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Abstract 

Santos, Bruno Jorge Macedo dos Santos; Nieckele, Angela O. 

(orientador). Development of nonlinear turbulent models based on 

Reynolds average using objective tensors. Rio de Janeiro, 2021. 99p. 

Dissertação de Mestrado – Departamento de Engenharia Mecânica, 

Pontifícia Universidade Católica do Rio de Janeiro. 

Reynolds Average Navier Stokes (RANS) models are among the most 

employed models to solve turbulent flows, due to their low computational cost. The 

majority of RANS models use the Boussinesq approximation, based on a linear 

relation between the deviatoric part of Reynolds stress tensor and the rate of strain 

tensor, with the turbulent viscosity as the positive proportionality parameter. 

However, these models fail in several situations, and a great deal of effort has been 

made by the scientific community aiming to improve model prediction through the 

development of non-linear models. Analysis of higher-order models employing 

objective orthogonal tensors has shown that these are very promising to improve 

the prediction of the normal components of the Reynolds stress. In this work, non-

linear models based on the square of the rate-strain tensor and non-persistence 

tensor were examined for a range of friction Reynolds number from 395 to 5200. 

New wall damping functions were developed, employing the turbulent kinetic 

energy and intensity of the rate of strain tensor to determine the turbulent 

characteristic velocity and length. Further, a new one-equation turbulent model 

based only on the turbulent kinetic energy transport equation was proposed coupled 

with an algebraic closure equation to model the turbulent kinetic energy dissipation. 

The models prediction for a channel flow were compared with DNS data and 

presented a better adherence to the DNS data, than the results of other RANS 

models available in the literature. 

Keywords 

Non-Linear RANS Model; Channel Flow; Eddy Viscosity Model; Turbulence. 
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Resumo 

Santos, Bruno Jorge Macedo dos Santos; Nieckele, Angela O. 

(orientador). Desenvolvimento de modelos turbulentos não lineares 

baseados na média de Reynolds usando tensores objetivos. Rio de 

Janeiro, 2021. 99p. Dissertação de Mestrado – Departamento de Engenharia 

Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 

Modelos RANS (Reynolds Average Navier-Stokes) estão entre os modelos 

mais empregados para resolver escoamentos turbulentos, devido a seu baixo custo 

computacional. A maioria dos modelos RANS usa a aproximação de Boussinesq, 

baseada em uma relação linear entre a parte deviatórica do tensor de Reynolds e o 

tensor taxa de deformação, com a viscosidade turbulenta sendo o parâmetro positivo 

de proporcionalidade. Contudo, esses modelos falham em várias situações, e um 

grande esforço tem sido feito pela comunidade científica com intuito de melhorar a 

previsibilidade do modelo desenvolvendo modelos não lineares. Análises de modelos 

de ordem superior empregando tensores ortogonais objetivos têm mostrado que estes 

são muito promissores para melhorar a previsão dos componentes normais do tensor 

de Reynolds. No presente trabalho, modelos não lineares baseados no quadrado do 

tensor taxa de deformação e no tensor não persistência de deformação foram 

avaliados para uma faixa de número de Reynolds baseados na velocidade de atrito, 

variando de 395 até 5200. Novas funções de parede foram desenvolvidas, utilizando 

energia cinética turbulenta e o módulo do tensor taxa de deformação para determinar 

a velocidade e comprimento característicos. Além disso, um novo modelo turbulento 

de uma-equação baseado somente na equação de transporte da energia cinética 

turbulenta foi proposto juntamente com uma equação de fechamento algébrica para 

modelar a dissipação da energia cinética turbulenta. Os resultados dos modelos para 

escoamento em canal foram comparados com os dados DNS, apresentando uma 

melhor aderência aos dados DNS em comparação com os resultados de outros 

modelos RANS encontrados na literatura. 

Palavras-chave 

Modelo RANS Não Linear; Escoamento em Canal; Modelo de Viscosidade 

Turbulenta; Turbulência. 
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1 . Introduction 

Most flows occurring in nature and in engineering applications are turbulent. 

The boundary layer in the earth’s atmosphere is turbulent (except possibly in very 

stable conditions), the water currents below the surface of the oceans are turbulent, 

interstellar gas clouds (gaseous nebulae) are turbulent. Boundary layers growing on 

aircraft wings or around any vehicle are turbulent, as well as natural gas and oil 

flow in pipelines (Tennekes & Lumley, 1972). However, in spite the abundance of 

turbulent flow in nature and industry, it is still a challenge to predict this type of 

flow. 

The flow is classified as turbulent when it is unstable, i.e., small perturbations 

are amplified by the non-linear convective terms of the momentum equation. Often 

turbulent flows are called random since they are irregular and chaotic. The flow 

becomes turbulent when a parameter such as Reynolds number 𝑅𝑒, Rayleigh 

number 𝑅𝑎, or the inverse Richardson number 𝑅𝑖−1, exceed a critical value.  

The nonlinearity of a turbulent flow is also directly related with vortex 

stretching, a key process by which three-dimensional turbulent flows maintain their 

angular momentum. The vortex stretching mechanism transfers energy and 

vorticity to increasingly smaller scales. Thus, a characteristic feature of turbulence 

is the existence of an enormous range of eddy sizes. The size of the largest eddies 

is in the order of the object of interest, e.g., in a boundary layer it corresponds to 

the thickness of the layer. The large eddies contain most of the energy. The energy 

is transferred from large to small eddies by nonlinear interactions, until it is 

dissipated by viscous diffusion in the smallest eddies. These smallest scales, called 

Kolmogorov scales (Pope, 2000), depend on the dissipation of turbulent kinetic 

energy 𝜀 and kinematic viscosity 𝜐. Turbulent flows therefore require a continuous 

supply of energy to make up for the viscous losses. Even the smallest scales 

occurring in a turbulent flow are ordinarily far larger than any molecular length 

scale (Tennekes & Lumley, 1972), so it is a continuum phenomenon, governed by 

the equation of fluid mechanics.  

Due to the macroscopic mixing of fluid particles, turbulent flows are 
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characterized by a rapid rate of diffusion of momentum and heat. Given the 

importance of the damping or enhancing turbulence in engineering applications, it 

is no surprise that a substantial amount of research effort is dedicated to the 

development of methodologies and models to capture the important effects due to 

turbulence.  

Presently the most common methodologies to analyze a turbulent flow are 

(Pope, 2000): Direct Numerical Simulation (DNS), Large eddy simulation (LES) 

and Reynolds-Averaged Navier-Stokes (RANS). For these three methodologies, as 

the simulation cost is reduced, the level of modeling increases. 

Direct Numerical Simulation (DNS) computes all flow quantities in all scales 

directly. The continuity and momentum equations are solved on spatial grids and 

time steps that are sufficiently fine that they can resolve the Kolmogorov scales 

(length ℓ, time 𝜏, and velocity 𝑣). However, the Kolmogorov scales are inversely 

proportional to the Reynolds number (ℓ/𝐿~𝑅𝑒−3/ 4 , 𝜏 / 𝑡~𝑅𝑒−1 /2 and 𝑣/

𝑢~𝑅𝑒−3/ 4 ), and its computational demand increases substantially as the Reynolds 

number grows. Therefore, presently this approach is limited to flows of low or 

moderate Reynolds numbers. Since the DNS approach is highly costly in terms of 

computing resources, its main application is to study and understand the turbulent 

phenomena, as well as to aid in the development of improved LES or RANS 

models.  

Large eddy simulation (LES) is based on space filtering of the conservation 

equations, which passes the larger eddies and rejects the smaller eddies. The effects 

on the resolved flow (spatial average flow plus large eddies) due to the smallest, 

unresolved eddies are included by means of a so-called sub-grid scale model. The 

sub-grid modelling introduces a modeling error, which, although smaller than in 

RANS, should not be disregarded. Avoiding the requirement of accurate resolution 

of small-scale motions significantly reduces the computational cost in comparison 

to DNS and makes it possible to simulate flows in realistically complex geometries 

at realistically high Reynolds numbers. On the other hand, the computational cost 

of LES is much higher than the cost of the RANS methods, since it is always 3D 

and transient and it requires small mesh size and time step (although larger than for 

DNS). Currently the use of LES in practical engineering analysis is limited, but 

with the fast development of larger and faster computers, this technique is 

beginning to be employed to determine complex flow in industry. 
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Reynolds-Averaged Navier-Stokes (RANS) modeling is focused on the 

effects of turbulence on mean flow properties. In RANS methodology, transport 

equations for the time average variables of interest (or ensemble averaged in flows 

with time-dependent boundary conditions) are obtained by introducing a time 

averaging procedure to the conservation equation. Within this methodology, one 

can introduce the approximation of steady state flow and/or reduce the flow 

dimension, leading to less costly solution than the previous cases. However, 

through this procedure, additional unknown variables (called turbulent transport 

flux) related to instantaneous fluctuations appear. In the momentum equation, those 

are called Reynolds stresses and are responsible for representing the effects of 

turbulence on the mean flow (Pope, 2000). Thus, to compute a turbulent flow with 

the RANS equations it is necessary to develop turbulence models to predict the 

Reynolds stresses and any other turbulent scalar transport terms, related to the 

application, and all flow scales are modeled. 

The majority of engineers are almost always satisfied with information about 

the time-averaged properties of the flow, e.g., mean velocities, mean pressures, 

mean stresses etc., that is, it is unnecessary to resolve the details of the turbulent 

fluctuations. Thus, according to Versteeg & Malalasekra (2007), the vast majority 

of applied turbulent flow computations has been and will continue, in the 

foreseeable future, to be carried out with procedures based on the RANS equations. 

There are several levels of approximation to determine the turbulent stress 

tensor and turbulent fluxes. A transport equation can be written directly for these 

quantities, i.e., the Reynolds stress model consists of solving a transport equation 

for each of the Reynolds stress tensor components. This model has also a high 

computing cost, due to elevated number of differential equations to be solved. The 

majority of RANS turbulence models are based on the Boussinesq hypothesis, 

where the Reynolds stress tensor is defined through an analogy with the constitutive 

equation for a Newtonian fluid, i.e., the Reynolds stress tensor is defined as 

proportional to the mean rate of strain tensor and a coefficient of proportionality 

called the turbulent viscosity 𝜇𝑡, which remains to be modelled.  

There are also several levels of modeling for the turbulent viscosity 𝜇𝑡. It is 

usually modelled as proportional to a characteristic velocity 𝑉𝑐 and a characteristic 

length ℓ𝑐.  These quantities can be determined employing algebraic equations (zero 

differential equations) like the Prandtl mixing length model. One, two, three, etc. 
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differential equations can also be employed. A large number of models employ two 

differential equations to evaluated the characteristic length and velocity. Often, the 

turbulent kinetic energy is selected to estimate the characteristic velocity (𝑉𝑐 =

𝜅0.5). The characteristic length is more difficult to be estimated. Among the most 

popular two equations model are the models based on the turbulent kinetic energy 

𝜅 and its dissipation 𝜀, the 𝜅 − 𝜀 family models (Rodi & Mansur, 1993) or turbulent 

kinetic energy 𝜅 and its specific rate of dissipation 𝜔, called 𝜅 − 𝜔 family models 

(Menter, 1994). 

There are several applications that the Boussinesq hypothesis fails as flows 

in the presence of separation, swirl flow, flow with sudden changes in mean strain 

rate, rapid dilatation, out of plane straining, or significant streamline curvature, all 

of which give rise to unequal normal Reynolds stresses, (Bradshaw, 1973). 

Through a rigorous procedure to determine the turbulent viscosity within the 

Boussines hypothesis, the turbulent viscosity should be a fourth order tensor, 

because to get a second order tensor (Reynolds stress tensor), it is necessary to make 

the product of a fourth order tensor (turbulent viscosity) with a second order tensor 

(rate of strain tensor). By approximating the turbulent viscosity as a scalar, the 

contribution of some of the components of fourth order tensor is lost, therefore, 

linear models of the Reynolds stress tensor are not able to predict the existence of 

its normal components. Thus, a simple way to improve the deficiencies of the linear 

models is to develop a “Non-linear eddy viscosity model” (NLEVM) to represent 

the Reynolds stress, i.e., by assuming that the Boussinesq Hypothesis is simply the 

leading term in a series of expansion of functions (Wilcox, 1994). These additional 

nonlinear terms can be defined as combinations of the rate of strain tensor and 

vorticity tensor (Lien et al., 1996). Thompson et al. (2010) argue that the suitable 

tensors to model the Reynolds stress are the strain rate and non-persistence tensor, 

due to its objectivity and frame indifference form. Nieckele et al. (2016) presented 

a priori investigation of six different models based on combinations of these two 

tensors getting a high predictability of the flow. They also suggested to employ the 

turbulent kinetic energy 𝜅 and its dissipation 𝜀 to evaluate the characteristic 

turbulent velocity and length. 

Since the transport equation for 𝜀 is difficult to obtain and several empirical 

strong approximation are needed, Alves (2014) recommended to base the 
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characteristic length on the norm of strain deformation tensor (𝛾̇), aiming also to 

obtain more smooth damping functions. 

Murad (2018) and Santos (2019) performed a posteriori analysis of four 

models presented on Nieckele et al. (2016), considering a channel flow and pipe 

flow, respectively. They considered both combinations of turbulent characteristic 

velocity and length: 𝜅 − 𝜀 and 𝜅 − 𝛾̇, with good results. However, for the 𝜅 − 𝛾̇ 

case, complicated adjustment functions based on the wall distance very defined by 

both authors throughout the flow. 

1.1 Objective 

The main objective of this work is to develop and evaluate RANS models to 

improve the prediction of turbulent shear flows. To this end, non-linear models 

were selected, considering on its tensorial base the rate of deformation tensor 𝑫, 

the square of the rate of deformation tensor 𝑫𝟐 and the non-persistence tensor 𝑷. 

To close the models definition, the proportionality parameters of each tensor from 

the tensorial base were defined employing characteristic turbulent velocity and 

length based on the turbulent kinetic energy, 𝜅, and the norm of strain deformation 

tensor, 𝛾̇. Additionally, new near wall damping functions were developed for each 

tensor. To determine the turbulent kinetic energy the Modified Rodi-Mansur model 

(Michelassi et al., 1993) was selected, and the resulting models were classified as 

two equations 𝜅 − 𝛾̇ models. 

Although, the characteristic variables are based on 𝜅 and 𝛾̇, the dissipation of 

turbulent kinetic energy, 𝜀, is still needed in the transport equation of 𝜅. To 

eliminate the need to solve a transport equation for 𝜀, a model for the dissipation 

rate of 𝜅 is proposed, resulting in one-equation 𝜅 − 𝛾̇ models. The model developed 

for 𝜀 is based on the production of 𝜅, being dependent on 𝜅 and on the norm of 

strain deformation tensor 𝛾̇. 

The models were developed based on a fully developed channel flow, where 

DNS data is available aiding in the modeling definition and their evaluation. To 

evaluated the models, the predictions for a channel flow are compared with DNS 

data of Thais et al. (2012) and Lee and Moser (2015) for a wide range of friction 

Reynolds numbers 𝑅𝑒𝜏, and the predictions of non-linear models of Murad (2018) 

obtained with the open source code OpenFoam, for 𝑅𝑒𝜏 = 1000.  
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1.2 Manuscript Organization 

This work is divided in five chapters. In the first one, objective and motivation 

are exposed. In the second, a literature review related to turbulence models is 

presented.  

Mathematical and numerical modeling that were used in the simulations can 

be found in Chapter 3. Low Reynolds models as 𝜅 − 𝜀 model and a new model for 

turbulent kinetic energy dissipation are discussed. Numerical details used in the 

simulation are also shown. 

The results are presented in Chapter 4. Initially some preliminary tests are 

shown. Then, both 𝜅 − 𝛾̇ models proposed here (2 equations 𝜅 − 𝛾̇ model and 1 

equation 𝜅 − 𝛾̇ model) are examined for different non-linear models of the tensorial 

base and are compared with DNS data. In the sequence, the best non-linear model 

of the tensorial base, with 1 and 2 equations 𝜅 − 𝛾̇  formulations are compared with 

data found in the literature. 

Finally, in Chapter 5, the conclusions of the work are presented, summarizing 

the work’s contributions for the turbulence modeling area. Suggestion for future 

work are also discussed. 

Additional information regarding the models coefficients adjustments, a grid 

test and a comparison of 1D and 2D formulation are shown in the Appendix. 
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2 . Literature Review 

The present literature review is focused in the RANS methodology, based on 

the analysis of time average quantities.  

The turbulent viscosity was introduced by Boussinesq in 1877, while 

Reynolds in 1894 derived the time average equations (Pope, 2000). The deviatoric 

Reynolds stress tensor was defined as proportional to the mean rate of strain, 

employing a positive scalar coefficient named as eddy viscosity (or turbulent 

viscosity) as the proportionality parameter. If the Boussinesq hypothesis is accepted 

as a good approximation, eddy viscosity has to be determined, that can be written 

as the product of the velocity and a length (Pope, 2000). 

Although some models based on Boussinesq hypothesis provide excellent 

predictions for many flows of engineering interest, there are some applications that 

these models do not satisfactorily predict the flow, getting differ from 

corresponding measurements. Generally speaking, according to Bradshaw (1973), 

such models are inaccurate for flows with sudden changes in mean strain rate and 

for flows with rapid dilatation, out of plane straining or significant streamline 

curvature, all which give rise to unequal normal Reynolds stresses, and the 

Boussinesq hypothesis fails (Wilcox, 1994). 

Park et al. (2002) developed a new non-linear model on the basis of 

realizability constraints to predict turbulent flow with heat transfer. The linear 𝜅 −

𝜀 − 𝑓𝜇 model developed by Park and Sung (1997) was extended to a non-linear 

formulation and the stress-strain relationship was derived from the Cayley-

Hamilton theorem in a homogeneous flow. The model performance well for a 

channel flow, backward-step and imping jet problem 

Abe et al. (2003) proposed new closure approximations, within the 

framework of non-linear eddy-viscosity modeling, aiming specifically to improve 

the representation of near-wall anisotropy in shear flows ( fully developed channel 

flow at 𝑅𝑒 = 6875 and 𝑅𝑒 = 21200 and a spanwise-homogeneous flow in a 

periodically constricted channel. The main novel element was the introduction of 

tensorial terms, alongside strain and vorticity, which depend on wall-direction 
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indicators and which reproduce the correct asymptotic near-wall behavior of the 

Reynolds stresses. The new model elements result in a substantially improved 

representation of the Reynolds stress field at the wall, especially in the wall-normal 

Reynolds stress. 

Based on the assumption of wall layer universality, Kalitzin et al. (2005) 

proposed a novel wall-function formulation applicable to any RANS turbulence 

model applied to the entire model. The behavior of RANS turbulence models in the 

near wall region was also analyzed for a flow over in a flat plane. Their work 

considered 1 equation Spalart-Allmaras model, and two equation models 𝜅 − 𝜔 and 

𝜅 − 𝑔, and 4 equations 𝜈2 − 𝑓 model. The analysis of the latter resulted in a new 

analytical solution in the viscous sublayer and logarithmic layer. The analytical 

solution for the Spalart-Allmaras model can be used directly as a simple wall 

function. The existing wall functions for 𝜅 − 𝜔 model showed significant 

deficiencies, the transformation from 𝜔 to 𝑔 circumvents the difficulties with 𝜔 in 

the viscous sublayer. 

