Série dos Seminários de Acompanhamento à Pesquisa

UEI Departamento De engenharia Industrial

Número 10 | 05 2021

Predicting the Acquisition of Resistant Pathogens in ICUs using Machine Learning Techniques

> Autor(es): Leila Figueiredo Dantas

Série dos Seminários de Acompanhamento à Pesquisa

Número 10 | 05 2021

Predicting the Acquisition of Resistant Pathogens in ICUs using Machine Learning Techniques

Autor(es): Leila Figueiredo Dantas

Orientador: Silvio Hamacher Coorientador: Fernando Augusto Bozza

CRÉDITOS:

SISTEMA MAXWELL / LAMBDA https://www.maxwell.vrac.puc-rio.br/

Organizadores: Fernanda Baião / Soraida Aguilar

Layout da Capa: Aline Magalhães dos Santos

Introduction

- Infections by antibiotic-resistant bacteria are one of the most significant current threats to global health;
- WHO: Gram-negative pathogens resistant to carbapenems are a critical priority;
- Increased attributable morbidity, mortality, hospitalization time, and economic costs;
- Mortality 1.78 times higher in patients with MDR-GNB infections;

Main

To develop models to predict CR-GNB acquisition in ICUs using machine-learning

techniques.

Specific Objectives

 To predict CR-GNB acquisition in ICUs, determining its risk factors, and assessing the impact on mortality rate using the logistic regression technique.

Paper:<u>https://www.journalofhospitalinfection.com/ar</u> ticle/S0195-6701(19)30182-3/fulltext

	Journal of Hospital Infection 103 (2019) 121-127	
	Available online at www.aciencedirect.com	
	Journal of Hospital Infection	Healthcare
SEVIER	journal homepage: www.elsevier.com/locate/jhin	- Sourcy
redicting acqu	uisition of carbapenem-resistant	
ram-negative	pathogens in intensive care unit	ts
F. Dantas ^a . B. Dalm	as ^b , R.M. Andrade ^{c,d} , S. Hamacher ^a , F.A. Boz	za ^{e, f, *}
nes saint-etterne, Universite C pa D'Or Hospital, Rio de Janeir partment of General Medicine, Dr Institute for Research and E tional Institute of Infectious Di	ermoni Aldergne, Unes, Unes el la LUNG, Lentre CJ, sann-Ebenne, rri o, RJ, Brazil Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Bi duattan (1008), Rio de Janeiro, RJ, Brazil æase Evandro Chagas (IN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de J	ance razil Janeiro, RJ, Brazil
RTICLEINFO	S U M M A R Y	
tcle history:	Background: Infections by multidrug-resistant Gram-negative (MD among the grantest contemporary health concerns, especially in it	PCN) bacteria are

* Corresponding author: Address: Instituto Nacional de Infectiología Evandro Chagas (NI), FIO CRUZ, Ar Brasil 4365, Manguinhos, Rio de Janeiro, RJ 2106/900, Brazil, Teit. + 55 2199 331551. Erroll address: Emando Jacoz Mini, Morzuz, Br & A. Bozza).

https://doi.org/10.1016/j.jhin.2019.04.013 0195-6701/0 2019 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

3

2

Main

To develop models to predict CR-GNB acquisition in ICUs using machine-learning techniques.

Specific Objectives

2) Screening model to detects ICU patients who need to be tested;

3) Evaluating different machine learning and imbalanced learning method;

4) Developing a risk model that estimates ICU patients' probability of acquiring CR-GNB;

Differences between the models

Model	Screening	Acquisition risk	
Туре	Discrimination/Classification	Prediction	
Study Population	All Screenings Tests	Screening Tests and Clinical Exams	
Unit of Analysis	Test	Patient	
Main Objective	To detect those who do NOT	To find the probability of each	
	need testing	patient to acquire the bacteria	
Sampling method	Different Balancing Strategies Matched Case-control		
Hyperparameter Tuning Metric	AUC	Brier score	
Evaluation Metric	MCC and NPV	Brier score	
Interpretation	Error analysis (confusion matrix)	Calibration Belt	
Comparison of the techniques' performances	Yes	No	
Computational Time Analysis	Yes	No	
Analysis of the difference between hospitals	No	Yes	
Importance Factors	No	Yes	
Association Rules Mining	No	Yes	

