoparticle Hamiltonian

The system we are interested in is comprised of N optically trapped
dielectric nanoparticles (NP) of mass mj, each with radius Rj on the order
of magnitude of 100 nm, refractive index nR,j, homogeneous and isotropic
permitivitty εj ≈ n2

R,j, and polarizability αj ≡ 3ε0 εj−1
εj+2 . Each NP is optically

trapped by an independent optical tweezer (OT) and placed on the axis of
a Fabry-Pérot cavity of length L and resonance frequency ωc, as depicted in
Figure 5.1. The tweezers are assumed to be sufficiently apart such that any
overlap and cross-talk between the traps can be neglected. All OTs propagate
perpendicularly to the cavity axis, have the same frequency ωt = 2πc/λt and
their polarization vectors et,j can be decomposed as et,j = cos(θj)ex+sin(θj)ey
along the cavity axes.

Following [54], the total Hamiltonian governing the system dynamics can
be written as

Ĥ = ĤNP + Ĥfield + Ĥint , (5-1)
where the first term is the energy of the free NPs, the second term is the total
energy stored in the electromagnetic (EM) field and the third term represents
interactions between the NPs and the EM field. To place this Hamiltonian
in a suitable form, we consider the different contributions from the electric
field present in the system and work on approximating each of these terms
individually.

The total electric field is considered to be approximately given by a sum
of contributions from the fields of each OT, Et,j, the intracavity field, Êc, and
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Figure 5.1: Schematics of N optically levitated nanoparticles, each by its own
optical tweezer inside the same optical cavity. Every tweezer has the same
frequency which is tuned with the cavity resonance frequency such that the
scattered photons can survive inside the cavity. It is assumed that the tweezers
are sufficiently spaced such that any overlap between them are negligible. A
single external laser serves as the light source for the experiment which passes
through a beam splitter (BS) that allows for part of it to tweezer a nanoparticle
and part of it to follow to an amplifier and go on to the next BS. Information
about the system is retrieved through the leaking field from the rightmost end
mirror of the cavity.

the free-space field, Êf :

Ê(r) ' Êc(r) + Êf(r) +
N∑
j=1
Et,j(r) . (5-2)

The OTs are considered to be in strong coherent states [54] and thus well
described by a classical field. The mean value of the j-th OT’s electric field
operator in an appropriate rotating frame is given by

Et,j(r, t) = 1
2εt

w0,j

wj(z) e
−

(x−x0,j)2+y2

w2
j eiktz eiφG,j(z) eiωtt et + c.c. , (5-3)

where Pt,j is the power, kt = 2π/λt the wave-number, et,j the polarization
vector, w0,j the waist and εt,j, wj(z), φG(z), zR,j are the field amplitude, beam
width, Gouy phase and Rayleigh range, respectively. In close analogy to
Chapter 3, following the current notation, these quantities are given by

εt,j =
√√√√ 4Pt,j

w2
0,jπε0c

, (5-4)

wj(z) = w0,j

√
1 + z2/z2

R,j ,

φG(z) = − arctan(z/zR,j) ,
zR,j = ktw

2
0,j/2 .

The intracavity electric field is modelled as a standing wave described quantum
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mechanically by the operator

Êc(r) = εc
(
â† + â

)
cos(kcx)ey, (5-5)

where kc = 2π/λc is the wave vector, εc =
√

~ωc
2ε0Vc

the single photon electric field
for a cavity of mode volume Vc, â the time-dependent annihilation operator
and ey the cavity field polarization.

The free EM modes are also modelled quantum mechanically, described
by the operator

Êf(r) =
∑
k,e

εk(ekeik·rĉk,e + H.c.) =
∑
l

εl(eleik·rĉl + H.c.) , (5-6)

where εl =
√

~ωl
2ε0Vf

, Vf stand for the quantization volume and ĉk,e is the
annihilation operator of a free EM mode with wave-vector k and polarization
εk. To simplify the notation, the index l is used to denote the set {k, ek}. We
will see that the effect of interaction with this field is negligible if the NPs
are properly positioned within the cavity and sufficiently cooled down. We will
therefore drop any term involving the free EM field in the dynamics of the
system, however we add this term for completeness at this moment.

The free energy for the NPs and the the EM field [216] are, respectively,
given by

ĤNP =
N∑
j=1

P̂ 2
j

2mj

, (5-7)

Ĥfield = ε0
2

∫
Ê2(r) + c2B̂2(r)d3r ' ~ωcâ

†â+ ~
∑
l

ωlĉ
†
l ĉl , (5-8)

where P̂j = (P̂x,j, P̂y,j, P̂z,j) is the momentum operator vector for the j-th
particle.

In the long wavelength approximation, given by Rj � λc, λt,j, the
interaction Hamiltonian can be expressed as [54,214,216],

Ĥint = −1
2

∫
P (r)E(r)d3r ' −1

2

N∑
j=1

αj|Ê(r̂j)|2 (5-9)

= −1
2

N∑
j=1

αj

∣∣∣∣∣Êc(r̂j) + Êf(r) +Et,j(r̂j)
∣∣∣∣∣
2

,

where P j(r) = αjE(r) is the j-th NP polarization vector and α = αV =
4πε0R3 εj−1

εj+2 . Here r̂j = R0,j + R̂j denotes the center-of-mass position operator
of the j-th particle, with R0,j = (x0,j, 0, 0)T being the mean position of the

DBD
PUC-Rio - Certificação Digital Nº 1912841/CA



Chapter 5. Coherent Scattering 90

j-th OT along the cavity axis and R̂j = (X̂j, Ŷj, Ẑj)T the fluctuations of the
particle around R0,j. The interaction Hamiltonian is simplified by assuming
that the overlap term proportional to Et,j(r̂j)Et,i(r̂j) is negligible for i 6= j,
i.e., Et,i(r̂j) ≈ δijEt,i(r̂j).

In order to evaluate the final form of the interaction energy, we use the
definitions of each electric field given by Equations (5-3, 5-5, 5-6). The gaussian
tweezers will effectively trap the NPs close to their focus, confining them in
the vicinity of R0,j, in analogy to the discussion on Section 3.3. Thus we can
approximate the interaction Hamiltonian through a series expansion around
(X̂j, Ŷj, Ẑj) = 0 in each term. Moreover, as the optical modes’ frequencies
(ωt,j ≈ ωc) are much higher than the coupling rates present in the system, we
also take a rotating-wave approximation (RWA) at these frequencies in each
interaction term. Finally, we disregard the constant energy shifts as they do
not affect the dynamics of the system.

The tweezers-tweezers interaction give rise to 3D harmonic potentials on
the NPs, effectively levitating them with trapping frequencies ωi,j, i = x, y, z,
given by

−α2 |Êt,j(R̂)|2 =
∑
i=
x,y,z

mΩ2
j,i

2 R̂2
j,i , Ωj =


ωj,x

ωj,y

ωj,z

 =



√
4αjPt,j

mjw4
0,jπε0c√

4αjPt,j
mjw4

0,jπε0c√
2αjPt,j

mjw2
0,jz

2
R,jπε0c

 . (5-10)

The cavity-cavity interaction results in three terms:

−1
2αj|Ec(r̂j)|2 ≈ −~δj cos2(kcx0,j) â†â+~kcδj sin(2kcx0,j)X̂j

[
â†â+1

2

]
, (5-11)

with δj = αjωc
2ε0Vc

. One term proportional only to the cavity’s number operator,
responsible for the cavity frequency shift due to the presence of the j-th
particle, one proportional to the j-th NP position quadrature, acting as a
constant drive in the NP’s momentum, and an interacting term resulting in
the radiation pressure effect on the j-th NP by the cavity field, as discussed in
Section 4.1.2.

The cavity-tweezers interactions yield

− αjRe
(
Êc(r̂j)E∗t,j(r̂j)

)
≈ −αjεtεc sin(θj)

(
â† + â

)
(5-12)

×

 cos(ωtt)
(

cos(kcx0,j)− kcX̂j sin(kcx0,j)
)
− Ẑj

ktzRj − 1
zRj

sin(ωtt) cos(kcx0,j)
 ,

which gives rise to the coherent scattering (CS) interaction [54], effectively 2D
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coupling the NPs with the cavity field and a drive in the cavity field. The
nature of this interaction can be intuitively understood as due to the OT’s
photons being coherently scattered by the trapped NPs into the cavity mode,
populating it [53,54,56].

The free field interaction yields

−1
2αj|Ef(r̂j)|2 = − αj~

4ε0Vf

∑
l

∑
l′

√
ωlωl′el · el′(eik·r̂j ĉl + H.c.)(eik′·r̂j ĉl′ + H.c.) ,

(5-13)

however, it has been shown that in the long-wavelength approximation this
can be safely neglected [217] and, thus, it will be set aside from now on.

The cavity-free field interaction, with Gcf(l) = αjεlεcel ·ey/~, is given by

−αjRe
(
Êc(r̂j)Ê∗f (r̂j)

)
≈ −~

∑
l

Gcf(l)
(
â† + â

)
(eik·R0,j ĉl + e−ik·R0,j ĉ†l ) cos(kcx0,j) .

(5-14)

Lastly, the tweezers-free fields interactions are

−αjRe
(
Êf(r̂j)E∗t,j(r̂j)

)
≈ (5-15)

−~
∑
l

Gtf(l)
(eik·R0,j ĉl + e−ik·R0,j ĉ†l )

(
cos(ωtt)− ẑj

ktzR,j − 1
zR,j

sin(ωtt)
)

+ ik · R̂j(eik·R0,j ĉl − e−ik·R0,j ĉ†l ) cos(ωtt)
 ,

where Gtf(l) = αjεlεtel · ey/~. This term is the source of recoil heating of the
NP as they incoherently scatters light off the tweezers into free space [48].

Note that these terms that compose the interaction Hamiltonian have a
time dependency, which we can get rid off by moving into a rotating reference
frame at the frequency of the tweezers, ωt, according to

Ĥ → ÛĤÛ † − i~Û ∂Û
†

∂t
, Û(t) ≡ exp

iωtt
[
â†â+

∑
l

ĉ†l ĉl

] . (5-16)

We begin with the term relative to the explicit time dependency of
the unitary operator Û(t), which simply introduces a frequency shift in the
intracavity and free EM fields

−i~Û ∂Û
†

∂t
= −~ωtâ

†â− ~ωt
∑
l

ĉ†l ĉl .
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The interaction energy in Equation (5-10) has no dependency with the cavity
or free field operators and, thus, is not altered. However, the annihilation
operators for these modes transform according to

Û(t) â Û †(t) = e−iωt â Û(t) â† Û †(t) = e+iωt â†

Û(t) ĉl Û †(t) = e−iωt ĉl Û(t) ĉ†l Û †(t) = e+iωt ĉ†l

An immediate consequence of the above equations is that number operators
are not altered by this change of reference frame. Therefore, the free evolution
energy terms and the cavity-cavity term, Equation (5-11), remain the same.

