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Abstract

Souza Neri, Guilherme; Caarls, W. (Advisor); Leite, Antonio
C. (Co-Advisor). Sliding Mode Control for Single- and Multi-
Legged Robots. Rio de Janeiro, 2020. 129p. Dissertação de mes-
trado – Departamento de Engenharia Elétrica, Pontifícia Universi-
dade Católica do Rio de Janeiro.

In the last years, legged mobile robots have increased the interest of
the robotics community because such mechanisms have higher versatility
compared to wheeled and aerial mobile robots. These characteristics make
robot with legs a viable solution for rescue and monitoring operations
in irregular terrains and difficult to access locations. Although single-
legged or multi-legged mechanisms can transverse any terrain, some of their
disadvantages are higher complexity in modelling and control design and
higher power consumption. In this work, the author considers the problem
of modelling and robust control design for a class of legged mobile robots
using the sliding mode control approach. A comparative study between a
planning algorithm based on Fourier techniques and sliding mode controllers
is presented for the stabilization problem of a hopping robot in flight
phase. The author also proposes the stabilization of the posture of multi-
legged mobile robots such as, hexapod and biped robot, using two different
control approaches, the Cartesian regulation control and the sliding mode
control. The Lyapunov stability theory is used to demonstrate the stability
properties of the closed-loop control systems. Numerical simulations in
MATLAB simulation software and computer simulations in Gazebo, an
open-source 3D robotic simulator, are included to illustrate the performance
and feasibility of the propose methodology.

Keywords
Legged Mobile Robots Sliding Mode Control Hoppping Robot

Hexapod Robot Stability Analysis
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Resumo

Souza Neri, Guilherme; Caarls, W.; Leite, Antonio C.. Controle
por Modos Deslizantes de Robôs com Uma e Múltiplas
Pernas. Rio de Janeiro, 2020. 129p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

Nos últimos anos, os robôs móveis com pernas têm despertado o
interesse da comunidade robótica, pois tais mecanismos apresentam maior
versatilidade em relação aos robôs móveis de rodas e aéreos. Neste trabalho,
o autor considera o problema de modelagem e projeto de controle robusto
para uma classe de robôs móveis com pernas usando a abordagem de
controle por modos deslizantes. Um estudo comparativo entre um algoritmo
de planejamento baseado em técnicas de Fourier e controladores via modo
deslizante é apresentado para o problema de estabilização de um robô móvel
saltitante na fase de vôo. O autor também propõe a estabilização da postura
de robôs móveis multipernas, como hexapod e robô bípede, utilizando duas
abordagens de controle diferentes, o controle de regulação Cartesiana e o
controle via modos deslizantes. A teoria de estabilidade de Lyapunov é usada
para demonstrar as propriedades de estabilidade dos sistemas de controle em
malha-fechada. Simulações numéricas em ambiente de simulação MATLAB
e simulações computacionais em Gazebo, um simulador robótico 3D de
código aberto, são incluídas para ilustrar o desempenho e a viabilidade
da metodologia proposta.

Palavras-chave
Robôs Móveis com Pernas; Controle por Modo Deslizante; Robô

Saltitante Robô Multi-pernas Analise de Estabilidade
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1
Introduction

Robotics is a field of engineering that is gaining a lot of prominence
today, with the growing demand of several sectors such as industrial, medical
and agricultural for autonomy, safety and sustainability. In addition, along
with technological advances over the years, these sectors are looking for ways
to modernize in order to reduce costs, increase production and improve EHS
conditions [5–7].One of the advantages of using robots is their application
in regions where human presence for long periods is not viable, such as
radioactive areas, locations with adverse climatic conditions and in space
exploration [8,9]. Currently, there is also a tendency to use robots in hospitals
to perform minimally invasive surgeries, [10] and smart farming systems to
carry out precision agriculture tasks, wherein efficiency and accuracy are
essential requirements [11,12].

These technological advances and the demand for the use of robots
have also led to the development of several control techniques for robot
manipulators, such as visual servoing [13] and force control [14]. Another
example is the use of robust control algorithms for wheeled robots and artificial
intelligence, such as neural networks and reinforcement learning, for legged
robots [15–17]. In this context, one of the research topics that has increased
the interest of academic community in the area of field robotics is the use of
humanoids and bio-inspired legged robots with four, six or eight legs, to carry
out search and rescue missions in natural or man-made disaster areas [18,19].
These complex mechanisms employ advanced control strategies and artificial
intelligence algorithms to reproduce the locomotion abilities of humans and
animals to stand, balance, walk, jump and run, enabling their use on uneven,
slippery and obstacle-prone terrains [20]. There is no necessity for legged mobile
robots to follow the desired leg trajectory. Sometimes the leg can not follow
the desired leg trajectory because of, risk of collision between the legs and
obstacles in the terrain. In this situation, an error in the leg trajectory avoids
the collision with obstacles. The equilibrium condition of biped robots is that
the ZMP is within the support polygon, and in the case of quadruped and
hexapod robots, the CoM must be within the support polygon. In both cases,
even if the legs do not follow the desired leg trajectories, if the equilibrium
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Chapter 1. Introduction 17

conditions are satisfied, the robot will continue to move. This characteristic
presented is an advantage that would justify its use in complex terrains.

1.1
Motivation

Before the invention of digital computers, the development of machines
with legs was carried out employing electromechanical systems without any
type of closed-loop control. This situation changed in the 1960s with the
development of a digitally controlled robot that culminated in the late 1970s
and during the 1980s in advances in the construction of these types of robots.
In recent years has been an increase in legged mobile robots researches it occurs
because of their potential to accomplish exploration task in harsh environments
and difficult-to-access locations, which human beings and wheeled mobile
robots are not capable access [21–23]. Their capably to avoid complex obstacles
and to adapt the gait allow the legged robot execute task such as up the stairs,
walking in slope terrains are the advantages over wheeled mobile robots.

In this context there are many types of a legged mobile robot being used
for research, the hopping robots such as Kenken [24], the Mowgli, a bipedal
and jumping robot [25], the Handle from Boston Dynamics [26], the Bionic
kangaroo from Festo [27] and, the two-wheeled jumping robot Ascento [28].
In the biped case, we have humanoids such as Darwin [29] and Walkyrie [30].
In the quadruped robot, we have HyQ [31] robot, the mini cheetah [32] and
ANYmal robot [33]. The hexapod such as PhantomX is a well-known example
of a hexapod.
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1.1(a): The Kenken hopping robot [24] 1.1(b): Kangaroo robot from Festo [27]

1.1(c): The DawinOP2

1.1(d): Walkyrie humanoid robot [30]

Figure 1.1: Legged mobile robots
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1.2(a): The MIT mini Cheetah robot
[32]

1.2(b): The hexapod weaver [34]

1.2(c): Handle from Boston Dynam-
ics [26]

1.2(d): The ANYmal robot [33]

Figure 1.2: Legged mobile robots.

The USA government has been interesting about legged mobile robots
to use in military applications, the American government finance researches in
the legged mobile robots, the DARPA had a program dedicated to developing
semi-autonomous legged mobile robots. The Rhex is a hexapod created by five
universities (The University of Michigan, McGill University, Carnegie Mellon
University, University of California, Princeton University, Cornell University
and the University of Lahore) financed by DARPA. The Bigdog is an example
of a quadruped robot financed by DARPA. It was created in 2005 by the Boston
Dynamics with Foster-Miller, the NASA Jet Propulsion Laboratory, and the
Harvard University Concord Field Station. The Bigdog is a pack-mule to
serve to accompany soldiers in rough terrain where the vehicle can not access.
Japan has prominence in a humanoid robot research an example is the Asimo
produced by Honda the name is a tribute to the Russian writer Isaac Asimov.
The Qrio created by Sony and present in the RoboCup in 2004 has another
example of Japanese humanoid robot. The Actroid is a Japanese humanoid
robot created by the Osaka University which has the human appearance and
mimics functions such as speaking, blinking and breathing.
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1.3(a): Big dog robot 1.3(b): The Rhex hexapod

1.3(c): The Asimo robot created
by Honda

1.3(d): The Qrio created by Sony

1.3(e): The Actroid

Figure 1.3: Legged mobile robots and applications (source: Wikipedia)
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Chapter 1. Introduction 21

Legged mobile robots is a research theme which has been widely inves-
tigated in the last year and resulted in many publications in highly ranked
robotics conferences such as ICRA, IROS and CASE. For instance, a full day
workshop on legged robots was held in 2019 ICRA (Montreal, Canada) named
Towards Real-World Deployment of Legged Robots, showing the scientific rel-
evance of the such mechanisms. The following robot will run demos during the
workshop: Spot Mini (Boston Dynamics), Laikago (Unitree), Mini Cheetah
(MIT), ANYmal (ANYbotics) and GR Vision (Ghost Robotics).

1.4(a): Spot Mini from
Boston Dynamics

1.4(b): Laikago from Uni-
tree

1.4(c): Ghost robot GR
Vision

1.4(d): MIT mini cheetah
Unitree

1.4(e): ANY robotics
ANYmal robot

Figure 1.4: Legged mobile robots [1]
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1.2
Review of the State of the Art

Although the legged mobile robots have advantages, there are many
challenges such as balance and design gait robot. The number of legs influence
in the balance in the biped case, the stability condition is satisfied if the
zero moment point is on the support polygon [35]. In the hexapod case, most
stability criteria use some variation of Conservative Support Polygon [2]. In
this context, another chalenge is to design a sequence of leg for each situation,
terrain and task desired. In this context, legged robots are currently a topic of
great interest in robotics, not only to reconcile balance and coordination of the
legs but also to control the position and orientation of these robots in space
and execute a task such as up the stairs, jumping the obstacles.

In Higa et al. [36], the authors propose to analyze how the articular
position of the robot’s leg affects the passivity condition and shows the
importance of this aspect in the stability of the impedance controller. By
analyzing the linear model of a robotic leg using its Nyquist graph and the
Z width, the author can determine whether the joint configuration within the
workspace is suitable for interacting with the environment or with people. In
He et al. [37], the authors prose to use a backstepping control in a hopping
robot in-flight phase, considering the non-holonomy in the joints configurations
the authors transform the system in the chained form extended and apply the
joint position control. The disadvantage is to use the extended chained form
being the sliding mode control allow the same task using a simple chained
form.

In Buchananet al. [34], the authors present a deformable bounding box
- which is an abstraction of a robot model - combined with mapping and
planning strategies that enable the robot to change its shape and navigate in
confined spaces. According to the paper, the mapping is achieved by using the
robot-centric-multi-elevation maps generated with distance sensors carried by
the robot. Finally, the authors propose the use of the CHOMP, an optimization
algorithm which creates smooth trajectories while avoiding obstacles. The
method is validated in the simulation and implemented in the hexapod weaver.

In Wellhausenet al. [33] proposes to collect data from robot interact
terrain and associated with images. A neural network is trained using the
sparse data acquired in teleoperation experiments the objective is to generate
a prediction the terrain propriety. According to the paper, the training data
is generated, projecting the foothold position from the robot trajectory into
on-board camera images. The informations about the terrain are used in the
autonomous navigation and the validation in the ANYmal robot.
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In [38] the concepts about legged mobile robots, uses joints and spatial
coordinates to represent the robot and describe the dynamic model of the
robot. The dynamic model of the robot has the actuated part, represented
by the joint coordinates and the underacted part, represented by the spatial
coordinates. The book analyzes walking stability using forces and moments
and a mobile leg robot and introduces the pressure centre in context.

In Caronet al. [39] proposes to control a humanoid robot to climb a
stair, the humanoid robot is approximate a linear inverted pendulum and
implemented two controllers: the DCM (Divergent Component of Motion)
feedback control which seconds the author this control computes the desired
wench to compensate the deviation walking. This part has the following inputs:
the desired DCM and ZMP, the desired contacts forces and CoM, the estimated
DCM and ZMP and the output controller is the distributed foot wrench. The
second control is the whole-body admittance control this controller, allows
the controlled-position robot to generate the desired contact wrench. The
whole-body admittance control implements the feedback force control, the
DCM output and the measured foot wrench and the desired kinematic target
generates the robot’s trajectory. The author validates the control implemented
in an HRP4 humanoid robot.

In Klemm et al., 2019 [28] the authors introduce the Ascent, a wheeled
biped robot and assumes the following hypothesis: the link dynamics is
neglected, there is no friction or hysteresis at the joints, the friction between the
wheel and the floor is simplified, the motor dynamics are neglected, the time
delay is not modeled, the links and the bodies are rigid. The authors consider a
fixed leg geometric configuration and, model the Ascent robot as a two-wheeled
inverted pendulum. Using the Lagrangean formulation the authors find the
dynamic equation that describes the robot. The control strategy proposed in
the paper for the Stabilizing Control is the LQR and the jump controller is
the heuristic feed-forward controller based in the human jumping. The PID
controller is used to control the leg extraction and the joint position in the
flight phase. The author validates the controllers in simulation in GAZEBO
and implements the controller in the real Ascento robot.

In Buhijaraet al. [40], the authors present the difficulties to analyse the
legged mobile robots, them present, the dynamic equation of legged mobile
robot and split into two parts an actuated part and underactuated part. To deal
with the locomotion problem the authors proposed the Alternating Direction
Method of Multipliers, as claimed by the paper, the idea behind the method
is to exploit the splitting between cost terms recursively, allowing to solver
a problem simpler, than the original one. The algorithm presented assumes
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the dependence on the upstream content planner to generate feasible contact
planning. The algorithm is validated in the HRP2 humanoid.

In Rekleitis et al. [2], proposes to obtain the optimal leg sequence
considering the external forces and the inclined terrain, to solve the problem
the authors present the Leg Sequence Selection Algorithm, this algorithm has
the following inputs: the external forces and the sloping terrain, the desired
locomotion mode and the gait. The algorithm output is the best leg sequence
if there is, the Leg Sequence Algorithm reconfigure the robot pose to ensure
the stability and try again. To validate the algorithm, it implemented in the
hexapod Hexaterra and Phantomx.

In Villarrealet al. [31] proposes a dynamic foothold using the visual
feedback. The method uses to adjust the foot landing position using the only-
board computers and sensors. A convolutional neural network is used to adapt
the land position, the validation of the proposed method using simulations and
implementation of the method in the HyQ quadruped robot.

In Semini et al. [41], the author wants to obtain quadruped robots using
pneumatic actuators that have robust self-correction and aspects related to
manipulation. They give an overview of the design of two new quadruped
robots with hydraulic actuators: the HyQ2Max, an improved version of HyQ
and, the centaur-style robot that combines the mobility platform of the
HyQ2Max with a new hydraulic manipulator arm. The authors focus on the
concept of the design of the mechanism of a new compact hydraulic arm.

In Chen et al. [42] presents the challenges of locomotion in hostile
environments such as rugged locations and with many rocks, thus justifying
the motivation for using robots with legs instead of robots with wheels. The
authors propose to control the posture of a six-legged robot using a nonsingular
fast terminal sliding mode (NFTSM). NFTSM is a control technique that
uses a continuous sliding surface based on position error. The authors prove
the stability and robustness using Lyapunov theory, verification the control
technique through simulations and its validation through experiments on the
quadrupedal robot ZJU Walker.

In Gehring et al. [43] the author proposes to control a quadruped robot.
Through a model analogous to that of the inverted pendulum, the desired
locations for the position of the legs are discovered and through a PD controller,
it is used to control the movement of the legs and forces in order to control
the position and orientation of the body. There is an external mesh capable
of controlling horizontal, vertical and angular speeds, with this, the author
simulates the robustness of the control when walking in complex terrain.
Control validation takes place through experiments on a StarlETH robot
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(Springy Tetrapod with Articulated Robotic Legs).
In Sakaino et al. [44], the authors have developed an SMC approach

based on position control for a hopping robot, ensuring contact stability and
motion accuracy even in the presence of high impact forces. The proposed
solution leads to a straightforward controller design and an easier tuning of
the feedback gains, in contrast to the variable compliance control.

In Liou et al. [45] the authors have designed a single-legged hopping robot
with a pneumatic cylinder. Based on the energy analysis, the hopping cycle and
height for the vertical hopping are evaluated. Then, a second-order SMC-based
approach is used to control the mass flow rate for upper and lower chambers
of the cylinder, regulating the hopping height under matched disturbances.

In Thomas et al. [46] the author proposes to control non-holonomic
systems in chain form using Super-Twisting Algorithm combined with Finite-
Time Control. The author’s idea is to divide the system into two subsystems
and control each subsystem separately and then, by means of a switch, a
change in the control law takes place. The car only performed the stability
test, thus lacking detailed proof of the robustness to disturbances or noise.
Also, a curiosity is that the relationship between switching time T and system
stability has not been rigorously tested. The verification of the controller takes
place through numerical simulations with a differential drive.