Study overview

• Hospitalized patients in 24 ICUs of five hospitals at a sizeable Brazilian network hospitals;

-	Hospital	# ICUs	# ICU Beds	# Annual ICU admission
_	Α	1	~10	~600
-	В	2	~26	~1400
-	С	5	~52	~4500
-	D	9	~140	~5700
	E	7	~92	~5300

- The experiments were performed on an Intel® Core ™ i7 processor with 16GB of RAM and R 4.0.2 software;
- We used the CARET framework, imbalanced-learn packages, and others;
- We adapted all the functions of balancing strategies in CARET;

Database settings

- Epimed Monitor System®
 - Patient, ICU and hospital information;
 - Indexes (such as SAPS3 and Charlson);
 - Presence of comorbidities;
 - Use of the invasive devices during hospitalization;
 - Reasons for ICU admission;
- Business Intelligence (BI) System
 - Antibiotic data
- REAL system
 - Microbiology data \rightarrow Laboratory test results (positive/negative).

We included 44 new input attributes.

Conducting a Machine learning analysis

• Our analysis adds to the current studies in four respects: machine learning techniques, balancing strategies, feature selection, and performance evaluation;

• Machine Learning Techniques and Balancing strategies

Method	Algorithm
LINEAR CLASSIFICATION MODELS	
Logistic Regression	glm
Logistic Regression with regularization	glmnet
Linear Discriminant Analysis (LDA)	lda
Nearest Shrunken Centroids (NSC)	pam
Support Vector Machine (SVM) - Linear	svmLinear
NONLINEAR CLASSIFICATION MODELS	
Neural Network	nnet
Support Vector Machine (SVM) - Radial	svmRadial
k-Nearest Neighbors (kNN)	kNN
Naive Bayes	naive_bayes
CLASSIFICATION TREES	
Decision Tree C45	J48
Decision Tree CART	rpart
Decision Tree C50	C5.0
Random Forest (RF)	rf
Gradient Boosting Machines (GBM)	gbm
Bagging	treebag
AdaBoost	AdaBoost.M1

Balancing approaches

SAMPLING

Random downsampling (or undersampling)

Random upsampling (or oversampling)

SMOTE

DATA CLEANING TECHNIQUES

Tomek Links

Neighbourhood Cleaning Rule (NCL)

One-sided selection (OSS)

SMOTE + Tomek

SMOTE + NCL

SMOTE + OSS

ENSEMBLE-BASED METHODS

SMOTEBoost

RUSBoost

SMOTEBagging

UnderBagging

Differences between the models

Model	Screening	
Туре	Discrimination/Classification	
Study Population	All Screenings Tests	
Unit of Analysis	Test	
Main Objective	To detect those who do NOT	
	need testing	
Sampling method	Different Balancing Strategies	
Hyperparameter Tuning Metric	AUC	
Evaluation Metric	MCC and NPV	
Interpretation	Error analysis (confusion	
	matrix)	
Comparison of the techniques'	Vec	
performances	1 63	
Computational Time Analysis	Yes	
Analysis of the difference between	No	
hospitals		
Importance Factors	No	
Association Rules Mining	No	

Prediction Screening Tests and Clinical Patient Fo find the probability of each patient to acquire the bacteria Matched Case-control Study No No

Setting and Study population

Inclusion criteria:

- Tests realized between 48h and 60days after patient admission and made in adult ICUs.
- Testing in patients with admission date after May 8th, 2017 until August 31st, 2019;
- Patients aged ≥18 years old;

- Total: 3,911 tests

- Positive = 394
- Negative = 3,517

Descriptive analysis

- Patients more likely to be colonized:
 - High length of stay in hospital or ICU;
 - Higher severity indices;
 - Antibiotics use;
 - Invasive devices between 24 hours to 30 days before the test;
 - Prolonged use time of mechanical ventilation and catheters;
 - Higher duration that a procedure is used between one test and another and the number of times they were changed;
 - Admitted from sepsis/infection or neurological disease and by the operation room or other ICU from the hospital;

