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Abstract

Pena, Rafael Antônio Pinto; Cortes Vieira Lopes, Helio (Advisor).
A robust workflow for person tracking and meta-data ge-
neration in videos. Rio de Janeiro, 2021. 43p. Tese de Doutorado
– Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

The amount of recorded video in the world is increasing a lot due not
only to the humans interests and habits regarding this kind of media, but
also the diversity of devices used to create them. However, there is a lack
of information about video content because generating video meta-data is
complex. It demands too much time to be performed by humans, and from the
technology perspective, it is not easy to overcome obstacles regarding the huge
amount and diversity of video frames. In this work we propose an automated
face recognition system to detect and recognize humans within videos. It
was developed to recognize characters,in order to increase video meta-data.
It combines standard computer vision techniques to improved accuracy by
processing existing models output data in a complementary manner. We
evaluated the performance of the system in a real data set from a large media
company.

Keywords
computer vision; face recognition; video meta-data;
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Resumo

Pena, Rafael Antônio Pinto; Cortes Vieira Lopes, Helio. Uma me-
todologia robusta para rastreamento de pessoas e geração
de meta-dados em vídeos. Rio de Janeiro, 2021. 43p. Tese de
Doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

A quantidade de vídeos gravados no mundo cresce muito, não somente
devido aos interesses e hábitos humanos em relação a esse tipo de mídia, mas
também pela diversidade de dispositivos utilizados para criação de vídeos. No
entanto, faltam informações sobre conteúdos em vídeo porque a geração de
metadados é complexa e requer muito tempo para ser executado por humanos.
Do ponto de vista da tecnologia, não é fácil superar os obstáculos relacionados
à grande quantidade e diversidade de frames de vídeo. O trabalho propõe um
sistema automatizado de reconhecimento facial para detectar personagens em
vídeos. Ele foi desenvolvido para reconhecer personagens, a fim de aumentar os
metadados de vídeo. Ele combina técnicas padrão de visão computacional para
melhorar a precisão, processando os dados de saída dos modelos existentes de
maneira complementar. O modelo teve um desempenho satisfatório usando um
conjunto de dados da vida real de uma grande empresa de mídia.

Palavras-chave
visão computacional; reconhecimento de faces; meta-dados em vídeo;
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1
Introduction

A key goal of the entertainment and media industry is to understand users
preferences in order to get content production insights and provide relevant
content. To this end, more information about the content potentially generates
more information about the users. This work will focus on video content.

In Brazil, tens of millions of people watch soap operas almost every
day. Broadcasting TV has popularized this type of content but part of its
consumption is through cable TV channels, and in the last decade online
consumption, whether live or on demand, has grown sharply.

Globo Group is the largest media group in Latin America and occupies
a prominent position in this scenario, being the audience leader for this type
of content. Either on broadcasting TV, cable TV or via the Internet. The
company is the leader in the production of soap operas in Brazil. Its production
started in 1965, surpasses 300 soap operas and tens of thousands of chapters.
In recent years, online channels are used by approximately 2 million users every
day.

Many computer vision technologies emerged in recent years and good
results on specific tasks have been achieved. Face recognition (Schroff et al.,
2015), scene detection (Castellano, 2020), optical flow (Kroeger et al., 2016)
and pose estimation (Cao et al., 2018) are examples of existing technologies
created to better understand humans appearance within videos.

The ultimate goal of this work is to create a robust model to detect
humans within videos in order to enrich video meta-data. On this case study, an
archive from Grupo Globo was used in order to test and validate the solution.
Hundreds of different scenes from 10 different soap operas have been processed.

The task that this thesis is proposing to solve has several difficulties.
For instance, the calculation of image similarity requires a high computational
cost; entity match with a proprietary database is hard when using online face
recognition services; and the accuracy on face recognition varies and depends
on video frame aspects to get a good result (for instance, the character face
angle).

From these difficulties emerge many challenging issues to create an effi-
cient automated character detection system. Identifying the correct character
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Chapter 1. Introduction 2

in a scene, from the very first appearance until the last frame is not a trivial
task. In an attempt to identify characters presence in scenes it was necessary
to test a hybrid solution based on complementary, specific techniques.

Advantages, disadvantages and results achieved using the proposed
framework will be presented. Also, complementary methods from state of art
and how to use it. Finally, a framework for person recognition and tracking for
which a detailed report is provided.

In summary, our main contributions is the proposal of an unified frame-
work that provides:

– Face verification (is this the same person)

– Face recognition (who is this person)

– Elimination of ambiguous annotation errors

– Tracking people in videos

An article about this framework was published in the 22nd International
Conference on Enterprise Information Systems (ICEIS 2020) and received the
Best Paper Award in the Area of Artificial Intelligence and Decision Support
Systems.

This Thesis is organized as follow. Chapter 2 describes some previous
and related work. Chapter 3 discusses the proposed method. Chapter 4 shows
the results. Chapter 5 discusses the results and points out some future works.
Finally, Chapter 6 concludes the work by summarizing the contributions.
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2
Background

This chapter shows an analytical synthesis covering a better part of the
literature on the problem. High level of conceptual linking within and across
theories and techniques regarding automatic face detection, face recognition
and people tracking by computers.

2.1
Face Detection

According to Dalal and Triggs (2005), the issue of human detection in
pictures is a challenging assignment due to their variable appearance and the
wide scope of poses that they can adopt. The main need is a robust feature
set that permits the human structure to be discriminated cleanly, even in
cluttered backgrounds under troublesome illumination. They study the issue
feature sets for human detection, demonstrating that locally normalized His-
togram of Oriented Gradient (HOG) descriptors provide excellent performance
relative to other existing feature sets including wavelets (Mohan et al., 2001;
Schneiderman and Kanade, 2004).

Dalal and Triggs (2005) reviewed existing edge and gradient based de-
scriptors and demonstrated experimentally that grids of Histograms of Ori-
ented Gradient (HOG) descriptors significantly surpass existing feature sets
for human detection. They study the impact of each stage of the computation
on performance, reasoning that fine-scale gradients, fine orientation binning,
relatively coarse spatial binning, and high-quality local contrast normalization
in overlapping descriptor blocks are immeasurably significant for good out-
comes. The new methodology gives close ideal division on the original MIT
pedestrian database.

Kazemi and Sullivan (2014) addressed the issue of face alignment for a
single image and shows how an ensemble of regression trees can be utilized
to estimate the face’s landmark positions direct from a sparse subset of pixel
intensities, accomplishing real-time performance with high quality predictions.
The authors investigated distinct strategies and its significance to battle
overfitting was additionally examined. Their paper presents an algorithm to
estimate the position of facial landmarks in a computationally efficient manner.
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Chapter 2. Background 4

The proposed method uses a cascade of regressors and describe the details of
the form of the individual components of the cascade and how they trained
the model.

Figure 2.1: Landmark estimates at different levels of the cascade initialized
with the mean shape centered at the output of a basic Viola and Jones (2001)
face detector. After the first level of the cascade, the error is already greatly
reduced (Kazemi and Sullivan, 2014).

To accurately benchmark the performance of Kazemi and Sullivan (2014)
proposed method, which is an ensemble of regression trees, they created two
baselines. The first is based on randomized ferns with random feature selection
and the other is a more advanced version of this with correlation based feature
selection which is their reimplementation of (Cao et al., 2012).