The tweezer-cavity and tweezer-free interactions, respectively Equations
(5-12) and (5-15), transform analogously using the above identities and ex-
panding the time dependent trigonometric functions as combinations of com-
plex exponentials such that

Û
(
â† + â

)
cos(ωtt)Û † = +1

2
[
â†
(

ei2ωtt +1
)

+ â
(
1 + e−i2ωtt

)] RWA−−−→ 1
2
[
â+ â†

]
,

Û
(
â† + â

)
sin(ωtt)Û † = − i2

[
â†
(

ei2ωtt−1
)

+ â
(
1− e−i2ωtt

)] RWA−−−→ i

2
[
â† − â

]
,

where we once again applied a RWA by neglecting all rapidly oscillating terms
at frequency 2ωt. The tweezer-free term transforms analogously.

The cavity-free term, Equation (5-14) transform according to

Û(t)
(
â† + â

) (
eik·R0,j ĉl + e−ik·R0,j ĉ†l

)
Û †(t)

=
(
â† e+iωt +â e−iωt

) (
eik·R0,j ĉl e−iωt + e−ik·R0,j ĉ†l e+iωt

)
RWA−−−→ eik·R0,j â†ĉl + e−ik·R0,j âĉ†l

Finally, gathering all the terms above, we find the full Hamiltonian for the CS
system with N particles

Ĥ = ~∆â†â+ ~
∑
l

∆lĉ
†
l ĉl +

N∑
j=1

 P̂
2
j

2mj

+ R̂T
j Ω2

jR̂j

− ~Gj sin(θj) cos(kcx0,j)
(
â† + â

)
− ~

g0,j

2 sin(2kcx0,j)X̂j

− ~g0,j sin(2kcx0,j)â†â X̂j

+ ~Gx,j sin(kcx0,j) sin(θj)
(
â† + â

)
X̂j + i~Gz,j cos(kcx0,j) sin(θj)

(
â† − â

)
Ẑj

− ~
∑
l

Gtf(l)
[(
ĉle

ik·R0,j + ĉ†l e
−ik·R0,j

)
− i

(
ĉ†l e
−ik·R0,j − ĉleik·R0,j

)(
k · R̂j + ẑj

ktzR,j − 1
zR,j

)]
− ~

∑
l

Gcf(l)
[
e+ik·R0,j â†ĉl + e−ik·R0,j âĉ†l

]
cos(kcx0,j) , (5-17)
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where ∆ ≡ ωc − ωt −
∑N
j=1 δj cos2(kcx0,j) is the shifted cavity frequency,

∆l ≡ ωl − ωt is the shifted free field frequency, g0,j = kcδj are the dispersive
couplings with δj = αjωc

2ε0Vc
, Gx,j = kcGj and Gz,j = ktzR,j−1

zR,j
Gj are the bare CS

couplings in the x and z directions for the j-th particle with Gj = αjεtεc
2~ .

Equation (5-17) is a rather convoluted Hamiltonian, let us break it apart.
The first line dictates the free evolution of the cavity mode, the free EM
field and the trapped NPs, all of which are described as quantum harmonic
oscillators. The second line describes constant drives on the cavity field and
NPs, in Section 5.2.1.1 we will study the effect of a driving term. The third
line is the dispersive coupling we have already dealt with in Chapter 4; notice
that if the tweezers’ polarizations are aligned with the cavity (θj = 0), then
there is only a dispersive coupling between the cavity and the NPs. The fourth
line describes the CS interaction, between the particle motion along the cavity
axis and in the perpendicular direction; notice that each direction couples with
a different cavity quadrature. The fifth line dictates a driving term in the free
field and a coupling with the NPs. At last, the sixth line creates a coupling
between the cavity and the free field describing photons exchange.

5.1.1
Coherent Scattering Hamiltonian

In order to favour the CS couplings over the dispersive ones, we place
the NPs’ mean position at the cavity nodes (kcx0,j = (2nj + 1)π/2, nj ∈ N) by
properly positioning their respective OT. Consequently the total Hamiltonian
simplifies to

Ĥ/~ ≈ ∆â†â+
N∑
j=1

ωj b̂
†
j b̂j +

N∑
j=1

gj (â† + â)(b̂†j + b̂j) , (5-18)

where b̂j(b̂j) is the annihilation (creation) operator for the j-th NP such that
X̂j = xZPF,j(b̂†j + b̂j), with xZPF,j =

√
~/(2mjωj) the zero point fluctuation for

the j-th NP. Note that the shifted cavity frequency simplifies to ∆ = ωc − ωt

and gj ≡ xZPF,jGx,j sin(θj) are the CS coupling.
We also observe that for the case of a single NP, the Hamiltonian is

symmetric between optical and mechanical modes. We note that it describes
also the situation within the linearized dispersive optomechanical approxima-
tion [23].

Moreover, we have chosen to disregard the coupling between the NPs and
the free field. For typical experimental values [15,218], one usually have w0,j ≈
0.7µm such that ktzR,j−1

zR,j
≈ kt ' 5.9·10−3 nm−1, ωj ≈ 2π·305 kHz, and the mass

of a single nanoparticle mj ≈ 2.83 fg such that xZPF,j ≈ 3.1 pm. Therefore, for
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a particle in the motional ground state, it is expected that its coupling to the
free field contribution to the total Hamiltonian plays a negligible role compared
to the first term in the Equation above, as kt · xZPF,j ∼ k · xZPF,j � 1.

If we consider a more energetic initial quantum state for the nanoparti-
cles, say a thermal state at temperature T = 10 K, through the equipartition
theorem we could assert that initially

√
〈x2

j〉 =
√
kBT/(mjω2

j ) ' 5.85 nm, such
that we would still have kt ·

√
〈x2

j〉 ∼ k ·
√
〈x2

j〉 � 1. Therefore, we can safely
ignore the nanoparticles’ interaction with the free field for sufficiently cooled
down particles, making the free field evolution uncoupled to the nanoparticles
and, thus, ignored.

5.2
Quantum Langevin equations

In Section 4.2, we studied the closed quantum dynamics of a system
under the unitary time evolution of a dispersive Hamiltonian. This description
captures the essential properties of the dynamics of the system, at the
cost of relying in an idealized scenario. In this Section, we introduce a
more general/realistic description of an optomechanical experiment by also
considering its interaction with the environment, which we model through
the standard treatment of a set of quantum Langevin equations (QLEs) for
optomechanics [23,33,40,219–221].

5.2.1
Input-Output formalism

Our discussion starts with only the optical mode of a Fabry-Pérot cavity.
In a realistic scenario, the end mirrors that form the optical cavity are not
perfect and allow photon transfer between the resonant photons inside the
cavity and the EM field outside it, as shown in Figure 5.2.

output

input

Figure 5.2: Fabry-Pérot cavity with an imperfect rightmost end mirror.

Consequently, we model the complete system of the optical cavity field
and the external EM field through the Hamiltonian [219,222]

ĤIO = ~ωcâ
†â+ ~

∫ +∞

−∞
ωb̂†(ω)b̂(ω)dω + i~

∫ +∞

−∞
κ(ω)

[
â†b̂(ω)− âb̂†(ω)

]
dω ,

(5-19)
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where â (â†) stand for the annihilation (creation operator) operator for the
cavity mode with frequency ωc; b̂ (b̂†) stand for the annihilation (creation
operator) operator for the external field modelled as a bosonic bath; and κ(ω)
describes the coupling of between the cavity field and the bosonic bath mode
with frequency ω. We assume that different bath modes do not interact and,
thus, obey the commutation relations

[
b̂(ω), b̂†(ω′)

]
= δ(ω − ω′)1.

For simplicity, we have only considered one imperfect mirror for the
cavity and a generalization for losses through both mirrors is straightforward.
Moreover, we also made the integrals over the external EM field frequencies
range inside (−∞,∞). Negative frequencies might seem contradictory, however
it is common in quantum optomechanics to work in a rotating reference frame,
at frequency Ω, such that the practical frequency range ω ∈ (0,∞) transforms
into ω ∈ (−Ω,∞). As optical frequencies tend to be very large compared to
the coupling rates and natural frequencies of the system, the frequency range
considered above is a good approximation to the real physical situation.

Aiming at a set of quantum Langevin equations, we derive the Heisen-
berg’s equation of motions for â and b̂:

˙̂
b(ω, t) = −iωb̂(ω, t) + κ(ω)â(t) , (5-20)

˙̂a(t) = −iωcâ(t) +
∫ +∞

−∞
κ(ω)b̂(ω, t)dω . (5-21)

We now define b̂0(ω) ≡ b̂(ω, t0) as the bath’s annihilation operator on the
initial time t0 < t, and obtain a general form for b̂(ω, t) from Equation (5-20)

b̂(ω, t) = e−iω(t−t0) b̂0(ω) + κ(ω)
∫ t

t0
e−iω(t−t′) â(t′)dt′ . (5-22)

This is done in order for us to substitute it back into the equation
of motion for the cavity annihilation operator and effectively eliminate the
dependency with the external EM field dynamics, giving rise to

˙̂a(t) = −iωcâ(t)+
∫ +∞

−∞
κ(ω) e−iω(t−t0) b̂0(ω)dω+

∫ t

t0

∫ +∞

−∞
κ2(ω) e−iω(t−t′) â(t′)dt′dω .

(5-23)
In order to make the resulting equation of motion to be in the form

of a Langevin Equation we introduce the First Markov Approximation. The
coupling κ(ω) is considered to be independent of the bath mode frequency,
κ(ω) ≡

√
κ/2π, where κ is the cavity linewidth as defined in Section 2.3. We

also define the input field operator

b̂in(t) ≡ 1√
2π

∫ +∞

−∞
e−iω(t−t0) b̂0(ω)dω (5-24)
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which describes the optical input fluctuation acting on the cavity field. This can
be promptly understood once we observe the resulting form of the equations
of motions for the cavity field operators

˙̂a(t) = −iωcâ(t) − κ

2 â(t) +
√
κ b̂in(t) , (5-25)

˙̂a†(t) = +iωcâ
†(t)− κ

2 â
†(t) +

√
κ b̂†in(t) . (5-26)

We note that if the external EM field is considered to be in a vacuum
state, a realistic assumption in most optomechanical experiments, then b̂in and
b̂†in are zero-averaged and delta-correlated optical input noise terms, satisfying
〈b̂in(t)b̂†in(t′)〉 = δ(t− t′) [219]. Observe that the dynamics this QLEs entails is
Markovian.