Setting and Study population

Hospital	#Screening Tests	#Positive Tests	#Negative Tests	% Positive Tests
Α	310	60	250	19.4%
В	806	57	749	7.1%
С	1081	81	1000	7.5%
D	1714	196	1518	11.4%
All	3911	394	3517	11.3%

Data Preprocessing

Feature Selection

	Mean AUC values				Number of	
	C45	SVM Radial	KNN	LR	AK	variables
Recursive Feature Elimination with random forest (RF-RFE)	0.632	0.690	0.642	0.713	1.25	35
Selection by Filter (SBF)	0.624	0.674	0.625	0.709	2.75	42
Class Decomposition with filter (D.SBF)	0.568	0.658	0.641	0.702	3.75	76
Class Decomposition with random forest (D.RF)	0.607	0.687	0.658	0.708	2.25	24
Friedman test (p-value)		0.	007			

- We proposed an approach combining feature selection and cluster techniques: D.RF.
 - The second best when comparing AUC;
 - The best one to discriminate the positive classes comparing the Sensitivity;

Building model – Training

✓ Evaluating different machine learning and imbalanced learning method

NPV

Friedman chi-squared \rightarrow p-value < 0.001

✓ Evaluating different machine learning and imbalanced learning method

MCC

✓ Computational Time

Timing Final Model

- The sampling strategies have the lowest medians, followed by data cleaning strategies;
- Tree-based strategies take longer to build the final model;
- The linear models are more efficient, followed by decision trees;
- The SVM Radial and Adaboost are the slowest;

Strategies	Strategies Timing Everything (min) Tim Median	
Downsampling	24.1	0.1
Upsampling	40.9	0.5
OSS	43.3	0.9
SMOTE	67.0	0.4
Tomek	74.4	0.5
UnderBagging	75.3	2.4
NCL	121.4	1.3
SMOTE_Tomek	125.1	0.7
SMOTE_OSS	135.2	0.9
SMOTE NCL	157.6	1.3
RUSBoost	1001.9	6.5
SMOTEBoost	1402.7	9.3
SMOTEBagging	1474.3	10.3

Methods	Timing Everything (min) Median	Timing Final Model (min) Median
LDA	6.1	0.5
LR	6.4	0.5
NSC	6.5	0.5
CART	7.6	0.6
BAGGING	9.8	0.9
C50	39.2	1.6
KNN	44.8	0.5
LR_regularization	51.1	0.6
SVM_LINEAR	180.8	4.2
RF	292.4	2.0
NN	297.0	1.0
NB	319.8	0.8
C45	413.5	0.6
ADABOOST	451.8	11.8
GBM	815.5	2.4
SVM_RADIAL	1562.2	3.6

✓ Model Analysis

- We analyze each false-negative case found in the confusion matrices of the best-classifiers using the

781 (78 positives and 703 negatives) data test;

CONSERVATIVE MODEL (BY NPV) - NB, RF, and LR regularized

RF (downsampling)				
Sens	Spec	PPV	NPV	AUC
0.92	0.39	0.14	0.98	0.75
Reference				
		Pos	Neg	
Dradiatad	Pos	72	429	
Predicted	Neg	6	274	

✓ Reduce 280 tests (36%), but 6 patients non-isolated;

MODERATE MODEL (BY MCC) - NN and SVM Radial

NN (SMOTE+Tomek)						
Sens	Spec	PPV	NPV	MCC		
0.76	0.64	0.19	0.96	0.24		
	Reference					
		Pos	Neg			
Prodicted	Pos	59	251	-		
	Neg	19	452	-		

✓ Reduce 471 tests (64%), but 19 patients non-isolated;

Differences between the models

Model		Acquisition risk
Туре	Discrimination/Classification	Prediction
Study Dopulation	All Sereeninge Teete	Screening Tests and Clinical
Study Population	All Screenings rests	Exams
Unit of Analysis	Test	Patient
Main Objective	To detect those who do NOT	To find the probability of each
Main Objective	need testing	patient to acquire the bacteria
Sampling mothod	Different Balancing	Matched Case control Study
Sampling method	Strategies	Matched Case-control Study
Hyperparameter Tuning Metric	AUC	Brier score
Evaluation Metric	MCC and NPV	Brier score
Interpretation	Error analysis (confusion	Calibration Balt
Interpretation	matrix)	Calibration Beit
Comparison of the techniques'	Vac	No
performances	165	INO
Computational Time Analysis	Yes	No
Analysis of the difference between	Ne	Voc
hospitals	NO	165
Importance Factors	No	Yes
Association Rules Mining	No	Yes

