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Abstract

Torres Izquierdo, Yenier; Casanova, Marco Antonio (Advisor).
Contributions to the Problem of Keyword Search over Da-
tasets and Semantic Trajectories Based on the Resource
Description Framework. Rio de Janeiro, 2021. 144p. Tese de
Doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Keyword search provides an easy-to-use interface for retrieving informa-
tion. This thesis contributes to the problems of keyword search over schema-less
datasets and semantic trajectories based on RDF.

To address the keyword search over schema-less RDF datasets problem,
this thesis introduces an algorithm to automatically translate a user-specified
keyword-based queryK into a SPARQL query Q so that the answers Q returns
are also answers for K. The algorithm does not rely on an RDF schema, but it
synthesizes SPARQL queries by exploring the similarity between the property
domains and ranges, and the class instance sets observed in the RDF dataset.
It estimates set similarity based on set synopses, which can be efficiently pre-
computed in a single pass over the RDF dataset. The thesis includes two
sets of experiments with an implementation of the algorithm. The first set
of experiments shows that the implementation outperforms a baseline RDF
keyword search tool that explores the RDF schema, while the second set of
experiments indicate that the implementation performs better than the state-
of-the-art TSA+BM25 and TSA+VDP keyword search systems over RDF
datasets based on the “virtual documents” approach. Finally, the thesis also
computes the effectiveness of the proposed algorithm using a metric based on
the concept of graph relevance.

The second problem addressed in this thesis is the keyword search over
RDF semantic trajectories problem. Stop-and-move semantic trajectories are
segmented trajectories where the stops and moves are semantically enriched
with additional data. A query language for semantic trajectory datasets has
to include selectors for stops or moves based on their enrichments, and
sequence expressions that define how to match the results of selectors with
the sequence the semantic trajectory defines. The thesis first proposes a
formal framework to define semantic trajectories and introduces stop and move
sequence expressions, with well-defined syntax and semantics, which act as
an expressive query language for semantic trajectories. Then, it describes a
concrete semantic trajectory model in RDF, defines SPARQL stop-and-move
sequence expressions, and discusses strategies to compile such expressions
into SPARQL queries. Next, the thesis specifies user-friendly keyword search
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expressions over semantic trajectories based on the use of keywords to specify
stop and move queries, and the adoption of terms with predefined semantics
to compose sequence expressions. It then shows how to compile such keyword
search expressions into SPARQL queries. Finally, it provides a proof-of-concept
experiment over a semantic trajectory dataset constructed with user-generated
content from Flickr, combined with Wikipedia data.

Keywords
Keyword search; RDF graph; SPARQL; KMV-Synopses; Semantic tra-

jectories; Sequence expressions.
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Resumo

Torres Izquierdo, Yenier; Casanova, Marco Antonio. Contribui-
ções ao Problema de Busca por Palavras-Chave em Con-
juntos de Dados e Trajetórias Semânticas Baseados no Re-
source Description Framework. Rio de Janeiro, 2021. 144p.
Tese de Doutorado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Busca por palavras-chave fornece uma interface fácil de usar para recupe-
rar informação. Esta tese contribui para os problemas de busca por palavras-
chave em conjuntos de dados sem esquema e trajetórias semânticas baseados
no Resource Description Framework.

Para endereçar o problema da busca por palavras-chave em conjuntos
de dados RDF sem esquema, a tese introduz um algoritmo para traduzir au-
tomaticamente uma consulta K baseada em palavras-chave especificadas pelo
usuário em uma consulta SPARQL Q de tal forma que as respostas que Q re-
torna também são respostas para K. O algoritmo não depende de um esquema
RDF, mas sintetiza as consultas SPARQL explorando a semelhança entre os
domínios e contradomínios das propriedades e os conjuntos de instâncias de
classe observados no grafo RDF. O algoritmo estima a similaridade entre con-
juntos com base em sinopses, que podem ser precalculadas, com eficiência, em
uma única passagem sobre o conjunto de dados RDF. O trabalho inclui dois
conjuntos de experimentos com uma implementação do algoritmo. O primeiro
conjunto de experimentos mostra que a implementação supera uma ferramenta
de pesquisa por palavras-chave sobre grafos RDF que explora o esquema RDF
para sintetizar as consultas SPARQL, enquanto o segundo conjunto indica que
a implementação tem um desempenho melhor do que sistemas de pesquisa
por palavras-chave em conjuntos de dados RDF baseados na abordagem de
“documentos virtuais” denominados TSA+BM25 e TSA+VDP. Finalmente, a
tese também computa a eficácia do algoritmo proposto usando uma métrica
baseada no conceito de relevância do grafo resposta.

O segundo problema abordado nesta tese é o problema da busca por
palavras-chave sobre trajetórias semânticas baseadas em RDF. Trajetórias se-
mânticas são trajetórias segmentadas em que as paradas e os deslocamentos de
um objeto móvel são semanticamente enriquecidos com dados adicionais. Uma
linguagem de consulta para conjuntos de trajetórias semânticas deve incluir
seletores para paradas ou deslocamentos com base em seus enriquecimentos
e expressões de sequência que definem como combinar os resultados dos sele-
tores com a sequência que a trajetória semântica define. A tese inicialmente
propõe um framework formal para definir trajetórias semânticas e introduz
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expressões de sequências de paradas-e-deslocamentos (stop-and-move sequen-
ces), com sintaxe e semântica bem definidas, que atuam como uma linguagem
de consulta expressiva para trajetórias semânticas. A tese descreve um modelo
concreto de trajetória semântica em RDF, define expressões de sequências
de paradas-e-deslocamentos em SPARQL e discute estratégias para compilar
tais expressões em consultas SPARQL. A tese define consultas sobre trajetó-
rias semânticas com base no uso de palavras-chave para especificar paradas e
deslocamentos e a adoção de termos com semântica predefinida para compor
expressões de sequência. Em seguida, descreve como compilar tais expressões
em consultas SPARQL, mediante o uso de padrões predefinidos. Finalmente,
a tese apresenta uma prova de conceito usando um conjunto de trajetórias se-
mânticas construído com conteúdo gerado pelos usuários do Flickr, combinado
com dados da Wikipedia.

Palavras-chave
Pesquisa por palavras-chave; Grafo RDF; SPARQL; Sinopses KMV;

Trajetórias semânticas; Expressões de Sequência.
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1
Introduction

1.1
Context and Motivation

Keyword search is a very popular information discovery method because it
allows naive users to retrieve information without any knowledge about schema
details or query languages. The user specifies a few terms, called keywords, and
it is up to the system to retrieve the documents, such as Web pages, that best
match the keywords.

Traditional Information Retrieval (IR) systems allow users to search
unstructured documents using keywords. They retrieve the documents that
best match the keywords and rank the retrieved documents so that the top
ones are the most relevant, according to some relevance criteria.

Keyword queries also offer a convenient alternative to query structured
datasets. In general, keyword queries avoid the use of complex query languages,
but they require tools that face the challenging task of automatically deter-
mining, from a set of keywords, what pieces of information to retrieve, and
how these pieces can be combined to provide a relevant answer to the user.
Note that traditional IR systems do not have to combine pieces of information
since they match keywords to one document at a time.

Systems that process keyword queries over relational databases are
commonly called relational keyword search systems or R-KwS systems [1, 2,
9, 30, 31]. R-KwS systems consider the relational database as a network of
tuples interconnected by foreign keys. Given a keyword query, they detect
those tuples that contain the keywords, generate connected components based
on how these tuples are associated, and return these connected tuples as an
answer to the query, as proposed in [44].

In the last decade, the Resource Description Framework (RDF) emerged
as a data model that represents data as a set of triples, which in turn induces a
graph. Keyword search systems over RDF datasets (or RDF graphs), or RDF-
KwS systems, are similar to R-KwS systems. They operate over the RDF graph
and, given a keyword query, retrieve nodes of the RDF graph that match the
keywords, and discover how the nodes are interrelated (by paths in the RDF
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Chapter 1. Introduction 16

graph) to compose complete answers [41]. Hence, an answer to a keyword query
over an RDF graph is not just a set of nodes, but a set of nodes and paths
between them.

The keyword search systems proposed in the literature for relational and
RDF environments have points in common. However, RDF datasets pose an
additional challenge when no schema is defined, which is never the case for
relational databases. The first problem addressed in this thesis then is the
keyword search over schema-less RDF datasets problem, precisely defined in
Section 1.2.1.

Going further, the expressiveness of keyword queries can be expanded by
considering terms with a predefined semantics. For example, QUIOW [33] uses
reserved terms to express comparison operators, such as “between”, “less than”,
“greater than”, etc. As a more complex example, one may consider terms with
predefined semantics that help express aggregations [70]. Along these lines,
this thesis explores how to expand keyword queries to semantic trajectories.

In this case, keyword search expressions over a dataset of semantic
trajectories uses keywords to specify stop and move queries and adopts terms
with predefined semantics, such as “begin”, “end”, “then”, and “later on”, to
define sequence expressions that match the stop and move queries with the
sequence of actions defined in the semantic trajectory.

Figure 1: A semantic trajectory and a query that searches for it.
X, Y, Z match stop attributes, underlined words match move attributes, words in bold are
part of the query notation

For example, consider a trajectory dataset containing tourist trips in the
historic city of Pisa, Italy. One may want to submit the query “Find walking
trajectories that begin at the Leaning Tower, then stop at Campo Santo,
and end at a museum” that retrieves semantic trajectories such as that in
Figure 1. The intended interpretation of “then” is that the first two stops are
consecutive, but “later on” indicates that there might be several stops between
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Chapter 1. Introduction 17

Campo Santo and the museum, as long as all moves are by walking, as
transportation means. Note that the terms in boldface are keywords that select
points-of-interest, based on their enrichments, and transportation means, based
on their characteristics.

Thus, the second problem addressed in this thesis is the keyword search
over RDF semantic trajectories problem, precisely defined in Section 1.2.2.

1.2
Problems Addressed

This section defines the problems the thesis addresses.

1.2.1
The Keyword Search over Schema-less RDF Datasets Problem

A keyword-based query is a set K of literals, or keywords. An answer for K
over an RDF dataset T is a subset A of T such that: (i) A has triples that
match keywords in K; (ii) A induces a connected RDF graph. Note that we
can then compare answers based on the number of keywords they match and
on their number of triples, as defined in detail in [24].

Let GA be the RDF graph induced by an answer A. If GA is a Steiner
tree of T that covers the nodes that match keywords, then GA is connected
and does not have unnecessary edges. Therefore, a high-level strategy to solve
the RDF-KwS Problem would be to construct an algorithm that:
(i) find as many keyword matches as possible with nodes in the RDF graph;
(ii) find Steiner trees of T that cover the matching nodes;
(iii) rank them by relevance to the user information need.

However, this solution is challenging due to the complex and hetero-
geneous structure of RDF graphs, that, unlike relational databases, do not
necessarily have a schema.

The first problem this thesis addresses is the keyword search over schema-
less RDF datasets problem:

“Given an RDF dataset T that does not follow an RDF-Schema, and
a keyword-based query K, find an answer A for K over T , preferably with
as many keyword matches as possible and with the smallest set of triples as
possible”.

1.2.2
The Keyword Search over RDF Semantic Trajectories Problem

A raw trajectory consists of spatio-temporal positions extracted from a raw
movement track [46]. A segmented trajectory is a partition of the points of a raw

DBD
PUC-Rio - Certificação Digital Nº 1712877/CA
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trajectory into homogeneous segments, where a given set of properties holds.
For example, according to the stop-and-move model [54], a raw trajectory can
be split into segments of two kinds: stop, where the speed of the object is
lower than a certain threshold; and move, where the speed is greater than such
threshold. Raw trajectories are useful for applications that require only the
movement track of the objects, but most applications require additional data
(for instance, the city information, traffic conditions, weather data, among
others). The process of adding data to the raw trajectories from external
repositories is known as the semantic enrichment process [46].

A semantic trajectory is a trajectory that is segmented, using various
segmentation criteria (e.g., stops, turns, etc.), into sub-trajectories and is
enriched with additional data [49] that describe the segmentation points and
the resulting segments. More specifically, in this thesis, we focus on stop-and-
move semantic trajectories of humans [50], where the segmentation points are
stops, and the sub-trajectories are the way humans moved from one stop to
the other. Consequently, the stop-and-move semantic trajectory is enriched
by data that describe the type of stops and moves. For example, a stop can
be enriched with the points-of-interest (POIs) at the stop, and a move with
the transportation means, duration, and distance traveled. The trajectory is
usually connected to a moving object, which also has its semantic properties
that can also be of interest (e.g., for a traveler’s trajectory, the person’s health
status, age, occupation, etc.).

The second problem this thesis addresses is the keyword search over RDF
semantic trajectories problem:

“Given a set T of semantic stop-and-move trajectories, represented as an
RDF dataset, define a keyword search language to retrieve trajectories in T .
The language must include:
(i) stop and move keyword queries that select sets of stops or moves based

on their enrichments; and
(ii) sequence expressions that define how to match the stop and move queries

with the sequence of actions defined in the semantic trajectory”.

1.3
Goal and Contributions

The contributions of this thesis are:

• For the keyword search over schema-less RDF datasets problem:

1. A novel algorithm to address the keyword search over schema-
less RDF datasets problem by automatically translating a keyword
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query K into a SPARQL query Φ so that the answers Φ returns are
also answers for K. The algorithm neither relies on an RDF schema,
nor accesses the RDF graph during the compilation process.

2. Two sets of comprehensive experiments with an implementation
of the algorithm. The first set of experiments shows that the
implementation outperforms, in all metrics adopted, a baseline RDF
keyword search tool that explores the RDF schema. The second set
of experiments indicate that the implementation performs better
than the TSA+BM25 and TSA+VDP keyword search systems over
RDF datasets based on the “virtual documents” approach, using
the metrics and the benchmarks proposed originally to assess these
systems.

3. A metric named Graph Relevance Ratio (GRR) to establish when an
answer graph is relevant w.r.t. a ground truth graph. It is based on
the number of relevant and non-relevant triples in the RDF graph,
but it punishes the presence of non-relevant triples, and does not
memorize the relevant triples in previous rank positions.

• For the keyword search over RDF semantic trajectories problem:

1. A formal framework, based on Description Logic, to define semantic
trajectories.

2. The definition of the syntax and semantics of stop and move
sequence expressions.

3. A concrete framework that represents a semantic trajectory model
in RDF.

4. SPARQL stop and move sequence expressions templates that help
compile such expressions into SPARQL queries.

5. User-friendly keyword search expressions to specify stop and move
queries, which adopt terms with predefined semantics, such as
“then” and “later on”, to define sequence expressions.

6. A strategy to compile keyword search expressions into SPARQL
stop and move sequence expressions, which are then compiled into
SPARQL queries, taking advantage of the concrete framework.

7. Finally, a proof-of-concept experiment to validate the proposed
solution.

1.4
Thesis Structure

This thesis is organized as follows:
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• Chapter 1 states the motivation, problems addressed, and contributions.

• Chapter 2 provides the necessary background.

• Chapter 3 reviews related work.

• Chapter 4 describes the proposed algorithm to compile keyword queries
into SPARQL queries, which neither relies on an RDF schema, nor
accesses the RDF graph during the compilation process.

• Chapter 5 evaluates the performance of an implementation of the pro-
posed algorithm by comparing it with state-of-art systems, adopted as
baselines. Also, it introduces an alternative measure to establish the rel-
evance of an answer graph.

• Chapter 6 defines a formal framework for querying semantic trajectories,
formalized in Description Logic.

• Chapter 7 introduces a concrete RDF framework for querying semantic
trajectories, based on the formal framework. Also, it presents an algo-
rithm for translating keyword query expressions over semantic trajecto-
ries in RDF to SPARQL queries. Finally, it describes a proof-of-concept
experiment to validate the proposed approach.

• Finally, Chapter 8 contains the conclusions and suggests directions for
future.
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2
Background

This chapter presents an overview of the main concepts involved in this
thesis. Section 2.1 summarizes basic topics about RDF. Section 2.2 details
the main features of the SPARQL query language. Section 2.3 introduces the
more significant definitions related to keyword-based queries over RDF graphs.
Section 2.4 summarizes the key definitions about set similarity measures and
KMV–Synopses. Finally, Section 2.5 briefly reviews some basic concepts about
Description Logic.

2.1
Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a family of specifications de-
veloped and supported by the W3C1 to represent information about resources
on the Web. RDF resources are classified into IRIs (Internationalized Resource
Identifier), literals and blank nodes. An IRI2 is a string used to globally iden-
tify a resource on the Web (it is a generalization of URIs which can also contain
UNICODE characters). A literal is a basic value associated with a data type,
e.g. String, Boolean, Integer, and Date. When a data type is not specified, the
default is “String”. Any IRI or literal denotes something in the world (the
“universe of discourse”). The resource denoted by an IRI is called its referent,
and the resource denoted by a literal is called its literal value. A blank node is
a resource without a global identifier. It acts as a local identifier and can always
be replaced by a new, globally unique IRI (a Skolem IRI 3). An RDF term is
either an IRI, a blank node or a literal. The sets of IRIs, blank nodes and
literals are disjoint and, unlike IRIs and literals, blank nodes do not identify
specific resources.

RDF models data as triples of the form (s, p, o), where s is the subject,
p is the predicate and o is the object of the triple. An RDF triple (s, p, o)
says that some relationship, indicated by p, holds between the subject s and
object o. The subject of a triple is an IRI or a blank node, the predicate is an
IRI, and the object is an IRI, a literal or a blank node. As Figure 2 shows, a

1https://www.w3.org/TR/rdf11-primer
2https://tools.ietf.org/html/rfc3987
3https://www.w3.org/2011/rdf-wg/wiki/Skolemisation
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Figure 2: Example of an RDF triple

triple is also seen as an edge in a directed, labeled graph where a directed edge
(labeled predicate) connects the subject node to the object node.

A set T of RDF triples, or an RDF dataset, is equivalent to an edge-
labeled direct graph GT , such that the set of nodes of G is the set of RDF
terms that occur as subject or object of the triples in T and there is an edge
(s, o) in G labeled with p iff the triple (s, p, o) occurs in T . Hence, an RDF
dataset can also be called RDF graph. Note that a predicate IRI can also occur
as a node in the same graph.

RDF offers enormous flexibility but, apart from the rdf:type property,
which has a predefined semantics, it provides no means for defining application-
specific classes and properties. Instead, such classes and properties, and
hierarchies thereof, are described using extensions to RDF provided by the
RDF Schema 1.14 (RDF Schema or RDF-S). In RDF-S, a class is any
resource having an rdf:type property whose value is the qualified name
rdfs:Class of the RDF Schema vocabulary. A property is any instance of
the class rdfs:Property. The rdfs:domain property is used to indicate that a
particular property applies to a designated class, and the rdfs:range property
is used to indicate that the values of a particular property are instances of
a designated class or, alternatively, are instances (i.e., literals) of an XML
Schema datatype. Finally, RDF-S offers a property, rdfs:comment, used to
associate a comment with an IRI, and a property, rdfs:label, used to assign
a different name to a resource.

Figure 3 depicts a simple RDF graph derived from the IMDb dataset5.
The main classes are film (F), director (D), actor (A), profession (P), and
genre (G). The class instances are identified by a synthetic IRI consisting of
the letter that identifies the belonging class followed by a number (e.g.; A1 for
the actor “Samuel L. Jackson”, D2 for the director “Robert Rodriguez”, and
F1 for the film “Pulp Fiction”). A directed and labeled edge connects each pair
of nodes.

4https://www.w3.org/TR/rdf-schema/
5https://www.imdb.com/interfaces/
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2.2
SPARQL Query Language

SPARQL6 is a structured language for querying RDF datasets that allows
the retrieval and processing of triples. The body of a SPARQL query is a
graph pattern P composed of triple patterns, defined like RDF triples, except
that the subject, predicate or object can be a variable. The evaluation of a
SPARQL query binds values to the variables using a solution mapping M .
The application of M to a graph pattern P uniformly replaces each variable
in P by the RDF term.

SPARQL offers four types of query as output: (i) a SELECT query that
returns projections of mapping from M as a tabular data; (ii) a CONSTRUCT
query that returns a new set of triples based on the mapping in M ; (iii) an
ASK query that returns true if the pattern P is matched in the input dataset
or false otherwise; and, (iv) a DESCRIBE query that returns a set of triples
that represent the IRIs and blank nodes found in M .

Example 1 Based on the RDF graph in Figure 3, assume that we desire to
retrieve “The title of the films directed by Quentin Tarantino”. Then, we can
write the SPARQL SELECT query below to answer our information need.

SELECT ?film_name
WHERE {

?director_id <name > "Quentin Tarantino ".
?director_id <directed > ?film_id.
?film_id <name > ?film_name }

The WHERE clause contains the graph pattern P that is matched with
the RDF graph. In this example, P matches five triples (see Figure 4),
identifying the director “Quentin Tarantino” with its IRI (D1 bound to the
variable ?director_id) and the two films (F1 and F3 bounded to the variable
?film_id). The SELECT clause projects the variable(s) in P that will appear as
column(s) in the resulting table (in this case, ?film_name). Hence, the variable
?film_name is bound with the values “Reservoir Dogs” and “Pulp Fiction”,
and returned it.

6https://www.w3.org/TR/sparql11-query/
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Figure 4: Graph answer to the SPARQL query reported in Example 1

2.3
RDF Keyword-based Queries

Let T be an RDF dataset and L be the set of all literals. A keyword-based
query is a finite set K = {k1, ..., kn} of literals, or keywords.

Let L be the set of all literals. A match function µ : L×L → Bool maps
each pair of literals into a Boolean value is such that µ(L1, L1) = True and
µ(L1, L2) = µ(L2, L1), for any L1, L2 ∈ L. We say that L1 and L2 match iff
µ(L1, L2) = True. We say that a triple (s, p, o) ∈ T matches a literal L iff o is
a literal and L and o match, and we also say that o is a matching node of GT .

Note that a keyword may match the label of a class or property, which
could alter the interpretation of the keyword-based query. For example, if
Actor is declared as a class with label “actor”, then the keyword query
K = {actor,Washington} may be interpreted as requesting instances of the
class Actor that have property values that match the keyword “Washington”.

An answer for K over T is a subset A of T such that there is KA ⊆ K,
the set of matched keywords, and AK ⊆ A, the set of triple matches, such that:

• for each k ∈ KA, there is (s, p, o) ∈ AK that matches k;

• for each (s, p, o) ∈ AK , there is k ∈ KA matched by o;

• the RDF graph GA induced by A is connected.

Recall that the Schema-less RDF-KwS Problem is defined as: “Given an
RDF dataset T , where T is a large dataset (millions of triples) and T does
not (strictly) follow an RDF-Schema, and a keyword-based query K, find an
answer A for K over T , preferably with as many keyword matches as possible
and with the smallest set of triples as possible”.

An answer for K over an RDF dataset T is a subset A of T such that:
(i) A has triples that match keywords in K; (ii) A induces a connected RDF
graph.

We can compare answers based on the number of keywords they match
and on their number of triples. Furthermore, if GA is a Steiner tree of T
that covers the matching nodes, then GA is connected and does not have
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unnecessary edges. So, if the algorithm designed to solve the Schema-less RDF
KwS–Problem cannot find one such Steiner tree, it must abandon some of the
keyword matches and restart the search for a new one.

2.4
Set Similarity Measures and KMV-Synopses

As mentioned in the Introduction, the novelty of the proposed algorithm lies
in that it synthesizes SPARQL queries by exploring the similarity between the
property domains and ranges and the class instance sets observed in the RDF
dataset. To achieve good performance, the algorithm estimates set similarity
based on KMV-synopses [10]. This chapter summarizes the essentials of these
two aspects: set similarity and KMV–synopses.

Let D be the universe and let A1, ..., An ⊆ D.
The Jaccard similarity measure is a well-known way to estimate the

similarity of two or more sets, A1, ..., An, based on what elements they have
in common, without giving preference to any of the sets; the measure is
normalized by the number of elements in the union of the sets. The set
containment similarity measure is adopted when one wants to find, given a
set Ai which other sets Aj are similar to Ai, based on the number of elements
that Ai and Aj have in common; the measure is normalized by the number of
elements in Ai.

More precisely, the n-way Jaccard similarity measure of A1, ..., An as:

J(A1, ..., An) = |A1 ∩ ... ∩ An|
|A1 ∪ ... ∪ An|

if A1 ∪ ... ∪ An 6= ∅

J(A1, ..., An) = 1 otherwise
(1)

and the set containment similarity measure of Ai and Aj as:

C(Ai, Aj) = |Ai ∩ Aj|
|Ai|

if Ai 6= ∅

C(Ai, Aj) = 1 otherwise
(2)

A generalized form of the Jaccard similarity measure can be found in
[66].

Beyer et. al. [10] proposed a simple and yet powerful summarization
technique, called KMV–synopses, for multiset operations. KMV stands for k-
M inimum hash Value.

Let k be a positive integer. Intuitively, a KMV–synopsis of a set S ⊆ D
defines a random sample of S of size k, with the help of a hash function. Using
the KMV-synopsis one can then estimate the cardinality of S.
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More precisely, let h be a hash function from D to {0,...,M} (with
M∼O(|D|2). The KMV–synopsis of a set S ⊆ D is the set V of the k smallest
values of the set { v ∈ {0, ...,M} | v=h(s) and s ∈ S }. If h is a perfect hash
function, then V induces a random sample W = { s ∈ S | h(s) ∈ V } of S of
size k.

The expected cost to construct a KMV–synopsis of size k from a partition
S comprising N data items having D distinct values is O(N + k · logk · logD)
[11].

The following example helps to clarify the KMV–synopsis. Assume that
we have the feature:

x = {‘aa’, ‘bb’, ‘cc’, ‘dd’, ‘ee’, ‘aa’}.
Now, suppose that the selected hash function gives the following values:

h(‘aa’) = 1, h(‘bb’) = 3, h(‘cc’) = 7, h(‘dd’) = 5, h(‘ee’) = 1.
If we want the KMV–synopsis of this multiset with parameter k = 2, i.e.,
by keeping the two minimum hash values, then we have the following KMV–
synopsis for x: {1,3}. Observe that the KMV–synopsis is a set even though the
value 1 appears three times in the hash values (two for the items ‘aa’ and one
for item ‘ee’).

Venetis et. al. [58] define two variations of the KMV–synopsis: (i)
incomplete, when the corresponding feature x has more than k distinct items;
(ii) complete, when the corresponding feature x has at most k distinct items. In
this research, KMV–synopsis will be handled without distinguishing between
the types.

Beyer et. al. [10] define strict and probabilistic bounds for distinct counts,
unions, and intersections for incomplete synopsis.

Let U(k) denote the kth smallest value of the KMV-synopsis V , divided
by M . Then, an estimation |S| of |S| is defined as

|S| = (k − 1)
U(k)

(3)

with absolute ratio error given by Beyer et. al. [10]:

E

[
abs(|S| − |S|)

|S|

]
≈
√

2
π(k − 2) (4)

Let V1, ..., Vn be the KMV-synopses of A1, ..., An, k1, ..., kn be the sizes
of V1, ..., Vn, and k = min(k1, ..., kn). Then, we define V = V1 ⊕ ...⊕ Vn as the
set of the k smallest values in V1 ∪ ... ∪ Vn. Let U(k) denote the kth smallest
value of V = V1⊕ ...⊕ Vn. Finally, let K∩ = |V1 ∩ ...∩ Vn|. Then, the following
estimations hold [10]:
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|A1 ∪ ... ∪ An| =
(k − 1)
U(k)

(5)

J(A1, ..., An) = K∩
k

(6)

|A1 ∩ ... ∩ An| =
K∩
k
· (k − 1)

U(k)
(7)

C(Ai, Aj) = |Ai ∩ Aj|
|Ai|

(8)

A detailed analysis of the accuracy of KMV–synopses to estimate unions,
intersections, and Jaccard distance is given by Beyer et. al. [10]. Some works
have successfully adopted KMV–synopses for a variety of query optimization
problems [28, 36, 58, 48].

To illustrate this point, consider the IMDb version adopted in [18]. Table
1 shows the Jaccard values, as directly computed from the dataset, and the
estimations obtained using KMV–synopses, with K=8,192 and K=32,768.
Note that the accuracy of the Jaccard estimations obtained using KMV–
synopses, with K=8,192, are quite reasonable.