Moreover, had we considered t1 > t as the “initial time”, we would arrive
at a time-reversed Langevin equation [219] and, analogously to (5-22), define

b̂out(t) ≡ −
1√
2π

∫ +∞

−∞
e−iω(t−t1) b̂1(ω)dω . (5-27)

This quantity is interpreted as the output field leaking from the optical
cavity, which can be experimentally accessed and carries information about the
internal degrees of freedom of the cavity, as can be seen from the input-output
relation

b̂out(t) + b̂in(t) =
√
κ â(t) . (5-28)

Finally, we move to a quadrature representation. For the cavity field,
X̂(t) ≡ â†(t) + â(t), P̂ (t) ≡ i[â†(t) − â(t)]; for the input field: X̂in(t) ≡
b̂†in(t)+ b̂in(t), P̂in(t) ≡ i[b̂†in(t)− b̂in(t)]. Thus, we obtain another set of quantum
Langevin equations for the cavity field

˙̂
X(t) = ωcP̂ (t)− κ

2 X̂(t) +
√
κX̂in(t) , (5-29)

˙̂
P (t) = −ωcX̂(t)− κ

2 P̂ (t) +
√
κP̂in(t) . (5-30)

5.2.1.1
External laser driving

Consider the case where the optical cavity is not only interacting with a
external field in a vacuum state but it is also actively driven by an external
laser, as depicted in Figure 5.3.

Still working within the First Markov Approximation, a strong coherent
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Laser

Figure 5.3: Schematics of an optical cavity being actively driven by an external
laser.

drive into the cavity, at the laser frequency ωd, transforms the bosonic bath
annihilation operator as b̂(ωd) e−iωdt →

√
2π
κ
Ed e−iωdt +b̂(ωd) e−iωdt, where Ed ∈

R is the cavity drive in units of
√
# photons/s [222]. Making this substitution

into the Hamiltonian in equation (5-19), we obtain the driving term

ĤIO → ĤIO + i~Ed(â† e−iωdt−â e+iωdt) . (5-31)
Let us forget for a moment the Input-Output interaction and take a look

at the Heisenberg equations arising solely from the interaction with this driving
term

˙̂a = −iωcâ + Ede
−iωdt , (5-32)

In the following, we will make the Anzats that the equation above is solved by

â(t) = â(0) e−iωct +F (t) , (5-33)
where F (t) is some scalar function with F (0) = 0. After plugging this Ansatz
back into (5-32) and performing some simple algebraic manipulation, it is
easy to see the Heisenberg equation is solved by our proposed solution if the
following differential equation is satisfied

iωcF (t) + Ḟ (t) = Ede
−iωdt , (5-34)

with initial condition F (0) = 0. Therefore, F (t) is given by

F (t) = 2 Ed
ωc − ωd

sin
(
ωc − ωd

2 t
)

e−i
ωc+ωd

2 t . (5-35)

Let us discuss the physical meaning of the results above. First, Equation
(5-31) tell us how the energy of the system is altered by the presence of a strong
external laser. Secondly, Equation (5-33) indicates that the effect of this laser
is to displace the annihilation operator by F (t) at time t.

Consider the case of an initially empty cavity starting in the vacuum
state |ψ(0)〉 = |0〉, at some latter time t, we can easily find the time evolution
of this state employing Equation (5-33):
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â(t) |0〉 = e−iωct â |0〉+ F (t) |0〉 = F (t) |0〉 (5-36)

Now, â(t) = Û(t)†âÛ(t), where Û(t) is the time evolution operator associated
to ĤIO. Hence

|Ψ(t)〉 = Û(t) |0〉 ⇒ â |Ψ(t)〉 = F (t) |Ψ(t)〉 (5-37)

Consequently, we find that |Ψ(t)〉 is a coherent state, with average photon
number |F (t)|2. The same analysis as above can be carried out starting with
some coherent state |α〉, instead of the vacuum. We then see that the driving
term takes this state into another coherent state with amplitude α e−iωct +F (t).

We end our discussion on this subject by analysing the resonance case
ωd → ωc, which reduces F (t) to:

FR(t) = e−iωctEdt. (5-38)

Notice that, in this case, if we drive the cavity for T seconds, starting from
the vacuum, then the cavity will be prepared in a coherent state with E2

dT
2

photons. We observe that the limit taken above rests on the assumption that
|ωc− ωd|T � 1, which holds as long as the detuning |ωc− ωd| is much smaller
then T−1.

5.2.2
Quantum brownian motion

We now consider the environmental effect on the levitated NP. Current
experimental implementations with levitated NP often place the system in-
side vacuum chambers in moderate to high vacuum (pressures ranging from
10−6 mbar [218] to 1.4 mbar [48], for example) which results in excellent en-
vironmental isolation [1, 21] for such systems. However, there is always some
residual gas inside these chambers that, at the same time, imprints random
kicks in the NP’s momentum and dampens its motion, as depicted in Fig-
ure 5.4. Following [220], we present a description of this quantum Brownian
motion.

Let M be the mass of a particle with canonically conjugate position and
momentum operators given by Q̂ and P̂ under a potential V (Q̂).

The system is modelled to be in contact with a heat bath modeled as
a set of N uncoupled harmonic oscillator of mass mi, natural frequency ωi,
position x̂i and momentum p̂i. The Hamiltonian for this whole system reads

Ĥ = P 2

2M + V (Q) +
N∑
j=1

p̂2
j

2mj

+
mjω

2
j

2 x̂2
j + Ĥint . (5-39)
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gas

Figure 5.4: Levitated nanoparticle and the surrounding gas imprinting random
kicks and damping on its motion.

where the interaction energy between the system and heat bath is given by a
Caldera-Leggett-like Hamiltonian [223]

ĤSB = −Q̂
N∑
j=1

cj x̂j + Q̂2
N∑
j=1

c2
j

2mjω2
j

(5-40)

where ci is the coupling strength between i-th mode of the heat bath and the
particle. Note that the first interaction term is a position-position coupling
equivalent to the CS coupling derived in Section 5.1 and, if the system is
subjected to an harmonic potential, the second interaction term only shifts
the natural frequency of the system.

As a mean to obtain a better physical interpretation of this form of
interaction, we make the transformation x̂j = λjx̂

′
j, λj ≡ mjω

2
j/cj, such that

the total Hamiltonian for the system and heat bath can be recast as

Ĥ = P 2

2M + V (Q) +
N∑
j=1

p̂2
j

2mj

+
mjω

2
j

2

(
Q̂− x̂′j

)2
, (5-41)

and we observe that while the particles is subject to a potential V , each
constituent of the heat bath is modelled as if attached to the particle by a
spring. In the following, we forget this rescaling.

In order to arrive in a QLE, we will follow the same procedure as in the
previous section. First, we derive the Heisenberg’s equations of motion for the
NP

d

dt
Q̂ = 1

M
P̂ , (5-42)

d

dt
P̂ = i

~
[
V (Q), P̂

]
+

N∑
i=1

(
cix̂i

)
−Q

N∑
i=1

c2
i

miω2
i

, (5-43)

and, analogously for the heat bath, we arrive at the following equation of
motion
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¨̂xi + ω2
i x̂i = ci

mi

Q̂ . (5-44)

We proceed to eliminate the heat bath’s information from the particle
dynamics by finding a formal solution for the time evolution of heat bath’s
position

x̂i(t) = x̂i(t0) cos
(
ωi(t− t0)

)
+ p̂i(t0)
miωi

sin
(
ωi(t− t0)

)
+
∫ t

t0

ci
miωi

sin(ωi(t− s))Q̂(s)ds (5-45)

where t0 is the initial time of the particle-heat bath coupling, and insert it
back into the particle’s equations of motion

˙̂
P = i

~
[
V (Q̂), P̂

]
− Q̂

N∑
i=1

c2
i

miω2
i

+
N∑
i=1

ci

x̂i(t0) cos
(
ωi(t− t0)

)
+ p̂i(t0)
miωi

sin
(
ωi(t− t0)

)
+

N∑
i=1

c2
i

miωi

∫ t

t0
sin(ωi(t− s))Q̂(s)ds . (5-46)

We proceed to perform an integration by parts in the last term on
the previous equation and simplify our notation. This way we arrive at a
generalized Langevin equation where the information the bath is completely
encompassed inside the memory kernel γ(t) and the external force term f̂(t):

˙̂
P (t) = i

~
[
V (Q̂), P̂ (t)

]
−
∫ t

t0
γ(t− s) ˙̂

Q(s)ds− γ(t− t0)Q̂(t0) + f̂ ′(t) (5-47)

where

γ(t) ≡
N∑
i=1

c2
i

miω2
i

cos(ωit) , (5-48)

f̂ ′(t) ≡
N∑
i=1

ci

x̂i(t0) cos
(
ωi(t− t0)

)
+ p̂i(t0)
miωi

sin
(
ωi(t− t0)

) . (5-49)

The above equations tell us that by tracing out the bath degrees of free-
dom we end up with a form of quantum Langevin equation. The dissipation is
mediated through the memory kernel γ(t), introducing a non-Markovianity in
the particle’s dynamics. Moreover, the particle is driven by a force proportional
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to the particle’s initial position, and by an external force f̂(t) that only de-
pends on the heat bath initial quadratures, whose unknown initial conditions
gives rise to the stochasticity of this term in the classical regime [224].

In the following, we will use the continuous limit of N →∞ as to obtain
the irreversible properties of the heat bath, following the prescription outlined
in [220]

N∑
j=1

c2
j

mjω2
j

(· · · )→
∫ ω

0

c(ω)2

m(ω)ω2 (· · · )dn
dω
dω = 2Mγ

π

∫ ω

0
(· · · )dω (5-50)

where dn/dω is the oscillator density, ω is the frequency cutoff of the reservoir
oscillator spectrum and γ is the damping amplitude. Thus, in this limit, the
memory kernel reduces to

γ(t) = 2Mγ

π

∫ ω

0
cos(ωt)dω . (5-51)

Formally, we can get rid of the non-Markovianity by assuming an infinite
cutoff frequency for the heat bath and using the following property

δ(t− t′) = 1
π

∫ ∞
0

cos(ω(t− t′))dω , (5-52)
such that the memory kernel becomes delta-correlated

γ(t)→ 2Mγδ(t) . (5-53)

where γ ∈ R is a free constant in this model, which we will better define in
Section 5.3.