✓ Setting and study population

Hospital	# Tests	# Negative Tests	# Positive Tests	# Patients
A	404	341	63	214
В	1,039	971	68	469
С	1,540	1,452	88	611
D	3,849	3,616	233	1,658
E	1,157	1,082	75	652
All	7,989	7,462	527	3,604

- Unit of analysis \rightarrow Patient;
- A matched case-control design by the hospital and admission date (3:1);

✓ Database Preparation

✓ Model building and evaluation

✓ Model Building and Evaluation

- General Model

- NSC is the best model to estimate CR-GNB acquisition risk;
- NSC, GBM, CART, LR, LR regularized, and LDA are calibrated models, suitable for prediction;
- NB, Bagging, and RF overestimate the colonization for medium and high-risk patients and underestimates low-risk patients;
- The NB is out almost the whole diagonal line and presented the worst Brier score.

	Brier score			Confidence level (80%)		
Methods		MCC	p-value	Under the bisector	Over the bisector	
NSC	0.152	0.327	V	V	v	
GBM	0.159	0.312	V	V	V	
CART	0.167	0.379	V	V	V	
LR	0.163	0.338	V	V	V	
LR regularized	0.155	0.318	V	V	X	
LDA	0.159	0.327	V	V	V	
SVM RADIAL	0.171	0.109	X	V	X	
C45	0.165	0.383	X	X	X	
NN	0.160	0.335	X	V	X	
ADABOOST	0.172	0.295	X	X	V	
C50	0.160	0.399	X	V	X	
kNN	0.173	0.296	X	V	X	
RF	0.176	0.326	X	X	X	
BAGGING	0.183	0.308	X	X	X	
SVM LINEAR	0.177	0.345	Χ	X	X	
NB	0.196	0.339	X	X	X	

- ✓ Model Building and Evaluation
 - General Model

NEAREST_SHRUNKEN_CENTROIDS

- No evidence of the lack of calibration emerges from the calibration belt;
- The model calibration on the development is
 acceptable (p-value = 0.440).

- ✓ Model Building and Evaluation
 - Model by hospital

<u>Objective</u>: To understand if the built general model can be used for all hospitals;

- There is not a significant difference between general and the five individual models by Brier scores;
 - T-test \rightarrow P-value = 1

We can use the general model for all hospitals without losing performance;

External Validation

• Our final risk model for the acquisition of CR-GNB is the NSC;

Hospital	# Patient	#Positive	#Negative	% Positive Tests	Brier Score	MCC
F	267	39	228	14.61%	0.128	0.261
G	357	34	323	9.52%	0.079	0.261
All hospitals - General Model (testing set)	413	105	308	Case-control study (3:1)	0.152	0.327

- The model does not classify well the non-acquisition of CR-GNB (MCC = 0.261) but can predict the probability of acquiring (Brier score = 0.128 and 0.079);
- The model is well-calibrated and acceptable to be introduced at Hospital G;
- Hospital F model overestimates the colonization of patients;

✓ Important of variables

• We identified the attribute importance by Information Gain;

Attribute Importance - All hospitals

- Duration and use of invasive devices, especially mechanical ventilation;
- Antibiotic groups;
- Admission Source and Admission Reason;
- Criticality indices such as Saps3;
- Length of stay before test.