In Murray et al. [47] the author proposes the use of sinusoidal to perform
the control of non-holonomic systems, one of the examples presented by the
author is a hopping robot with a prismatic joint in the flight phase. The
advantage of this method is its simplicity but, its limitation is the amplitude
of the input signal since the model of the robot has high order terms that
generally harmonics that deteriorate the functioning of the robot.The author
varificate the method by using numerical simulations.

In Abbasi et al. [48] the author uses super-twisting to control non-
holonomic systems. The method consists of dividing the system into two sub-
systems and then carrying out the control action of each subsystem separately
using two discontinuous control laws. The author performs numerical simula-
tions with several non-holonomic systems such as differential drive and bicy-
cles, for instance.
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1.3
Methodology

First, the hopping robot model with a prismatic joint will be developed.
Then we will use planning to direct the robot joints to the desired position.
We will simulate the Matlab for the simplified model and the complete model
and, these results will be commented on and analysed. Then, mathematical
will be developed to prove the stability and robustness of three robust control
algorithms: First-Order SMC, STA + SMC and STA + FTA. The numerical
simulations should be performed in Matlab considering high order terms,
unmodeled dynamics and measurement noise. We will calculate and analyse the
errors metrics (RMSE) and control signals (MAD). We will adopt the same
methodology for an articulated hopping robot in the flight phase. Finally,
to finish the study of the hopping robot, the hopping robot model will be
developed in the stance phase. Then, two controllers will be proposed: the first
is the computed torque control and the second and the SMC with robustness.

After the study on the hopping robot, studies on hexapod robots will be
carried out. The first step will be developed, a cascade structure to control the
hexapod position and orientation.

Then, it will be designing the gait so that the robot can move around
considering the conditions of balance and speed of the robot.

Next, a robot approach as a differential drive will be proposed, then
two types of controllers for the robot, a Cartesian and another SMC, will be
designed. After the development of the controllers, graphical simulations will
be carried out in the Gazebo and comment and analyse the results.

1.4
Contribution

The contribution of this master’s thesis is control techniques for non-
holonomic systems. These two methods consist of a first-order slider control
without chattering. The second controller is the combination of a conventional
slider control with control by second-order sliding modes. For this, theorems
have been proposed that provide stability and robustness to drivers in the
shape of the chain. The nonholonomic system that will be used for a driver
analysis is a jumping robot in the flight phase. We propose to control the posi-
tion and orientation of a hexapod robot by using a differential drive approach
and the SMC.
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1.5
Goals and Objectives

The objectives of the thesis are to make a comparative study between
controls for a hopping robot in the flight phase.

Perform a comparison between classic control techniques such as com-
puted torque and SMC.

Control the position of a hexapod robot Phantomx using a Cartesian
controller and control the posture of the same robot using SMC.

1.6
Organization of the Thesis

The documentation of this Master thesis is organized according to the
following chapters:

– In chapter 2, the hopping robot model with a prismatic joint in the flight
phase will be presented and, we will use planning by Fourier techniques
for steering. Next, we propose a comparative study between robust
controllers for hopping robot control. Then, the same comparative study
is applied in an articulated hopping robot in the flight phase. Finally, we
will compare the computed torque and SMC for hopping robot control
in the stance phase and demonstrate the advantages and disadvantages
of the SMC controller.

– In Chapter 3, we will introduce a cascade control strategy for a hexapod
position and orientation. Then, we will use the differential drive approach
and propose the Cartesian controller for position control and the SMC for
position and orientation control. Then, we will simulate the controllers
in Gazebo and comments and analysis the results.

– In Chapter 4, the author’s general analysis of the chapters and the
presentation of future works and new challenges to be overcome in the
study of legged robots will be presented.

– In the Appendix, we will present the statistics on robots with legs,
authors and institutions that work with this type of robot, possible
applications in agriculture. It will also be presented basic concepts about
the theory of control by sliding modes implementations carried out in
ROS as nodes and topics used.
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2
Hopping Robot: Modelling and Control Design

A hopping robot consists of a simple one-legged robot that moves
through jumping. Its locomotion mode imitates animals such as kangaroo and,
the simplicity in the hopping robot model make it, a start point to study
the modelling, control design and motion planning of legged robot. In this
context, there are many types of hopping robots have been used for research,
for instance, the biologically-inspired robot based on the kangaroo walking
such as Kenken [24],the Mowgli, a bipedal and jumping robot [25], and the
Bionic Kangaroo robot from Festo [27].Another type of hopping robot widely
investigated is the robot with a prismatic joint on the leg such as the simplified
hopping robot [47] and the Ascent, a two-wheeled jumping robot [28].

The spring-loaded inverted pendulum (SLIP) shown in Fig. 2.1 has
emerged as a simple model for studying dynamic locomotion of single-legged
mobile robots. The leg consists of a massless spring connected to a body which
represents the centre of mass of the walking mechanism. In the stance phase,
the spring is compressed and decompressed describing a given trajectory and,
in the flight phase the gravity is the only acceleration acting in the body and,
the centre of mass describes a ballistic trajectory [49].

Figure 2.1: Representation of a Spring Loaded Inverted Pendulum.

The kinematic modelling of the hopping robot can be divided into two
stages: in the flight phase, the robot is flying and does not touch the ground;
in the stance phase, the robot is standing and in contact with the ground. In
the flight phase, all joint motions satisfy the angular momentum conservation
and, the system dynamics can be expressed in the chained form [47]. In the
stance phase, the contact force can be used to model the interaction between
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the robot and the ground and the Lagrange’s equations are used to describe
the system dynamics.

The challenge in the flight phase is to regulate the robot posture when
the mechanism touches the grounds to prevent its fall. On the other hand, in
the stance phase, the challenge is to ensure the robot balance and satisfactory
performance during the tracking of specific joints trajectories. In this context,
since legged mobile robots are inherently unstable systems, several control
strategies and artificial intelligence algorithms have been used to solve the
balance issues during locomotion.

The fuzzy logic control is a possible technique which to control the robot
in flight and stance phases [50] it has the advantages that is not necessary
information about the model, the disadvantages is the accuracy increase the
number of rules, for instance disadvantage is an exponential increase in the
number of rules as the accuracy of the controller increases. The artificial
intelligence such as neural network [51] makes possible ensure the hopping
robot desired trajectory, on the other hand, this technique have disadvantages
such as the weight adjust of the neural network and the data available.

In this chapter, we proposed to control planar hopping robot in-flight
phase using Sliding Mode Control and Super Twisting Algorithm with Finite-
Time Control and control the joint position of a hopping robot in stance phase
using robust control.

2.1
Modeling and Control Design of a Prismatic Hopping Robot

The hopping robot consists of a rigid body attached to an actuated leg
which can rotate and extend. The robot configuration is given by the triplet
q=[ψ L θ]T where ψ is the leg angle, L is the leg extension, and θ is the body
angle of the robot (Fig. 2.2). The moment of inertia of the body is denoted by
I and we assume that the leg mass m is concentrated at the foot. The upper
leg length is denoted by d with L being interpreted as a prismatic joint which
represents the extension of the leg past this point.

When the hopping robot is in the flight phase (e.g., free floating), the law
of conservation of angular momentum implies that moving the legs causes the
central body to rotate [47]. In the case that the angular momentum is zero,
such a conservation law can be interpreted as a nonholonomic constraint on
the hopping robot [47]. In this case, the conservation of the angular momentum
give us the following constraint equation:
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Figure 2.2: A simple hopping robot, its frames and configuration parameters.

N∑
i=1

dµi
dt

= I ω̇ = 0 , (2-1)

where ω̇∈R is the angular acceleration of the body, I is the moment of inertia
and µi∈R is the i-th angular momentum. Therefore, the angular momentum
of the hopping robot in flight phase can be given by:

I θ̇ +m(L+ d)2(θ̇ + ψ̇) = 0 . (2-2)

As in the hopping robot it is possible to command the leg angle and the leg
extension directly, from the kinematic control approach we can choose their
velocities as the system inputs. Then, we set ψ̇=u1 and L̇=u2 to obtain:

ψ̇ = u1 ,

L̇ = u2 , (2-3)

θ̇ = −m(L+ d)2

I +m(L+ d)2 u1 .

Notice that, from Eq. (2-3), the rotational dynamics of the body angle θ is
highly nonlinear and depends on the leg extension L. Then, to find a linear
approximation for θ̇, we can expand the right-hand side of the last term of
Eq. (2-3) using a Taylor series about L=L∗, obtain:

θ̇ = −kψψ̇ − ku (L− L∗)u1 + f(L) , (2-4)

with
kψ = m(L∗ + d)2

I +m(L∗ + d)2 , ku = 2m(L∗ + d)I
(I +m(L∗ + d)2)2 ,

and f(L) = O(L2)u1 in the Eq. (2-4) denotes the quadratic and high-order
terms in L, which can be neglected if L is close to L∗, the term O(L2) is a
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notation for high order term adopted in [47]. To transform the system in the
chained form we use the following relationship:

α = θ + kψ ψ . (2-5)

Here, without loss of generality, we assume that L∗=0. Therefore, the motion
dynamics of the hopping robot system expressed in the chained form is given
by:

ψ̇ = u1 .

L̇ = u2 . (2-6)

α̇ = −ku Lu1 + f(L) .

Notice that, Eq. (2-2) is a single non-holonomic constraint [47] expressed in
terms of the angular velocities ψ̇ and θ̇. Thus, the corresponding control
system in Eq. (2-6) has two inputs and three configuration variables minus
one constraint.

2.2
Planning Algorithm using Fourier Techniques

The hopping robot in the flight phase is a nonholonomic system described
by the equation Eq. (2-6), notice that the variable θ̇ difficult the analysis of
problem. A solution to simplify the analysis of problem is to represent θ̇ in a
Taylor series expansion and, neglect the high order terms which result in:

ψ̇ = u1 , (2-7)

L̇ = u2 , (2-8)

α̇ = −kuLu1 .

The equation Eq. (2-7) is in chained form, in [47] the authors, propose
an algorithm to deal with kind of system. The algorithm consists in steer ψ
and L to desired values. Then, the following sinusoids are used:

u1 = a1sin (ωt) , (2-9)

u2 = a2cos (ωt) . (2-10)

By choice, the period used is 1 second, and the last motion does not affect the
final values of variables ψ and L. Since L = (a2/2π) sin (ω t), the high order
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terms f(L) can be expanded in a Fourier series:

f

 a2

2πsin(2 π t)
 = β1 sin(2π t) + β1 sin(4π t) + ... (2-11)

Integrating α̇ over one period and noting that only the component in
fundamental frequency contributes to the net motion

α(1)− α(0) =
∫ 1

0
(β1 sin2(2 π t) + β1 sin2(4 π t) + ...)dt (2-12)

= 1
2a1β1 . (2-13)

where β1 is a function of a2, which can be solved numerically for values of a1

and a2 to achieve the net change in α.
Considering Eq 2-7, α can solver analytically, using the following expres-

sion:

α = α (0)− ku a1 a2

∫ 1

0
sin2 ωt dt , (2-14)

α = α (0)− πnku a1 a2

ω
. (2-15)

The equation Eq 2-14 allows calculating the angle α and hence θ, the
problem in the approximation is the harmonics are not considering.

2.2.1
Simulations and results

In this section is simulated the method proposed in [47], the objective
is to check where the method development fails. The parameters used in the
simulation are shown in table 2.1:

Table 2.1: Parameters simulations of hopping robot
Parameters Value Unit

Mass 1.0 kg
Momentum of Inertia 1.0 kgm2

Distance leg (d) 1.0 m
Initial leg angle (ψi) 0 rad
Desired leg angle (ψd) 0 rad
Initial body angle (θi) 0 rad
Desired body angle (θd) – rad
Initial leg length (Li) 0 m
Desired leg length (Ld) 0 m

a1 1 –
a2 1 –

Input Frequency (ω) 1 rad s−1
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In the first place, we check the standard deviation, the variance and the
mean for the angle θ do not consider the non-linearity in θ. We variate the
amplitudes a1 and a2 and, check the error in each situation the result are in
the table 2.2:

Table 2.2: Simulation results neglecting the harmonic effect
Amplitude a1 Amplitude a2 eθ

0.5 1.0 −2.585 10−5

0.6 1.2 −0.3712 10−5

0.8 1.5 −0.6201 10−5

1.0 1.0 −0.5168 10−5

1.2 0.5 −0.3101 10−5

0.7 0.4 −0.1447 10−5

0.3 0.5 −0.7752 10−5

1.2 1.5 −0.9302 10−5

1.5 1.0 −0.7752 10−5

0.4 0.4 −0.8268 10−5

Standard Deviation Mean Variance
7.1624 10−06 −7.1575 10−06 5.130 10−11

Analysing the table 2.3 notice that, the standard deviation is close to
zero, it means that the error does not disperse about the mean. The method
has limitations in the use because, the amplitude of ψ and L influence the
system behaviour, for the low amplitudes the non-linearity does not affect
much the performance and the approximation proposed to α can be used.

Using the non-linearity in the analyse the standard deviation is far to the
mean, it means that the approximation fails in this case, to low amplitudes
the error is close to zero because the harmonics are not much excited by the
control applied. The result can see the table 2.2.

Table 2.3: Simulation results considering the harmonic effect
Amplitude a1 Amplitude a2 eθ

0.5 1.0 −0.15551
0.6 1.2 −0.2228
0.8 1.5 −0.3699
1.0 1.0 −0.3102
1.2 0.5 −0.1873
0.7 0.4 −0.0875
0.3 0.5 −0.0468
1.2 1.5 −0.5548
1.5 1.0 −0.4623
0.4 0.4 −0.050

Standard Deviation Mean Variance
0.1767 −0.2434 0.0312
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Notice in Fig.2.4a-b and Fig.2.4a-b the state ψ and L does not change
at the end of the input signal cycle. The graphics in Fig. 2.3.c and Fig. 2.4.c
show the difference between the simplified model (neglect high order terms)
and complete model(considering the high order terms), in Fig.2.3.cθ assume
value close to desired. In Fig 2.4.c the error in θ increase, it is proved that the
method has limitations. In both cases, we consider the same control signal in
Fig . 2.5(a)(b) the control signal is bounded.
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Figure 2.3: Motion planing of hopping robot to approximate model:(a) Leg
Angle, (b) Leg Length, (c) Angle Body
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Figure 2.4: Motion planing of hopping robot to considering the high order
terms in the model: (a) Leg Angle, (b) Leg Length, (c) Angle Body
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Figure 2.5: Control Signal Proposed for the Hopping Robot:(a) Angular
velocity, u1, (b) Linear Velocity, u2
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2.2.2
Robust Control Design

Consider the stabilization problem of a hopping robot in a flight phase.
In this case, the control goal is to reorient the body of robot while its is in free
floating and bring the current leg rotation and extension (ψ,L) to a constants
desired final values, denoted by (ψd, Ld). Then, the control goal can be simply
described by:

ψ → ψd , eψ = ψ − ψd → 0 , (2-16)

L→ Ld , eL = L− Ld → 0 , (2-17)

where eψ ∈ R and eL ∈ R are respectively the errors in the leg rotation and
extension. Defining eα := α−αd where, αd is a know value and taking the first
time-derivative of such errors we obtain:

ėψ = u1 .

ėL = u2 . (2-18)

ėα = −ku eLu1 + f(L) .

where u1 ∈ R and u2 ∈ R are the velocity control signals to be designed. In
the next section, we derive three controllers for a one-legged hopping robot
in flight phase subject to unmatched perturbations. We use three algorithms:
Algorithm I (First-Order SMC), Algorithm II (STA+SMC) and Algorithm III
(STA+FTC).

2.2.3
Algorithm I: First-order SMC

Here the key idea is to design a robust control algorithm to steer the
full nonlinear system in the presence of external disturbances caused by the
quadratic and high order terms f(L, u1). Once we control the ψ and L states
directly, we first steer such states to their desired values by using the following
control laws:

u1 = −eψ + γ eL |s|p sgn(s) , (2-19.1)

u2 = −eL − γ eψ |s|p sgn(s) , (2-19.2)
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where p∈R is a constant parameter such that 0< p< 1, γ > 0 is the control
gain, and s∈R is the proposed sliding surface given by:

s = −2k−1
u eα − eψ eL , (2-20)

which ensures that we can steer α to its desired value. The sliding surface s
is designed based on studies on first-order SMC approach of non-holonomic
systems described in the chained form.

It is worth mentioning that motion planning algorithms, such as Fourier
techniques, could also be used for steering a class of controllable nonholonomic
systems, which can be represented by the canonical chained form. However,
when sinusoidal inputs are used for steering, the existence of any additional
nonlinearities in the structure of chained systems may cause perturbations
(e.g., zero frequency components) in their previous coordinates which can
lead to a performance degradation for regulation and tracking tasks. This
motivates us to design a robust control algorithm for stabilizing a class of
nonholonomic systems represented in the canonical chained form subject to
external disturbances. Then, we can state the following theorem to stabilish
the stability and robustness properties of the proposed first-order SMC-based
controller:

Teorema 2.1 Consider a nonholonomic system described by Eq. (2-18) and
the stabilizing control laws given by Eq. (2-19.1) and Eq. (2-19.2), with the
sliding surface defined by Eq. (2-20). Assume that the desired values (ψd, Ld)
and the perturbation term f(L, u1) are uniformly bounded. Then, the following
stability properties hold: (i) all signals of the overall closed-loop system are
bounded; (ii) limt→∞ eψ(t), eL(t) = 0; (iii) limt→∞ s(t) = 0 and, consequently,
limt→∞ eα(t)=0.