Table 1: Approximating the Jaccard similarity measure using KMV–synopses
of different sizes

Set A Set B J(A,B) K=8,192 K=32,768

J(A,B) Abs diff. Error vs
Exact J(A,B) Abs diff. Error vs

Exact
imdb:name D_imdb:know_for_titles 0.8237 0.8253 0.0016 0.19% 0.8243 0.0006 0.07%
imdb:title R_imdb:know_for_titles 0.2205 0.2185 0.0020 0.91% 0.2184 0.0021 0.95%
imdb:name R_imdb:principal_cast 0.1768 0.1860 0.0092 5.20% 0.1856 0.0088 4.98%
imdb:title D_imdb:principal_cast 0.1095 0.1057 0.0038 3.47% 0.1061 0.0034 3.11%
imdb:name R_imdb:directors 0.0614 0.0593 0.0020 3.30% 0.0599 0.00145 2.36%
imdb:title D_imdb:directors 0.5838 0.5844 0.0005 0.09% 0.5839 9.2E-05 0.02%
imdb:name R_imdb:writers 0.0775 0.0747 0.0027 3.54% 0.0755 0.001952 2.52%
imdb:title D_imdb:writers 0.5114 0.5067 0.0046 0.91% 0.5088 0.00255 0.50%
Notes:
1. imdb:title and imdb:name represent the sets of synopses of classes Title and Name, respectively.
2. D_p indicates the domain of property p and R_p indicates the range.
3. J(A,B) indicates the Jaccard similarity measure between sets A and B.

2.5
A Brief Review of Description Logic Basic Concepts

This section summarizes some basic concepts pertaining to Description Logic
(DL) [5].

Very briefly, let A be a DL alphabet, whose atomic concepts and atomic
roles capture the classes and properties of the domain of discourse. By
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definition, the universal concept > and the bottom concept ⊥ are atomic
concepts of A, and the identity relation I is an atomic role of A. As an abuse
of notation, ⊥ is also considered an atomic role (since ⊥ denotes the empty
set).

We assume that A has a set of constants to denote individuals of the
domain. We use c1, c2, . . . to denote the atomic concepts of A, r1, r2, . . . to
denote the atomic roles of A, and a1, a2, . . . to denote the constants of A, and
Rj, j = 1, . . . , s, to denote role expressions over A.

The variant of DL adopted determines the set of concept expressions over
A and the set of role expressions over A. The atomic concepts are the simplest
concept expressions and the atomic roles are the simplest role expressions.
We use C1, C2, . . . to denote concept expressions and R1, R2, . . . to denote role
expressions. We assume that the DL variant adopted allows the negation of a
concept expression “¬Ci”, full existential quantifications of the form “∃rj.Ci”,
the union of two concept expressions “CitCj”, the intersection of two concept
expressions “Ci u Cj", the product of two concept expressions “Ci × Cj”, the
inverse of a role expression “P−j ”, the transitive closure of a role expression
“P+

i ”, the intersection of two role expressions “Pi u Pj”, and the composition
of two role expressions “Pi ◦ Pj”. As an abuse of notation, we write “∃rj.>"
simply as “∃rj”.

An axiom is an expression of one of the forms “Ci v Cj”, “Ci ≡ Cj”,
“Pi v Pj”, or “Pi ≡ Pj”. An assertion is an expression of the form “Ci(ak)” or
of the form “Pj(ak, al)’.

Recall that an interpretation I for A has a set ∆I of individuals, called
the domain of I, and assigns to each atomic concept ci of A a set of individuals
cIi ⊆ ∆I , to each atomic role rj ofA a binary relation rIj ⊆ ∆I×∆I , and to each
constant ak of A an individual aIk ∈ ∆I . By definition, the universal concept
> is interpreted as the set of all individuals, that is, >I = ∆I , the bottom
concept ⊥ is interpreted as the empty set, that is, ⊥I = ∅, and the identity
relation I is interpreted as II = {(x, y) ∈ ∆I ×∆I |x = y}.

The interpretation is then recursively extended to assign a set of indi-
viduals to each concept expression of A and a binary relation to each role
expression of A. In particular, recall that (∃rj.Ci)I is the set of all indi-
viduals that rIj maps to some individual in CI

i , {ak}I denotes the singleton
{aIk}, (¬Ci)I = ∆I − CI

i , (Ci t Cj)I = CI
i ∪ CI

j , (Ci u Cj)I = CI
i ∩ CI

j ,
(Ci×Cj)I = (CI

i ×CI
j ), (P−j )I = (P I

j )−, (P+
i )I = (P I

i )+, (PiuPj)I = (P I
i ∩P I

j ),
and (Pi ◦ Pj)I = (P I

i ◦ P I
j ).

The interpretation I satisfies “Ci v Cj” iff CI
i ⊆ CI

j and “Ci ≡ Cj” iff
CI
i = CI

j . The interpretation I satisfies “Ci(ak)” iff ak ∈ Ci(ak) and “rj(ak, al)”
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iff (aIk, aIl ) ∈ rIj .
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3
Related Work

This chapter provides an overview of work related to RDF keyword search
systems, the use of synopses to estimate similarity measures, and lists some
benchmarks used to validate the performance of state-of-the-art keyword
search systems. Section 3.1 summarizes the state-of-art of keyword search
systems close to the proposed RDF keyword-based approach. Section 3.2 lists
research that use KMV–synopses as estimators of set similarity measures.
Section 3.3 briefly describes some benchmarks used to evaluate the state-
of-the-art keyword search systems. Finally, Section 3.4 offers an insight into
related work about semantic trajectories: approaches for representing semantic
trajectories based on ontologies and researches that model semantic trajectories
as sequences of stops and moves.

3.1
Keyword Search Systems

There are many R-KwS systems, however in recent years the keyword query
search over RDF graphs has also attracted considerable attention. A survey
of keyword-based query processing tools over relational and RDF datasets is
given by Bast et. al. [8].

Early relational keyword-based query processing tools [1, 2, 30, 31, 44]
explored the foreign/primary keys declared in the relational schema to compile
a keyword-based query into an SQL query with a minimal set of join clauses
–and this is a key idea– based on the notion of candidate networks (CNs). This
approach was also adopted in recent tools [44, 9]. In particular, QUEST [9]
explores the structure of the conceptual schema to synthesize an SQL query
based on a Steiner tree that induces a minimum set of joins. A recent article [59]
specifically investigated CN scoring functions and empirically demonstrated
that the proposed function outperforms earlier scoring functions.

A recent article [48] also explored relational schema information to
compile keywords into SQL queries over databases exposed on the Web. The
system, called SQUIRREL, selects and ranks relational databases on the Web,
based on the metadata the databases expose, pre-processes the keywords,
which includes identifying aggregation functions the keywords might express,
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and compiles the pre-processed keywords into SQL queries. The authors
compared favorably SQUIRREL with an earlier system [9] on a relational
database with nine keyword queries. This comparison was extended in [45].

The algorithm proposed in this research compiles a keyword-based query
into a SPARQL query that includes restriction clauses that represent keyword
matches and join clauses that connect the restriction clauses. Each answer of
the SPARQL query then corresponds to a subgraph of the RDF graph that
contains literal nodes that match the keywords and paths that connect the
literal nodes. Without such join clauses, an answer would be a disconnected
set of nodes of the RDF graph, which hardly makes sense. The generation of
the join clauses builds upon the idea of candidate networks.

An RDF keyword-based query processing tool can be schema–based,
when it exploits the RDF schema to compile a keyword-based query into a
SPARQL query, or graph–based, when it directly explores the RDF dataset or
summaries thereof. The algorithm described in this thesis falls into this last
category.

QUIOW [33] is a fully automatic, schema-based tool that supports
keyword-based query processing for both the relational and RDF environments.
It is an extension of the algorithm proposed in [24]. The tool constructs a
Steiner tree that covers a set of nodes (relation schemes or RDF classes) whose
instances match the largest set of keywords and incorporates a backtracking
step to further expand the keyword-query results by generating alternative
(SQL or SPARQL) queries. Experiments reported in this work adopt this tool
as a baseline.

QUICK [65] is another example of an RDF schema-based tool. It trans-
lates keyword-based queries to SPARQL queries with the help of the user, who
chooses a set of intermediate queries, which the tool ranks and executes.

As for graph-based tools, SPARK [71] uses techniques, such as synonyms
from WordNet and string metrics, to map keywords to knowledge base ele-
ments. The matched elements in the knowledge base are then connected by
minimum spanning trees from which SPARQL queries are generated. A re-
cent paper [52] also explores WordNet and proposes a ranking method to
implement keyword search over RDF graphs. Elbassuoni & Blanco [20] de-
scribed a technique to retrieve a set of subgraphs that match the keywords
and to rank them based on statistical language models. Ranking answers of a
keyword-based query is addressed, for example, in [25]. Keyword expansion, as
reported in [48, 52, 71], and the processing of reserved terms, as is in [33, 48],
are complementary to the discussion in this research.

Han et. al. [29] described an algorithm that uses the keywords to first
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obtain elementary query graph building blocks, such as entity/class vertices
and predicate edges, and then applies a bipartite graph matching-based best-
first search method to assemble the final query. Tran et. al. [55] introduced
the idea of generating summary graphs for the RDF graph, using the class
hierarchy, to generate and rank candidate SPARQL queries. Le et. al. [37] also
proposed to process keyword queries using another RDF graph summarization
algorithm. Zheng et. al. [69] adopted a pattern-based approach. Lin et. al.
[38] summarized all the inter-entity relationships from RDF data to translate
keywords to SPARQL queries. Finally, Wen et. al. [61] introduced another
graph summarization technique that amounts to recovering an RDF schema
from the RDF graph. We abandoned a similar strategy early on, in preliminary
experiments, since the algorithm proposed in this thesis outperformed it.

Wang et. al. [60] proposed a clustered-graph structure that summarizes
the original ontology. This reduced data space is then used to compute the
top-k queries, which are ranked by query length, the relevance of ontology
elements w.r.t. the query and the importance of ontology elements. The authors
use TAP, DBLP and LUBM for the experiments, and introduce a new metric,
called Target Query Position (TQP). Section 4.4 explain how we rank the query
results, which also depends on the importance of the RDF nodes, classes and
properties. LUBM is one of the datasets we use in Section 5.2.2.

Gkirtzou et. al. [26] presented an approach for keyword search for
temporal RDF graphs that automatically compiles keyword queries into a set
of candidate SPARQL queries. To support temporal exploration, the method
is enriched with temporal operators allowing the user to explore data within
predefined time ranges. The novelty of the approach lies exactly on this
enrichment, which we do not explore in this article. In particular, the authors
use the reciprocal rank metric in the experiments, as we do in Section 5.1.2.

Yoghourdjian et. al. [64] developed a retrieval model for keyword queries
over RDF knowledge graphs that only retrieves the top-k scored subgraphs for
the given query based on a scoring function. The authors adopted YAGO a
large-scale general-purpose RDF knowledge graph derived from Wikipedia and
WordNet, and the average NDCG as metric for the experiments. The query
compilation strategy described in Section 4.3 also includes a ranking score,
described in Section 4.4, that limits the query results to the top-k. Sections
5.1.2 and 5.2.2 show that the combination of the query compilation approach
based on KMV–synopses and the ranking function outperforms the adopted
state-of-the-art baselines approaches.

Ma et. al. [39] described a keywords-to-SPARQL translation process that
circumvents the lack of underlying schema information. They compute, from
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the RDF data graph, an inter-entity relationship summary with complete
schema information, and adopt a search prioritization scheme that combines
the degree of a vertex with the distance from the original keyword element.
Finally, the approach finds the top-k subgraphs, which are relevant to the
conjunction of the entering keywords. The approach we propose in this thesis
uses KMV–synopses to capture graph information, as explained in Section
4.3, and ranks the SPARQL query results based on a more sophisticated node
importance measure, as discussed in Section 4.4.

Recently, Dosso & Silvello [18] proposed the TSA+BM25 and the
TSA+VDP keyword search systems over RDF datasets based on the “virtual
documents” approach. These systems move most of the computational com-
plexity off-line and then exploits highly efficient text retrieval techniques and
data structures to carry out the on-line phase. The authors show that these ap-
proaches are more efficient and effective, when compared with state-of-the-art
systems.

Contrasting with these approaches, the algorithm described in this work
adopts KMV–synopses [10] to concisely represent the property domains and
ranges, and class instance sets. The algorithm then uses the KMV–synopses to
estimate set similarity measures that in turn drive the process of compiling a
keyword-based query into a SPARQL query (see Section 4.3). The algorithm
also incorporates RDF resource ranking [41] to improve the query compilation
process and to rank answers (see Section 4.4).

3.2
Synopses as Estimators for Set Similarity

KMV–synopsis can be viewed as originating in [7], but they did not discuss
implementation, construction, or combination of such synopses.

According to Beyer et. al. [10], KMV–synopses permit estimating the
cardinality of multiset expressions and several set similarity measures, includ-
ing a generalized Jaccard similarity measure for more than two sets. Beyer et.
al. [11] gives continuity to [10] providing a unified view of prior synopses and
DV estimators. They also introduced the Augmented KMV (AKMV) synopsis
concept, showed how to estimate the number of DVs for a compound partition
using the partition’s AKMV synopsis, and then generalized the unbiased dis-
tinct values estimator. Other solutions, as in [28], used set synopses to estimate
the size of the result of set similarity queries providing a robust estimation with
minimal computational cost and storage overhead.

Yang et. al. [63] introduced a KMV sketch technique to address the
problem of approximating containment similarity search, outperforming an
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advanced LSH method in terms of the space-accuracy trade-off, time-accuracy
trade-off, and the sketch construction time. Venetis et. al. [58] proposed a
similarity index for set-valued features based on KMV–synopses. The index
methods proposed in these last two references could be useful to filter the
candidate property domains and ranges and class instance sets to be included
in a SPARQL query during the query compilation process.

Finally, Le et. al. [36] chose to use KMV–synopses precisely because
they allow estimating the size of the intersection of multiple sets (not just
binary intersection) in the context of rewriting queries on SPARQL views.
Their motivation for adopting KMV–synopses is, therefore, quite similar
to ours. The authors also briefly commented on the problem of KMV–
synopses maintenance, which is outside the scope of this work. The present
implementation recomputes the KMV–synopses when necessary, much in the
same way that database systems recompute statistics.

3.3
Benchmarks for Evaluating Keyword Search Systems

A crucial aspect of keyword search is the evaluation of the systems. In the last
years, the research community has concentrated the efforts on the evaluation
of keyword search over relational databases [8] and an extensive evaluation
has been conducted on the subjects [6]. Unfortunately, benchmarks to assess
keyword search systems on graph data are scarce [18].

To remedy this situation, some authors, as García et. al. [24], adapted
the Coffman’s benchmark [16] originally developed for relational databases.
This approach, however, depends on the triplification of relational databases,
and does not easily induce sets of relevant query answers [33].

In fact, the state-of-the-art RDF keyword search systems use different
benchmarks, which are not always available, as shown in Table 2. As a
consequence, comparing such systems turns out to be a difficult task.

To circumvent this issue, Neves et. al. [42] proposes an offline method
that helps build RDF keyword search benchmarks. They introduce the concept
solution generator to produce a set of answers given a keyword-based query.
In order to avoid the manual analysis of query results, they adapted Coffman’s
benchmark in three aspects: (1) it uses triplified versions of Mondial and
IMDb; (2) it includes only keyword-based queries that explore the structure
of the RDF graph; (3) for each keyword-based query, it contains a ranked list
of solution generators. Then, the benchmark produced by [42] was used to
compare the proposed approach in this thesis with a baseline based on RDF
schema [33], see details in Section 5.1.
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Table 2: Summary of the benchmarks used in some state-of-the-arts keyword
search systems

Tool Ref. Year Description of Benchmark Used
SPARK [71]* 2007 Database and keyword queries from Mooney Natural Language Learning

Data
QUICK [65]* 2009 An initial set of queries was extracted from a query log of the AOL

search engine. Then, the queries were pruned based on the visited URLs,
obtaining 3,000 sample keyword queries for IMDb and Lyrics Web pages.
This process yielded 100 queries for IMDb, and 75 queries for Lyrics,
consisting of 2–5 keywords.

[55]* 2009 DBLP, TAP (http://tap.stanford.edu) and LUBM; 30 queries for
DBLP, and 9 for TAP

[16]† 2010 Samples of the Mondial, IMDb, and Wikipedia datasets; 50 queries for
each dataset (not real user queries extracted from a search engine log).

[20]* 2011 Datasets derived from the LibraryThing community and IMDb; and 15
queries for each dataset.

[37]* 2014 Datasets: LUBM, Wordnet, BSBM, Barton and DBpedia Infobox. 12
Queries: 4 for LUBM, 2 for Wordnet, 2 for BSBM, 2 for Barton, 2 for
DBpedia Infobox.

[69] 2016 DBpedia and Yago; queries derived from QALD-4
[29] 2017 DBpedia+QALD-6 and Freebase* + Free917: an open QA benchmark

which consists of NL question and answer pairs over Freebase.
QUIOW [33] 2018 Full versions of the Mondial and IMDb datasets, and queries from

Coffman’s benchmark.
[38] 2018 LUBM, Wordnet, BSBM, Barton and DBpedia Infobox; 4 queries for

LUBM, and 10 queries for the other datasets.
KAT [61] 2018 YAGO, DBLP and LUBM; 9 queries for YAGO, 3 queries for DBLP, and

6 queries for LUBM.

[52]* 2018 AIFB and DBpedia; 10 queries for each dataset (the sizes of the
queries were between 2 and 8 keywords).

QUIRA [41] 2019 Full versions of IMDb and MusicBrainz; 50 queries from Coffman’s
benchmark for IMDb, and 25 queries from QALD-2 for MusicBrainz.
Details available at https://sites.google.com/view/quira/

TSA+BM25
and

TSA+VDP

[18] 2020 Real datasets: LinkedMDB (https://data.world/linked-data/
linkedmdb), IMDb, and a subset of DBPedia; 50 queries of Coffman’s
benchmark for each dataset. Synthetic datasets: LUBM and BSBM;
14 queries for LUBM, and 13 queries for BSBM.

* Datasets have no public link or are not available for download.
† Benchmark for evaluating keyword search systems over relational databases.

A recent benchmark for relational keyword-based systems also proposed
to use Mondial and IMDb, as well as DBLP and Northwind [45].

Finally, Dosso & Silvelo [18] also described a benchmark that contains
three real datasets: LinkedMDB, IMDb, and a subset of DBpedia, as defined in
[6]; and two synthetic databases: the Lehigh University Benchmark (LUBM)
[27] and the Berlin SPARQL Benchmark (BSBM) [13]. For IMDb, they de-
signed 50 keyword queries, together with their correct translations to SPARQL
queries, which were built manually. For DBpedia, the authors considered 50
topics from the classes QALD2_te and QALD2_tr. LUBM benchmark provides 14
SPARQL test queries in SELECT form. Then, Dosso & Silvello converted these
queries to CONSTRUCT queries and produced their equivalent keyword query.
BSBM benchmark has 13 different SELECT SPARQL queries, which they also
converted to CONSTRUCT SPARQL queries and keyword queries, as for LUBM.

For the experiments described in Section 5.2, we adopt, in part, the

http://tap.stanford.edu
https://sites.google.com/view/quira/
https://data.world/linked-data/linkedmdb
https://data.world/linked-data/linkedmdb
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benchmark proposed by [18]. For the purposes of our comparison, we used the
10 million triples versions of LUBM and BSBM, the full triplified version of
IMDb, and the mentioned subset of DBpedia. We considered it unnecessary
to repeat the experiments for LinkedMDB, since this dataset is smaller than
the adopted version of the synthetic databases.

3.4
State-of-Art Semantic Trajectories Approaches

3.4.1
Semantic Trajectories and Ontologies

The formalization of the trajectory semantic enrichment process has been
firstly outlined in [21], where the Baquara framework has been proposed
as a general, all-inclusive ontology, representing both the trajectory and
its enriching concepts. This pioneering approach set the way to the use
of ontologies to support the enrichment process with Linked Open Data.
Despite its broadness, which allows the Baquara ontology, to cover a broad
range of applications, it also has some limitations. For example, it follows a
“monolithic” approach that is complex and difficult to personalize to different
needs. Furthermore, it employs a predefined set of Linked Open Data sources
to enrich the trajectory.

In Baquara2, Fileto et. al. [22] introduced the concepts of movement
segments (similar to the trajectory segments) and events, such as stops
and moves. Baquara2 enables queries referring to concepts, which can be
expressed in SPARQL and its extensions. It also defines hierarchies and
annotations for movement objects that can capture the events of a trajectory
at different granularities and assign properties to them. The demonstrated
implementation mostly focuses on the creation of the semantically enriched
dataset, and only provides queries on stop events, or in consecutive stop
events. The datAcron ontology [53] assumes different conceptualization of
trajectories, including that of temporal sequences of meaningful trajectory
segments (each revealing specific behavior, event, goal, activity, etc.), which
is closer to our representation of trajectories as sequences of stops and
moves. From an implementation point of view, datAcron employs an iterative
procedure that repeats the execution of a parameterized SPARQL query, with
different parameters in each iteration, until all the necessary information is
collected. This technique has similarities to the SPARQL templates technique
that we employ for synthesizing SPARQL queries of higher complexity. The
Geo-Ontology presented in [32], relies on the spatio-temporal features of
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the trajectory points, and introduces some interesting relations, such as the
’isTraversedBy’, which allows to retrieve trajectories that cross a bounded area.
It also identifies the begin and end points of trajectories and uses concepts
such as hasNext, hasSuccessor, hasPrevious, and hasPredecessor to identify
the ordering of points in the trajectory. However, it does neither support
intercalated stop and move sequence queries, nor provides any SPARQL
implementation examples. Spaccapietra et. al. [54] define Stops and Moves
as parts of the trajectory and Begin and End stops as specializations of Stop.
They focus only on the various facets of stops and moves, ignoring their
ordering.

One of the first approaches that tried to conceptualize movement data
as a trajectory ontology was proposed in [62]. The conceptual framework was
aimed at combining in a unique top-level ontology the different aspects of the
movement embedded into three main ontologies representing: i) application-
related information, ii) the spatio-temporal details of the trajectory, and iii)
geographic information. Despite the ability it offers to query the Semantic
Trajectory Ontology for the features of a trajectory (its begin and end points,
its stops and moves), the proposed framework offers a conceptual and top-
level vision of trajectories, without explicitly dealing with the problem of the
enrichment process or adopting the Linked Open Data formalism.

Another approach for representing semantic trajectories based on on-
tologies was proposed in [4], and employed Ontology Engineering techniques
to connect Generic Places Ontologies with POI instances. The approach fo-
cused only on the enrichment of POIs with the proper Ontologies terms, while
our approach faces all steps involved in the trajectory enrichment process and
analysis.

A few years later, Renso et. al. [50] made a step towards employing
the Athena ontology into a reasoning process based on OWL. The ontology
comprised an application part that defined the application domain analysis
concepts and a core part that represented the segmented trajectories. The
objective was to support meaningful pattern interpretations of human behavior
by combining inductive and deductive reasoning.

Hu et. al. [32] introduced a geo-ontology design pattern for semantic
trajectories that is very similar to our Segmented Trajectory Ontology. A
formal encoding of the classes, together with their properties, is obtained by
using OWL. The authors also define several interfaces to integrate related
geographic information, domain knowledge, and device data. This work goes
a step beyond the approach proposed by [32], since it also faces the issues of
how to implement the enrichment step by using Linked Data Mashups.
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There are many works in the literature [62, 32, 50] proposing trajectory
ontologies that can be easily adapted to specific application needs by adding
specializations of classes and properties. It is worth observing that apart of
a name or other features, a stop is also characterized by a spatial location.
Naturally, the specific ontology can be tailored to the application needs, and
other specializations are possible, such as the transport mode segmentation
[68] or the activity segmentation [67].

3.4.2
Semantic Trajectories as Sequences of Stops and Moves

Researchers in the past have extended query languages with operations, which
allow retrieving trajectories that satisfy temporal (e.g., TQML [15]), or spatial
criteria (e.g., Spatial SQL [19]), or the combination of spatial and temporal
features concerning the stops and moves of trajectories (e.g., ST-DMQL
[12, 57]). When it comes to semantic trajectories the information that needs to
be stored and retrieved by queries is much richer and the query requirements
can be more complicated, both in the criteria that have to match (i.e., selection)
and on the information aspects that have to be retrieved for the trajectories
(i.e., projection).

When dealing with semantic trajectories, it is important to be able to
identify interesting trajectories, or sub-trajectories, using exact or approximate
matching on the semantics. It is also important to support partial matching, as
well as specific operations that capture the semantic properties of a trajectory
[3, 62, 46]. As it was recently shown, it is also important to be able to match
trajectories that contain stops (or moves) in a specific order (i.e., ordered
sequence) or in any order (i.e., set) [47, 23]. In several scenarios (e.g., in the
maritime scenario), the concept of ‘turns’ is also introduced, thus adding more
complexity to the management of semantic trajectories. Finally, the datAcron
ontology [53] is used for describing semantic trajectories, mostly associated
with the aircraft domain, as a succession of sub-trajectories associated with
points or regions.

In the following, this work focus on a scenario that aims in retrieving
trajectories of interest using approximate criteria and semantic matching
operators of increased flexibility compared to exact matching. The scenario
assumes human trajectories in an urban environment, which are composed of
stops and moves, and each one refers to a single human. The semantics of the
trajectory refers to various aspects of stops and moves. The task, in this case,
is to retrieve trajectories that match (partially or to a certain extent) the user
requirements so that they can be used as input to data mining tasks such as
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trajectory clustering, classification or trajectory recommendation.
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4
Keyword Search Algorithm using KMV–Synopses

This chapter presents the keyword search algorithm that uses KMV–synopses
which is the main contribution of Part I of this thesis. Section 4.1 presents
a complete, explanatory example of how the proposed algorithm uses the
similarity between property domains and ranges. Section 4.2 defines the
notion of query graph Section 4.3 details the proposed algorithm to compile
a SPARQL query from a keyword-based query over an RDF dataset, using
KMV–synopses. Finally, Section 4.4 explains how matches between keywords
and class and property labels are handled, and the use of resources ranking in
the compilation query process.

4.1
An Explanatory, Motivational Example

As already mentioned, the proposed algorithm synthesizes SPARQL queries
by exploring the similarity between the property domains and ranges, and the
class instance sets observed in the RDF dataset. Section 4.4 will clarify the
use of class instance sets. The following example illustrates how the proposed
algorithm uses the similarity between property domains and ranges.

Figure 5: The graph G of an RDF dataset T
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Example 2 Let T be the RDF dataset whose graph is depicted in Figure 5.
In what follows, let Dp and Rp denote the observed domain and the observed
range of a property p observed in T .

• Pre-condition. Before processing any keyword-based query, the algorithm
executes a single scan of T that simultaneously pre-computes KMV–synopses
for the observed property domains, non-literal ranges, and class instance sets.
The KMV–synopses are stored with the RDF dataset to be later used to
estimate set similarity. During the scan, the algorithm also pre-computes
indexes for T that, given a keyword k, return the names of the properties
that have values that match k.

Consider the keyword-based query:

K= { One-Eyed, Western, Brandon, Hollywood }.

The algorithm uses a data structure, called a query forest, as in Figures
6 to 10, where a rectangular node is labeled with a keyword and an oval node
with a list of property domains and ranges, to be interpreted as indicating their
intersection. The algorithm starts with a query forest as in Figure 6 and then
gradually tries to reduce the forest to a single tree by using three operations:
node fusion, edge addition, and tree expansion. Lastly, it compiles the final
forest into a SPARQL query that returns answers for K.

Figure 6: Initial query forest for the keyword-based query K = {One-Eyed,
Western, Brandon, Hollywood}

• Keyword matching. First observe that the keyword query K identifies entity
sets by listing keywords that should match property values of the entities.
So, the first step is to match the keywords with property values and identify
which are these properties. We admit partial matches so that, for example, the
keyword “One-Eyed” matches the literal “One-Eyed Jack”. Assume that the
indexes return the following matches for K:

Western matches some value of :genre
One− Eyed matches some value of :fname
Brandon matches some value of :aname
Hollywood matches some value of :lname
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This information is represented as an initial query forest, as shown in
Figure 6.

Consider the leftmost tree. The oval node is labeled with Dfname and
the rectangular node with “One-Eyed” to indicate that there is at least one
entity e in the domain of :fname such the value of :fname for e is a string that
matches “One-Eyed”. The last step of the process synthesizes a SPARQL query
that locates the set of all such entities. The other trees in Figure 6 should be
likewise interpreted.