✓ Association Rules

- We extracted a list of 157 association rules with predictive value "positive";
- Example:

#	Rules	Support	Confidence	Lift
1	{MVDURTOTAL=[4,57],VesDURTOTAL=[6,58],J01D=TRUE,Antibiotic=TRUE,VESICAL=YES} => {RESULT=pos}	0.100	0.575	2.257

If a patient is hospitalized with these conditions, this patient has a 57.5% probability of acquisition;

• All the conditions selected include some information about invasive dispositive use;

✓ Main Findings – Screening Model

- SMOTEBagging and UnderBagging approaches obtained better results than the data cleaning;
- The more straightforward linear techniques is not significantly different from the more complex classifiers;
- Screening models:
 - Conservative: Random forest \rightarrow the unnecessary test is avoided **39%** and **8%** of false-negatives.
 - Moderate: Neural Network \rightarrow the unnecessary test is avoided 64% and 24% of false-negatives.

✓ Main Findings – Risk Model

- NSC is the best model to estimate acquisition risk;
- Naïve Bayes technique has better discrimination power but the worst Brier score value;
- We can use the general model for all hospitals without losing performance;
- The variables related to the duration of the use of invasive devices, especially mechanical ventilation, are the most important;

Contributions

Literature

- A literature review on prediction in the healthcare context, focusing on multi-resistant bacteria acquisition;
- Evaluation of the different machine learning techniques and balancing strategies;

Methodological

- A framework about "how to conduct a machine learning analysis";
- Combination of feature selection and cluster techniques;
- An approach to screening modeling considering weekly tests and variables that consider actions that happened between one test and another;

Contributions

Applied

- Rules of strongly associated features that indicate that a patient is at risk of acquired CR-GNB;
- Two screening models: one more conservative and the other moderate;
- A risk model for the acquisition of CR-GNB;

✓ Limitations

- These results cannot be directly extrapolated to other healthcare institutions;
- Heterogeneous Gram-negative bacteria were analyzed collectively;
- We do not know precisely how the patient acquired the bacteria;
- Patients with the same conditions may have different types and timing of observations;
- Some records may be lost due to data imputation human errors.

✓ Future Researches

- To perform an external validation using the best screening model in new periods and hospitals;
- To develop time-series models considering variable changes over time;
- To compare the relationship of antibiotic use between the periods before and during the pandemic;
- To analyze the influence of acquisition for the patient's outcome within 30 days after a positive test using a survival model.

✓ Final Consideration

- Identifying patients who don't need a weekly culture test decreases hospital costs and laboratory waiting times;
- The models for predicting resistance can offer utility where rapid diagnostics are unavailable or resource impractical;
- Infection control policies can be established to control the spread of these bacteria;
- The framework on how to conduct a machine learning analysis and the code developed can be reusable and easily adaptable;

Publications

Articles in Scientific Journals

ANTUNES, B. B. P.; PERES, I. T.; BAIAO, F. A.; RANZANI, O. T.; BASTOS, L. S. L.; SILVA, A. A. B.; SOUZA, G. F. G.; MARCHESI, J. F.; DANTAS, L.F.; VARGAS, S. A.; MACAIRA, P.; HAMACHER, S.; BOZZA, F. A. . Progression of confirmed COVID-19 cases after the implementation of control measures. RBTI, v. 1, p. 12-22, 2020. (Cited by Scopus: 2)

PRADO, M. F.; ANTUNES, B. B. P.; BASTOS, L. S. L.; PERES, I. T.; SILVA, A. A. B.; DANTAS, L.F.; BAIAO, F. A.; MACAIRA, P.; HAMACHER, S.; BOZZA, F.A. Analysis of COVID-19 under-reporting in Brazil. RBTI, v. 00, p. 1-5, 2020. (Cited by Scopus: 4)

DANTAS, L.F.; DALMAS, B.; ANDRADE, R.M.; HAMACHER, S.; BOZZA, F.A. Predicting acquisition of carbapenem-resistant Gram-negative pathogens in intensive care units. JOURNAL OF HOSPITAL INFECTION, v. 103, p. 121-127, 2019. (Cited by Scopus: 4)