Prova. The asymptotic stability of the errors eψ and eL can be demonstrated
by using the following Lyapunov-like function: 2Vr(eψ, eL) = e2

ψ + e2
L, which is

only positive semi-definite at the origin, because it is zero in all configurations
such that eψ=eL=0, regardless of the value of the angle eα. Taking the time-
derivative of Vr, substituting Eq. (2-18) and using the control laws given by
Eq. (2-19.1) and Eq. (2-19.2) we have: V̇r(eψ, eL)=−(e2

ψ+e2
L)≤0, which is semi-

definite negative at the origin. This means that Vr ∈ L∞ and, consequently,
eψ∈L∞ and eL∈L∞. Therefore, the error state vector (eψ, eL) converges to a
manifold Ω={e∈R3 | eψ=eL=0}. Now, let us use the sliding mode control to
ensure that eα converges to zero. Then, taking the time-derivative of s from
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Eq. (2-20) as:

ṡ = −eLu1 + eψu2 + 2K−1
u f(L, u1) , (2-21)

and replacing Eq. (2-19.1) and Eq. (2-19.2) into Eq. (2-21) yields:

ṡ = −γ(e2
L + e2

ψ) |s|p sgn(s) + 2k−1
u f(L, u1) . (2-22)

The next step is to show that the sliding condition sṡ≤−β|s| holds, for some
β>0. Thus, we choose the following Lyapunov candidate function 2Vs(s)=s2,
and taking its time-derivative yields:

V̇s(s) = −γ(e2
L + e2

ψ) |s|p+1

− 2k−1
u O(L2) [ eψs− eL |s|p+1 ] . (2-23)

We have shown that eψ and eL converge to zero as f(L, u1) is a bounded
function. Then, we can conclude that the terms O(L2)eψ and O(L2)eL in
Eq. (2-23) vanish. Therefore, V̇s(s) becomes negative definite which implies
that V̇s, s ∈ L∞ and sliding condition holds. In this case, we conclude that
s→0 and, consequently, eα→0. �

2.2.4
Algorithm II: SMC + STA

Although conventional first-order SMC approaches can guarantee stabil-
ity and robustness properties under external disturbances, these controllers
are subject to chattering phenomenon which can deteriorate the performance
of the system response. However, our proposed first-order SMC approach is
capable of reducing or eliminating the vibration effects caused by non-ideal
switching. The high-frequency components can also be attenuated by using
the so-called Super-twisting algorithm (STA) approach [48,52], a second-order
sliding mode approach. Here, we consider the hierarchical control approach
designing two discontinuous control laws to firstly stabilize the errors eL and
eα, and secondly the error eψ. Then, we first design the discontinuous control
law u2 based on the first-order SMC approach as:

u2 =

 0 , t ≥ T ,

−λ−1(kueL−k1 |s|ρ sgn(s)) , T0 < t < T ,
(2-24)
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where k1>0 is the proportional gain and s∈R is the sliding surface given by:

s = −eα + λ eL , (2-25)

with λ∈R being the slope of the sliding surface.
Now, let us design the discontinuous control law u1 based on the STA

approach as:

u1 =

 −k2 |eψ|ρ sgn(eψ) + z , t ≥ T ,

1 , T0 < t < T ,
(2-26)

with ż = −k3 |eψ|ρ sgn(eψ), where k2 > 0 and k3 > 0 are the proportional
gains, ρ ∈ (0, 1/2] is a constant parameter, which attenuates the chattering
phenomena, T ∈R+ is the switching time, which is responsible to switch the
control laws, given by Eq. (2-24) and Eq. (2-26), and T0≥0 is the initial time.
It is worth noticing that, the switching time T can be chosen empirically
according to the value of maximum error norm for eα (around 0.08) and robot
flight time Tf (less than 2 s), defined after exhaustive numerical simulations.

Then, we can state the following theorem to stabilish the stability and
robustness properties of the proposed SMC plus STA based controller:

Teorema 2.2 Consider a nonholonomic system described by Eq. (2-18), the
stabilizing control laws given by Eq. (2-24) and (2-26) with the sliding surface
defined by Eq. (2-25). Assume that the desired values (ψd, Ld) and the pertur-
bation term f(L, u1) are uniformly bounded, and the switching time is T ≥ 0.
Then, the following stability properties hold: (i) all signals of the overall closed-
loop system are bounded; (ii) limt→T eL(t), limt→T eα(t)=0 and, consequently,
limt→T s(t)=0; (iii) limt→∞ eψ(t)=0.

Prova. The first step is to show that the error subsystem S1 : {eL, eα}
converges to zero. Thus, consider the following Lyapunov candidate function:
2V1(s) = s2. Computing its time-derivative, replacing the time-derivative of
the sliding surface given by Eq. (2-25) and using Eq. (2-18) yields: V̇1(s) =
s(kueLu1 − f(L, u1) + u2). Then, when T0 ≤ t ≤ T we have u1(t) = 1 and
substituting Eq. (2-24) into V̇1(s), we have:

V̇1(s) =s [−f(L, u1)− k1|s|ρ sgn(s) ] . (2-27)

Now, we must choose k1 such that V̇1(s) is negative semi-definite, ensuring the
sliding condition s ṡ≤−β|s| for some β > 0. Then, for k1≥ |f(L, u1)| implies
that s→ 0 and, hence, ėL =−kueL. Therefore, we conclude that eL→ 0 and,
consequently, eα→0.
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Now, the next step is to show the convergence of the error subsystem
S2 :{eψ} to zero, using a suitable Lyapunov-like function V2(eψ, z) given by:

V2(eψ, z) = k3
|eψ|ρ+1

ρ+ 1 + 1
2z

2 , (2-28)

Then, taking its time-derivative, we have:

V̇2(eψ, z) = k3 |eψ |ρ−1 ėψ sgn(eψ) + zż . (2-29)

When t ≥ T , we have u2(t) = 0 and the error subsystem S1 remains at its
equilibrium. Substituting Eq. (2-26) into Eq. (2-29) yields:

V̇2(eψ, z) = −k2 k3 |eψ|2ρ . (2-30)

Therefore, V̇2(eψ, z) is negative semi-definite, which implies that eψ, z ∈ L∞
and, consequently, that eψ→0 and z→0. �

2.2.5
Algorithm III: STA + FTC

In this section, we develop a robust control algorithm based on a suitable
combination of STA approach and FTC technique for steering the hopping
robot in its flight phase under unmatched perturbations. The control design is
analogous to that one introduced in Thomas et al. [46] for posture stabilization
of a unicycle mobile robot. Here, we consider the hierarchical control approach
designing two discontinuous control laws to firstly stabilize the error eψ, and
secondly the errors eL and eα. Then, we first design the discontinuous control
law u1 based on the STA approach as:

u1 =

 −k4|eψ|ρsgn(eψ) + z , t ≥ T ,

1 , T0 < t < T ,
(2-31)

with ż=−k5 sgn(eψ), where k4>0 and k5>0 are the proportional gains. Now,
let us design the discontinuous control law u2 based on the FTC technique as:

u2 =

 0 , t ≥ T ,

ku k6|eα|α1 sgn(eα) + κ , T0 < t < T ,
(2-32)

with κ=−k7 |eL|α2 sgn(eL), where k6>0 and k7>0 are the proportional gains,
and α1, α2 ∈ (0, 1/2] are constant parameters that attenuate the chattering
phenomena. Then, we can state the following theorem to establish the stability
and robustness properties of the proposed STA plus FTC based controller:

DBD
PUC-Rio - Certificação Digital Nº 1821110/CA



Chapter 2. Hopping Robot: Modelling and Control Design 42

Teorema 2.3 Consider the nonholonomic system described by Eq. (2-18),
the stabilizing control laws given by Eq. (2-31) and Eq. (2-32). Assume that
the desired values (ψd, Ld) and the high order terms f(L, u1) are uniformly
bounded, and the switching time is T ≥ 0. Then, the following stability
properties hold: (i) all signals of the overall closed-loop system are bounded;
(ii) limt→∞ eψ(t); (iii) limt→T eL(t)=0 and, consequently, limt→T eα(t)=0.

Prova. The first step is to show that the error subsystem S1 :{eL, eα} converges
to zero. Thus, consider the following Lyapunov candidate function:

V1(eL, eα) = k6
|eα|α1+1

α1 + 1 + 1
2e

2
L . (2-33)

Then, taking its time-derivative, we have:

V̇1(eL, eα) = k6 |eα|α1 ėα sgn(eα) + eL ėL . (2-34)

Then, when T0 ≤ t ≤ T we have u1(t) = 1, and substituting Eq. (2-32)
into Eq. (2-34), we have: V̇2(eL, eα) =−k7 |eL|α2+1 + k6 |eα|α1 sgn(eα) f(L, u1).
Notice that, the second term in the left-hand side of V̇1 has indefinite sign.
Then, we can show that the error subsystem S1 converges to zero only
without the perturbation term f(L, u1). Indeed, as shown in [53], V̇1 is a
weak Lyapunov function and finite time convergence can be proven only
by using a generalization of LaSalle’s invariance principle for discontinous
systems. Moreover, it is not possible to demonstrate robustness properties,
as shown in [46]. However, as proven in [53], the following Lyapunov function
V1(ζ) = ζTPζ where ζ = [ |eα|1/2 sgn(eα) eL ]T with P = PT > 0 can be used
to shown that eL→ 0 and eα→ 0 in finite time. This demonstration will be
omitted here for the sake of space-saving. Now, the next step is to show that
the error subsystem S2 : {eψ} converges to zero. Thus, consider the following
Lyapunov candidate function:

V2(eψ, z) = k5|eψ|+
1
2z

2 . (2-35)

Then, taking its time-derivative, we have:

V̇2(eψ, z) = k5 ėψ sgn(eψ) + z ż . (2-36)

When t≥0, we have u2(t)=0 and the subsystem S1 remains at its equilibrium.
Substituting Eq. (2-31) into Eq. (2-36) give us

V̇2(eψ, z) = −k4 k5 |eψ|ρ .
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Therefore, V̇2(eψ, z) is negative semi-definite, which implies that eψ, z ∈ L∞
and, consequently, that eψ→0 and z→0. �

2.3
Numerical Simulations

In this section, we present a comparative study among the proposed
robust controllers for stabilizing the single-legged hopping robot during its
flight phase in the presence of high order terms, unmodeled dynamics and
measurement noise. The robot parameters used in the numerical simulations
are shown in Table 2.4:

Table 2.4: Hopping robot parameters for numerical simulation.
Parameters Value Unit
Mass, m 1.0 Kg
Moment of inertia, I 1.0 kg m2

Upper leg length, d 1.0 m
Initial leg angle, ψ0 π/4 rad
Desired leg angle, ψd π/3 rad
Initial body angle, θ0 π/5 rad
Desired body angle, θd −1.837 rad
Initial leg length, L0 0.0 m
Desired leg length, Ld 0.6 m
Minimum leg length, Lmin 0.0 m
Maximum leg length, Lmax 1.7 m
Flight phase duration, Tf 2.0 s

The numerical simulations were implemented using ad-hoc developed
Matlab scripts and functions (R2019b), running on the Windows 10 Enterprise,
64-bit OS using a Intel(R) Core(TM) i5-8250U CPU @ 1.6GHz, 8GB DDR4
RAM. For all case studies, we use the Euler integration method with a sampling
rate of h=10−3 s and a simulation time of Ts=4 s.

2.3.1
Case I: High-order Terms

In this simulation, the following parameters were chosen for each algo-
rithm: (i) Algorithm I, first-order SMC: ku = 1.7, γ = 11.0 and p = 0.5; (ii)
Algorithm II, SMC + STA: k1 = 15.0, k2 = k3 = 25.0, ρ = 0.5, β = 10.0 and
T = 1.6 s; (iii) Algorithm III, STA + FTC: k4 = 15.5, k5 = 10.5, k6 = 10.5,
k7 =5.5, ρ=0.5, α1 =0.5, α2 =0.5 and T =1.65 s.

The plots depicted in Fig. 2.6 and Fig. 2.7 show the behavior over time for
the robot states and control signals, under the influence of high-order terms.

DBD
PUC-Rio - Certificação Digital Nº 1821110/CA



Chapter 2. Hopping Robot: Modelling and Control Design 44

0 1 2 3

-2

0

2

ALG I

ALG II

ALG III

0 1 2 3

-2

0

2

ALG I

ALG II

ALG III

0 1 2 3

-2

0

2

ALG I

ALG II

ALG III

0 1 2 3

-2

0

2

ALG I

ALG II

ALG III

Figure 2.6: Case I, state variables under the effect of high-order terms: (a) leg
angle, ψ; (b) leg angle error, eψ; (c) leg length, L; (d) leg length error, eL.
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Figure 2.7: Case I, state variables and inputs under the effect of high-order
terms: (a) body angle, θ; (b) body angle error, eθ; (c)-(d) control signals, u1
and u2.
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We can observe in Fig. 2.6(a) that the error eψ goes to zero for all algorithms.
On the other hand, the errors eL and eθ are driven to zero only for Algorithms
I and II, as depicted in Fig. 2.6(b) and Fig. 2.7(b) respectively. Notice that,
Algorithm III is only capable of leading the errors eL and eθ to a small residual
set, due to its weak disturbance rejection characteristics in a short period of
time.

We can also observe that the effect of high-order terms in the robot
model is suppressed in Algorithms I and II since all error states, in Fig. 2.6(b)-
(d) and Fig. 2.7(b), converge to zero in less than 2 s. From Fig. 2.7(c)-(d), it
is possible to see that the control signals u1 and u2 remain bounded, despite
the occurrence of small oscillations in Algorithm I, and the peak due to the
switching of control laws in Algorithms II and III respectively. The effect of
the switching time T for the convergence of the errors is more evident in the
control signal u1, for Algorithms II and III, as shown in Fig. 2.7(c).

2.3.2
Case II: Unmodeled Dynamics

In this simulation, the following parameters were chosen for each algo-
rithm: (i) Algorithm I, first-order SMC: ku = 2.5, γ = 3.45 and p = 0.5; (ii)
Algorithm II, SMC + STA: k1 = 8.0, k2 = 1.6, k3 = 5.6, ρ= 0.5, β = 5.0 and
T = 1.4 s; (iii) Algorithm III, STA + FTC: k4 = 15.5, k5 = 10.5, k6 = 10.5,
k7 = 5.5, ρ= 0.5, α1 = 0.5, α2 = 0.5 and T = 1.65 s. The unmodeled dynamics
was implemented using the following transfer function: H(s)=(c/λ)[1/(s+ω)],
where c= 1 is the gain constant, ω= 1/λ is the cutoff frequency with λ= 0.1
and ω=10 rad s−1.

The plots depicted in Fig. 2.8 and Fig. 2.9 show the behavior over time
for the robot states and control signals, under the influence of unmodeled
dynamics. We can observe in Fig. 2.8(a) that the error eψ goes to zero only
for Algorithms I and II, in contrast to the sustained oscillations obtained by
using Algorithm III. On the other hand, the error eL converges to zero for all
algorithms despite of its poor transient behavior, as shown in Fig.2.8(d).

In Fig. 2.9(b), we can verify that Algorithms I and II are able to bring
the error eθ to a small residual set, whereas Algorithm III has an oscillatory
response and a longer convergence time. From Fig. 2.9(c)-(d), it is possible to
see that the control signals u1 and u2 remain bounded, despite the occurrence
of high amplitude oscillations in Algorithm III and the multiples peaks due to
the switching of control laws in Algorithm II.
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Figure 2.8: Case II, state variables under the effect of unmodeled dynamics:
(a) leg angle, ψ; (b) leg angle error, eψ; (c) leg length, L; (d) leg length error,
eL.
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Figure 2.9: Case II, state variables and inputs under the effect of unmodeled
dynamics: (a) body angle, θ; (b) body angle error, eθ; (c)-(d) control signals,
u1 and u2.
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2.3.3
Case III: High-order Terms, Unmodeled Dynamics, and Measurement
Noise

Here, we consider the worst-case scenario for the hopping robot during
the flight phase, including the influence of high-order terms, unmodeled
dynamics and measurement noise in the numerical simulations, as depicted
in Fig. 2.10 and Fig. 2.11. In this simulation, the following parameters were
chosen for each algorithm: (i) Algorithm I, first-order SMC: ku = 2.5, γ = 15
and p=0.5; (ii) Algorithm II, SMC + STA: k1 =15.0, k2 =1.6, k3 =5.6, ρ=0.5,
β = 5.0 and T = 1.5 s; (iii) Algorithm III, STA + FTC: k4 = 15.5, k5 = 10.5,
k6 = 10.5, k7 = 5.5, ρ= 0.5, α1 = 0.5, α2 = 0.5 and T = 1.65 s. We use the awgn
function from Matlab to add white Gaussian noise to the robot configuration
q and with signal-to-noise ratio (SNR) of 60 dB.
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Figure 2.10: Case III, state variables under the effect of high-order terms,
unmodeled dynamics and measurement noise: (a) leg angle, ψ; (b) leg angle
error, eψ; (c) leg length, L; (d) leg length error, eL.