Thompson (2008) developed a mathematical concept of tensor 

decomposition, showing two types of orthogonal decomposition. Bacchi (2009) 

studied non-persistence of straining tensor, vortex definition and their applications 

in the flow. Then, based on these two works, Thompson et al. (2010) presented a 

methodology to quantify the dependence of linear and non-linear Reynolds stress 

tensor on mean kinematic tensor basis using rate of strain and non-persistence 

tensor, proposing six different models. 

Mukin et al. (2011) presented an explicit algebraic Reynolds stress for a non-

linear turbulent viscosity model (NLEVM) combined with modified 𝜅 − 𝜀 

turbulence model to take into account particles effect on turbulence for calculating 

the main turbulent characteristic of two-phase flow in a circular tube. The 

developed model adequately described turbulence anisotropy and the influence of 

particles inertia and concentration on the turbulence intensity. 

Chen et al. (2011) have develop a NLEVM model for the prediction of flows 

in the presence of cavitation, which are accompanied by large density ratio and 

large- swirling flow structures around a complex submerged vehicle. They 

proposed a quadratic and cubic non-linear eddy-viscosity turbulence models with 

low Reynolds number correction to improve the prediction of anisotropic 

turbulence stresses. These non-linear models were capable of capturing more 
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accurate macroscopic shape and hydrodynamic property of supercavition of 

benchmark problems. 

Fu et al. (2011) develop a framework to aid in the development of NLEVM, 

based on the Cayley-Hamilton theory, which resulted in a five-term model 

expression. An explicit algebraic stress model (EASM) was formulated in a 

compact vorticity tensor to a form a minimal representation. The model was tested 

for a few classical problems like channel flow, boundary layer flow, flow over 

obstacles, as well as a fully developed flow inside a rotating pipe, presenting 

reasonable results. 

BenSaid et al. (2012) evaluated the performance prediction of near wall flow 

with algebraic linear models (𝜅 − 𝜀 and 𝜈2 − 𝑓 models) and a non-linear model of 

Shih, performing a priori and a posteriori analysis, by comparing the model 

predictions with DNS data of a plane channel flow. The results suggested that 𝜈2 −

𝑓 model is an efficient model to capture the turbulent shear stress component of the 

Reynolds stress for this type of flow, but is unable to predict correctly the level of 

anisotropy of the Reynolds stress tensor. Furthermore, it is shown that the presence 

of non-linear terms in a turbulent model improves the ability to predict the flow 

anisotropy. 

Using DNS data from Thais et al. (2012), Nieckele et al. (2016) performed a 

priori analysis of the six different models proposed by Thompson et al. (2010) and 

formulated expressions for damping functions for the dimensionless non-linear 

terms in a channel flow. They defined the characteristic velocity and length as a 

function of the turbulent kinetic energy and its dissipation rate to obtain 

dimensionless coefficients for the Reynolds stress tensor. The results showed that 

the non-linear models improved the representation of the normal components of the 

traceless Reynolds stress tensor. The best results were obtained with a combination 

of the non-persistence tensor and the square of mean rate of strain tensor.  

Alves (2014) proposed a new characteristic length based on the strain tensor 

intensity, aiming to obtain more smooth damping functions applied to a channel 

flow, and to reduce the influence of the dissipation of turbulent kinetic energy 𝜀 in 

the model. The new set of coefficients presented a more universal behavior for the 

Reynolds numbers tested. 

Wei et al. (2015) developed a non-linear model and a scalable hybrid 

URANS/LES strategy to improve the capability of the RANS model to simulate 
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complex flows featuring separations and unsteady motions. Calculated results of 

the flow around a triangular cylinder showed that the non-linear model was able to 

improve the flow prediction, but the error was still considerable, and small 

turbulence structures were not clearly captured by the model. 

Weatheritt et al. (2016) developed an algorithm based on Machine Learning 

to develop a mathematical model for tensors, using DNS data and applied to the 

backward facing step and periodic hills flows. This mathematical model was 

applied in turbulence modelling, in the formulation of non-linear RANS stress-

strain relationships, with promising results. 

Ribeiro et al. (2018) employed a tensorial decomposition technique as a mean 

to evaluate the Boussinesq hypothesis based on Thompson et al. (2010) work. The 

technique projects the anisotropic Reynolds stress tensor onto the rate of strain 

tensor, enabling an estimate for the turbulent viscosity and the error associated with 

the assumption. The authors examined a convergent-divergent channel flow and the 

flow around a sphere and showed large errors in the prediction with Boussinesq 

based models. The best performance was achieve using 𝜅 − 𝜔 model in comparison 

to 𝜅 − 𝜀 model. 

Luo et al. (2018) proposed an hybrid RANS/LES model based on 𝜅 equation 

with the quadratic stresses to improve the coupling between the methods at the 

RANS/LES interface. The model was validated in a Taylor-Couette flow and the 

results obtained were close to the experimental values. 

Murad (2018) and Murad et al. (2020) performed an evaluation of available 

linear RANS models by comparing to DNS data for a channel flow, followed by an 

analysis of the non-linear models recommended by Nieckele et al. (2016). New 

damping near wall functions were developed based on the turbulent kinetic energy 

and its dissipation rate as characteristic velocity and length, for several Reynolds 

number for a channel flow. For friction Reynolds equal to a 1000, the characteristic 

length proposed for Alves (2014) was also tested, with promising results, although 

the damping functions were too complicated. Santos (2019) performed similar 

analysis, with the same damping functions for circular ducts flow, obtaining 

equivalent results as it was found for the channel flow.  

Otereo et al. (2018) presented a novel methodology for the prediction of wall-

bounded flows in the presence of thermos-physical properties strong gradients in 
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the fully develop channel flow. The modification of the diffusion term of the 

turbulent kinetic energy equation resulted improved results. 

Tian et al. (2019) proposed a model to directly determine turbulent viscosity 

through a variable denominated 𝑅, by the solution of its differential equation. The 

model is based on the work of Elkhoury (2017), and relates 𝑅 with the turbulent 

kinetic energy and its dissipation, as  𝑅 = 𝐶𝜇𝜅
2/𝜀 by deriving R equation from 

these variables equations. This simplified model presents coefficients and functions 

constructed such as to preserve the anisotropic characteristic of turbulence 

encountered in non-equilibrium flows. To evaluate the accuracy of the model, it 

was applied to the fully developed, asymmetric plane diffuser and a flow over 

Onera-M6 wing. Comparisons indicate that the new model improves the accuracy 

of flow predictions compared to the widely used Spalart-Allmaras model and 

remains competitive with SST 𝜅 − 𝜔 model.  

Rahman et al. (2019) proposed an approach to devise a consistent formulation 

for production-to-dissipation ratio to obtain a non-singular coefficient of eddy-

viscosity embedded in the one-equation model based on the turbulent kinetic 

energy. The dissipation rate was evaluated with an algebraically prescribed length 

scale having only one adjustable coefficient, accompanied by an anisotropic 

function enhancing the dissipation in non-equilibrium flow regions. To validate the 

new model, it was applied in developed channel flow, flat plane boundary layer 

flow with zero pressure gradient, backward facing step flow, an asymmetric diffuser 

plane flow, flow over a 3D axisymmetric hill, flow past an NACA 4412 airfoil, the 

flow over an ONERA-M6 wing and free shear flow. Although promising results 

were obtained, the authors indicate the need of additional validations are necessary 

to gain confidence in the proposed approach. 

Using a quadratic stress-strain relation for the Reynolds stress tensor Fadhila 

et al. (2020) proposed and formulated a new 𝜔 −based non-linear eddy viscosity 

model, based on the original 𝜅 − 𝜔 model and applied in zero pressure gradient flat 

plate, curved channel, planar diffuser with a downstream monolith and swirling 

flow. For enhanced treatment of near-wall turbulence anisotropy, a formulation that 

scales only with the turbulent Reynolds number is proposed for the first time. This 

new model outperformed the standard 𝜅 − 𝜔 model. 
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Alegre et al. (2020) developed a nonlinear model that represents what is 

generally found in a Hole-Pattern machine seal. The methodology consists mainly 

in translating the coefficients obtained via orthogonal projection of the Reynolds 

stress that are calculated from LES onto a given basis tensor. The results showed a 

better performance of the model than the linear Boussinesq model, but with some 

limitations. 

Beetham et al. (2020) presented a data-driven framework for formulation of 

closures of the RANS equations. His work has leveraged a sparse regression 

framework while the body of work has primarily leveraged neural networks. The 

data-driven framework was applied in sections of a Hole-Pattern seal with one hole, 

three holes and five holes. The sparse regression framework results a closed model 

in algebraic form, allowing for direct physical inferences to be drawn and naive 

integration into existing computational fluid dynamics solvers. 

Kaandorp et al. (2020) have also used machine learning algorithm, called the 

Tensor Basis Random Forest (TBRF), to predict the Reynolds-stress anisotropy 

tensor, an improvement is observed with respect to the base line 𝜅 − 𝜔 simulations. 

The authors argue that the TBRF algorithm presented is relatively easy to 

implement because some machine learning issues can be avoided. They have 

applied the algorithm in curved backward facing step, backward facing step and 

square duct. Both works guarantee Galilean invariance by making use of a tensor 

basis.  

Yang et al. (2020) developed a new turbulent viscosity definition which 

inherits the advantages of the elliptic blending turbulence models and the SST 

turbulence models. The new model was applied to near-wall, separated and 

impinging jet flows and associated heat transfer problems. The current new model 

yields better results than the SST 𝜅 − 𝜔 model for separated and impinging jet 

flows and the associated heat transfer problems. 

Li et al. (2020) developed a modified expression for the eddy viscosity, 

combining a proposed non-linear constitutive equation between the Reynolds stress 

and mean strain rate with the analytical solution of the pressure strain term in the 

Reynolds stress transport equation. This new model was developed for turbulent 

flow of supercritical fluid. Improved results were obtained in vertical flow and 

horizontal flow with respect to heat transfer and turbulent statistics of supercritical 

fluids. 
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Zhang et al. (2020) formulated a new low-Reynolds-number turbulence 

model also based on the based on 𝑅 parameter (𝑅 = 𝜅2/𝜀) computing a fully-

developed turbulent channel and flat plane flows. Most of the diffusion terms 

emerging from the transformation have been preserved in the derivation of the new 

model, maintaining the closest relationship with its parent 𝜅 − 𝜀 model. The 

coefficients and functions are constructed aiming to guarantee the original 

anisotropic characteristics of turbulence. The prediction of this new model 

presented a good correlation with experimental data. 

This literature review has shown the existence of countless turbulent models. 

Each model focus in improving the representation of some specific turbulent flow, 

with different geometries, in the presence or not of heat transfer or particles in the 

flows. It is clear the difficulty to develop one model able to predict any type of flow, 

leading the scientific community to continue to search more accurate and general 

models or models specifically designed for a particular engineering problem.  

Among the different developed models available in the literature, higher order 

models employing objective orthogonal tensors seem to be very promising to 

improve the flow prediction, and have been selected to be further examined in the 

present work. Further, it is clear that the transport equation of the turbulent kinetic 

energy dissipation is a drawback in the available models, thus in the present work 

a simple model to this variable is proposed to avoid the solution of its transport 

equation, and render a simpler and cheaper model. 
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3 . Mathematical and Numerical Modeling 

In this chapter, the mathematical and numerical models employed in the 

present work to analyzed a turbulent flow are described. Initially the time average 

conservation equations are introduced, followed by the description of the non-linear 

Reynolds Average Turbulence Models selected to be examined.  

Two different characteristic velocities and lengths are selected to define the 

models coefficients, and are described. A modification of the non-linear models is 

proposed aiming to obtained a more robust and accurate model, by eliminating the 

determination of the dissipation of turbulent kinetic energy.  

The configuration employed to evaluate the models is a fully developed 

channel flow, and DNS data (Thais et al., 2012 and Lee and Moser, 2015) are 

available for comparison, and details of this test case are discussed. 

The last section of this chapter presents information related with the 

numerical model employed. 

3.1 Conservation Equations 

Considering a Newtonian and incompressible fluid, the mass conservation 

and momentum equations can be written as 

𝜕𝑢𝑖
∗

𝜕𝑥𝑖
∗ = 0 (3.1) 

𝜕(𝜌 𝑢𝑖
∗)

𝜕𝑡
+
𝜕(𝜌 𝑢𝑖

∗𝑢𝑗
∗)

𝜕𝑥𝑗
∗ = −

𝜕𝑝∗

𝜕𝑥𝑖
∗ + 𝜌𝑔𝑖 +

𝜕(2 𝜇 𝐷𝑖𝑗
∗ )

𝜕𝑥𝑗
∗  

(3.2) 

where 𝑢𝑖
∗ is the velocity component, 𝑥𝑖

∗ is the coordinate system, 𝜌 is the density, 

𝑝∗ is the pressure, 𝑔𝑖 is the gravity acceleration component, 𝜇 is the molecular 

viscosity and 𝐷𝑖𝑗
∗  is the rate of strain tensor, written as 

 𝐷𝑖𝑗
∗ =

1

2
(
𝜕𝑢𝑗

∗

𝜕𝑥𝑖
∗ +

𝜕𝑢𝑖
∗

𝜕𝑥𝑗
∗) 

(3.3) 
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According to RANS (Reynolds Average Navier-Stokes) methodology, all 

variables, whether tensors or scalars, can be written as a sum of Reynolds time 

average term 𝜙̅ with fluctuation around it, 𝜙′, as shown in Eq. (3.4). It is important 

to note that the time average of the fluctuation is zero, but the product of fluctuations 

of correlated variables is not zero.  

 𝜙∗ = 𝜙̅ + 𝜙′          ;              𝜙̅ =
1

Δ𝑡
 ∫ 𝜙∗ 𝑑𝑡
Δ𝑡

 
(3.4) 

The RANS equations are obtained by replacing all variable by its mean value 

plus its fluctuation and applying time average in the conservation equations, 

resulting in the following set for time average steady state situations 

𝜕 𝑢𝑗̅

𝜕𝑥𝑗
∗ = 0 

(3.5) 

𝜕 ( 𝜌 𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
∗ = 𝜌𝑔𝑖 −

𝜕𝑝̅

𝜕𝑥𝑖
∗ +

𝜕

𝜕𝑥𝑗
∗ (2 𝜇 𝐷𝑖𝑗) +

𝜕

𝜕𝑥𝑗
∗ (− 𝜌 𝑢𝑖

′𝑢𝑗
′) 

(3.6) 

where the term (−𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) is the Reynolds Stress Tensor. The deviatoric part of the 

Reynolds Stress Tensor (traceless tensor) is  

𝑎𝑖𝑗
∗ = − 𝑢𝑖

′𝑢𝑗
′ +

2

3
 𝜅 𝛿𝑖𝑗 

(3.7) 

where 𝜅 is the turbulent kinematic energy and 𝛿𝑖𝑗 is the Delta Kronecker. 

𝜅 =
1

2
𝑢𝑘
′ 𝑢𝑘

′̅̅ ̅̅ ̅̅ ̅ 
(3.8) 

The momentum equation can be rewritten as: 

𝜕 (𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
∗ = −

𝜕𝑝̂

𝜕𝑥𝑖
∗ +

𝜕

𝜕𝑥𝑗
∗ (2 𝜈 𝐷𝑖𝑗) +

𝜕𝑎𝑖𝑗
∗

𝜕𝑥𝑗
∗  

(3.9) 

where 𝜈 = 𝜇 / 𝜌 is the kinematic viscosity and 𝑝̂ is a modified  pressure, defined as   

𝑝̂ =
1

𝜌
[𝑝̅ − 𝜌 𝑔𝑘 𝑥𝑘

∗ +
2

3
 𝜌 𝜅] 

(3.10) 
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3.1.1 Dimensionless momentum equation 

The conservation equations can be written in dimensionless form as 

𝜕 𝑈𝑗

𝜕𝑥𝑗
= 0      ;       

𝜕 (𝑈𝑖𝑈𝑗)

𝜕𝑥𝑗
= −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(2 𝐷𝑖𝑗) +

𝜕𝑎𝑖𝑗

𝜕𝑥𝑗
 

(3.11) 

where the following dimensionless variables were employed 

𝑥𝑖 =
𝑥𝑖
∗ 𝑢𝜏
𝜈

    ;      𝑈𝑖 =
𝑢𝑖̅
𝑢𝜏
    ;        𝑃 =

𝑝̂

𝑢𝜏2
     ;     𝑎𝑖𝑗 =

𝑎𝑖𝑗
∗

𝑢𝜏2
 

(3.12) 

with the characteristic velocity as the friction velocity, defined as:  

𝑢𝜏 = √
𝜏𝑤
𝜌

 

(3.13) 

where 𝜏𝑤 is the wall shear stress. 

To define the traceless Reynolds stress tensor 𝑎𝑖𝑗, a turbulence model is 

required and it is discuss in the next section. 

3.2 Turbulent Models 

The development of a turbulent model has two distinct levels of modeling. 

The first is related to the definition of the relationship between the Reynolds stress 

tensor and the kinematic tensors, i.e., the selection of the tensorial basis (TB) to 

model the tensor. The second level is related with the selection of the turbulent 

characteristic velocity  𝑉𝐶 and length ℓ𝑐, to defined the proportionality between 

tensors.  

Within the first level is the traditional approach based on the Boussinesq 

hypothesis, where an analogy with the viscous stress tensor is employed. This 

model of the tensorial base is classified as linear, since the Reynolds stress tensor 

is assumed as proportional to the mean rate of strain, where the positive scalar 

coefficient of proportionality is the turbulent viscosity 𝜇𝑡, given by the follow 

equation 

𝑎𝑖𝑗
∗ =

𝜇𝑡
𝜌
 2 𝐷𝑖𝑗

∗  (3.14) 

If the Boussinesq hypothesis is accepted as an adequate approximation, the 
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next step is to determine an appropriate specification of the turbulent viscosity 𝜇𝑡. 

The turbulent viscosity 𝜇𝑡 can be written as the product of a characteristic velocity 

(𝑉𝐶) and a characteristic length (ℓ𝑐) of an eddy, given by 

𝜇𝑡
𝜌
 ~  𝑉𝐶  ℓ𝑐 (3.15) 

There are a large variety of turbulence models of the second level, depending 

on the specification of the characteristic velocity and length (Pope, 2000). Several 

models specify the characteristic velocity based on the turbulent kinetic energy as 

𝑉𝐶 = √𝜅, for which a transport equation is relatively easy to obtain. However, it is 

a challenge to specify the characteristic length, leading to a large variety of models, 

like the 𝜅 − 𝜀 where ℓ𝑐 is related to dissipation of the turbulent kinetic energy, 𝜀. 

Although linear models are very popular, it is well known that these models 

fail in a large number of situations. Therefore, there is a large effort to develop more 

accurate models for the Reynolds stress tensor.   