DANTAS, L. F.; MARCHESI, J. F.; PERES, I. T.; HAMACHER, S.; BOZZA, F. A.; QUINTANO NEIRA, R. A. Public hospitalizations for stroke in Brazil from 2009 to 2016. PLoS One, v. 14, p. e0213837, 2019. (Cited by Scopus: 3) DANTAS, L. F.; HAMACHER, S.; CYRINO OLIVEIRA, F. L.; BARBOSA, S. D. J.; VIEGAS, F. Predicting Patient No-show Behavior: a Study in a Bariatric Clinic. OBESITY SURGERY, v. 29, p. 40-47, 2018. (Cited by Scopus: 5) DANTAS, L. F.; FLECK, J. L.; CYRINO OLIVEIRA, F. L.; HAMACHER, S. No-shows in Appointment Scheduling - a Systematic Literature Review. HEALTH POLICY, v. 122, p. 412-421, 2018. (Cited by Scopus: 60)

Articles in R1 - Submitted

App-based symptom tracking to optimize SARS-CoV-2 testing strategy using machine learning \rightarrow PLoS One Socio-demographic factors associated with COVID-19 in-hospital mortality in Brazil \rightarrow Public Health

Complete works published in proceedings of conferences

ROCHA, N. G. ; DANTAS, L. F.; HAMACHER, S. ; FIORENCIO, L. ; MARIANI, B. L. ; SOUSA, P. H. . Mineração de Processos aplicada à logística de uma empresa de óleo e gás. In: SBPO, 2019, Limeira. LI Simpósio Brasileiro de Pesquisa Operacional, 2019.

MATTOS, L. M. ; DANTAS, L. F. ; OLIVEIRA, F. L. C. . Análise estatística dos fatores que afetam o no-show de pacientes em agendamentos clínicos. In: SBPO, 2017, Blumenau. XLIX Simpósio Brasileiro de Pesquisa Operacional, 2017.

CUNHA, V. A. M. C. ; DANTAS, L. F. ; BREMENKAMP, L. H. ; PESSOA, L. S. . Dimensionamento de mão de obra e roteamento através de um algoritmo VND: Estudo de caso em uma empresa de medição de consumo de energia. In: SBPO, 2017, Blumenau. XLIX Simpósio Brasileiro de Pesquisa Operacional, 2017.

DANTAS, L. F.; et al. Stairway to value: mining the loan application process. In: International Conference on Business Process Management, 2017, Barcelona. Stairway to value: mining the loan application process, 2017.

DANTAS, L. F.; OLIVEIRA, F. L. C.; PERES, I. T. . Simulação de Eventos Discretos com balanceamento de linha de produção: uma aplicação na manufatura. In: Simpósio Brasileiro de Pesquisa Operacional, 2016, Vitória. XLVIII Simpósio Brasileiro de Pesquisa Operacional - SBPO 2016, 2016.

PERES, I. T.; OLIVEIRA, F. L. C.; DANTAS, L. F.; PESSOA, L. S. . Simulação de políticas de agendamento de pacientes em serviços ambulatoriais: uma aplicação em um consultório de ortodontia. In: Simpósio Brasileiro de Pesquisa Operacional, 2016, Vitória. XLVIII Simpósio Brasileiro de Pesquisa Operacional - SBPO 2016, 2016.

BREMENKAMP, L. H. ; MONTEIRO, N. J. ; REPOLHO, H. M. V. ; CUNHA, V. A. M. C. ; DANTAS, L. F. . Aplicação da heurística de Clarke & Wright para um problema de roteirização de veículos homogêneos em uma distribuidora. In: ENEGEP, 2016, João Pessoa. Aplicação da heurística de Clarke & Wright para um problema de roteirização de veículos homogêneos em uma distribuidora, 2016.

CUNHA, V. A. M. C. ; DANTAS, L. F. ; REPOLHO, H. M. V. ; PESSOA, L. S. . Solução heurística para o problema de dimensionamento de mão de obra e roteirização através de um algoritmo Clarke e Wright. In: ANPET, 2016, Rio de Janeiro. ANPET, 2016.

Awards and Titles

2017 Best report Academic Category, BPI Challenge, Business Process Intelligence Workshop.

Expanded Summary published in proceedings of conferences

PERES, I. T.; MARQUESI, J.; DANTAS, L. F.; HAMACHER, S. Incidence and mortality of public hospitalizations for stroke in Brazil between 2009 and 2015. In: INFORMS Healthcare, 2017, Roterdã. INFORMS Healthcare, 2017.

THANK YOU!!

LEILA FIGUEIREDO DANTAS leilaffdantas@gmail.com