By further setting t0 → −∞, in such a way that the term proportional
to Q̂(t0) dies out, the QLEs for the particle transform into:

˙̂
Q(t) = 1

M
P̂ (t)

˙̂
P (t) = i

~
[
V (Q̂), P̂ (t)

]
−Mγ

˙̂
Q(t) + f̂ ′(t)

Finally, as we are interested in applications to levitated NPs, we set V
to be an harmonic potential, V (Q̂) ≡ MΩ2

2 Q̂2. For simplicity, we also move to
dimensionless quadratures q̂ =

√
2MΩ
~ Q̂ and p̂ =

√
2

~MΩ P̂ such that the QLEs
simplify to

˙̂q(t) = +Ωp̂(t) (5-54)
˙̂p(t) = −Ωq̂(t)− γp̂(t) + f̂(t) (5-55)
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where we rescaled the external force: f̂(t) =
√

2
~MΩ f̂

′(t).

Let us now take some time to study the nature of the external force f̂(t)
when each mode of the heat bath is in a thermal state at temperature Tth with
occupation number nth,j = 1/

[
exp

(
~ωj
kBTth

)
− 1

]
, kB is the Boltzmann constant.

It is straightforward to verify that the external force has zero mean value,
〈f̂(t)〉 = 0. Moreover, in the continuous limit, its correlation function becomes

〈f̂(t)f̂(t′)〉 = 2γ
πΩ

∫ ω

0
ω cos(ω(t− t′)) coth

(
~ω

2kBTth

)
− iω sin(ω(t− t′)) dω ,

which can be recast in a more compact form as [34,41]

〈f̂(t)f̂(t′)〉 = 2γ
πΩ

∫ ω

0
e−iω(t−t′) Sth(ω)dω , (5-56)

where Sth(ω) ≡ ω
[

coth
(

~ω
2kBTth

)
+ 1

]
is the thermal noise spectrum [41]. We

observe that from the form of this correlator, the stochastic noise automatically
satisfies the fluctuation-dissipation relation [39,221].

This force can be easily reduced to the a standard white gaussian noise
if we consider an infinite cutoff frequency, ω → ∞, and move to the high-
temperature limit, kBTth � ~Ω. This is a realistic limit as current experimental
implementations with levitated NP usually have mechanical frequencies in the
order of hundreds of kilohertz [15,48,55] which translates into minuscule lower
bounds for the heat bath’s temperature; for example with Ω = 100 kHz, we
would need the environmental temperature to obey Tth � 4.8µK, which is
safely guaranteed. Therefore, in this regime, the correlation function simplifies
to

〈f̂(t)f̂(t′)〉 = 2γ(2nth + 1)δ(t− t′) .

where nth =
[
1−exp[~Ω/(kBTth)]

]−1
is the average thermal occupation number

of each mode of the heat bath and 2nth + 1 ≈ 2kBTth/(~Ω) in the high-
temperature limit.

As a final remark, we note that the commutator at different times for
the external stochastic force is

[
f̂(t), f̂(t′)

]
= −2i 2γ

πΩ

∫ ω

0
ω sin(ω(t− t′)) dω = 2i Im

(
〈f̂(t)f̂(t′)〉

)
. (5-57)

DBD
PUC-Rio - Certificação Digital Nº 1912841/CA



Chapter 5. Coherent Scattering 103

5.3
Decoherence mechanisms

In this Chapter, we consider two major forms of decoherence/heating for
the nanoparticles: thermal decoherence from the collisions with the environ-
mental gas surrounding each NP and recoil heating as each NP incoherently
scatters light from its tweezer into free space.

For pressures below 10 mbar, the regime which current experiments
with CS interactions operate, the residual environmental gas damping on an
optically levitated NP is linear in the gas pressure pgas, following [22,48]

γ ≈ 15.8R
2pgas

mvgas
(5-58)

where vgas =
√

3kBTgas/mgas is the root-mean-square velocity of a gas molecule
with mass mgas at temperature Tgas; m and R are the NP’s mass and radius,
respectively. The associated thermal decoherence rate from the collisions with
the residual gas then becomes [22]

Γgas = γ nth .

The recoil heating rate arising from the photon recoil as a NP incoher-
ently scatters photons from the trapping tweezer into free space reads [22]

Γrecoil = 1
5
Pscatt

mc2
ωt

ω
(5-59)

where c is the speed of light and Pscatt = I0σscatt is the scattered power of a NP
from its tweezer; I0 = 2Pt/(πw2

0) is the tweezer’s intensity at its NP’s mean
position and σscatt = |α|2k4

t /(6πε20) the scattering cross section of the NP.

5.4
Coherent Scattering-mediated correlations between levitated nanospheres

In this Section we present the results of our work [52], where we
investigate how the coherent scattering interaction between a single cavity
mode and an arbitrary number of levitated nanoparticles can give rise to
quantum correlations among the various partitions of the system even at
room temperature. For high-vacuum environments (p < 10−9 mbar), it has
been shown that CS mediated mechanical entanglement can resist photon
scattering decoherence [50] and in moderate vacuum (p ∼ 10−6 mbar) steady
state entanglement is only possible at low environment temperatures around
Tenv,j ≈ 15 K [51]. In the latter regime, the crucial question of whether
mechanical entanglement could exist for realistic environmental temperatures
before the system achieves its steady state remained open.
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The system under study here is the same examined in Section 5.1,
depicted in Figure 5.1; we follow the same notation of that Section.

5.4.1
Quantum dynamics

Following our discussion on Section 5.1.1, we consider that the OTs
position the NPs on the cavity nodes such that the Hamiltonian that dictates
the closed unitary dynamics of the system is

Ĥ/~ ≈ ∆â†â+
N∑
j=1

ωj b̂
†
j b̂j +

N∑
j=1

gj (â† + â)(b̂†j + b̂j) . (5-60)

Furthermore, we follow the formalism presented in Section 5.2 to model
the open quantum dynamics of this system through a set of quantum Langevin
equations [33,39,40,150,221]. We consider that one of the cavity mirrors is not
perfect, resulting in a finite cavity linewidth κ and allowing photon exchange
between the cavity field and the external free field [219], see Section 5.2.1.
Moreover, each NP is considered to be in contact with its own thermal bath,
at temperature Tenv,j, see Section 5.2.2. As a consequence of the spaced apart
tweezers and moderate vacuum, we model the heat baths to be independent
of one another.

We use the following notation henceforth: the dimensionless position and
momentum quadratures for each particle x̂j = b̂†j + b̂j, p̂j = i(b̂†j − b̂j), and for
the cavity field Q̂ = â† + â, P̂ = i(â† − â), such that the quantum Langevin
equations read

˙̂
Q = +∆P̂ − κ

2 Q̂+
√
κ x̂in , (5-61)

˙̂
P = −∆Q̂− κ

2 P̂ +
√
κ p̂in −

N∑
j=1

2gjx̂j , (5-62)

˙̂xj = +ωj p̂j , (5-63)
˙̂pj = −ωjx̂j − γj p̂j + f̂j − 2gjQ̂ , (5-64)

where x̂in = â†in + âin, p̂in = i(â†in − âin) are the zero-averaged delta-correlated
optical input noise terms satisfying 〈âin(t)â†in(t′)〉 = δ(t − t′) [219]. γj is the
damping rate for the j-th NP, which is under the influence of zero-averaged
stochastic thermal noise f̂j [220] with correlation functions given by

〈f̂j(t)f̂k(t′)〉 = 2γj
ωj

∫ ωj

0
e−iω(t−t′) ω

[
coth

(
~ω

2kBTenv,j

)
+ 1

]
dω

π
δj,k
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Here, the reservoir cut-off frequency is ωj, and kB denotes the Boltz-
mann constant. Following our discussion in Section 5.2.2 for the high-
temperature regime, kBTenv,j � ~ωj, this thermal noise becomes delta-
correlated 〈f̂j(t)f̂k(t′)〉 ≈ 2γj(2nth,j + 1) δ(t − t′) δj,k [39, 220, 221], where
nth,j ≈ kBTenv,j/(~ωj) is the average thermal occupation number of each mode
of the j-th heat bath.

We are interested in the case where the j-th NP is initially in a thermal
state at temperature Tj with occupation number n0,j and the cavity field starts
in the vacuum state. The linear nature of the Langevin equations preserves
the Gaussianity of the initial states, allowing the use of the Gaussian quantum
information toolbox [194]. In particular, since Gaussian quantum states are
completely characterized by their first and second moments, we can focus
directly on the dynamics of the covariance matrix. See Appendix B for a
introduction to the structure of Gaussian states and definitions of useful
quantities used in remaining of this Chapter such as the logarithmic negativity,
von Neumann entropy and mutual information.

Note that first moments can be easily calculated once we recast the
Langevin equations in a more compact form,

˙̂
X(t) = AX̂(t) + N̂ (t) , (5-65)

where X̂ = (Q̂, P̂ , x̂1, p̂1, ...)T is the quadrature vector, N̂ =
(
√
κx̂in,

√
κp̂in, 0, f̂1, ...)T is the input noise vector and A is the drift ma-

trix.
Consider the formal expression for the quadratures

X̂(t) = eA(t−t0) X̂(t0) +
∫ t

t0
eA(t−s) N̂ (s) ds . (5-66)

Equipped with the fact that the initial states and input noise have zero average,
direct calculation shows that 〈X̂(t)〉 = 0 for all times.

The second moments of the system can be represented by the covariance
matrix (CM), with components defined as Vi,j = 1

2〈X̂iX̂j + X̂jX̂i〉. Using
Equation (5-66), we see that the CM satisfies the Lyapunov equation

V̇ = AV + V AT +D , (5-67)

where Dl,k δ(t − t′) ≡ 1
2〈N̂l(t)N̂k(t′) + N̂k(t′)N̂l(t)〉, such that D =

diag(κ, κ, 0, 2γ1(2nth,1 + 1), 0, 2γ2(2nth,2, . . .) is the diffusion matrix. We can
use the above dynamical equations to study entanglement within our system
both in the closed and open regimes.
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5.4.2
Unitary Entanglement Dynamics

It is expected that the unitary dynamics generated by (5-60) exhibits
entanglement between the various mechanical and optical modes in the system.
To gain some analytical insight into this entanglement generation consider the
formal limit ωj � ∆. For N = 2 NPs the Hamiltonian reduces to,

Ĥ0/~ ≈ ∆â†â+ g (â† + â)(x̂1 + x̂2) , (5-68)

where we assume for simplicity that both NPs couple equally to the optical
mode, g1 = g2 ≡ g. This simplified Hamiltonian can be exponentiated exactly
using the same techniques employed in calculating the unitary evolution oper-
ator for a dispersive optomechanical system [157] as discussed in Sections 4.2
4.3. The unitary time evolution operator for this case is U0(t) = exp

(
−iĤ0t/~

)
,

which reads

Û0(t) = e−iâ†â∆t e(âη(t)−â†η(t)∗)(g/∆)(x̂1+x̂2) e−i(g/∆)2(x̂1+x̂2)2 sin(∆ t) eig2(x̂1−x̂2)2∆t ,

(5-69)

where η(t) = 1 − e−i∆t. Note that the last two exponential terms contain
effective interactions among the NPs, given by products of the x̂1, x̂2 terms.
The presence of these optically mediated interactions lead to generation of
entanglement between the NPs within this simplified approximation. Moreover,
the the fact that the unitary operator is written in terms of periodic functions
hints at entanglement death and revivals.