Ranjan et al. (2017) introduced an algorithm based on deep convolutional
neural networks (CNN) focused on simultaneous face detection, landmarks
localization, pose estimation and gender recognition. Their project consider
the intermediate layers of a CNN utilizing a different CNN followed by a multi-
task learning algorithm that works on the fused features. Their technique can
detect face, localize land-marks (related to the face points), estimate the pose,
which is the order of roll, pitch and yaw, and recognize the gender. They
use specialized CNN layers to get each output prediction. Other than the
exceptional outcomes, this methodology actually is extremely computational
demanding.

2.2
Face Recognition

Zhou et al. (2018); Wang et al. (2008) and Zhou et al. (2004) realized that face
recognition has been intensively studied in the literature but the attempts
on visual recognition of multiple faces simultaneously in videos are rarer than
single face recognition attempts. It has potential applications in practical video
surveillance. Face recognition is a difficult assignment that has been attacked
for over twenty years. Traditional methodologies for videos consider video
sequences where each frame are analyzed separately. More exact methodologies
use the temporal cues in addition to the presence of the faces in videos.

Face recognition framework based on images regularly includes task
that incorporates face detection, face alignment, and face matching between
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Chapter 2. Background 5

a detected face in an image and a reference dataset of faces (Zhou et al.,
2018). Nonetheless considering the real world situations, facial expression,
illumination condition, and occlusion represents difficult problems.

Wang et al. (2008) addressed the issue of classifying image sets, each of
which contains images belonging to the same class but covering many variations
in. For instance, illumination and viewpoint. The authors formulated the issue
as the computation of Manifold-Manifold Distance (MMD), i.e., calculating
the distance between nonlinear manifolds each representing one image set. To
process MMD, likewise propose a novel manifold learning approach, which
communicates a manifold by a collection of local linear models, each depicted
by a subspace. MMD is then changed in order to incorporating the distances
between pair of subspaces respectively from one of the involved manifolds.

The proposed MMD method is evaluated on the task of Face Recognition
based on Image Set (FRIS). In FRIS, each known subject is enrolled with a
set of facial images and modeled as a gallery manifold, while a testing subject
is modeled as a probe manifold, which is then matched against all the gallery
manifolds by MMD. Identification is achieved by seeking the minimum MMD.

Schroff et al. (2015) presented a system, called FaceNet, that map
face images to a compact Euclidean space. Distances directly correspond
to a measure of face similarity. These feature vectors can be used in tasks
such as face recognition, verification and clustering combined with classical
machine learning techniques. Their method uses a deep convolutional network
trained to directly optimize the embedding itself, rather than an intermediate
bottleneck layer as in previous deep learning approaches. To train, they use
triplets of roughly aligned matching / non-matching face patches generated
using a novel online triplet mining method. The benefit their approach is
much greater representational efficiency: they achieve state-of-the-art face
recognition performance using only 128-bytes per face. They also introduce the
concept of harmonic embeddings, and a harmonic triplet loss, which describe
different versions of face embeddings (produced by different networks) that are
compatible to each other and allow for direct comparison between each other.

Figure 2.2: Triplet loss function intuition (Schroff et al., 2015).
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FaceNet directly trains its output to be a compact 128-D embedding
using a triplet based loss function based on large margin nearest neighbor
(LMNN) classification (Weinberger et al., 2006). Their triplets consist of two
matching face thumbnails and a non-matching face thumbnail and the loss
aims to separate the positive pair from the negative by a distance margin. The
thumbnails are tight crops of the face area, no 2D or 3D alignment, other than
scale and translation is performed.

The triplet loss function reduce the distance between similar things and
tries to increase the same between different things.

layer size-in size-out kernel
conv1 220×220×3 110×110×64 7×7×3, 2
spool1 110×110×64 55×55×64 3×3×64, 2
rnorm1 55×55×64 55×55×64
conv2a 55×55×64 55×55×64 1×1×64, 1
conv2 55×55×64 55×55×192 3×3×64, 1

rnorm2 55×55×192 55×55×192
pool2 55×55×192 28×28×192 3×3×192, 2

conv3a 28×28×192 28×28×192 1×1×192, 1
conv3 28×28×192 28×28×384 3×3×192, 1
pool3 28×28×192 14×14×384 3×3×384, 2

conv4a 14×14×384 14×14×384 1×1×384, 1
conv4 14×14×384 14×14×256 3×3×384, 1
conv5a 14×14×256 14×14×256 1×1×256, 1
conv5 14×14×256 14×14×256 3×3×256, 1
conv6a 14×14×256 14×14×256 1×1×256, 1
conv6 14×14×256 14×14×256 3×3×256, 1
pool4 14×14×256 7×7×256 3×3×256, 2
concat 7×7×256 7×7×256

fc1 7×7×256 1×32×128 maxout p=2
fc2 1×32×128 1×32×128 maxout p=2

fc7128 1×32×128 1×1×128
L2 1×1×128 1×1×128

Table 2.1: Structure of Schroff et al. (2015) proposed model . The input and
output sizes are described in rows x cols × #filters . The kernel is specified as
rows × cols, stride and the maxout [6] pooling size as p = 2.

In all Schroff et al. (2015) experiments, they train the CNN using
Stochastic Gradient Descent (SGD) with standard backprop (LeCun et al.,
1989), (Rumelhart et al., 1986) and AdaGrad (Duchi et al., 2011). In most
experiments Schroff et al. (2015) started with a learning rate of 0.05 which they
lower to finalize the model. The models are initialized from random, similar to
(Szegedy et al., 2015), and trained on a CPU cluster for 1,000 to 2,000 hours.
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Chapter 2. Background 7

The decrease in the loss (and increase in accuracy) slows down drastically
after 500h of training, but additional training can still significantly improve
performance. The margin is set to 0.2 and corresponds to the maximum
distance between two embeddings to be considered the same face.

To deal with real video situations, Huang et al. (2015) propose a Hybrid
Euclidean-and-Riemannian Metric Learning method to fuse multiple statistics
of image set. They represent each image set simultaneously by mean, covariance
matrix and Gaussian distribution. To test they approach, they use a public
large-scale video face datasets: YouTube Celebrities, containing 1910 video
clips of 47 subjects collected from the web site. Its results are impressive,
although it faces some problems considering its context, such as not to re-
identify people. There is no association between images frames of the same
person taken from different cameras or from the same camera in different
occasions.

2.3
Visual tracking

Instead of recognizing individual face independently, Zhou et al. (2018)
introduces the constraints of inter-frame temporal smoothness and within-
frame identity exclusivity on multiple faces in videos, and model the tasks of
multiple face recognition (MFR) and multiple face tracking (MFT) jointly in
an alternative optimization framework.

Masi et al. (2018) propose a method that is designed to explicitly tackle
pose variations. Their Pose-Aware Models (PAM) process a face image using
several pose-specific and deep convolutional neural networks (CNN). Also, in
their application, a 3D rendering is used to synthesize multiple face poses from
input images to both train these models and to provide additional robustness
to pose variations.

Zhou et al. (2018) address the problem of recognition and tracking of
multiple faces in videos involving pose variation and occlusion. They introduce
constraints of inter-frame temporal smoothness and coherence on multiple faces
in videos, and model the tasks of multiple face recognition and multiple face
tracking jointly in an optimization framework. Also, they focus in practical
problems involving surveillance cameras.

