8
Referências Bibliográficas

Apêndice A
Relação entre o Semidesvio Absoluto Médio e o Desvio Absoluto Médio

Foi dito no capítulo 2 que a minimização do semidesvio absoluto médio é equivalente a minimização do desvio absoluto médio. Tal equivalência está no fato de o desvio absoluto médio ser simétrico em relação à média, o que faz com que o semidesvio absoluto médio seja a metade do desvio absoluto médio. Tal propriedade é demonstrada neste apêndice, assumindo-se que distribuição da variável aleatória envolvida é discreta e que as realizações são equiprováveis.

Sejam \(x_1, x_2, \ldots, x_M, x_{M+1}, \ldots, x_N \) as realizações de uma variável aleatória, ordenadas em ordem crescente, e seja \(\bar{x} \) o valor médio de tais realizações. Suponha que o valor de \(\bar{x} \) esteja situado entre \(x_M \) e \(x_{M+1} \). O valor médio \(\bar{x} \) é dado por:

\[
\bar{x} = \frac{1}{N} \sum_{i=1}^{M} x_i + \frac{1}{N} \sum_{i=M+1}^{N} x_i
\]

(A.1)

O semidesvio absoluto médio positivo \((SD^+) \) e o semidesvio absoluto médio negativo \((SD^-) \) são dados por:

\[
SD^+ = \frac{1}{N} \sum_{i=M+1}^{N} (x_i - \bar{x}) = \frac{1}{N} \left(\sum_{i=M+1}^{N} x_i - (N - M) \bar{x} \right)
\]

(A.2)

\[
SD^- = \frac{1}{N} \sum_{i=1}^{M} (\bar{x} - x_i) = \frac{M \bar{x} - \sum_{i=1}^{M} x_i}{N}
\]

(A.3)
De (A.1), pode-se escrever:

$$\sum_{i=1}^{M} x_i = N\overline{x} - \sum_{i=M+1}^{N} x_i$$

(A.4)

Substituindo (A.4) em (A.3), obtém-se:

$$SD^- = \frac{\sum_{i=M+1}^{N} x_i}{N} = \frac{(M - N)\overline{x} + \sum_{i=M+1}^{N} x_i - (N - M)\overline{x}}{N} = SD^+$$

Logo, o semidesvio absoluto médio positivo é igual ao semidesvio absoluto médio negativo.

O desvio absoluto médio de $x_1, x_2, \ldots, x_M, x_{M+1}, \ldots, x_N$ é dado por:

$$DA = \frac{\sum_{i=1}^{N} |x_i - \overline{x}|}{N} = \frac{\sum_{i=1}^{M} (x_i - \overline{x}) + \sum_{i=M+1}^{N} (x_i - \overline{x})}{N} = SD^- + SD^+$$

Como o desvio absoluto médio é dado pela soma do semidesvio absoluto médio positivo com o semidesvio absoluto médio negativo, e estes últimos são iguais, pode-se concluir que o semidesvio absoluto médio é a metade do desvio absoluto médio. Logo, a minimização de ambos é equivalente.
Foi dito no capítulo 2 que o VaR, quando se trabalha com distribuições discretas, é uma função não convexa, não diferenciável em alguns pontos, e que apresenta múltiplos extremos locais. Neste apêndice é apresentada a demonstração, reproduzida de [14], de que o VaR possui tais características.

Seja \(z_j \) a perda do portfólio associada ao j-ésimo cenário:

\[
z_j(x) = -\sum_{i=1}^{N} x_i r_{ij}
\]

Explicitando a parcela devido ao ativo \(k \) na expressão acima, obtém-se:

\[
z_j(x) = -x_k r_{kj} + K_{kj} \quad \text{onde} \quad K_{kj} = -\sum_{i=1, i \neq k}^{N} x_i r_{ij}
\]