In order to verify the entanglement generation in this regime, we numer-
ically solve the Lyapunov equation in the absence of noise and losses. Figure
5.5 shows numerical plots of the Logarithmic negativity (LN) and von Neu-
mann entropies for the various partitions of a system comprised of 2 NPs and
one optical mode, all initially in the ground state. The parameters used for
this simulations are shown in Table 5.2, except for ∆ = 10 × ωj, κ = 0 and
γj = 0∀j. From now on, unless explicitly stated otherwise, all NPs are taken
to be identical and Table 5.2 dictates all the parameters considered in the
simulations throughout the rest of this Chapter; see Section 5.4.4.

We observe that in the unitary CS scenario cyclic entanglement birth
and death are present, analogous to the dispersive optomechanical case [157].
Moreover, while the entropy of each bipartition is synchronized, the LN in the
mechanical bipartition only achieves local maxima when the optomechanical
LN are at their local minima. This points towards the idea that under certain
circumstances entanglement can flow through different partitions of the system,
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Figure 5.5: Simulation with N = 2 identical levitated NPs initially in the vac-
uum state following a closed unitary dynamics. Time evolution of logarithmic
negativity (blue) and von Neumann entropy (red) for each bipartition of the
system. In this simulation, we considered ∆ = 10 × ωj, ensuring the formal
limit ωj � ∆ while κ = 0 and γj = 0 ∀j, making the system closed. Due to
instabilities in the numerical simulation of the von Neumann entropy in the
mechanical bipartition, we show both the calculated values (dark red points)
and smoothed trace (light red line).

in this case back and forth between the optical and mechanical modes. It is
also instructive to consider the optical field as an environment for the two
NPs. Under this point of view, we can understand entanglement and entropy
oscillations as a consequence of the non-Markovian nature of the subsystems’
evolution.

5.4.3
Entanglement in a noisy environment

In any realistic experimental scenario the system under study is always
interacting with its environment. For this reason it is important to study
how the unitary entanglement dynamics is modified when the optomechanical
system is placed in contact with uncontrolled external degrees of freedom.

For a start, consider the experimentally challenging scenario where each
NP begins in the ground state and in contact with a cryogenic environment at
temperature 130 K [15]. This setting allows for entanglement of a large number
of NPs. Figure 5.6 shows the time evolving LN as a function of the number
of identical NPs in the cavity. We note that in this case the LN is symmetric
over all possible mechanical bipartitions provided the particle parameters are
identical, e.g. mass, coupling strength, bath temperature. As the number of
NPs in the cavity is increased we observe the maximum LN decreases: the
additional NPs act as an environment for the bipartite subsystem. This can
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also be understood as a consequence of monogamy of entanglement.

Figure 5.6: Time evolving LN between a pair of particles for an increasing
number of particles sharing the same cavity. Every NP is considered to be in
the ground state and in contact with a cryogenic environment at temperature
Tenv,j = 130 K, resulting in γj = 0.957 mHz.

In contrast to the result of Section 5.4.2, we observe that quantum
correlations between mechanical modes are only non-zero for a brief interval
of time, while their oscillating nature is washed out by interactions with
the environment. Since the environment is traced out and treated effectively
as damping and stochastic forces in a Markovian approximation, quantum
correlations between the system’s degrees of freedom are never recovered [225].
Moreover, as we consider a higher number of interacting NPs, both the
maximum of the LN trace and the time interval during which it is non-zero
decreases, i.e., the entanglement dilutes over the system due to monogamy
constraints.

In the following we restrict our attention to a system comprised of
N = 2 identical levitated NPs. This allows to study the system in a setting
where entanglement generation is maximized. The particles are considered to
be cooled to a thermal state at temperature 4.6µK, close to temperatures
achieved in current optomechanical experiments [15]. We consider the thermal
environment to be cryogenic, at 130 K. In Figure 5.7(a), we illustrate traces of
the LN and entropy evolving in time for each possible bipartition. Once again,
we observe loss of entanglement oscillations for the mechanical modes due
to interactions with the external environment. Note, however, that the opto-
mechanical entanglement persists over some oscillations before dying out in
the steady state at long times (not shown). Note also that the non-Markovian
features of the evolution such as oscillations of entropy, albeit present, are
strongly attenuated due to the Markovian nature of environmental interactions.

We can speak more broadly about the correlations within the system
employing the mutual information, a measure of the total classical and quan-
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Figure 5.7: Simulation with N = 2 identical levitated NPs with initial
temperature Tj = 4.6µK in contact with a cryogenic environment at Tenv,j =
130 K, γj = 0.957 mHz. (a) Time evolution of logarithmic negativity (blue)
and von Neumann entropy (red) for each bipartition of the system. (b) Mutual
information for the total system (yellow) and subsystem with only the levitated
NPs (blue) evolving in time.

tum correlations [226]. See Appendix B for details on the definition. In Figure
5.7(b), we plot the time evolving mutual information for the total system,
Itot, and the reduced system composed solely of the NPs, Iparticles. The parties
are initially uncorrelated as expected from the form of the separable states
at t = 0. It later becomes correlated during the system’s coherence time, as
defined in Section 5.4.4. In the reduced mechanical bipartition, CS-mediated
correlations are generated before quantum entanglement comes into play and
persists after entanglement death. As a final remark, we have solved the Lya-
punov equation for the steady state, given by AV +V AT +D = 0, and find that
E j,kN = 0∀ j, k. This is consistent with previous results in the literature [51]. The
steady state, however, displays non-zero total mutual information Itot ' 15.314
and Iparticles ' 14.223 meaning that although the LN cannot detect steady state
entanglement, general correlations among subsystems due to the CS interac-
tion are present.

So far, our focus has been centered on how coherent scattering-mediated
entanglement appears and evolves in time. We now shift our attention to the
LN’s dependency on experimentally controlled parameters in the search for
a configuration allowing room temperature mechanical entanglement. An in
depth discussion of the experimental feasibility of the parameters used in the
simulations is presented in Section 5.4.4.

Figure 5.8 shows the maximum of the LN between the two NPs within
the coherence time of the system, τ ' 4.15µs as quantified in Section 5.4.4, for
different values of initial temperature and occupation number in the presence
of an environment at room temperature (300 K). We can immediately see
that in a realistic scenario mechanical entanglement would only occur for
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Figure 5.8: Maximum of the logarithmic negativity within the system’s coher-
ence time for two particles as a function of their initial temperatures. Notice
that we need highly cooled particles to generate mechanical entanglement.

extremely cool particles. For Tj > 5µK we see the LN vanishes, and we note
that such temperature corresponds to one tenth of the occupation number
achieved by [15], implying that experimental verification of coherent scattering
generated entanglement at room temperature is a challenging achievement.

This difficulty could be partially circumvented by increasing the CS
coupling. In Figure 5.9, we show the time-dependent LN as a function of
the optomechanical coupling strength for an initial NP temperature of Tj ∼
4.6µK (occupation number n0,j = 0.0430). We readily see that entanglement
generation depends significantly on the optomechanical coupling strength.
Current state-of-the-art CS implementations achieve gj/ωj ∼ 0.2 [15], below
the region in which entanglement and its revivals are present. We note that
couplings as high as 2π × 110 kHz could be achieved by increasing the NP
radius and using higher power tweezers; in such regime, where gj/ωj ∼
0.36, entanglement starts to appear in the system. For higher values of
optomechanical coupling, we enter the strong coupling regime gj ≥ ωj where
birth, death and revivals of entanglement occur.

As a concluding remark, we note that another interesting feature of the
CS interaction is the generation of mechanical squeezing during the system’s
time evolution. Generation of squeezing using the CS Hamiltonian for a single
particle has been shown in [49]. We are able to show that squeezing is also
generated if more than one particle is present in the cavity. As an example,
consider the case of two NPs in the cavity initially in a thermal state. Figure
5.10 displays the Wigner function for a NP at different instants of time. As
we consider identical NPs, their Wigner functions are also identical and only
a single one is shown. We observe the generation of squeezing through the
appearance of elliptical shapes of the Wigner distribution and the calculated
lower than one squeezing degree η, defined as the ratio of the squeezed and
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Figure 5.9: Time evolving logarithmic negativity for different coupling
strengths, gj = g for all j. Here we considered every NP starting in a ther-
mal state at Tj ∼ 4.6µK (occupation number n0,j = 0.0430). Observe that in
the high coupling regime, g ∼ ω, entanglement birth, death and revivals are
present.

the antisqueezed quadratures, see Appendix B. The squeezed Wigner function
also rotates as a result of time evolution. The emergence of squeezing in multi-
particle CS could find interesting applications in quantum metrology of feeble
forces [10].
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Figure 5.10: Time evolution of Wigner function for N = 2 identical levitated
NPs. As the particles are identical, they posses identical functions. Black
dashed lines indicate the Wigner function semi-axes. Solid black lines denote
contours at half of its maximum initial value. As the particles are initially
in a thermal state the squeezing degree starts at η(0) = 1 and becomes
increasingly smaller as time progresses. The squeezing degree for each time
stamp is respectively η = (1, 0.840, 0.609, 0.454, 0.440); see Appendix B.

5.4.4
Experimental parameters

The parameters used in our simulations were adapted from Ref. [15].
There, a silica nanosphere (density of SiO2: 2200 kg/m3 [54]) was trapped by
an OT within a high-finesse Fabry-Pérot cavity mounted in a vacuum chamber
and cavity cooling through CS was performed to cool the CM of the NP into its
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motional ground state. The parameters values of this experimental realization
are presented in Table 5.1.