To obtain a better representation of the turbulent flow, some researchers 

invest in working directly with a transport equation for the Reynolds stress tensor 

(Pope, 2000). With this approach, several new terms appear that need further 

closure. In addition to this difficulty, this approach requires great computational 

effort, due to the need to solve a large number of differential equations, without 

bringing great benefits in relation to precision, when compared to Large Eddy 

Simulations (LES), for example. 

Another approach within the tensorial basis level is called Non-linear 

turbulent viscosity models (NLEVM), and it consists on extending the base of the 

Reynolds tensor for its representation beyond the Boussinesq structure (Lumley, 

1970, Pope, 1975, Gatski et al., 2000, Wallin & Johanson, 2002).  

𝑎𝑖𝑗
∗ =

𝜇𝑡
𝜌
 2 𝐷𝑖𝑗

∗ + 𝑁𝐿𝑇𝑖𝑗
∗  (3.16) 

where 𝑁𝐿𝑇𝑖𝑗
∗  is the non-linear stress tensor. There are several non-linear models, for 

each one, the definition of 𝑁𝐿𝑇𝑖𝑗 is different. Within NLEVM, a base of independent 

tensors is defined, applying representation theorems, ending with a set of tensors that 

are obtained from the combination of the originals. In the next section, a brief 

description of the non-linear models selected to be studied here is presented. 
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3.2.1 Non-Linear Models 

A question related to the Non-linear turbulent viscosity models approach is 

whether the selected tensor base respects the conditions of Euclidean invariance, 

objectivity and frame invariance.  

Thompson (2008) developed a mathematical concept of tensor 

decomposition, showing two types of orthogonal decomposition. In the first 

decomposition, the tensor 𝐴𝑖𝑗 is written as the sum of a linear component 𝛼𝐵𝑖𝑗 plus 

an orthogonal component 𝐵𝑖𝑗
⊥ as  

𝐴𝑖𝑗 = 𝛼𝐵𝑖𝑗 + 𝐵𝑖𝑗
⊥ (3.17) 

In the second decomposition the tensor is divided into in-phase and out-phase parts. 

The in-phase part is composed of a tensor 𝐵𝑖𝑗
𝐻

𝐴
 (𝐻 denotes that the term is written 

in the base of 𝐻𝑖𝑗 eigenvalues) that has the same eigenvectors as 𝐴𝑖𝑗. Because of 

that, the 𝐵𝑖𝑗
𝐻

𝐴
 component is able to sweep a broader tensor field than the linear term 

of the first decomposition (𝛼𝐵𝑖𝑗). However, the out-phase 𝐵𝑖𝑗𝐻𝐴
̃  has different 

eigenvectors than 𝐴𝑖𝑗, therefore: 

𝐴𝑖𝑗 = 𝐵𝑖𝑗
𝐻

𝐴
+ 𝐵𝑖𝑗𝐻𝐴

̃  (3.18) 

Using Cayley-Hamilton theorem, the in-phase term can be rewritten as: 

𝐵𝑖𝑗
𝐻

𝐴
= 𝛼0𝐼 + 𝛼ℎ𝐻 + 𝛼ℎ2𝐻

2 (3.19) 

Bacchi (2009) showed the importance of non-persistence of straining tensor 

translating rotational effects of the flow in a discussion of flow types and vortex 

definition. This is an important tensor because it can measure the ability of the fluid 

to avoid been stretched in the flow and it is given by: 

𝑃𝑖𝑗 = 𝐷𝑖𝑗𝑊𝑖𝑗̂ −𝑊𝑖𝑗̂𝐷𝑖𝑗 (3.20) 

where 𝑊𝑖𝑗̂ is the relative vorticity defined as: 

𝑊𝑖𝑗̂ = 𝑊𝑖𝑗 − Ω𝑖𝑗
𝐷  (3.21) 

𝑊𝑖𝑗 is the skew symmetric of the velocity gradient, given by: 
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𝑊𝑖𝑗 =
1

2
(
𝜕𝑈𝑗

𝜕𝑥𝑖
−
𝜕𝑈𝑖
𝜕𝑥𝑗

) 
(3.22) 

and Ω𝑖𝑗
D  is the rate of rotation of the eigenvalues of the rate of strain, given by: 

Ω𝑖𝑗
D  = ∑𝑒𝑘

𝐷̇𝑒𝑘
𝐷

3

𝑘=1

 
(3.23) 

where 𝑒𝑘
𝐷 is the unit eigenvector of rate of strain tensor and 𝑒𝑘

𝐷̇ is its material 

derivation. 

Thompson et al. (2010), based on Thompson, (2008) and Bacchi, (2009), 

showed the dependence of linear and non-linear Reynolds stress tensor on mean 

kinematic tensor basis using in-phase decomposition (strain rate tensor) and out-

phase decomposition (non-persistence of straining tensor) and presented a 

methodology to quantify this dependence. 

Six models of the tensorial basis were evaluated by Nieckele et al. (2016) 

using some combinations of mean kinematic tensors by employing a priori analysis 

by comparing the prediction of each model with experimental (Carlier et al., 2005, 

and Stanislas et al., 2008) and DNS data (Thais et al.,2012).  

A priori analysis is to apply DNS or experimental data directly in the model 

and verify if the prediction of Reynolds tensor is acceptable. In contrast, a posteriori 

analysis is to apply the model in the conservation equations and solve them  

In the present work, four models of the tensorial basis (TB) were selected to 

be analyzed with a posteriori analysis: a linear model and three of the best models 

non-linear models studied by Nieckele et al. (2016).  

𝑻𝑩𝑰:      𝑎𝑖𝑗
∗ = 𝛼𝐷 2 𝐷𝒊𝒋

∗   (3.24) 

𝑻𝑩𝑰𝑰:      𝑎𝑖𝑗
∗ = 𝛼0 𝛿𝑖𝑗 + 𝛼𝐷 2 𝐷𝒊𝒋

∗  + 𝛼𝐷2  𝐷𝒊𝒋
∗2 (3.25) 

𝑻𝑩𝑰𝑰𝑰:       𝑎𝑖𝑗
∗ = 𝛼0 𝛿𝑖𝑗 + 𝛼𝐷 2 𝐷𝒊𝒋

∗  + 𝛼𝐷2  𝐷𝒊𝒋
∗2 + 𝛽𝑃 𝑃𝑖𝑗

∗  (3.26) 

𝑻𝑩𝑰𝑽:       𝑎𝑖𝑗
∗ = 𝛼𝐷 2 𝐷𝒊𝒋

∗  + 𝛽𝑃 𝑃𝑖𝑗
∗  (3.27) 

Model I of the tensorial baseis a linear model, with the Reynolds tensor 

directly proportional to 𝐷𝑖𝑗. Model II, III and IV of the tensorial base are non-linear, 
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Model II is in-phase/out-phase decomposition of the 𝐷𝑖𝑗, the error associated to this 

model is lower than ModelI. Model III is another non-linear model with in-

phase/out-phase decomposition, the orthogonal tensor is modeled by a linear 

decomposition using 𝑃𝑖𝑗, the error associated to this model is lower than Model II. 

Model IV is non-linear model too, similar to Model I, but with the orthogonal tensor 

being modeled by a linear decomposition using 𝑃𝑖𝑗 and added to the linear 

decomposition of Model I.  

The non-linear tensor 𝐷𝑖𝑗
2  is 

𝐷𝑖𝑗
2 = 𝐷𝑖𝑘𝐷𝑘𝑗 =

1

4
(
𝜕𝑈𝑖
𝜕𝑥𝑘

𝜕𝑈𝑘
𝜕𝑥𝑗

+
𝜕𝑈𝑘
𝜕𝑥𝑖

𝜕𝑈𝑘
𝜕𝑥𝑗

+
𝜕𝑈𝑖
𝜕𝑥𝑘

𝜕𝑈𝑗

𝜕𝑥𝑘
+
𝜕𝑈𝑘
𝜕𝑥𝑖

𝜕𝑈𝑗

𝜕𝑥𝑘
) 

(3.28) 

For the particular case of a channel flow, 𝑊𝑖𝑗̂ = 𝑊𝑖𝑗, and the non-linear 

tensors 𝑃𝑖𝑗 is 

𝑃𝑖𝑗 = 𝐷𝑖𝑘𝑊𝑘𝑗 −𝑊𝑖𝑘𝐷𝑘𝑗 =
1

2
(
𝜕𝑈𝑘
𝜕𝑥𝑖

𝜕𝑈𝑘
𝜕𝑥𝑗

−
𝜕𝑈𝑖
𝜕𝑥𝑘

𝜕𝑈𝑗

𝜕𝑥𝑘
) 

(3.29) 

The coefficient 𝛼0 present in Models II and III of the tensorial base is defined 

in order to guarantee that the tensor 𝑎𝑖𝑗 is trace free, as 

𝛼0 = −
𝛼𝐷2
3

 tr (𝑫𝟐) = −
𝛼𝐷2
6

(
𝜕𝑈𝑖
𝜕𝑥𝑘

𝜕𝑈𝑘
𝜕𝑥𝑖

+
𝜕𝑈𝑘
𝜕𝑥𝑗

𝜕𝑈𝑗

𝜕𝑥𝑘
) 

(3.30) 

The coefficients 𝛼𝐷, 𝛼𝐷2 and 𝛽𝑃 were determined by Nieckele et al. (2016) 

employing experimental and DNS data. Since these coefficients have dimensions, 

it is convenient to normalize them, by selecting a characteristic velocity 𝑉𝑐 and 

characteristic length ℓ𝑐 (second modeling level). 

3.2.2 Characteristic velocity and length, based on 𝜿 and 𝜺 

As already mentioned the turbulent kinetic energy is very often employed as 

a characteristic velocity. The characteristic length can be related with the 

dissipation of the turbulent kinetic energy, 𝜀, as it is employed in the popular 𝜅 − 𝜀 

model. These two parameters were employed by Nieckele et al. (2016). The first 

parameter is the turbulent viscosity (𝜈𝑡 = 𝜇𝑡/ 𝜌), defined as 
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𝛼𝐷 = 𝜈𝑡 = 𝑓𝜇
𝜅−𝜀𝐶𝜇

𝜅−𝜀
𝜅2

𝜀
 

(3.31) 

The non-linear parameters were defined as 

𝛼𝐷2 = 𝑓𝜇2
𝜅−𝜀𝐶𝜇2

𝜅−𝜀
𝜅3

𝜀2
              ;            𝛼𝛽 = 𝑓𝛽

𝜅−𝜀𝐶𝛽
𝜅−𝜀 𝜅

3

𝜀2
 

(3.32) 

The dimensionless parameters are 

𝛼̂𝐷 =
𝛼𝐷
𝜈
=
𝜈𝑡
𝜈
=
𝜇𝑡
𝜇
= 𝑓𝜇

𝜅−𝜀𝐶𝜇
𝜅−𝜀

𝜅+
2

𝜀+
 

(3.33) 

𝛼̂𝐷2 =
𝛼𝐷2

𝜈 (𝜈 / 𝑢𝜏)2
= 𝑓𝜇2

𝜅−𝜀𝐶𝜇2
𝜅−𝜀

𝜅+
4

𝜀+2
   

(3.34) 

 𝛽̂𝑃 =
 𝛽𝑃

𝜈 (𝜈 / 𝑢𝜏)2
= 𝑓𝛽

𝜅−𝜀𝐶𝛽
𝜅−𝜀

𝛽

𝜅+
4

𝜀+2
   

(3.35) 

where  

𝜅+ =
𝜅

𝑢𝜏2
      ;      𝜀+ =

𝜈 𝜀

𝑢𝜏4
                (3.36) 

In the previous definitions, 𝐶𝜇
𝜅−𝜀, 𝐶𝜇2

𝜅−𝜀 and 𝐶𝛽
𝜅−𝜀 are constant reference 

parameters, and 𝑓𝜇
𝜅−𝜀; 𝑓𝜇2

𝜅−𝜀 and 𝑓𝛽
𝜅−𝜀 are wall damping functions. These quantities 

were obtained by Nieckele et al, (2016) based on the DNS channel flow (Thais et 

al., 2012) and experimental boundary layer flow (Carlier et al., 2005, and Stanislas 

et al., 2008). The reference values corresponding to friction Reynolds number 

𝑅𝑒𝜏 = 𝑢𝜏 𝐻/𝜈 equal to 1000 (𝐻 is the half distance between the plates) are shown 

in Table 3.1, and the variation of the damping functions with the dimensionless wall 

distance 𝑦+ = 𝑢𝜏 𝑦
∗ / 𝜈 are present in Figure 3.1 and Figure 3.2. Examining these 

curves, it is possible to observe the strong variation near the wall. As a result, it is 

difficult to create correlations for the damping functions, so that them can be easily 

employed in a turbulence model.  

Table 3.1 – Constant parameters 𝐶𝜇
𝜅−𝜀, 𝐶𝜇2

𝜅−𝜀 and 𝐶𝛽
𝜅−𝜀, 𝑅𝑒𝜏 = 1000. 

𝐶𝜇
𝜅−𝜀 𝐶𝜇2

𝜅−𝜀 𝐶𝛽
𝜅−𝜀 

               0.072              0.050                0.049 
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Since, the coefficient 𝛼𝐷 corresponds to the turbulent viscosity of the linear 

models, Nieckele et al. (2016) evaluated several damping function by comparing with 

the DNS (Thais et al., 2012) and experimental (Carlier et al., 2005 and Stanislas et 

al., 2008) as shown in Figure 3.1a.The behavior of the function is shown in log-scale 

in Figure 3.1b to better visualized the wall region. As mentioned, the steep increase 

of the function near the wall is very difficult to represent by a simple equation, and 

as it can be seen in the Figure 3.1a, very often, it is discarded. Nieckele et al. (2016) 

recommended the Rodi Mansour model (Michelassi et al., 1993) and therefore, it was 

also employed here. The damping function for 𝑦+ ≤ 100 is 

𝑓𝜇
𝜅−𝜀 = 1 − exp(−2.10−4𝑦+ − 6.10−4𝑦+

2
+ 2.5.10−7𝑦+

3
) (3.37) 

while 𝑓𝜇 = 1 when 𝑦+ > 100. 

 

      (a) linear scale (Nieckele et al, 2016)                    (b) log-scale 

Figure 3.1  Damping function (𝑓𝜇
𝜅−𝜀) obtained from DNS data of Thais et al (2012) for a 

channel flow (a) linear scale  and compared several propositions from the literature 
(Nieckele et al, 2016) (b) log scale. 

Michelassi et al. (1993) defined the reference 𝐶𝜇
𝜅−𝜀 as 0.09, however, here, 

the value that presented the best adjustment with the DNS channel flow data of 

Thais et al. (2012) is 0.072, and it was employed in the present work.   

Figure 3.2 shows the damping function of the non-linear terms, 𝑅𝑒𝜏 = 1000 

obtained from the DNS data and the proposition of Murad (2018). Nieckele et al. 

(2016) proposed the following damping functions of the non-linear terms,  

𝑓𝜇2
𝜅−𝜀 = 𝑓𝛽

𝜅−𝜀 =
tanh (8.5× 10−4( 𝑦+)

2.01
)

tanh (1.8× 10−5( 𝑦+)
5.35

)
 (3.38) 

However, Murad (2018) examined the previous expressions and proposed new 

damping expressions to better adjust with the DNS data as 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 10 100 1000

Rodi-Mansur (1993)

DNS (Thais et al., 2012)

 +

 
 

𝑹𝒆𝝉 =     
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𝑓𝜇2
𝜅−𝜀 =

tanh (6.15 × 10−4( 𝑦+)
2.135

)

tanh (10−5( 𝑦+)
5.8
)

+6.1 × 10−2𝑒
(−

𝑦+

300
)

2

 (3.39) 

𝑓𝛽
𝜅−𝜀 =

tanh(2.56 ∗ 10−4( 𝑦+)2.305)

tanh(1.3 ∗ 10−5( 𝑦+)6.5)
+ 1.818 ∗ 10−2𝑒

(−
𝑦+

300
)

2

+
60.6

(𝑦+)4
+ 0.02727 (3.40) 

 

                           (a) 𝑓𝜇2
𝜅−𝜀                                                    (b) 𝑓𝛽

𝜅−𝜀 

Figure 3.2  Damping function (𝑓𝜇2
𝜅−𝜀and 𝑓𝛽

𝜅−𝜀) obtained from DNS data of Thais et al. 

(2012) for a channel flow and adjusted by Murad (2018). 

To be able to employ these models, it is necessary to determine the turbulent 

kinetic energy 𝜅 and its dissipation rate 𝜀. Their transport equations are shown in 

the next section. 

3.2.3  Transport equations for 𝜿 𝐚𝐧𝐝 𝜺  

The transport equations for 𝜅 and 𝜀 can be obtained from manipulations of 

the momentum equation (Pope,2000). However, different approximations can be 

made, and different closure models can be applied, resulting in a large variety of 

𝜅 − 𝜀 models.  

Murad (2018) evaluated the performance of four different linear models (Lam 

& Bremhost, 1981; Launder Sharma, 1977; Lien Leschziner, 1996 and Modified 

Rodi Mansour, 1993) to predict the channel flow, and also recommended the 

Modified Rodi Mansour model (Michelassi et al., 1993). Therefore, this model was 

selected to be employed in the present work to determine 𝜅 and 𝜀.   

The dimensionless transport equations for 𝜅 and 𝜀, corresponding to the 

Modified Rodi-Mansur model (Michelassi et al., 1993) are 
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𝜕( 𝑈𝑗 𝜅
+)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(1 +

𝜇𝑡/ 𝜇

𝜎𝜅
)
𝜕𝜅+

𝜕𝑥𝑗
] + 𝐺𝑘

+ − 𝜀+ 
(3.41) 

𝜕( 𝑈𝑗 𝜀
+)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(1 +

𝜇𝑡/ 𝜇

𝜎𝜀
)
𝜕𝜀+

𝜕𝑥𝑗
] + 𝑐𝜀1𝑓1

𝜀+

 𝜅+
 𝐺𝑘

+ − 𝑐𝜀2 𝑓2  
𝜀+2

 𝜅+
 + 𝐸+ 

(3.42) 

The production of turbulent kinetic energy 𝐺𝑘
+ is 

𝐺𝑘
+ = 𝑎𝑖𝑗

𝜕𝑈𝑖
𝜕𝑥𝑗

 
(3.43) 

Michelassi et al, (1993) presented the model for a 2D shear flow, thus 

𝐺𝑘
+ =

𝜇𝑡
𝜇
(
𝜕𝑈

𝜕𝑦
)
2

 
(3.44) 

and the source term 𝐸+ of the dissipation equation is 

𝐸+ = {1.2
𝜇𝑡
𝜇
(
𝜕2𝑈

𝜕𝑦2
)

2

+ 0.0075 
 𝜅+ 

𝜀+
𝜕𝜅+

 𝜕𝑦

𝜕𝑈

𝜕𝑦

𝜕2𝑈

𝜕𝑦2
} 

(3.45) 

Damping functions 𝑓1 and 𝑓2 are also introduced in the dissipation equation 

to damp the production and destruction of 𝜀 at the near wall region, and are shown 

in Table 3.2. The model constants are: 𝜎𝜅 = 1.3, 𝜎𝜀 = 1.3, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92.  