(Danelljan et al., 2014) introduced the discussion about visual object
tracking in computer vision. The problem involves estimating the location of a
visual target in each frame of an image sequence. Despite significant progress
in recent years, the problem is still difficult due to factors such as partial
occlusion, deformation, motion blur, fast motion, illumination variation, back-
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Chapter 2. Background 8

Figure 2.3: A visualization of the tracking results from (Danelljan et al., 2014)
approach compared with the state-of-the-art visual trackers: (Danelljan et al.,
2014) approach (red), ASLA (Jia et al., 2012) (green), SCM (Zhong et al., 2012)
(blue), Struck (Hare et al., 2011) (yellow) and LSHT (He et al., 2013) (orange).
The image sequences pose challenging situations such as scale variations (a),
partial occlusions (b) and out-of-plane rotations (c).

ground clutter and scale variations. Most existing approaches provide inferior
performance when encountered with large scale variations in complex image
sequences. In their paper, they tackle the challenging problem of scale estima-
tion for visual tracking. Danelljan et al. (2014) propose an efficient method
for estimating the target scale by training a classifier on a scale pyramid.
This allows them to independently estimate the target scale after the optimal
translation is found. They show that their approach improves the accuracy
over an exhaustive scale space search method, while running at 25 times faster
frame-rate. To validate their approach, they perform extensive experiments
on all the 28 image sequences annotated with “Scale Variation (SV)” in the
recent benchmark evaluation (Wu et al., 2013). They compare their approach
with state-of-the-art trackers in literature. Despite its simplicity, their tracker
achieves state-of-the-art performance, while operating at real-time. Figure 2.3
shows a comparison to state-of-the-art trackers on three benchmark sequences.

2.4
Scene Detection

Castellano (2020) created a Python library for detecting scene changes
in videos named PySceneDetect. This library provides different detection
methods, from simple threshold-based fade in/out detection, to advanced
content aware fast-cut detection of each shot.

The content-aware scene detector works attempting to distinguish
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Chapter 2. Background 9

whether a given pair of frames belongs the same scene or not. This technique
discovers areas where the difference between two subsequent frames is bigger
than the threshold value that is set.

The threshold-based scene detector, a more traditional scene detection
method, compares the intensity/brightness of the current frame with a set
threshold. When this value crosses the threshold a scene cut is executed. This
method computes the value averaging the R, G, and B values for each pixel in
the frame.

In (Gruzman and Kostenkova, 2014), the authors pointed that video
shot boundary detection (SBD) is one of the essential pre-processing steps of
semantic video analysis. It is an initial task in order to segment the sequence of
video frames into shots. The article present a multi-modal visual features-based
SBD framework focused on analysing the behaviors of visual representation
in terms of the discontinuity signal. Previous works based on supervised
learning usage on SBD systems have been proposed but the authors consider
that the training process still remains the principal limitation. They adopt
a candidate segment selection that uses a cumulative moving average of the
discontinuity signal to identify the position of shot boundaries instead of a
threshold calculation. Their method neglects the non-boundary video frames
and performs transition detection identifying cut transition and a gradual
transition, including fade in/out occurrence. The main objective of candidate
segment selection is to reduce the processing time by eliminating many non
boundary frames from the video sequences. In their proposed framework,
shot limits are identified by using the intermittence signal between two video
frames. The similarity signal used in shot transition detection is initially
calculated based on SURF matching score, and RGB histogram, based on
Cosine similarity. Speeded Up Robust Feature (SURF) is another feature that
can represent the object movement effect.
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3
Method

The approach of this work is to combine different methodologies to improve
people recognition tasks using inferences based on established models. The
method enables accuracy improvements for face recognition tasks by introduc-
ing a logical layer that organizes tasks and eliminate errors. Also, the method
achieved excellent results regarding people tracking among video frames. Fig-
ure 3.1 presents a high level schema that explains how the system works. From
the input video file to the final frame set containing actor annotations frame
by frame. The blue dotted line rectangle corresponds to the main contribution
from this work, the logical model, that uses open-source libraries and also new
components developed during this research.

Figure 3.1: A high level schema that explains the proposed framework. White
background boxes corresponds to media files, dark gray to open-source projects
and light gray to new components implemented during this research. The blue
dotted line rectangle corresponds to the logical model, described in 3.3.

The first step is splitting the video into multiple clips, each one cor-
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responds to a different scene. PySceneDetect is a command-line application
and a Python library for detecting scene changes in videos, and automatically
splitting the video into separate clips (Castellano, 2020). This application was
used to eliminate errors observed during the propagation of actors annotations
through the frames. Another advantage is that it enables parallel processing.
A ten minutes video, that represents one of the four episode blocks, has on
average a hundred scenes.

Once the separate clips are available, all the further steps are taken for all
different scenes, simultaneously. The next step is to identify, for each different
actor that appears in the scene, the actor face stream. The face stream is the
entire set of frames where a specific actor appears during a scene. It is obtained
by a module developed during this work, named FaceTracker and detailed in
section 3.1.

An existing system was used to overcome facial recognition challenges.
FaceNet uses a deep convolutional network (Schroff et al., 2015) and this model
will be discussed in section 3.2.

All the outputs from these different technologies are processed by a logical
model that combines information and infers the actors for the entire frame set.
This logical model will be detailed in section 3.3. In order to scale in real
life situations the system was integrated with two existing components, the
computer vision architecture detailed in section 3.4 and the content ontology
discussed in section 3.5.

In order to clearly explain the Python Object-Oriented implementation
from this work, this section will explain the classes, attributes and methods
using pseudocode functions to describe the logic and also the open source code
libraries used in this work.

3.1
Facetracker

This module was created to track actor faces through scene frames.
During the tracking process, the module uses a face detector and an object
tracker implemented using the function get-frontal-face-detector and the class
correlation-tracker from Dlib (King, 2009) .

This face detector is made using the now classic Histogram of Oriented
Gradients (HOG) feature combined with a linear classifier, an image pyramid,
and sliding window detection scheme. This type of object detector is fairly
general and capable of detecting many types of semi-rigid objects in addition
to human faces King (2009).

To track a face among the frames the Dlib Python library provides a
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specific object. This object lets you track the position of an object as it moves
from frame to frame in a video sequence King (2009). Dlib is a modern C++
toolkit containing machine learning algorithms and tools for creating complex
software in C++ to solve real world problems. It is used in both industry and
academia in a wide range of domains including robotics, embedded devices,
mobile phones, and large high performance computing environments. Dlib’s
open source licensing allows you to use it in any application, free of charge
King (2009).

The structural SVM based training algorithm behind the easy to use
object detector provided by Dlib is called Max-Margin Object Detection
(MMOD). This method does not perform any sub-sampling, but instead
optimizes over all sub-windows. MMOD can be used to improve any object
detection method which is linear in the learned parameters, such as HOG or
bag-of-visual-word models King (2015).

The system developed during this research attempts to create a face
stream for each different character appearance within the scene. After the face
detection, the face tracker step was implemented using dlib’s implementation
of the correlation tracker algorithm. To use it, you give the correlation-tracker
the bounding box of the face to be tracked and a frame. This object will
start tracking the face inside the bounding box in the given image. The dlib
correlation tracker implementation is based on paper Danelljan et al. (2014)
and used a baseline closely related to the MOSSE tracker Bolme et al. (2010).
The tracker learns a discriminative correlation filter used to localize the target
in a new frame Danelljan et al. (2014).

The face tracking process is started every time a face is detected by the
get-frontal-face-detector from dlib (King, 2009). A pre-trained facial landmark
detector available in this library was used to estimate the location of (x, y)-
coordinates that map to facial structures on the face. There are several features
that can be identified in faces. Eyes, mouth, nose and so forth. DLib algorithms
enables detection of these features by providing a map of points that surround
each feature. In this detector, the map is composed of 68 points. This detector,
an ensemble of regression trees, is an implementation of Kazemi and Sullivan
(2014).