If a keyword matches values of several properties, one such match is
chosen, using a combination of a literal matching score and a node ranking
score. A brief description of the disambiguation strategy adopted is described
in Section 4.4.

• Node fusion. The entities in a set might be identified by more than one
property value, that is, by more than one keyword. In general, the algorithm
handles this situation inspecting only the KMV–synopses of the property
domains, through an operation called node fusion. In terms of a query forest,
node fusion combines two trees by finding two nodes, one from each tree, that
can be profitably replaced by a single node. By profitable we mean that the
sets that label the nodes to be fused have a high Jaccard similarity value.
Note that the Jaccard similarity is computed over a list of 2 or more sets, as
in Equation (1). This indicates that, with a high probability, one may find
entities s such that the properties that label the nodes are all defined for s (see
Prop. 1a). Again, the last step of the process synthesizes a SPARQL query
that takes this situation into account.

Figure 7: The query forest after node fusion

Figure 7 shows the query forest after the fusion of the roots of the two
leftmost trees, respectively labeled with Dfname and Dgenre. This decision is
justified by estimating the Jaccard similarity between each pair of sets that
label the roots of the trees in Figure 6.

For this very simple example, we computed the Jaccard similarities by
just observing the RDF graph in Figure 5, that is, we in fact ignore the KMV–
synopses since all sets involved in this example have low cardinality.
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Since Dfname = Dgenre = {r1, r2}, we have:

J(Dfname, Dgenre) = 1

which implies that any resource s drawn from Dfname ∪Dgenre is in Dfname ∩
Dgenre. Furthermore, any other pair of sets that label the roots of the trees
in Figure 6 are disjoint. Hence, their Jaccard similarity is 0 (zero). Thus, any
other pair of roots are not good candidates for node fusion.

A new node, labeled with {Dfname, Dgenre}, replaces the original nodes
to signal that now we want to find resources that are in the intersection
Dfname ∩ Dgenre (each such resource has values for both properties :fname
and :genre that may match two keywords, “One-Eyed” and “Western”).

The entity sets identified by the keywords do not constitute answers,
though, since an answer to a keyword query has to indicate how the entities
are related. The algorithm then tries to identify what paths might exist in the
RDF graph that connect the entities, using only the KMV–synopses, without
actually traversing the graph. This is purpose of two other operations, called
edge addition and tree expansion.

• Edge addition. Edge addition tries to find an object property p that might
directly connect two entities. In this example, the key point is that the
domain of property :title and the domain of property :genre might have
elements in common with the domain of the object property :hasActor;
simultaneously the range of :hasActor might have elements in common with
the domain of :aname (actor name). This is detected again using set similarity,
estimated using the pre-computed KMV–synopses. The last step of the process
synthesizes a SPARQL query that has a join clause that takes this situation
into account.

In terms of a query forest, edge addition tries to combine two trees
by finding two nodes, a1 and a2, one from each tree, that can be profitably
connected by a new edge, labeled with a property p, in the following sense.
Let Si be the intersection of the sets that label ai. One should select nodes a1,
2, and a property p so that, with a high probability, there is a triple (s, p, o)
in T such that s is in the intersection of S1 and the domain of p, given that
we know that s is in S1, and o is in the intersection of S2 and the range of p,
given that we know that o is in S2 (see Prop. 1d). We use set containment for
this purpose, as explained below.

Figure 8 shows the query forest after combining the two leftmost trees in
Figure 7 by adding an edge, labeled with “:hasActor”. This decision is based
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Figure 8: The query forest after adding an edge labeled with “:hasActor”

on the fact that the set containment of Dfname ∩Dgenre and DhasActor is

C(Dfname ∩Dgenre, DhasActor) = 1

which implies that any resource s in Dfname ∩ Dgenre is also in (Dfname ∩
Dgenre) ∩ DhasActor. Note that we switched from Jaccard to set containment
since we now know that s is in Dfname∩Dgenre and we want to find a property
p that maximizes the chances that s is also in Dp.

But this is not enough since the new edge should connect the two nodes.
By a similar argument, the set containment similarity of Daname and RhasActor

is

C(Daname, RhasActor) = 1

which implies that any resource o in Daname is also in Daname ∩ RhasActor.
Putting the two arguments together, we found a property, :hasActor, that
maximizes the chances that s is in its domain and o is in its range. That is,
the choice of :hasActor maximizes the product (see Proposition 1d):

C(Dfname ∩Dgenre, DhasActor)× C(Daname, RhasActor)

• Tree expansion. Tree expansion is a relaxation of edge addition in the sense
that it does not require that both the domain and range of an object property
be similar to other sets already under consideration; it suffices to have just
the domain or just the range. The repeated application of tree expansion,
combined with edge addition, tries to find longer paths to connect entities in
the sets of already identified. For example, the range of the object property
:loc (location) is similar to the domain of the property :lname (location
name), so it might be profitable to combine the two properties into a path
of length 2. Once again, this is detected using set similarity, estimated using
the pre-computed KMV–synopses, and the last step of the process synthesizes
a SPARQL query that has a join clause that takes this situation into account.

In terms of a query forest, tree expansion adds a node and an edge to
create a new forest that might be transformed in a later step by node fusion or
edge addition. The choice of which edge to include is similar to edge addition,
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except that one of the nodes is new, that is, added together with the edge.
Tree expansion is used when node fusion and edge addition cannot be applied.
This point is better explained at the end of Section 4.3, when trees expansion
is covered in detail.

For example, it follows from Figure 5 that Dlname is disjoint from the
domain or range of any property, except for the range of :loc. Hence, we
have:

J(Dfname, Dgenre, DhasActor, Dlname) = 0
J(Daname, RhasAuthor, Dlname) = 0

C(Dfname ∩Dgenre ∩DhasActor, Dlname) = 0
C(Daname ∩RhasAuthor, Dlname) = 0

which implies that we cannot use node fusion or edge addition, as in the
previous steps, to create a single tree out of the forest in Figure 8. Tree
expansion, therefore, adds a new node, labeled with Dloc, and a new edge,
labeled with “:loc”, creating the forest shown in Figure 9.

Figure 9: The query forest after expanding the rightmost tree by adding an
edge labeled with “:loc”

• Edge addition. To conclude the construction of the query forest for the
running example, it follows from Figure 5 that

C(Dfname ∩Dgenre ∩DhasActor, Rproduces) = 1
C(Dloc, Dproduces) = 1

As before, this suggests that we can add an edge, labeled with “:pro-
duces”, to combine the two trees in Figure 9, creating the final query tree,
shown in Figure 10.
• SPARQL query compilation. The last step is to generate a SPARQL query
Φ. In this explanatory example, the final forest consists of a single tree. When
this is not the case, the tree with the largest number of keyword matches is
kept.

In terms of a query forest, for each node of the tree, the WHERE clause
of Φ has a variable and, for each edge, a join clause or a FILTER clause. The
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Figure 10: The final query tree after adding an edge labeled with “:produces”

construction of the forest and the generation of Φ also guarantees that any
answer A that Φ returns is such that GA is a Steiner tree.

The WHERE clause of the SPARQL query generated from the final query
tree in Figure 10 is:
?v1 :fname ?v2 FILTER ( match (?v2, "One -Eyed") ) .
?v1 :genre ?v3 FILTER ( match (?v3, "Western ") ) .
?v4 :aname ?v5 FILTER ( match (?v5, "Brandon ") ) .
?v6 :lname ?v7 FILTER ( match (?v7, "Hollywood ") ) .
?v1 :hasActor ?v4 .
?v8 :loc ?v6 .
?v8 :produces ?v1

Observing Figure 10, the leftmost oval node, a1, corresponds to the
variable “?v1”; the two edges from a1 to rectangular nodes correspond to
two FILTER clauses (Lines 1 and 2), and the two other edges incident to a1

correspond to two join clauses (Lines 5 and 7) involving “?v1”. This implies
that “?v1” will bind to a resource s that must have a value of the property
:fname that matches the keyword “One-Eyed” (Line 1) and a value of the
property :genre that matches the keyword “Western” (Line 2); also, variable
“?v4” must bind to a resource o such that there is a triple (s,:hasActor,o) in
T (Line 5), and likewise for the other join clause (Line 7).

For simplicity, Lines 1-4 adopt a non-standard user-defined predicate
match that expresses the matches between keywords and literals, and which
an implementation will map to a specific technology. For example, in Apache
Jena for RDF7 with Lucene8, Line 1 would be rewritten as
(?v1 ?score ?v2) <http :// jena.apache.org/text#query >

("(One -Eyed )").
?v1 :fname ?v2

that matches the values of variable “?v2” with “One-Eyed”.
When executed over the graph in Figure 5, such query will return the

following triples:
7https://jena.apache.org
8https://lucene.apache.org
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1. (r2, :fname, "One-Eyed Jack")
2. (r2, :genre, "Western")
3. (r3, :aname, "Marlon Brandon")
4. (r5, :lname, "Hollywood")
5. (r2, :hasActor, r3 )
6. (r4, :loc, r5 )
7. (r4, :produces, r2 )

which is an answer for the keyword-based query K since these triples match
all keywords in K and induce a Steiner tree of the RDF graph in Figure 5 that
covers all matching nodes.

Finally, if the query returns more than one answer, they are ranked, as
briefly discussed in Section 4.4. For more details, we refer the readers to [41].
�

The key steps therefore are how to select trees to combine by node
fusion or by edge addition and how to expand trees by adding new nodes and
edges. The previous example illustrates these operations, but it leaves open an
important point –how to choose trees, nodes, and edges– which is detailed in
Section 4.3.

Example 3 Based on the Example 2, consider the keyword-based query
K ′={Brandon, Paramount}. We have the following matches between the
keywords in K ′ and triples in T :

Brandon with (r3 :aname “Marlon Brandon”)
Paramount with (r4 :cname “Paramount”)

11(a) The final query graph for K ′ 11(b) Two answers of the SPARQL query syn-
thesized from the query graph in 11(a)

Figure 11: Answers for the keyword-based query K ′={Brandon,
Paramount}

Initially, the query forest has two trees, one for each match. However,
these trees cannot be directly combined since their nodes are dissimilar. The
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final query graph, shown in Figure 1111(a), is obtained by adding two edges,
labeled with :hasActor and :produces, and a new node, labeled withDhasActor

and Rproduces. These additions are required to avoid that the SPARQL query
returns answers which are not connected graphs. Indeed, the resulting query
has two answers, shown in Figure 1111(b), each of which features a node (r1

or r2) that connects the match nodes.

4.2
Query Graph Notion

This section defines the notion of query graph. The discussion in what follows
ignores matches between keywords and class and property labels, which are
discussed in Section 4.4.

Recall, let T be an RDF dataset, L be the set of all literals and
K={k1, ..., kn} be a keyword-based query.

Definição 4.1 A query graph forK over T is a node and edge-labeled graph
Q = (N,E, ν, λ), where ν labels nodes and λ labels edges, such that:

• N is a set of match nodes or join nodes.

• E is a set of edges such that all match nodes have in-degree 1 and out-
degree 0.

• λ is such that each edge (a, b) in E is labeled with a property p that
occurs in T . For simplicity, we denote an edge (a, b) in E, labeled with
p, as a triple (a, p, b).

• ν is such that

◦ a match node in N is labeled with one keyword in K;
◦ a join node a in N is labeled with ν(a) = {D1, ..., Dm, R1, ..., Rn},

where: (a, p1, b1)...(a, pm, bm) are all the edges from a;
(c1, q1, a)...(cn, qn, a) are all the edges into a; Di is the domain of
pi, for 1 6 i 6 m; and Rj is the range of qj, for 1 6 j 6 n.

�

Example 2, in Section 4.1, illustrated the concept of query graph. Note
that the label of a join node is determined by the domains and ranges of
the properties that label the edges incident to the node. Also note that
Definition 4.1 assumes that each match node is labeled with a single keyword,
an assumption adopted just to reduce the complexity of the notation and the
definitions that follow, and to facilitate understanding the proposed algorithm.
However, we note that the implementation considers match nodes labeled with
multiple keywords.
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Definição 4.2 A query tree (or forest) for K over T is a query graph which
is a tree (or a forest). �

Definição 4.3 Let Q = (N,E, ν, λ) be a query graph for K over T . A
SPARQL group graph pattern PQ is induced by Q iff

• for each node a in N , there is a variable ?va; and

• for each edge (a, q, b) of Q, there is a triple pattern in PQ of the form
“?va q ?vb”, if a and b are join nodes, or of the form “?va q ?vb FILTER
(match(?vb, “M”))”, if b is a match node labeled with “M”. �

As explained in Example 2, for simplicity, the second condition includes
a user-defined predicate match that expresses the matches between keywords
and literals. Note that, apart from the order of the triple patterns, PQ is unique.
Also note that the same variable ?va will be used in the patterns corresponding
to the edges (a, p1, b1)...(a, pm, bm) from a and to the edges (c1, q1, a)...(cn, qn, a)
into a.

We leave open the definition of the TARGET clause induced by a query
graph Q. It could return all, or a subset of the variables bound in the query
pattern match (as in the SPARQL SELECT query form), or it could return an
RDF graph constructed by substituting variables in a set of triple templates
(as in the SPARQL CONSTRUCT query form). The first form induces tabular
answers, which users preferred in an earlier implementation [24]. The following
notion of an answer for a query graph Q factors out this discussion since it
depends only on the group graph pattern PQ induced by Q.

Definição 4.4 Let Q = (N,E, ν, λ) be a query graph for K over T . An
answer for Q is a minimal set AQ of triples in T that satisfies the SPARQL
group graph pattern PQ induced by Q. �

Note that AQ induces a subgraph of the RDF graph of T and that Q
may have more than one answer.
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4.3
A Greedy Algorithm to Translate Keyword-based Queries to SPARQL

Let T be an RDF dataset and K = {k1, ..., kn} be a keyword query. This
section details the proposed algorithm to compile a SPARQL query for K over
T whose answers are answers for K.

Definition 4.5 formalizes the node fusion, edge addition, and tree expan-
sion operations. To avoid an awkward notation, in what follows, tree expansion
is broken into two operations that depend on the direction of the edge added.

Definição 4.5 Let Q = (N,E, ν, λ) be a query graph for K over T . Let ai be
a node labeled with Ai = {Ai,1, ..., Ai,ni

}, for i = 1, 2, and p be a property with
domain Dp and range Rp. Assume that a1 and a2 belong to different trees t1
and t2.

a) The fusion of nodes a1 and a2 replaces a1 and a2 by a new join node c,
labeled with {A1,1, ..., A1,n1 , A2,1, ..., A2,n2}.

b) The addition of a join edge, labeled with p, from a1 to a2 relabels a1 with
{A1,1, ..., A1,n1 , Dp} and a2 with {A2,1, ..., A2,n2 , Rp}, and adds the join
edge (a1, p, a2) to the query graph.

c) The expansion of tree t1 by the addition of a join edge, labeled with p,
from a1 relabels a1 with {A1,1, ..., A1,n1 , Dp}, adds a new node c, labeled
with {Rp}, and adds the join edge (a1, p, c) to the query graph.

d) The expansion of tree t2 by the addition of a join edge, labeled with p,
into a2 relabels a2 with {A2,1, ..., A2,n2 , Rp}, adds a new node c, labeled
with {Dp}, and adds the join edge (c, p, a2) to the query graph. �
Algorithm 1 summarizes the basic steps of the strategy, illustrated in

Section 4.1. In the algorithm, a property match for K over T is a pair (p, ki)
such that there is at least one triple in T of the form (s, p, o) such that o
matches ki ∈ K. Step 1 is described in Section 4.4. Step 2 is simple and was
already illustrated in Section 4.1. In what follows, we cover in detail Step 3,
the core of Algorithm 1, and conclude with Step 4.

Step 3 selects operations based on scores defined as follows.

Definição 4.6 Let Q = (N,E, ν, λ) be a query graph for K over T . Let ai
be a node labeled with {Ai,1, ..., Ai,ni

}, for i = 1, 2, and p be a property with
domain Dp and range Rp.

a) Node Fusion Score: assesses when to combine a1 and a2 into a single
node:

node_fusion_score(a1, a2) = J(A1,1, ..., A1,n1 , A2,1, ..., A2,n2)
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Algorithm 1: TranslateKeywordQuery
Input: T – an RDF dataset

K - a keyword-based query K over T
Output: Φ – a query for K over T that outputs answers for K
Step 1: Match the keywords in K with literals in T , creating a set
S of property matches (p, ki) such that p is a property that occurs
in T , and ki ∈ K.
Step 2: Use the set S of matches found in Step 1 to construct an
initial query forest as follows: for each match (p, ki) in S, where D
is the domain of p, the forest has a join node a, labeled with {D},
a match node b, labeled with “ki”, and an edge (a, p, b).
Step 3: Reduce the number of trees of the query forest by using
node fusion, edge addition, and tree expansion.
Step 4: Select the tree with the largest number of keyword
matches, construct a SPARQL query Φ from the selected tree,
whose Where clause is as in Def. 4.3, and output Φ.

b) Edge Addition Score: assesses when to add a join edge, labeled with p,
outgoing from a1 and incoming into a2:

edge_addition_score(a1, p, a2)
= C(A1,1 ∩ ... ∩ A1,n1 , Dp)× C(A2,1 ∩ ... ∩ A2,n2 , Rp)

c) Outgoing Tree Expansion Score: assesses when to add a join edge, labeled
with p, outgoing from a1:

outgoing_tree_expansion_score(a1, p) = C(A1,1 ∩ ... ∩ A1,n1 , Dp)

d) Incoming Tree Expansion Score: assesses when to add a join edge, labeled
with p, incoming into a2:

ingoing_tree_expansion_score(a2, p) = C(A2,1 ∩ ... ∩ A2,n2 , Rp).

�

All these scores can then be estimated using KMV–synopses for such sets
–and this was the reason for adopting KMV–synopses.

In more detail, the node fusion operation uses the node fusion score to
decide when to combine two nodes, a1 and a2, based on how similar all sets
that label the nodes are; note that the node fusion score depends on the n-way
Jaccard similarity measure, since all sets should be considered equally relevant.

The edge addition operation uses the edge addition score to decide when
to add an edge between two nodes, a1 and a2, labeled with a property p, based
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on how the intersection A1,1 ∩ ... ∩A1,n1 of all sets that label a1 are similar to
the domain of p and, simultaneously, how the intersection A2,1 ∩ ... ∩ A2,n2 of
all sets that label a2 are similar to the range of p; edge addition depends on set
containment, since edge addition is similar to a query that locates sets similar
to A1,1 ∩ ... ∩ A1,n1 , and likewise for A2,1 ∩ ... ∩ A2,n2 .

Finally, the tree expansion operation uses the outgoing/incoming tree
expansion scores much in the same way that the edge addition operation uses
the edge addition score; the difference lies in that the added edge, labeled
with property p, is such that the domain of p is similar to the intersection
A1,1∩...∩A1,n1 of all sets that label a1, in the case of the outgoing tree expansion
score, and likewise the range of p is similar to the intersection A2,1 ∩ ...∩A2,n2

of all sets that label a2, in the case of the outgoing tree expansion score.
More precisely, the following proposition lists properties of such scores

(Pr[S] denotes the probability of S).
Proposition 1: Let T be an RDF dataset. Let Ai,1, ..., Ai,ni

, for i = 1, 2, and
B1, B2 be sets of IRIs, and p be a property with domain Dp and range Rp.

a) Randomly draw an element s from A1,1∪...∪A1,n1∪A2,1∪...∪A2,n2 . Then,
the probability that the element s is in A1,1∩ ...∩A1,n1 ∩A2,1∩ ...∩A2,n2

is given by J(A1,1, ..., A1,n1 , A2,1, ..., A2,n2).

b) Randomly draw s from B1∪Dp. Then, the probability that s is in B1∩Dp,
knowing that s is in B1, is given by C(B1, Dp).

c) Randomly draw o from B2∪Rp. Then, the probability that o is in B2∩Rp,
knowing that o is in B2, is given by C(B2, Rp).

d) Randomly draw s from B1∪Dp and o from B2∪Rp. Then, the probability
that s is in B1 ∩Dp and o is in B2 ∩ Rp, knowing that s is in B1 and o
is in B2, is given by C(B1, Dp)× C(B2, Rp).

Proof.

a) Randomly draw s from A1,1 ∪ ... ∪ A1,n1 ∪ A2,1 ∪ ... ∪ A2,n2 . Then, by
definition of the Jaccard similarity, we have

Pr
[
s ∈

⋂j=1,...,n1

i=1,2 Ai,j

]
=
|⋂j=1,...,n1

i=1,2 Ai,j|
|⋃j=1,...,n1

i=1,2 Ai,j|
= J(A1,1, ..., A1,n1 , A2,1, ..., A2,n2)

b) Randomly draw s from B1 ∪Dp. The probability σ we want to compute
is:

σ = Pr [s ∈ B1 ∩Dp|s ∈ B1]
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By definition of conditional probability, we have

σ = Pr [s ∈ B1 ∩Dp]
Pr [s ∈ B1]

Since s is drawn from B1 ∪Dp, we have

Pr [s ∈ B1 ∩Dp] = |B1 ∩Dp|
|B1 ∪Dp|

Pr [s ∈ B1] = |B1|
|B1 ∪Dp|

From the above equalities and by definition of set containment, we have

σ = |B1 ∩Dp|
|B1 ∪Dp|

× |B1 ∪Dp|
|B1|

= |B1 ∩Dp|
|B1|

= C(B1, Dp)

c) Follows likewise.

d) The probability ρ we want to compute is

ρ = Pr [s ∈ B1 ∩Dp, o ∈ B2 ∩Rp | s ∈ B1, o ∈ B2]

By definition of conditional probability, we have

ρ = Pr [s ∈ B1 ∩Dp, o ∈ B2 ∩Dp]
Pr [s ∈ B1, o ∈ B2]

By the independence of the drawings, we have

ρ = Pr [s ∈ B1 ∩Dp]× Pr [o ∈ B2 ∩Dp]
Pr [s ∈ B1]× Pr [o ∈ B2]

Then, as in (b), we immediately have that

ρ = C(B1, Dp)× C(B2, Rp) �

Returning to Step 3 of Algorithm 1, its implementation is limited by the
following result, denominated as MQF Problem.

Definição 4.7 MQF Problem: Given a query forest Q = (N,E, ν, λ) for K
over T , and minimal bounds for the scores, find a minimal forest obtained
by repeatedly applying the node fusion, edge addition and tree expansion
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operations to Q, provided that the scores of these operations are above minimal
bounds.

Proposition 2: The MQF Problem is NP-complete.
Proof Sketch. By a reduction from the minimal Steiner tree problem, as
demonstrated in [24].

In the face of Proposition 2, the rest of this section introduces a
heuristic to implement Step 3, based on the scores introduced in Definition
4.6, estimated using KMV–synopses.

Algorithm 2: ReduceQuery
Input: T – an RDF dataset

p1, ..., pn – the list of properties that occur in T
Q – an initial query forest
δ – a minimum threshold
η – the max number of reduction cycles allowed

Output: Q – a modified query forest, possibly with fewer trees
1 begin
2 count = 0;
3 while Q has more than 1 tree and count ≤ µ do
4 begin
5 CombineTreesByNode(T,Q, δ;Q);
6 if Q has a single tree then return Q;
7 CombineTreesUsingEdges(T, (p1, ..., pn), Q, η;Q);
8 if Q has a single tree then return Q;
9 ExpandTree(T, (p1, ..., pn), Q, η;Q);

10 count = count + 1;
11 end
12 CleanQuery(Q);
13 return Q;
14 end

Algorithm 2 – ReduceQuery implements Step 3 of Algorithm 1 by
combining distinct trees by node fusion (Line 5) or edge addition (Line 7),
and by tree expansion (Line 9). Note that a tree expansion operation (Line 9)
may add a new edge and a new node that may end up not being used in later
cycles to combine trees. This can be detected, when the loop (in Lines 3-11)
finishes, by checking if there is a node, with only one incident edge, which is
not a matching node. A cleaning operation (Line 12) will then eliminate such
nodes and their incident edges. Finally, the number of cycles is limited to η to
avoid adding too many new edges, which might lead to less meaningful queries.
The constant η was empirically determined during the experiments described
in Sections 5.1 and 5.2. Indirectly, η places an upper bound on the length of
the paths between two nodes in the query forest. This is justified since, as
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argued in [43], long paths may express unusual relationships, which might be
misinterpreted by users.

The four procedures used in Algorithm 2 (lines 5, 7, 9, and 12) are
described in Algorithms 3, 4, 5, and 6, respectively.

Algorithm 3: CombineTreesByNodeFusion
Input: T – an RDF dataset

Q – a query forest
δ – a minimum threshold

Output: Q – a reduced query forest
1 begin
2 create a list L of pairs of join nodes, each from a different tree,
3 with node fusion scores above the threshold δ;
4 order L in decreasing order of node fusion score;
5 while L is not empty do
6 begin
7 apply node fusion to (a1, a2), creating a new node a3,
8 and modifying the forest Q accordingly;
9 remove from L any pair involving a1 and a2

10 and any pair of nodes that are now in the same tree;
11 add to L all new pairs involving the new node a3,
12 with node fusion scores above the threshold δ;
13 reorder L in decreasing order of node fusion score;
14 end
15 return Q;
16 end

Algorithm 3 – CombineTreesByNodeFusion implements the node
fusion operation and uses the node fusion score to decide when to combine two
nodes. It selects two nodes to apply node fusion in decreasing order of node
fusion scores (Lines 4 and 13). Lines 11-13 are necessary to accommodate the
new node obtained by node fusion. Finally, the minimum score for the node
fusion score (Lines 3 and 12) tries to reduce the number of pairs added to the
list L and, consequently, the number of cycles of the algorithm.

Algorithm 4 — CombineTreesByEdgeAddition implements the
edge fusion operation and uses the edge addition score to decide when to
add an edge between two nodes. Line 5 avoids considering the combination of
two trees that have a score which is too low, which would possibly lead to a
query with too few answers, or no answer at all. Line 14 is necessary because,
later on, the new tree C1,2 might in turn be combined with other trees.

Algorithm 5 — ExpandTree implements the tree expansion operation
and uses the outgoing/incoming tree expansion scores to decide when to add
an outgoing/incoming edge to a node.
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Algorithm 4: CombineTreesByEdgeAddition
Input: T – an RDF dataset

p1, ..., pn – the list of properties that occur in T
Q – a query forest
δ – a minimum threshold

Output: Q – a reduced query forest
1 begin
2 mark all trees of Q as unprocessed;
3 while Q has more than one tree and
4 there is a pair (C1, C2) of unprocessed trees of Q
5 such as tree_combination_score(C1, C2) ≥ δ do
6 begin
7 select the pair (C1, C2) of unprocessed trees of Q
8 with the highest tree_edge_combination_score(C1, C2);
9 select ai ∈ Ci, ak ∈ Ck, for 1 ≤ i 6= k ≤ 2,

10 and a property pj such that (ai,pj,ak)
11 has the highest edge_combination_score(ai,pj,ak);
12 let ai and ak be labeled with Ai and Ak, respectively;
13 add (ai, pj, ak) to Q, combining C1 and C2 into a single tree

C1,2;
14 relabel ai with Ai ∪ {Dj} and ak with Ak ∪ {Rj},
15 where Dj and Rj are the domain and range of pj,

respectively;
16 mark C1,2 as unprocessed;
17 end
18 return Q;
19 end

Algorithm 6 — CleanQuery receives a query forest and eliminates
unnecessary edges so that all terminal nodes of the modified query forest are
match nodes.