We can observe in Fig. 2.10(b)-(d) that Algorithms I and II were able
to drive the errors eψ and eL to zero in less than 3 s, in contrast to the
corresponding oscillatory behavior and non-zero steady-state error provided
by Algorithm III. From Fig. 2.11(b), it is possible to see that only Algorithms
I and II can stabilize the error eθ satisfactorily. Finally, Fig. 2.11(c)-(d) show
us the oscillatory behavior in control signals, u1 and u2, caused by Algorithms
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Figure 2.11: Case III, state variables and inputs under the effect of high-order
terms, unmodeled dynamics and measurement noise: (a) body angle, θ; (b)
body angle error, eθ; (c)-(d) control signals, u1 and u2.

III and II respectively. Notice that, on the contrary, Algorithm I provides a
faster and smoother convergence to zero in finite time.
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Table 2.3.3 shows the performance metrics used to evaluate the numerical
simulations, representing a quantitative analysis for the effectiveness of the
robust controllers. The metrics used are the mean average deviation (MAD) of
the input signals and the root mean square error (RMSE) of the error states
applied for the CASE 3. It can be seen that Algorithms I and II can provide
smaller RMSE values for leg angle error eψ and body angle error eθ, compared
to Algorithm III. All algorithms are capable of delivering small RMSE values
for the leg length error eL. On the other hand, smaller MAD values for control
signals u1 and u2 can be obtained only with Algorithm I.

Table 2.5: Performance Metrics of the Robust Control Algorithms.

CASE III RMSE MAD
Variables eψ eL eθ u1 u2

Algorithm I 0.3372 0.3113 0.3021 0.2061 0.1838
Algorithm II 0.3154 0.2372 0.2240 0.8214 1.1595
Algorithm III 0.4136 0.2431 0.5328 3.3167 0.3068

2.3.4
Discussion and Analysis

In this section, we have introduced a robust control design based on slid-
ing mode approaches for stabilizing a single-legged hopping robot during the
flight phase in the presence of model inaccuracies and external disturbances.
A comparative study among three promising solutions has been carried out
to evaluate their robustness and performance: Algorithm I, based on the first-
order SMC approach with chattering attenuation; Algorithm II, based on the
combination of SMC and STA approaches; Algorithm III, based on the combi-
nation of the STA approach and FTC technique. The Lyapunov stability theory
has been used to evaluate the stability properties of the proposed switching
control laws based on smooth discontinuous function. Numerical simulations
and performance metrics have been included to demonstrate the effectiveness
and feasibility of the sliding mode algorithms for legged robots.

After evaluating the results, it is clear the only Algorithms I and II were
able to cope with perturbation effects caused by high-order terms, unmodeled
dynamics, and measurement noise during the flight phase. Indeed, Algorithm
III requires a longer time to achieve finite-time convergence to a small residual
set of order O(L) independent of the initial conditions. A major challenge in
the design and implementation of Algorithms II and III is to determine to what
extent the switching time between the control laws affects the convergence and
robustness properties of the algorithms, provided that the constant T is not
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considered rigorously in the stability analysis. Although Algorithm I does not
suffer from such a drawback, the sliding surface design is not straightforward.

Since hopping robots, at the flight and stance phases, behave as nonholo-
nomic and under-actuated systems, sliding mode approaches based on switch-
ing control laws may become a key idea for balance and motion stabilization
purposes.

2.4
Sliding Mode Control for an Articulated Robot in Flight Phase

The articulated hopping robot is a model that approximated a real leg.
The dynamic equations are similar to a robot manipulator considering which
the base is mobile. To simplify the model, we consider that the entire mass
of L3 is concentrated in the joint that joins links 2 and 3, making it so that
we do not need to calculate more parameters which would result in a complex
model.

In the stance phase, the contact forces are actuating in the robot and,
the angle between the robot and, the floor must be within friction cone. In
the flight phase, their nonholonomic constraint is the angular momentum
conservation. The articulated hopping robot in Fig.(2.12) has the following
dynamic equation:

Figure 2.12: An articulated hopping robot, its frames and configuration pa-
rameters.

H(q)q̈ + C(q, q̇)q̇ +G(q) = Bτ , (2-37)
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where H(q) ∈ R5×5 in the inertia matrix, C(q, q̇) ∈ R5×1 is the matrix which
represent the Coriolis’s and centrifugal forces, G(q) ∈ R5×1 represent the
gravitational terms, B ∈ R5×2is the selection matrix which, mapping the
inputs in the equations and, q∈R5×1 are the coordinate of system, the vector
q = [ x y θ1 θ2 θ3 ]T , note that the coordinates q have two parts, a linear
part related to the foot position and, an angular part related to the joint
position. The dynamics can be simplified by rewriting the equation in the
function of joints variables then, the Eq. (2-37) is rewritten the following form:

h̄11θ̈1 + h̄12θ̈2 + h̄13θ̈3 + c̄1 + ḡ1 = 0 , (2-38)

h̄21θ̈1 + h̄22θ̈2 + h̄23θ̈3 + c̄2 + ḡ2 = τ1 , (2-39)

h̄31θ̈1 + h̄32θ̈2 + h̄33θ̈3 + c̄3 + ḡ3 = τ2 , (2-40)

where:

h̄11 = h33 − h−1
11 (h13h31)− h−1

22 (h23h32) , (2-41)

h̄12 = h̄21 = h34 − h−1
11 (h14h31)− h−1

22 (h24h32) , (2-42)

h̄22 = h44 − h−1
11 (h14h41)− h−1

22 (h24h42) , (2-43)

h̄13 = h̄31 = h35 − h−1
11 (h15h31)− h−1

22 (h25h32) , (2-44)

h̄23 = h̄32 = h45 − h−1
11 (h15h41)− h−1

22 (h25h42) , (2-45)

h̄33 = h55 − h−1
11 (h15h51)− h−1

22 (h25h52) , (2-46)

c̄1 = c3 − h−1
11 (h31c1)− h−1

22 (h32c2) , (2-47)

c̄2 = c4 − h−1
11 (h41c1)− h−1

22 (h42c2) , (2-48)

c̄3 = c5 − h−1
11 (h51c1)− h−1

22 (h52c2) , (2-49)

ḡ1 = g3 − h−1
11 (h31g1)− h−1

22 (h32g2) , (2-50)

ḡ2 = g4 − h−1
11 (h41g1)− h−1

22 (h42g2) , (2-51)

ḡ3 = g5 − h−1
11 (h51g1)− h−1

22 (h52g2) . (2-52)

The nonholonomic constraint is µ = µ0 where, µ is the angular momen-
tum and µ0 is a constant that represents the initial angular momentum we
consider µ0 = 0. In the Lagrangean equation, we note that the kinetic energy
does not depend on θ1 then we have :

∂T

∂θ̇1
− ∂U

∂θ1
= 0 . (2-53)
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The kinetic rotation energy is given by the Eq .(2-54) [37]:

Trotational = 1
2

˙̄qT H̄ ˙̄qT ,

= h̄11θ̇
2
1 + h̄12θ̇1θ̇2 + h̄13θ̇1θ̇3 + h̄23θ̇2θ̇3 + h̄22θ̇

2
2 + h̄33θ̇

2
3 , (2-54)

where Trotational ∈ R is the kinetic energy of rotation, ˙̄q = [ θ̇1 θ̇2 θ̇3 ]T is the
joint velocity. Differentiate the Eq. (2-54) in relation θ̇1 we have:

µ = h̄11θ̇1 + h̄12θ̇2 + h̄13θ̇3 , (2-55)

Suppose that θ̇2 = u2 and θ̇3 = u1 we have the following drift less system:

θ̇1 = −h−1
11 h12u2 − h−1

11 h13u1 , (2-56)

θ̇2 = u2 , (2-57)

θ̇3 = u1 . (2-58)

The vector fields g1 =
[
−h−1

11 h12 1 0
]T

and g2 =
[
−h−1

11 h13 0 1
]T

allows
to write the system in the following form:

q̇ = g1u2 + g2u1 . (2-59)

Here, we can define the regulation error as e := q − qd where qd is the desired
robot configuration. For the regulation case, we can assume without loss of
generality that q̇d = 0. Thus, the error dynamics can be written as:

ė = g1u1 + q2u2 . (2-60)

The error system Eq .(2-60) can be transformed into the chained form [37,47]
in order to apply the SMC approach. For this, the following condition must be
satisfied:

dy1.∆1 = 0 , (2-61)

dy1.g1 = 1 , (2-62)

dy2.∆2 = 0 , (2-63)
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where,

∆0 = span{g1, g2, adg2g1} , (2-64)

∆1 = span{g2, adg2g1} , (2-65)

∆2 = span{g2} , (2-66)

adg2g1 =
 − ∂

∂θ1

h13

h11

 0 1
T . (2-67)

The condition are satisfied choosing the following terms:

y1 = e3 , (2-68)

y2 = e1 +
∫ h12

h11
de2 , (2-69)

and we have the following coordinates transform z = φ(θ) and the input
transform v = β(θ)u:

z1 = y1 = e3 , (2-70)

z2 = Lg1y2 = −h13

h11
, (2-71)

z3 = y2 = e1 +
∫ h12

h11
de2 , (2-72)

v1 = u1 , (2-73)

v2 = (L2
g1y2)u1 + (Lg1Lg2y2)u2 , (2-74)

which results in:

ż1 = u1 , (2-75)

ż2 = u2 , (2-76)

ż3 = z2u1 , (2-77)

v1 = u1 , (2-78)

v2 = − ∂

∂eθ2

h13

h11

 , (2-79)

Notice that, the motion dynamics of the articulated hopping robot can be
described by the sub-optimal chained form Eq .(2-75) which was previously
used in the Section 2.2.2. Therefore, the controllers based controllers designed
in the previous section can also be used. In this section, we reproduce the
control techniques adopted for the hopping robot with a prismatic joint. We
will use the theorems already demonstrated and develop numerical simulations
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in Matlab considering unmodeled dynamics and noise. We will calculate the
metrics of error and control signals.

2.4.1
Algorithm I : First-Order SMC

The idea in this section is to control the joints of an articulated robot
hooping in the flight phase through an SMC controller, the choice of this con-
troller is due to its robustness to external matched and unmatched disturbances
and parametric uncertainties. We can design the control laws that guarantee
the control of a system in the chained form, we developed the following control
law:

u1 =− k z1 + γz2 sgn(s)|s|p , (2-80)

u2 =− k z2 − γz1 sgn(s)|s|p , (2-81)

where k ∈ R is a proportional gain, p ∈ R is a constant parameter such that
0 ≤ p ≤ 1/2, γ > 0 is the control gain and, s ∈ R is the sliding surface given
by:

s = −2 z3 − z1 z2 . (2-82)

According to the Theorem2.1 we can prove that the limt→∞ z1, z2, s= 0 and
hence limt→∞ z3 = 0, it means that limt→∞ e1, e2,= 0 and hence limt→∞ e3 = 0.
Although they have advantages, sliding control has disadvantages such as, the
chattering phenomenon that occurs due to imperfections in the switching of the
controller. This effect can cause serious problems such as heating or instability
in unmodeled dynamics at high-frequencies. There are ways to mitigate the
chattering as shown in Eq (2-80) where the term p causes the discontinuity in
the control law to be smoothed.

2.5
Algorithm II: SMC + STA

Although conventional first-order SMC can guarantee stability and ro-
bustness properties under external disturbances, these are subject to chatter-
ing, which can deteriorate the performance of the system response. The chat-
tering phenomenon can be attenuated by using the Super Twisting Algorithm
(STA) [48,52].

The key idea is to divide the system in the chained form into two subsys-
tems, then using two discontinuous control laws to stabilize the subsystems.
First, the errors e1 and e2 are stabilized and secondly, e3 is stabilized. Although
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conventional first-order SMC can guarantee stability and robustness properties
under external disturbances, these are subject to chattering, which can dete-
riorate the performance of the system response. The chattering phenomenon
can be attenuated by using the Super Twisting Algorithm (STA). The key idea
is to divide the system in the chained form into two subsystems, then using
two discontinuous control laws to stabilize the subsystems. First, the errors e1

and e2 are stabilized and secondly, e3 is stabilized. Then, let us design the first
discontinuous control u1 is based on the STA approach as:

u1 =

 −k1 |e3|ρ sgn(e3) + w , t ≥ T ,

1 , T0 < t < T ,
(2-83)

with ẇ = −k2 |e1|ρ sgn(e1), where k2 > 0 and k3 > 0 are the proportional
gains, ρ ∈ (0, 1/2] is a constant parameter, which attenuates the chattering
phenomena, T ∈R+ is the switching time, which is responsible to switch the
control laws, given by Eq. (2-83), and T0 ≥ 0 is the initial time. It is worth
noting that the value of T is chosen empirically according to the error norm
that is tolerable (0.08) and the duration of the flight phase Tf . The control we
design the second discontinuous control law based on the SMC approach as :

u2 =

 0 , t ≥ T ,

−λe2−k3 |s|ρ sgn(s) , T0 < t < T ,
(2-84)

where k1>0 is the proportional gain and s∈R is the sliding surface given by:

s = −λe1 + e2 , (2-85)

with β ∈ R being the slope of the sliding surface. Using the Theorem 2.2,
we prove that limt→∞ e3(t) = 0, and limt→T s(t) = 0 and, consequently,
limt→T e1, e2 =0.

2.5.1
Algorithm III: STA+FTC

Here, a robust control algorithm was developed based on the combination
of the Super Twisting Algorithm approach and the Finite-Time Controller
(FTC) technique to direct the joints of the hopping robot in the flight phase
to the desired values. The control technique is similar to that one introduced
by Thomas et al. [46] to stabilize the position and orientation of a differential
drive. The control approach consists of designing two discontinuous control
laws to first stabilize e1 and e2 and then stabilize e3.The control approach
consists of designing two discontinuous control laws to first stabilize e1 and e2
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and then stabilize e3. So the first u1 discontinuous control law is based on the
STA approach as:

u1 =

 −k4|e3|ρsgn(e3) + w , t ≥ T ,

1 , T0 < t < T ,
(2-86)

with ẇ=−k5 sgn(e3), where k4>0 and k5>0 are the proportional gains. Now
we design the second u2 discontinuous control law based on the FTC technique
as:

u2 =

 0 , t ≥ T ,

− k6|e1|α1 sgn(e1) + κ , T0 < t < T ,
(2-87)

with κ=−k7 |e2|α2 sgn(e2), where k6>0 and k7>0 are the proportional gains,
and α1, α2 ∈ (0, 1/2] are constant parameters that attenuate the chattering
phenomena. Based on the Theorem 2.3 we can prove that limt→∞ e3 and
limt→T e1, e2 =0.

2.5.2
Numerical Simulations

The purpose of this subsection is to make a comparative study between
the proposed robust controllers to stabilize an articulated hopping robot in the
flight phase in the presence of unmodeled dynamics and noise. The simulation
parameters used in numerical simulations are shown in Table 2.6

The numerical simulations were implemented using ad-hoc developed
Matlab scripts and functions (R2019b), running on the Windows 10 Enterprise,
64-bit OS using a Intel(R) Core(TM) i5-8250U CPU @ 1.6GHz, 8GB DDR4
RAM. For all case studies, we use the Euler integration method with a sampling
rate of h=10−3 s, a simulation time of Ts=20 s the numeric integration method
implemented is Euler.
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Table 2.6: Hopping robot parameters for numerical simulation.
Parameters Value Unit
Mass of Link 1, m1 5.0 Kg
Moment of inertia of Link 1, I1 1.0 kg m2

Length of of Link 1, L1 0.4 m
Center of Mass of Link 1, Lc1 0.2 m
Mass of Link 2, m2 8.0 rad
Moment of inertia of Link 2, I2 1.0 Kg.m2

Length of of Link 2, L2 0.7 m
Center of Mass of Link 2, Lc2 0.35 m
Mass of Link 3, m3 30.0 m
Moment of inertia of Link 3, I3 1.0 Kg.m2

Length of of Link 3, L3 0.8 m
Center of Mass of Link 3, Lc3 0.0 m
Initial Position of Joint 1, q01 π/3 rad
Initial Position of Joint 2, q02 π/2 rad
Initial Position of Joint 3, q03 −π/2 rad
Desired Position of Joint 1, qd1 π/2 rad
Desired Position of Joint 2, qd2 1.0 rad
Desired Position of Joint 3, qd3 −2π/3 rad
Flight phase duration, Tf 4.0 s

2.5.2.1
First Case: Unmodeled Dynamics

In this simulation, the following parameters were chosen for each algo-
rithm: (i) Algorithm I, first-order SMC:k = 10 γ = 600.0 and p = 0.5; (ii)
Algorithm II, SMC + STA: k1 = 10.5, k2 = 10.03 ,k3 = 15.04, ρ= 0.5, β = 1.0
and T =1.5 s; (iii) Algorithm III, STA + FTC: k4 =15.04, k5 =1.0, k6 =50.0,
k7 = 14.0, ρ= 0.5, α1 = 0.5, α2 = 0.5 and T = 4.65 s. The unmodeled dynamics
was implemented using the following transfer function: H(s)=(c/λ)[1/(s+ω)],
where c= 1 is the gain constant, ω= 1/λ is the cutoff frequency with λ= 0.1
and ω=10 rad s−1.