Table 3.2 – Damping functions (Michelassi et al., 1993). 

Damping functions 𝐲+ ≤     

   1 

 𝟐 𝑓2
1. 𝑓2

2 + 𝑓3 − 1 

 𝟐
  

1 − 0.22 exp(−0.3357 𝑅𝑡

1
2) 

 𝟐
𝟐 1 − exp(−0.095 𝑅𝑦) 

 𝟑 exp(1.8 𝑅𝑝
3) 

 

The dimensionless variables used in the damping functions are:  
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𝑅𝑡 =
𝜅∗2

𝜈 𝜀∗
;      𝑅𝑦 =

𝑦 √𝜅∗

𝜈∗
;        𝑅𝑝 =

𝐺𝜅
∗

𝜅∗√
𝐶𝜇𝜀∗

𝜈∗

;     𝑦+ =
𝑢𝜏 𝑦

∗

𝜈
 

(3.46) 

or 

𝑅𝑡 =
𝜅+

2

𝜀+
;           𝑅𝑦 = 𝑦+ √𝜅+;          𝑅𝑝 =

𝐺𝜅
+

𝜅+√𝐶𝜇 𝜀+
 

(3.47) 

3.2.4 Characteristic velocity and length, based on 𝜿 and 𝜸̇  

As shown in the previous section, the transport equation for the dissipation 

involves a high number of damping and empirical coefficients. This equation has a 

high level of uncertainties, and this is one of the reasons why there are many 

variants of the 𝜅 − 𝜀 model. Thus, Alves et al. (2014) proposed dimensionless 

coefficients of the models using the turbulent kinetic energy (𝜅) and the intensity 

of the rate of strain tensor (𝛾 ∗̇) to avoid the influence of the 𝜀 field in the model.  

The definition of 𝛾 ∗̇ is: 

𝛾 ∗̇  = √
1

2
𝛾𝑖𝑗
∗ 𝛾𝑖𝑗

∗        ;        𝛾𝑖𝑗
∗ = 2 𝐷𝑖𝑗∗̅̅ ̅̅  

(3.48) 

Note that  

tr (𝐷∗2̅̅ ̅̅ ) =  
𝛾̇
∗2

2
 

(3.49) 

Murad (2018), based on the proposition of Alves et al. (2014), used the 

following dimensionless coefficients: 

𝛼𝐷 = 𝑓𝜇𝐶𝜇
𝜅

𝛾̇∗
 (3.50) 

𝛼𝐷2 = 𝑓𝜇2𝐶𝜇2
𝜅

𝛾̇∗2
           ;      𝛼𝛽 = 𝑓𝛽𝐶𝛽

𝜅

𝛾̇∗2
         (3.51) 

Here, as in the previous definitions, 𝐶𝜇, 𝐶𝜇2 and 𝐶𝛽 are constant reference 

parameters, and 𝑓𝜇; 𝑓𝜇2 and 𝑓𝛽 are wall damping factors. The dimensionless 

parameters are 
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𝛼̂𝐷 =
𝛼𝐷
𝜈
=
𝜈𝑡
𝜈
=
𝜇𝑡
𝜇
= 𝑓𝜇𝐶𝜇

𝜅+

𝛾̇
 

(3.52) 

𝛼̂𝐷2 =
𝛼𝐷2

𝜈 (𝜈 / 𝑢𝜏)2
= 𝑓𝜇2𝐶𝜇2

𝜅+

𝛾̇2
                 

(3.53) 

𝛽̂𝑃 = 
 𝛽𝑃

𝜈 (𝜈 / 𝑢𝜏)2
= 𝑓𝛽𝐶𝛽

𝜅+

𝛾̇2
                 

(3.54) 

𝛾̇ =
𝜈 𝛾̇∗

𝑢𝜏2
                 

(3.55) 

At the present work, correlations for the damping functions 𝑓𝜇, 𝑓𝜇2, 𝑓𝛽 were 

developed based on the DNS data of Thais et al. (2012) and Lee and Moser (2015) 

for a channel flow, for several friction Reynolds numbers, 𝑅𝑒𝜏 = 𝑢𝜏 𝐻/𝜈, where 𝐻 

is a characteristic dimension. For the channel flow, H is half distance between the 

plates. Details can be found in Appendix A. Murad (2018) also proposed damping 

functions for the non-linear model, based on 𝜅 and 𝛾̇. These expression were quite 

complicated and they are shown in Appendix A.  

The constants 𝐶𝜇, 𝐶𝜇2 and 𝐶𝛽 are different for each 𝑅𝑒𝜏 and are shown in 

Table 3.3.  

Table 3.3 – Constant parameters 𝐶𝜇, 𝐶𝜇2 and 𝐶𝛽. 

𝑅𝑒𝜏 𝐶𝜇 𝐶𝜇2 𝐶𝛽 

395 0.298 -0.79 0.76 

590 0.283 -0.75 0.75 

1000 0.261 -0.75 0.73 

2000 0.256 -0.75 0.72 

5200 0.242 -0.70 0.72 

 

The functions that describe the damping functions are: 

 𝑓𝜇 = tanh(𝑎1𝑦
+𝑏1) (3.56) 

𝑓𝜇2 = 𝑎2{𝑏2 + exp[𝑐2 + 𝑑2𝑦
+ + 𝑔2𝑦

+2]}
ℎ2
                 (3.57) 

DBD
PUC-Rio - Certificação Digital Nº 1821031/CA



 42 
 

𝑓𝛽 = 𝑎3{𝑏3 + exp[𝑐3 + 𝑑3𝑦
+ + 𝑔3𝑦

+2]}
ℎ3
                 (3.58) 

The coefficients of damping function correlation 𝑓𝜇 vary with the friction 

Reynolds number 𝑅𝑒𝜏 and are shown in Table 3.4. However, the constants 𝑎𝑖, 𝑏𝑖, 

𝑐𝑖, 𝑑𝑖, 𝑔𝑖 and ℎ𝑖 used in the damping functions 𝑓𝜇2 and 𝑓𝛽  are equals for all 𝑅𝑒𝜏.  

𝑎2 = 0.0155; 𝑏2 = 1.2; 𝑐2 = −0.0425;  𝑑2 = −0.0013; 

𝑔2 = 0.21; ℎ2 = 2.4 

(3.59) 

𝑎3 = 0.0155; 𝑏3 = −0.32; 𝑐3 = −0.02; 𝑑3 = −0.0013; 

𝑔3 = 0.21; ℎ3 = 2.4 

(3.60) 

Table 3.4 – Constants for   . 

𝑹𝒆𝝉 𝒂  𝒃  

395 0.040 0.890 

590 0.062 0.772 

1000 0.070 0.750 

2000 0.091 0.639 

5200 0.049 0.870 

 

Figure 3.3 illustrates the variation of the damping function with the 

dimensionless wall distance, for 𝑅𝑒𝜏 = 1000. In each figure de damping function 

determined from the DNS data is compared with the correlation proposed in the 

present work. Note, that the damping curves present a smoother behavior, which is 

another advantage in comparison with the previous dimensionless variables.  

The variation of the damping coefficients with wall distance employing the 

DNS data and the adjusted functions are shown in the Appendix A.1 for all friction 

Reynolds number. 

It should be mentioned here, that although the models coefficients do not 

depend on 𝜀, the transport equation for 𝜅 depends on this variable. However, its 

influence is reduced, since it is only in an indirect manner, through the turbulent 

kinetic energy equation. 

Aiming to develop a model completely independent of 𝜀, at the present work, 

a model was proposed and it is presented in the next section.  
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(a) 𝑓𝜇 

 

                              (b) 𝑓𝜇2                                              (c) 𝑓𝛽 

Figure 3.3  Damping function (𝑓𝜇, 𝑓𝜇2 and 𝑓𝛽) obtained from DNS data of Thais et al. 

(2012) for a channel flow, 𝑅𝑒𝜏 = 1000. 

3.3 Model for the Dissipation of Turbulent Energy  

To completely eliminate the influence of the dissipation of turbulent kinetic 

energy 𝜀 in the turbulence models based on 𝜅 and 𝛾̇, a model is proposed here 

evaluating the two-equation models for one-equation model. To this end, it was 

considered that there is a balance between production and destruction of 𝜅. 

Proceeding in a similar way as Michelassi et al. (1993), for a shear flow, the 

turbulent kinetic energy production is 𝐺𝑘
+ = 𝜇𝑡 /𝜇 (𝜕 𝑈 / 𝜕𝑦)

2 (Eq. 3.44). Thus,  

𝐺𝑘
+ =  𝜀+   →        

𝜇𝑡
𝜇
 𝛾̇𝟐 = 𝜀+           (3.61) 

Recalling that the turbulent viscosity is 𝜇𝑡/𝜇 = 𝑓𝜇𝐶𝜇 𝜅
+/ 𝛾̇, the dissipation 

can be written as 

𝜀+ = 𝑓𝜀  𝐶𝜀  𝜅
+ 𝛾̇  (3.62) 

where, to better adjust the dissipation behavior in the wall region, the wall function 

is defined based on the DNS data (Thais et al., 2012 and Lee and Moser, 2015). 
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Figure 3.4 presents the wall function for the dissipation obtained from the DNS data 

of Thais el al. (2012), for 𝑅𝑒𝜏 = 1000. 

 

Figure 3.4  Dissipation damping 𝑓𝜀 from DNS data of Thais et al. (2012) for a channel 
flow, and fitted for 𝑅𝑒𝜏 = 1000 

The limiting parameter is 𝐶𝜀 = 0.26, and the wall function is limited to the 

wall region 𝑦+ ≤ 100. A correlation of the following form and for all 𝑅𝑒𝜏was 

propose for the dissipation damping 

𝑓𝜀 = {𝑎
tanh[𝑏(𝑦+)𝑐]

tanh[𝑑(𝑦+)𝑒]
}

Θ

+ 𝑔 {exp [𝜆 −
𝑦+

ℎ
]}  

(3.63) 

Its coefficients and the constant 𝐶𝜀 are independent of the friction Reynolds 

number and are presented in Table 3.5. Appendix A shows a comparison of the 

correlation with DNS data for all 𝑅𝑒𝜏. 

Table 3.5 – Constants for  𝜺. 

𝒂 𝒃 𝒄 𝒅 𝒆 𝚯 𝒈 𝝀 𝒉 

0.95 0.0035 1.5 0.00038 4.6 0.68 0.05  0.1 100 

3.4 Channel Flow 

The configuration selected to test the non-linear turbulence models is the 

channel flow, i.e., fully developed flow between two parallel plates (Figure 3.5). 

The distance between the plates is 𝑦𝑚𝑎𝑥
∗ = 2 𝐻, or in dimensionless units 2 𝑦𝑚𝑎𝑥

+ =

2 𝑅𝑒𝜏. The mean flow is in the axial direction (𝑥∗ direction), 𝑦∗ is the normal 

direction and 𝑧∗ the transversal one. The bottom and top walls are at 𝑦∗ = 0 and 

𝑦∗ = 2 𝐻, respectively, with the mid-plane being 𝑦 = 𝐻 defining the center line.  
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Figure 3.5 – Scheme of a Channel Flow. 

Considering that the pressure can be written as an area average value 𝑝𝑚 and 

a perturbation around it,  

𝑝̅ = 𝑝𝑚(𝑥
∗) + 𝑝(𝑥∗, 𝑦∗, 𝑧∗) (3.64) 

and defining a new modified dimensionless pressure as 

𝑃̃ =
1

𝜌 𝑢𝜏2
[𝑝 − 𝜌 𝑔𝑘 𝑥𝑘

∗ +
2

3
 𝜌 𝜅] 

(3.65) 

The dimensionless pressure gradient is 

𝜕𝑃

𝜕𝑥𝑖
=
 𝜈

𝑢𝜏
3

1

𝜌

𝜕𝑝𝑚
𝜕𝑥𝑖

∗ +
𝜕𝑃̃

𝜕𝑥𝑖
 

(3.66) 

Since the flow is time-average 2D, steady state and fully developed, there is 

no acceleration. Therefore, there is a force balance equilibrium, i.e., the axial 

pressure force is equal to the viscous force 

𝜕𝑝𝑚
𝜕𝑥∗

=
𝜕𝜏

𝜕𝑦∗
 

(3.67) 

Integrating the shear stress in the above equation and knowing that the shear 

stress in the symmetry line is null, the resulting equation is: 

𝜏 = −
𝜕𝑝𝑚
𝜕𝑥∗

𝐻 (1 −
𝑦∗

𝐻
) 

(3.68) 

And the wall shear stress is  

𝜏𝑤 = 𝜏(𝑦 = 0) = −
𝜕𝑝𝑚
𝜕𝑥∗

𝐻 
(3.69) 

Thus, 

−
𝜕𝑝𝑚
𝜕𝑥∗

=
𝜏𝑤
𝐻

 
(3.70) 

So, one can write 
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𝜕𝑃

𝜕𝑥
=

1

𝑅𝑒𝜏
+
𝜕𝑃̃

𝜕𝑥
               ;               

𝜕𝑃

𝜕𝑦
=
𝜕𝑃̃

𝜕𝑦
    

(3.71) 

The conservation equations employed to test the four selected models for the 

channel flow are 

𝜕 𝑈

𝜕𝑥
+
𝜕 𝑉

𝜕𝑦
= 0 

(3.72) 

𝜕 (𝑈 𝑈)

𝜕𝑥
+
𝜕 (𝑉 𝑈)

𝜕𝑦
=

1

𝑅𝑒𝜏
−
𝜕𝑃̃

𝜕𝑥
+
𝜕𝑁𝐿𝑇𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝐿𝑇𝑥𝑦

𝜕𝑦
+ 

(3.73) 

𝜕

𝜕𝑥
[(1 +

𝜇𝑡
𝜇
)
𝜕𝑈

𝜕𝑥
] +

𝜕

𝜕𝑦
[(1 +

𝜇𝑡
𝜇
)
𝜕𝑈

𝜕𝑦
] +

𝜕

𝜕𝑥
[(1 +

𝜇𝑡
𝜇
)
𝜕𝑈

𝜕𝑥
] +

𝜕

𝜕𝑦
[(1 +

𝜇𝑡
𝜇
)
𝜕𝑉

𝜕𝑥
] 

𝜕 (𝑈 𝑉)

𝜕𝑥
+
𝜕 (𝑉 𝑉)

𝜕𝑦
= −

𝜕𝑃̃

𝜕𝑦
+
𝜕𝑁𝐿𝑇𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝐿𝑇𝑦𝑦

𝜕𝑦
+ 

(3.74) 

𝜕

𝜕𝑥
[(1 +

𝜇𝑡
𝜇
)
𝜕𝑉

𝜕𝑥
] +

𝜕

𝜕𝑦
[(1 +

𝜇𝑡
𝜇
)
𝜕𝑉

𝜕𝑦
] +

𝜕

𝜕𝑥
[(1 +

𝜇𝑡
𝜇
)
𝜕𝑈

𝜕𝑦
] +

𝜕

𝜕𝑦
[(1 +

𝜇𝑡
𝜇
)
𝜕𝑉

𝜕𝑦
] 

where the dimensionless non-linear terms are 

𝑻𝑩𝑰:      𝑁𝐿𝑇𝑖𝑗 = 0  (3.75) 

𝑻𝑩𝑰𝑰:      𝑁𝐿𝑇𝑖𝑗 = 𝛼̂𝐷2  𝐷𝑖𝑗
2  (3.76) 

𝑻𝑩𝑰𝑰𝑰:       𝑁𝐿𝑇𝑖𝑗 = 𝛼̂𝐷2  𝐷𝑖𝑗
2 + 𝛽̂𝑃 𝑃𝑖𝑗 (3.77) 

𝑻𝑩𝑰𝑽:       𝑁𝐿𝑇𝑖𝑗 = 𝛽̂𝑃 𝑃𝑖𝑗 (3.78) 

The 2D non-linear tensor components are 

𝐷𝑥𝑥
2 = (

𝜕𝑈

𝜕𝑥
)
2

+
1

4
(
𝜕𝑈

𝜕𝑦
+
𝜕𝑉

𝜕𝑥
)
2

 ;   𝐷𝑦𝑦
2 = (

𝜕𝑉

𝜕𝑦
)
2

+
1

4
(
𝜕𝑈

𝜕𝑦
+
𝜕𝑉

𝜕𝑥
)
2

 
(3.79) 

𝐷𝑥𝑦
2 = 𝐷𝑦𝑥

2 =
1

2
 (
𝜕𝑈

𝜕𝑥
+
𝜕𝑉

𝜕𝑦
) (

𝜕 𝑈

𝜕𝑦
+
𝜕 𝑉

𝜕𝑥
) 

(3.80) 

𝑃𝑥𝑥 =
1

2
[(
𝜕𝑉

𝜕𝑥
)
2

− (
𝜕𝑈

𝜕𝑦
)
2

]  ;   𝑃𝑦𝑦 = −𝑃𝑥𝑥   
(3.81) 
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𝑃𝑥𝑦 = 𝑃𝑦𝑥 =
1

2
[(
𝜕𝑈

𝜕𝑥
−
𝜕𝑉

𝜕𝑦
) (
𝜕𝑈

𝜕𝑦
−
𝜕𝑉

𝜕𝑥
)] 

(3.82) 

The 2D turbulent kinetic energy transport equation is 

𝜕 (𝑈 𝜅+)

𝜕𝑥
+
𝜕 (𝑉 𝜅+)

𝜕𝑦
= 

=
𝜕

𝜕𝑥
[(1 +

𝜇𝑡/ 𝜇

𝜎𝜅
)
𝜕𝜅+

𝜕𝑥
] +

𝜕

𝜕𝑦
[(1 +

𝜇𝑡/ 𝜇

𝜎𝜅
)
𝜕𝜅+

𝜕𝑦
] + 𝐺𝑘

+ − 𝜀+ 

(3.83) 

where the production of 𝜅+is 𝐺𝑘
+ = 𝑎𝑖𝑗  𝜕𝑈𝑖/ 𝜕𝑥𝑗 with 𝑎𝑖𝑗 = (𝜇𝑡/𝜇 2) 𝐷𝑖𝑗 + 𝑁𝐿𝑇𝑖𝑗,  

𝐺𝑘
+ =

𝜇𝑡
𝜇

1

2
(
𝜕𝑈𝑖
𝜕𝑥𝑗  

+
𝜕𝑈𝑗

𝜕𝑥𝑖
)

2

+ 𝑁𝐿𝑇𝑖𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

 
(3.84) 

For a 2D flow 

𝐺𝑘
+ =

𝜇𝑡
𝜇
[2 (

𝜕𝑈

𝜕𝑥
)
2

+2(
𝜕𝑉

𝜕𝑦
)
2

+ (
𝜕𝑈

𝜕𝑦
+
𝜕𝑉

𝜕𝑥
)
2

] + 𝑁𝐿𝑇𝑥𝑥
𝜕𝑈

𝜕𝑥

+ 𝑁𝐿𝑇𝑥𝑦 (
𝜕𝑈

𝜕𝑦
+
𝜕𝑉

𝜕𝑥
) + 𝑁𝐿𝑇𝑦𝑦

𝜕𝑉

𝜕𝑦
 

(3.85) 

The 2D dissipation of the turbulent kinetic energy transport equation is 

𝜕 (𝑈 𝜀+)

𝜕𝑥
+
𝜕 (𝑉 𝜀+)

𝜕𝑦
=

𝜕

𝜕𝑥
[(1 +

𝜇𝑡 𝜇

𝜎𝜀
)
𝜕𝜀+

𝜕𝑥
] +

𝜕

𝜕𝑦
[(1 +

𝜇𝑡 𝜇

𝜎𝜀
)
𝜕𝜀+

𝜕𝑦
] 

+𝑐𝜀1𝑓1
𝜀+

 𝜅+
 𝐺𝑘

+ − 𝑐𝜀2 𝑓2  
𝜀+2

 𝜅+
 + 𝐸+ 

(3.86) 

Due to the symmetry of the configuration, the solution was obtained for only 

half domain, from the inferior plate to the symmetry line, as indicated in Figure 3.5. 