By induction on the number of node fusions, edge additions and tree
expansions applied, and by Definitions 4.3 and 4.4, we can prove the correctness
of the Algorithm 1.
Proposition 3: Let Q = (N,E, ν, λ) be the tree selected in Step 4 of
Algorithm 1. Let A be an answer for Q over T . Then, A is an answer for
K over T . �

As for the overall complexity, Algorithm 2 executes at most η cycles. In
each cycle, node fusions are tried, then edge additions and, if the forest has
not been reduced to a single tree, a tree expansion. Let |K| be the number
of keywords of the query. Let NP be the number of properties that occur in
the RDF graph (i.e., the number of IRIs that denote properties). In the worst
case, one tree expansion is executed per cycle, which adds a new join node. The
initial number of join nodes is at most |K|. Hence, in the ith cycle (starting
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Algorithm 5: ExpandTree
Input: T – an RDF dataset

p1, ..., pn – the list of properties that occur in T
Q – a query forest
δ – a minimum threshold

Output: Q – a reduced query forest
1 begin
2 mark all trees of Q as unprocessed;
3 while Q has more than one tree and
4 there is an unprocessed trees C of Q do
5 begin
6 select the join node a in C and the predicate pj in T
7 with the highest scores:
8 out_edge_score(a, pj) or in_edge_score(a, pj);
9 add a new node b to C;

10 add the join edge (a, pj, b) (or (b, pj, a)) to C;
11 let a be labeled with A;
12 let Dj and Rj be domain and range of pj, respectively;
13 relabel a with A ∪ {Dj} and b with {Rj}
14 (or a with A ∪ {Rj} and b with {Dj});
15 mark C as unprocessed;
16 end
17 return Q;
18 end

Algorithm 6: CleanQuery
Input: Q – a query forest, possibly with join nodes as terminals
Output: Q – a modified query forest whose terminals are match

nodes
1 begin
2 while there is a terminal node a which is not a match node do
3 begin
4 /* since Q is a forest and a is terminal,
5 there is just one edge incident to a */
6 delete the edge incident to a;
7 delete the join node a;
8 end
9 return Q;

10 end

with i = 0), there are at most (|K| + i) join nodes. Then, there are at most
(|K|+ i)2 possible node fusions, (|K|+ i)2× 2 ·NP possible edge additions (we
have to multiply by 2 since we also have to try the inverse of each property),
and (|K|+ i)× 2 ·NP possible tree expansions. Hence, since η is a constant, in
the worst case, the time complexity of Algorithms 2 and 3 is O(|K|2 ×NP ).

This concludes the discussion of Step 3 of Algorithm 1.
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We conclude this section by returning to Step 4 of Algorithm 1. It suffices
to recall that this step selects the tree T with the largest number of keyword
matches and constructs the final SPARQL query Φ from T . Definition 3
explained how to construct the WHERE clause of Φ from T , as already illustrated
towards the end of Example 2 (in Section 4.1). The discussion after Definition
4.3 indicated how to synthesize the target clause of Φ. In the SPARQL SELECT
query format, Φ could return all, or a subset of the variables bound in the
WHERE clause of Φ.

Algorithm 7 -– CompileQuery summarizes these observations, for the
SELECT query format with all variables bound in the WHERE clause.

Algorithm 7: CompileQuery
Input: Q = (N,E, ν, λ) – a query forest
Output: Φ – a SPARQL query

1 begin
2 select the tree T = (N,E, ν, λ) in Q with
3 the largest number of keyword matches;
4 construct the WHERE clause of Φ as follows:
5 for each node a in N :
6 create a variable ?va;
7 for each edge (a, q, b) of T :
8 if a and b are join nodes:
9 create a triple pattern in PQ of the form “?va q ?vb”;

10 else if b is a match node labeled with “M”:
11 create a triple pattern of the form
12 “?va q ?vb FILTER (match(?vb, “M”))”;
13 build the TARGET of Φ with all variables used in the WHERE clause;
14 return Φ;
15 end

4.4
Additional Remarks on the Translation Approach

This section deals with the extensions built into the proposed algorithm
described in the previous section.

4.4.1
Treatment of Class and Property Labels

First, observe that a keyword may match the label of a class or property,
which alters the interpretation of the keyword-based query. For example, if
Actor is declared as a class with label “actor”, then the keyword-based query
K={actor, Washington} is interpreted as requesting instances of the class
Actor that have properties matching “Washington”.
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Assume that a keyword matches the label of class c, declared in the
RDF dataset T (labels are identified when T is scanned in the KMV–synopses
computation). Briefly, this is captured by modifying the definition of query
graph to accommodate classes in the query graphs and the SPARQL group
graph pattern induced by a query graph.

The modifications to account for keywords that match property labels
are entirely similar. The use of other terms of the RDF Schema vocabulary is
outside the scope of this work and therefore will not be discussed.

4.4.2
Use of Ranking

We now briefly discuss two questions: (1) how to define ranking measures
specifically for RDF graphs?; (2) how to use these measures to help compute
and rank answers of keyword queries over RDF graphs?

To address the first problem, [41] proposed a family of importance mea-
sures for RDF graphs, collectively called InfoRank, that combines three in-
tuitions: (I) “important things have lots of information about them”; (II) “im-
portant things are surrounded by other important things”; (III) “few important
relations (e.g. friends) are better than many unimportant relations (e.g. ac-
quaintances)”. InfoRank requires neither the manual assignment of weights to
object properties nor a training dataset to use as input to a learning algorithm.

Let T be a set of RDF triples. Recall from Section 2.1 that it is possible
to identify the set C of classes observed in T , the set P of object properties
observed in T , the set L of literals observed in T , and the set R of (class)
instances observed in T .

The informativeness of an instance r ∈ R, denoted IW (r), is defined
as the number of triples of the form (r, p, v) ∈ T , where v ∈ L, that is,
the number of property values that describe instance r. Based on instance
informativeness, we say that “important classes usually have informative
instances” and “important properties are usually those connecting informative
instances”. More precisely, the InfoRank of a class c ∈ C, denoted IR(c), is
defined as the maximum value of IW (r) of all instances of class c. Likewise,
the InfoRank of an object property p ∈ P , denoted IR(p), is defined as the
maximum value of IW (r) + IW (s) of all triples of the form (r, p, s) ∈ T .

Note that we used only Intuition I to rank classes and object properties.
However, we propose a combination of the three intuitions to rank class
instances.

Let r, s ∈ R and p ∈ P . Assume that (r, p, s) ∈ T or (s, p, r) ∈ T , that is,
ignore the direction of the object property p. The normalized weight of (r, p),
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denoted W (r, p), is defined as:

W (r, p) = IR(p)∑
q∈P and ((r,q,t)∈T or (t,q,r)∈T ) IR(q) (9)

Then, the weighted PageRank score of an instance r, denoted PRW (r, i),
is recursively defined as:

PRW (r, 0) = 1/N (10)

PRW (r, i) = 1− α
N

+ α
∑

(r,p,s)∈T or (s,p,r)∈T
PRW (s, i− 1) ∗W (r, p) (11)

where N is the total number of nodes in T and α is a dumping factor (usually
set to 0.85).

The InfoRank score of an instance r, denoted IR(r), is the PageRank
score of r after a fixed number x of iterations, PRW (r, x), weighted by the
informativeness of r, IW (r):

IR(r) = PRW (r, x) ∗ IW (r) (12)

We conclude with a brief discussion about how to use InfoRank in the
context of the process described in Section 4.3 to compute answers to RDF
keyword queries. Recall that Step 1 of Algorithm 1 matches keywords with
property values, and also with class (or object property) labels or descriptions.
First, class and property labels or descriptions matches have priority over
property value matches. Whenever a keyword matches more than one class
(or object property) label or description, Step 1 of Algorithm 1 ranks all such
classes (and object properties) by descending order of a linear combination of
the match score values with the pre-computed InfoRank score values for the
classes (or object properties) and considers only the topmost class (or object
property). Likewise, Step 1 of Algorithm 1 ranks the property value matches
in decreasing order of their combined scores and considers only the topmost
match.

Finally, Step 4 of Algorithm 1 ranks the answers of a query using again
a linear combination of match score values with pre-computed InfoRank score
values. This is implemented by modifying the final SPARQL query to also
retrieve the pre-computed InfoRank scores for the instances observed in an
answer and to include an order by clause that ranks the answers accordingly.

4.4.3
Beyond Synopses and Ranking

There are special cases of keyword queries where synopses and ranking mea-
sures do not need to be used in the keyword query translation process into
the SPARQL query. The first one consists of queries with a single keyword
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that matches a class label. The second case includes queries with two key-
words, where a keyword matches the label of a resource r, such that the triple
(r,rdf:type,c) is in T , and the other keyword matches the label of an ob-
ject property p, where the domain and range of p is c. Note that the triple
(r,rdf:type,c) is in T implies that c is an observed class in T .

We now use two examples to illustrate these cases.
Let us consider that the keyword-based query system is running on top

of DBpedia.
I. Suppose that the system receives the keyword query K={World Her-

itage Site} as input. Hence, the matching process finds that this
keyword matches the label of class dbo:WorldHeritageSite, since
the triple (dbo:WorldHeritageSite, rdfs:label, "World Heritage
Site") is in DBpedia. Next, the system directly synthesizes a
SPARQL query whose WHERE clause corresponds to the triple pattern
(?r,rdf:type,dbo:WorldHeritageSite), where the variable ?r binds the
class resources.

II. Suppose now that the system receives the keyword query
K={goofy,creator}. So, the matching process finds that the keyword
“goofy” matches the label of the resource dbr:Goofy9, and the keyword
“creator” matches the label of the object property dbo:creator10. Next,
the system detects that dbr:Goofy is a resource of class dbo:Person,
and dbo:creator has resources of dbo:Person both in the domain
and range. Thus, the system is unable to resolve this ambiguity, i.e.,
it cannot decide if dbr:Goofy belongs to the domain or to the range
of dbo:creator. To deal with this issue, the system compiles a WHERE
clause with the following triple pattern:
{ ?r rdfs:label "Goofy"@en .

?x dbo:creator ?y
FILTER (sameTerm (?r, ?x) || sameTerm (?r, ?y)

}

Finally, the system runs the compiled SPARQL query and ranks the answers.

9http://dbpedia.org/page/Goofy
10http://dbpedia.org/ontology/creator
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5
KMV–Synopses RDF Keyword Search System Evaluation

This chapter is composed by three parts to evaluate the schema-less approach
proposed in this thesis by comparing it with state-of-the-art systems, adopted
as the baseline. Firstly, Section 5.1 describes the set of experiments that
compares the schema-less approach proposed in this thesis with a state-of-
the-art schema-based RDF keyword search tool. Section 5.2 describes the set
of experiments that compares the schema-less approach proposed in this thesis
with the state-of-the-art TSA+BM25 and TSA+VDP keyword search systems
over RDF datasets based on the “virtual documents” approach, adopted as
baselines. Finally, Section 5.3 introduces an alternative measure for graph
relevance.

5.1
Comparison with a Schema-based RDF Keyword Search Tool

This section compares the schema-less approach proposed in this thesis with
a state-of-the-art schema-based RDF keyword search tool. Section 5.1.1 de-
scribes the benchmark adopted in this comparison. Section 5.1.2 describes the
environment setup used to run this experiment. Finally, Section 5.1.3 shows
the effectiveness and efficiency of the developed RDF keyword search approach
based on KMV–synopses.

5.1.1
Benchmark Adopted

The benchmark adopted in this experiment was inspired by Coffman’s bench-
mark [16], created to evaluate keyword search tools over relational databases.
Coffman’s benchmark is based on data and the relational schemes for IMDb,
Mondial, and Wikipedia; each dataset has 50 keyword-based queries and their
expected answers.

However, the expected answers in Coffman’s benchmark do not always
cover all possibilities and are somewhat arbitrary. For example, the keyword-
based query niger over Mondial had as the expected answer only the instance
of the class River labeled as “Niger”. However, the instances of the classes
Country and Province labeled as “Niger” should also be considered valid
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answers. In fact, the user can refine the query as {River, niger}, if s/he is
indeed interested in the Niger River. Furthermore, Coffman’s benchmark group
queries by topics, so that all queries within the same topic are quite similar
and redundant with respect to testing the capability of the keyword search
tools.

Hence, the adopted benchmark differs from Coffman’s in three aspects:
(1) it uses triplified versions of Mondial11 and IMDb12; (2) it includes only
keyword-based queries that have answers that explore the structure of the
RDF graph; (3) for each keyword-based query, it contains a ranked list of
answers, created with the help of the graph-based algorithm described in [42].

In more detail, Table 3 summarizes the characteristics of the triplified
versions of the Mondial and IMDb databases included in the benchmark. We
note that the Mondial RDF graph is much more complex than that of IMDb.
However, the size of IMDb is significantly larger than the size of Mondial, in
terms of the number of triples. For both datasets, we included the InfoRank
property values computed in [41]. The schema and data of Mondial dataset are
available at https://www.dbis.informatik.uni-goettingen.de/Mondial.
Regarding IMDb, the RDF Schema and data are available at the QUIRA
Official Page13.

Table 3: Statistics – Mondial and IMDb Datasets

Characteristics Mondial IMDb
N-Triples File Size 27.6 MB 18.1 GB

Triple Types
Class instances 37,468 32,349,586
rdfs:Class declarations – 25
Classes 27 25
subClassOf axioms – 16
Object property 32 35
Datatype property 27 89
Metadata labels declarations 86 147
Ranking datatype properties 70,611 25,968,919
Distinct indexed property values 45,325 10,571,370

Total number of triples 266,985 201,622,903
Jena Properties

Database size 0.99 GB 42 GB
Lucene index size 4.11 MB 4.1 GB
Saving data time (upload + index) 16.8 sec ∼ 4 h

11http://www.dbis.informatik.unigoettingen.de/Mondial
12http://www.imdb.com
13https://sites.google.com/view/quira/

https://www.dbis.informatik.uni-goettingen.de/Mondial
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Following [16], the benchmark keyword-based queries are not real user
queries extracted from search engine logs, yet they reflect distinct information
needs. The benchmark has 24 keyword-based queries for Mondial and 40 for
IMDb, grouped according to the expected graph patterns in their answers, as
shown in Tables A.1 and A.2. The average number of terms per keyword-based
query is 3.42 for Mondial and 4.38 for IMDb.

By construction, all keyword-based queries have non-empty answers. For
each keyword-based query K, the benchmark has a ranked list SK,1, ..., SK,m
of sets of triples of the underlying dataset, called the solution generators for
K. Each solution generator SK,p has a set of literal nodes, called seeds, that
match the keywords in K. The solution generators computed foreach keyword
query are available at https://figshare.com/s/ef9aed9657255a01c008 in
the path src/main/resources/benchmarks/ER2020.

To test an RDF keyword search algorithm A, one would use solution
generators as follows. For each keyword-based query K of the benchmark,
one would submit K to A and obtain one or more answers AK,1, ..., AK,n.
Each answer AK,q should be considered relevant iff AK,q induces a connected
subgraph of one of the solution generators SK,p of K and AK,q includes all
seeds of SK,p as nodes. One might assign a score to AK,q based on the number
of keywords of K that AK,q matches (i.e., the number of seeds of SK,p), the
number of triples of AK,q and the position of SK,p in the ranked list of solution
generators for K. The exact score function is user-defined and outside the
scope of the benchmark.

5.1.2
Experimental Setup

• KMV–synopses RDF Keyword Search Tool. We implemented an RDF
keyword search tool based on the proposed algorithm, which we refer to as
the KMV-synopses RDF keyword search tool, or simply the KMV–synopses
tool, to differentiate it from the baseline tool described below. We used Java
14 to implement the tool and Lucene, which is hosted with Jena, to index the
datatype property values, including rdfs:label values. This feature permitted
combining SPARQL queries and full-text search.

The tool precomputes the KMV–synopses and stores them together with
the dataset. When the dataset is opened, the tool loads the KMV-synopses
into main memory to speed up the compilation of keyword-based queries. If
necessary, the tool recomputes the KMV-synopses from time-to-time, much in
the same way that database systems recompute statistics, as already pointed
out in Section 3.2.

https://figshare.com/s/ef9aed9657255a01c008
DBD
PUC-Rio - Certificação Digital Nº 1712877/CA



Chapter 5. KMV–Synopses RDF Keyword Search System Evaluation 66

To compute KMV–synopses, we adopted as hash function
h(x)=MD5(x)%M2, where M is the number of class instances in
the dataset. MD5(x) is computed by calling the static method
MessageDigest.getInstance("MD5")14. We used k = 16, 384 for IMDb, and
k = 8, 192, for Mondial.

Table 4 shows the time and space the KMV–synopses tool required
to compute the KMV-synopses for the Mondial and IMDb datasets, which
are consistent with the fact that IMDb is 3 orders of magnitude larger than
Mondial. Note that, even for IMDb, it would indeed be feasible to recompute
the KMV-synopses from time-to-time, if IMDb is updated.

Table 4: Space and time required to construct and store KMV–synopses

Dataset Time Space
Mondial 9 sec 439.0 KB
IMDb 152 min 30.6 MB

For each keyword-based query, the KMV-synopses tool returns a ranked
list of answers.
• Baseline. As baseline, we adopted the schema-based RDF keyword search
tool described in [24], which we had full control and could test the performance
in a carefully controlled environment. This baseline tool is fast and had good
precision in earlier experiments [24, 33]. For simplicity, we refer to it as the
baseline tool. We extended the original implementation, which used Oracle
RDF, to Jena to be able to run the benchmark queries and have a fair
comparison baseline.

For each keyword-based query, the baseline tool returns an ordered list
of answers, but it does not adopt any particular ranking strategy.
• Metrics. To measure the effectiveness of the tools, we used the same
metrics considered in [16]: Mean Average Precision (MAP), Top-1, and Mean
Reciprocal Rank (MRR). The average precision for a query is the average of the
precision values computed after each relevant answer is retrieved (and assigning
a precision of 0.0 to any relevant answer not retrieved). If the average precision
value of a query is 0, then we consider it a failed query. MAP is the average
of precision across all queries and provides a single-figure measure of quality
across recall levels. It has been shown that, among the IR measures, MAP
has especially good discrimination and stability. The number of top-1 relevant
answers is the number of queries for which the first answer belongs to the
highest-ranked relevant answer retrieved by the system. The reciprocal rank is

14https://docs.oracle.com/javase/7/docs/api/ java/security/MessageDigest.html
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the reciprocal of the highest-ranked relevant answers for a given query. MRR
is a statistical measure for evaluating any system that produces a ranked list
of answers for every query. It considers the highest-ranked relevant answer
retrieved for each query. The Reciprocal Rank (RR) of a query is calculated
by reversing the rank of the highest-ranked relevant answer retrieved by the
system. MRR is computed by averaging RR values over all queries. Top-1 and
MRR metrics are known to be poorly stable, but they indicate the quality of
the top-ranked answers.

Let K be a keyword-based query, with a ranked list SK,1, ..., SK,m of
solution generators, defined in the benchmark. Recall that each of the tools
returns an ordered list A = (AK,1, ..., AK,n) of answers for K. Then, we tested
each answer AK,q in the ordered list for relevancy, as explained at the end
of Section 5.1.3, finding the SK,p (if it exists) for which AK,q is relevant,
and applied the metrics described earlier. In particular, we used the ranked
positions q and p to compute the MRR metric, and we only tested if the first
answer AK,1 is relevant with respect to the first solution generator SK,1 to
compute the top-1 metric.

We computed the Top-1 and MRR metrics only for the proposed tool
since the baseline tool returns an unordered list of answers. For this reason, we
also did not use the normalized discounted cumulative gain (NDCG) in these
experiments. Indeed, it would be unfair to compare the approach proposed in
this article with the baseline tool, using ranking metrics such as Top-1, MRR,
and NDCG.
• Hardware and Software Setup. All tests were executed on a desktop
machine with OS Windows 10 Pro, a quad-core processor Intel(R) Core(TM)
i5-7400 CPU @ 3.00GHz, 16GB of RAM. To store and manage the RDF
dataset, we used the component TDB2 of Apache Jena for RDF15. Apache
Jena Fuseki (a SPARQL server) ran on a server machine with OS GNU/Linux
Ubuntu 16.04.6 LTS, a quad-core processor Intel(R) Core(TM) i7-5820K
CPU@3.30GHz, 64 GB of RAM and SSD 1TB.

The critical drawbacks of executing queries in Jena are the size of the
heap memory and the timeout. For our tests, we configured the value of heap
memory as JVM_ARGS: –Xmx60G and set the query timeout to 2 hours.

5.1.3
Experimental Evaluation

We examined the performance of the KMV–synopses tool and compare it with
the baseline described in Section 5.1.2. Firstly, we will analyze the effectiveness

15https://jena.apache.org
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of the proposed algorithm. Later, we will focus on its efficiency.
• Effectiveness. Table 5 summarizes the results for Mondial. Reading the
table from left to right, the baseline tool failed in 10 queries (42% of the
queries), while the KMV-synopses tool only failed in 1 of 24 queries (4% of
the queries) w.r.t. the benchmark. Indeed, in Query 22 {Atacama, Province,
Argentina}, the KMV-synopses tool failed because it chose the instance
Atacama of class Province and tried to connect it with the instance Argentina
of class Country, which resulted in an empty set of answers. For all query
groups, the KMV-synopses tool achieved better average precision than the
baseline tool. For instance, the baseline tool failed for query groups C and D,
while the KMV-synopses tool processed all such queries correctly.

Table 5: Experiments with Mondial

Benchmark Failed Queries AP Top-1 RR
Query Groups #Queries BL KMV BL KMV KMV KMV

A - Retrieve resources using Metadata and Values Matches 4 – – 1.00 1.00 1.00 1.00
B - Join of instances of different classes using values and metadata matches 4 – – 1.00 1.00 1.00 1.00
C - Join resources of the same class using values matches 4 4 – 0.00 1.00 1.00 0.75
D - Join two same class resources to resources of another class 4 4 – 0.00 1.00 1.00 1.00
E - Join a pair of resources from different classes to elements of another class through 4 – – 1.00 1.00 1.00 0.55intermediary nodes
F - Join resources of various classes 4 2 1 0.50 0.75 0.75 0.43

OVERALL 24 10 1 0.58 0.96 0.96 0.79
BL – baseline tool KMV – KMV–synopses tool AP – Average Precision RR – Reciprocal Rank

Table 6: Experiments with IMDb

Benchmark Failed Queries AP Top-1 RR
Query Groups #Queries BL KMV BL KMV KMV KMV

A - Retrieve resources using Metadata and Values Matches 7 1 – 0.86 1.00 1.00 0.92
B - Specify Instances filtering by Property Values Matches 4 1 – 0.75 1.00 1.00 0.86
C - Join of instances of different classes using values and metadata matches 15 15 6 0.00 0.60 0.60 0.60
D - Join a pair of instances of different classes using values matches 3 3 2 0.00 0.33 0.33 0.33
E - Join two same class resources to resources of another class 6 6 1 0.00 0.83 0.83 0.83
F - Join resources of various classes 5 5 1 0.00 0.80 0.80 0.80

OVERALL 40 31 10 0.27 0.76 0.76 0.72
BL – baseline tool KMV – KMV–synopses tool AP – Average Precision RR – Reciprocal Rank

Table 6 summarizes the results for IMDb. Again, reading the table from
left to right, the baseline tool failed in 31 queries (77.5% of the queries), while
the KMV-synopses tool only failed in 10 of 40 queries (25% of the queries)
w.r.t. the benchmark. The baseline tool failed for all IMDb benchmark queries
in groups C to F since the use of the RDF schema for compiling the queries in
these groups is not sufficient. Thus, the KMV–synopses tool reached a much
higher mean average precision than the baseline tool. However, in Query 17
{rick, blaine, movie}, it failed since the keywords “rick” and “blaine”, referring
to instances of class Person, instead of instances of class Character, joined
with class Movie, generated a query that returned an empty set of answers.
Indeed, Rick Blaine did not work in movies, but rather in video movies.

Moreover, in Queries Q28={tom, hanks, 2004} and Q29={audrey, hep-
burn, 1951}, the KMV–synopses tool matched the numbers “2004” and
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“1951” with values of properties :death_date and :birth_date, respectively;
the generated query then returned an empty set of answers, since these values
do not simultaneously occur in instances that refer to “tom hanks” and “audrey
hepburn”.

Tables 5 and 6 also show the computed values of Top-1 and MRR
metrics for the proposed algorithm. In both datasets, the obtained values are
considerably high. This means that the proposed algorithm returned relevant
top-1 answers for the non-failing queries. Note that each line of these tables
indicates the results and averages for a specific query group; only the last line
indicates the overall averages.

To summarize, the experiments show that the KMV–synopses tool out-
performs the baseline tool in all metrics.
• Efficiency. The total elapsed time depends on the translation time, that
is, the time to compile the keyword query into a SPARQL query, and the
execution time, that is, the time the RDF Search Engine takes to execute the
SPARQL query. The total elapsed time naturally depends on the RDF Search
Engine chosen (Jena, in this case). Hence, we concentrate on the translation
time.

In the KMV–synopses tool, the translation time can be broken in two
components: the match time, that is, the time it takes to match keywords
with literals; and the assembly time, that is, the time it takes to select the
best matches and to discover how to join the match results. The experiments
indicated that, on average, the assembly time is 80% of the translation time.

The min time, max time, and average time, in seconds, for Mondial
were 0.3s, 0.9s, and 0.6s, respectively, and for IMDb were 1.2s, 59.3s, and
11.4s, respectively. The total elapsed time was much higher for IMDb than for
Mondial, since IMDb is 3 orders of magnitude larger than Mondial, and since
the keyword queries for IMDb were somewhat more complex.

The last columns of Tables A.1 and A.2 (in Appendix), labeled with τ ,
show the total elapsed time the KMV–synopses tool took to execute each
keyword-based query in the benchmark. Overall, the elapsed times of the
KMV–synopses tool and the baseline tool were similar. From the experiments,
for the KMV–synopses tool, we also observed that the translation time for
Mondial was 45–52% of the total elapsed time, on average. For IMDb, it
raised to 62–70% on average. This behavior can be explained because keyword
matching is a costly process, which is heavily affected by the dataset size and
the ambiguity of data, such as IMDb.

Finally, we note that, for the KMV-synopses tool, when the keyword-
based query had few matches, but the compiled SPARQL query had many
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joins, then the execution time represented most of the total elapsed time, such
as for the Mondial benchmark keyword queries in Group D.

5.2
Comparison with Keyword Search Systems based on the “Virtual Docu-
ments” Approach

This section compares the schema-less approach proposed in this thesis with
the state-of-the-art TSA+BM25 and TSA+VDP keyword search systems over
RDF datasets based on the “virtual documents” approach, adopted as base-
lines. Section 5.2.1 describes the benchmark adopted to perform the compar-
ison. Section 5.2.2 discusses the configurations to perform the experiment.
Finally, Section 5.2.3 reports the experiment result according effectiveness and
efficiency.

5.2.1
Benchmark Adopted

This section summarizes the benchmark described in [18], for which
we refer the reader. The benchmark and the code required to run
the experiments are available at https://bitbucket.org/account/user/
keywordsearchrdfproject/projects/TSAC.

The original benchmark contains three real datasets: LinkedMDB, IMDb,
and a subset of DBpedia; and two synthetic databases: the Lehigh University
Benchmark (LUBM) and the Berlin SPARQL Benchmark (BSBM). However,
we decided not to use the LinkedMDB dataset since the number of triples is
not significantly large. So, we selected the LUBM16, BSBM17, IMDb18, and
DBpedia19 datasets.

LUBM is a database about universities, professors, and students devel-
oped by Lehigh University to facilitate the evaluation of Semantic Web Repos-
itories. BSBM is a database built on an e-commerce use case, where different
vendors with posted reviews offer a set of products. The LUBM benchmark
has 14 SPARQL test queries20, whereas the BSBM Explore use case21 has 13
different SPARQL queries. For each synthetic dataset, a version of about 10M
triples was used.

16http://swat.cse.lehigh.edu/projects/lubm/
17http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
18https://datasets.imdbws.com/
19https://wiki.DBPedia.org/data-set-37
20http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
21http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/

ExploreUseCase/index.html

https://bitbucket.org/account/user/ keywordsearchrdfproject/projects/TSAC
https://bitbucket.org/account/user/ keywordsearchrdfproject/projects/TSAC
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IMDb is a relational dataset that describes has movies, series, and
artists are their relationships. We convert it into an RDF dataset with 256M
triples. Finally, for DBpedia, we built an RDF graph composed by the triples
in https://wiki.DBPedia.org/data-set-37 corresponding to the DBpedia
Ontology, the Ontology Infobox Types, the Titles subset, the Short Abstract
subset, and the Raw Infobox Properties subset.

For IMDb, Dosso & Silvello designed 100 topics, where half were used for
training and a half for testing. We used the 50 queries that they designed for
testing. As for DBpedia, Dosso & Silvello considered 50 topics from QALD2_te
and QALD2_tr, used by [6], manually mapped into SPARQL CONSTRUCT queries
and the corresponding keyword queries. A topic is composed of three fields:
the title, the dsc (description), and the SPARQL query. The SPARQL query
contains the SPARQL query that returns the “correct” answer.