This function is very efficient to detect a face from the frontal view. But
sometimes a character first appearance in a scene is a side view. In those cases,
the results obtained were not perfect because the tracker only starts to track
after the frontal face detection, generating a lack of meta-data for all the frames
that preceded the first frame in which a frontal face detection has occurred.

The FaceTracker class from this implementation has two main attributes:
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Algorithm 1 Face object. Requires Dlib and OpenCV libraries

1: function Face()
2: initialize attributes x,y,w,h
3: create bounding box using dlib.rectangle()
4: initialize person_id
5: initialize attribute annotation
6: return face
7: end function

model and trackers. The model attribute corresponds to the detector model
and is initialized with dlib get-frontal-face-detector, the trackers attribute starts
with an empty dictionary and is updated along the the tracking process. Every
time a new face is detected a new Face 1 object is created and based on this
object a new tracker object is created and appended to the trackers attribute.
Each tracker corresponds to a specific face in a specific frame. The algorithm
2 shows the pseudocode from this class. The complete logic will be explained
in section 3.3.

Figure 3.2: Example images from the TV Globo dataset. The red boxes show
the face tracking after frontal face detection.

Figure 3.2 shows that one of the actors wasn’t tracked since his first
appearance because get-frontal-face-detector couldn’t detect his face in the
first frame. On the second frame the same actor face was detected and after
that the actor will be tracked even in frames with a side view.

To avoid this problem we created a two-step tracking process. The
forward pass tracks the actor in the frames after the frame in which the
frontal face detection occurred. The order is from the first frame to the last.
Analogously, the backward pass tracks the actor in the frames before the frame
in which the frontal face detection happened and the process starts from the
last frame. At this phase the goal is to link the actor face positions among the
scene frames.

During the tracking process, all frames are processed, but the detection
task occurs depending on the detection rate used. Every time a face is detected,
the program attempts to identify if its a new face (that didn’t appear in
previous frames) or not. Depending on this verification, a new random id for
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Algorithm 2 Tracking. Requires Dlib and OpenCV libraries.

1: function CreateFaceTracker()
2: set attribute model to dlib.get_frontal_face_detector()
3: create an empty dictionary named trackers
4: initialize person_id_counter = 0
5: return face_tracker
6: end function
7:
8: function track(scene,face_tracker,detection_rate)
9: create an empty list of faces named faces_tracked

10: create an empty list of faces named frame_faces
11: for each frame in scene do
12: for each face in faces_tracked do
13: face_in_frame = NEW_TRACKER(face, frame)
14: frame_faces = frame_faces face_in_frame
15: end for
16: if is a detection frame (based on detection rate) then
17: faces_detected = DETECT_FACES(face_tracker, frame)
18: for each face in faces_detected do
19: if face not in frame_faces then
20: create a new Face object
21: add the new face to frame_faces
22: end if
23: end for
24: end if
25: update face_tracker.trackers with frame_faces
26: set faces_tracked equal to frame_faces
27: end for
28: end function
29:
30: function detect_faces(face_tracker,frame)
31: convert frame to rgb using cvtColor from open-cv
32: detect faces in frame using face_tracker.model
33: return the faces as a list of Face objects
34: end function
35:
36: function new_tracker(face,frame)
37: initialize object tracker with dlib.correlation_tracker()
38: create a rectangle using dlib.rectangle() and x,y,w,h from face
39: tracker.start_track(frame, rectangle)
40: return tracker
41: end function
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that face (person) will be created or an id used in a previous frame will be
used again (same person from previous frame).

This tracking process occurs twice (forward and backward passes) and
then merged. After the merge step, the logical model decides who is the actor
frame by frame.

3.2
Facenet

As described in Schroff et al. (2015), FaceNet is an end-to-end learning
technique that uses deep neural network to learn an embedding f(x) from an
image x in a feature space Rd, such that the square of the distance between
all faces, regardless the conditions of the image such as illumination and pose
variation, of the same identity is small, whereas the square of the distances
between pairs of faces of different identities images is large. To this end, a
triple loss is implemented to ensure that a specific person’s xa

i (anchor) image
is close to all xp

i (positive) images of a single person is for any other image
xn

i (negative) of any other person. Thus, FaceNet minimizes the following loss
function L for a set of N faces where α is a margin that is enforced between
positive and negative pairs:

L =
N∑
i

[‖ f(xa
i )− f(xp

i ) ‖2
2 − ‖ f(xa

i )− f(xn
i ) ‖2

2 +α]+ (3-1)

As the resulting output, it generates a compact d-dimensional Euclidean
space as feature vectors where distances directly corresponds to a measure of
face similarity that can be used in tasks like face recognition, verification and
clustering.

In this work, a pre-trained model that outputs 128-dimensional vectors
was used for the task of recognize actors face. Another important aspect from
this system that fits perfectly to the use case reported in this work is that
the system depends on an initial set of faces, and from this set, for each frame
processed, the system will calculate the similarity between faces from the frame
and each face from the initial set. In this work, the initial set of faces is the
soap opera actors faces. It is possible to assume that for each face detected in
a frame, it will be one of the actors informed in the initial set (the cast). In
order to obtain the cast actors faces images, a semantic query endpoint was
used to query the company’s content ontology. The only necessary filter is the
name or the identification code of the content. Once this information is known,
it is possible to use that endpoint to find out the actors that participates in
a soap opera. Section 3.5 describes the existing ontology model and how it
allows generic queries for various content types.
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Before use FaceNet in order to generate the face embeddings, it is
necessary to align the face. The alignment preprocess faces for input into
a neural network. Faces are resized to the same size (such as 96x96) and
transformed to make landmarks (such as the eyes and nose) appear at the same
location on every image Amos et al. (2016). Figure 3.3 details the embedding
generation pipeline before face recognition step.

Figure 3.3: Example of 128-dimenisonal embedding generation for each face
found in a frame

After all face embeddings have been generated, each of them is compared
against all embeddings of all labeled faces dataset in order to recognize who
is the actor that appear in the frame. Basically, the actor’s facial recognition
task is accomplished through simple computation of the Euclidean distance
between the embedding of the frame and the embeddings of the dataset. If the
distance is smaller than a certain Threshold, the face of the actor is recognized
as being the one corresponding to the labeled embedding face from the dataset.
In this work was used a Threshold=0.2, which is the value used by Schroff et al.
(2015). The layers, inputs and outputs from the convolutional neural networks
(CNN) used are described in section 2.2.

Figure 3.4: Example of face recognition step. Based on a threshold, each face
embedding found in frame is compared against all labeled face embeddings
dataset in order to recognize the actor face.

DBD
PUC-Rio - Certificação Digital Nº 1622009/CA



Chapter 3. Method 17

A class named FaceRecognizer was implemented to be used as an interface
for using the Facenet model. This class has three important attributes: model
- corresponds to the face recognition model, represented by a data file saved
in the Hierarchical Data Format (HDF5), an open source file format that
supports large, complex, heterogeneous data. This file contains a pretrained
Facenet model obtained from (Chollet, 2015). Another important attribute
from this class is align that is a model file designed for use with dlib’s HOG
face detector. It expects the bounding boxes from the face detector to be
aligned a certain way. The third important attribute is database containing
the reference database to be used, in this research this database stores face
images for each actor from the soap opera cast.