At the inferior plate, no slip was imposed  

𝑦 = 0  ;   𝑈 = 𝑉 = 𝜅+ = 0 ; 𝜀+ = 2 (
𝜕 √𝜅+

𝜕𝑦
)

2

 

(3.87) 

and symmetry at 𝑦∗ = 𝐻 (𝑦 = 𝑦+ = 𝑅𝑒𝜏)  
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𝑦 = 𝑅𝑒𝜏  ;   𝑉 = 0 ;
𝜕𝑈

𝜕𝑦
=
𝜕𝜅+

𝜕𝑦
=
𝜕𝜀+

𝜕𝑦
= 0  

(3.88) 

Further, since the flow is fully developed, a periodic boundary condition was 

imposed in the axial direction, what means that all variables at the inlet of the 

domain are equal to the variables at the outlet of the domain, with the average 

pressure gradient imposed.  

3.4.1  1D formulation 

Although the channel flow problem has been solved as 2D flow, in fact, it is 

1D flow, since 𝑼 = 𝑈(𝑦)𝒆𝒙. The intensity of the rate of strain tensor is 

𝛾̇ =  
𝜕𝑈

𝜕𝑦
 

(3.89) 

The Reynolds stress tensor components are 

𝑻𝑩𝑰:      𝑎𝑥𝑥 = 𝑎𝑦𝑦 = 𝑎𝑧𝑧 = 0   ;    𝑎𝑥𝑦 =
𝜇𝑡
𝜇
 𝛾̇ (3.90) 

𝑻𝑩𝑰𝑰: 𝑎𝑥𝑥 = 𝑎𝑦𝑦 =
𝛼̂𝐷2,𝐼𝐼𝐼

12
 𝛾̇𝟐   ;    𝑎𝑧𝑧 = − 

𝛼̂𝐷2,𝐼𝐼𝐼
6

 𝛾̇𝟐 ;    𝑎𝑥𝑦 =
𝜇𝑡
𝜇
 𝛾̇ 

(3.91) 

𝑻𝑩𝑰𝑰𝑰:    𝑎𝑥𝑥 = (
𝛼̂𝐷2,𝐼𝐼𝐼
12

−
𝛽𝑃,𝐼𝐼𝐼
2

) 𝛾̇𝟐  ;   𝑎𝑦𝑦 = (
𝛼̂𝐷2,𝐼𝐼𝐼
12

+
𝛽𝑃,𝐼𝐼𝐼
2

) 𝛾̇𝟐 

             𝑎𝑧𝑧 = − 
𝛼̂𝐷2,𝐼𝐼𝐼
6

 𝛾̇𝟐      ;      𝑎𝑥𝑦 =
𝜇𝑡
𝜇
 𝛾̇ 

 

(3.92) 

𝑻𝑩𝑰𝑽: 𝑎𝑥𝑥 = −
𝛽𝑃,𝐼𝐼𝐼
2

 𝛾̇𝟐  ;   𝑎𝑦𝑦 =
𝛽𝑃,𝐼𝐼𝐼
2

 𝛾̇𝟐  ;    𝑎𝑧𝑧 = 0   ;  𝑎𝑥𝑦 =
𝜇𝑡
𝜇
 𝛾̇ (3.93) 

Note that for all models considered, the non-linear part of the Reynolds stress 

component 𝑥𝑦 is null, (𝑁𝐿𝑇𝑥𝑦 = 0). 

The velocity field can also be obtained with 1D formulation, and only the 

axial momentum equation needs to be solved, with the turbulent quantities.  

0 =
1

𝑅𝑒𝜏
+

𝜕

𝜕𝑦
[(1 +

𝜇𝑡
𝜇
)
𝜕𝑈

𝜕𝑦
] 

(3.94) 
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0 =
𝜕

𝜕𝑦
[(1 +

𝜇𝑡/ 𝜇

𝜎𝜅
)
𝜕𝜅+

𝜕𝑦
] + 𝐺𝑘

+ − 𝜀+ 
(3.95) 

0 =
𝜕

𝜕𝑦
[(1 +

𝜇𝑡 𝜇

𝜎𝜀
)
𝜕𝜀+

𝜕𝑦
] + 𝑐𝜀1𝑓1

𝜀+

 𝜅+
 𝐺𝑘

+ − 𝑐𝜀2 𝑓2  
𝜀+2

 𝜅+
 + 𝐸+ 

(3.96) 

𝐺𝑘
+ =

𝜇𝑡
𝜇
 𝛾̇𝟐 (3.97) 

3.5 Numerical Model 

The governing conservation equation were solved with an in-house code 

developed by the Group Dinâmica dos Fluidos Computacional, written in Fortran 

and extensively tested was used. The code is based on the Finite Volume Method 

(Patankar, 1980). The Finite Volume Method consists of dividing the domain of 

interest in control volumes and integrating the conservation equation in each control 

volume, resulting on a global conservation equation. The code is based on a 

staggered mesh, where scalar quantities are stored at the control volume central 

point, and velocities at the control volume faces. 

All conservation equations can be written in the following general form 

𝜕 (𝑈𝜑)

𝜕𝑥
+
𝜕 (𝑉 𝜑)

𝜕𝑦
=

𝜕

𝜕𝑥
(Γ𝜑

𝜕𝜑

𝜕𝑥
) +

𝜕

𝜕𝑦
(Γ𝜑

𝜕𝜑

𝜕𝑦
) + 𝑆𝑐𝜑 + 𝑆𝑝𝜑𝜑  

(3.98) 

For each variables 𝜑 the corresponding diffusion coefficient Γ𝜑 and the source 

terms 𝑆𝑐𝜑 and 𝑆𝑝𝜑, shown in Table 3.6  were implemented in the USER routine. 

One important observation to be made here, is that since  𝜅+ and 𝜀+ must always 

be positive, the source terms for these variables are implemented guaranteeing that 

𝑆𝑐𝜑 ≥  0 and 𝑆𝑝𝜑 ≤ 0. 

The convective-diffusive flux was approximated with the Power-law scheme 

(Patankar, 1980) and the pressure-velocity coupling was solved with the SIMPLE 

(Semi-Implicit Method for Pressure-Linked Equations) algorithm.  

To solve the system equations, the Cyclic Line-by-line TDMA algorithm 

(Patankar et al.,1977) was employed. In order to accelerate convergence, the block 

correction algorithm (Settari & Aziz, 1973) was used. 
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Table 3.6 – Diffusion coefficient and source terms of conservation equation terms. 

𝝋 𝚪𝝋 𝑺𝒄𝝋 𝑺𝒑𝝋 

Axial  

Momentum, 𝑼 
1 +

𝜇𝑡
𝜇

 1

𝑅𝑒
+

𝜕

𝜕𝑥𝑗
(Γ𝜑

𝜕𝑈𝑗

𝜕𝑥
) +

𝜕 𝑁𝐿𝑇𝑥𝑗

𝜕𝑥𝑗
 

 

Normal 

Momentum, 𝑽 
1 +

𝜇𝑡
𝜇

 𝜕

𝜕𝑥𝑗
(Γ𝜑

𝜕𝑈𝑗

𝜕𝑦
) +

𝜕 𝑁𝐿𝑇𝑦𝑗

𝜕𝑥𝑗
 

 

Turbulent 

kinetic energy, 

𝜿+  

1 +
𝜇𝑡/ 𝜇

𝜎𝜅
 

𝐺𝑘
+ 

−
𝜀+

𝜅+
 

Dissipation of 

𝜿, 𝛆+ 
1 +

𝜇𝑡/ 𝜇

𝜎𝜀
 𝑐𝜀1𝑓1

𝜀+

 𝜅+
 𝐺𝑘

+  + 𝐸+ −𝑐𝜀2 𝑓2  
𝜀+

 𝜅+
 

 

Sub relaxation factors were applied to all transport equations. At the 

beginning of the simulations, these factors were very small to control the 

convergence evolution and were slowly increased up to 0.9.  

The solution was considered converged when variation of the wall shear 

stress was inferior to 1%, and the residues of all conservation equations were 

inferior to 10−6. 

One important note to the model is that the turbulent viscosity as well as the 

non-linear coefficients, Eqs. (3.52)–(3.54), are inversely proportional to 𝛾̇. 

Therefore, as 𝛾̇ → 0, these variables approach ∞. Therefore, to bound the model, a 

small number is added in the denominator of these coefficients to avoid division by 

zero. After some investigation, the chosen constant for the turbulent viscosity was 

defined as 10−3, while for the non-linear terms 10−6 was sufficient to avoid the 

problem.  
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4 . Results 

The results obtained with the 2 equations 𝜅 − 𝛾̇ and 1 equation 𝜅 − 𝛾̇ models 

proposed in this work, based on the characteristic velocity 𝑉𝑐 = 𝜅1/2 and length 

ℓ𝑐 = 𝜅/𝛾̇, are presented here. To validate the methodology, DNS channel flow data 

of two different sets were employed: Thais et al. (2012), corresponding to friction 

Reynolds numbers 𝑅𝑒𝜏 =395, 590 and 1000 and Lee and Moser (2015), 𝑅𝑒𝜏 =2000 

and 5200. 

All tests presented in this section were obtained with the same mesh as the 

DNS reference for each friction Reynolds number to allow a direct comparison. 

However, a grid test was performed and it is shown in Appendix B illustrating that 

the same results were obtained with a courser mesh as desired in RANS simulations. 

Before testing the numerical simulation of the models proposed, a few tests 

were performed with 𝑅𝑒𝜏 = 1000. First, a DNS-reference solution is obtained, i.e., 

the mean velocity field based on the actual DNS data for the Reynolds stress tensor 

components is obtained and compared with the DNS data. Then, tests were 

performed to determine the impact of approximating different terms of the model 

in the flow field prediction, leading to a new 2 equations 𝜅 − 𝛾̇.  

As shown in section 3.4.1, the channel flow is actually a 1D situation. 

Therefore, one additional preliminary test was performed by comparing the solution 

obtained by solving the 2D set of conservation equations with the solution obtained 

by solving the 1D set of conservation equations. This test is presented in Appendix 

C, where the prediction of all flow variables, for all friction Reynolds number, 

employing Model III of the tensorial base is discussed. As expected, perfect 

agreement was obtained, and the 1D formulation was employed for the following 

tests, since it requires less computing effort. 

At the two following sections, the solution obtained for 𝑅𝑒𝜏 = 1000, with the 

proposed 2 equations 𝜅 − 𝛾̇ model and 1 equation 𝜅 − 𝛾̇ model and all models of 

the tensorial basis, are presented. In both sections, the proposed models predictions 

are compared with DNS data of Thais et al. (2012).  

In the sequence, it is presented a comparison of the proposed 2 equations 𝜅 −
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𝛾̇ and 1 equation 𝜅 − 𝛾̇ non-linear models with RANS predictions obtained by 

Murad (2018), with Model III of the tensorial basis with 𝜅 − ε model and 𝜅 − 𝛾̇ 

with his proposed damping coefficients, coupled with the solution of 𝜅 and ε 

transport equations of the Modified Rodi Mansour model (Michelassi et al., 1993). 

Finally, the models prediction for the different Reynolds numbers are presented.  

4.1 Mean velocity field with DNS Reynolds stress tensor 

The first test performed was designed to evaluate the quality of the mean 

velocity field obtained by the solution of the momentum equation, employing the 

DNS Reynolds stress tensor components data directly in the conservation equations. 

This test was motivated by the work of Thompson et al. (2016), who have presented 

a careful evaluation of statistical errors in DNS data of plane channel flow. 

Assuming a perfectly converged DNS Reynolds tensor field, the main idea is to 

obtain a reference velocity field corresponding to this tensor, which would be the 

best velocity field that one can obtained with a turbulent RANS model, if the model 

is able to completely mimic the DNS Reynolds stress tensor components. 

Figure 4.1a presents the dimensionless mean axial velocity profile 𝑈+ along 

the vertical dimensionless coordinated 𝑦+, obtained by the solution of momentum 

equations with 𝑎𝑥𝑦 = 𝑎𝑥𝑦
𝐷𝑁𝑆 of Thais et al. (2012). The velocity profile is plotted in 

log and linear scales to allow a deeper observation of the profile details close to the 

wall and symmetry line. The acronym SL in the figures stands for symmetry line. 

Analyzing the results in Figure 4.1(a), it can be seen an under prediction of the axial 

velocity for the “DNS-reference” based on Thais et al. (2012) data. A closer look 

to the DNS data shows that at the symmetry line, the DNS value of Thais et al. 

(2012) is 𝑎𝑥𝑦 = 𝑎𝑥𝑦
𝐷𝑁𝑆 = −5.44 × 10−3. However, at the symmetry line, the time 

average value of 𝑎𝑥𝑦 is expected to be zero. Thus, another simulation was 

performed by changing only the 𝑎𝑥𝑦 value at the symmetry line to zero. It can be 

seen in Figure 4.1b a slightly better profile, but now an overestimation of the 

velocity was obtained near the symmetry. The DNS data (Thais et al., 2012) 

presents a value for 𝑎𝑥𝑦 at the symmetry line very close to zero, but this small 

disturbance causes a significant change in the reference velocity field.  

To investigate further the matter, the same simulation was performed using the 

DNS data from Lee & Moser (2015) for 𝑅𝑒𝜏 = 1000, where at the symmetry line the 
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DNS value is 𝑎𝑥𝑦 = 𝑎𝑥𝑦
𝐷𝑁𝑆 = 4.99 × 10−4. Figure 4.1a shows a perfect agreement of 

the DNS data for the mean axial velocity profile of the two references, further, the 

reference solution obtained with Lee & Moser (2015) also agrees perfectly.  

 
(a) at symmetry: 𝑎𝑥𝑦 = 𝑎𝑥𝑦

𝐷𝑁𝑆 

 
(b) at symmetry: 𝑎𝑥𝑦 = 0 

Figure 4.1 – Velocity field obtained with DNS 𝑎𝑥𝑦 (a) 𝑎𝑥𝑦 = 𝑎𝑥𝑦
𝐷𝑁𝑆 in the symmetry 

line (b) 𝑎𝑥𝑦 = 0 in the symmetry line. 𝑅𝑒𝜏 = 1000. 

One more test was performed, applying 𝑎𝑥𝑦 = 0 at the symmetry line, and 

using 𝑎𝑥𝑦 = 𝑎𝑥𝑦
𝐷𝑁𝑆 of Lee & Moser (2015) for the rest of the domain (Figure 4.1b). 

The agreement between predictions is also almost perfect, since at the symmetry 

line, the 𝑎𝑥𝑦
𝐷𝑁𝑆 value of Lee & Moser (2015) is not only closer to zero than 𝑎𝑥𝑦

𝐷𝑁𝑆 of 

Thais et al. (2012), but it is positive, indicting perhaps that the convergence of Thais 

et al. (2012) should have been improved. 

The conclusion is that the numerical solution of the velocity field is very 

sensitive to the value of 𝑎𝑥𝑦 at the symmetry line, since it has a direct impact on its 

derivative, what is really necessary for the solution.  

For all following simulations, the boundary condition for the velocity at the 

symmetry line was set equal to zero, corresponding to 𝑎𝑥𝑦 = 0. It was also decided 

to compare the models prediction directly with the available DNS data, not only 

because both DNS data set presented equal data, but the reference solution obtained 

with Lee & Moser (2015) data was also the same. 
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4.2 Preliminary Tests 

Preliminary tests were performed for friction Reynolds number 𝑅𝑒𝜏 =1000, 

and employed Thais et al. (2012) DNS data. The objective of the tests was to 

determine the impact of different terms in the flow field prediction, by determining 

the mean velocity field and Reynolds stress components. Model III of the tensorial 

base was selected, since it presents the contribution of all non-linear terms, i.e., 𝑫2 

and 𝑷. 

Three cases were examined to evaluate the contribution of different terms on 

the non-linear model proposed, solving the kinematic tensors: 

 Case 1: DNS near wall damping function coefficients, DNS turbulent 

kinetic energy and DNS dissipation rate of the turbulent kinetic energy 

 Case 2: DNS turbulent kinetic energy and its dissipation rate, with the 

proposed near wall damping coefficients 

 Case 3: DNS dissipation rate of turbulent kinetic energy, solving 

Modified Rodi-Mansur turbulent kinetic energy equation, with the 

proposed near wall damping coefficients 

4.2.1 Case 1: Impact of rate of strain for 𝜿 − 𝜸̇ model 

The first preliminary test consisted in determining the velocity field 

employing the coefficients obtained for the model from the DNS data (Thais et al., 

2012) and solving the conservation equations with the kinematic tensors. Model III 

of the tensor base was selected, and all model coefficients were directly obtained 

from the DNS data, and the Reynolds stress tensor components were defined as  

𝑎𝑥𝑦 = 𝛼̂𝐷,𝐷𝑁𝑆 2 𝐷𝑥𝑦 + 𝛼̂𝐷2,𝐷𝑁𝑆 𝐷𝑥𝑦
2 + 𝛽̂𝑃,𝐷𝑁𝑆𝑃𝑥𝑦 (4.1) 

𝑎𝑥𝑥 = 𝛼̂𝑜,𝐷𝑁𝑆 + 𝛼̂𝐷,𝐷𝑁𝑆 2 𝐷𝑥𝑥 + 𝛼̂𝐷2,𝐷𝑁𝑆𝐷𝑥𝑥
2 + 𝛽𝑃,𝐷𝑁𝑆𝑃𝑥𝑥 (4.2) 

𝑎𝑦𝑦 = 𝛼̂𝑜,𝐷𝑁𝑆 + 𝛼̂𝐷,𝐷𝑁𝑆 2 𝐷𝑦𝑦 + 𝛼̂𝐷2,𝐷𝑁𝑆𝐷𝑦𝑦
2 + 𝛽𝑃,𝐷𝑁𝑆𝑃𝑦𝑦 (4.3) 

𝑎𝑧𝑧 = 𝛼̂𝑜,𝐷𝑁𝑆 + 𝛼̂𝐷,𝐷𝑁𝑆 2 𝐷𝑧𝑧 + 𝛼̂𝐷2,𝐷𝑁𝑆𝐷𝑧𝑧
2 + 𝛽𝑃,𝐷𝑁𝑆𝑃𝑧𝑧 (4.4) 

Figure 4.2 presents for Case 1, a comparison of the velocity field, in log and 

linear scales to better examine the profile. Figure 4.3 shows a comparison of all 

Reynolds stress components obtained with Model III with DNS data of Thais et al. 
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(2012).  