We computed the InfoRank values for resources, properties, and classes
for all datasets and added them to the datasets. Table 7 summarizes the
statistics about the used datasets. For comparison purposes, the benchmark is
openly available at https://figshare.com/s/d65d6a4ec70f169b4c50.

Table 7: Statistics — LUBM, BSBM, IMDb, and DBpedia datasets

Dataset Type #Triples #InfoRank Triples #Queries
BSBM synthetic 12M 1.6M 13
LUBM synthetic 12M 1.7M 14
IMDb real 256M 40.2M 50

DBpedia real 72M 3.2M 50

5.2.2
Experimental Setup

• KMV–synopses RDF Keyword Search Tool. The KMV–synopses tool
was already described in Section 5.1.2.

We computed the synopses for all datasets varying the parameter k. Table
8 shows the total space (in MB) required to store the KMV-synopses and the
creation time in minutes. For the running experiment, we used k = 8, 192 for
all datasets and tests.

For DBpedia, we computed the KMV–synopses for 44,809 properties,
considering their domains and ranges. Nevertheless, the sets of property
domains and object property ranges are very skewed.

For instance, we had:

– 607 domain synopses with k = 8,192

https://wiki.DBPedia.org/data-set-37
https://figshare.com/s/d65d6a4ec70f169b4c50
DBD
PUC-Rio - Certificação Digital Nº 1712877/CA



Chapter 5. KMV–Synopses RDF Keyword Search System Evaluation 72

Table 8: KMV–synopses sizes (in MB) and creation time consumption
(minutes)

Dataset k = 4,096 k = 8,192 k = 32,768 Time
BSBM 2.83 4.66 13.3 ~ 30
LUBM 1.26 2.47 9.12 ~ 30
IMDb 0.89 1.96 7.21 ~ 1000

DBpedia 109 143 232 ~ 200

– 37 range synopses with k = 8,192

– 28,036 domain synopses with k < 10

– 8,138 range synopses with k < 10

For example, the object property dbp:teamDirector links a unique pair
of resources: dbr:Germany_national_handball_team (in the domain) and
dbr:Tom_Schneider (in the range).
• Baseline. As baseline for these experiments, we adopted the TSA+BM25
and the TSA+VDP keyword search systems over RDF datasets based on the
“virtual documents” approach, described in [18]. These systems move most
of the computational complexity off-line and then exploit highly efficient text
retrieval techniques and data structures to carry out the on-line phase. Dosso
and Silvello showed that these approaches are more efficient and effective, when
compared with state-of-the-art systems.
• Metrics. For comparison purpose, the metrics adopted to evaluate the
proposed approach in these tests were introduced in [18].

Recall that a Cranfield framework is a triple C = (D,T,GT ), where D
is a dataset, T is a set of topics, and GT defines the ground truths. In our
contexts, D is an RDF dataset, T is a set of keyword queries, and the ground
truth for a topic tk ∈ T , denoted Gtk , is an RDF graph defined by the result of
applying the SPARQL CONSTRUCT query Qtk over D. The relevant triples for
topic tk are the triples that correspond to Gtk ; all other triples are not relevant
for topic tk.

Let tk be a topic, Qk be the corresponding keyword query, and Gtk be
the ground truth defined for tk.

We assume that the keyword query system returns a ranked answer list
Rk = [ap1, ap2, ..., apn], where each api = (Gi, simi) is an answer pair, where
Gi is the answer graph at position i and simi is the similarity between Gi and
Gtk . As an abuse of notation, we write Gi ∈ Rk, when there is an answer pair
of the form (Gi, simi) in Rk.

The Signal-to-Noise Ratio (SNR) of Gi is defined as
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SNR(Gi) = |(Gi ∩Gtk)− S|
Gi

(13)

where S is the union of all relevant triples for topic tk that are also in the
answer graph at position j, for all j ∈ [1, i).

Note that SNR represents a kind of precision score, where the numerator
is equal to the number of relevant triples in Gi found for the first, that is,
excluding the triples in answer graphs that preceded Gi in the ranking Rk, and
the denominator is the total number of triples in Gi. The example described
in Appendix B.1, taken of [18], illustrates the definition of SNR.

Let λ be a relevance parameter such that an answer graph Gi ∈ Rk is
considered relevant iff SNR(Gi) > λ.

The recall of a ranked answer list Rk for topic tk and ground truth Gtk

is defined as

recall(Rk) =
|⋃Gi∈Rk|SNR(Gi)≥λ(Gi ∩Gtk)|

|Gtk |
(14)

Intuitively, the recall of Rk is the ratio between the set of relevant triples that
appear in some relevant answer graph in Rk and the cardinality of the ground
truth. Appendix B.2 shows a quite example of how to compute the recall of a
ranked answer list Rk.

The precision of a ranked answer list Rk for topic tk ground truth Gtk is
defined as

precision(Rk) =
|⋃Gi∈Rk|SNR(Gi)≥λ(Gi ∩Gtk)|

|⋃Gi∈Rk
Gi|

(15)

Intuitively, the precision of Rk is the ratio between the set of relevant triples
that appear in some relevant answer graph in Rk and the cardinality of the set
of triples that appear in some answer graph in Rk.

The precision at c, denoted prec@c, is the precision computed considering
the first c elements of the ranking, and is defined as

prec@c(Rk) =
|⋃Gi∈Rk|SNR(Gi)≥λ ∧ i∈[1,c](Gi ∩Gtk)|

|⋃Gi∈Rk ∧ i∈[1,c] Gi|
(16)

Appendix B.3 exemplifies how to compute the precision and precision at
1 values using Equations (15) and (16).

The Graph Relevance Weight (GRW ) measures the relevance of the
answer graph at i of ranking Rk:

GRW (Gi) = |(Gi ∩Gtk)− S|
|Gtk |

(17)

where S again is the union of all relevant triples for topic tk that are also in
the answer graph at position j, for all j ∈ [1, i).

The example described in Appendix B.4 shows the computation ofGRW .
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The Relevance Gain (RG) computes the relevance gain of an answer
Gi in ranking Rk of size n (n > 0), for a given topic tk, considering
λ ∈ [0, 0.1, 0.2, ..., 1] and a position b (b > 0).

RGb(Gi) =


GRW (Gi) if i ≤ b ∧ SNR(Gi) > λ
GRW (Gi)

logb i
if i > b ∧ SNR(Gi) > λ

0 if SNR(Gi) ≤ λ

(18)

Finally, the triple-based Discounted Cumulative Gain (tb − DCG) of a
ranking Rk is defined as:

tb−DCGb(Rk) =
n∑
i=1

RGb(Gi) (19)

where b represents the highest position in relevance to the ranked answers
graph.

This metric measures the overall utility of a subgraph ranking for the
end-users. It weighs the top-heaviness (best answers are ranked first) and
essentialness (absence of redundancy) in the ranking. Appendix B.5 exemplifies
the computation of RG and tb−DCG values.
• Hardware and Software Setup. All tests were performed under the same
conditions described in Section 5.1.2.

5.2.3
Experimental Evaluation

This section describes the results obtained for the KMV–synopses tool and
compares them with the baseline results from [18], using the metrics summa-
rized in Section 5.2.2, also from [18].
• Effectiveness. Table 9 shows the values of the metrics computed for the
KMV–synopses tool, along with the values for the baselines from [18] over the
four datasets. To compare with the baselines, we used λ = 0 to estimate the
relevance of the answer graphs in the rankings returned by the KMV–synopses
tool, as in [18]. Recall that, by choosing λ = 0, every answer containing at
least one relevant triple is considered relevant.

For the BSBM, LUBM, and IMDb datasets, the KMV-synopses tool
obtained higher metrics values than the TSA systems based on the “virtual
document” approaches. As for precision, this means that the KMV–synopses
tool finds a larger number of relevant triples w.r.t the ground truth and ranks
them adequately, contrasting with the TSA systems, that return a high number
of noisy triples in the answers.

Focusing on DBpedia, the “virtual document” approach based on the
BM25 function had a higher recall value than the other systems but obtains
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Table 9: Results obtained with the experiments using SRR and λ = 0

Dataset System Prec@1 Prec@5 Recall tb-DCG

BSBM
TSA+BM25 0.039 ± 0.01 0.010 ± 0.00 0.227 ± 0.07 0.139 ± 0.05
TSA+VDP 0.071 ± 0.03 0.071 ± 0.03 0.047 ± 0.03 0.074 ± 0.03

KMV–Synopses 0.815 0.823 0.852 0.720

LUBM
TSA+BM25 0.082 ± 0.04 0.111 ± 0.05 0.505 ± 0.07 0.281 ± 0.07
TSA+VDP 0.145 ± 0.03 0.226 ± 0.05 0.384 ± 0.03 0.234 ± 0.06

KMV–Synopses 0.905 0.885 0.684 0.539

IMDb
TSA+BM25 0.011 ± 0.00 0.009 ± 0.00 0.273 ± 0.36 0.067 ± 0.01
TSA+VDP 0.006 ± 0.00 0.006 ± 0.00 0.363 ± 0.04 0.308 ± 0.04

KMV–Synopses 0.810 0.761 0.648 0.681

DBpedia
TSA+BM25 0.000 ± 0.00 0.000 ± 0.00 0.851 ± 0.03 0.135 ± 0.01
TSA+VDP 0.002 ± 0.00 0.002 ± 0.00 0.129 ± 0.03 0.118 ± 0.03

KMV–Synopses 0.233 0.217 0.191 0.363

0 for precision values. This means that the system returns many relevant
triples but cannot rank them effectively. Moving to precision and tb-DCG,
the KMV–synopses tool obtained better values, even though the tool failed
in 19 of the 50 benchmark queries (the synthesized SPARQL queries returned
empty answers). This fact also influenced the low recall value. Another factor
that affects the effectiveness of the KMV–synopses tool is the high degree
of ambiguity of DBpedia. For example, the keyword “governor” exactly
matches the rdfs:label properties of class dbo:Governor and the object
property dbo:governor. Thus, deciding which element should be used to
synthesize the SPARQL query is critical for the KMV–synopses tool. The
current implementation prioritizes the class match found, as explained in
Section 4.4.1. In the future, it is advisable to improve this heuristic by analyzing
the keyword-based query context (for example, the sequence of keywords) to
enhance precision and to return relevant answer graphs.

Concerning IMDb, the dataset also has a high degree of ambiguity but,
in this case, the ambiguity has to do with the resource property values. For
instance, the keyword “Will Smith” matches more than a hundred property
values. However, using the ranking heuristic described in Section 4.4.2, the
KMV–synopses tool selected and included in the synthesized SPARQL query
the resource with the highest InfoRank value, in this case, the resource
expected in the ground truth. This fact again raises the discussion if a manually
defined ground truth covers all possible answers for a keyword-based query.

As for LUBM, the KMV–synopses tool synthesized SPARQL queries
with non-empty answers for all topics in the benchmark. However, there are
non-relevant graphs in the answers, since the precision value is not 1. For
example, the system does not achieve perfect precision for the benchmark
query Q2={GraduateStudent, University, Department, memberOf, subOrga-
nizationOf, undergraduateDegreeFrom}, where the ground truth is the graph
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resulting from the SPARQL CONSTRUCT query (query details were omitted by
brevity):
1 CONSTRUCT WHERE{
2 ?X rdf:type swat:GraduateStudent .
3 ?Y rdf:type swat:University .
4 ?Z rdf:type swat:Department .
5 ?X swat:memberOf ?Z .
6 ?Z swat:subOrganizationOf ?Y .
7 ?X swat:undergraduateDegreeFrom ?Y }

Note that the variable ?Y binds resources of class swat:University
(line 3) and then ?Y simultaneously appears in the object of the
triple patterns of the object properties swat:subOrganizationOf and
swat:undergraduateDegreeFrom (lines 6 and 7). The WHERE clause indicates
a triangular pattern of relationships between the objects involved, which is
hard to indicate through keywords. Thus, the KMV–synopses tool compiles a
SPARQL query similar to above, replacing the variable ?Y by ?W in line 7.

A similar situation was observed for some queries in the IMDb and
DBpedia benchmarks. For example, the IMDb benchmark queries Q31 to Q40
and the DBpedia benchmark queries Q1 and Q21 find films where a person
(identified by her/his name) is an actress/actor and, at the same time, the film
is directed/written/produced by herself/himself, such as the benchmark query
Q1={Clint Eastwood, starring, director} in DBpedia.

To summarize, the experiments showed that the KMV–synopses tool ob-
tained good precision and recall values, and also produced reasonable rankings.
Indeed, the KMV–synopses tool compared favorably with the baseline, state-
of-art systems in terms of effectiveness.

Finally, we observe that, unlike [18], the synthetic databases posed no
problems for the KMV-synopses tool, whereas IMDb and DBpedia were harder
to handle, due to their ambiguity. Furthermore, recall from Section 5.2.1 that
[18] defined the ground truth for each keyword query as a single RDF graph
that is the result of a manually specified SPARQL CONSTRUCT query. This
decision raises at least two questions when assessing the effectiveness of an RDF
keyword-based query system. First, the SPARQL query does not necessarily
cover all possible answers for the keyword query. Second, the answers are not
individualized, so computing effectiveness required redefining the notions of
precision and recall, as described in Section 5.2.2.
• Efficiency. Recall the translation time corresponds to the time to compile
the keyword query into a SPARQL query and the total elapsed time is the time
consumed by the system since it receives the keyword query until it returns
the corresponding answer. We consider that comparing the times of the KMV–
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synopses system against the on-line times reported for the baselines in [18] is
not reasonable since the experimental environments and RDF engines used
in both experiments were different. However, we included, in Table 10, the
translation and the total elapsed times of our proposed system for all four
datasets, which are comparable to those reported in in [18] for the baselines.

Table 10: Minimum, Maximum, and Average for Translation and Total
Elapsed Times (in sec)

Dataset Translation Time Total Elapsed Time
Min Max Ave Min Max Ave

BSBM 2.468 9.768 6.195 4.529 11.280 7.322
LUBM 4.213 8.776 6.205 5.188 9.120 7.609
IMDb 1.542 102.792 60.609 2.896 1200 254.524

DBpedia 0.896 560.541 95.227 1.654 1200 441.875

Concerning the execution times, as expected, the times consumed to
run the queries on top of the synthetic datasets (BSBM and LUBM) were
considerably faster than the times in the real datasets (IMDb and DBpedia).

We focus here on the translation time of the KMV-synopses tool. We
observed that, on average, the translation times for the benchmark queries of
the BSBM and LUBM datasets were very similar, which can be explained by
the low degree of ambiguity, which in turn implies a few matches for a keyword
in the query.

Moving to IMDb, the translation time for the benchmark queries was also
reasonably low. The dataset structure explains this behavior since the IMDb
dataset essentially consists of instances of two different classes (Person and
Film) with their datatype properties and few object properties linking them.
So, the assembly process does not consume much time connecting the resources
resulting from the matching process. On average, the execution time of a query
represented 80% of the total elapsed time. In some cases, this proportion even
exceeded 98%.

Regarding DBpedia, the performance of the KMV–Synopses tool was
much lower in terms of translation times. This fact was expected because, as
mentioned, the degree of ambiguity and the graph structure, regarding the
number of object properties available to connect the resources in the graph,
influences the matching and assembly processes, respectively. On average, the
translation time consumed 80% of the total time in the syntactic databases.
Concerning the ratio between the matching and the assembly processes times,
we observed that, on average, the assembly process consumed more time,
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except for the typical cases described in Section 4.4.3, since the assembly
process directly compiles the described triple pattern.

5.3
Effectiveness Using an Alternative Measure for Graph Relevance

As mentioned in Section 5.2.2, [18] defined SNR to determine when an answer
graph is relevant. However, this measure strongly considers the relevant triples
observed at the top-ranked graphs. By contrast, the KMV–synopses tool
returns answer graphs with relevant triples in any ranking position. Thus,
this section proposes a different measure to establish when an RDF graph is
relevant. It is based on the number of relevant and non-relevant triples in the
RDF graph, but it punishes the presence of non-relevant triples, and does not
memorize the relevant triples in previous rank positions.

Given a topic tk ∈ T , a ranking Rk, and the ground truth graph Gtk , we
define the Graph Relevance Ratio (GRR) of Gi ∈ Rk to establish when a graph
is relevant. Note that this measure is asymmetric, as we are only interested in
comparing Gi against Gtk . Hence, we use a variant of the Tversky index [56].

S(X, Y ) = |X ∩ Y |
|X ∩ Y |+ α|X − Y |+ β|Y −X|

(20)

From Eq. (20), if we consider S as GRR, X = Gi, Y = Gtk , α = 1, and
β = 0, then the GRR(Gi, Gtk), or simply GRR(Gi), is defined as

GRR(Gi) = |Gi ∩Gtk |
|Gi ∩Gtk |+ |Gi −Gtk |

(21)

Intuitively, by taking α = 1, and β = 0, we consider the triples in the
answer graph Gi which are not in the ground truth Gtk , and ignore the triples
which are in the ground truth Gtk , but not in the answer graph Gi. Note that
Eq. (21) is then equivalent to set containment, since |Gi ∩Gtk |+ |Gi −Gtk | =
|Gi|. Indeed, we can redefine GRR as

GRR(Gi) = |Gi ∩Gtk |
|Gi|

(22)

Also, note that the GRR of an answer graph Gi, as SNR, rewards precise
and essential graphs as it decreases whenever the graph contains non-relevant
triples.

Now, inspired by [18], we redefine precision(Rk) and precision@c(Rk),
using GRR, as

precision(Rk) = |{Gi ∈ Rk|GRR(Gi) ≥ λ}|
|Rk|

(23)

prec@c(Rk) = |{Gi ∈ Rk|GRR(Gi) ≥ λ ∧ i ∈ [1, c]}|
c

(24)
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By requiring that GRR(Gi) ≥ λ, we discard those answer graphs Gi

that have fewer relevant triples in the ground truth, as compared with the
total number of triples in Gi.

Here, precision is the ratio between the total number of relevant graphs
and the total number of graphs in the ranking.

However, we decided not to name recall the metric equivalent to that
proposed in [18], since the ground truth for a topic tk, Gtk , is a compact graph
that does not individualize the answers. Therefore, we redefine the recall metric
of Section 5.2.2 under the name Relevant Triples Ratio of Rk (RTR(Rk), for
short) as

RTR(Rk) =
|⋃Gi∈Rk | GRR(Gi)≥λ(Gi ∩Gtk)|

|Gtk |
(25)

12(a) Results for BSBM dataset 12(b) Results for LUBM dataset

12(c) Results for IMDb dataset 12(d) Results for DBpedia dataset

Figure 12: Metrics values computed for the four datasets

We then computed the precision, prec@1, prec@5, and RTR values for
the results of the experiments with the four datasets, using all values of λ in
the set {0.0, 0.1, 0.2, . . . , 1.0}, and the Equations 23, 24, and 25; see the results
in the graphics depicted in Figure 12. Figure 12(a) shows the values for BSBM,
Figure 12(b) for LUBM, Figure 12(c) for IMDb, and Figure 12(d) for DBpedia.

Note that, as expected, when the value of λ increases, the metrics values
decrease. It means that the more restrictive it is to consider that an answer
graph is relevant, fewer of the answers found are regarded as “correct” w.r.t
Gtk . As mentioned, the KMV–synopses tool returns non-empty answers for all
benchmark queries in the LUBM dataset, and for relevance parameter λ ≤ 0.5,
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the precision value is perfect. It means that, for each topic, all returned graphs
are relevant. We observed that the RTR values are quite stable for all values
of λ. It means that the answer graphs considered as non-relevant contain
few relevant triples. We note that, for λ = 0.5 or larger, the metrics values
decreased. For the BSBM dataset, they begin to decrease at λ = 0.8.

Therefore, Table 11 shows only the metrics values obtained with the
relevance parameter λ = 0.8 for all four datasets.

Table 11: Metrics values computed using the proposed GRR and λ = 0.8

Dataset Precision Prec@1 Prec@5 RTR
BSBM 0.846 0.846 0.846 0.841
LUBM 0.790 0.786 0.786 0.792
IMDb 0.739 0.760 0.736 0.860

DBpedia 0.271 0.300 0.280 0.207

Again, computing measures as DCG or NDCG is not viable since, as
already mentioned, the ground truth is not a ranked list of individualized
answers but a single RDF graph.
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6
A Formal Framework for Querying Semantic Trajectories

This chapter defines a formal framework for querying semantic trajectories.
Firstly, Section 6.1 provides a brief description of a semantic trajectory dataset,
called TripBuilder, and introduces some sample queries that help illustrate the
notation used in the keyword-based queries. Section 6.2 describes the concepts
in the proposed framework by divided them into core and extended models.
Section 6.3 formalizes the core and extended models in Description Logic and
defines the notion of semantic trajectory induced by a individual trajectory.
Section 6.4 defines a query language for semantic trajectory datasets. Finally,
Section 6.5 presents some extensions to the proposed framework to explore
spatio-temporal aspects.

6.1
A Keyword Search over Semantic Trajectories Use-Case

This section provides a brief description of a semantic trajectory dataset,
called TripBuilder, and introduces some sample queries that help illustrate
the notation used in the keyword-based queries.

6.1.1
Informal Description of the TripBuilder Trajectory Dataset

TripBuilder is a semantic trajectory dataset constructed from user-generated
content obtained from Flickr, combined with data from Wikipedia [14]. The
dataset contains user trajectories in 3 different Italian cities (Pisa, Rome, and
Firenze). For example, for the city of Pisa, it contains 3,430 trajectories by
1,825 distinct users, from which only 389 trajectories (approximately 11%)
have a length between 4 and 20. Figure 13 shows the distribution of trajectory
lengths in terms of the number of stops.

To construct TripBuilder, users’ photos collected by Flickr were clustered
in the spatial dimension and relate to points-of-interest (POIs). The clusters
generated from the photos of a user indicate her trajectory, assuming that she
moves around the city taking many photos in various POIs. Each trajectory
is characterized by: cluster_id; number of photos; time of the first photo;
and time of the last photo. Cluster_id is, in essence, the key to get more
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Figure 13: Distribution of trajectory lengths in the TripBuilder dataset (in
all cities).

information about the name and category of a POI. Table 12 illustrates two
trajectories, both of which have 6 POIs.

Table 12: Two illustrative trajectories, based on the TripBuilder dataset

Trajectory 1 Trajectory 2
1: ‘Porta_Nuova_(Pisa)’, 1: ‘Torre_del_Leone’,
2: ‘Museo_delle_sinopie’, 2: ‘Torre_pendente_di_Pisa’,
3: ‘Cappella_Dal_Pozzo’, 3: ‘Camposanto_monumentale’,
4: ‘Museo_delle_sinopie’, 4: ‘Torre_del_Leone’,
5: ‘Chiesa_di_San_Giorgio_ai_Tedeschi’, 5: ‘Torre_pendente_di_Pisa’,
6: ‘Museo_delle_sinopie’ 6: ‘Camposanto_monumentale’

This work uses a triplified version22 of the original TripBuilder dataset.
The triplification follows the RDF schema described in Section 7.1 and is fully
described in Section 7.5.1.

6.1.2
Notation and Query Examples

For our research, 10 sample queries were defined considering the TripBuilder
RDF dataset. These queries can be expressed using:

22https://doi.org/10.6084/m9.figshare.11559090
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• a symbolic notation, similar to that of regular expressions, that defines
sequences of stop and move queries

• a reserved terms-based notation, which combines query terms and re-
served terms that define the properties and interrelations of stops and
moves.

Appendix C lists the sample queries (Q1 to Q10) defined for this research,
using data from the city of Pisa. The first group of queries ignores moves and
focuses only on the semantics of stops and their sequences. The queries related
to this group (Q1 to Q7) are listed in Appendix C.1. The second group of
examples seeks for semantic trajectories that combine stops and moves in a
specific sequence. The sample queries related to this case (Q8 to Q10) are
listed in Appendix C.2. Queries are first expressed in natural language, and
then written using the symbolic and the reserved terms-based notation.

Table 13 summarizes the symbols and reserved terms of the proposed
notation, with the list of symbols in the first column, their equivalent terms in
the second column, and a description of their meanings in the last column.

Table 13: Alphabet for keyword queries over semantic trajectories

Symbol Reserved Term Description
Stop “any stop" the set of stops
Move “any move" the set of moves
Begin Begin the set of all beginning stops of trajectories
End End the set of all end stops of trajectories
E t F or the union of the results of queries E and F
E u F and the intersection of the results of queries E and F
E+ “at least once” repeat query E at least once
E∗ “zero or more times” repeat query E zero or more times
E | F or execute query E or query F (but not both)

E;F “and then" execute query E and then query F
(on consecutive stops or consecutive moves)

<M> “by...to" move from one stop to the next, where M is a query on moves
Note: E and F are queries that define a set of stops or a set of moves, depending on the context.

Table 14 shows sample query terms used in the TripBuilder RDF
dataset23, their free-text equivalents, and their meaning. The syntax will be
gradually introduced along with the examples.

Section 6.4 provides a formal definition of how queries are evaluated
against trajectories. Based on it, Chapter 7 introduces a concrete RDF
framework for querying semantic trajectories. We assume that a query Q is
evaluated against some segment of a trajectory τ . The segment is required
neither to start at the beginning of τ nor to terminate at the end of τ . If Q

23The Pisa related terms of the TripBuilder dataset correspond to the respective Wikipedia
and DBpedia entries (e.g. https://it.wikipedia.org/wiki/Categoria:Musei_di_Pisa
or https://it.wikipedia.org/wiki/Categoria:Chiese_di_Pisa).

https://it.wikipedia.org/wiki/Categoria:Musei_di_Pisa
https://it.wikipedia.org/wiki/Categoria:Chiese_di_Pisa
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Table 14: Sample terms used on the TripBuilder dataset

TripBuilder term Reserved Terms Description
Museidipisa Musei Pisa the set of museums located in the city of Pisa
Cappelledipisa Cappele Pisa the set of chapels located in the city of Pisa
Chiesedipisa Chiese Pisa the set of churches located in the city of Pisa
Torredipisa Torre Pisa the set of towers located in the city of Pisa
transportation transportation indicates the transportation means of moves

Torre_pendente_di_pisa Torre pendente
Pisa the Leaning Tower located in the city of Pisa

Torre_del_Leone Torre del
Leone Pisa the Lion Tower located in the city of Pisa

Walk Walk the transportation means is ’by walking’
Taxi Taxi the transportation means is ’by taxi’
Bus Bus the transportation means is ’by Bus’
Subway Subway the transportation means is ’by subway’

must be evaluated against the complete trajectory, then the user must resort to
the reserved symbols Begin and End, as in queries Q5, Q7, and Q10. Chapter
7.4 shows how to write the example queries in SPARQL.

6.2
Framework Overview

The formal framework for semantic trajectories provides the concepts needed
to define the syntax and semantics of the query expressions and to define an
RDF model and a SPARQL implementation of such expressions. To facilitate
formalization, we divided the concepts in the framework into two groups:

i) the core model contains a minimum set of concepts whose properties can
be concisely written in Description Logic, and that suffice to formalize
semantic trajectories.

ii) the extended model that includes additional concepts that facilitate
writing query expressions over semantic trajectories, as well as their
SPARQL counterparts.
The core model has three classes: Trajectory, Stop, and Move; and

a set of other classes collectively called enrichment classes. The individuals
in Trajectory are called trajectory individuals, those in Stop are called stop
individuals, those in Move are called move individuals, and those in the
enrichment classes are called enrichment individuals. Whenever possible, we
omit the term ‘individual’ and refer simply to trajectories, stops, moves, and
enrichments.

Thus, we assume that:
A1. Trajectory, Stop, and Move are disjoint;
A2. Trajectory, Stop, and Move are disjoint from the enrichment classes.
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The core model also has four binary relationships, enrichedBy, begins,
from, and to. We assume that:
A3. enrichedBy relates a stop or move to one or more enrichments;
A4. begins relates a trajectory to a single stop, called the begin stop of the

trajectory, and a begin stop is related to a single trajectory by begins;
A5. from relates a move to a single stop, and a stop is related to a single

move by from;
A6. to relates a move to a single stop, and a stop is related to a single move

by to;
A7. from is defined for a move mj iff to is also defined for mj;
A8. to does not map a move to the begin stop of a trajectory.

Figure 14 schematically depicts a trajectory individual t in the core
model. A formalization of the core model therefore reduces to capturing
assumptions A1–A8, which is the focus of Section 6.3.