Algorithm 3 Recognition. Requires Dlib, FaceNet and OpenCV libraries

1: function CreateFaceRecognizer()
2: set attribute model to facenet_weights.h5 from keras
3: set attribute align to shape_predictor_68_face_landmarks.dat.bz2

from dlib
4: initialize attribute database with face images reference data
5: return face_recognizer
6: end function
7:
8: function who(image,face_recognizer,face)
9: load image (frame)

10: create face bounding box (bb)
11: define landmark_indices to be used for alignment as

AlignDlib.OUTER_EYES_AND_NOSE
12: get an aligned face bb using face_recognizer.align + landmark_indices
13: create embedding using the aligned face bb, face_recognizer.model +

predict_on_batch from keras
14: for each face in database do
15: calculate embeddings distance (frame - database item)
16: store minimum distance and identity
17: end for
18: return identity and minimum distance
19: end function

In order to better understand the FaceNet object usage, its instantiation
and methods, all operations using this object will be detailed in 3.3, inside the
main program course explanation.
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3.3
The logical model

The logical model optimizes the frames annotation by eliminating errors
and annotating frames regardless a frontal view of the face.

After splitting the original video into different scenes, this logical layer
is applied to each scene. This section will cover the main code and all the
functions created to manipulate the objects explained, previously.

The main course of the program consists in six steps:

– loading models - objects from classes (FaceTracker and FaceRecognizer
are created and loaded in memory.

– load video - transform a video file into a frame set

– run the tracking and annotating process in the original frame order
(forward)

– run the tracking and annotating process in the reversed frame order
(backward)

– merge the results obtained from two previous steps

– decide the final annotation for each frame.

These steps will be explained later in this section. Also, the algorithms
1, 2, 3 and 4 can be useful to understand the logical model.

3.3.1
Loading Models

There are two important models to be loaded in memory before process-
ing the frames. The FaceTracker() object is the first. As mentioned in 3.1,
the attribute model contains the face detection model to be used in order to
identify whether there is a face in a frame or not. FaceTracker object loads
the default face detector from Dlib. During the tracking processes that will
be explained later in this section, the attribute trackers will be updated every
time a new face is detect.

FaceRecognizer() is the second object from the loading models step and
contains the pre-trained face recognition model (FaceNet) from Chollet (2015)
and also a shape predictor to detect and align face landmarks, another pre-
trained model from Dlib. It helps transforming and skewing an image. The last
important attribute is the reference images database.
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Algorithm 4 Main Function

1: function main()
2: facetracker = CreateFaceTracker()
3: facerecognizer = CreateFaceRecognizer()
4: scene = load video using opencv packages
5: run(face_tracker,face_recognizer,scene) //forward pass
6: run(face_tracker,face_recognizer,reversed(scene) //backward pass
7: merge passes
8: decide annotations
9: end function

10:
11: function run(face_tracker,face_recognizer,scene)
12: create an empty list of faces named frames_faces
13: for frame, faces in face_tacker.track(scene,face_tracker, 5) do
14: frames_faces.append(faces)
15: for face in faces do
16: who = face_recognizer.who(frame, face)
17: set face_recognizer.annotation = who
18: end for
19: end for
20: return frames_faces
21: end function

3.3.2
Tracking and annotating process

A function was created in order to implement the face tracking and
annotating task. The function run is detailed in algorithm 4. It requires three
parameters: a FaceTracker() object, a FaceRecognizer() object and the frame
set to be processed frame by frame in the same order passed to the function.

These parameters must be created in the main program and passed to
the function that iterates the frame set to be processed. For each face detected
using the FaceTracker() object, the FaceRecognizer() object is used to compare
the detected face against the reference database and annotate it.

In algorithm 2, the function track runs once for an entire scene (set
of frames). When iterating frame by frame, depending on the detection rate
parameter set, the program will either try to detect faces or not, but always
keep tracking in the next frames the faces already detected until the current
frame .

After a face detection occurs, the correlation tracker algorithm, explained
in section 3.1, is used to identify all subsequent frames where the same face
appears and the position of the face in the image. The position enables the
program to work correctly even when there are multiple faces in the frame.
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Figure 3.5: Tracking and annotating process, forward step. After processing the
frame set, in the original order, the program identified 4 face streams (person
appearances). The face stream #1 missed the first frame due to the lack of a
frontal view of the face.

By analysing figures 3.5 and 3.6 will be clear how the complementary
usage of face detection, face recognition and object tracking techniques works.

Figure 3.5 shows a high level schema containing three parts. An illustra-
tive input frame set at the top, a gray rectangle that corresponds to the first
step from the tracking and annotating process (forward) and another frame
set at the bottom that corresponds to the output from this step. The input
frame set is already annotated with the correct actors and will be used as a
ground truth example, each face thumbnail corresponds to the correct person
that appeared in the corresponding frame, rather than the face from the orig-
inal image. The output frame set contains the face streams (subsets of frames
linked by a line using correlation-matrix) and annotations (face thumbnails
with the face recognized from FaceNet).

By comparing input and output frame sets, it is possible to verify that
the face stream 1 didn’t include the first frame in to the actress face stream,
due to a miss-detected face. This happens because the correlation tracker is
triggered by a frontal face detection that didn’t occur due to the face angle. Still
regarding the same actress face stream, notice that even though the correlation
tracker created a correct link between second and third frames for the same
face, for some reason FaceNet(), incorrectly, recognizes two different actress
in each frame. The face stream 2 was perfectly created, it means that a
frontal face detection occurred since the fist frame that the actor appeared,
the correlation tracker linked all the subsequent frames that contains that face
and also FaceNet() recognized the correct face for frames from that actor face
stream. Face streams 3 and 4 has corrects frames linked together but both
face streams has wrong face recognition on specific frames. Face stream 4
also has a miss-detected face on the ninth frame.

Similarly to figure 3.5, figure 3.6 shows the results obtained in the
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backward step. Notice that face stream 3, created during the backward step,
corresponds to the face stream 1, created during the forward step but linking,
correctly, three frames instead of two.

After forward and backward tracking and annotation steps, the next step
is to merge both outputs. The merge process in detailed in subsection 3.3.3.

Figure 3.6: Tracking and annotating process, backward step. After processing
the frame set, in the reversed order, the program identified 4 face streams. The
face stream #3 corresponds to the face stream #1 from 3.5, and after this step
is complete with no missing frame.

3.3.3
Merge

This is a very simple step that consists in merging outputs from the
tracking and annotation process. The goal is obtain an unique set of face
streams (person appearances), indexed by frame. Each face stream maps all
the frames corresponding to that face stream , and also the face positions
(bounding box) in each frame. After joining dictionaries (frame:faces) obtained
after forward and backward steps, the output will be as many face streams as
the number of different actors appearances that occurred in the scene. The
main goal of the merge step is to map correctly all the frames related to the
same appearance, rather than apply the best recognition for each person, task
that will be performed after the merge task.

Once with the two available lists (outputs from the tracking and anno-
tating process, forward and backward steps), the program will join the frames.
The first frame in forward output corresponds to the last in backward output,
the second in forward output corresponds to the penultimate in backward out-
put and so on. After that, the program will deduplicate Face() objects. We
use the bounding boxes positions from faces created using the FaceTracker()
object during the tracking process.

During the faces deduplication process, the program knows the face ids
created during forward and backward steps. For instance, when analysing
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corresponding frames from both outputs, if the same face (bounding box)
received id equals 1 during forward step and equals 99 during backward step,
a new id will be created, and the final output will set this new id to all
faces obtained from forward step with id equals 1, and all faces obtained
from backward step with id equals 99. Something like an "outer join" by face
positions.