In this test, the turbulent kinetic energy and the damping functions are DNS 

fields, and perfect agreement was obtained for all variables, indicating that Model 

III is able to capture the anisotropic behavior of the flow, by employing the square 

of the rate of strain tensor as well as the non-persistence tensor. Further, it also 

indicates that all velocity derivatives are well implemented and perfectly captured. 

 

Figure 4.2 – Case 1: Comparison of mean axial velocity with DNS data (Thais et al., 

2012). 𝑅𝑒𝜏 = 1000, Model III of the tensorial model. 

 
               (a) Shear Reynolds stress 𝑎𝑥𝑦                           (b) Normal Reynolds stress 𝑎𝑥𝑥 

 
              (c) Normal Reynolds stress 𝑎𝑦𝑦                       (d) Normal Reynolds stress 𝑎𝑧𝑧 

Figure 4.3 – Case 1: Comparison of Reynolds stress tensor components with DNS data 

(Thais et al., 2012). 𝑅𝑒𝜏 = 1000, Model III of the tensorial model. 

4.2.2 Case 2: Impact of near wall damping functions for 𝜿 − 𝜸̇ model 

To evaluate the impact in the solution of the proposed 𝜅 − 𝛾̇ turbulent 

viscosity model, with the developed damping functions, without uncertainties of 
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the turbulent kinetic energy equation, the velocity field was obtained by solving the 

momentum equation with 

𝛼̂𝐷𝐷 =
𝜇𝑡
𝜇
= 𝑓𝜇𝐶𝜇

𝜅𝐷𝑁𝑆
+

𝛾̇
;  𝛼̂𝐷2 = 𝑓𝜇2𝐶𝜇2

𝜅𝐷𝑁𝑆
+

𝛾̇2
; 𝛽̂𝑃 = 𝑓𝛽𝐶𝛽

𝜅𝐷𝑁𝑆
+

𝛾̇2
  

(4.5) 

The velocity field obtained with this test is shown in Figure 4.4 and the normal 

Reynolds stress components are shown in Figure 4.5.  

 

Figure 4.4– Case 2: Comparison of mean axial velocity with DNS data (Thais et 

al., 2012). 𝑹𝒆𝝉 =     , Model III of the tensorial model. 

 
              (a) Shear Reynolds stress 𝑎𝑥𝑦                     (b) Normal Reynolds stress 𝑎𝑥𝑥 

 
              (c) Normal Reynolds stress 𝑎𝑦𝑦                     (d) Normal Reynolds stress 𝑎𝑧𝑧 

Figure 4.5 – Case 2: Comparison of Reynolds stress tensor components with DNS 

data (Thais et al., 2012). 𝑹𝒆𝝉 =     , Model III of the tensorial model. 

Here, a deviation of the velocity field near the symmetry line can be observed 

in Figure 4.4, where a plateau of the axial velocity near the symmetry line is seen. 

This occurs, because, the damping function was restricted to the near wall region, 

and the intensity of the rate of strain is zero at the symmetry line. Since 𝛾̇ and 𝜅𝐷𝑁𝑆
+  

approach zero in an independent form, their ratio present in the models coefficients 
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is not predicted adequately. As 𝛾̇ goes to zero faster than 𝜅𝐷𝑁𝑆
+ , very high models 

coefficient are obtained, resulting in constant velocity at the central region. This is 

a consequence of the damping function restricted to the near wall region, with a 

constant reference model coefficient 𝐶𝜇. As shown in Figure 3.3, far from the wall 

the DNS 𝑓𝜇 presents a strong decay and goes to zero. reducing the diffusion 

contribution. In the absence of this control, the resulting high diffusion coefficient 

induces a constant velocity at the center of the domain. The DNS-reference curve, 

employing Thais et al. (2012) data set with 𝑎𝑥𝑦 = 𝑎𝑥𝑦
𝐷𝑁𝑆 = 0, was also added in 

Figure 4.4, where it can be seen an increase of the mean axial velocity at the 

symmetry line, also related with 𝛾̇ approaching zero at the symmetry.  

In spite of the problem observed for the axial velocity field, very good results 

for all components of the Reynolds stress tensor were obtained as shown in Figure 

4.5. The shear component is very good because near the symmetry, where the velocity 

was not well represented, its derivative is small, thus 𝑎𝑥𝑦 approaches zero as desired.  

All three normal components of the Reynolds stress tensor presented a very 

good agreement with Thais eta al. (2012) DNS data, with very small deviation, 

indicating the importance of considering the contribution of both 𝐷2 and 𝑃 

tensors. 

4.2.3 Case 3: Impact of turbulent kinetic energy prediction 

As shown in section 3.2.3, the transport equation for the turbulent kinetic 

energy depends on 𝜀, i.e., the dissipation of 𝜅. In that section, it was also mention 

that 𝜀 equation needs several additional closure terms, increasing its uncertainty. 

Thus, for the present test, the transport equation for 𝜅 proposed by Rodi Mansur, 

Eq. (3.41), is solved, but 𝜀 equation is not solved, instead, its DNS value is used 

directly in 𝜅 equation, as 

𝜕( 𝑈𝑗  𝜅
+)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(1 +

𝜇𝑡/ 𝜇

𝜎𝜅
)
𝜕𝜅+

𝜕𝑥𝑗
] + 𝐺𝑘

+ − 𝜀𝐷𝑁𝑆
+  

(4.6) 

Figure 4.6 compares the predicted turbulent kinetic energy with DNS data. A 

very good agreement was obtained, with a small over prediction, with the exception 

of the symmetry line, where zero 𝜅 was obtained.  
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Figure 4.6 – Case 3: Comparison of turbulent kinetic energy with DNS data (Thais et al., 
2012). 𝑅𝑒𝜏 = 1000, Model III of the tensorial model. 

Figure 4.7 shows the performance of Modell III of the tensorial base to predict 

the mean axial velocity with the best possible dissipation of turbulent kinetic 

energy, i.e., by employing its DNS value, 𝜀𝐷𝑁𝑆
+ . The shear and normal components 

of the Reynolds stress tensor, are compared with the DNS data in Figure 4.8.  

The velocity profile is shown in Figure 4.7 in log and linear scales. Excellent 

agreement is obtained near the wall and a very small deviation of the computed 

solution from the DNS data was obtained along the whole domain. The limitation 

of 𝜅 coupled with the constant 𝑓𝜇, bounds the ratio with zero 𝛾̇ rendering a good 

velocity prediction. 

 

Figure 4.7– Case 3: Comparison of mean axial velocity with DNS data (Thais et 

al., 2012). 𝑹𝒆𝝉 =     , Model III of the tensorial model. 

Excellent agreement was also obtained for the shear and normal components 

of the Reynolds stress tensor, when compared with the DNS data in Figure 4.8. A 

very small deviation of shear component can be seen for region 𝑦+ < 20, where it 

overestimate DNS data, however, it has an excellent agreement for 𝑦+ > 20. The 

normal components predictions are better than in the previous test. The normal 

components 𝑎𝑥𝑥 and 𝑎𝑦𝑦 present good agreement for 𝑦+ < 10, with a minimal error 

in the rest of domain, while a very small over prediction of 𝑎𝑧𝑧 is seen along the 

whole domain.  
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           (a) Shear Reynolds stress 𝑎𝑥𝑦                         (b) Normal Reynolds stress 𝑎𝑥𝑥 

 

            (c) Normal Reynolds stress 𝑎𝑦𝑦                    (d) Normal Reynolds stress 𝑎𝑧𝑧 

Figure 4.8 – Case 3: Comparison of Reynolds stress tensor components with DNS data 

(Thais et al., 2012). 𝑅𝑒𝜏 = 1000, Model III of the tensorial model. 

This test shows that a perfect dissipation model will render very good 

Reynolds stress tensor components as well as mean axial velocity. 

4.3 Non-linear 2 equations 𝜿 − 𝜸̇ model 

For this test, the complete 𝜅 − 𝜀  model of Michelassi et al. (1993), the 

Modified Rodi Mansour model, given by Eqs. (3.48) and (3.49), was solved.  

The mean axial velocity and shear Reynolds stress component are the same 

for all non-linear models, as well as for the linear Model I of the tensorial base. The 

difference between these models is reflected only in the normal components of 

Reynolds stress tensor. So, first the results obtained corresponding the turbulent 

variables 𝜅  and 𝜀, the mean axial velocity and shear Reynolds stress components, 

corresponding to Modell III of the tensorial base, are presented. In the sequence, 

the prediction of the normal Reynolds stress components of all other non-linear 

models is discussed.  

Figure 4.9 compares the predicted dissipation of turbulent kinetic energy and 

turbulent kinetic energy with DNS data of Thais et al. (2012). A small deviation of 

𝜀 prediction from the DNS data near the wall can be seen, but a very good agreement 

can be seen for 𝑦+  >  30. A good agreement of 𝜅 prediction with  DNS data can 
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be seen in the whole domain, with a distribution equivalent to the one obtained in 

the previous test (Case 3). Note however, an improvement of 𝜅 prediction that near 

the symmetry line, in relation to the previous test. 

The mean axial velocity profile along the vertical coordinate is shown in 

Figure 4.10 in log and linear scale, while the shear Reynolds stress component is 

presented in Figure 4.11. Examining the velocity result, an increase of the 

agreement with the DNS data can be seen, in relation to the previous test. An 

improvement of the prediction of 𝑎𝑥𝑦 was also obtained (Figure 4.11).  

 
        (a) Dissipation of turbulent kinetic energy              (b) Turbulent kinetic energy  

Figure 4.9 – 2 equations 𝜅 − 𝛾̇ model: Comparison of dissipation of turbulent kinetic 

energy and turbulent kinetic energy with DNS data (Thais et al., 2012). 𝑅𝑒𝜏 = 1000, 
Model III of the tensorial model. 

 

Figure 4.10 – 2 equations 𝜿 − 𝜸̇ model: Comparison of mean axial velocity with 

DNS data (Thais et al., 2012). 𝑹𝒆𝝉 =     , Model III of the tensorial model. 

 

Figure 4.11 – 2 equations 𝜅 − 𝛾̇ model: Comparison of shear Reynolds stress tensor 

component 𝑎𝑥𝑦 with DNS data (Thais et al., 2012). 𝑅𝑒𝜏 = 1000, Model III of the tensorial 

model. 
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Figure 4.12 presents the normal components of Reynolds stress tensor for 

Model II,III and IV of the tensorial base. Model I is a linear model and it is unable 

to predict the normal components of Reynolds stress tensor.  

The non-linear contribution of Model II is associated with the tensor 𝑫2 

tensor. Examining Figure 4.12, it can be seen that Models II substantially 

underestimates 𝑎𝑥𝑥. Further, this models fails to predict the correct sign of 𝑎𝑦𝑦. The 

prediction 𝑎𝑧𝑧 is reasonable, with a slight under prediction along the vertical 

coordinate, and with a small shift of its peak toward the symmetry line.  

Examining Model IV prediction in Figure 4.12, one can observe that 𝑎𝑥𝑥 is 

also underestimated, and 𝑎𝑦𝑦 is overestimated in relation to the DNS data, with a 

significantly better prediction than Model II. The non-linear contribution of this 

model comes from the non-persistence tensor 𝑷, and this model is unable to predict 

𝑎𝑧𝑧.  

At the same Figure 4.12, the normal components of the Reynolds stress tensor 

predicted by Model III are also shown. This model is formed by the contribution of 

both tensors 𝑫𝟐 and 𝑷. Note that, by adding the contribution of both non-linear 

tensors, Model III prediction is significantly better than the prediction of the other 

two models. The negative contribution of 𝑫𝟐 to 𝑎𝑦𝑦 combined with the 

overestimation of 𝑷, results in a very good result for this component with Model 

III, which combines both tensors. The same is true with respect to component 𝑎𝑥𝑥, 

since both tensors do not contribute enough to its value, but their combination is 

excellent. Finally, the prediction of Modell II and III for 𝑎𝑧𝑧 are equal, since tensor 

𝑷, does not add a contribution to this component. 

The conclusion of this analysis is that the model which better predicts the 

normal components of Reynolds stress tensor is Model III, agreeing with Nieckele 

et al., (2016) and Murad (2018). 

The impact of the calculated 𝜀 was slightly higher for the normal components, 

with a small under-prediction of all normal components for Model III, when 

compared with test Case 3, although it can still be considered that a good agreement 

was obtained.  
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                   Figure 4.12 – Non-linear models normal Reynolds stress tensor components. 2 equations 𝜅 − 𝛾̇ model. 𝑅𝑒𝜏 = 1000, Model II, III and IV of the 
tensorial base. 
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4.4 Non-linear 1 equation 𝜿 − 𝜸̇ models  

In this section the performance of the proposed 1 equation non-linear  𝜅 − 𝛾̇ 

models is presented, by comparing with DNS data from Thais et al (2012) for 𝑅𝑒𝜏 =

1000. As mentioned in the previous section, only the normal Reynolds stress 

components present different results for each model, and Model III of the tensorial 

basis was selected to present all other variables. 

Figure 4.13 presents a comparison of the dissipation of turbulent kinetic 

energy and turbulent kinetic energy with Thais et al. (2012) DNS data. The 𝜅 profile 

is very similar to the one obtained with the 2 equations 𝜅 − 𝛾̇ model (shown in 

Figure 4.9) in most of the domain, with the exception of the symmetry region, where 

a larger plateau was obtained. The opposite is seen for its dissipation, which is 

similar to the one obtained in 2 equations 𝜅 − 𝛾̇ model (Figure 4.10) in the center 

of the domain up to the symmetry line, but it increases and approaches the DNS 

data near the wall. 

 

   (a) Dissipation of turbulent kinetic energy              (b) Turbulent kinetic energy  

Figure 4.13 – 1 equation 𝜅 − 𝛾̇ model: Comparison of dissipation of turbulent kinetic 

energy and turbulent kinetic energy with DNS data (Thais et al., 2012). 𝑅𝑒𝜏 = 1000, 
Model III of the tensorial base. 

The axial velocity profile obtained with the 1 equation 𝜅 − 𝛾̇ model is shown 

in Figure 4.14. In the same figure the DNS data of Thais et al (2012) was included. 

Note that, although the profile obtained is close to the DNS data, the dissipation 

model induced a wavy behavior in the region close to the center of the domain. 

Further, a large plateau of the axial velocity is obtained in the center region. 
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Figure 4.14 – 1 equation 𝜿 − 𝜸̇ model: Comparison of axial velocity with DNS data 

(Thais et al., 2012). 𝑹𝒆𝝉 =     , Model III of the tensorial base. 

 

Comparing the present 1 equation 𝜅 − 𝛾̇ model prediction of the shear 

Reynolds stress component 𝑎𝑥𝑦 in Figure 4.15 with the DNS data, it is observed 

that an equivalent profile was obtained. 

 

Figure 4.15 – 1 equation 𝜿 − 𝜸̇ model:  Comparison of shear Reynolds stress 𝒂𝒙 . 

with DNS data (Thais et al., 2012). 𝑹𝒆𝝉 =     , Model III of the tensorial base. 

Figure 4.16 presents normal components of Reynolds stress tensor for Model 

II, III and IV. The same behavior of the different non-linear models as presented 

with non-linear 2 equations 𝜅 − 𝛾̇ model was obtained, with a slightly better 

performance for the 1 equation 𝜅 − 𝛾̇ model for Model III of the tensorial base, 

except at the symmetry, where as a consequence to the kinetic energy plateau, a 

plateau was also obtained for the normal Reynolds stress components 
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Figure 4.16 – Non-linear models normal Reynolds stress tensor components. 𝜅 − 𝛾̇ 1 equation model. 𝑅𝑒𝜏 = 1000, Model II, III and IV of the tensorial base. 
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4.5 Comparison of Different Models 

In this section, the results of the two proposed non-linear 𝜅 − 𝛾̇ models 

develop in this work are compared with the literature. The first model is 2 equations 

𝜅 − 𝛾̇ model, analyzed in section 4.3, and the second one, is the 1 equation 𝜅 − 𝛾̇ 

model, employing the developed model for 𝜀 (section 4.4). Both models are based 

on the new developed damping functions, detailed in Appendix A.1. The results of 

models are compared with prediction of Murad (2018), who develop two sets of 

non-linear models, based on different characteristic velocity and length. The first 

one, employed 𝜅 and 𝜀 to define the characteristic velocity and length, as described 

in section 3.2.2. The second set of models, like the present work employed 𝜅 and 𝛾̇ 

to define the characteristic velocity and length, with the damping coefficients, as 

described in section A.2. However, the damping coefficients developed were very 

cumbersome and they were applied in the whole domain. Further, it was tested only 

for 𝑅𝑒𝜏=1000. For all simulations the Modified Rodi Mansour model (Michelassi 

et al., 1993) was solved to determine 𝜅 and 𝜀. Murad (2018) evaluated the models 

for several Reynolds numbers, and compared with several models available in the 

literature and showed, in agreement with Nieckele et al. (2016) that Model III is the 

most recommended model, since it better captures the normal Reynolds stress 

components. Thus, only the results of Model III of the tensorial base are shown 

here. 

Murad (2018) compared the results obtained with his developed model with 

some 𝜅 − 𝜀 models found in the literature: four linear Low-Reynolds Models and 

one Non-Linear Low Reynolds Model. The linear models were Lam BremHorst 

(Lam & Bremhorst, 1981), Launder Sharma (Launder et al., 1977), Lien Leschziner 

(Lien & Leschziner, 1993) and Modified Rodi Mansour (Michelasse  et al., 1993). 

The non-linear model was Lien Cubic Model (Lien et al., 1996). The comparison 

made by Murad (2018) showed that the non-linear Model III of the tensorial basis, 

with the damping function that he proposed for both characteristic velocity and 

length (𝜅 − 𝜀 and 𝜅 − 𝛾̇) presented superior results than these models found in the 

literature. Therefore, here, the models proposed in this work are compared among 

themselves, with DNS data and the models proposed by Murad (2018). 

DBD
PUC-Rio - Certificação Digital Nº 1821031/CA



 67 
 

Comparison of flow variables obtained with the models develop here (1 

equation and 2 equations non-linear 𝜅 − 𝛾̇) with Murad (2018) predictions are 

shown in Figure 4.17 through Figure 4.21. In these figures the predictions of the 

different models are compare with the DNS data of Thais et al. (2012).  