Figure 14: Schematic trajectory in the core model

Informally, examples of pairs in enrichedBy are:

• “enrichedBy relates stop s1 to torre_di_pisa”, where the interpretation
of torre_di_pisa is the Leaning Tower of Pisa;

• “enrichedBy relates movemj to bus”, where bus denotes an individual of
the class Transportation, indicating that the transportation mean used
in move mj is a bus.

Let t be a trajectory individual and s1 be the begin stop of t. By A4–
A8, we can define a unique sequence of stops, σ = (s1, . . . , sL), called the
stop sequence of t, by traversing from s1 to the other stops, using the from
and to relationships. Likewise, we can define a unique sequence of moves,
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µ = (m1, . . . ,mL−1), called the move sequence of t, by traversing from stop
sj to stop sj+1 moving by move mj, using the from and to relationships, for
each j ∈ [1, L− 1].

Using A4–A8, we can prove the following properties:
P1. A stop or move belongs to at most one trajectory.
P2. A stop or move is not repeated in σ or µ.

Finally, using A3, we can construct a sequence of sets of stop en-
richments, θ = (e1, . . . , eL), and a sequence of sets of move enrichments,
φ = (f1, . . . , fL−1). Therefore, a trajectory individual t induces a pair Σ =
((σ, µ), (θ, φ)), which we call the semantic trajectory induced by t. A formal-
ization of the notion of semantic trajectory is given in Section 6.3.

In addition to the classes and binary relationships of the core model, the
extended model has two classes, Begin and End, and four binary relationships,
has, nextS, nextM and ends. These classes and binary relationships are
introduced by definition as follows:
D1. Begin is the set of begin stops of the trajectories.
D2. End is the set of the last stops in the stop sequences of the trajectories,

called the end stops.
D3. nextS relates each pair of consecutive stops of the stop sequence of each

trajectory,that is, nextS is the composition of the inverse of from with
to.

D4. nextM relates each pair of consecutive moves of the move sequence of
each trajectory, that is, nextM is the composition of to with the inverse
of from.

D5. has relates each trajectory to each stop of the stop sequence of the
trajectory, and to each move of the move sequence of the trajectory.

D6. ends relates each trajectory to its end stop.
Figure 15 schematically illustrates a trajectory individual t in the ex-

tended model. A formalization of the extended model reduces to expressing
definitions D1–D6, which is also included in Section 6.3. Finally, we stress
that the additional classes and relationships of the extended model do not in-
crease the expressiveness of the model, from the formal point of view, but they
facilitate writing query expressions over semantic trajectories, as well as their
SPARQL counterparts.

6.3
A Description Logic Formalization of Semantic Trajectories

This section details how to formalize the core and the extended trajectory
models in Description Logic (DL). Also, it formally defines the notion of
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Figure 15: Schematic trajectory in the extended model

semantic trajectory induced by a trajectory individual.
In view of the definitions and concepts described in the previous section,

the classes and binary relationships of the core and the extended models
are accommodated by considering that alphabet A has five special atomic
concepts: Trajectory, Stop, Move, Begin, and End; and eight special atomic
roles: enrichedBy, has, nextS, nextM , from, to, begins, and ends. The special
symbols are called the trajectory symbols of A, and the other symbols the
enrichment symbols of A.

Table 15 lists the axioms of the core model, which correspond to assump-
tions A1–A8, and the definitions of the extended model, which correspond to
definitions D1-D6. It also lists three other axioms, which are logical conse-
quences of the axioms and definitions, and correspond to properties P1 and
P2. For simplicity, we assume that there is a super-class of the enrichment
classes in A, denoted ENRICH.

Let A be an alphabet and I an interpretation for A, as in the previous
section. Let t ∈ TrajectoryI . The stop and move sequences over I induced by
t is the pair τ = (σ, µ) such that:
• σ = (s1, . . . , sL) is the sequence of stops of I such that (t, s1) ∈ beginsI ,

(t, sL) ∈ endsI , and (si, si+1) ∈ nextSI , for each i ∈ [1, L− 1].
• µ = (m1, . . . ,mL−1) is the sequence of moves of I such that (mj, sj) ∈

fromI , for each j ∈ [1, L− 1].
We say that L is the length of τ . Note that an empty trajectory is allowed,

as well as a trajectory with just one stop, in which case µ is the empty sequence.
The enrichment sets sequences induced by t or simply the enrichments of
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Table 15: List of axioms and definitions of the core and extended models

# Formal description Informal description
Axioms of the Core Model

1 Trajectory u Stop v ⊥ (A1) Trajectory and Stop are disjoint
2 Trajectory uMove v ⊥ (A1) Trajectory and Move are disjoint
3 Stop uMove v ⊥ (A1) Stop and Move are disjoint
4 Trajectory t Stop tMove (A2) Trajectory, Stop and Move are disjoint from
v ¬ENRICH ENRICH, the super-class of all enrichments

5 ∃enrichedBy v Stop tMove (A3) The domain of enrichedBy is Stop union Move
6 ∃enrichedBy− v ENRICH (A3) The range of enrichedBy is ENRICH
7 ∃begins v Trajectory (A4) The domain of begins is Trajectory
8 ∃begins− v Stop (A4) The range of begins is Stop
9 (> 1 begins) v ⊥ (A4) The cardinality of begins is at most 1
10 (> 1 begins−) v ⊥ (A4) The cardinality of begins− is at most 1

11 ∃from vMove (A5) The domain of from is Move
12 ∃from− v Stop (A5) The range of from is Stop
13 Move v ∃from (A5) The cardinality of from is at least 1
14 (> 1 from) v ⊥ (A5) The cardinality of from is at most 1
15 (> 1 from−) v ⊥ (A5) The cardinality of from− is at most 1

16 ∃to vMove (A6) The domain of to is Move
17 ∃to− v Stop (A6) The range of to is Stop
18 Move v ∃to (A6) The cardinality of to is at least 1
19 (> 1 to) v ⊥ (A6) The cardinality of to is at most 1
20 (> 1 to−) v ⊥ (A6) The cardinality of to− is at most 1

21 ∃from ≡ ∃to (A7) from is defined for a move iff to is also
defined for that move

22 ∃to− u ∃begins− v ⊥ (A8) to does not map a move to the begin stop of a
trajectory

Definitions of the Extended Model
23 nextS ≡ (from− ◦ to) (D3) nextS is the composition of from− with to
24 nextM ≡ (to ◦ from−) (D4) nextM is the composition of to with from−
25 has ≡ (begins ◦ nextS∗) t (D5) has relates a trajectory to its stops and moves

(begins ◦ from− ◦ nextM∗)
26 Begin ≡ ∃begins− (D1) Begin is the set of begin stops of the trajectories
27 End ≡ Stop u ∃has− u ¬∃from− (D2) End is the set of end stops of the trajectories
28 ends ≡ (begins ◦ nextS∗) u >× End (D6) ends relates each trajectory to its end stop

Logical consequences of the Extended Model
29 (> 1;has−) v ⊥ (P1) a stop or move belongs to at most one trajectory
30 nextS+ u I v ⊥ (P2) A trajectory has no repeated stops
31 nextM+ u I v ⊥ (P2) A trajectory has no repeated moves

t, are defined by the pair ε = (θ, φ), where θ = (e1, . . . , eL) is the sequence such
that ei is the set of pairs in enrichedByI whose first element is si, called the
enrichments of si in I, for i = 1, . . . , L, and φ = (f1, . . . , fL−1) is the sequence
such that fj is the set of pairs in enrichedByI whose first element is mj, called
the enrichments of mj in I, for j = 1, . . . , L− 1.

Finally, the semantic trajectory over I induced by t is a pair Σ = (τ, ε)
such that τ is the stop and move sequences over I induced by t and ε is the
enrichment sets sequences induced by I. Note that ε is entirely determined by
τ and the interpretation that I assigns to enrichedBy.
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6.4
Query Expressions over Semantic Trajectories

This section defines a query language for semantic trajectory datasets that
includes:
(1) stop and move queries that select a stop or a move based on its

enrichments; and
(2) sequence expressions that define how to match the stop and move queries

with the sequence of actions (i.e., stops or moves) defined in the semantic
trajectory.
It first treats stop and move expressions as separated sequences, which is

convenient from the formal point of view. Then, it introduces expressions that
intercalate stop and move queries.

In what follows, let A be a DL alphabet and I be an interpretation for A,
satisfying the assumptions introduced in Section 6.2 and formalized in Section
6.3.

6.4.1
Enrichment, Stop, and Move Queries

An enrichment query is simply a concept expression Ci over the enrichment
symbols of A. A stop query over A is either one of the atomic concepts Stop,
Begin, End, or a concept expression of the form

Stop u ∃enrichedBy.Ci (26)

where Ci is an enrichment query. A stop query then defines the set of stops
that have at least one enrichment that satisfies Ci. Indeed, the interpretation
of StopI is the set of stops of I, and the interpretation of ∃enrichedBy.Ci in
I is the set of individuals that enrichedByI maps to some individual in CiI .
Therefore, the interpretation of Stopu∃enrichedBy.Ci is the set of stops with
an enrichment in CiI .

We recursively expand the set of stop queries to include stop concept
expressions of the forms “Qi u Qj” and “Qi t Qj”, where Qi and Qj are stop
queries or stop concept expressions.

Likewise, a move query over A is either the atomic concept Move or a
concept expression of the form

Move u ∃enrichedBy.Ci (27)

where Ci is an enrichment query. Again, we recursively expand the set of move
queries to include move concept expressions defined as above.
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The semantics of enrichment, stop, and move queries need not be
explicitly defined, since it follows from the standard semantics of DL concept
expressions, briefly summarized in Section 6.2.

6.4.2
Stop and Move Sequence Expressions

A stop sequence expression is a regular expression of stop queries, a move
sequence expression is a regular expression of move queries, and a stop/move
sequence expression is a pair (Si,Mj), where Si is a stop sequence expression
and Mj is a move sequence expression.

More precisely, the set of stop sequence expressions over A is recursively
defined as:
(1) The empty sequence λ is a stop sequence expression over A.
(2) Any stop query of over A is a stop sequence expression over A.
(3) If Si is a stop sequence expression over A, then (Si), Si?, S∗i , and S+

i are
also stop sequence expressions over A.

(4) If Si and Sj are stop sequence expressions over A, then (Si | Sj) and
(Si;Sj) are also stop sequence expressions over A.
Parentheses may be omitted, if no ambiguity arises. The set of move

sequence expressions over A is likewise defined, using move queries at the
basis step.

The definition of the semantics of stop (or move) sequence expressions is
simplified if we treat such expressions as specifying a set of sequences of stop
(or move) queries. Recall that Stop is also a stop query that returns the set of
all stops.

Let λ denote the empty sequence. Let si; sj denote the concatenation of
two sequences si and sj, with si; sj = si, if sj = λ, and si; sj = sj, if si = λ.
Let sn denote the n-fold concatenation s; . . . ; s of s with itself, with s0 = λ.

The expansion of a stop (or move) sequence expression Si, denoted
expand(Si), is a set of sequences of stop (or move) queries defined as follows:
(1) expand(λ) = ∅
(2) If Si is a stop (or move) query Qi, then expand(Si) = {Qi}
(3) If Si is an expression of the form (Sj), then expand(Si) = expand(Sj)
(4) If Si is an expression of the form Sj?, then

expand(Si) = {λ} ∪ expand(Sj)

(5) If Si is an expression of the form (Sj | Sk), then

expand(Si) = expand(Sj) ∪ expand(Sk)

(6) If Si is an expression of the form (Sj;Sk), then
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expand(Si) = {sj; sk / sj ∈ expand(Sj) ∧ sk ∈ expand(Sk)}

(7) If Si is an expression of the form Sj
∗, then

expand(Si) =
⋃
m≥0

expand(Sj)m

(8) If Si is an expression of the form Sj
+, then

expand(Si) =
⋃
m>0

expand(Sj)m

Let s = (s1, . . . , sk) be a sequence with k elements, and i, j be two positive
integers. Then, segment(s, i, j) = (si, . . . , sj) is the segment of s starting at
the ith element and ending at the jth element of s:
• if 1 ≤ i ≤ j ≤ k or 1 ≤ i ≤ k < j =⇒ segment(s, i, j) = segment(s, i, k),
• if k < i or j < i =⇒ segment(s, i, j) = λ

We extend the notion of segment to a trajectory τ = (σ, µ), with length
L, so that segment(τ, i, j) = (segment(σ, i, j), segment(µ, i, j − 1)), for any
two positive integers i and j. We say that a trajectory τ ′ is a segment of τ iff
there are positive integers i and j such that τ ′ = segment(τ, i, j).

Let I be an interpretation for A and τ = (σ, µ) be a trajectory over
I, with length L, where σ = (s1, . . . , sL) is a sequence of stops of I and
µ = (m1, . . . ,mL−1) is a sequence of moves of I. Let Si be a stop (or move)
sequence expression.

There are at least two options for the semantics of stop (or move)
sequence expressions, depending on how Si is evaluated against τ :
• Strong semantics, denoted τ |=s Si, when Si is evaluated from the beginning

to the end of τ .
• Weak semantics, denoted τ |=w Si, when Si is evaluated against a segment

of τ , which is required neither to start at the beginning of τ , nor to
terminate at the end of τ .
This work adopts the weak version as the default semantics. However,

note that one can force an expression Si to be evaluated from the beginning
to the end of the trajectories by using Begin and End at the beginning and
at the end of Si.

Strong satisfiability is defined as follows. If τ is a non-empty trajectory,
then τ strongly satisfies Si iff

• Si = λ, or

• there is a sequence Q1; . . . ;Qk in expand(Si) such that, for each i ∈ [1, k],
si ∈ Qi

I (or mi ∈ Qi
I , for move sequence expressions), and k = L, where
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L is the length of the trajectory; in this case, we say that k is the effective
length of Si induced by its evaluation in τ .

If τ is the empty trajectory, then τ strongly satisfy Si iff Si = λ.
We say that τ strongly satisfies a stop/move sequence expression (Si,Mj)

iff τ strongly satisfies Si, τ strongly satisfies Mj, and k = l+ 1, where k is the
effective length of Si induced by its evaluation in τ and l is the effective length
of Mj induced by its evaluation in τ .

We say that τ weakly satisfies Si iff there is a segment τ ′ of τ such that
τ ′ |=s Si.

To conclude, the following examples illustrates the differences between
strong and weak satisfiability. Under the notion of weak satisfiability, the
queries in Section 6.1.2, with their intended interpretation, are expressions
over the alphabet APisa, where

• The terms Museidipisa, Cappelledipisa, Torridipisa and
Chiesedipisa are atomic concepts of APisa.

• The terms Torre_pendente_di_pisa and Torre_del_Leone are con-
stants of APisa.

Furthermore, the queries in Appendix C.1 must be rewritten as follows:

• Each constant a is replaced by the concept expression {a}.

• Each stop query Ei is replaced by the concept expression Stop u
∃enrichedBy.Ei, as in the example below, to conform with Eq. 26.

• Likewise, each move query Ei is replaced by the concept expression
Move u ∃enrichedBy.Ei, to conform with Eq. 27.

For example, Queries Q1 and Q5 are formally rewritten as:
Q1: Find trajectories that stop at a museum and then at a chapel.

Stop u ∃enrichedBy.Museidipisa;
Stop u ∃enrichedBy.Cappelledipisa

Q5: Find trajectories that begin at a museum and then end at a chapel.

Begin u Stop u ∃enrichedBy.Museidipisa;
End u Stop u ∃enrichedBy.Cappelledipisa

Since Begin and End are specializations of Stop, the above expression
can be simplified to:

Begin u ∃enrichedBy.Museidipisa;
End u ∃enrichedBy.Cappelledipisa
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By contrast, under the notion of strong satisfiability, the introduction of
Begin and End becomes superfluous. For example, Q5 is formally rewritten
as:

Stop u ∃enrichedBy.Museidipisa;
Stop u ∃enrichedBy.Cappelledipisa

Note that the first formalization of Q1 and this second formalization
of Q5 are syntactically identical, but they are interpreted under different
semantics.

6.4.3
Intercalated Stop and Move Sequence Expressions

The definition of a stop/move sequence expression as a pair (Si,Mj), where
Si is a stop sequence expression and Mj is a move sequence expression, is
attractive from a formal point of view, but it may hide some complexities.
Indeed, if a semantic trajectory τ satisfies (Si,Mj), then the effective length
of Mj must be one less than the effective length of Si, by definition, to be able
to intercalate the two sequences. But this requirement cannot be verified by
a syntactical inspection of Si and Mj, and is introduced only in the semantic
notion of satisfiability.

For example, consider a stop/move sequence expression (F1, G1), where:

F1 = p;Stop; r; s
G1 = v+;w

Since G1 uses the “+” operator, it denotes sequences of move queries of
arbitrary lengths, but only the sequence “v; v;w”, which has a length equal to
3, could be properly intercalated with F1, which has a length equal to 4.

We therefore define an intercalated stop and move sequence expression as
an expression Nk of the form

Nk = S0 < M1 > S1 < M2 > S2 . . . Sn−1 < Mn > Sn

where Si is a stop sequence expression and Mj is a move sequence expression,
for i ∈ [0, n] and j ∈ [1, n].

To define the semantics of intercalated stop and move sequence expres-
sion, we proceed as in Section 6.4.2, attaining only to weak satisfiability. The
expansion of Nk, denoted expand(Nk), is defined as for stop sequence expres-
sions, but respecting the intercalation of stop and move expressions.

Let E ∈ expand(Nk). Assume, without loss of generality, that E is of the
form:
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E = P0 < Q1 > P1 < Q2 > P2 . . . Pn−1 < Qn > Pn

where Pi is a sequence of stop queries and Qj is a sequence of move queries,
for i ∈ [0, n] and j ∈ [1, n].

Let Stop0 = λ and Stopn = Stopn−1;Stop, for n ≥ 1, and likewise for
Moven. The stop projection of E is the sequence of stop queries F and the
move projection of E is the sequence of move queries G such that:

F = P0;Stopm1 ;P1;Stopm2 ;P2 . . . Pn−1;Stopmn ;Pn
G = Moves0 ;Q1;Moves1 ;Q2;Moves2 . . .Movesn−1 ;Qn;Movesn

where mj is the length of Qj and si is the length of Pi, for i ∈ [0, n] and
j ∈ [1, n].

An example of an intercalated stop and move sequence expression would
be:

N1 = (p | q) < v∗ > r+ < v∗;w > s

The following sequences pertain to expand(N1):

E1 = p < v; v > r < w > s

E2 = q < v > r; r < v;w > s

The stop projection of E1 is F1 and the move projection of E1 is G1,
where:

F1 = p;Stop1; r;Stop0; s
= p;Stop; r; s

G1 = Move0; v;Move0; v;Move0;w
= v; v;w

The equalities follow if we observe that Stop0 = Move0 = λ. Note that
if we intercalate F1 and G1 we obtain E1 again:

p < v > Stop < v > r < w > s = p < v; v > r < w > s = E1

Finally, let τ be a trajectory. If τ is the empty trajectory, then τ does not
weakly satisfy Nk. If τ is a non-empty trajectory then τ weakly satisfies Nk iff
there is E ∈ expand(Nk) such that τ weakly satisfies (F,G), where F is the
stop projection of E and where G is the move projection of E.
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6.5
Extensions to Deal with Spatio-temporal Aspects

The concepts introduced in previous sections focus on the syntax and semantics
of sequences of stop and move queries, exploring their enrichments. However,
we may modify the formal framework to explore spatio-temporal aspects to:
(1) extend the concept of stop and move query;
(2) relate stops (or moves) with each-other;
(3) restrict trajectories;
(4) trajectories with each-other.

To extend stop/move queries, we first introduce a specific alphabet
with atomic concepts and roles that capture spatio-temporal concepts and
properties. Then, we extend the definitions of stop/move queries in Eqs. 26 and
27 by adding new concept expressions over this alphabet. The definitions of
(intercalated) stop and move sequence expressions remain unchanged, however.

Informally, spatio-temporal restrictions that relate stops (or moves) with
each-other would be, for example,“consecutive stops that are less than 1.0
km apart” or “a sequence of three consecutive moves that take less than 30
minutes”. Since such restrictions involve more than one stop or move, they
cannot be accommodated in the definition of stop (or move) query, which refers
to individual stops (or moves). They can, however, be treated as restrictions
on trajectories, that is, combined with the third type of restriction.

A spatio-temporal trajectory restriction may refer to the stops or moves of
a trajectory, as just illustrated, or it may impose a restriction on the trajectory
as a whole, without mentioning stops or moves. For example, one might require
that a trajectory lies entirely within a given region. To accommodate such
restrictions, we have to resort to new expressions that directly involve the class
Trajectory, and new atomic concepts and roles that capture spatio-temporal
trajectory properties.

The last type of restriction involves two or more trajectories, such as
“two trajectories that are never more than 1.0 km apart”. As in the previous
case, we would have to resort to new atomic concepts and roles that capture
spatio-temporal trajectory properties, relationships between trajectories based
on their spatio-temporal properties, as well as other trajectory properties, such
as who or what generated the trajectories.

Finally, spatio-temporal queries need no further comments, since they
have been exhaustively discussed in the literature [17, 40, 51] and, in fact, are
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part of the ISO SQL Standard24 and the OGC GeoSPARQL standard25. Also,
as mentioned before, the focus of this work is on the syntax and semantics of
sequences of stop and move queries, exploring their enrichments.

24ISO/IEC 13249 - Part 3: Spatial, available at https://www.iso.org/standard/60343.
html

25GeoSPARQL - A Geographic Query Language for RDF Data, available at https:
//www.opengeospatial.org/standards/geosparql

https://www.iso.org/standard/60343.html
https://www.iso.org/standard/60343.html
https://www.opengeospatial.org/standards/geosparql
https://www.opengeospatial.org/standards/geosparql
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7
An RDF Framework for Querying Semantic Trajectories

Based on the formal framework of Chapter 6, this chapter introduces a
concrete RDF framework for representing and querying semantic trajectories.
Section 7.1 defines an RDF model for representing semantic trajectories.
Section 7.2 introduces several classes of SPARQL query expressions over
semantic trajectories. Section 7.3 discusses how to process SPARQL query
expressions over semantic trajectories. Section 7.4 presents an algorithm to
process keyword query expressions over semantic trajectories in RDF as a
user-friendly alternative to SPARQL intercalated stop and move sequence
expressions and, with the help of an example, discusses how to process such
keyword query expressions. Finally, Section 7.5 provides a proof-of-concept to
evaluate the algorithm proposed in Section 7.4.

7.1
An RDF Model for Semantic Trajectories

The proposed RDF model for semantic trajectories implements the formal
model proposed in Section 6.3. The model is expressed as an RDF schema
with the following classes and properties (see Figure 15):

• classes: Trajectory, Stop, Move, Begin, and End

• properties: enrichedBy, from, to, nextS, nextM, has, begins, and ends

and with declarations that capture Axioms (1-28) listed in Table 15.
The enrichment classes and properties are not part of the proposed RDF

model for semantic trajectories, as highlighted in Section 6.2. We assume that
they are defined in an external knowledge base.

7.2
SPARQL Query Expressions over Semantic Trajectories

This section first describes SPARQL stop (or move) queries and then SPARQL
stop (or move) sequence expressions.
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7.2.1
SPARQL Enrichment, Stop, and Move Queries

A SPARQL enrichment query is a SPARQL SELECT query over the enrichments
knowledge base whose TARGET clause has a single variable and, thus, returns a
set of IRIs that identify enrichments.

Figure 16 illustrates two SPARQL enrichment queries. The property
function <http://jena.apache.org/text#query>, in the query of Figure
16(a), combines SPARQL and full text search via Lucene in Apache Jena.
SPARQL enrichment queries such as these may, in fact, be automatically
generated from keyword queries, as discussed in Section 7.4. We stress that
a SPARQL enrichment query is not restricted to queries of the forms shown in
Figure 16, but they can be any SPARQL query over the enrichments knowledge
base, whose TARGET clause has a single variable.

1 select ?poi1
2 where {
3 ?poi1 text:query "torre pendente di pisa".
4 }

16(a) SPARQL query that returns the IRI of the Leaning Tower in Pisa

1 select ?poi2
2 where {
3 ?s1 rdfs:label "lb1".
4 ?s2 rdfs:label "pisa".
5 filter regex(?lbl ,"museo").
6 ?poi2 :category ?s1.
7 ?poi2 :locatedIn ?s2.
8 }

16(b) SPARQL query that returns the IRIs of the museums in Pisa

Figure 16: Examples of two SPARQL enrichment queries

The rest of this section introduces the notion of SPARQL stop queries.
The definition of SPARQL move queries is an exact parallel and is omitted.

Recall that a stop query is either Stop, Begin, End, or an expression
of the form given in Eq. 26. In an exact parallel, a SPARQL stop query is a
SPARQL select query of one of the forms:

• Stop, Begin, End
select ?v

where {?v rdf:type C}

where C is one of the class names Stop, Begin, or End.
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• The equivalent of an expression of the form given in Eq. 26
select ?v

where {?v rdf:type :Stop.
?v :enrichedBy ?p.
{ E[?p] }}

where E[?p] denotes a SPARQL enrichment query E with the only
variable in the TARGET clause replaced by ?p.

Also, recall that we recursively expand the set of stop queries to include
stop concept expressions of the forms “Qi uQj" and “Qi tQj", where Qi and
Qj are stop queries or stop concept expressions. The equivalent SPARQL stop
queries are of one of the forms:

• Intersection:
select ?v

where {{ Q1[?v] }.
{ Q2[?v] } }

• Union:
select ?v

where{ { Q1[?v] }
UNION
{ Q2[?v] } }

where Q1[?v] and Q2[?v] denote the SPARQL stop queries Q1 and Q2 with
the only variable in the TARGET clause replaced by ?v.

7.2.2
SPARQL Stop and Move Sequence Expressions and SPARQL Intercalated
Stop and Move Sequence Expressions

As in Section 6.4.2, a SPARQL stop sequence expression is a regular expression
of SPARQL stop queries, a SPARQL move sequence expression is a regular
expression of SPARQL move queries, and a SPARQL stop/move sequence
expression is a pair (Si,Mj), where Si is a SPARQL stop sequence expression
and Mj is a SPARQL move sequence expression. The notion of SPARQL
intercalated stop and move sequence expressions is defined as in Section 6.4.3.

Finally, we introduce the notion of a restricted SPARQL stop sequence
expression, defined exactly as a SPARQL stop sequence expression, except that
expressions of the forms S∗i and S+

i are allowed only when Si is a SPARQL stop
query (and not recursively a SPARQL stop sequence expression). The same
holds for < M∗

i > and < M+
i >. Likewise, a restricted SPARQL intercalated
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stop and move sequence expression allows expressions of the forms S∗i and S+
i

only when Si is a SPARQL stop query, and expressions of the forms < M∗
i >

and < M+
i > only when Mi is a SPARQL move query.

7.3
Processing SPARQL Query Expressions over Semantic Trajectories

This section outlines how to process SPARQL query expressions over semantic
trajectories. Section 7.3.1 discusses how to compile restricted SPARQL stop
sequence expressions into SPARQL queries, whereas Section 7.3.2 outlines how
to process unrestricted SPARQL stop sequence expressions. The processing
of SPARQL move sequence expressions is entirely similar. Finally, Section
7.3.3 indicates how to extend the discussion of previous sections to cover the
processing of SPARQL intercalated stop and move sequence expressions.

7.3.1
Compiling Restricted SPARQL Stop Sequence Expressions to SPARQL
Queries

The compilation process recursively parses a restricted SPARQL stop sequence
expression Expr and replaces each sub-expression of Expr by a SPARQL graph
pattern that depends on the syntax of the sub-expression. The result is a
SPARQL graph pattern, which is further post-processed to eliminate redun-
dant triple patterns. The final SPARQL graph pattern is used to construct
the WHERE clause of the SPARQL query Q that corresponds to Expr. The
TARGET clause of Q is a list of three variables, ?t, ?begin, and ?end. When
executed, Q binds ?t to a trajectory τ , and ?begin and ?end to stops sB and
sE of τsuch that the segment of τ from sB to sE strongly satisfies Expr and,
hence, τ weakly satisfies Expr. Section 7.4 contains a complete example of the
compilation process.