The plots depicted in 2.13 and 2.14 show the behavior over time for the
robot states and control signals, under the influence of unmodeled dynamics.
We can see that the error e1 and e2 are driven to zero in algorithms I, II and
III despite its poor transient as shown in Fig.2.13.(b) and Fig.2.13.(d) On the
other hand, in Fig.2.14(b) we can verify that Algorithms I and II are capable
bring e3 to zero, whereas Algorithm III has a small oscillatory response.From
Fig 2.14 (c)-(d) it is possible to observe that the control signals u1 and u2

remain limited despite the high-frequency oscillations observed in the control
signals and the presence of peaks due to switching as in Algorithm III.
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Figure 2.13: Case II, state variables under the effect of unmodeled dynamics:
(a) Joint Position, q1; (b) Joint Position Error, e3; (c) Joint Position, e2; (d)
Joint Position Error, e2.

Figure 2.14: Case II, state variables and inputs under the effect of unmodeled
dynamics: (a) Joint Position, q3; (b) Joint Position Error, e3; (c)-(d) control
signals, u1 and u2.
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2.5.2.2
Case II: Unmodeled Dynamics, and Measurement Noise

Here, we consider the worst-case scenario for the hopping robot during
the flight phase, where we include unmodeled dynamics and noise in the
measurement in the numerical simulation. In this simulation, the following
parameters were chosen for each algorithm: (i) Algorithm I, first-order SMC:
k = 10, γ = 600.0 and p = 0.5; (ii) Algorithm II, SMC + STA: k1 = 10.5,
k2 = 10.03, k3 = 15.04, ρ= 0.5, λ= 1.0 and T = 1.5 s; (iii) Algorithm III, STA
+ FTC: k4 = 15.5, k5 = 1.0, k6 = 50.0, k7 = 14.0,ρ= 0.5, α1 = 0.5, α2 = 0.5 and
T =4.5 s. We use the awgn function from Matlab to add white Gaussian noise
to the robot configuration q and with signal-to-noise ratio (SNR) of 60 dB.

Figure 2.15: Case II, state variables under the effect of unmodeled dynamics
and measurement noise: (a) Joint Position, q1; (b) Joint Position Error, e3; (c)
Joint Position, e2; (d) Joint Position Error, e2.
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Figure 2.16: Case II, state variables and inputs under the effect of unmodeled
dynamics and measurement noise: (a) Joint Position, q3; (b) Joint Position
Error, e3; (c)-(d) control signals, u1 and u2.

We can see in Fig .2.15(b) and Fig .2.15(d) that Algorithms I and II
were able to direct e1, e2 and e3 to zero in less than 4s, in contrast to the
small oscillatory response in permanent regime than in e3. Finally, Fig 2.16
(c) shows a small oscillatory behaviour in the u1 control signal caused by
Algorithms II and III respectively, observed that in Fig. 2.16 (d), the same
behaviour is not observed in the control signal u2. Comparing the algorithms
used, we observe that all control signals are limited. The algorithm I presents
a smooth convergence to zero infinite time and, Algorithm II presents a faster
finite-time convergence.

Table 2.5.2.2 shows the performance of the metrics to evaluate the
numerical simulations, representing a quantitative analysis for the effectiveness
of the robust controllers. The metrics used are the mean absolute deviation
(MAD) of the input signals and, the root means square error (RMSE) of the
state error for case III. It can be seen that smaller MAD values for the control
signals u1 and u2 can be provides only with Algorithm I .
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Table 2.7: Performance Metrics of the Robust Control Algorithms.

CASE III RMSE MAD
Variables e1 e2 e3 u1 u2

Algorithm I 0.1905 0.19314 0.04261 0.1000 0.1587
Algorithm II 0.0704 0.0886 0.3710 0.9599 0.0452
Algorithm III 0.14748 0.14943 1.4760 0.959 0.0452

2.5.3
Discussion and Analysis

In this subsection, we introduce a robust control based on the sliding
mode approach to stabilize a hopping robot during the flight phase in the
presence of unmodeled dynamics and noise in the measurement. A comparative
study among three promising solutions has been carried out to evaluate
their robustness and performance: Algorithm I, based on the first-order SMC
approach with chattering attenuation; Algorithm II, based on the combination
of SMC and STA approaches; Algorithm III, based on the combination of the
STA approach and FTC technique. The Lyapunov stability theory has been
used to evaluate the stability properties of the proposed switching control
laws based on smooth discontinuous function. Numerical simulations and
performance metrics have been included to demonstrate the effectiveness and
feasibility of the sliding mode algorithms for legged robots.

After evaluating the results, it is clear that only algorithms I and II
can bring the joint position error to zero in less than 2s in the presence of
unmodeled dynamics and measurement noise. Algorithms II and III need a
longer time to ensure that all joints positions errors converge to zero. A major
challenge in the design and implementation of Algorithms II and III is to
determine to what extent the switching time between the control laws affects
the convergence and robustness properties of the algorithms provided that
the constant T is not considered rigorously in the stability analysis. Although
Algorithm I does not suffer from such a drawback, the sliding surface design
is not straightforward.

Another challenge in numerical simulation is to define the parameters in
the hopping robot so that there are no problems when simulating because
we have a numerical poor conditioning problem because according to the
choice of the parameters, the inverse matrix transformation of the chained
form generates a larger or smaller control signal u2 undermining the control
action this is the reason why the proportional gain k in Algorithm I is higher.
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2.6
Articulated Hopping Robot in Stance Phase

Now, we consider the articulated hopping robot shown in the Fig. 2.17,
generalizing the motion control problem for flight and stance phases as a single
case involving the presence and absence of contact forces actuating in the robot
foot, instead of being addressed as two separate and distinct cases. The stance
phase is the situation where, there are contact forces in the leg which affect
of the system dynamic, the controller must be deal with this forces and to
ensures the desired joint position. Considering in the same figure that, the
body does not rotate and the CoM is close to the body, it means, m1 << m3

and m2 << m3 and the center of mass body Lc3 = 0. Let coordinates vector

Figure 2.17: Articulated Hopping robot in stance phase

q =
[
xr yr θ1 θ2

]T
which represents the position of thigh and the joints

angles. The dynamic of systems is given by the following equation.

H(q)q̈ + C(q, q̇)q̇ +G(q) = Bτ + JTe λ , (2-88)

where q∈R4 is the coordinates,H(q)∈R4×4 is the inertia matrix, C(q, q̇)∈R4×1

is the Coriolis and centrifugal matrix, G(q) ∈ R4×1 is the gravitational and
potential terms, λ∈R2×1 is the Lagrange multiplier vector, which represents
the forces and moments of contact at the end of the leg if λ = 0 means that
no forces or moments are acting on the robot which means that the hopping
robot is in the flight phase, if λ 6= 0 means that contact forces are acting on
the end of the robot so it is in the stance phase and Je ∈R2×4 is Jacobian of
the leg.

DBD
PUC-Rio - Certificação Digital Nº 1821110/CA



Chapter 2. Hopping Robot: Modelling and Control Design 63

The extremity position of hopping robot is giving by:

xe = xr + L1cos(θ1) + L2cos(θ1 + θ2) , (2-89)

ye = yr − L1sin(θ1)− L2sin(θ1 + θ2) , (2-90)

and their velocity:

ṗe = Jeq̇ , (2-91)

where ṗe =
[
ẋe ẏe

]T
is the foot velocity.

Je =
 1 0 −L1c1 − L2c12 −L2c12

0 1 −L1s1 − L2s12 −L2s12

 . (2-92)

The Lagrange multiplier vector is found using the following constrains in stance
phase:

Jeq̇ = 0 , (2-93)

deriving the constraint:

Jeq̈ + J̇eq̇ = 0 ,

JeH
−1(q)(Bτ + JTe λ− C(q, q̇)q̇ −G(q)) + J̇eq̇ = 0 ,

λ = (Je(H(q))−1JTe )−1(C(q, q̇)q̇ +G(q)−Bτ − J̇eq̇) .

The system can split into two parts a passive part that can not control directly
by actuators such as, xr and yr and an active part which are control directly
using actuators such as θ1 and θ2. The system can be written in passive and
active terms:

Hppq̈p +Hpaq̈a + Cpq̇p +Gp = JTp λ , (2-94)

Hapq̈p +Haaq̈a + Caq̇a +Ga = τ + JTa λ , (2-95)

where the suffix p represents passive and a active.

2.6.1
Computed Torque Controller for a Hopping Robot in Stance Phase

The classical linear controller is an alternative solution for the joint
control of hopping robot in Fig.2.17. In this case, we choose a system input
which cancels all nonlinear terms and linearize the error system in closed-loop,
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whose desired response can be defined by by choosing suitable gain matrices
Kp and Kd. Considering Eq.2-94 we choose the following control input τ as:

τ = (Haa −HapH
−1
pp Hpa)u+HapH

−1
pp (Cpq̇p +Gp) ,

−Caq̇a −Ga − (JTa −HapH
−1
pp J

T
p )λ . (2-96)

Now, we choose the linear control law u such as:

u = q̈ad −Kd(q̇a − q̇ad)−Kp(qa − qad) , (2-97)

where qad∈R2 is the desired value for the active joints, q̇ad, q̈ad∈R2 its desired
velocity and acceleration, Kd ∈ R2×2 and Kp ∈ R2×2 are positive definitive
matrices. Then, Eq.2-94 becomes:

q̈p = H−1
pp (JTp λ−Hpau− Cpq̇p −Gp) , (2-98)

q̈a = u . (2-99)

Selecting the derivative and proportional gain matrices to be Kd =
diag{2ζ1ω1 , 2ζ2ω2} and Kp = diag{ω2

1 , ω
2
2}, where ζi and ωi for i = 1, 2 are

respectively the damping factor and the natural frequency, we ensure that the
error system converges to zero during the flight time and the stance time.

2.6.2
Sliding Mode Control for a Hopping Robot

Although the PD controller ensures the stability properties for the active
joints, we can show that such a controller does not have a satisfactory perfor-
mance in the presence of parametric uncertainties and external disturbances.
The sliding mode control approach can deal with this problem in the system
in Eq.2-94. Considering the sliding surface:

s = ėa +Ksea , (2-100)

DBD
PUC-Rio - Certificação Digital Nº 1821110/CA



Chapter 2. Hopping Robot: Modelling and Control Design 65

where Ks is a positive definitive matrix. We need prove that the sliding surface
is asymptotically stable :

2V (s) =s2 , (2-101)

V̇ (s) =sṡ

=s(q̈a − q̈ad) +Ksėa

=s(Haa −HapH
−1
pp Hpa)−1(τ + (JTa −HapH

−1
pp J

T
pp)λ ,

− Caq̇a −Ga −HapH
−1
pp (Cpq̇p +Gp)) .

Choosing the following control law:

τ =(Haa −HapH
−1
pp Hpa)u− (JTa −HapH

−1
pp J

T
pp)λ+ Caq̇a ,

+Ga +HapH
−1
pp (Cpq̇p +Gp) .

=su . (2-102)

If u = βsign(s)|s|1/2 results in:

V̇ (s) =− β|s|3/2 . (2-103)

The above equation ensures the existence of sliding mode then, when the
surface is reach we have:

ėa = −Kaea . (2-104)

The error ea converges to zero and its convergence depends on value of Ka

gain.

2.6.3
Robust Control for a Hopping Robot

The PD and SMC controllers in the previously subsections does not
to deal with uncertainties and disturbances in the system, in the practice
we find situations where, the uncertainties in robot parameters or in the
model,disturbances, the terrain features affect the robot performance in this
case, it is necessary that, the controller to be robust in this situations, to
reach this aim, we use the robust control. In the sliding mode control if the
controller reach the sliding surface even with the uncertainties in the model
and disturbance we say that the controller is robust. Considering the system
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in Eq. (2-94) writing the system the following form:

Haq̈a − n = τ , (2-105)

where

Ha =(Haa −HapH
−1
pp Hpa) , (2-106)

n =(JTa −HapH
−1
pp J

T
pp)λ+ Caq̇a +Ga +HapH

−1
pp (Cpq̇p +Gp) . (2-107)

The matrix H−1
a is lower and upper bounded:

Hmin ≤ ||H−1
a || ≤ Hmax <∞ . (2-108)

Then, considering the following control law [54]:

τ = Ĥau+ n̂ . (2-109)

Adding and subtracting u and multiplying per Ĥ−1
a we have:

q̈a =(I −H−1
a Ĥa)u+H−1

a ñ+ u , (2-110)

q̈a =u+ η . (2-111)

where the uncertain η and the error estimation n are:

η =(I −H−1
a Ĥa)u+H−1

a ñ , (2-112)

n =n̂− n . (2-113)

According the following assumptions in [54]:

Assumption 1 : ||q̈ad|| ≤ Q̈ad <∞ ∀q̈ad

Assumption 2 : ||I −H−1
a Ĥa|| ≤ α < 1

Assumption 3 : ||ñ|| ≤ φ <∞

The matrix H−1
a is lower and upper bounded:

Hmin ≤ ||H−1
a || ≤ Hmax <∞ , ∀t . (2-114)
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In [54] is given a possible matrix Ĥ that satisfied the assumption 2 this matrix
is given by:

Ĥ = 2
Hmax +Hmin

. (2-115)

Results in:

||H−1
a Ĥa − I|| ≤

Hmax −Hmin

Hmax +Hmin

= α < 1 . (2-116)

Using the sliding surface and the Lyapunov candidate function in the Eq.(2-
100) and Eq.(2-101) we have:

2V (s) =sT s (2-117)

2 V̇ (s) =sT ṡ+ ṡT s

=sT (u+ η − q̈ad +Kaė) . (2-118)

Choosing the following u:

u = q̈ad −Ksė− ω . (2-119)

Replacing the Eq. (2-119) into Eq. (2-117):

V̇ (s) =sT ṡ

=sT (−ω + η)

=sT (η − ω) . (2-120)

In Eq. (2-120), we note that the robustness term ω ensures that the surface
converges to zero despite the uncertain η if |η| < |ω| we propose the following
robustness term ω:

ω = ρ sign(s) , (2-121)

and, then, V̇ (s) takes the form:

V̇ (s) ≤ (η − ω)s < 0 , (2-122)

≤|η − ω||s| < 0 ,

≤|η||s| − |ω||s| < 0 . (2-123)
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If the robustness term ρ is greater that η the function is negative semi definitive
the minimum value of robustness term is given by :

|η| = ||(I −H−1
a Ĥa)u+H−1

a ñ|| , (2-124)

≤ ||(I −H−1
a Ĥa)||.||u||+ ||H−1

a ñ|| ,

≤ ||(I −H−1
a Ĥa)||.||u||+ ||H−1

a ||.||ñ|| . (2-125)

Considering the assumption (1),(2) and (3) we have:

|η| ≤ α||u||+ ||Hmax||.||φ|| ,

= α||Q̈max||+ λ||ė||+ ||β||||Hmax||.||φ|| . (2-126)

Hence the robustness term is given by:

ρ ≥ α||u||+ ||Hmax||.||φ|| ,

= α||Q̈max||+ λ||ė||+ ρ+ ||Hmax||.||φ|| ,

ρ ≥ (1− α)−1(||Q̈max||+ λ||ė||+ ||Hmax||.||φ||) . (2-127)

2.6.4
Numerical Simulation

In this subsection, we present a comparative study between two con-
trollers: computed torque controller and SMC. The objective is to stabilize a
hopping robot instance phase in the presence of parametric uncertainties and
external disturbances. The robot parameters are described in Table 2.8:
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Table 2.8: Simulation parameters
Parameters Value Unit
Body mass(m3) 10.0 Kg
Mass of link 1 (m1) 1.0 Kg
Length of link 1 (L1) 0.8 m
Center of mass of link 1 (Lc1) 0.5 m
Constant torsion spring of joint 1 (ks1) 25 N.m/rad
Momentum of Inertia of body of link 1 (I1) 1 Kg.m2

Mass of link 2 (m2) 1.0 Kg
Length of link 2 (L2) 0.5 rad
Center of mass of link 2 (Lc2) 0.25 m
Momentum of Inertia of body of link 2 (I2) 0.5 Kg.m2

Constant torsion spring of joint 2 (ks1) 25 N.m/rad

The numerical simulations were implemented using ad-hoc developed
Matlab scripts and functions (R2019b), running on the Windows 10 Enterprise,
64-bit OS using Intel (R) Core (TM) i5-8250U CPU @ 1.6GHz, 8GB DDR4
RAM. For all case studies, we use the Euler integration method with a sampling
rate of h=10−4 s and a simulation time of Ts=5 s. In this simulation, we use
the following gains for the computed torque control: kp = 100 and kd = 20 and
for the SMC control we will use the following parameters: Ka = 10I, where
I is the identity matrix, β = 100. The external disturbance is of the type
d = [0.1 sin(t) 0.1 cos(t)]T .