The first variable examined is the dissipation of the turbulent kinetic energy 

𝜀, shown in Figure 4.17. All two equation models predicted equivalent results for 

𝑦+ ≥ 30, with a slight deviation from the DNS data (below and above) of Model 

1𝑒𝑞. 𝜅 − 𝛾̇. Near 𝑦+ ≈ 12, a clear transition is observed in the DNS 𝜀 profile, with 

a plateau followed by a stronger increase at the sub-laminar layer. At approximately 

the same position, all models presented a hump, followed by also an increase of 𝜀 

at the sub-laminar layer. The increase of 𝜀 near the wall of Model 1 eq. 𝜅 − 𝛾̇ is too 

strong, ending up overestimating its value at the wall. Model 𝜅 − 𝛾̇ and Model 𝜅 −

𝜀 of Murad (2018) and the present 2 eq.  𝜅 − 𝛾̇ followed the same tendency of the 

DNS data in this region. The behavior of 𝜀 in the near wall is very difficult to 

predict, and most models prediction disagree in this region as shown by Murad 

(2018). 

 
Figure 4.17 –Dissipation rate of turbulent kinetic energy. Models comparison. 

The impact of the dissipation behavior in the turbulent kinetic energy in the 

near wall region is very small, as shown in Figure 4.18, where all models present 

very close results up to 𝑦+ ≈ 20. In this region, the present Model 1 eq. 𝜅 − 𝛾̇ 

predicted slightly higher values. All models predict the same peak position with 

equivalent values. At the center of the domain, the worst prediction is of Model 𝜅 −

𝜀 (Murad, 2018), and an almost perfect agreement is shown for his 𝜅 − 𝛾̇ model. 
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Although this agreement is very good, his proposed damping function acts in the 

whole domain, what clearly is not convenient in a general situation. Both 1eq. and 

2 eq. 𝜅 − 𝛾̇ developed here employ a near wall damping function at 𝑦+ ≤ 100, and 

as a consequence, the models are equivalent in the central region (𝑦+ > 20), with 

a small over estimation of 𝜅. The agreement of 1 equation 𝜅 − 𝛾̇ model with 2 

equations 𝜅 − 𝛾̇ model is very positive, since it solves only one addition equation 

instead of two, like all other models examined here. However, near the symmetry 

1eq. 𝜅 − 𝛾̇ presents a small plateau as already discussed.  

 

Figure 4.18 – Turbulent kinetic energy. Models comparison. 

The models comparison of the mean axial velocity profile can be examined 

in Figure 4.19. All models present coincident results at the near wall region up to 

𝑦+ ≈ 10. After this distance from the wall, the results obtained by Murad (2018) 

with both models are slightly lower than the DNS data, while the prediction of 

present 2 equations 𝜅 − 𝛾̇ Model is almost coincident with the DNS data. 1 equation 

𝜅 − 𝛾̇ Model captures the correct velocity value at the symmetry line, but presented 

a wave velocity profile for 𝑦+ > 100, presenting underestimation in 100 < 𝑦+ <

300 and an overestimation in 300 < 𝑦+ < 800.  

All models predicted a practically coincident shear Reynolds stress profile 

with an excellent agreement with the DNS data, as can be seen in Figure 4.20. Very 

small differences can be observed near the wall, 1 equation 𝜅 − 𝛾̇ curve is above 

the DNS curve, and 2 equations 𝜅 − 𝜀 below, both 2 equations 𝜅 − 𝛾̇ perfectly 

reproduce the DNS data. 

0

1

2

3

4

5

6

1 10 100 1000

1 eq.
2 eq.
              (Murad, 2018)
              (Murad, 2018)
DNS (Thais et al., 2012)

𝑦+

𝜅
+

𝑹𝒆𝝉 =     
Model III

𝜿 − 𝜸̇
𝜿 − 𝜸̇

𝜿 − 𝜸̇
𝜿 − 𝜺

DBD
PUC-Rio - Certificação Digital Nº 1821031/CA



 69 
 

 

 

Figure 4.19 – Mean axial velocity for 𝑅𝑒𝜏 = 1000. Models comparison. 

 

Figure 4.20 – Shear Reynolds stress 𝑎𝑥𝑦. 𝑅𝑒𝜏 = 1000. 
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(a) Normal Reynolds stress 𝑎𝑥𝑥 

 
(b) Normal Reynolds stress 𝑎𝑦𝑦 

 
(c) Normal Reynolds stress 𝑎𝑧𝑧 

Figure 4.21 – Normal Reynolds stress tensor components. 𝑅𝑒𝜏 = 1000. 

 

 

-5

-4

-3

-2

-1

0

1 10 100 1000

1 eq.

2 eq.

              (Murad, 2018)

              (Murad, 2018)

DNS (Thais et al., 2012)

𝑦+

𝑎
𝑥
𝑥
+

𝑹𝒆𝝉 =     
Model III

𝜿 − 𝜸̇
𝜿 − 𝜸̇

𝜿 − 𝜸̇
𝜿 − 𝜺

0

1

2

3

4

1 10 100 1000

1 eq.
2 eq.
              (Murad, 2018)
              (Murad, 2018)
DNS (Thais et al., 2012)

𝑦+

𝑎
𝑦
𝑦

+

𝑹𝒆𝝉 =     
Model III

𝜿 − 𝜸̇
𝜿 − 𝜸̇

𝜿 − 𝜸̇
𝜿 − 𝜺

0.0

0.5

1.0

1.5

2.0

1 10 100 1000

1 eq.
2 eq.
              (Murad, 2018)
              (Murad, 2018)
DNS (Thais et al., 2012)

𝑦+

𝑎
𝑧
𝑧+

𝑹𝒆𝝉 =     
Model III 𝜿 − 𝜸̇

𝜿 − 𝜺
𝜿 − 𝜸̇

𝜿 − 𝜸̇

DBD
PUC-Rio - Certificação Digital Nº 1821031/CA



 71 
 

The comparison of all three normal Reynolds stress tensor components is 

presented in Figure 4.21. All models showed the same qualitative profile for the 

three normal components. The 𝜅 − 𝜀 model of Murad (2018) presented the worst 

result with the peak of all components shifted to the wall direction. The present 2 

equations 𝜅 − 𝛾̇ model underestimated all components, Model 𝜅 − 𝛾̇ of Murad 

(2018) and 2 eq. 𝜅 − 𝛾̇ presented similar results as the present 1 eq. 𝜅 − 𝛾̇  model 

for the prediction of the normal components of Reynolds stress tensor, and one can 

say that Model 1 eq. 𝜅 − 𝛾̇ prediction was superior for the three components than 

all other models.  

 

4.6 Influence of Reynolds number 𝑹𝒆𝝉 for Model III 𝜿 − 𝜸̇ 

To better evaluate the proposed non-linear Model III of the tensorial base 𝜅 − 𝛾̇, 

in this section the predictive ability of the model for several Reynolds number is 

examined. Both 1 equation and 2 equations 𝜅 − 𝛾̇ formulation are examined. The 

models predictions are compared with DNS data of Thais el al. (2012) for friction 

Reynolds number 𝑅𝑒𝜏=395, 590 and 1000 and Lee and Moser (2015) DNS data for 

𝑅𝑒𝜏=2000, and 5200.  

The near wall damping function for the non-linear terms of the Reynolds 

stress tensor and proposed dissipation of 𝜅 for the different friction Reynolds 

number are shown in Appendix A.1 and A.3, respectively.  

In the Figure 4.22, Figure 4.23 and Figure 4.24 are presented the results of 2 

equations 𝜅 − 𝛾̇ model for all 𝑅𝑒𝜏. The distribution of the dissipation of the 

turbulent kinetic energy (Figure 4.22a), obtained by the solution of the Modified 

Rodi-Mansur model is equivalent for all friction Reynolds numbers, very good for 

𝑦+ > 30, with an underestimation near the wall, but with similar profile. The 

resulting turbulent kinetic energy (Figure 4.22b) is also equivalent for the different 

friction Reynolds number, however, its prediction agreement with DNS data decays 

as the Reynolds number increases. For 𝑅𝑒𝜏 = 2000 there is a slight increase of the 

overestimation of 𝜅 for 𝑦+ > 200, while for 𝑅𝑒𝜏 = 5200, from 100 ≤  𝑦+ ≤

1000, an approximately constant 𝜅 was predicted, reducing abruptly near the 

symmetry, approaching the DNS value.  
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In spite of the observed disagreement in 𝜅 prediction for the higher friction 

Reynolds number, the mean axial velocity (Figure 4.23a) and the shear component 

of the Reynolds stress tensor (Figure 4.23b) were very well capture for all Reynolds 

number, with a small over estimation of the velocity near the symmetry line for 

𝑅𝑒𝜏 =2000 and 5200. 

For the normal components of the Reynolds stress tensor (Figure 4.24), the 

agreement of the predicted values with DNS data of Thais et al. (2012) 

corresponding to 𝑅𝑒𝜏 ≤ 1000 is very good and equivalent. For 𝑅𝑒𝜏 =2000, the 

agreement of the three components with DNS data of Lee and Moser (2015) is also 

good, with the same peak in the same location, with an increase in the disagreement 

in the center of the domain. For 𝑅𝑒𝜏 =5200, the peak position of the three 

components were also well predicted, with a small deviation on its value. However, 

in the center of the domain, as a direct consequence of the 𝜅 prediction, a larger 

disagreement is observed, but it can also be stated that a reasonable result was 

obtained.  

From the results presented, Model III of the tensorial base is able to predict 

the channel flow and the proposed near wall damping coefficients for the 𝜅 − 𝛾̇ 

model produced good results for a wide range of Reynolds numbers. 

The results for the 1 eq. the 𝜅 − 𝛾̇  model III are shown in Figure 4.25, Figure 

4.26 and Figure 4.27. For 𝑅𝑒𝜏 ≤ 1000, Thais et al., (2012) DNS data base used and 

for 𝑅𝑒𝜏 > 1000, the DNS data was obtained from Lee & Moser (2015) data base. 

Examining the results for 𝜀 in Figure 4.25a, it can be seen that 𝑅𝑒𝜏 = 590 

and 𝑅𝑒𝜏 = 2000 presented the same behavior as 𝑅𝑒𝜏 = 1000 with a reasonable 

agreement with DNS data. However, for 𝑅𝑒𝜏 = 395, the dissipation at the wall was 

significantly underestimated, and for 𝑅𝑒𝜏 = 5200 the dissipation profile predicted 

by the 1 eq. the 𝜅 − 𝛾̇  is very similar to 𝑅𝑒𝜏 = 2000, while the DNS data is more 

smooth, although very good 𝜀 wall value was predicted. 

The turbulent kinetic energy is shown in Figure 4.25b. Note an increase of 

the 𝜅 plateau near the symmetry line for the lower friction Reynolds numbers. Once 

again the prediction for 𝑅𝑒𝜏 = 395 was not satisfactory and for 𝑅𝑒𝜏 = 590 the 

profile is acceptable only up to 𝑦+ ≤ 200. On the other hand, the prediction of 𝜅 

for the 𝑅𝑒𝜏 = 2000 is very good, even superior than for 𝑅𝑒𝜏 = 1000. For 𝑅𝑒𝜏 =

5200, 𝜅 prediction of the 1 equation model 𝜅 − 𝛾̇ is superior than the 2 equations 
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𝜅 − 𝛾̇ model, although 𝜅 is overprescribed at the center of the domain, but 

reasonable values were determined. reasonable.  

The mean axial velocity for 1 equation 𝜅 − 𝛾̇ model is shown in Figure 4.26a, 

while the shear Reynolds stress component is in Figure 4.26b. Unfortunately, a 

deterioration of the prediction of the mean velocity with relation to the 2 eq. 𝜅 − 𝛾̇ 

model is clear. A constant velocity is obtained at the center of the domain, up to the 

symmetry line for 𝑅𝑒𝜏 = 395. For 𝑅𝑒𝜏 = 590, 1000 and 2000, the velocity level is 

near the DNS data, but a wave profile is obtained. A very poor velocity profile 

prediction was obtained for 𝑅𝑒𝜏 = 5200. In spite of the velocity profile obtained 

for all friction Reynolds numbers, the shear Reynolds stress predictions were 

reasonable. For the lower Reynolds it was slightly underestimated near the wall, 

and an unrealistic peak is seen for the largest Reynolds number, but very good 

results for the intermediated ones.  

With respect to the normal Reynolds stress prediction of 1 eq. 𝜅 − 𝛾̇ model 

(Figure 4.27), with the exception of 𝑅𝑒𝜏 = 395, good results were obtained for all 

friction Reynolds number. 

A conclusion of this test is that the model for the dissipation of the turbulent 

kinetic energy needs to be improved. It was well adjusted for 𝑅𝑒𝜏 = 1000 and 2000, 

that presented the best results, it was reasonable for 𝑅𝑒𝜏 = 590, but it failed for 

𝑅𝑒𝜏 = 395 and 5200. The same is true with respect to the damping coefficient of 

the linear term, since it presents a strong dependence with the friction Reynolds 

number. On the other hand, the near wall damping coefficients of the non-linear 

terms was very well designed. Not only, the damping functions are independent of 

the friction Reynolds number, but good predictions of the normal Reynolds stress 

components were obtained for all Reynolds.  
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                  𝑅𝑒𝜏 = 395,                                 𝑅𝑒𝜏 = 590                                𝑅𝑒𝜏 = 1000                                𝑅𝑒𝜏 = 2000                                 𝑅𝑒𝜏 = 5200 

 

(a) dissipation of turbulent kinetic energy 

 

(b) turbulent kinetic energy 

Figure 4.22 –Dissipation of turbulent kinetic energy and turbulent kinetic energy. Non-linear 2 equations 𝜅 − 𝛾̇ models. . 𝑅𝑒𝜏 = 395, 𝑅𝑒𝜏 = 590, 𝑅𝑒𝜏 = 1000, 

𝑅𝑒𝜏 = 2000,  𝑅𝑒𝜏 = 5200. Model III of the tensorial base. 
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(a) mean axial velocity 

 

 (b) shear Reynolds stress 𝑎𝑥𝑦. 

Figure 4.23 – Mean axial velocity and shear Reynolds stress 𝑎𝑥𝑦. Non-linear 2 equations 𝜅 − 𝛾̇ model. 𝑅𝑒𝜏 = 395, 𝑅𝑒𝜏 = 590, 𝑅𝑒𝜏 = 1000, 𝑅𝑒𝜏 = 2000,  𝑅𝑒𝜏 =

5200. Model III of the tensorial base. 
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(a) Normal Reynolds stress 𝑎𝑥𝑥 

 

(a) Normal Reynolds stress 𝑎𝑦𝑦 

 

(c) Normal Reynolds stress 𝑎𝑧𝑧. 

Figure 4.24 – Normal Reynolds stress 𝑎𝑥𝑥 , 𝑎𝑦𝑦 , 𝑎𝑧𝑧. Non-linear 2 equations 𝜅 − 𝛾̇: 𝑅𝑒𝜏 = 395, 𝑅𝑒𝜏 = 590, 𝑅𝑒𝜏 = 1000, 𝑅𝑒𝜏 = 2000,  𝑅𝑒𝜏 = 5200. Model III of the 

tensorial base. 
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(a) Dissipation of turbulent kinetic energy 

 

(b) turbulent kinetic energy 

Figure 4.25 –Dissipation of turbulent kinetic energy and turbulent kinetic energy. 1 equation 𝜅 − 𝛾̇. 𝑅𝑒𝜏 = 395, 𝑅𝑒𝜏 = 590, 𝑅𝑒𝜏 = 1000, 𝑅𝑒𝜏 = 2000,  𝑅𝑒𝜏 =
5200. Model III of the tensorial equation. 
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(a) mean axial velocity 

 

(b) Shear Reynolds stress 𝑎𝑥𝑦. 

Figure 4.26 – Mean axial velocity and shear Reynolds stress 𝑎𝑥𝑦. 1 equation 𝜅 − 𝛾̇. 𝑅𝑒𝜏 = 395, 𝑅𝑒𝜏 = 590, 𝑅𝑒𝜏 = 1000, 𝑅𝑒𝜏 = 2000,  𝑅𝑒𝜏 = 5200. Model III of 

the tensorial base. 
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(a) Normal Reynolds stress 𝑎𝑥𝑥 

 

(b) Normal Reynolds stress 𝑎𝑦𝑦 

 

(c) Normal Reynolds stress 𝑎𝑧𝑧. 

Figure 4.27 – Normal Reynolds stress 𝑎𝑥𝑥 , 𝑎𝑦𝑦 , 𝑎𝑧𝑧. 1 equation 𝜅 − 𝛾̇. 𝑅𝑒𝜏 = 395, 𝑅𝑒𝜏 = 590, 𝑅𝑒𝜏 = 1000, 𝑅𝑒𝜏 = 2000,  𝑅𝑒𝜏 = 5200. Model III of the tensorial 

base. 
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5  Conclusions 

The main objective of this work was to develop and evaluate non-linear 

RANS models to predict channel flow, dependent on the square of the rate of 

deformation tensor 𝑫𝟐 and non-persistence tensor 𝑷. The characteristic velocity 

and length of the models are based on the turbulent kinetic energy, 𝜅, and the norm 

of strain deformation tensor, 𝛾̇. The transport equation to determine 𝜅 was obtained 

with Modified Rodi Mansour model (Michelassi, 1993). Two different types of 

models were developed: 2 eq. 𝜅 − 𝛾̇ and 1 eq. 𝜅 − 𝛾̇. For the later, a model was 

developed for the dissipation of turbulent kinetic, aiming to avoid the solution of its 

transport equation. The predictions were compared with DNS data of two different 

data sets (Thais et al., 2012 and Lee & Moser, 2015) for a range of friction Reynolds 

number from 395 to 5200.  

Near wall damping functions corresponding to the linear term, 𝑓𝜇, and non-

linear terms, 𝑓𝜇2 and 𝑓𝛽, of the models were developed. The near wall damping 

function 𝑓𝜇 was strongly dependent of the friction Reynolds number, but Reynolds 

independent near wall damping functions 𝑓𝜇2 and 𝑓𝛽 were determined. Correlations 

for the limiting parameter 𝐶𝜇, 𝐶𝜇2 and 𝐶𝛽 as a function of the friction Reynolds 

number were also developed.  

The results obtained with four models from the tensorial base with the 

proposed 1 equation 𝜅 − 𝛾̇ model and 2 equations 𝜅 − 𝛾̇ model corroborate the 

observation of Nieckele et al. (2016) and Murad (2018) that the non-linear model 

based on both 𝑫𝟐 and 𝑷 is the best model. Murad (2018) showed that the models 

𝜅 − 𝜀 and 𝜅 − 𝛾̇ that he proposed, with Model III of the tensorial base, were 

superior to four different 𝜅 − 𝜀 models found in the literature. It was shown that the 

present 2 equations 𝜅 − 𝛾̇ model developed in the present work was superior to 

Murad (2018) models. This statement can be made based on the predicted results 

and by the fact that the present damping functions are restricted to the wall region, 

therefore, they can be used in other applications, for a wide range of Reynolds 

number.   
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A new algebraic model was proposed to determine the dissipation of the 

turbulent kinetic energy, coupled with a near wall damping function. It must be 

stressed here that the developed damping function was independent of the friction 

Reynolds number. Good results were obtained for 𝑅𝑒𝜏 = 1000 and 2000, but the 

model need improvement for smaller and larger friction Reynolds numbers. 