The compilation process uses templates, which are expressions of the
form:

Template(Expr; ?t, ?begin, ?end)

where Expr is a restricted SPARQL stop sequence expression, and ?t, ?begin,
and ?end are SPARQL variables. When called, the template expands to a
schematic SPARQL graph pattern G, in the same way that a macro expands in
traditional programming languages. The expansion process replaces the formal
parameters by the concrete parameter values passed in the call and renames
the other variables used in G to avoid conflicts. The schematic SPARQL graph
patternGmay contain calls to other templates. When fully expanded,G results
in a SPARQL graph pattern that:
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• If Expr is not the empty stop sequence expression, G binds ?t to a
trajectory τ , and ?begin and ?end to a stops sB and sE of τ such that
the sequence of consecutive stops of τ from sB to sE satisfies Expr.

• If Expr is the empty stop sequence expression, G binds ?begin and
?end to the stop before sB, where sB is the stop originally bound to
?begin, since the empty stop sequence expression matches only the
empty trajectory.

Recall that a stop SPARQL query Q has a single variable ?v in the TARGET
clause and let Q[?u] denote Q with ?v replaced by ?u. The templates are as
follows:

(1) Template("Lambda";?t,?begin,?end), where "Lambda" is the empty
stop sequence expression
1 ?stop ^:nextS ?begin
2 bind(?stop as ?begin)
3 bind(?Stop as ?end)

Note: “∧:p” denotes the inverse of property “:p” in SPARQL.

This graph pattern binds variables ?begin and ?end to the stop before
sB, where sB is the stop originally bound to ?begin, as already men-
tioned. This graph pattern is again used in the definition of the templates
for the expressions ”S?” and ”Q∗”.

(2) Template(Q;?t,?begin,?end), where Q is a stop query
1 ?t :has ?begin.
2 { Q[? begin] }.
3 bind(? begin as ?end)

This graph pattern binds variable ?t to a trajectory τ and variable
?begin to a stop sB of τ , tests if sB satisfies Q, and binds ?end to sB.

Note: The actual implementation of the template inverts Line 1 with
Line 2, for efficiency reasons.

(3) Template("S1|S2";?t,?begin,?end)

1 { Template("S1";?t,?begin ;?end) }
2 UNION
3 { Template("S2";?t,?begin ;?end) }

The recursive template calls in Lines 1 and 3 bind variable ?t to a
trajectory τ and variables ?begin and ?end to stops sB and sE of τ ,
respectively, such that the sequence of consecutive stops of τ from sB to
sE satisfies S1 or S2.
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(4) Template("S1;S2";?t,?begin,?end)

1 ?endS1 :nextS ?beginS2.
2 { Template("S1";?t,?begin ;?endS1) }.
3 { Template("S2";?t,? beginS2 ;?end) }

The recursive template calls in Lines 2 and 3 bind variable ?t to a
trajectory τ and variables ?begin, ?endS1, ?beginS2, and ?end to stops
sB, sE1, sB2, and sE of τ , respectively, such that:
(i) the sequence of consecutive stops in τ from sB to sE1 satisfies S1;
(ii) the sequence of consecutive stops in τ from sB2 to sE satisfies S2;
(iii) sE1 and sB2 are consecutive stops of τ (by Line 1).

(5) Template("S?";?t,?begin;?end)

1 OPTIONAL
2 { Template("S";?t,?begin ,?end) }

This graph pattern captures the fact that the expression "S?" is equiva-
lent to the expression "(Lambda|S)", where "Lambda" is the empty stop
sequence expression.

(6) Template("Q+";?t,?begin,?end)

1 ?t :has ?begin.
2 ?begin :nextS* ?end.
3 { Q[? begin] }.
4 { Q[?end] }.
5 filter not exists {
6 ?begin :nextS* ?stopM.
7 ?stopM :nextS* ?end.
8 filter not exists { Q[? stopM] } }

This graph pattern binds variable ?t to a trajectory τ and variables
?begin and ?end to stops sB of sE of τ such that all consecutive stops
from sB to sE in τ satisfy Q, including sB and sE.
Notes:

(a) The actual implementation of the template places Lines 3 and 4
before Lines 1 and 2, for efficiency reasons.

(b) This template applies only when Q is a SPARQL stop query, and
not a SPARQL stop sequence expression, in view of the use of the
SPARQL path expression “:nextS*".

(c) Lines 5 to 7 explore the fact that ∀x(Q) is equivalent to ¬∃x¬(Q).
Thus, the sentence “for any stop s between s1 and s2, s satisfies Q"
is equivalent to “there is no stop s between s1 and s2 such that s
does not satisfy Q."
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(7) Template("Q∗";?t,?begin,?end)

1 OPTIONAL
2 { Template("Q+";?t,?begin ,?end) }

This graph pattern captures the fact that the expression "Q∗" is equiv-
alent to the expression "(Lambda | Q+)", where again "Lambda" is the
empty stop sequence expression.

The final SPARQL graph pattern is subjected to a simplification process,
where some triple patterns are eliminated, based on the axioms listed in Table
15. Section 7.4 contains an example that that illustrates how to compile a
restricted SPARQL stop sequence expression to an equivalent SPARQL query,
and how to simplify the query.

7.3.2
Processing Unrestricted SPARQL Stop Sequence Expressions

In view of the complexity of extending the templates to cover expressions of the
forms S+

i and S∗i , when Si is not a SPARQL stop query, we adopt a different
strategy and outline an interpreter for unrestricted SPARQL stop sequence
expressions.

Recall that the semantics of a stop sequence expression Si, defined in
Section 6.4.2, is based on the expansion of Si into a set expand(Si) of sequences
of stop queries. We may likewise define the expansion of a SPARQL stop
sequence expression Si into a set expand(Si) of sequences of SPARQL stop
queries.

Very briefly, given a SPARQL stop sequence expression Si and an RDF
dataset R containing a set of trajectories and their enrichments, as in Section
7.1, the interpreter proceeds as follows:

1. Create expand(Si), the expansion of Si;
2. Order the sequences in expand(Si) by increasing length, creating a list
L;

3. For each SPARQL stop query sequence Sj in L, up to a certain maximum
length µ, do:
(a) Translate Sj into a SPARQL query Pj, using the corresponding

templates in Section 7.3.1;
(b) Execute Pj against R;
(c) If the result is non-empty, return the trajectories retrieved by Pj;

Note that Step (3) limits the length of the SPARQL stop query sequences
to µ, for practical reasons. The choice of µ is application-dependent. Further-
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more note that Step 3(a) is indeed possible, since Sj is a sequence of SPARQL
stop queries, which is covered by the templates in Section 7.3.1.

7.3.3
Processing SPARQL Intercalated Stop and Move Sequence Expressions

Recall that a restricted SPARQL intercalated stop and move sequence expres-
sion allows expressions of the forms S∗i and S+

i only when Si is a SPARQL
stop query, and expressions of the forms <M∗

i > and <M+
i > only when Mi is

a SPARQL move query.
Let S1 and S2 be restricted SPARQL stop sequence expressions and hence

have associated templates, as in Section 7.3.1. Let M, M1, and M2 be SPARQL
move queries. Recall that M has a single variable in the TARGET clause, and let
M[?u] denote M with this single variable replaced by ?u (and likewise for M1
and M2). The templates that follow are not an exhaustive list, but illustrate
the extension process.

(8) Template("S1<M>S2",?t,?begin,?end)

1 Template("S1" ,?t,?begin ,?endS1) .
2 Template("S2" ,?t,?beginS2 ,?end) .
3 ?move :from ?endS1; :to ?beginS2 .
4 { M[?move] }

The recursive template calls in Lines 1 and 2 bind variable ?t to a
trajectory τ and variables ?begin, ?endS1, ?beginS2, and ?end to stops
sB, sE1, sB2, and sE of τ , respectively, and Line 3 binds variable ?move
to a move m of τ , such that:
(1) the sequence of consecutive stops in τ from sB to sE1 satisfies S1;
(2) the sequence of consecutive stops in τ from sB2 to sE satisfies S2;
(3) m is from sE1 to sB2 (by Line 3);
(4) m satisfies M (by Line 4).

(9) Template("S1<M1|M2>S2",?t,?begin,?end)

1 Template("S1";?t,?begin ,?endS1) .
2 Template("S2";?t,?beginS2 ,?end) .
3 ?move :from ?endS1; :to ?beginS2 .
4 {{ M1[?move] }
5 UNION
6 { M2[?move] }}

The recursive template calls in Lines 1 and 2 bind variable ?t to a
trajectory τ and variables ?begin, ?endS1, ?beginS2, and ?end to stops
sB, sE1, sB2, and sE of τ , respectively, and Line 3 binds variable ?move
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to a move m of τ , such that:
(1) the sequence of consecutive stops in τ from sB to sE1 satisfies S1;
(2) the sequence of consecutive stops in τ from sB2 to sE satisfies S2;
(3) m is from sE1 to sB2 (by Line 3);
(4) m satisfies either M1 or M2 (by Lines 4-6).

(10) Template("S1<M1;M2>S2",?t,?begin,?end)

1 Template("S1" ,?t,?begin ,?endS1) .
2 Template("S2" ,?t,?beginS2 ,?end) .
3 ?move1 :from ?endS1; :to ?stop2 .
4 ?move2 :from ?stop2; :to ?beginS2 .
5 { M1[? move1] } .
6 { M2[? move2] }

The recursive template calls in Lines 1 and 2 bind variable ?t to a
trajectory τ and variables ?begin, ?endS1, ?beginS2, and ?end to stops
sB, sE1, sB2, and sE of τ , respectively, and Lines 3 and 4 bind variables
?move1 and ?move2 to moves m1 and m2 of τ , respectively, such that:
(1) the sequence of consecutive stops in τ from sB to sE1 satisfies S1;
(2) the sequence of consecutive stops in τ from sB2 to sE satisfies S2;
(3) m1 is from sE1 to a stop s2 and m2 from s2 to sB2 (by Lines 3 and 4);
(4) m1 satisfies M1 and m2 satisfies M2 (by Lines 5 and 6).

(11) Template("S1<M+>S2";?t,?begin,?end)

1 Template("S1";?t,?begin ,?endS1) .
2 Template("S2";?t,?beginS2 ,?end) .
3 ?moveB :from endS1 .
4 ?moveE :to beginS2 .
5 ?moveB :nextM* ?moveE .
6 { M[? moveB] } .
7 { M[? moveE] } .
8 filter not exists {
9 ?moveB :nextM* ?moveM .

10 ?moveM :nextM* ?moveE .
11 filter not exists { M[? moveM] } }

The recursive template calls in Lines 1 and 2 bind variable ?t to a trajectory
τ and variables ?begin, ?endS1, ?beginS2, and ?end to stops sB, sE1, sB2,
and sE of τ , respectively, and Lines 3 and 4 bind variables ?moveB and ?moveE

to moves mB and mE of τ , respectively, such that:
(1) the sequence of consecutive stops in τ from sB to sE1 satisfies S1;
(2) the sequence of consecutive stops in τ from sB2 to sE satisfies S2;
(3) mB is from sE1 and mE is to sB2 (by Lines 3 and 4);
(4) all moves in the sequence of moves of τ from mB to mE satisfy M (by Lines
5-11).
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Finally, the processing of unrestricted SPARQL intercalated stop and
move sequence expressions is covered via a modification of the interpreter
defined in Section 7.3.2.

7.4
Keyword Query Expressions over Semantic Trajectories

The definitions that follow are similar to those in Sections 6.4 and 7.2. A
keyword stop query is a finite set K = {k1, . . . , kn} of literals, called keywords,
that defines a set of stops based on their enrichments. These queries would then
be applied to the RDF knowledge base to select a set R of enrichments, which
are then used to select the set of stops that are related to the enrichments in
R by the enrichedBy property. A keyword move query is likewise defined.

Schema-based algorithms, as [24, 33], can then be used to translate
keyword stop (or move) queries into SPARQL queries that retrieve resources
by their name, such as “Torre Pendente di Pisa”, or by their attributes, such
as “Musei di Pisa”. In the first case, the query would retrieve a single POI
id that corresponds to the Leaning Tower of Pisa (see Figure 16(a)), while in
the second case it would return a list of ids that correspond to the museums
in Pisa (see Figure 16(b)). One can relax the scope of the query by informing
only some keywords, such as “Torre di Pisa”, in which case the keyword query
could return the ids of the “Torre Pendente di Pisa” and “Ristorante La Torre
Pisa”.

Keyword stop sequence expressions, keyword move sequence expressions,
keyword stop/move sequence expressions, and keyword intercalated stop and
move sequence expressions are defined as in Section 7.2, except that they
are based on keyword stop queries and keyword move queries. The regular
expression symbols may be replaced by the reserved terms listed in Table 13.

The processing of a keyword intercalated stop and move sequence ex-
pression N to SPARQL has three basic steps:

1. Translate N into a SPARQL intercalated stop and move sequence
expression S:

(a) If necessary, replace the reserved terms “Stop”, “Move”, “Begin”
and “End” by SPARQL queries, as discussed in Section 7.2.1.

(b) Also, if necessary, replace the reserved terms that denote regular
expressions by equivalent symbols, using Table 13.

(c) Translate each keyword stop (or move) query into a SPARQL query
(Section 7.3.1).

2. Process S as discussed in Section 7.3.3.
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3. Build the TARGET clause of S with variable ?t that binds the queried
trajectories.

We exemplify how to process the query Q9 in Appendix C.2 (repeated
below for ease of reference):

“Find the trajectories that begin at a chapel or a church,
always move by bus between stops, and end at the Leaning Tower”

using the algorithm just described.
Let N be the corresponding keyword intercalated stop and move expres-

sion and assume that N uses the symbolic notation and the TripBuilder terms
of Tables 13 and 14:

(Begin u (Cappelledipisa | Chiesedipisa) ) <Bus+>
(Torre_pendente_di_pisa u End)

In this example, we adopt Jena ARQ26 as the SPARQL query engine.
Then, the processing of N goes as follow:

• Step 1: Translate the keyword queries “Cappelledipisa”,
“Chiesedipisa”, and “Torre_pendente_di_pisa” to SPARQL
enrichment queries, as shown in Figure 17, to retrieve the resources
associated with these POIs.

select ?v1
where { ?v1 text:query "(Cappelledipisa)" }

17(a) SPARQL enrichment query for “Cappelledipisa”

select ?v2
where { ?v2 text:query "(Chiesedipisa)" }

17(b) SPARQL enrichment query for “Chiesedipisa”

select ?v3
where { ?v3 text:query "(Torre_pendente_di_pisa)" }

17(c) SPARQL enrichment query for “Torre_pendente_di_pisa”

Figure 17: The SPARQL enrichment queries of the keyword queries in S

Note that variables ?v1, ?v2, and ?v3 bind the IRIs of POIs re-
sources associated with “Cappelledipisa”, “Chiesedipisa”, and
“Torre_pendente_di_pisa”, respectively.

26https://jena.apache.org/documentation/query/index.html
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• Step 2: Process the resulting SPARQL intercalated stop and move
sequence expression S.

� The process recognizes that S satisfies Template (11):

Template("S1<M+>S2";?t,?begin,?end)

where:

∗ S1 is the SPARQL query corresponding to "Begin u S3";

∗ S3 is the SPARQL query corresponding to
"(Cappelledipisa | Chiesedipisa)";

∗ S2 is the SPARQL query corresponding to "S4 u End";

∗ S4 is the SPARQL query corresponding to
"Torre_pendente_di_pisa";

∗ M is the SPARQL query corresponding to <Bus>.

Note that S3 satisfies Template (3).

� By combining the different templates, the final template for S is
(edited for legibility):

1 ### Stop query S1
2 ?t :has ?begin .
3 ### Stop query for “Begin”
4 ?begin rdf:type Begin .
5 ### Stop query for “Cappelledipisa or Chiesedipisa”
6 {
7 {
8 ### Stop query for “Cappelledipisa”
9 ?begin rdf:type Stop .

10 ?begin :enrichedBy ?v1 .
11 ?v1 text:query "Cappelledipisa"
12 }
13 UNION
14 {
15 ### Stop query for “Chiesedipisa”
16 ?begin rdf:type Stop .
17 ?begin :enrichedBy ?v2 .
18 ?v2 text:query "Chiesedipisa"
19 }
20 }
21
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22 ### Stop query S2
23 ?t :has ?end .
24 ### Stop query for “Torre Pendente di Pisa”
25 {
26 ?end rdf:type Stop .
27 ?end :enrichedBy ?v3 .
28 ?v3 text:query "Torre_pendente_di_pisa"
29 }
30 ### Stop query for “End”
31 ?end rdf:type End .
32
33 ### Template (11)
34 ?moveB :from ?begin .
35 ?moveE :to ?end .
36 ?moveB :nextM* ?moveE .
37 ### Move query corresponding to “by bus" for ?moveB
38 ?moveB :type Move .
39 ?moveB :enrichedBy ?transpB
40 filter (? transpB = :Bus)
41 ### Move query corresponding to “by bus" for ?moveE
42 ?moveE :type Move .
43 ?moveE :enrichedBy ?transpE
44 filter (? transpE = :Bus)
45 ### “by bus" one or more times
46 filter not exists {
47 ?moveB :nextM* ?moveM .
48 ?moveM :nextM* ?moveE .
49 filter not exists {
50 ?moveM :type Move .
51 ?moveM :enrichedBy ?transpM
52 filter (? transpM = :Bus)
53 }
54 }

• Step 3: The compilation process ends by setting the TARGET clause
(as a SELECT form) with the variables ?t, which binds the queried
trajectories, ?begin and ?end, as stated in Section 7.3.1, and applying
some simplifications (indicated after the query).

The final synthesized SPARQL query is:
1 select ?t, ?begin , ?end
2 where{
3 ?t :begins ?begin .
4 {
5 {
6 ?begin :enrichedBy ?v1 .
7 ?v1 text:query "Cappelledipisa"
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8 }
9 UNION
10 {
11 ?begin :enrichedBy ?v2 .
12 ?v2 text:query "Chiesedipisa"
13 }
14 }
15 ?t :ends ?end .
16 {
17 ?end :enrichedBy ?v3 .
18 ?v3 text:query "Torre_pendente_di_pisa"
19 }
20 ?moveB :from ?begin .
21 ?moveE :to ?end .
22 ?moveB :nextM* ?moveE .
23 ?moveB :enrichedBy ?transpB
24 filter (? transpB = :Bus)
25 ?moveE :enrichedBy ?transpE
26 filter (? transpE = :Bus)
27 filter not exists {
28 ?moveB :nextM* ?moveM .
29 ?moveM :nextM* ?moveE .
30 filter not exists {
31 ?moveM :enrichedBy ?transpM
32 filter (? transpM = :Bus)
33 }
34 }
35 }

The simplifications applied and the axioms that justify them were:

– Replace "?t :has ?begin" and "?begin rdf:type Begin" by
"?t :begins ?begin" - Axiom (26).

– Replace "?t :has ?end" and "?end rdf:type End" by
"?t :ends ?end" - Axioms (27-28).

– Drop "?moveB :type Move", since "?moveB :from stop1" occurs
- Axiom (11).

– Drop "?moveE :type Move", since "?moveE :to stop2" occurs
- Axiom (16).

– Drop "?moveM :type Move", since "?moveB :nextM* ?moveM" occurs
- Axioms (11, 16, 24).
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7.5
A Proof-of-Concept Experiment

This section first describes the construction of the TripBuilder RDF dataset
and then reports experiments that explore how to compile a set of keyword
stop and move sequence expressions into SPARQL.

7.5.1
The Use-Case Trajectory Dataset in RDF

As stated in Section 6.1.1, we selected the TripBuilder dataset to run the
proof-of-concept experiment. The original dataset is openly available at https:
//github.com/igobrilhante/TripBuilder and contains trajectory data of
three Italian cities: Pisa, Florence and Rome. The basic idea behind Trip-
Builder is to recognize that a tourist moves around a city taking many photos
of various POIs, and thereby his photos are a good indication of his trajectory.
The construction of TripBuilder then started by clustering users’ photos col-
lected by Flickr, using the spatial dimension, and then relating each cluster to
places-of-interest (POIs). For each city, the data are organized in four files in
a directory identified by the name of the city.

For the construction of the TripBuilder RDF dataset, we wrote a Java
program that parses the TripBuilder city data files, extracts data for POIs,
stops, and trajectories and triplifies the resulting data in RDF, following the
model specified in Section 7.1. In special, the triplification is such that it results
in an RDF dataset that satisfies the axioms listed in Table 15. We also included
two new properties and a new class:
(1) The property lenght, added to the instances of the Trajectory class,

indicates the length of a trajectory.
(2) The property move_number, added to the instances of the Move class,

indicates the sequential position of a move in a trajectory.
(3) The class Transportation whose resources were automatically gener-

ated, labeled with a value in the set {“Walk”, “Taxi”, “Bus”, “Subway”},
and randomly linked to resources of the Move class using the property
enrichedBy.
This new class helps exploit the capabilities of the translation algorithm,
given that the original TripBuilder dataset does not contain information
about moves.

Table 16 shows the main statistics of the TripBuilder RDF dataset. The re-
sulting RDF dataset contains a total of 1,617,582 triples, which break down
to 5 rdfs:Class declarations, 255,018 class instances (47% of them corre-
sponding to stops, 30% to moves and 21.5% to trajectories) and 1,973 indexed

https://github.com/igobrilhante/TripBuilder
https://github.com/igobrilhante/TripBuilder
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property values; Data are available for download at https://figshare.com/
s/92332f0cbb8d591021ed.

Table 16: Statistics about the TripBuilder RDF Dataset

Triple Types # of Triples
rdfs:Class declarations 5

Class instances 255,018
- For class :POI 1,603
- For class :Stop 120,322
- For class :Trajectory 55,474
- For class :Transportation 4
- For class :Move 77,615

- Moves enrichedBy :Walk 19,577
- Moves enrichedBy :Bus 19,441
- Moves enrichedBy :Taxi 19,436
- Moves enrichedBy :Subway 19,161

Datatype properties 7
String (Indexable) datatype properties 3
Distinct indexed property values 1,973

Total of triples 1,617,582

We stored the RDF dataset on a Jena ARQ SPARQL server (running on
a quad-core processor Intel(R) Core(TM) i7-5820K CPU@3.30GHz, 64 GB of
RAM, and SSD 1TB, with GNU/Linux Ubuntu 16.04.6 LTS OS). The string
property values, including rdfs:label values, were indexed using Lucene27,
which is hosted with Jena. This feature allows combining SPARQL queries and
full-text search.

7.5.2
Experiments with a Sample Set of Keyword Query Expressions

The experiments consisted of applying the approach described in Section
7.4 using the set of keyword query expressions listed in Appendix C. Recall
that Appendix C lists a sample set of queries for stop-and-moves sequence
expressions: Queries Q1 to Q7 are stop sequence expressions, and Queries Q8
to Q10 are examples of intercalated stop and move sequence expressions.

We analyzed the results of the proposed translation algorithm with re-
spect to two aspects: (1) the templates that the SPARQL stop and move
sequence expressions satisfy; and (2) the average execution time of 10 repeti-
tions of each synthesized SPARQL query. For each keyword query expressions

27http://lucene.apache.org/

https://figshare.com/s/92332f0cbb8d591021ed
https://figshare.com/s/92332f0cbb8d591021ed
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of the test suite, Table D.1 (in Appendix D) shows the compiled SPARQL
query (edited for readability) and Figure 18 indicates the average runtime.

Figure 18: The runtime of the compiled SPARQL queries

The results can be summarized as:

• Q1 is a simple stop sequence that satisfies Template (4). As Table D.1
shows, the runtime of the synthesized SPARQL query is fast.

• Q2 combines Template (4) and Template (3). As Table D.1 shows, the
runtime of the synthesized SPARQL query is reasonable.

• Q3 combines Template (4) and Template(6). The runtime of the synthe-
sized SPARQL query is considerably higher than that for Q2. The sharp
increase in runtime is due to the presence of nested filter not exists
group patterns and the use of the SPARQL Property Path28 operator
“*” inside the patterns to solve the stop query Torridipisa+.

• Q4 combines Template (4) into Template (3). The runtime of the
synthesized SPARQL query is fast since the query has few joins.

• Q5 adds the Begin and End restrictions to Q1. The SPARQL query
synthesized for Q5 then replaces the triple patterns {?t :has ?stop1;
:has ?stop2} in Q1 by {?t :begins ?stop1; :ends ?stop2}. Then,
the runtime of the synthesized SPARQL query is similar to Q1.

• Q6 uses the OPTIONAL and UNION patterns to capture “(Cappelledipisa
| Chiesedipisa)?”. The runtime of the synthesized SPARQL query is
reasonable; approximately 1 second on average.

• Q7 has Begin and End restrictions and can be rewritten as
28https://www.w3.org/TR/sparql11-property-paths/
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Begin u Cappelledipisa+; Cappelledipisa u End.

Hence, this stop sequence expression is similar to Q3, combining
Template (4) and Template (6). Also, as Q3, the runtime of the syn-
thesized SPARQL query is significantly high, but still reasonable.

– Q8 directly follows Template (8), which the algorithm applies to syn-
thesize the SPARQL query in a straightforward way. The runtime of the
synthesized SPARQL query, about 1 second on average, is reasonable.

• As stated in Section 7.4, Q9 combines Template (11) and Template (3).
Unexpectedly, the runtime of the synthesized SPARQL query is pretty
fast.

• Q10 has a complex graph pattern. It combines Template (10)
and Template (8). Note that the stop and move sequence
“Cappelledipisa <Move> Torredipisa” is equivalent to the stop se-
quence “Cappelledipisa ; Torredipisa” since there is no restriction
on the transportation means in the move sequence. Hence, the triple
pattern “?move3 :from ?stop2; :to ?stop3” (see row for Q10 of Ta-
ble D.1) can be replaced by “?stop2 :nextS ?stop3”. The runtime of
the synthesized SPARQL query, about 3 seconds, is high, but still rea-
sonable.

To conclude, we observe that the complexity of the SPARQL query
synthesized in each case naturally reflects the complexity of the keyword
query expressions. As expected, queries with triple patterns with the property
path operator “*” inside nested “filter not exists” group patterns (Q3,
Q7), or with complex graph patterns (Q10) had a high runtime. However,
unexpectedly, even with a complex graph pattern, Q9 had a small runtime.
Queries with less complex graph patterns (Q1, Q2, Q4, Q5, Q8), or with just
UNION or OPTIONAL patterns (Q6) had acceptable runtime. Overall, all queries
were executed within the specified timeout of 1 minute. The average runtime
of the test suite queries, about 1.5s, was reasonable. Hence, the experiment
suggests that the proposed approach, based on keyword query expressions and
RDF, is feasible.
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8
Conclusions and Future Work

8.1
About the Keyword Search over Schema-less RDF Datasets Problem

To address the keyword search over schema-less RDF datasets problem, this
thesis introduced a novel algorithm to automatically translate a user-specified
keyword-based query into a SPARQL query that returns answers with respect
to the keywords. The algorithm synthesizes the SPARQL query by exploring
the Jaccard and set containment similarity measures between the property
domains and ranges and class instance sets, observed in the RDF dataset. The
algorithm estimates these similarity measures using KMV-synopses, which can
be pre-computed in a single pass over the RDF dataset.

The thesis then described two sets of experiments with an implemen-
tation of the proposed algorithm, which we called the KMV–synopses RDF
keyword search tool, or simply the KMV-synopses tool. The first set of exper-
iments compared the KMV–synopses tool with a baseline schema-based tool
[24, 33] over a benchmark. We were interested in testing if schema information
could be replaced by KMV–synopses, without impacting performance. The ex-
periments showed that the KMV–synopses tool outperformed the baseline tool
in all metrics adopted, which shows that the lack of schema information can
indeed be replaced by pre-computed, concise KMV–synopses for the property
domains and ranges and class instance sets. Also, the average elapsed times
of the baseline tool and the KMV–synopses tool were similar, which indicates
that estimating set similarity based on KMV–synopses does not introduce
significant overhead, even for large RDF datasets such as IMDb, if the KMV-
synopses are pre-computed. The second set of experiments indicated that the
KMV-synopses tool performed better than the state-of-the-art TSA+BM25
and TSA+VDP keyword search systems over RDF datasets based on the “vir-
tual documents” approach, using the metrics and the benchmarks proposed
originally to assess these systems [18].

Finally, the thesis proposed the Graph Relevance Ratio (GRR) to estab-
lish when an answer graph is relevant w.r.t. a ground truth graph. It is based
on the number of relevant and non-relevant triples in the RDF graph, but
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it punishes the presence of non-relevant triples, and does not memorize the
relevant triples in previous rank positions.