For instance, let’s consider the outputs detailed in figure 3.5 and figure
3.6 as input for the merge process and see the result on figure 3.7.

Figure 3.7: Output from merge step

After the merge step, all the face streams are available, in other words,
all the actors appearances are mapped and each appearance corresponds to a
continuous frame sequence based on its first and last frames. At this point, even
though all face streams are defined, there is not a single annotation assigned to
all frames from the same stream. Some frame may be miss annotated and also
two different frames from the same stream may have different annotations.

3.3.4
Decide annotation

Once actor streams are created (output from merge step) the logic model
attempts to assign the same annotation to all the frames from an actor stream.
The model processes each different actor stream separately.

For each frame containing a FaceNet annotation, there is a distance
metric calculated by FaceNet. The logic model uses the smallest distance actor
suggested by FaceNet, all the annotations from different frames of the same
face stream are considered. The implementation is prepared to accept any
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function that decides the annotation to be assigned to all frames of a face
stream.

3.4
Computer Vision Architecture

In Globo.com, there is an in-house computer vision architecture to
support different applications. This architecture provides an asynchronous
process to integrate different components from the company’s video platform.

Figure 3.8 shows a high level architecture to explain how the proposed
solution is integrated to the existing systems. On the top of the figure there is a
component called Scheduler that is connected to the Webmedia API using the
recents service that informs every new media published on the video platform.
The Scheduler identifies if the media must be processed by a computer vision
job and enqueues the media to be processed as soon as there is available
computer resources to.

Figure 3.8: In-house architecture for computer vision applications.

3.5
The content ontology

Guizzardi and Wagner (2010) emphasizes the difference between the
meanings of the term ontology in computing. On the one hand, by the
Conceptual Modeling community, the term has been used according to its
definition in Philosophy: A domain-independent and philosophically well-
grounded formal categorization system, which can be used to spell out specific
models of reality. domain. On the other hand, by the Artificial Intelligence,
Software Engineering, and Semantic Web communities, the term is used as a
concrete engineering artifact designed for a specific purpose without paying
much attention to grounding issues.

Globo.com has previously invested in the creation of an content ontology
that describes all kinds of content produced or offered by the company.
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During the last 10 years this ontology has been evolved by many journalists
and content producers with the focus on articles categorization to improve
content search, organization of content offerings in digital products and online
navigation. Nowadays this ontology has hundreds of concepts and hundreds
of thousands instances that helps to describe content types, events, roles,
locations, persons and objects.

The Unified Foundational Ontology (UFO) has been used to obtain a
high-level abstraction that helps on generalize and organize concepts from dif-
ferent domains. From the technical aspect, the implementation of the ontology
using Resource Description Framework (RDF - https://www.w3.org/RDF/),
a W3C pattern, enabled the implementation of a semantic query endpoint that
integrates concepts from the company vocabulary and other public vocabular-
ies, like DBpedia, to enrich concepts.

Using this controlled vocabulary described by the company ontology is
possible to find out all cast and crew from any creative work, just like finding
any celebrity from sports, entertainment and journalism TV shows.
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4
Results

To evaluate our proposed system we carried out some experiments. In the
following section the results obtained during these experiments are detailed.
Exact matches is the main metric that was used to evaluate the system.
It corresponds to the percentage of frames for which the system correctly
indicates all the actors that appear.

4.1
Facestream assertiveness compared to the state of art

Regarding the evaluation task, a ground truth dataset was created using
a customized tool developed to help humans to annotate actors appearances
in video frames. The dataset contains 7000 frames, randomly selected from 20
different scenes (3 different soap operas). The videos used in this work has
H.264 as video coding format and a display resolution of 640 × 360 pixels.
The evaluated accuracy was 92%. Two different approaches were tested in
order to evaluate the proposed method: the approach 1 was based on the
FaceNet recognition without any additional logic. The approach 2 was based
on the FaceNet recognition together with the logic model developed during
this research and detailed in section 3.3.

Figure 4.1: Frames sequence inconsistently annotated. The red and the blue
bounding boxes corresponds to different annotations, even though are the same
person.
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Scene # frames approach 1 approach 2
Scene 1 352 182 301
Scene 2 445 290 408
Scene 3 705 558 690
Scene 4 730 300 698
Scene 5 810 507 800
Scene 6 1225 780 1180
Scene 7 1448 1154 1301
Scene 8 1604 1290 1440
Scene 9 1850 1550 1698
Scene 10 2110 1613 1891

Table 4.1: Examples of exact matches comparison between two survey ap-
proaches applied to different scenes.

Figure 4.2: Frames sequence consistently annotated. The ambiguous annota-
tion issue, described in 4.1, was eliminated by using the proposed framework.

Both Figures 4.1 and 4.2 shows the same frame sequence. The first one
shows the initial results using get-frontal-face-detector from the dlib Python
library and FaceNet, the second one shows results using the entire proposed
framework that includes correlation-tracker, also from the dlib Python library
and the Logical Model implemented during this research.

Figure 4.1 shows an example of a frame sequence containing both
annotations issues. Either non annotated or wrong annotated frames can be
observed. In this case, although the partial solution got some correct guesses
in some frames, the assertiveness was 0% due to the evaluation metric used.

Table 4.1 shows the enormous advantage of approach 2 over approach 1
when the goal is to maximize exact matches.

During the experiments, both the accuracy and the software performance
of the model were observed. Table 4.2 shows the relationship between detection
rate and accuracy. It is possible to notice that if the detection rate is very high,
the accuracy drops significantly. When using a detection rate equal to 30, which
represents 1 frame per second, since the video was generated at 30 frames per
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Detection rate Assertiveness
1 93%
5 92%
10 89%
30 67%

Table 4.2: Assertiveness by detection rate. The detection rate means the
frequency in which the detection task is performed. If equals to 1, it means
that the program will execute this task in all the frames, if equals to 30, it
means that the program will execute this task in 1 every 30 frames.

second, the accuracy is 67%. However, between a detection rate of 1 (all frames
processed) and 5 (one for every 5 frames is processed) the difference in accuracy
was not that great, 93% and 92%, respectively. At the same time, there was a
significant reduction in the total processing time. Section 4.3 details the results
in terms of software performance.

4.2
Qualitative analysis

Several different analyses combining metrics of assertiveness and images
observation revealed specific important situations. In this section, we discuss
some limitations of the method, related to the visual characteristics of the pro-
cessed images. In addition, we also highlight the method’s strong points, which
presented excellent results in frames with challenging visual characteristics.

4.2.1
Issues to be improved

As described in 3.2, one important attribute from the FaceNet object is
database. It contains the image reference database to be transformed in order
to make landmarks using AlignDlib. During the research, it was possible to
clearly observe the importance of using frontal view face photos as reference.
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Figure 4.3: Face landmarks alignment without distortion. The face landmarks
alignment using AlignDlib, described in 3.2, showed excellent results when
applied on frontal face view images.

The left hand side of Figure 4.3 shows the original photo from an actress.
Note that it is a frontal face photo and that the head is tilted to one side. The
purple line helps to see that the eyes and eyebrows are misaligned (different
heights). The right hand side shows the actress face thumbnail vector after
being transformed to align landmarks. Note that eyes and eyebrows are aligned
in the thumbnail and the image is not distorted.

Figure 4.4 shows another alignment transformation example. The left
hand side shows that eyes are misaligned too. Observe that in this example
the original photo is a side view and check at the right hand side of the figure
that face is distorted in the thumbnail after landmarks alignment step.