Table 5.1: Experimental parameters reported in Ref. [15]
Parameter Unit Value
Tweezer power Pt mW 400
Tweezer wavelength λt nm 1064
Tweezer waist (x axis) µm 0.67
Tweezer waist (y axis) µm 0.77
Trapping frequency ωx kHz 2π × 305
Cavity finesse F — 73, 000
Cavity linewidth κ kHz 2π × 193
Cavity length L mm 10.7
Cavity waist w0 µm 41.1
Cavity-tweezer detuning ∆ kHz 2π × 315
Particle mass m fg 2.83
Particle radius R nm 71.5
Particle zero point fluctuation xZPF pm 3.1
Vacuum chamber pressure pgas mbar 10−6

Environmental temperature Tgas K 300

In order to achieve a higher coupling between the NPs and the cavity
field than previously reported in [56], we propose slight adaptations of the
experimental parameters. First, we increase the radius of each NP to 100 nm;
second we raise the power of each trapping tweezer to 1 W and consider a
Gaussian beam waist of w0,j = 0.852µm, such that the trapping frequency
remains approximately the same ωj ≈ 2π × 305 kHz. Table 5.2 shows the
resulting proposed parameters. Unless explicitly stated otherwise, these are
the values considered in the simulations throughout this Section with all NPs
identical to each other.

Table 5.2: Parameter values used in this Chapter
Parameter Unit Value
Mechanical natural frequency ω kHz 2π × 305.4
Cavity-tweezer detuning ∆ kHz 2π × 315.0
CS coupling strength g kHz 2π × 109.2
Cavity linewidth κ kHz 2π × 193.0
Damping coefficient γ mHz 2π × 0.630
Particle initial temperature T0 µK 12.2
Environmental gas temperature Tgas K 300

These deviations from the parameters from [15] do not greatly affect the
coherence time of the system, before a NP becomes populated by a single
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phonon. This can be easily noticed by calculating the decoherence rates for
the particles, as shown in Section 5.3.

In regards to the recoil heating, we will only consider contributions arising
from the scattering of photons from the trapping tweezer of each particle. The
reasoning for this simplification is twofold. First, as the cavity is not actively
driven, its field intensity is much smaller than each tweezer intensity [218],
diminishing its contribution. Secondly, as we are considering non-overlapping
tweezers, the intensity of the j-th OT on the n-th NP, n 6= j, should be
negligible and, thus, disregarded. For simplicity, we may consider identical
environments surrounding each NP as the residual gas and temperature should
a priori be the same everywhere inside the vacuum chamber, resulting in a
common thermal decoherence rate Γgas ∀j. Furthermore, for the sake of brevity,
we can make the recoil heating rate Γrecoil approximately equal for all particles
if they are of the same material and size, and the tweezers have approximately
the same intensity at their focus.

Ref. [15] observed Γgas = 2π×16.1 kHz and Γrecoil = 2π×6 kHz resulting in
a coherence time corresponding to approximately 15 oscillations. Considering
particles of radii R = 100 nm results in a greater scattering cross section for
the tweezer’s photons and a inversion of the dominant decoherence mechanism
as now recoil heating Γrecoil = 2π × 29.9 kHz is greater the thermal heating
Γgas = 2π × 8.49 kHz. One should note, though, that a bigger recoil heating
rate still does not signify we must take into account interaction with the free
field as the total expected coherence time τ = 1/

(
Γrecoil + Γgas

)
' 4.15µs now

corresponds to 8 oscillations before a NP gains a single phonon [15].

5.5
Conclusion

When an optically levitated nanoparticle is placed inside an optical
cavity, it only dispersivelly interacts with the cavity field if the tweezer’s
frequency is far detuned from the cavity’s. However, if the these frequencies
are close to each other, the particle can scatter the trapping beam’s photons
into the optical cavity, populating the latter and creating another form of
optomechanical interaction between them, called coherent scattering. In this
Chapter, we have studied the Coherent Scattering Hamiltonian of an arbitrary
number of particles, describing N mechanical oscillators interacting with a
single cavity mode.

The resulting unitary dynamics has been shown to generate quantum
correlations in every bipartition of the system following cycles of entanglement
birth and death. Moreover, within each revival, the Hamiltonian appears to
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steam a flow of quantum correlations between the bipartitions, with mechan-
ical entanglement maximized exactly when opto-mechanical entanglement is
minimized.

In realistic experimental conditions, one has to consider the environ-
mental effects on the system. Following [150, 219], we have demonstrated the
quantum Langevin equations describing a mechanical system contact with an
environmental heat bath and an optical cavity field interaction with the sur-
rounding free electromagnetic field. Accordingly, we have show how to calcu-
late the decoherence rates present in a Coherent Scattering system: thermal
decoherence rate resulting the collisions with the environmental gas and recoil
heating rate resulting from the incoherently scattering light into free space
from a trapping tweezer.

For an open quantum dynamics, we have show that entanglement gener-
ation can still persist even in room temperature environments for some time
within experimentally reasonable parameters. Although entanglement die out
in the steady state [51], we have shown that general correlations are still present
in the system. It would be interesting to study if more general quantum cor-
relations, i.e. quantum discord, exist in the steady state and also quantify its
dynamics alongside entanglement.

We also studied the dependence of mechanical entanglement on exper-
imentally controlled parameters. We discovered that increasing the number
of NPs interacting with the optical field dilutes the entanglement over the
complete system and is detrimental to the creation of bipartite quantum cor-
relations. Such correlations are expected to only appear when the particles are
extremely cool, below the minimum occupancy achieved with current state-
of-the-art technology [15]. The CS coupling strength also plays a significant
role in entanglement generation, and revivals of entanglement only come into
play in the high-coupling regime, where gj > ωj. Squeezing is also generated
by the many-particle CS Hamiltonian. In summary, the coherent scattering
interaction propels optomechanics to the domain of complex quantum systems
within realistic scenarios. It will be interesting to see what new experiments
are enabled by this many-body mesoscopic quantum toolbox.
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6
Outlook

We conclude this work by presenting a brief overview on the main topics
discussed and an outlook on possible future research directions.

Interferometry

In Chapter 2, we have shown describe the circulating electromagnetic
field within any homodyne linear interferometer by finding an associated
directed weighed graph. By weighting and counting every possible optical
path, we also show how to extract the response factors for the interferometer’s
outputs and present examples of applications to cavity optomechanical setups
with multiple dispersive elements.

In order to explore the full potential of the diagrammatic method
developed in [58], it would be interesting to explore its connections with graph
theory and make use of its theoretical tools to optimize the application of the
so-called simplification rules, possibly extending it to more general heterodyne
and/or nonlinear interferometers [227–229]. Moreover, it could be interesting
to implement a software to transform some given optical configuration into
an equivalent weighted directed graph and apply the simplification rules.
This could allow us to solve complex interferometric devices, where even the
application of the simplification rules can become cumbersome.

Optical Tweezers

In Chapter 3, we studied the optical forces that arise on a dielectric
particle when it is placed in contact with optical beams, both in the dipole
regime and in the intermediary regime. Optical traps with two types of optical
beams were analyzed: gaussian and bottle. The gaussian beam was shown to
generate an effective 3D trapping potential close to its bright focus for particles
with larger refractive index than its medium. An optical bottle beam was also
defined, studied and shown to effectively trap particles with lower refractive
index than its medium close to its dark focus. This form of optical beam
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was also predicted to be capable of optically trapping living organisms whilst
reducing laser damage, when compared to gaussian tweezer.

Furthermore, in the decoupling approximation, the optical bottle trap
induces quartic and quadratic potential in the radial and axial directions,
respectively, on the trapped particle. Recently, characterization of nonlinear
forces in optical tweezers through the power spectral density of trapped particle
has been analyzed in a perturbative scheme [230]. It would be interesting to
envision an experimental procedure that could be able to identify non-harmonic
forces and measure its strength.

Structured light beam could also open the doors to go beyond the gaus-
sian optomechanics studied in Chapter 5. As in Chapter 4, where gaussianity
was lost due to the form of the dispersive interaction with the cavity field,
non-harmonic forces from the optical tweezer alone could prepare an trapped
particle in a non-gaussian. More so, one could envision an optical beam to
be in a non-gaussian quantum state and transfer it to the trapped particle’s
motional state [231].

Quantum Optomechanics

Finally, in Chapters 4 and 5, we examined how the different light-matter
interactions arise in various quantum cavity optomechanical experiments.
The entanglement generation and subsequent dynamics was studied for these
systems following both closed and open dynamics.

In Chapter 4, when considering the dispersive interaction, we have seen
how entanglement emerges between optical modes that never directly interact
in a closed dynamics. The appearance of such entanglement evidences the
nonclassicality of the mechanical oscillator that mediates the indirect optical-
optical interaction. We have also seen that a realistic implementation with
ultracold atomic ensemble serving as the mediator could be possible with
current technology.

Optomechanical setups can also be used to probe the possible nonclassical
nature of the gravitational field. Recently, the passing of a gravitational wave
through an optical cavity has been theoretically shown to give rise to a
dispersive-like coupling between the optical and gravitational modes analogous
to the one studied in Chapter 4 [232, 233]. In this setup the cavity mirrors
are allowed to move when a gravitational wave passes by. Another interesting
configuration inspired by the actual design of gravitational wave detectors is
shown in Figure 6.1(a), where the end mirrors of a Michelson interferometer
are allowed to move due to the passing of a + polarized gravitational wave
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propagating orthogonally to the cavities’ axes. This configuration follows the
same Hamiltonian as discussed in Section 4.3 with the gravitational wave mode
playing the role of the mediator of the indirect interaction responsible for
generating entanglement between the optical modes. We have already seen
that this is indeed an entangling Hamiltonian, however in this case the effect
would be attenuated as the gravitational Kerr-like term will be approximately
given by [232]

exp
[
−i~ω0

Epl
t
(
â†â− b̂†b̂

)2
]

(6-1)

where â and b̂ are the annihilation operators for the cavities labeled A and B,
respectively, both with equal natural frequency ω0; and Epl =

√
~c5/G is the

Planck energy with G the gravitational constant.

A

(a)

Perturbation

B

Perturbation

BA

(b)

Figure 6.1: (a) Two optical cavities are placed orthogonal to each other,
each possessing one fixed and one movable end-mirror. The fixed ones are
connected in such way that they do not move in respect to one another. In
this configuration, when a gravitational wave passes through this setup, one
cavity would contract whilst the other one expands, generating an interaction
between the gravitational field and the cavities’ field [232,233] analogous to the
one studied in Section 4.3. Image courtesy of Prof. Thiago Guerreiro, private
communication.

Nevertheless, other optomechanical proposals which also rely on detect-
ing quantum entanglement [208, 234], or on modifications of the Heisenberg
uncertainty relation [235] have been put forward to observe the nonclassi-
cal nature of gravitational field in situations where the probed effect could
in principle be observable. Applications to quantum sensing of gravitational
waves [85] and gravitational accelerations [236, 237] have also been studied.
We see that quantum optomechanics offers interesting possibilities regarding
the intersection of gravity and quantum mechanics which could provide a com-
pelling research direction.
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In Chapter 5, we investigated the coherent scattering optomechanical
interaction to nanospheres and how it gives raise to mechanical entanglement
under a realistic experimental scenario. In order to to do so, we modelled the
open quantum dynamics of the system through a set of quantum Langevin
equations and associated decoherence mechanisms. We also presented the
results of [52], showing that generation of mechanical entanglement in a
room temperature environment is possible within experimentally reasonable
parameters.