The plots depicted in Fig. 2.18(a), Fig. 2.18(b) and 2.20(c) show the
behaviour over time for robot state and control signals under parametric
uncertainties and external disturbances. We can observe in Fig.2.18(a) and
Fig.2.18(b) that the robot reaches the equilibrium point (xd = 0m, yd = 1.3m)
for the SMC controller, the computed torque control can not bring the CoM
coordinates to the equilibrium point. In Fig. 2.18(c) and Fig. 2.18(d), it can
be seen that the computer torque control was not able to guarantee the robot
joints reach the desired positions, represented in the graphics by the green
dotted line. The SMC control can ensure that the joint position error goes to
approximately zero.
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Figure 2.18: Hopping robot in stance phase under parametric uncertainties and
external disturbances: (a) Horizontal position of CoM, xc; (b) Vertical position
of CoM, yc; (c) Joint Position, θ1; (d) Joint Position, θ2.

We can see in Fig. 2.19(a) and Fig. 2.19(b) that computed torque
control does not guarantee that the CoM velocity converges to zero. It has
an oscillatory response. In the SMC controller, the CoM velocity in the x
and y axis have a high overshooting and faster response. In Fig.2.19(c) and
Fig.2.19(d) we can see that the joints velocities in the SMC controller converge
to zero, but peaks are observed during the transient. In the computed torque
control, there is a smooth response in the joint speeds. However, there is no
convergence in the joints velocity.
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Figure 2.19: Hopping robot in stance phase under parametric uncertainties and
external disturbances: (a) Horizontal velocity of CoM, xc; (b) Vertical velocity
of CoM, yc; (c) Joint velocity, θ̇1; (d) Joint velocity, θ̇2.

We can see in Fig.2.20(a) and Fig.2.20 (b) that the control signals τ1 and
τ2 are limited. The computed torque control has a greater smoothness in the
control signals τ1 and τ2 small oscillations, whereas the control signals τ1 and
τ2 have a peak in the instant initials and after overshooting the signals remain
constant.
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Figure 2.20: Caption

2.6.4.1
Discussion and Analysis

When performing the hopping robot simulations in the support phase
using the computed torque controller and SMC, we noticed that the SMC
control deals with parametric uncertainties and external disturbances. Despite
presenting a faster response, we have as a consequence peaks in the control
signals τ1 and τ2 due to the necessity to accelerate the body then, that it can
reach the equilibrium position quickly. We can also observe that the parameter
lambda is very important to define whether the robot is in the stance or flight
phase. The presented model allows controlling both the stance and flight phases
for that it is necessary to change only the initial conditions for each case. It is
important to remember that sometimes it is not desired that the norm of the
error is null in terrains with irregularities. It is desirable to have an error in
the trajectory so that the robot does not become unbalanced.
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3
Hexapod Robot: Modelling and Control Design

Although hexapods have advantages as a large balance compared to
bipeds, there are several challenges in the legged robot area as balance,
navigation in complex terrains and the definition of the sequence of legs so
that the robot can move. In the case of these robots, the trajectory to be
followed by the legs does not necessarily have to be the same as desired errors
in the tracking can occur when, for example, we have an obstacle in the middle
of the path in this case, following the desired trajectory becomes impossible.
Even if there is an error in the tracking, the robot moves according to desired
navigating the terrain.

The solutions to robot leg problems consist of using algorithms that
allow robots with legs to move forward, moving to the side and rotate. These
algorithms can be artificial intelligence techniques [42], sliding mode control
[31]. Define a trajectory so that the robot can navigate in environments with
obstacles with the CHOMP algorithm [34]. In this chapter, two controllers
will be designed: a Cartesian controller and, SMC controller, which can solve
the robot’s position problem. However, only the SMC controller can guarantee
orientation control despite presenting the chattering phenomenon.

The hexapod robot is an example of a legged mobile robot, which has
many applications such as navigate in confined spaces and walking in complex
and rough terrains. Examples of hexapod robot are the PhantomX AX Metal
Hexapod Mark III from the Trossen robotics in Fig.3.1, the Lauron I created
by Forschungszentrum Informatik (FZI) in Fig.3.2 and the Rhex in the Fig.3.3
a hexapod created by five universities (The University of Michigan,McGill Uni-
versity,Carnegie Mellon University,University of California,Princeton Univer-
sity,Cornell University and University of Lahore) financed by DARPA (Defense
Advanced Research Projects Agency).
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Figure 3.1: Phantomx AX Metal Mark III

Figure 3.2: Hexapod Lauron I source: Wikipedia

Figure 3.3: Rhex 1.1 hexapod source:Wikipedia

3.1
Gait and Stability

The gait planning is the most import part of the legged robot mobile
locomotion, influences in the legged robot mobile balance and stability. Besides
that, the gait planning is necessary to execute tasks such as climb stairs,
walking in the rough terrains and avoid obstacles.

The stability is the main criterion to design the gait most stability
criteria are based in the Conservative Support Polygon [2]. The idea behind
the Conversation Polygon is shown in Fig 3.4, the point C represent the
projection of the centre of mass in the plane, the rectangle of dimensions P and
Q represent the leg workspace, notice that the CoM is within support polygon
it means the robot is stable.

The leg sequence is designed considering the task which the robot must to
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Figure 3.4: Kinematic parameters of hexapod robot [2]

execute such as, walking in slope terrains, walking in rough terrains for stance,
the energy consumption, velocity and the hexapod balance. The tripod is a
gait the consists in each gait cycle, three leg are in the ground (stance) and
others three leg are in the air (swing). Although the advantage of this gait is
the velocity, it has the more unstable than wave and quadruped for instance.
The tripod sequence is seen in the Fig .3.5 note that, during the gait cycle the
CoM is within the support polygon then the tripod gait, in this case, is stable.
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Figure 3.5: The hexapod tripod gait [3]

3.1.1
Control Diagram

The block diagram in the Fig . 3.6 shows the structure which make the
robot move, the first part is the joint position controller which can be a
PID, sliding mode control, adaptive control, robust control, fuzzy or artificial
intelligence techniques such as, reinforcement learning, genetic algorithm for
instance. The gait planning is the part which generate the desired joints
position and execute a task such as walking forward and backward, rotate,
walking side for instance, this algorithm can be inverse kinematic, differential
kinematic, fuzzy, reinforcement learning ,neural networks or any gait planning
algorithm. The control algorithm is the part responsible for the position and
orientation control this part avoid the planning joints necessity.

The cascade control strategy can be applied to control the posture of the
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Figure 3.6: Block diagram: cascade control strategy for the hexapod robot

hexapod robot and the performance of the controller would depends on the
type of motion carried out by the center of mass (e.g., differential drive, omni-
directional, etc.). Another advantage of cascade control is the use of sensor
force to implement an orientation control based of the force feedback in order
to avoid slippage on the terrain.

3.2
Differential Drive Approach

An approach proposed to the legged mobile robot in Fig.3.7 is modelled
by a differential drive if the robot has a kinematic constraint in robot y axis
(the crab gait not implemented). The only signals control in the hexapod robot
are the linear velocity in the x robot axis and the angular velocity w in the
robot z axis. In this case, the kinematic constraint is given by:

ẋcos(θ)− ẏsin(θ) = 0 . (3-1)

The modelling of the robot in space is given by the following equation:
ẋ

ẏ

ω̇

 =


cos θ 0
sin θ 0

0 1


 v

ω

 . (3-2)

The velocity in the y axis depends on the linear velocity v and the angular
velocity w the equation can decomposed in two vectors g1 and g2 given by the
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following form:

g1 =


cos(θ)
sin(θ)

0

 g2 =


0
0
1

 q̇ =


ẋ

ẏ

θ̇

 (3-3)

In Eq.3-2 written using the vector g1 and g2 results in:

q̇ = g1v + g2ω . (3-4)

Figure 3.7: Kinematic modeling of the legged mobile robot.

3.2.1
Cartesian Control

Consider that the control goal for a legged mobile robot is to drive
the current robot position p ∈ R2 to a desired constant position pd ∈ R2,
regardless of the robot orientation θ. There are practical situations, named
Cartesian regulation, where the objective is simply to reach a desired position
no matter the final orientation. For instance, a legged mobile robot exploring
an agricultural field must reach a sequence of waypoints and use its onboard
sensors (e.g., cameras, LIDAR, or ultrasound) to perceive the characteristics
of the environment. If the sensors are attached to the robot structure in such a
way that their readings are invariant with respect to direction, then the robot
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orientation is not relevant. Then, let us consider the following control goal:

p→ pd , e := pd − p→ 0 , (3-5)

where the e∈R2 is the Cartesian position error defined as:

e = [ ex ey ]T . (3-6)

The desired position is the origin the Cartesian system in this case we adopt
the following control law:

v = −K1(x cos θ + y sin θ) , (3-7)

w = −K2(atan2(ey, ex)− θ + π) , (3-8)

where K1 > 0 and K2 > 0. The driving velocity v is proportional to
projection in the Cartesian axis of the displacement vector formed by the
current robot position and the desired robot position, the steering velocity ω
is proportional to the difference between the vector displacement angle and
the robot orientation. Using the following Lyapunov like function:

2V (ex, ey) = x2 + y2 , (3-9)

Derivating the Lyapunov like function we have:

V̇ (ex, ey) = x ẋ+ y ẏ , (3-10)

= x v cos θ + y v sin θ , (3-11)

= −K1(x cos θ (x cos θ + y sin θ) + y sin θ(x cos θ + y sin θ)) , (3-12)

= −K1(x cos θ + y sin θ)2 . (3-13)

The function V̇ is a negative semi definite function then we prove that the
robot position converges to origin, using the Barbalat’s Lemma we have:

V̈ = −2K1(x cos θ + y sin θ)2 − 2K1 (y cos θ − x sin θ)ω . (3-14)

V̈ is bounded then, the position error converges to zero, the Lyapunov like does
not provides any information about the orientation so we do not say anything
about it, we conclude that, the orientation assume any value.
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3.2.2
Sliding Mode Control

The Cartesian control is a usable controller when the goal is the position
control, in situations where we need to control not only the position but
also the orientation the Cartesian control can not satisfy this necessity. An
example is a situation where the camera is fixed in the robot in this situation
the orientation control is important a solution proposed for this problem
to use the sliding mode control. The purpose of using the SMC control
for position and orientation control and its ability to deal with unmatched
disturbances is not possible with the Backstepping Control. The Polar Control
ensures position and orientation control but, the singularity present in its
control law can be a problem when we want to take the robot to a specific
position and orientation and the it can not to deal with unmodeled dynamics.
The chattering phenomenon is a limitation in the SMC controller which,
degrades the controller accuracy and may excite unmodeled dynamics, which
undermines the system performance and may cause instability [55,56]. To use
sliding control as proposed in the section, first, we can use the chained form
transformation, we use the transformation in Eq .3-15 [54]:

z1 = eθ , (3-15)

z2 = (x− xd) cos θ + (y − yd) sin θ ,

z3 = (x− xd) sin θ − (y − yd) cos θ , (3-16)

(3-17)

and the following input transform:

u1 = ω , (3-18)

z2 = u2 + z3 u1 , (3-19)

which results in:

ż1 = u1 , (3-20)

ż2 = u2 , (3-21)

ż3 = z2 u1 . (3-22)
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The desired coordinates are qd =
[
xd yd θd

]T
, using the following control

law:

u1 = −k z1 − α z2 sign(s) |s|p , (3-23)

u2 = −k z2 + α z1 sign(s) |s|p , (3-24)

where k∈R is a proportional control gain, α∈R is a robustness control gain,
0<p≤1/2 is a term responsible for attenuating the chattering effect, s∈R is
the sliding surface defined by:

s = −2 z3 + z1 z2 , (3-25)

We can prove that the system reach the desired position and orientation, using
the following theorem below:
Teorema 3.1 Consider a nonholonomic system (3-2) and the stabilizing con-
trol law in (3-23) with sliding surface (3-25). Then, the following stability prop-
erties hold: (i) all signals of the overall closed-loop system are bounded; (ii)
limt→∞ z1(t), z2(t)=0; (iii) limt→∞ s(t)=0 and, consequently, limt→∞ z3(t)=0.

Prova. The first step is to use the following Lyapunov like function and prove
the ez1 and ez2 stability:

2V (z1, z2) = z2
1 + z2

2 , (3-26)

V̇ = z1 u1 + z1 u2 , (3-27)

V̇ = −k (z2
1 + z2

2) , (3-28)

Now we have prove that the sliding surface can reached ,using the following
Lyapunov function:

2V (s) = s2 , (3-29)

V̇ = s ṡ , (3-30)

= s (2 z2 u1 − z2u1 − z1 u2) , (3-31)

= s(z2 u1 − z1 u2) (3-32)

= −α(z2
1 + z2

2)sign(s)s|s|p (3-33)

= −α(z2
1 + z2

2)|s|p+1 . (3-34)

�

Notice that, in Eq .3-23, the proportional term ensures the convergence of
z1 and z2 to zero whereas the robustness term is responsible for the convergence
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of s and hence z3 to zero. The Lyapunov like function proves that z1 and z2

converge to zero and, notice that the second part of control law u1 and u2 does
not affect the stability prove and ensures which z3 converges to zero but, if
the α is a high value, the system is not as asymptotically stable. Choosing the
Lyapunov function for the surface: The Lyapunov V (s) shows that the sliding
surface converges to zero and, the Lyapunov like function shows that z1 and
z2 converges to zero then z3 converges to zero.
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3.2.3
Simulation and Results

Here we run the simulations in the Gazebo, using a hexapod PhantomX
robot. The graphics simulations were implemented using ad-hoc developed
Gazebo scripts and functions, running on the Ubuntu 18, Linux Enterprise,
64-bit OS using Intel (R) Core (TM) i5-8250U CPU @ 1.6GHz, 8GB DDR4
RAM.

The purpose of the simulations is to check the position and orientation
control of the Cartesian and SMC controls. The joints of the legs are controlled
by means of an internal PID controller that had its gain adjusted to the
following values: kp = 100, kd = 10 and kI = 0.01. We can see the Gazebo
interface in Fig 3.8.

Figure 3.8: PhantomX Hexapod in Gazebo Interface

The gait used for locomotion of the hexapod is the TRIPOD the choice
of this sequence of legs is because, in addition to desiring faster locomotion, it
also allows the robot to always be stable because the robot’s centre of mass is
always inside the support polygon.

The desired joints positions for the robot to perform its trajectory are
known and the robot itself already has a PID controller for the control of the
joints that have already been configured with the defined gains. In the case
of robots with legs, following the desired trajectory of the robot’s legs is not
relevant, because even if there is an error in tracking, we can still guarantee
the robot’s locomotion. To make the robot move, the sequence of legs was
associated with the commands to perform translation and rotation of the
robot so that it can move in the plane. When the control loop is closed, the
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designed controller performs position control in the case of Cartesian control
and position and orientation control in the case of SMC control.

In the figure 3.9, you can see the robot moving frame by frame towards
the origin in the Gazebo.The slowness in the robot trajectory in Gazebo
was due to the low relationship between the simulation time and the real-
time. This relationship occurs because of the low computational capability
of the computer used in the simulation. Therefore, we will observe the slow
convergence in the graphics.

Figure 3.9: Hexapod Robot Moving Frame to Frame

The purpose of this section is to validate the Cartesian control and
the SMC controller. We will simulate the SMC controller under unmodeled
dynamic and noise measurement in odometry.