These details were observed during an exploratory analysis that com-
pared actors for whom the model had good assertiveness with those for whom
the model did not have good assertiveness. In some cases, the low assertiveness
of the model for a specific actor was related to the reference image that was
used, as in the example in Figure 4.4.

Figure 4.4: Face landmarks alignment without distortion. The face landmarks
alignment using AlignDlib, described in 3.2, generated distorted images when
applied on side face view images.
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Another limitation observed is related to the use of accessories on the
face. Figure 4.5 shows a frame sequence that has an annotation problem. The
first two frames are correctly annotated. At the third frame the actor face
stream was interrupted because the actor turned his face left in a way that the
face landmarks used by the correlation-matrix was not visible anymore. At the
fifth frame the actor starts wearing sunglasses and at the sixth frame the model
made a wrong annotation. To be precise, in this case, two different problems
happened. The first was the face stream interrupted and the second was the
wrong recognition due to the sunglasses. However, if the first problem didn’t
happen, all the frames would be correctly annotated because only one face
stream would be detected and therefore all the frames from this face stream
would have the same annotation, that had the best score.

Figure 4.5: Annotation error due to sunglasses usage. The system annotated
an actor, correctly, in the first two frames. But he was not recognized correctly
after putting on his sunglasses.

4.2.2
Model strengths

The model demonstrated consistent results even processing scenes
recorded by a moving camera. It supports camera rotation and camera shift
movements. Figure 4.6 shows a sequence of frames from a scene, in which the
artists remained in the same place throughout the scene while the camera
moved to the right, passed behind a pillar and then framed the actors again.
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Figure 4.6: Good results in scenes with moving camera. During the scene, the
actors remained in the same place, but the camera moved to the right. Even
though there was an occlusion, the system did not lose tracking and did not
generate any recognition error.

During the experiment, the solution was robust in situations where the
camera zooms in on the actors’ faces, bringing the image closer to or away from
the face, without losing assertiveness in the correct recognition of the actors.

The sequence of frames shown in Figure 4.8 is an example of the observed
effectiveness of the method, in zoomed scenes. Note that in the first frame of
the sequence of nine the actor’s face is spaced apart while in the ninth frame,
after the camera has zoomed in, the face appears much closer without losing
the correct annotation of the corresponding actress. In the first frame there is
an interesting peculiarity, the facial recognition of the actress happened based
on the image of the face reflected by the mirror. In this frame it is possible
to observe on the right side of the image that the actress is facing the mirror,
almost with her back to the camera.

Another strong point of the solution is that it works very well in situations
where the actors are moving, that is, facial recognition is not impaired in
situations where the actors move from one place to another during the scene.
Several scenes with these characteristics have been correctly processed. The
application maintained good results in several different movement situations,
time with an actor, time with more than one actor, whether moving and facing
the camera, or crossing from one side to the other of the scene.

Figure 4.7 contains a sequence of frames extracted from a correctly
annotated scene video, from beginning to end. It is a scene shot inside a scenic
city. In the first 3 frames the actresses were on the left side of the scene. In
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Figure 4.7: Actresses moving from the left side to the right side of the scene.
The system worked perfectly during movement but stopped tracking when all
face landmarks were not visible.

the seventh frame, they were practically in front of the camera, in the next 2
frames they were already on the right side of the scene. It is possible to notice
that in the eighth frame, one of the actresses (marina-ruy-barbosa) lost the
annotation due to the impossibility of visualizing the face landmarks. In the
ninth frame, both actresses lost their annotations due to the same limitation.

Regarding frames annotations quality, FaceStream showed excellent re-
sults, even though it was tested with different types of scenes, actors and
scenarios. Whether in scenarios with high or low lighting, indoors or outdoors,
actors standing still or moving, for any type of face, regardless of sex, age or
race, the results were consistent. But there are specific limitations that have
caused errors or lack of annotation. Usually related to the lack of visibility of
the face landmarks, which serve as a trigger for detecting a FaceStream and
also as a "key" between frames to perform tracking on subsequent frames in
order to identify and annotate all the frames from an actor appearance.

The results obtained using the developed framework are surprising when
analyzing the correctness of the annotations even in situations in which the
actor’s reference image is significantly different from the image of this actor in
the video frames .

Figure 4.9 shows 25 examples of images cropped from original frames.
It is possible to visually compare the reference image of the actor, always
located in the lower left corner, with the image of the frame where the actor
was properly recognized. Note that in many of them the reference image is
quite different from the frame image, yet the annotation was done correctly.
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Many of these frames would not be correctly annotated using only the state of
art solutions like a frontal face detector (Dlib) and a face recognition system
(FaceNet). Either due to occlusion of the face landmarks, low light or the actor
pose that does not provide a frontal view of the face, these frames only received
the correct annotation due to the use of the framework developed during this
research that combines detection, recognition, tracking and a logic layer of
decision.

Figure 4.8: Good results filming through the mirror and zooming. On the
right side of the first frame, you can see that the face image is being captured
through the mirror. In the following frames, it is possible to notice the use of
zoom. The system correctly annotated all frames, even with many changes in
the person’s face pose.
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Figure 4.9: 25 comparisons between actors reference images and actors frame
images properly annotated.
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4.3
Software performance

This section aims to inform software performance metrics obtained during
this research and provide sufficient information to usage decision making.

All the steps described in Section 3.3 were timed separately and the main
results are detailed. During the software performance tests, different scenes
with different amount of frames were processed. Also, in order to understand
software performance optimization possibilities, the solution was tested using
different detection rates. A detection rate, in this thesis, corresponds to the
face detection task frequency. For example, if the detection rate is equal 1,
then the logical model will process all the frames from the video (detect, track
and recognize). If it’s 5, then the logical model will perform the detection task
in 1 out of 5 frames, instead of trying to detect faces in all frames. Therefore,
this value will directly influence the total number of frames that need to be
processed in order achieve acceptable results on "annotating all frames" tasks.

The first column of Table 4.3 contains the six steps detailed in section
3.3. The others columns, each one corresponds to a specific scene, and each
cell from the column corresponds to the time spent on each step. Clearly, Time
Forward Pass and Time backward pass are the most timing consuming steps.

The better part of the total time is regarding these steps because is during
forward pass and backward pass that all the computer vision models inferences
happens. Detection, tracking and recognition.

Figure 4.10: Time to detect, time to track and time to recognize. The
boxplot reveals metrics obtained from 3000 frames from 7 different scenes. Low
dispersion and few outliers are observed during the experiments. Detection is
the most time consuming task.

Figure 4.10 shows a box plot comparing the average time per frame to
perform each type of task. These metrics are based on hundreds of frames,
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from several different scenes, using different detection rates, but even so it is
possible to notice that they are consistent by observing the thin heights of the
boxes from the plot due to the metric’s low variability. In addition, it is evident
that the time to detect is much longer than the time to recognize the actor
and the time to track, on average, 0.201, 0.027 and 0.042 seconds, respectively.

The time to detect is directly related to the number of frames processed.
In Figure 4.11 there are two graphs. The one on the left side, the y-axis
corresponds to the total time spent with detection task, the x-axis corresponds
to different values used as detection rates. Each line corresponds to a specific
scene randomly selected from the database. By observing the legend labels
from the graph is possible to know how many frames each scene has. Notice
the lines order and observe that scenes with a bigger amount of frames always
have a longer total time spent on detection.