5.1 Future works 

As a recommendation of future work, one can suggest to apply the 2 equations 

𝜅 − 𝛾̇ Tensorial Base III to a wider friction Reynolds number range. Different 

geometries, like a back step, or the fully developed flow in square channel flow are 

also good benchmark cases to be examined. 

It is also recommended to search a more universal near wall damping function 

for the linear term. One can also search a methodology to determine the damping 

function based on the flow solution, as a dynamic type of adjustment. 

The present linear 2 equations 𝜅 − 𝛾̇ can be compared with other models 

available in the literature, like 𝜅 − 𝜔 and 𝜅 − 𝜔 𝑆𝑆𝑇 models, which presently are 

very popular. The 2 equations 𝜅 − 𝛾̇ Tensorial Base III could also be coupled with 

𝜅 − 𝜔 instead of 𝜅 − 𝜀. 

Although reasonable results were obtained with the proposed model for the 

dissipation of turbulent kinetic energy for 𝑅𝑒𝜏 =1000, a more general model can be 

search.  

Different propositions found in the literature for the dissipation of turbulent 

kinetic energy can be tested with the proposed 1 equation 𝜅 − 𝛾̇ Tensorial Base III. 

Further the present 1 equation model can be compared with others 1 equation 

models available in the literature, like Spallart-Almaras model, to evaluate not only 

the accuracy but the computing effort. 
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Appendix A – Models 𝜿 − 𝜸̇ Coefficients 

As mentioned in chapter 3, this appendix will discuss the definition of the 

constants and damping functions of 𝜅 − 𝛾̇ model. 

The DNS data for 𝑅𝑒𝜏 ≤ 1000 is from Thais et al. (2012) and for 𝑅𝑒𝜏 ≥

2000 is from Lee & Moser (2015).  

A.1 Linear and non-linear models 𝜿 − 𝜸̇   coefficients  

For all 𝑓𝜇 used, the same equation, Eq(3.56), repeated below,  

𝑓𝜇 = tanh(𝑎1𝑦
+𝑏1)  

was applied, but for each 𝑅𝑒𝜏 there are different constants. The damping function 

correlation parameters are shown in Table A.1 for all friction Reynolds number 𝑅𝑒𝜏 

evaluated here. 

Table A.1 – Constants for    and 𝑪 . 

𝑹𝒆𝝉 𝒂  𝒃  𝑪  

395 0.040 0.890 0.298 

590 0.062 0.772 0.280 

1000 0.070 0.750 0.261 

2000 0.091 0.639 0.248 

5200 0.049 0.870 0.242 

 

Equations for the damping function of the non-linear terms given by Eq(3.54) 

and Eq. (3.55), are repeated below 

𝑓𝜇2 = 𝑎2{𝑏2 + exp[𝑐2 + 𝑑2𝑦
+ + 𝑔2𝑦

+2]}
ℎ2

  

𝑓𝛽 = 𝑎3{𝑏3 + exp[𝑐3 + 𝑑3𝑦
+ + 𝑔3𝑦

+2]}
ℎ3

  

The coefficients for 𝑓𝜇2 and 𝑓𝛽 are independent for the Reynolds number and 

are: 
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𝑎2 = 0.0155; 𝑏2 = 1.2; 𝑐2 = −0.0425;  𝑑2 = −0.0013; 𝑔2 = 0.21; ℎ2 = 2.4 

𝑎3 = 0.0155; 𝑏3 = −0.32; 𝑐3 = −0.02; 𝑑3 = −0.0013; 𝑔3 = 0.21; ℎ3 = 2.4 

Figure A.1 shows the constants 𝐶𝜇2 and 𝐶𝛽 for each 𝑅𝑒𝜏. Since the reference 

values of  𝐶𝜇2 and 𝐶𝛽 are function of the friction Reynolds number 𝑅𝑒𝜏, correlations 

of these variable with 𝑅𝑒𝜏 were developed, as  

𝐶𝛽 = 𝑅𝑒𝜏
−𝑔(𝑅𝑒𝜏)

𝑔(𝑅𝑒𝜏) = 1.1 × 10−10𝑅𝑒𝜏
2 − 2.3 × 10−6𝑅𝑒𝜏 + 4.74 × 10−2

 

(A.1) 

𝐶𝜇2 = 3 × 10−9𝑅𝑒𝜏
2 + 7 × 10−6𝑅𝑒𝜏 + 7.45 × 10−1  (A.2) 

The comparison of the adjusted coefficients and the proposed functions are 

presented in graphical form in Figure A.1. A reasonable agreement of the 

correlation with the adjusted constants from the DNS data was obtained, with the 

exception of 𝑅𝑒𝜏 = 395, where it is substantially overestimated, perhaps because 

it corresponds to a low 𝑅𝑒𝜏.value. 

 

           (a) 𝐶𝜇2                                                                             (b) 𝐶𝛽 

Figure A.1 – 𝐶𝛽 and 𝐶𝜇2 dependence on 𝑅𝑒𝜏. 

The behaviors all three damping parameters are shown for all friction 

Reynolds in Figure A.2, Figure A.2, Figure A.3 and Figure A.4. 

Table A.2 – Constants of non-linear coefficients 𝑪 𝟐 and 𝑪 . 

𝑹𝒆𝝉 395 590      𝟐     𝟐   

−𝑪 𝟐 0.79  0.75  0.75  0.75  0.70  

𝑪  0.76 0.75 0.73 0.72 0.72 
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           (a) 𝑅𝑒𝜏 = 395                       (b) 𝑅𝑒𝜏 = 590                       (c) 𝑅𝑒𝜏 = 1000                                    (d) 𝑅𝑒𝜏 = 2000                           (e) 𝑅𝑒𝜏 = 5200 

Figure A.2  – 𝐶𝜇 and 𝑓𝜇 from DNS data and fitted for 𝑅𝑒𝜏 = 395 to 5200. 
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           (a) 𝑅𝑒𝜏 = 395                       (b) 𝑅𝑒𝜏 = 590                       (c) 𝑅𝑒𝜏 = 1000                                    (d) 𝑅𝑒𝜏 = 2000                           (e) 𝑅𝑒𝜏 = 5200 

Figure A.3  – 𝐶𝜇2  and 𝑓𝜇2 from DNS data and fitted from DNS data and fitted for 𝑅𝑒𝜏 = 395 to 5200. 
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           (a) 𝑅𝑒𝜏 = 395                       (b) 𝑅𝑒𝜏 = 590                       (c) 𝑅𝑒𝜏 = 1000                                    (d) 𝑅𝑒𝜏 = 2000                           (e) 𝑅𝑒𝜏 = 5200 

Figure A.4  – 𝑓𝛽 and 𝐶𝛽 from DNS data and fitted for 𝑅𝑒𝜏 = 395 to 𝑅𝑒𝜏 = 5200. 
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A.2 Murad (2018) model 𝜿 − 𝜸̇ coefficients  

The coefficients for the non-linear terms proposed by Murad (2018) are presented 

next. The functions for 𝐶𝜇
𝛾
are 

𝐶𝜇−𝛾 = 0.0054𝑦+;  𝑦+ < 3 

𝐶𝜇−𝛾 =
−0.007 + 0.0086𝑦+

1 + 0.056𝑦+ + 1.5𝑥10−5(𝑦+)2
;  3 < 𝑦+ ≤ 𝑦̂+ 

𝐶𝜇−𝛾 = 5.6𝑥10−10(𝑦𝑒𝑓𝑓
+ )

3
  + 9𝑥10−8(𝑦𝑒𝑓𝑓

+ )
2
+ 𝐶𝜇

𝛾
(𝑦𝑒𝑓𝑓

+ ); 𝑦̂+ < 𝑦+ 

(A.1) 

where  𝑦𝑒𝑓𝑓
+  is written as the following difference  𝑦𝑒𝑓𝑓

+ = 𝑦+ − 𝑦̂+ and 𝑦̂+ is the 

𝑦+ value of maximum 𝐶𝜇−𝛾which can be defined as a function of the Reynolds 

Number:  𝑦̂+ = 0.2734𝑅𝑒 + 44.745. 

The coefficient of 𝐶𝜇2−𝛾 of the non-linear term 𝐷𝒊𝒋
𝟐 is 

𝐶𝜇2−𝛾 = 0.2277; 𝑦+ < 1 

𝐶𝜇2−𝛾 = 0.5622(𝑦𝑙𝑜𝑔
+ )

4
− 2.0685(𝑦𝑙𝑜𝑔

+ )
3
+ 1.948(𝑦𝑙𝑜𝑔

+ )
2

− 0.1167(𝑦𝑙𝑜𝑔
+ ) + 0.2277; 1 < 𝑦+ ≤ 69 

𝐶𝜇2−𝛾 = 𝐶𝜇2−𝛾(𝑦
+ = 69); 69 < 𝑦+ 

(A.2) 

where 𝑦𝑙𝑜𝑔
+ = 𝑙𝑜𝑔10(𝑦

+). 

Finally the coefficient 𝐶𝛽
𝛾
 is 

𝐶𝛽−𝛾 = 0.3716; 𝑦+ < 1 

𝐶𝛽−𝛾 = 0.04835 (𝑦
𝑙𝑜𝑔
+ )

5

− 0.0859 (𝑦
𝑙𝑜𝑔
+ )

4

− 0.1759 (𝑦
𝑙𝑜𝑔
+ )

3

+ 0.2784 (𝑦
𝑙𝑜𝑔
+ )

2

− 0.0269 (𝑦
𝑙𝑜𝑔
+ ) + 0.3716;  1 < 𝑦+

≤ 95 

𝐶𝛽−𝛾 = 2.38𝑥10−10(𝑦+)3 + 2.38𝑥10−7(𝑦+)2 + 1.117𝑥10−4 𝑦+

+ 0.1993;  95 < 𝑦+ 

(A.3) 
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Figure A.5 shows a comparison with the damping function of the present 

work with developed by Murad (2018). Note that the functions proposed by Murad 

(2018) act in the entire domain. 

 

                   (a) 𝐶𝜇2                                                                             (b) 𝐶𝛽 

 

(c) 𝐶𝜇 

Figure A.5  – Comparison of 𝐶𝜇 , 𝐶𝜇2 and 𝐶𝛽 from Murad (2018) and the present work. 

 

A.3 Model 𝜺  coefficients  

The equation proposed for the dissipation rate of the turbulent kinetic energy 

and its near wall damping function 𝑓𝜀 described in Chapter 3 are repeated here 

𝜀+ = 𝑓𝜀  𝐶𝜀  𝜅
+ 𝛾̇  

 

 

𝑓𝜀 = {𝑎
tanh[𝑏(𝑦+)𝑐]

tanh[𝑑(𝑦+)𝑒]
}

Θ

+ 𝑔 {exp [𝜆 −
𝑦+

ℎ
]}  

 

 

Table A.3 shows the constants used in the damping function 𝑓𝜀 for all 𝑅𝑒𝜏,  

Table A.3 – Constants for  𝜺. 

𝒂 𝒃 𝒄 𝒅 𝒆 𝚯 𝒈 𝝀 𝒉 

0.95 0.0035 1.5 −0.00038 4.6 0.68 0.05  0.1 100 
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Although the 𝑓𝜀  equation is equal for all friction Reynolds number studied in 

this work, the constant 𝐶𝜀 is different for each friction Reynolds number. For this 

case, it also was developed a correlation with 𝑅𝑒𝜏 to predict these constants. The 

constant 𝐶𝜀 for the 𝑅𝑒𝜏 = 395; 𝑅𝑒𝜏 = 590; 𝑅𝑒𝜏 = 1000; 𝑅𝑒𝜏 = 2000; 𝑅𝑒𝜏 =

5200 are, respectively 𝐶𝜀 = 0.291; 𝐶𝜀 = 0.279; 𝐶𝜀 = 0.26; 𝐶𝜀 = 0.234; 𝐶𝜀 =

0.205. The obtain the 𝐶𝜀  constant, the following correlation with 𝑅𝑒𝜏 was 

developed 

𝐶𝜀 = 0.6707𝑅𝑒𝜏
−0.138  (A.6) 

Figure A.6 shows that a very good fit was obtained for the dependence of 𝐶𝜀 

with 𝑅𝑒𝜏 by the comparison with the adjusted values employing DNS data of Thais 

et al. (2012) and Lee and Moser (2015) for all 𝑅𝑒𝜏.  

 

Figure A.6  –  𝐶𝜀 dependence on 𝑅𝑒𝜏. 

The profile of the damping function 𝑓𝜀 with the distance to the wall is shown 

in Figure A.7. For all 𝑅𝑒𝜏, it is possible to observe a little disagreement in 𝑦+ < 10, 

with an underestimate of the correlation when compared with DNS data. An special 

attention has to be given to the case 𝑅𝑒𝜏 = 5200, because the DNS behavior far 

from the wall is not constant, it is slightly tilted., causing a disagreement near the 

center line. 
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           (a) 𝑅𝑒𝜏 = 395                                               (b) 𝑅𝑒𝜏 = 590 

 

(c) 𝑅𝑒𝜏 = 1000 

 

             (d) 𝑅𝑒𝜏 = 2000                                          (e) 𝑅𝑒𝜏 = 5200 

Figure A.7  – 𝑓𝜀 from DNS data (Thais et al., 2012 and Lee & Moser, 2015) and 

fitted 𝑅𝑒𝜏 = 395 to 𝑅𝑒𝜏 = 5200.  
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Appendix B – Grid Test 

To evaluate the non-linear models, the same mesh size employed in the DNS 

data base of Thais et al. (2012) and Lee and Moser (2015) was defined to simplify 

the comparison. However, DNS mesh is a very refined mesh to capture all scales of 

the flow. In RANS approach all scales are modelled and a coarse mesh can be 

employed. Therefore, to evaluate if the non-linear models are able to reproduce the 

DNS data with a coarser mesh, a new solution was obtained. 

Once again, the case with friction Reynolds number 𝑅𝑒𝜏 = 1000 was 

selected, and comparison with DNS data of Thais et al.(2012) was performed. The 

DNS mesh for this Reynolds number was equal to 257 points in the vertical 

direction. Here, a mesh size 25% smaller, with193 points was tested. 

Solution was obtained with the 1-equation 𝜅 − 𝛾̇ model, solving 𝜅 equation 

of the Modified Rodi Mansur model, with the present model for the dissipation of 

𝜅.  

Turbulent variables, 𝜅 and 𝜀 are shown in Figure B.1. A very good agreement 

between the solutions was obtained. A slight difference can be seen for 𝜀 very close 

to the wall 𝑦+ < 10, and for 𝜅 near the symmetry line. 

 

        (a) Dissipation of turbulent kinetic energy              (b) Turbulent kinetic energy  

Figure B.1 – Grid Test:: Dissipation of turbulent kinetic energy and turbulent kinetic 

energy for. 𝑅𝑒𝜏 = 1000. Model III of the tensorial base. 

The mean axial velocity is shown in Figure B.2 where a very small difference 

between the two meshes can be seen near the symmetry line due to the difference 

observe in the turbulent kinetic energy in that regions. 
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Finally the components of the Reynolds stress tensor can be examined in 

Figure B.3, where an excellent agreement between the solution with both mesh 

sizes, indicating that a mesh independent solution was obtained and a coarser mesh 

is able to predict the flow with reasonable agreement with DNS data. 

 

Figure B.2  Grid Test: Comparison of axial velocity with DNS data (Thais et al., 
2012). 𝑹𝒆𝝉 =     . Model III of the tensorial base. 

 

               (a) Shear Reynolds stress 𝑎𝑥𝑦                           (b) Normal Reynolds stress 𝑎𝑥𝑥 

 

              (c) Normal Reynolds stress 𝑎𝑦𝑦                       (d) Normal Reynolds stress 𝑎𝑧𝑧 

Figure B.3 – Grid Test: Comparison of Reynolds stress tensor components with DNS 

data (Thais et al., 2012). 𝑅𝑒𝜏 = 1000. Model III of the tensorial base. 

The results of both mesh are almost the same of the DNS mesh, with a very 

small disagreement in the region of center line, for the turbulent kinetic energy and 

mean axial velocity, where the coefficients became singular because 𝛾̇ → 0. 

Excellent agreement was obtained for all Reynolds stress tensor components. 
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Appendix C – Comparison of 1D and 2D formulation 

As mentioned in section 3.4.1, the problem has been solved as 2D flow, but 

in fact, it is a 1D flow. The simulation of 1D problem is computationally cheaper, 

not only because the computer does not process data in one of the directions, but 

since the velocity in vertical direction (𝑦+ direction) is null, all process with this 

component of the velocity can be ignored, considering only the mean axial velocity. 

Further all derivatives in the axial direction can also be neglected, eliminating a 

high number of calculation and iterations to obtain zero for several variables. 

For the present test, the Modified Rodi Mansur model for the differential 

equations of turbulent kinetic energy and dissipation of turbulent kinetic energy 

presented in section 3.2.3 was employed, as in 2 equations 𝜅 − 𝛾̇ model. The 1D 

solution was obtained with the equations shown in section 3.4.1. 

A comparison of 1D and 2D flows predictions for the turbulent quantities, 𝜅 

and 𝜀, mean axial velocity, and components of the Reynolds stress tensor are shown 

in Figure C.1 through Figure C.3 for 𝑅𝑒𝜏 = 1000. For all variables, the same results 

were obtained within the convergence tolerance defined.  

The same test was performed for the total range of friction Reynolds number 

investigated here (from 395 to 5200) for Model III of the tensorial base, with 2 

equations 𝜅 − 𝛾̇ model. The graphs are not presented, because again perfect 

agreement within the convergence tolerance was obtained for all variables. 

This test indicates that to evaluate the non-linear models prediction for the 

channel, the1D solution is totally acceptable and, as said before, computationally 

cheaper, then, all simulations for this work were performed with the 1D model. 
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       (a) Dissipation of turbulent kinetic energy    (b) Turbulent kinetic energy  

Figure C.1 – Comparison of 1D and 2D prediction for dissipation of turbulent kinetic 

energy and turbulent kinetic energy. 𝑅𝑒𝜏 = 1000. Model III of the tensorial base. 

 

Figure C.2 – Comparison of 1D and 2D of axial velocity with DNS data (Thais et 

al., 2012). 𝑹𝒆𝝉 =     . Model III of the tensorial base. 

 

               (a) Shear Reynolds stress 𝑎𝑥𝑦                           (b) Normal Reynolds stress 𝑎𝑥𝑥 

 

              (c) Normal Reynolds stress 𝑎𝑦𝑦                       (d) Normal Reynolds stress 𝑎𝑧𝑧 

Figure C.3 – Comparison of 1D and 2D of Reynolds stress tensor components with DNS 

data (Thais et al., 2012). 𝑅𝑒𝜏 = 1000. Model III of the tensorial base. 
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