3.2.4
Cartesian Controller

We tried using a Cartesian control to take the robot to its origin. We
tested the controller for the four quadrants of the plane. To do this, we adjust
the controller’s earnings to k1 = k2 = 0.4. The key idea of testing the controller
for quadrants is to see if it can reach the origin of the Cartesian plane from
different quadrants or if there are quadrants where malfunctions occur.
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3.2.4.1
Case I: First Quadrant

Here we check the Cartesian controller in the first quadrant, we chose
x = 2m, y = 2m and θ = 0rad as initial position and orientations. As noted
in Fig.3.10 the robot’s trajectory reaches the origin of the plane. In Fig.3.11.
We observe that the position errors converge to zero. On the other hand, the
orientation error converges to values between 2 and 3rad and the control signals
v has a large overshooting and has a poor transient and w converges to zero
faster, both control signals are bounded.
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Figure 3.10: Position and Orientation of Hexapod in First Quadrant
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Figure 3.11: Errors Coordinates and Control of Hexapod in First Quadrant

3.2.4.2
Case II: Second Quadrant

Now, we check the Cartesian controller in the second quadrant, we chose
x = −2m, y = 2m and θ = 0rad as initial position and orientations. As
noted in Fig.3.12 the robot’s trajectory reaches the origin of the plane. In
Fig.3.13. We observe that the position errors converge to zero. On the other
hand, the orientation error converges to values between −3 and −2rad and the
control signals v has a small overshooting and a poor transient w has a faster
convergence and both control signals are bounded.
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Figure 3.12: Position and Orientation of Hexapod in Second Quadrant

0 25 50 75 100

T ime , s

−2

0

2

x position error
ex

ey

0 25 50 75 100

T ime , s

−2

0

2

e θ

Orientation error

0 25 50 75 100

T ime , s

−2

0

2

v
,m

/
s

Linear velocity

0 25 50 75 100

T ime , s

−2

0

2

w
,r
a
d
/
s

Angular velocity

Figure 3.13: Errors Coordinates and Control of Hexapod in Second Quadrant
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3.2.4.3
Case III: Third Quadrant

Here we check the Cartesian controller in the third quadrant, we chose
x = −2m, y = −2m and θ = 0rad as initial position and orientations. As
noted in Fig.3.10 the robot’s trajectory reaches the origin of the plane. In
Fig.3.11. We observe that the position errors converge to zero. On the other
hand, the orientation error converges to values between 2 and 3 and the control
signals v has an small overshooting and a slow convergence and w has an faster
convergence and both control signals are bounded.
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Figure 3.14: Position and Orientation of Hexapod in Third Quadrant
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Figure 3.15: Errors Coordinates and Control of Hexapod in Third Quadrant

3.2.4.4
Case IV: Fourth Quadrant

The next step is check the Cartesian controller in the fourth quadrant,
we chose x = 2m, y = −2m and θ = 0rad as initial position and orientations.
As noted in Fig.3.16 the robot’s trajectory reaches the origin of the plane. In
Fig.3.17. We observe that the position errors converge to zero. On the other
hand, the orientation error converges to values between 2 and 3rad and the
control signals v has a small overshooting a low convergence and w has a faster
convergence and both control signals are bounded.
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Figure 3.16: Position and Orientation of Hexapod in the Fourth Quadrant
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Figure 3.17: Error Coordinates and Control of Hexapod in Fourth Quadrant
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3.2.4.5
Discussion and Analysis

We can observe in the simulations that the Cartesian control can not
control the robot orientation. However, if the problem is only of position
control, the Cartesian controller drives the robot to the desired position. The
control signal v has a high overshooting when the robot is in the first and fourth
quadrants and low overshooting when in the second and third quadrants we
notice that the control signal acts for a long time on the robot. On the other
hand, w presents a faster response when it stops actuating quickly on the
robot. That is the reason why explains why the robot’s trajectory is a straight
line towards the origin.

3.2.5
Sliding Mode Controller

Here we analyze the results of the SMC controller in the position and
orientation control of the PhantomX hexapod. We simulate the controller,
choosing the initial conditions in each quadrant of the Cartesian plane to check
the controller performance, unmodeled dynamics and, inherent noise from
the odometry sensor are considered in the simulation. We use the following
unmodel dynamic:

H(s) = ks
1 + sλ

, (3-35)

where, ks = 1, λ = 0.2, the cut-off frequency is ω = 1/λ = 5rad/s, k = 0.1
and α = 0.2.

3.2.5.1
Case I: First Quadrant

Here we simulate the robot in the first quadrant, we choose x = 2m,
y = 2m and θ = 0rad as initial conditions. In Fig. 3.18, it is possible to
observe that the trajectory has a discontinuity that occurs when the robot
stops and adjusts its orientation. Notice that the robot reaches the position
x and y in the Cartesian plane. When observing the orientation, we perceive
an oscillation and a poor transient. However, we observe that the orientation
converges to the desired value. In Fig. 3.19 it is observed that the control
signals v and w are bounded even with peaks and oscillations, and the sliding
surface also presents an oscillatory transient response.
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Figure 3.18: Position and orientation in the first quadrant: Unmodeled Dy-
namic and noise measurement in odometry
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Figure 3.19: Position and orientation Errors, control signals and sliding surface
in the first quadrant: Unmodeled dynamic and noise measurement in odometry
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3.2.5.2
Case II: Second Quadrant

Now, we simulate the hexapod in the second quadrant it can be seen
in Fig. 3.20 the trajectory is discontinuous, which means that the robot is
stopped for a long time this can be seen in the position graphs where x and y
remain constant for a while. The orientation also converges to zero, but there
is an oscillation in the response due to unmodeled dynamics. In Fig. 3.21 we
observe that the control signals v and ω and the sliding surface are bounded
and have oscillate during the transient regime.
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Figure 3.20: Position and orientation in the second quadrant: Unmodeled
Dynamic and noise measurement in odometry
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Figure 3.21: Position and orientation Errors, control signals and sliding surface
in the second quadrant: Unmodeled dynamic and noise measurement in
odometry

3.2.6
Case III: Third Quadrant

The next step is simulate the hexapod in the third quadrant it can be
seen in Fig. 3.22 the trajectory is discontinuous, which means that the robot is
stopped for a long time this can be seen in the position graphs where x and y
remain constant for a while. The orientation also converges to zero, but there
is an oscillation in the response due to unmodulated dynamics. In Fig. 3.23 we
observe that the control signals v and ω and the sliding surface are bounded
and has oscillate during the transient regime.
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Figure 3.22: Position and orientation in the third quadrant: Unmodeled
Dynamic and noise measurement in odometry
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Figure 3.23: Position and orientation Errors, control signals and sliding sur-
face in the third quadrant: Unmodeled dynamic and noise measurement in
odometry
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3.2.6.1
Case IV: Fourth Quadrant

Here we simulate the hexapod in the fouth quadrant it can be seen in
Fig. 3.24 the trajectory is discontinuous, which means that the robot is stopped
for a long time this can be seen in the position graphs where x and y remain
constant for a while. The orientation also converges to zero, but there is an
oscillation in the response due to unmodulated dynamics. In Fig. 3.25 we
observe that the control signals v and ω and the sliding surface are bounded
and has oscillate during the transient regime.
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Figure 3.24: Position and orientation in the fourth quadrant: Unmodeled
Dynamic and noise measurement in odometry
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Figure 3.25: Position and orientation Errors, control signals and sliding sur-
face in the fourth quadrant: Unmodeled dynamic and noise measurement in
odometry

3.2.7
Discussion and Analysis

When testing the Cartesian and SMC controllers for the hexapod it
was noticed that both manage to guarantee the position control of the
robot, but only the SMC was also able to guarantee the orientation control,
which depending on the task to be performed may be useful or not. Both
the mathematical statements and the graphs clearly show the limitations of
Cartesian control, since the orientation of the robot can take on any value.
On the other hand, the SMC control for being able to guarantee control of
both position and orientation also has limitations regarding its use, such as
chattering which, in addition to causing warming, can cause stability problems
when dealing with unmodeled dynamics, a solution to mitigate chattering
is to use a term |s|p by multiplying sign(s). It can be seen, that even with
the measurement noise in the odometry and with unmodeled dynamics, the
hexapod managed to reach the desired position with the desired orientation
the gains also greatly influenced the SMC. Due to the simplicity of the model
used for the robot, the SMC is not capable to perform tasks such as climbing
stairs because, the model does not have information about roughness and
inclination terrain, which makes the control action impossible, which is a
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practical limitation.
The use of both controllers depends on the objective to be achieved, if

we only want to control the position, the Cartesian controller can meet this
objective, now if the objective is orientation control, the SMC controller can
meet this objective.
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4
Concluding Remarks and Perspectives

In this work we have addressed the modeling and control design, based
on the sliding mode control approach, for a class of legged mobile robots. Two
kinematic models for the hopping robot, in flight and stance phases, was con-
sidered: a single mechanism with revolute and prismatic joints and a complex
one with only revolute joints. Two robust controllers based on sliding modes
were investigated: a first-order sliding mode control with attenuated chatter-
ing effect and a combination of finite-time and super-twisting algorithms. The
dynamic model of the hopping was also studied for the stance phase. Two dif-
ferent controllers were implemented: a computed-torque based controller and
a first-order sliding mode control with attenuated chattering effect. Finally,
the modeling and control of a multi-legged robot was also considered using a
cascade control strategy for a hexapod robot. Two controllers were studied to
evaluate the robot behavior for regulation tasks: the Cartesian regulation con-
trol and the first-order sliding mode control. The Lyapunov stability theory
was employed to demonstrate the stability and robustness properties of the
sliding mode controllers. Numerical simulations in Matlab were carried out to
evaluate the performance and feasibility of the proposed controllers for stabi-
lization of the hopping robots, in both phases. The Gazebo, an open-source
3D robotics simulator, were used to run graphical simulations and analyse the
motion sequence for the legs of the hexapod robot. The Robot Operating Sys-
tem (ROS) framework was adopted to develop the ROS nodes, which were
responsible for robot motion, posture control and data acquisition.

4.1
Analysis of the Results

After all, we conclude that the sliding mode control proposed to solve
the first hopping robot problem, worked even considering the high order terms
present in the model. As for super-twisting and planning using Fourier analysis
fails to deal with non linearity, as in the case of the first hopping robot
presented in Chapter 2.

The approach of the articulated hooping robot was not very simple
because, when carrying out the transformation in the chained form, the
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robot parameters appear in the equations it was also not very advantageous.
After all, the fact that the parameters appear in the chained form makes it
difficult to simulate the problem from a computational point of view. The
difficulties in simulation happen because the input transformation of chained
form depends on the robot parameters, then depending on the adjustment in
the robot parameters yields problems in simulation. The controllers proposed
for the bouncing robot presented in the support phase are able, within their
limitations, to make the joints reach the desired position, the advantage of the
model in the control design is to allow the control of the phases of stance and
flight and to detecting one of the phases without the necessity of a force sensor
in the foot, the disadvantage is the difficulty in thinking about the trajectory
in space because it is difficult to describe the CoM trajectory in the Cartesian
plane using only the joint space and vice versa.

The choice of the cascade control strategy proved to be useful for the
control of the hexapod it managed to guarantee the position and orientation
of the robot. The simulations in the Gazebo proved that the control strategy
managed to get the robot to reach the desired position and managed to
guarantee the orientation of the robot in the case of SMC.

4.2
Future Works

There is still a lot to be explored on robots with legs, for future work we
intend to:

– Perform force control so that the robot can walk on inclined places or
climb stairs. The aim of the idea is to explore the advantages of robots
with legs.

– Include a camera to the robot and use artificial intelligence techniques
for image processing.

– Simulate the hexapod presented in an agricultural environment of the
Gazebo, as this is a very interesting application and shows an application
of the subject.

– Build a robot with real legs and implement the codes developed for the
hexapod simulation. As it is a very interesting topic, the construction of
a real robot would be a way to apply the developed knowledge.

– Deepening in the analysis and study of bipedal robots, therefore, there
is still much to be explored in this theme.
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5
Appendix

5.1
Relevance of the Research Theme

In this section, we illustrate the relevance of the research on legged mobile
robots according to the following aspects: authors,affiliation,country,document
type, source and area of knowledge. The following keywords and their combinations
were used to obtain the statistical results: legged mobile robots; nonlinear robust
control; sliding mode control; outdoor environments; agricultural fields.

5.1.1
Legged mobile robots

Figure 5.1 shows the number of publications per authors using "legged mobile
robots" as a keyword search, where it can be seen that Hutter, M. (57), Siegwart,
R. (22) and Gehring, C. (18) are the most prominent authors. Notice that,
in Figure 5.2, the most relevant institutions working with legged mobile robots
are Carnegie Mellon University, Harbin Institute of Technology and ETH Zurich,
counting more than 120 publications each.

Figure 5.1: Number of publication per authors: legged mobile robots
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Figure 5.2: Number of publications per Affiliation:legged mobile robots

The figure 5.3 shows that in the last years has been an increase in the
publications about legged mobile robots since 2017 in 2019 the number of
documentations is the biggest in the nine years.

Figure 5.3: Number of publications per year:legged mobile robots
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The USA is the leader in the publication about legged mobile robots such as
in the graphic in the figure (5.4), Japan is the second country that has documents
published about legged mobile robots. In the USA case, the American government
use the legged mobile robot in the military application and financed many studies
in this field. Japan is in second place, in publications about legged mobile robots,
the country has a breakthrough in research with humanoid robots the examples
are the Asimo, the Qrio and the Actroid.

Figure 5.4: Number of publications per country:legged mobile robots

According to 5.5, most documents about legged mobile robots are scientific
papers, in 2019 the ICRA had a section about legged mobile robots, in 5.6 show
the type of paper in the IEEE,

Figure 5.5: Number of publications per document type:legged mobile robots
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Figure 5.6: Number of publications per source:legged mobile robots

According to figure 5.7 area of knowledge that publishes about legged mobile
robots are engineering and computer science a science computation both areas has
been combined to project legged robots mobiles using artificial intelligence such as,
reinforcement learning, neural networks, control such as robust control, adaptative
control, PID for instance.

Figure 5.7: Number of publications per subject:legged mobile robots
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5.1.2
Legged mobile robots in agriculture

Agriculture is an important activity for the humanity, since the antiquity
the human beings need feed and obtain their food to survive, the discovery of
agriculture was an contribution for this objective, it contribute that the capacity
to human beings fixed them in a land.

The agriculture has a much importance in the economic activity, in Brazil
for instance since its discovery in 1500’s to the present this activity moving the
economy starting to the “pau-brasil” and sugar cane in the Brazil Colony, the coffee
in the Brazil Empire to the Brazil Republic, start the mechanization of agriculture
in the start of 1960’s.

The Industrial Revolution caused a demand for an increase in the agricultural
productivity,chasing the new methods for modernize the crop production. The
control techniques are in the context, allow the design mechanism, which has
accuracy in execution tasks just as, sowing, planting, pest monitoring, harvest.

The combination of the keywords legged mobile robots and agriculture results
in graphics in this section, this research shows the applications about legged
mobile robots in agriculture. The graphics bellow associate the documents by year,
affiliation, author, country, document type and source.

The legged mobile robots has been gaining prominence in robotic, but second
the graphic 5.8, note the publication about legged mobile robot in agriculture yet
has been in beginning, the graphics shows that the publication has been an increase
from 2015 but, the number of document about the themes is three that means
the theme has been a low increase. All the Institutes in the graphic has the same
number of publications about the legged robots applications in agriculture.

Figure 5.8: Publications about legged mobile application in agriculture
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Note in figure 5.9 that all the author published the same quantity of papers
in this theme and, the behaviour repeat about affiliations second the figure 5.10.
A reason for this index can be mean that the application to legged mobile robots
in agriculture is a theme that does not totally exploited.

Figure 5.9: Number of publications per Author:legged mobile robots in agri-
culture

Figure 5.10: Number of publications per Author:legged mobile robots in
agriculture

Analysing the graphic in figure 5.12, China has four documents about legged
mobile robots and, all the other country has one publication.
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Figure 5.11: Number of publications per Country:legged mobile robots in
agriculture

The most documents about the legged mobile robots in agricultural appli-
cations has been published by four knowledge areas engineering, agricultural and
biologic science, computer science and chemistry.

Figure 5.12: Number of publications per Subject area:legged mobile robots in
agriculture

The most document about legged mobile in agriculture are articles (55.6%),
conference papers corresponding to 22.2% and, the knowledge areas that leaders
in publications in this field are the engineering, science computer and agricultural
and biological sciences. The IFAC has published 3 documents in 2013 and Nongye
Gongcheng Xuebao Transactions Of Chinese Society Of Agricultural Engineering
has two papers published.
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Figure 5.13: Number of publications per Doctype:legged mobile robots in
agriculture

Figure 5.14: Number of publications per Source:legged mobile robots in agri-
culture

5.1.3
Sliding mode control

In the last years has been an increase attention in systems witch the action
control and disturbances have discontinuity. The problem of discontinuous control
is resumed in to select a sliding surface for the function control to have a
discontinuity [56, 57], this is objective of sliding mode control.

There are many works in sliding mode control, in [58] the authors using sliding
mode control in the monitoring function in visual serving to deal with the uncertain
in the camera, in [59] the authors propose control an uncertain nonlinear system
and unknown direction using sliding mode control. In [60] the author analysis the
chattering in continuous sliding mode controllers. In [61] the authors propose to
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use a feedback linearization and a high order sliding mode control observation are
used in a quadrirotor UAV control.