The graph on the right side of Figure 4.11 is similar to the previous graph,
only the y-axis that changes, in this case, to time to predict, in other words,
total time spent with recognition tasks. Although the scenes are the same, in
this graph the order of the lines changes. This is because the total time spent
on recognition is not related exclusively to the number of frames processed but
also to the number of faces detected in the frames. In this example, the scene
represented by the orange line has 448 frames, the red one has 691 frames
and both have a longer total time spent with recognition task than the purple
line that has 985 frames. The reason is that averages faces per frame from the
orange and the red scenes are, significantly, greater than the purple scene. In
numbers, 2.46, 1.41 and 0.74, respectively.

Figure 4.11: Different scenes total times per task type by detection rate. The
chart on the left side shows that the total time spent on detection tasks
increases according to the number of frames. On right side, the chart shows
that total times spent on recognition tasks is impacted by the number of frames
but also the average of humans faces per frame.

From the application performance perspective, the implementation used
during this survey achieved results that enabled real life usage in the company.
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Scene 4 Scene 5 Scene 6 Scene 7 Scene 8
Duration 30 27 32 61 54
# Frames 925 810 985 1830 1628

Time loading videos 0.8610 0.8100 0.9910 1.6390 1.6090
Time loading models 10.6060 9.9700 9.8650 10.2210 10.4710
Time Forward Pass 122.4060 71.9740 71.6120 123.0910 170.2540
Time backward pass 63.8630 99.7530 88.4320 94.6830 167.3830
Time Merging passes 0.0072 0.0083 0.0028 0.0037 0.0157
Time Deciding Names 0.0166 0.0161 0.0042 0.0070 0.0108

Total Time 197.7598 182.5314 170.9070 229.6447 349.7475

Table 4.3: Total time to annotate scenes (milliseconds). Five different scenes
selected from the ground truth dataset.

A totally feasible batch processing approach enabled an accuracy focus
that achieved great results on an acceptable time. A parallel scene processing
approach was proposed to reduce the total time spent to annotate soap opera
episodes.

On average, the time spent to annotate is 5.5 times the scene duration.
For instance, a 1 minute long scene will take 5 minute and 30 seconds to have
all the frames annotated. Considering that each episode of a soap opera is
40 minute, divided into 4 blocks of 10 minute, the total time to annotate the
entire block is 5 minutes and 30 seconds. That’s because in general a 10 minute
block has over 100 different scenes, and each scene is less than a minute. So,
its feasible to process all scenes in parallel and spend around 5 minutes to
process a 10 minutes block. This way, if there is enough computer resource in
order to process all the scenes, from all the blocks in parallel, the total time is
directly related to the longest scene duration. The computer used to process
the videos was an Intel Xeon 2.7GHZ CPU with 128 GB RAM memory and a
GPU computing processor NVIDIA Tesla P40 with 22 GB memory.
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Discussion

Strengths and necessary improvements will be discussed in order to understand
correctly the results, limitations and future works.

The workflow for person tracking and recognition and meta-data genera-
tion in videos packs the state of art Computer Vision technologies designed for
object detection and recognition, adds a new logic layer based on a complemen-
tary usage of these technologies, and increases accuracy on person recognition
and tracking tasks. The new approach has been tested an validated in an en-
tertainment industry set, specifically, focused on person (actors) recognition
and, in practice, used for enrich video frames meta-data annotation.

After the evaluation task it was clear that the method generated signifi-
cant results regarding the amount of video frames, correctly, annotated by the
model. One of the proposed method’s benefit is that it enables automatic ac-
tors and actresses annotation even on frames that does not have a frontal face
detection. Also, the model proved to be very efficient for disambiguate different
annotations regarding the same person. The integration with the content on-
tology query endpoint facilitated the automatic photos retrieval from different
cast. These photos were used as a reference to identify the actors in the video
frames.

Even thought the outputs is a frame annotation, all the logic and the
decision regarding frames annotations is based on entire actors appearances,
in this article, called face streams. By the end, the observed results reveal that
is possible to gain accuracy on frame annotations by analysing a sequences of
frames where a specific frame is contained instead of analysing only the frame
that needs to be annotated.

In this work, a face stream (actor appearance in a scene) depends on
face landmarks to be correctly defined. In section 4.1, very good results are
shown but there are issues to be improved as described in 4.2.1. An issue that
caused errors in several experiments is the incorrect face stream interruption.
It means that the solution wasn’t able to correctly define a face stream with all
the frames related to the same actor appearance. For instance, the figure 4.5
shows this kind of situation in which two different face streams was detected
for the same actor appearance. This problem happens because at this moment
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the solutions uses only the face landmarks in order to detect face streams
and link all the frames from a face stream. But the problem is that there are
some frames that does not contain any face landmark visible. Different The
framework developed during this research m

A promising approach that could be tested in future works would be to
evolve the solution so that the detection of a face stream and the identification
of all the frames that compose it can be done based on different attributes,
additionally to a vector that represents the alignment of eyes and eyebrows,
how it works today. It would be like an evolution, from what is today a face
stream, as described in this work, to what would be a person stream. A person
stream would be created based on the attributes used in the current solution
plus other new attributes of people that can be identified in an image. As
examples, a lateral view of the face, the position of the head or any other
human body members and also other landmarks of the face that depend on a
frontal view, such as the mouth and chin positions.

One of the main challenges to be faced to make the aforementioned
approach viable is the software performance. The section 4.3 provides a series
of software performance metrics, details the time spent on each processing step
and shows that the detection step is the slowest one. In the aforementioned
approach, other types of detection would be needed, and in order not to hinder
performance too much, it is important not to carry out all types of detection
in all frames, during the stage of defining face streams. Due to this challenge
it is important to understand the semantics of the images displayed in the
frames. Either in the specific frame to be annotated or in the frames before
and after it. For instance, when identifying a human head, seen from behind,
in a specific frame, the effort to detect a head again or a lateral view of the face
in the next frame, should take priority over the attempt to detect landmarks
of the face such as eyes and eyebrows. Although this makes sense for a specific
frame, it is known and it has been shown in the figures 4.11 and 4.10 that the
position of the actors and cameraman differs among the frames of the same
face stream. So, what type of optimal landmark should be used in order to
make the best detection in the next frame, given that the current frame had
the best detection based on a specific type of landmark?

Modeling this phenomenon, locating the ideal landmark type transitions
between frames, identifying and understanding the transition patterns are
initiatives that can increase the robustness of the method and, thus, correctly
capture the entire person stream and minimize annotation problems.
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6
Conclusions

When it comes to video metadata generation, the proposed method achieved
important goals. The use of a content ontology was essential in automating
actor photo capture. In addition, it has made it possible to use the tool in a
generic and extensible way for various types of content besides soap operas,
for example, TV series, movies, auditorium shows, humor shows and reality
shows. Our proposed method achieved a good accuracy because it iterates the
video frames in order to eliminates annotations errors and annotate frames
with no frontal face detection.

The accuracy obtained with the new method is much higher when the
observed metric is exact matches because it analyses the sequence of video
frames that characterizes an appearance of a character in a given video instead
of analyse a single frame observation. A huge archive of soap opera videos
will be enriched with metadata enabling different applications improvements.
New features for recommender systems and users preferences information to
help advertising targeting are the first applications that will benefit from this
metadata. Recently, the company developed a new pipeline for computer vision
that supports different kinds of application. Nowadays, a model designed to
detect intro and credits parts from TV series episodes is using this pipeline
in production. The same pipeline might be used to integrate the Facestream
solution to the company’s video processing platform.
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