Recently, the CS mechanism has been extended to nanorotors and shown
to be able to perform simultaneous cooling of rotational and translational
motion [18]. It could be interesting to research other geometries for the trapped
mechanical object, e.g., an experimental setup where a tightly tensioned
membrane could be optically trapped and its many vibrational modes could
interact via CS with an optical cavity field.

It is also interesting to study coherent scattering setups under a ther-
modynamical point of view. For example, consider the case of two optically
trapped particles initially in thermal states with different temperatures. We
may set the tweezer trapping the more energetic particle red detuned and the
colder particle’s tweezer blue detuned relative to the cavity. This could be
done such that the CS interaction will take energy away from the hot particle
and give energy to the cold one. Thus, in this setup, the optical cavity mode
effectively acts as a heat mediator.
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B
Overview on continuous variable systems

In this Appendix, we present a succinct description of continuous variable
systems, gaussian sates and the entanglement criterias used throughout this
work.

B.1
Continuous Variable systems

A quantum system whose Hilbert space is infinite-dimensional and de-
scribed by observables with continuous spectra is called a continuous variable
systems [194]. In general we have M bosonic modes, each with their corre-
sponding annihilation (âj) and creation (â†j) operators, obeying bosonic com-
mutation relations. These can be conventionally arranged in a 2M -dimensional
vectorial operator b̂ = (â1, â

†
1, â2, â

†
2, . . .)T whose commutation relations can be

expressed as
[
b̂j, b̂k

]
= Ωjk where j, k = 1, . . . , 2M and Ω is the 2M × 2M

symplectic form matrix given by

Ω =
M⊕
k=1

Ωk , Ωk =
 0 1
−1 0

 . (B-1)

From these bosonic operators, we can define the corresponding quadra-
ture operators x̂j = â†j + âj and p̂j = i(â†j − âj) and once again suitably ar-
range them into a 2M -dimensional vectorial operator X̂ = (x̂1, p̂1, x̂2, p̂2, . . .)T .
It immediately follows from the bosonic commutation relations above that
the quadratures must satisfy the canonical commutation relations

[
X̂j, X̂k

]
=

2iΩjk.
In general, a quantum state of a CV system is described by an infinite-

dimensional density matrix ρ containing all the information about the state.
Working with infinite matrices can easily become cumbersome and it is
desirable to find a more attractive alternative. Fortunately, it is possible to find
a mapping from the density matrix ρ onto the 2M -dimensional phase-space
by means of the Wigner function, a quasiprobability distribution [194, 238].
In order to formally introduce the Wigner function, we first define the Weyl
displacement operator D̂(ξ) ≡ exp

(
iX̂TΩξ

)
, such that any density matrix ρ

is equivalent to a Wigner characteristic function χ(ξ) ≡ tr
(
ρD̂(ξ)

)
and, via a
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Fourier Transform, to a Wigner function [194]

W (x) =
∫

exp
(
−ixTΩξ

)
χ(ξ) d2Mξ

(2π)2M , (B-2)

where x ∈ R2M are the eigenvalues of X̂ spanning the 2M -dimensional phase
space. We should note that the Wigner function is normalized to one, and
it can become negative [194, 239], which can be used as a measure of non-
classicality [240].

B.2
Gaussian states

A special class of quantum states, both for its simplicity in their theoret-
ical description and experimental implementation, are gaussian states, defined
as any quantum state whose Wigner function is gaussian [194,239]. Our interest
in these states are threefold.

First, from their definition, they are completely characterized by their
first moment, X ≡ 〈X̂〉 = tr

(
ρX̂

)
, and second moments represented by the

covariance matrix (CM), whose entries are given by

Vj,k = 1
2〈X̂jX̂k + X̂kX̂j〉 − 〈X̂j〉〈X̂k〉 . (B-3)

This greatly simplifies our treatment of these system, as instead of dealing
with high-dimensional density matrices/phase spaces, we need only to worry
about 2M -dimensional vectors and 2M × 2M matrices. Observe that a direct
consequence of the commutations relation of the quadrature operators is that
the CM is a positive definite real matrix satisfying

V + iΩ > 0 ,

which reduces to the Heisenberg uncertainty principles as its diagonal entries
are the variances of the quadratures operators.

Secondly, the dynamics dictated by Hamiltonians that are at most
second-order polynomials in the bosonic operators preserve the gaussianity
of these states [194].

Finally, they are easily accessible in the laboratory as they describe the
EM field of lasers, particles in thermal equilibrium, the vacuum of EM fields,
among other relevant physical states. In the following we present some common
examples of single mode gaussian states.
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Vacuum state

The vacuum state, also called ground state, is the Fock state with
n = 0 photons/phonons for an optical/mechanical mode, i.e., |0〉 . Its mean
quadratures are X = 0 with CM V = 1, where 1 denotes the 2 × 2
identity matrix. It thus follows that the ground state minimizes Heisenberg’s
uncertainty principle with minimum variance symmetrically in position and
momentum.

Coherent states

Coherent states are displaced vacuum states |α〉 = D̂(α) |0〉, where
D̂(α) ≡ exp

(
αâ† − α∗â

)
, α ∈ C, denotes a displacement operator that

effectively displaces the mean quadrature vector of the vacuum state to
X = (Re(α), Im(α)) while leaving its CM unchanged, V = 1. In other
words, the variances of the quadratures for these states do not depend on
their amplitude α, while their mean directly scale with it. Thus, for highly
populated coherent states with α � 1, their uncertainty becomes negligible
when compared to their variances.

Coherent states make up a good approximation to classical states.
This can be seen from the following facts: given an harmonic potential, the
movement of the mean quadratures of these states in phase space mimics the
motion of a classical harmonic oscillator; the radiation emitted from a classical
current distribution is in a coherent state [76]; these states minimize Heisenberg
uncertainty relation.

Coherent states are eigenstates of the annihilation operator â |α〉 = α |α〉
whose expansion in the Fock basis is given by

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (B-4)

Moreover, coherent states form an overcomplete basis for their Hilbert
space since they span the whole space

1
π

∫
|α〉 〈α| d2α = 1 , (B-5)

although two coherent states with different amplitudes are non-orthogonal:

| 〈β|α〉 |2 = e−|β−α|2 . (B-6)
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Squeezed states

Analogously, squeezed states are squeezed vacuum states |r〉 = Ŝ(r) |0〉,
where Ŝ(r) ≡ exp

(
r
[
â2 − â†2

]
/2
)
, r ∈ R, denotes a squeezing operator

that leaves the mean quadrature of the vacuum state unchanged, X = 0,
while squeezing one of its variance and expanding the other one, V =
diag(e−2r , e+2r). Although the quadratures’ variance are no longer symmet-
rical, they still minimize Heisenberg uncertainty principle. This property of
squeezed states is fundamental to quantum metrology as it allows for enhanced
sensitivity in one quadrature than it is possible for the previous states, e.g.,
the enhanced sensitivity in gravitational wave detection reported by LIGO [7].

As a final remark, in the Fock basis, the squeezed state takes the following
form [194]

|r〉 = 1√
cosh(r)

∞∑
n=0

√
(2n)!
2nn! tanh(rn) |n〉 . (B-7)

Thermal states

Thermal states follow the Boltzmann distribution p(E) ∝ e−βE of finding
the system at temperature T with energy E, where β ≡ 1

kBT
is the inverse

temperature and kB is the Boltzmann constant. If we associate the energy
variable with the Hamiltonian operator for a single bosonic mode of frequency
ω, we find

ρ(T ) ≡ 1
Z

e−βĤ = 1
Z

∞∑
n=0

e−n
~ωn
kBT |n〉 〈n| (B-8)

with Z = tr
(
e−βH

)
the partition function. The mean occupation number

n =
[

eβ~ω−1
]−1

allows for a more useful representation in the Fock basis

ρ(n) =
∞∑
n=0

nn

(n+ 1)n+1 |n〉〈n| . (B-9)

Finally, the thermal state has zero mean quadratures, X = 0, and an
also diagonal CM given by V = (2n+ 1) 1.

B.3
Symplectic geometry and informational measures for gaussian states

We define the group of real symplectic matrices as the matrices that
preserves the bosonic commutations relations presented in the beginning of
the chapter, i.e., [194,239]
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Sp(2M,R) = {S : SΩST = Ω} . (B-10)
By definition, these matrices must be 2M × 2M with determinant

det(S) = 1 and, thus invertible. Following the Williamson’s theorem, for
a given quantum gaussian state ρ, there exists a symplectic matrix S that
diagonalizes its covariance matrix V such that [242]

V = SṼ ST , Ṽ =
M⊕
k=1

νk1 (B-11)

where νk, k = 1 . . .M , are called the symplectic eigenvalues of V . They can be
computed from modulus of the 2M eigenvalues of iΩV [194].

In the following, we briefly present some useful analytical expressions for
gaussian states in terms of their mean quadratures, CM and/or symplectic
eigenvalues.

Partial trace

Consider a density matrix ρAB describing a multipartite gaussian state,
which we choose to subdivide into the subsystems A and B, respectively, with
m and n modes. Let r = (rA, rB) be its first moments and

V =
 VA VAB

V T
AB VB

 (B-12)

be its 2(m+n)×2(m+n) covariance matrix. Then, the reduced density matrix
ρA = trB(ρAB) describing solely the subsystem A is also a gaussian state with
first moments rA and covariance matrix VA [243].

Wigner function

The Wigner function for aM -mode gaussian state with mean quadrature
vector x and covariance matrix V at some point X ∈ R2M in phase space has
the following form [194]

W (x) = 1
(2π)M

√
det(V )

e− 1
2 (x−x)TV −1(x−x) . (B-13)

von Neumann entropy

The von Neumann entropy S for a gaussian state with associated
covariance matrix V is a function of its symplectic eigenvalues νk:
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S =
M∑
k=1

g(νk) . (B-14)

where g(x) = x+1
2 log

(
x+1

2

)
− x−1

2 log
(
x−1

2

)
.

Mutual Information

We define the mutual information of a multipartite M -mode system
as [244]

Itot =
M∑
j=1

Sj − Stot (B-15)

where Stot denote the von Neumann entropy of the total system, calculated
through the formula above using the total covariance matrix V of the gaussian
state; and Sj is the von Neumann entropy for the j-th single mode calculated
from Vj, the 2×2 block diagonal matrix from V relative only to the j-th mode,
see the partial trace for gaussian states.