Plotando-se a perda do portfólio versus a posição investida no ativo \(k \), obtém-se, para cada cenário \(j \), uma reta \(z_j(x_k) \) cuja inclinação é dada por \(-r_{kj}\) e intercepto em \(K_{kj} / r_{kj}\). Supondo-se que o VaR seja dado pela segunda maior perda, é apresentada na Figura B.1 o VaR do portfólio em função da posição investida no ativo \(k \) (assume-se, por simplicidade, que para todo \(x_k \) os quatro cenários de maior perda estejam sempre entre os cenários 1, 2, 3, e 4).
Figura B.1 – Perda do Portfólio *versus* Posição Investida no Ativo k

Da Figura B.1, verifica-se a não convexidade do VaR, assim como sua não contínua diferenciabilidade, e a presença de múltiplos mínimos locais.
Apêndice C
Prova de que a Minimização de \(F_\beta(x, \alpha) \) em \(\alpha \) Resulta no CVaR do Portfólio

No capítulo 2 foi mencionado que a minimização em \(\alpha \) da função \(F_\beta(x, \alpha) \) proposta em [17] por Rockafellar e Uryasev resulta no CVaR a nível de confiança \(\beta \% \) do portfólio. A prova de tal propriedade é apresentada neste apêndice.

Seja \(F_\beta(x, \alpha) \) a função a seguir:

\[
F_\beta(x, \alpha) = \alpha + \frac{1}{1-\beta} \int_{-\infty}^{\infty} [z - \alpha]^+ p(\omega) \, d\omega
\]

(C.1)

O mínimo de \(F_\beta(x, \alpha) \) em relação à variável \(\alpha \) é obtido igualando-se a derivada parcial em relação a \(\alpha \) de tal função a zero.

\[
\frac{\partial F_\beta(x, \alpha)}{\partial \alpha} = 1 + \frac{1}{1-\beta} \left[\int_{-\infty}^{\infty} [z - \alpha]^+ p(\omega) \, d\omega \right]
\]

(C.2)

A integral na expressão acima representa o valor esperado da função \([z - \alpha]^+ \).

Conforme demonstrado\(^1\) por Shapiro e Wardi em [63], se uma função \(f(\theta) \) é convexa\(^2\), então:

\[
\frac{\partial E[f(\theta)]}{\partial \theta} = E\left[\frac{\partial f(\theta)}{\partial \theta} \right]
\]

(C.3)

\(^1\) Tal demonstração utiliza teoremas avançados da teoria da medida e integração, e não será aqui apresentada.

\(^2\) Como é a nossa função \([z - \alpha]^+ \).
Utilizando tal propriedade temos,

\[
\frac{\partial F_\beta(x, \alpha)}{\partial \alpha} = 1 + \frac{1}{1 - \beta} \int_{-\infty}^{\infty} \frac{\partial}{\partial \alpha} [z - \alpha]^+ p(\omega) d\omega \quad (C.4)
\]

Mas:

\[
[z - \alpha]^+ = \begin{cases}
 z - \alpha & \text{se } z \geq \alpha \\
 0 & \text{caso contrário}
\end{cases} \quad (C.5)
\]

Logo:

\[
\frac{\partial}{\partial \alpha} [z - \alpha]^+ = \begin{cases}
 -1 & \text{se } z \geq \alpha \\
 0 & \text{caso contrário}
\end{cases} \quad (C.6)
\]

Com isso:

\[
\frac{\partial F_\beta(x, \alpha)}{\partial \alpha} = 1 - \frac{1}{1 - \beta} \int_{z \geq \alpha} p(\omega) d\omega \quad (C.7)
\]

Igualando-se a derivada a zero, obtém-se:

\[
\int_{z \geq \alpha} p(\omega) d\omega = 1 - \beta \quad (C.8)
\]

Pela própria definição de VaR\(^1\), verifica-se que o mínimo ocorre em \(\alpha = \alpha_\beta(x) \). Com isso:

\(^1\) Vide expressão 2.7, capítulo 2.
\[
\begin{align*}
\text{Min}_{\alpha} \quad F_{\beta}(x, \alpha) &= F_{\beta}(x, \alpha_{\beta}(x)) = \alpha_{\beta}(x) + \frac{1}{1-\beta} \int_{-\infty}^{+\infty} [z - \alpha_{\beta}(x)]^+ p(\omega) \, d\omega \\
\text{(C.9)}
\end{align*}
\]