The sliding mode control allow construct a control law that ensures the
robustness of system using the Slotine example [62], to prove the robustness and
stability of system with bounded uncertainties.

Considering the following system:

ẍ = f(x) + b(x)u . (5-1)

(5-2)

The bounded uncertainties on f(x) and b(x) 6= 0 satisfied the following conditions
adopted in [62]:

0 < bmin ≤ b ≤ bmax , (5-3)

0 < |f − f̂ | ≤ F ≤ bmax , (5-4)

f̂ is an estimate of function f . Considering the estimation of b, b̂ is the geometric
mean given by [62]:

b̂ = (bmin bmax)1/2 . (5-5)

According [62] the bound in Eq.5-3 can be written the following form:

β−1 ≤ b̂

b
≤ β , (5-6)

or

β−1 ≤ b

b̂
≤ β , (5-7)

Given the following sliding surface:

s = ˙̃x+ λ x̃ . (5-8)

Derivating the sliding surface in Eq.5-8 results in:

ṡ = ẍ− ẍd + λ ˙̃x , (5-9)

= f − b u− ẍd + λ ˙̃x , (5-10)
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Defining the control u as:

u = b̂−1û− ksign(s) , (5-11)

and choosing the following k which satisfies the sliding condition.

k ≥ β(F + η) + (β − 1)|û| , (5-12)

Replacing Eq.5-11 into Eq.5-9:

ṡ = f − b (b̂−1û− k sign(s))− ẍd + λ ˙̃x , (5-13)

where,

û = f̂ − ẍd − λx̃ (5-14)

which results in the equation bellow:

ṡ = f + b (b̂−1(f̂ − ẍd − λx̃)− k sign(s))− ẍd + λ ˙̃x , (5-15)

= (f − b b̂−1f̂) + (1− bb̂)(−ẍd + λx̃)− b b̂−1 k sign(s) . (5-16)

Note that the k is chosen to ensure the sliding condition, choosing the a Lyapunov
function V (s) can to prove that the system is reach the sliding surface and the
state error vector converges to zero. The Lyapunov function is given by:

2V (s) = s2 , (5-17)

V̇ (s) = s ṡ (5-18)

= s((f − b b̂−1f̂) + (1− bb̂−1)(−ẍd + λx̃))− b b̂−1 k s sign(s) . (5-19)

Note that V (s) is negative definite if the gain k is given by:

k ≥ |b̂b−1f − f̂ + (b̂b−1 − 1)(λ ˙̃x− ẍd)|+ η b̂b−1 , (5-20)

≥ (b̂b−1 − 1)|f̂ − ẍd + λ ˙̃x|+ b̂b−1|f − f̂ |+ η b̂b−1 , (5-21)

≥ (b̂b−1 − 1)|û|+ b̂b(F + η) , (5-22)

k ≥ (β − 1)|û|+ β(F + η) . (5-23)

When the sliding surface converges s to zero we have:

˙̃x = −λ x̃ , (5-24)

and the error x̃ converges to zero.
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The advantages of sliding mode control are to deal with uncertain in the
model and parameters and structure variable systems, that is the reason why has
been increasing the research in these control techniques. In the Fig. 5.15 shows
the phase portrait in the sliding mode control in ideal situation, when the surface
is reached the variable ˙̃x converges to zero the slope is given by angular coefficient
λ.

Figure 5.15: Phase portraint in sliding mode control

In the practice the imperfection in the devices and delays cause in the sliding
mode control the chattering phenomenal. During the delay between the function
sign(s) changes and the time control switches the trajectory cross the sliding
surface into the opposite region, when the control switches the trajectory reverses
its direction creating an oscillation. The chattering is a problem in sliding mode
control because results in a low control accuracy,high heat losses in the electrical
power systems, and a wear in mechanical systems. It excites the unmodeled
high-frequency dynamics, impairing the performance of the systems and causing
instability. [56]

There are method to eliminate or reducing the chattering in sliding mode
control, in [56] is proposed two methods, the first is split the control in a continuous
part and a switching this method reduce the amplitude of switching, the second
is replace the function sign(s) by the saturation function u = −β(x) sat(s/ε)
other example to eliminate the chattering is using the function sign(s)|s|p where
0 ≤ p ≤ 1/2.
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Figure 5.16: Chattering phenomenal in sliding mode control

5.2
Forward kinematic of leg

The hexapod leg is robotics manipulators where the base is body robot
then, it is possible to find the leg position and velocity using the forward and
inverse kinematic,in the figure (5.17) shows the frames in the hexapod leg. The
importance of frame is, find the homogeneous transformation and then, describe
the leg position and velocity.

Figure 5.17: Hexapod Leg and the Axis According Denavit-Hartenberg Criteria

The transformation of hexapod robot using the Denavit-Hartenberg for an
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hexapod leg is given by:

T i−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 (5-25)

Where αi,θi,ai and di are the Denavit-Hartenberg parameters i is the link index.
The Denavit-Hatenberg parameters for a hexapod robot are in the table 5.2:

link a1 di αi θi
1 L1 0 π/2 θ1
2 L2 0 0 θ2
3 L3 0 0 θ3

Table 5.1: Denavit-Hatenberg parameters

Using the parameters we have following Homogenious Matrix Transforma-
tion:

T 0
1 =


cos θ1 0 sin θ1 L1 cos θ1

sin θ1 0 − cos θ1 L1 sin θ1

0 1 0 0
0 0 0 1

 , (5-26)

T 1
2 =


cos θ2 − sin θ2 0 L2 cos θ2

sin θ2 cos θ2 0 L2 sin θ2

0 0 1 0
0 0 0 1

 , (5-27)

T 2
3 =


cos θ3 − sin θ3 0 L3 cos θ3

sin θ3 cos θ3 0 L3 sin θ3

0 0 1 0
0 0 0 1

 , (5-28)

The transformation the base to foot is given by:

T 0
3 = T 0

1 T
1
2 T

2
3 , (5-29)
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The homogeneous transformation matrix T 0
3 is given by:

T 0
3 =


c1c23 −c1s23 s1 c1(L1 + L2c2 + L3c23)
s1c23 −s1s23 −c1 s1(L1 + L2c2 + L3c23)
s23 c23 0 L2s2 + L3s23

0 0 0 1

 . (5-30)

For simplicity, we adopted the following notation sin θi = si , sin(θi + θj) = sij ,
cos θi= ci , cos (θi + θj)= cij In the last column, the third term is the foot position
then the position x ,y and z in relation to base is given by:

x = c1(L1 + L2c2 + L3c23) ,

y = s1(L1 + L2c2 + L3c23) ,

z = L2s2 + L3s23 . (5-31)

The linear velocity and angular of leg is given by the following equation:

ṗfoot = JL(q)q̇ , (5-32)

ωfoot = JA(q)q̇ . (5-33)

Where JL∈ R3×3 and JA∈ R3×3 are respectively the linear and angular Jacobian
of leg .

In general, the Jacobian is given by the following equation:

J =
 ~z0 × (~p3 − ~p0) ~z1 × (~p3 − ~p1) ~z2 × (~p3 − ~p2)

~z0 ~z1 ~z2

 (5-34)

~p0,~p1, ~p2 and, ~p3 are the vectors that represent the point position and ~z0, ~z1

and, ~z2 are the unit vector in the angular velocity direction. The vectors position
~p0, ~p1, ~p2 and, ~p3 are:

~p0 =


0
0
0

 ~p1 =


L1c1

L1s1

Z1

 (5-35)

~p2 =


L1c1 + L2c12

L1c1 + L2s12

Z1 + L2s2

 ~p3 =


c1(L1 + L2c2 + L3c23)
s1(L1 + L2c2 + L3c23)
Z1 + L2s2 + L3s23

 (5-36)

The vectors ~z0, ~z1 and, ~z2 are:
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~z0 =


0
0
1

 ~z1 =


s1

−s1

0

 ~z2 =


s1

−s1

0

 (5-37)

The Jacobian matrix for a hexapod leg is given by:

J =



s1(L1 + L2c2 + L3c23) −c1(L2s2 + L3s23) −L3c1s23

c1(L1 + L2c2 + L3c23) −s1(L2s2 + L3s23 −L3s1s23

0 L2c2 + L3c23 −L3c23

0 s1 s1

0 −c1 −c1

1 0 0


(5-38)

The Jacobian describes the linear and angular velocities and the joints
variables in this case, note that the velocity component ωx and ωy are not zero
and the relation between them is given by:

ωx
ωy

= − sin θ1

cos θ1
(5-39)

5.3
Inverse kinematic of hexapod leg

The inverse kinematic is the part responsible for converters the trajectory of
legs in the Cartesian in the desired joints trajectories. In the figure (5.18) is shown
the lateral and superior visions using the cosine law, it is possible to calculate the
inverse kinematic.

The according to figure(5.18) the angle θ1 is given by the following equation:

θ1 = tan−1
(
Y

X

)
. (5-40)

Using the cosine law it is possible calculate the β and γ.

L2
3 = L2

2 +D2 − 2L2Dcos(β) , (5-41)

L2
3 − L2

2 −D2 = −2L2Dcos(β) , (5-42)

cos(β) = L2
2 +D2 − L2

3
2L2D

, (5-43)

β = cos−1
(
L2

2 +D2 − L2
3

2L2D

)
. (5-44)

(5-45)
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Figure 5.18: Inverse kinematic of hexapod leg

D2 = L2
2 + L2

3 − 2L2L3cos(γ) ,

L2
3 + L2

2 −D2 = 2L2L3cos(γ) ,

cos(γ) = L2
2 + L2

3 −D2

2L2L3
,

γ = cos−1
(
L2

2 + L2
3 −D2

2L2L3

)
.

The angle α is given by the following equation:

α = sin−1

 Z0√
Z2

0 + L2

 . (5-46)

Obtained the angles α,β, and γ it is possible calculate the angles θ2 and θ3:

θ2 = β − α , (5-47)

θ2 = cos−1
(
L2

2 +D2 − L2
3

2L2L3

)
− sin−1

(
Z√

Z2 + L2

)
. (5-48)

θ3 = γ − π ,

θ3 = cos−1
(
L2

2 +D2 − L2
3

2L2L3

)
− π . (5-49)
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5.4
Dynamic model of a leg

The dynamic model of manipulator is an important to simulate the leg motion
, it allow analysis the effects in the leg, the forces and torques actuating in the
hexapod leg. The dymanic equation can be obtained using two methods, the first
method is the Newton-Euler formulation which consists in describe the diagram
forces and torques in the body and apply the Newton’s law. The second method
is the Lagrane’s formulation which consists in the energy concept, calculating the
kinetic and potential energy and apply the Lagrangian mechanic equations. In two
cases, the dynamic equation that describes the motion of i-th leg can be obtained
by the Euler-Lagrange formalism as:

Hi(qi)q̈i + Ci(qi, q̇i)q̇ +Gi(q) = τ + JTe (q)λfwrech , (5-50)

where H(q) ∈ R3×3 is the inertia matrix, C(q, q̇) ∈ R3×3 is the Coriolis and
centrifugal matrix terms, G(q) ∈ R3×1 is the gravitational terms, τ ∈ R3×1 is
the joint torques, Je ∈ R6×3 is the leg Jacobian and λ ∈ R6×1 is the generalized
contact forces and moments.
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The elements of the dynamic model for the i-th leg are given by:

h11 = m1 l
2
c1 + Izz1 +m2 (l21 + 2 l1 lc2 c2 + l2c2) + Izz2 ,

+m3(l21 + 2 l1 l2 c2 + 2 l1 l2 c2 + 2 l1 lc3 c3 + l22 c
2
2 + lc3 c

2
23) + Izz3 .

h12 = h13 = h21 = 0 ,

h22 = m2 l
2
c2 + Ixx2 s

2
1 + Iyy2 c

2
1 + Iyy3 c

2
1 +m3 (l21 + 2 l1 l2 c2 + 2 l1 lc3 c3) ,

+m3 (l22 c2
2 + lc3 c

2
23) + Ixx3 s

2
1 + Iyy3 c

2
1 ,

h23 = m3 (l2 lc3 c3 + l2c3) + Ixx3 s
2
1 + Iyy3 c

2
1 ,

h31 = 0 ,

h32 = h23 ,

h33 = m3 l
2
c3 + Iyy3 s

2
1 + Ixx3 c

2
1 ,

c111 = 0 ,

c112 = −2m2 l1 lc2 s2 −m3 lc3 c23 s23 ,

c113 = −2m3 lc3 c23 s23 ,

c121 = 0 ,

c122 = (Ixx2 − Ixx3) s1 c1 − (Iyy2 − Iyy3) s1 c1 ,

c123 = −(Ixx3 − Iyy3) s1 c1 ,

c131 = 0 ,

c132 = 2 s1 c1 (Ixx3 − Iyy3) ,

c131 = 0 ,

(5-51)
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c211 = m2 l1 lc2 s2 +m3 (l1 lc3 c3 + l2 s2 c2 + l2c3s23 c23) ,

c212 = 0 ,

c213 = 0 ,

c221 = 2 (Ixx2 + Ixx3) s1 c1 + 2 (Iyy2 − Iyy3) s1 c1 ,

c222 = −2m3 (l1 l2 s2 + l22 s2 c2 + l2c3 s23 c23) ,

c223 = −2m3 (l1 lc3 s3 + lc3 s23 c23) ,

c231 = 2 (Ixx c1 − Iyy s1) ,

c232 = 0 ,

c233 = −2m3 l2 lc3 s3 ,

c331 = 2 s1 c1 (Ixx3 − Iyy3) ,

c332 = 1
2(m3 l2 lc3 s3) ,

c333 = 0 ,

g1 = 0 ,

g2 = m2 g lc2 c2 +m3z, g lc3 c23 ,

g3 = m3 g lc3 c23 .

(5-52)

Notice that, the use of subscript i in each element of the dynamic model was
omitted here for simplicity of notation.

5.5
ROS implementation

ROS is a framework that allows the development of robots and, has several
tools and libraries allowing, a hardware abstraction, device drivers, simplifying the
robot design. This framework has the following features :

– Communication pier-to-pier.

– Multi language : ROS allow that the programmer write codes in
python,C + +, Java for instance.

– Basic tools : ROS has a many tools which allow monitoring the sensor and
visualize the robot structure. An example is the rqt graph which to visualize
the graph and the rqt plot which allow to visualize the signals in the sensors
and actuators for instance.
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– Free software

There are basic concepts of ROS the concepts are:

– Node: Node is a process, it publish(send) a message to a topics or sub-
scribe(receive) a message.The nodes is responsible for control the position
and orientation robot for instance, actuating in the joints, an example is the
joint_state_publisher and robot_state_publisher

– Topics: Topics contains the message published by a specific node. Topics are
buses where nodes exchange messages.

– Message: Message is a type of data comprising typed field an examples of
message in ROS.

– Service: Service is defined by a pair of messages, one for the request an other
for reply.

The ROS Master handles the information, every time a node needs infor-
mation from a topic the Master will locate the topic. The communication scheme
for ROS is shown in Fig 5.19 the Talker node is responsible for making the infor-
mation available (publishing in a topic) and the Listener request the information
(Subscribing in a topic).
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Figure 5.19: Communication scheme for ROS [4]

A software in ROS is organized in packages, a package is the smallest unit of
a software organization, for instance, if we think in a particular robot its software in
ROS, this robot has a package which can be downloaded in the internet repository.

The Gazebo is a 3D simulator it provides an environment which allows
creating a scenario and, simulate the environmental conditions such as illumination,
gravity, inertia, etc. We use the Gazebo to simulate the controller developed for
the hexapod robot, combining with the ROS using the dynamic model URDF in
the phantomx_gazebo package downloaded in the HumaRobotics [63] website and
based in the hexapod Phatomx we create a python code which corresponds the
note responsible for the hexapod gait. The structure of nodes and tópics are shown
in the Fig .5.20. the gazebo and robot_state_publisher are the only nodes that
have not been implemented by the author.

Figure 5.20: Nodes and topics complete
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We describe all the nodes and topics used in this work the nodes used are:

– hexapod : This the node responsible for define the gait and make the hexapod
move.

– hexapod_control : This node responsible for control the position and
orientation hexapod.

– robot_sate_publisher : Publish the state robot in tf topic

– rostopic_21338_1598896470551 : Responsible for publish the desired posi-
tion orientation the the topic /hexapod/goal.

and the topics:

– /phantomx/odom: This topic has a message about the position and orien-
tation to the world frame.

– /phantomx/joint_states: Contains the messages about the joint position,
velocities and efforts.

– /hexapod/goal: Contains a typed message Pose2D and the information
about the position and orientation desired.

– /phantomx/j_c1_rm_position_/controller/command: Contains a
typed Float64 and the information about the desired hexapod leg joints.

– /phantomx/cmd_vel : Contains a message in the Twist format and the
information about the linear and angular hexapod velocity.
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