Purity

The purity of a Gaussian quantum state with density matrix ρ and
associated covariance matrix V is the measure of how pure the state and it is
given by [239,241]

µρ = tr
(
ρ2
)

= 1√
det(V )

, (B-16)

where pure states have µρ = 1.

Quantum fidelity

Given two M -mode gaussian states ρ1, with mean quadratures x1 and
CM V1, and ρ2, with mean quadratures x2 and CM V2, the quantum fidelity
between them is given by [245]

F (ρ1, ρ2) ≡ tr
(√√

ρ1ρ2
√
ρ1

)
= F0(V1, V2) e− 1

4 (x2−x1)T (V1+V2)−1(x2−x1) , (B-17)

F 4
0 (V1, V2) = 22M

det
[
2
(√

1 + (VauxΩ)−2

4 + 1
)
Vaux

]
det(V1 + V2) , (B-18)

where Vaux ≡ 1
2ΩT (V1 +V2)−1

(
Ω+V2ΩV1

)
and here 1 stands for the 2M ×2M

identity matrix.
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Squeezing degree

In order to quantify the squeezing in a single mode of a multipartite gaus-
sian state, we follow the procedure outlined in [49]. First we perform a partial
trace over the full system in order to arrive at the 2× 2 covariance matrix Vj
describing solely the j-th mode; secondly, we quantify the amount of squeez-
ing by finding the variances of the squeezed and antisqueezed quadratures,
respectively Vsq and Vasq:

Vsq = min(eig(Vj)) Vasq = max(eig(Vj)) , (B-19)

where eig(Vj) denotes the eigenvalues of Vj. The squeezing degree is, then,
η ≡ Vsq/Vasq ≤ 1.

B.4
Entanglement Criterias

B.4.1
Duan Criteria

A sufficient criterion for inseparability of any two-mode CV state has
been proposed in terms of Einstein-Podolski-Rosen (EPR)-like variances [183].
For a given CV system, consider the EPR-like operators

û = |a|x̂1 + 1
a
x̂2 , (B-20)

v̂ = |a|p̂1 −
1
a
p̂2 , (B-21)

where a ∈ R∗ and the operators x̂j, p̂j follow the commutation relations:
[x̂j, p̂k] = i δjk, j, k = 1, 2. We stress that here we are considering “normalized”
operator, which accounts for the lack of a factor of two in these commutations
relations. It has been shown that any separable bipartite CV state must satisfy(

∆û
)2

+
(
∆v̂

)2
≥
[
a2 + 1

a2

]
, (B-22)

with (∆ô)2 ≡ 〈ô2〉 − 〈ô〉2 denoting the variance of an observable ô.
Therefore, if a violation of the above inequality is observed, the state is

necessarily entangled. We stress that if the criteria is satisfied, then we can
retrieve no information as this inequality does not imply that the state is
separable.
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If instead of a general bipartite CV state, we consider the special case of
a bipartite gaussian state, it has been shown that, using the “standard form”
of the CM for this state (here we refer the reader to [183] for more details), the
Duan Criteria becomes much stronger as a necessary and sufficient condition
for inseparability.

B.4.2
Logarithmic Negativity

The logarithmic negativity (LN) is an entanglement monotone that
quantifies the degree of violation of the positive partial transpose (PPT)
criterion [241, 246]. Although it is not technically an entanglement measure
(e.g., a quantum state with null LN does not impose its separability), it is
of special interest to us as it is easily computable for gaussian states and it
increases monotonically with entanglement in the system.

For a bipartite gaussian state ρ with associated covariance matrix V of
the form

V =
 A C

CT B

 , (B-23)

where A, B, C are 2 × 2 matrices, the LN becomes a function of the
smallest of the symplectic eigenvalues ν̃− of the partially transposed CM
Ṽ = (1⊗ σz)V (1⊗ σz) given by [247]

ν̃− =
√
σ/2−

√
σ2 − 4 det(V )/2 , (B-24)

where σ = det(A) + det(B) − 2 det(C), 1 is the 2 × 2 identity matrix and
σz = diag(1,−1) is a Pauli matrix. Finally, the LN is given by:

EN = max [0,− log(ν̃−)] . (B-25)

For the case of a M -mode gaussian state, we can easily quantify the
entanglement between the j-th and k-th modes, denoted here as E j,kN , following
the prescription of [34]. First, we extract the 4× 4 matrix V jk from the total
system CM by taking its block diagonal matrix relative only to the modes j-th
and k-th, associated with the reduced density matrix for this bipartition [34].
Afterwards, we can immediately follow the procedure above to calculate the
the LN for such bipartition.
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C
Numerical Toolbox

An ongoing side project of this Masters has been developing an compre-
hensive numerical toolbox to simulate quantum optomechanical systems. The
need for such tools came once we started working on Ref. [157], simulating the
closed dynamics of the “mirror-in-the-middle” setup. The code back then relied
on the user to have previously made almost all calculations and needed a lot
of coding to work. When we started studying Quantum Langevin Equations
for [52], it was clear that we needed a much more robust code.

Thus, the whole package was rewritten and the version 1.0 of the
Quantum Open Dynamics and Gaussian Information Toolbox was born.
This version is much more comprehensive, covering both open and quantum
dynamics of optomechanical systems, and calculating a series of Gaussian
Quantum Information tools whilst relying solely on the user providing a few
parameters.

Installation

Clone the GitHub repository or download this Toolbox from File Ex-
change and add its main folder to the MATLAB path:

1 addpath('<download−path>/<name−folder>');

Simulating the Quantum Open Dynamics

The Toolbox simulates the system discussed in Chapter 5, comprised of
N mechanical modes, initially in a thermal state, interacting with a single
optical mode, initially in the vacuum state, through a linear Hamiltonian. As
these initial states have zero mean, we only simulate their covariance matrices’
time evolution through a Lyapunov Equation. A semi-classical simulation
of the mean quadratures can optionally be carried out through a Monte-
Carlo simulation of the Langevin equations for the expectation values of the
quadratures [40].

The program only inputs are the time interval for the calculation and
the following parameters values:

https://github.com/IgorBrandao42/Quantum-Open-Dynamics-and-Gaussian-Information-Linear-Optomechanics
http://bit.ly/2Mt8S3y
http://bit.ly/2ZSv0Yg
http://bit.ly/2ZSv0Yg
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1. Array with mechanical frequencies for each particle;

2. Array with coupling strength between each particle and cavity field;

3. Array with damping amplitude for each particle;

4. Array with initial temperature for each particle;

5. Array with environmental temperature for each particle;

6. Cavity-tweezer detuning;

7. Cavity linewidth.

An example of these inputs parameters is shown below:

1 omega = 2*pi*[305.4; 305.4; 305.4]*1e+3;% Particle's freqs. [Hz]

2
3 g = 2*pi*[64.0; 93.2; 109.2]*1e+3; % Coupling strengths [Hz]

4
5 gamma = 2*pi*[9.57; 9.57; 9.57]*1e−4; % Damping amplitudes [Hz]

6
7 T = [4.6; 4.6; 4.6]*1e−6; % Initial temperatures [K]

8
9 T_env = [300; 300; 300]; % Environment temperatures [K]

10
11 Delta = 2*pi*315e+3; % Tweezer−cavity detunning [Hz]

12 kappa = 2*pi*193e+3; % Cavity linewidth [Hz]

13
14 t = linspace(0, 4.2e−6, 1e+3); % Simulation's timestamps [s]

The user now needs to create an instance of a simulation by calling the
“simulation” class constructor. The program infers the number of particles
from the lengths of the input arrays, for this example: 3 particles.

1 example = simulation(omega, g, gamma, T, T_env, Delta, kappa);

Finally, the user runs every calculation available:

1 example.run(t); % Run every calculation available

The user can also choose to calculate only what suits them, by passing
extra optional parameters to the method ’run’:
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Optional
parameter

Corresponding calculation

“langevin” Solves semiclassical Langevin equations for the
expectation value of the quadratures

“lyapunov” Solve Lyapunov equation for the covariance matrix
“steady_state” Finds steady state covariance matrix
“occupation_number” Finds the occupation number for each mode
“entanglement” Calculates the logarithmic negativity for each bi-

partition
“entropy” Calculates the von Neumann entropy for each

mode, bipartition and the whole system biparti-
tion

“mutual_information” Calculates the mutual information for the whole
system

“fidelity_test” Approximates each mode’s state by a thermal
state through Quantum Fidelity, finding the best
matching temperature

As an example, lets imagine the user only wants to calculate the time
evolution of the occupation number and entropy of each mode

1 example.run(t, "occupation_number", "entropy");

The simulations results can be plotted using its internal plotting meth-
ods:

1 example.plot(); % Plot the results

Or directly retrieved from th “simulation”, as it is a handle class:

1 total_entropy = example.Entropy_system;

The closed quantum dynamics can be readily simulated by setting the
cavity linewidth and damping amplitudes to zero.

Gaussian Quantum Information Tools

Alternatively, the user may already have pre-calculated a given gaussian
state’s mean values and covariance matrix and only want to calculate some
property of their state. Thus, we move to the second portion of the Toolbox,
which calculates: symplectic eigenvalues, wigner functions, quantum fidelity,
mutual information, von Neumann entropy, logarithmic negativity and partial
trace over given gaussian states.
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Given a multimode gaussian state’s covariance matrix, the user can cal-
culate: its symplectic eigenvalues, von Neumann Entropy and mutual informa-
tion. These are respectively calculated through the following scripts

1. symplectic_eigenvalues.m – Calculates the symplectic eigenvalues of a
covariance matrix

2. von_Neumann_Entropy.m – Calculates the von Neumann entropy of a
multipartite gaussian state from its covariance matrix

3. mutual_information.m – Calculates the mutual information of a multi-
partite gaussian state from its covariance matrix

Moreover, the user can also perform a partial trace over a multimode
gaussian state’s CM in order to find a single mode’s or bipartition’s CM
through

1. single_mode_CM.m – Finds the covariance submatrix for a single
mode from the full covariance matrix. The user needs to pass a second
argument, the index of the mode to be studied.

2. bipartite_CM.m – Finds the covariance submatrix for a bipartition from
the full covariance matrix. The user needs to pass two more argument,
the indexes of the modes of the bipartition.

For a bipartite gaussian state, the user can calculate the logarith-
mic negativity from its covariance matrix through the script ’logarith-
mic_negativity2.m’.

Given a gaussian state’s mean value, CM and point on the phase-space,
the script ’wigner.m’ calculates its wigner function.

Finally, the script ’fidelity.m’ calculates the fidelity between the two
arbitrary gaussian states from the mean value of their quadratures and
covariance matrices.
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