Mas,

\[
\begin{align*}
\int_{-\infty}^{+\infty} [z - \alpha_{\beta}(x)]^+ p(\omega) \, d\omega &= \int_{z \geq \alpha_{\beta}(x)} [z - \alpha_{\beta}(x)] p(\omega) \, d\omega \\
&= \int_{z \geq \alpha_{\beta}(x)} z p(\omega) \, d\omega - \alpha_{\beta}(x) \int_{z \geq \alpha_{\beta}(x)} p(\omega) \, d\omega \\
\text{(C.10)}
\end{align*}
\]

A primeira integral de (C.10) é igual a \((1-\beta) \phi_{\beta}(x)^1\), e a segunda integral é igual a \((1-\beta)^2\).

Com isso,

\[
\begin{align*}
\int_{-\infty}^{+\infty} [z - \alpha_{\beta}(x)]^+ p(\omega) \, d\omega &= (1-\beta) \phi_{\beta}(x) - \alpha_{\beta}(x) \\
\text{(C.11)}
\end{align*}
\]

Finalmente, substituindo-se (C.11) em (C.9), obtém-se:

\[
\begin{align*}
\text{Min}_{\alpha} \quad F_{\beta}(x, \alpha) &= \alpha_{\beta}(x) + \frac{1}{1-\beta} [(1-\beta) (\phi_{\beta}(x) - \alpha_{\beta}(x))] = \phi_{\beta}(x) \\
\end{align*}
\]

1 Vide expressão (2.11), capítulo 2.
2 Vide expressão (2.7), capítulo 2.
Apêndice D
Consistência do Par \(D(X_1) = E[X_1] - \inf[X_1] \) e \(R(X_1) = -\inf[X_1] \)

No capítulo 2 foram apresentados os conceitos de medidas consistentes de risco e de desvio. Neste apêndice é demonstrado que o par formado pela medida de desvio \(D(X_1) = E[X_1] - \inf[X_1] \) e pela medida de risco \(R(X_1) = -\inf[X_1] \) é consistente, isto é, que a primeira medida satisfaz os axiomas B1, B2, B3 e B4 e a segunda medida satisfaz os axiomas A1, A2, A3 e A4.

Axioma B1:
\[
D(X_1 + C) = E[X_1 + C] - \inf [X_1 + C] = E[X_1] + C - \inf [X_1] - C
\]
\[
D(X_1 + C) = E[X_1] - \inf [X_1] = D(X_1)
\]

Logo, \(D(X_1) = E[X_1] - \inf[X_1] \) satisfaz o axioma B1.

Axioma B2:
\[
D(X_1 + X_2) = E[X_1 + X_2] - \inf [X_1 + X_2]
\]
\[
D(X_1 + X_2) = E[X_1] + E[X_2] - \inf [X_1 + X_2] \leq E[X_1] + E[X_2] - \inf [X_1] - \inf [X_2]
\]
\[
D(X_1 + X_2) \leq E[X_1] - \inf [X_1] + E[X_2] - \inf [X_2] = D(X_1) + D(X_2)
\]

Logo, \(D(X_1) = E[X_1] - \inf[X_1] \) satisfaz o axioma B2.

Axioma B3:
\[
D(\lambda X_1) = E[\lambda X_1] - \inf [\lambda X_1] = \lambda E[X_1] - \lambda \inf [X_1] = \lambda D[X_1]
\]

Logo, \(D(X_1) = E[X_1] - \inf[X_1] \) satisfaz o axioma B3.
Axioma B4:
Se X_1 não é constante:
$$D(X_1) = E[X_1] - \inf [X_1] > 0$$
Se X_1 é constante:
$$D(X_1) = E[X_1] - \inf [X_1] = 0$$

Logo, $D(X_1) = E[X_1] - \inf [X_1]$ satisfaz o axioma B4.

Axioma A1:
$$R(X_1 + C) = -\inf [X_1 + C] = -\inf [X_1] - C = R(X_1) - C$$

Logo, $R(X_1) = -\inf [X_1]$ satisfaz o axioma A1.