As future work, we suggest to investigate indexes for the KMV–synopses
to optimize the KMV–synopses tool, and methods to maintain KMV–synopses
incrementally [34]. Also, we suggest to combine the strategy described with
schema information to drive the query compilation process. The KMV–
synopses will be used to help the query compilation process in much the same
way as the usual database statistics help the query optimization process. Fi-
nally, we also plan to adapt the proposed strategy to operate over relational
and RDF datasets, such as our earlier keyword search tool [33] that is schema-
based.

8.2
About the Keyword Search over RDF Semantic Trajectories Problem

To address the keyword search over RDF semantic trajectories problem, this
thesis defined a query language that includes: (1) stop and move queries that
select sets of stops or moves based on their enrichments; and (2) sequence
expressions that define how to match the stop and move queries with the
sequence of actions defined in the semantic trajectory.

Based on Description Logic, the thesis first introduced a formal model
for semantic trajectories and defined stop and move sequence expressions,
with well-defined syntax and semantics, which act as an expressive query
language for semantic trajectories. Then, it moved to a concrete semantic
trajectory model in RDF and described how to process SPARQL stop and
move sequence expressions, using state-of-the-art, efficient SPARQL query
processors. The adoption of RDF is a natural choice, given that one can
take advantage of several open-access knowledge bases in RDF to enrich
trajectories. Next, the thesis defined a user-friendly way to express stop
and move sequence expressions, based on the use of keywords to capture
stop and move queries, and the adoption of terms with predefined semantics
to define sequence expressions. It briefly indicated that such keyword stop
and move sequence expressions can be compiled into SPARQL queries. This
final approach aims at hiding the complexities of writing SPARQL queries,
and yet it permits the use of SPARQL query processors. Finally, the thesis
described a proof-of-concept experiment using the TripBuilder dataset, a
semantic trajectory dataset constructed from user-generated content obtained
from Flickr, combined with data from Wikipedia. These contributions were
reported in [35].

As future work, we plan to run large-scale experiments with real-world
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semantic trajectory datasets, backed up by a robust implementation of the
keyword stop and move sequence expression SPARQL compiler. A target
application would be related to investigations of cargo vessel incidents. The
stop and move sequence expressions introduced in thesis work would help, for
example, locate vessel trajectories that match disallowed movement patterns,
such as “trajectories of oil tankers that sailed from any oil rig port in country
A, sailed through a high risk region (e.g. a piracy prone area) and arrived at
a port P in another country B”. Such trajectories are sometimes followed by
captains at the risk of not been covered by insurance companies in the case of
an attack.

Stop and move sequence expressions may also be used to query different
types of trajectories, such as play lists in a musics database, or navigation
patterns of interest in an e-shop: “customers who visited the product page of a
tv-set A (an analogy of stop), then followed a link (a type of move) to another
tv-set B (another stop of the same type) and later on their session searched
(i.e., a different type of “move” within a web site) for a console C”.

Finally, we will invest in extending the approach to a question-and-answer
(Q&A) scenario.
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A
Query Workloads for Mondial and IMDb

Table A.1: Query workload for Mondial

Groups Keyword Queries τ

A) Retrieve instances of classes (using
metadata and value matches)

1. niger country 0.6
2. atacama desert 0.5
3. mongolia parliamentary 0.5
4. everest elevation 0.4

B) Retrieve joined instances of differ-
ent classes (using metadata and value
matches)

5. spain galician 0.5
6. poland language 0.3
7. haiti religion 0.4
8. brazil brasília 0.4

C) Retrieve joined instances of the
same class (using value matches)

9. mongolia china 0.7
10. lebanon syria 0.7
11. mali france 0.8
12. brazil portugal 0.5

D) Retrieve two instances of the same
class joined by instances of another
class

13. poland cape verde organization 0.8
14. iceland mali organization 0.7
15. mauritius india organization 0.9
16. vanuatu afghanistan organization 0.6

E) Retrieve two instances of different
classes joined by elements of another
class through intermediary nodes

17. hutu country africa 0.8
18. country asia uzbek 0.8
19. country america catholic 0.8
20. country european jewish 0.9

F) Retrieve joined instances from vari-
ous classes

21. paranaiba province brazil 0.6
22. atacama province argentina 0.8
23. everest province china 0.7
24. rhein germany province 0.7
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Table A.2: Query workload for IMDb

Groups Keyword Queries τ

A) Retrieve instances of classes (using
metadata and value matches)

1. denzel washington person 3.5
2. johnny depp actor 5.5
3. forrest gump work 2.6
4. star wars movie 13.7
5. angelina jolie gender 5.2
6. the sound of music length 5.2
7. lord of the rings novel 7.5

B) Retrieve instances filtering by prop-
erty value matches

8. will smith male 59.4
9. tom hanks “9 july 1956" 33.4
10. gone with the wind “august 1991" 20.7
11. casablanca “they had a date with

46.4
fate in casablanca"

C) Retrieve joined instances of differ-
ent classes (using metadata and value
matches)

12. johnny depp work 5.9
13. morgan freeman work 4.2
14. atticus finch movie 1.7
15. indiana jones movie 8.5
16. james bond movie 18.6
17. rick blaine movie 1.8
18. will kane movie 2.1
19. dr. hannibal lecter movie 1.2
20. norman bates movie 1.2
21. darth vader movie 4.4
22. the wicked witch of the west movie 2.1
23. nurse ratched movie 1.5
24. jacques clouseau actor 1.3
25. jack ryan actor 2.6
26. terminator actor 9.3

D) Retrieve two joined instances of dif-
ferent classes (using value matches)

27. clint eastwood frank horrigan 10.2
28. tom hanks 2004 5.7
29. audrey hepburn 1951 32.5

E) Retrieve two instances of the same
class joined by elements of another class

30. julia roberts richard gere work 12.6
31. harrison ford george lucas work 30.2
32. sean connery ian fleming work 20.7
33. keanu reeves lana wachowski work 6.3
34. dean jones herbie 15.6
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Table A.2 – continued from previous page
Groups Keyword Queries τ

35. Indiana Jones and the last crusade
5.4

raiders of the lost ark person

F) Retrieve joined instances from vari-
ous classes

36. nathan algren tom cruise Work 7.8
37. rocky balboa sylvester stallone Work 11.9
38. henry jaynes fonda work yours mine

3.5
and ours character

39. russell crowe work gladiator character 22.3
40. brent spiner work star trek the next

1.3
generation character
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B
Examples of Computing Dosso’s Metrics

Consider the ground truth graph (GT ) and the sequence of answer graphs
GA1, GA2, and GA3, in Figure B.1.

Figure B.1: An example of a ground truth graph and a sequence of answer
graphs

B.1
Computing the Signal-to-Noise Ratio (SNR)

Table B.1 shows the SNR values for each answer graph. Recall SNR is defined
following Equation (13):

SNR(Gi) = |(Gi ∩Gtk)− S|
Gi

B.2
Computing Recall

Recalling the example described in Appendix B.1, and considering a relevance
parameter λ = 0.7, the recall of Rk = {GA1, GA2, GA3}, as shown in Figure
B.1, is:

recall(Rk) = |(GA1 ∩GT )|
|GT |

= 3
5 = 0.6

since, by Table B.1 and given that λ = 0.7, the only relevant answer graph is
GA1 and |GA1 ∩GT | = |{A→ B,A→ C,C → D}|=3.

Note that if we set the relevance parameter λ = 0.5, then the recall value
of Rk is 1.
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Table B.1: Computation of SNR(Gi) for the answer graphs in Figure B.1

i SNR(Gi)
1 S = ∅

SNR(GA1) = |(GA1 ∩GT )− S|
|GA1| = |{A→ B,A→ C,C → D} − S|

|GA1| =

= |{A→ B,A→ C,C → D}|
|GA1| = 3

4 = 0.75

2 S = {A→ B,A→ C,C → D}

SNR(GA2) = |(GA2 ∩GT )− S|
|GA2| = |{A→ E,A→ C} − S|

|GA2| =

= |{A→ E}|
|GA2| = 1

2 = 0.5

3 S = {A→ B,A→ C,C → D,A→ E}

SNR(GA3) = |(GA3 ∩GT )− S|
|GA3| = |{A→ E,E → F} − S|

|GA3| =

= |{E → F}|
|GA3| = 1

2 = 0.5

B.3
Computing Precision and Precision at c

Returning to Appendixes B.1 and B.2. Again, by Table B.1 and since λ

= 0.7, the only relevant answer graph is GA1. The precision of Rk =
{GA1, GA2, GA3} therefore is

precision(Rk) = |GA1 ∩GT |
|GA1 ∪GA2 ∪GA3| = 3

6 = 0.833

where |GA1 ∪GA2 ∪GA3| =
= |A→ B,A→ C,C → G,C → D,A→ E,E → F | = 6.

Considering c = 1, the precision at 1 of Rk, prec@1, is

prec@1(Rk) = |GA1 ∩GT |
|GA1| = |A→ B,A→ C,C → D|

|GA1| = 3
4 = 0.75

B.4
Computing Graph Relevance Weight (GRW )

Considering the ground truth graph and the ranked answers list depicted in
Figure B.1, then Table B.2 shows the computed GRW values for the answers
GA1, GA2, and GA3, respectively. Recall that the GRW is computed using
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the Eq. (17):

GRW (Gi) = |(Gi ∩Gtk)− S|
|Gtk |

Table B.2: Computation of GRW(Gi) for the answer graphs in Figure B.1

i GRW (Gi)
1 S = ∅

GRW (GA1) = |(GA1 ∩GT )− S|
|GT |

= |{A→ B,A→ C,C → D} − S|
|GT |

=

= |{A→ B,A→ C,C → D}|
|GT |

= 3
5 = 0.6

2 S = {A→ B,A→ C,C → D}

GRW (GA2) = |(GA2 ∩GT )− S|
|GT |

= |{A→ E,A→ C} − S|
|GT |

=

= |{A→ E}|
|GT |

= 1
5 = 0.2

3 S = {A→ B,A→ C,C → D,A→ E}

GRW (GA3) = |(GA3 ∩GT )− S|
|GT |

= |{A→ E,E → F} − S|
|GT |

=

= |{E → F}|
|GT |

= 1
5 = 0.2

B.5
Computing Relevance Gain (RG) and Discounted Cumulative Gain (tb-
DCG)

Let b=2 and λ=0.7. Table B.3 shows the RG values for the sequence of answer
graphs considering the ground truth graph depicted in Figure B.1. Recall that
the RG value is computed using Eq. (18):

RGb(Gi) =


GRW (Gi) if i ≤ b ∧ SNR(Gi) > λ
GRW (Gi)

logb i
if i > b ∧ SNR(Gi) > λ

0 if SNR(Gi) ≤ λ

Table B.3: Computation of RG(Gi) for the answer graphs in Figure B.1

i RG(Gi)
1 1 ≤ 2 && SNG(GA1) = 0.75 > 0.7⇒ RG(GA1) = 3/5 = 0.6
2 SNR(GA2) = 0.5 < 0.7⇒ RG(GA2) = 0
3 SNR(GA3) = 0.5 < 0.7⇒ RG(GA3) = 0
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Now, we can compute the tb−DCG2(Rk). Recall the measure is computed
following the Eq. (19):

tb−DCGb(Rk) =
n∑
i=1

RGb(Gi)

Then, attending the computed RG values in Table B.3,

tb−DCG2(Rk) = 0.6 + 0 + 0 = 0.6
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C
Sample Queries of Stop-and-Move Sequence Expressions

C.1
Stops and Sequences of Stops

Q1: Find trajectories that stop at a museum and then at a chapel.

• Symbolic notation:

Museidipisa; Cappelledipisa

• Reserved terms-based notation:

Museidipisa "and then" Cappelledipisa

Q2: Find trajectories that stop at a tower, then stop at a chapel or church,
and then at a museum.

• Symbolic notation:

Torridipisa; (Cappelledipisa | Chiesedipisa); Museidipisa

• Reserved terms-based notation:

Torridipisa "and then" (Cappelledipisa or Chiesedipisa)
"and then" Museidipisa

Q3: Find trajectories that stop at least once in a tower, and then at a museum.

• Symbolic notation:

Torridipisa+; Museidipisa

• Reserved terms-based notation:

Torridipisa "at least once" "and then" Museidipisa

Q4: Find trajectories that stop at the Lion Tower and then at the Leaning
Tower, or stop at the Leaning Tower and then at the Lion Tower.
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• Symbolic notation:

(Torre_del_Leone; Torre_pendente_di_pisa) |
(Torre_pendente_di_pisa; Torre_del_Leone)

• Reserved terms-based notation:

(Torre_del_Leone "and then" Torre_pendente_di_pisa) or
(Torre_pendente_di_pisa "and then" Torre_del_Leone)

Q5: Find trajectories that begin at a museum and then end at a chapel.

• Symbolic notation:

(Begin u Museidipisa); (Cappelledipisa u End)

• Reserved terms-based notation:

(Begin and Museidipisa) "and then"
(Cappelledipisa and End)

Q6: Find trajectories that stop at a museum and, later on, end at a chapel or
a church optionally.

• Symbolic notation:

Museidipisa; Stop∗; (Cappelledipisa | Chiesedipisa)? u End

• Reserved terms-based notation:

Museidipisa "and then" "any stop zero or more times"
"and then"

(Cappelledipisa or Chiesedipisa) optionally and End

Note: The term “Stop∗" indicates that the trajectory may have zero or more
stops of any kind between the stop that satisfies “Museidipisa" and the end
of the trajectory.

Q7: Find trajectories that begin at a chapel, stop at zero or more chapels, and
end at a chapel.

• Symbolic notation:

Begin u Cappelledipisa; Cappelledipisa∗;
Cappelledipisa u End

• Reserved terms-based notation:

Begin and Cappelledipisa "and then" Cappelledipisa "zero or
more times" "and then" Cappelledipisa and End
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C.2
Stops and Moves in a Sequence

Q8: Find trajectories that stop at a museum and then take a bus to a chapel.

• Symbolic notation:

Museidipisa <Bus> Cappelledipisa

• Reserved terms-based notation:

Museidipisa "by Bus to" Cappelledipisa

Q9: Find the trajectories that begin at a chapel or a church, always move by
bus between stops, and end at the Leaning Tower.

• Symbolic notation:

(Begin u (Cappelledipisa | Chiesedipisa) ) <Bus+>
(Torre_pendente_di_pisa u End)

• Reserved terms-based notation:

Begin and (Cappelledipisa or Chiesedipisa)
"by Bus at least once to" Torre_pendente_di_pisa and End

Q10: Find trajectories that begin at a tower, then walk to take a bus to a
church, and then using any transportation means end at a palace.

• Symbolic notation:

Begin u Torridipisa <Walk; Bus> Chiesedipisa
<Move> Palazzidipisa u End

• Reserved terms-based notation:

Begin and Torridipisa "by walk and then Bus to"
Chiesedipisa

"by any move to" Palazzidipisa and End

Note: The term “Move" indicates that the trajectory may have any kind of move
between the stop that satisfies “Chiesedipisa" and the end of the trajectory.
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D
Compiled SPARQL Queries from the Sample of Keyword
Queries Expressions

Table D.1: Keyword query expressions and their translations to SPARQL

Query Compiled SPARQL Query Runtime (s) Results

Q1 SELECT DISTINCT ?t, ?stop1, ?stop2 { 0.073 33
?v1 text:query "museidipisa".
?stop1 ex:enrichedBy ?v1 .
?v2 text:query "cappelledipisa".
?stop2 ex:enrichedBy ?v2 .
?t ex:has ?stop1; ex:has ?stop2 .
?stop1 ex:nextS ?stop2 }

Q2 SELECT DISTINCT ?t, ?stop1, ?stop3 { 0.493 15
{ ?v1 text:query "torridipisa" .
?stop1 ex:enrichedBy ?v1. }

{ ?v2 text:query "cappelledipisa".
?stop2 ex:enrichedBy ?v2

UNION { ?v3 text:query "chiesedipisa".
?stop2 ex:enrichedBy ?v3 } }

{ ?v4 text:query "museidipisa" .
?stop3 ex:enrichedBy ?v4. }

?t ex:has ?stop1; ex:has ?stop2;
ex:has ?stop3 .

?stop1 ex:nextS ?stop2 .
?stop2 ex:nextS ?stop3 }

Q3 SELECT DISTINCT ?t, ?stop1, ?stop3 { 5.167 7
?v1 text:query "torridipisa" .
?stop1 ex:enrichedBy ?v1.
?v2 text:query "torridipisa".
?stop2 ex:enrichedBy ?v2
?v3 text:query "museidipisa".
?stop3 ex:enrichedBy ?v3
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Query Compiled SPARQL Query Runtime (s) Results

?t ex:has ?stop1; ex:has ?stop2;
ex:has ?stop3

filter not exists {
?t ex:has ?stopM .
?stop1 ex:nextS* ?stopM .
?stopM ex:nextS* ?stop2 .
filter not exists {
?stopM ex:enrichedBy ?vM .
?vM text:query "torridipisa"} }

?stop2 ex:nextS ?stop3 }

Q4 SELECT DISTINCT ?t, ?stop1, ?stop2 { 0.623 3
{ ?v1 text:query "torre_del_leone" .
?stop1 ex:enrichedBy ?v1.
?v2 text:query "torre_pendente_di_pisa".
?stop2 ex:enrichedBy ?v2 .
?t ex:has ?stop1; ex:has ?stop2 .
?stop1 ex:nextS ?stop2 }

UNION {
?v1 text:query "torre_pendente_di_pisa".
?stop3 ex:enrichedBy ?v3.
?v4 text:query "torre_del_leone".
?stop4 ex:enrichedBy ?v4 .
?t ex:has ?stop3; ex:has ?stop4 .
?stop3 ex:nextS ?stop4 } }

Q5 SELECT DISTINCT ?t, ?stop1, ?stop2 { 0.075 5
?v1 text:query "museidipisa".
?stop1 ex:enrichedBy ?v1 .
?v2 text:query "cappelledipisa".
?stop2 ex:enrichedBy ?v2 .
?t ex:begins ?stop1; ex:ends ?stop2 .
?stop1 ex:nextS ?stop2 }

Q6 SELECT DISTINCT ?t, ?stop1, ?stop2 { 0.763 607
?v1 text:query "museidipisa".
?stop1 ex:enrichedBy ?v1 .
?t ex:has ?stop1
OPTIONAL {
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Query Compiled SPARQL Query Runtime (s) Results

{ ?stop2 ex:enrichedBy ?v2 .
?v2 text:query "cappelledipisa"}
UNION {
?stop2 ex:enrichedBy ?v3 .
?v3 text:query "chiesedipisa"}

?stop1 ex:nextS* ?stop2 .
?t ex:ends ?stop2 } }

Q7 SELECT DISTINCT ?t, ?stop1, ?stop3 { 3.747 2
?v1 text:query "cappelledipisa" .
?stop1 ex:enrichedBy ?v1. }
?v2 text:query "cappelledipisa".
?stop2 ex:enrichedBy ?v2 .
?v3 text:query "cappelledipisa" .
?stop3 ex:enrichedBy ?v3 .
?t ex:begins ?stop1; ex:ends ?stop3 .
filter not exists {
?t ex:has ?stopM .
?stop1 ex:nextS* ?stopM .
?stopM ex:nextS* ?stop2 .
filter exists {
?stopM ex:enrichedBy ?vM .
?vM text:query "cappelledipisa"} }

?stop2 ex:nextS ?stop3 }

Q8 SELECT DISTINCT ?t, ?stop1, ?stop2 { 0.709 10
?v1 text:query "museidipisa".
?stop1 ex:enrichedBy ?v1 .
?v2 text:query "cappelledipisa".
?stop2 ex:enrichedBy ?v2 .
?move ex:from ?stop1; ex:to ?stop2 ;
ex:enrichedBy ?transp .

filter (?transp = res:Bus)
?t ex:has ?stop1; ex:has ?stop2;
ex:has move }

Q9 see example in Section 7.4 0.443 27

Q10 SELECT DISTINCT ?t, ?stop1, ?stop3 { 3.066 2
?v1 text:query "torridipisa" .
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Query Compiled SPARQL Query Runtime (s) Results

?stop1 ex:enrichedBy ?v1 .
?v2 text:query "chiesedipisa" .
?stop2 ex:enrichedBy ?v2 .
?v3 text:query "palazzidipisa" .
?stop3 ex:enrichedBy ?v3 .
?t ex:begins ?stop1; ex:has ?stop2;
ex:ends ?stop3

?move1 ex:from ?stop1; ex:to ?stopM .
?move1 ex:enrichedBy res:Walk .
?move2 ex:from ?stopM; ex:to ?stop2 .
?move2 ex:enrichedBy res:Bus .
?move3 ex:from ?stop2; ex:to ?stop3 .
?t ex:has ?move1; ex:has ?move2;
ex:has ?stopM; ex:has ?move3 }

prefix text:<http://jena.apache.org/text#>
prefix ex: <http://localhost:8080/vocab/>
prefix res: <http://localhost:8080/resource/>

DBD
PUC-Rio - Certificação Digital Nº 1712877/CA



E
Articles Related to the Thesis

This appendix lists articles related to the topics covered in the thesis that were
already published, or that are under review.

Published:

• García G.M., Izquierdo Y.T., Menendez E.S., Dartayre F., Casanova
M.A. (2017) RDF Keyword-based Query Technology Meets
a Real-World Dataset. Proc. 20th International Conference on
Extending Database Technology (EDBT), March 21-24, Venice, Italy:
ISBN 978-3-89318-073-8, on OpenProceedings.org, pp. 656-667. doi:
10.5441/002/edbt.2017.86

• Izquierdo Y.T., Casanova M.A., García, G.M., Dartayre F., Levy C.H.
(2017) Keyword Search over Federated RDF Datasets. Proc. ER
Forum 2017 and ER Demo track co-located with the 36th International
Conference on Conceptual Modelling (ER 2017), Valencia, Spain,
November 6th-9th, 2017, CEUR Workshop Proceedings, Vol. 1979,
CEUR-WS.org, pp. 86–99.

• Izquierdo Y.T., García G.M., Menendez E.S., Casanova M.A., Dar-
tayre F., Levy C.H. (2018) QUIOW: A Keyword-Based Query
Processing Tool for RDF Datasets and Relational Databases.
In: Hartmann S., Ma H., Hameurlain A., Pernul G., Wagner R. (eds)
Database and Expert Systems Applications. DEXA 2018. DEXA 2018.
Lecture Notes in Computer Science, vol. 11030. Springer, Cham, pp.
259–269.

• Izquierdo Y.T. (2019) Keyword Search Algorithm over Large
RDF Datasets. In: Guizzardi G., Gailly F., Suzana Pitangueira Maciel
R. (eds) Advances in Conceptual Modeling. ER 2019. Lecture Notes
in Computer Science, vol 11787. Springer, Cham, pp. 230–238. DOI:
https://doi.org/10.1007/978-3-030-34146-6_21.

DBD
PUC-Rio - Certificação Digital Nº 1712877/CA



Appendix E. Articles Related to the Thesis 144

• Izquierdo, Y.T., García, G.M., Casanova, M.A., Leme, L.A.P.P.,
Sardianos, C., Tserpes, K.,Varlamis, I., Ruback Rodrigues, L.
(2020) Stop-and-move sequence expressions over seman-
tic trajectories. International Journal of Geographical Informa-
tion Science, Vol. 0, No. 0, Taylor & Francis, pp. 1-26 . DOI:
https://doi.org/10.1080/13658816.2020.1793157.

• Izquierdo Y.T., García, G.M., Lemos M., Novello A., Novelli B., Dam-
asceno C., Leme, L.A.P.P., Casanova, M.A. (2020) Keyword Search
over COVID-19 Data. 35th Brazilian Symposium on Databases
(SBBD 2020).

• Izquierdo, Y.T., García, G.M., Novelli, B., Lemos-Cavaliere, M., Lima,
M.J.D., Casanova, M.A., Roehl, D. (2020) Integrating a Geomechan-
ical Collaborative Research Portal with a Data & Knowledge
Retrieval Platform. Proceedings of the Rio Oil & Gas Expo and Con-
ference, Rio de Janeiro, RJ, Brazil. DOI: https://doi.org/10.48072/2525-
7579.rog.2020.421.

Under review:

• Izquierdo Y.T., García G.M., Casanova M.A., Menendez E.S., Leme
L.A.P.P., Neves A.B., Lemos M., Finamore A.C., Oliveira C.M.S.
Keyword Search over Schema-less RDF Datasets by SPARQL
Query Compilation. (under review).

• Neves A.B, Leme L.A.P.P., Izquierdo Y.T., García G.M., Casanova,
M.A., Menendez E.S. Computing Benchmarks for RDF Keyword
Search. (under review).

DBD
PUC-Rio - Certificação Digital Nº 1712877/CA


	Contributions to the Problem of Keyword Search over Datasets and Semantic Trajectories Based on the Resource Description Framework
	Resumo
	Table of contents
	Introduction
	Context and Motivation
	Problems Addressed
	The Keyword Search over Schema-less RDF Datasets Problem
	The Keyword Search over RDF Semantic Trajectories Problem

	Goal and Contributions
	Thesis Structure

	Background
	Resource Description Framework (RDF)
	SPARQL Query Language
	RDF Keyword-based Queries
	Set Similarity Measures and KMV-Synopses
	A Brief Review of Description Logic Basic Concepts

	Related Work
	Keyword Search Systems
	Synopses as Estimators for Set Similarity
	Benchmarks for Evaluating Keyword Search Systems
	State-of-Art Semantic Trajectories Approaches
	Semantic Trajectories and Ontologies
	Semantic Trajectories as Sequences of Stops and Moves


	Keyword Search Algorithm using KMV–Synopses
	An Explanatory, Motivational Example
	Query Graph Notion
	A Greedy Algorithm to Translate Keyword-based Queries to SPARQL
	Additional Remarks on the Translation Approach
	Treatment of Class and Property Labels
	Use of Ranking
	Beyond Synopses and Ranking


	KMV–Synopses RDF Keyword Search System Evaluation
	Comparison with a Schema-based RDF Keyword Search Tool
	Benchmark Adopted
	Experimental Setup
	Experimental Evaluation

	Comparison with Keyword Search Systems based on the ``Virtual Documents'' Approach
	Benchmark Adopted
	Experimental Setup
	Experimental Evaluation

	Effectiveness Using an Alternative Measure for Graph Relevance

	A Formal Framework for Querying Semantic Trajectories
	A Keyword Search over Semantic Trajectories Use-Case
	Informal Description of the TripBuilder Trajectory Dataset
	Notation and Query Examples

	Framework Overview
	A Description Logic Formalization of Semantic Trajectories
	Query Expressions over Semantic Trajectories
	Enrichment, Stop, and Move Queries
	Stop and Move Sequence Expressions
	Intercalated Stop and Move Sequence Expressions

	Extensions to Deal with Spatio-temporal Aspects

	An RDF Framework for Querying Semantic Trajectories
	An RDF Model for Semantic Trajectories
	SPARQL Query Expressions over Semantic Trajectories
	SPARQL Enrichment, Stop, and Move Queries
	SPARQL Stop and Move Sequence Expressions and SPARQL Intercalated Stop and Move Sequence Expressions

	Processing SPARQL Query Expressions over Semantic Trajectories
	Compiling Restricted SPARQL Stop Sequence Expressions to SPARQL Queries
	Processing Unrestricted SPARQL Stop Sequence Expressions
	Processing SPARQL Intercalated Stop and Move Sequence Expressions

	Keyword Query Expressions over Semantic Trajectories
	A Proof-of-Concept Experiment
	The Use-Case Trajectory Dataset in RDF
	Experiments with a Sample Set of Keyword Query Expressions


	Conclusions and Future Work
	About the Keyword Search over Schema-less RDF Datasets Problem
	About the Keyword Search over RDF Semantic Trajectories Problem

	Bibliography
	Query Workloads for Mondial and IMDb
	Examples of Computing Dosso's Metrics
	Computing the Signal-to-Noise Ratio (SNR)
	Computing Recall
	Computing Precision and Precision at c
	Computing Graph Relevance Weight (GRW)
	Computing Relevance Gain (RG) and Discounted Cumulative Gain (tb-DCG)

	Sample Queries of Stop-and-Move Sequence Expressions
	Stops and Sequences of Stops
	Stops and Moves in a Sequence

	Compiled SPARQL Queries from the Sample of Keyword Queries Expressions
	Articles Related to the Thesis