Axioma A2:
$$R(X_1 + X_2) = -\inf [X_1 + X_2] \leq -\inf [X_1] - \inf [X_2] = R(X_1) + R(X_2)$$

Logo, $R(X_1) = -\inf [X_1]$ satisfaz o axioma A2.

Axioma A3:
$$R(\lambda X_1) = -\inf [\lambda X_1] = -\lambda \inf [X_1] = \lambda R(X_1)$$

Logo, $R(X_1) = -\inf [X_1]$ satisfaz o axioma A3.

Axioma A4:
Se $X_1 \leq X_2$, então $-\inf [X_1] \geq -\inf [X_2] \Rightarrow R(X_1) \geq R(X_2)$

Logo, $R(X_1) = -\inf [X_1]$ satisfaz o axioma A4.

Conclusão:
A medida de desvio $D(X_1) = E[X_1] - \inf [X_1]$, que satisfaz os axiomas B1, B2, B3 e B4, é uma medida de desvio consistente, já que a medida de risco associada
\[R(X_1) = -\inf [X_1] \] satisfaiz os axiomas A1, A2, A3 e A4, ou seja, é uma medida de risco consistente.
Foi dito no capítulo 2 que o CVaR é uma medida de risco consistente. Tal característica é demonstrada neste apêndice.

Seja \(X_1 \) uma variável aleatória que represente o retorno de um dado portfólio. Supondo-se que as incertezas sejam representadas através de \(S \) cenários equiprováveis, o CVaR da distribuição de \(X_1 \) é dado por:

\[
\phi_{\beta}(X_1) = \text{Min}_{\alpha, u_s} \left\{ \alpha + \frac{1}{(1-\beta)S} \sum_{s=1}^{S} u_s \right\}
\]

s.a.

\[
u_s \geq -X_1^s - \alpha \quad s = 1, \ldots, S
\]

\[
u_s \geq 0 \quad s = 1, \ldots, S
\]

O problema acima pode ser escrito como:

\[
\phi_{\beta}(X_1) = \text{Min}_{\alpha, U} \left\{ \alpha + b^T U \right\}
\]

s.a.

\[
A + I U \geq -X_1
\]

\[
U \geq 0
\]

onde:

\[
b^T = \left[\frac{1}{(1-\beta)S}, \ldots, \frac{1}{(1-\beta)S} \right]_{1 \times S}
\]

\[
U^T = [u_1, \ldots, u_S]_{1 \times S}
\]

\[
A^T = [\alpha, \ldots, \alpha]_{1 \times S}
\]

\[
I = \text{Identidade}_{S \times S}
\]

1 Lembre-se que a distribuição de perdas é dada pelo negativo da distribuição de retornos, por isso \(X_1 \) aparece com sinal negativo na restrição de (E.1).
\(X_1^T = [X_1, \ldots, X^S]_{1 \times S} \)

\(\phi_\beta(X_1) \) também pode ser representado pelo dual de (E.2):

\[
\phi_\beta(X_1) = \max_{\eta} \left[-\eta^T X_1 \right] \\
\text{s.a.} \\
\sum_{s=1}^{S} \eta_s = 1 \\
0 \leq \eta \leq \beta
\]

onde \(\eta^T = [\eta_1, \ldots, \eta_S]_{1 \times S} \) são as variáveis duais associadas às restrições de (E.2).

A formulação (E.3) será utilizada na prova de que o CVaR é uma medida consistente de risco.

Axioma A1: \(R(X_1 + C) = R(X_1) - C \)

Substituindo \(X_1 \) por \(X_1 + C \) em (E.3), obtém-se:

\[
\phi_\beta(X_1 + C) = \max_{\eta \in \mathfrak{R}} \left[-\eta^T X_1 - \eta^T C \right]
\]

onde \(\mathfrak{R} \) é a região tal que \(\sum_{s=1}^{S} \eta_s = 1, \ 0 \leq \eta \leq \beta \), e \(C^T = [c, \ldots, c]_{1 \times S} \).

Como \(\sum_{s=1}^{S} \eta_s = 1 \), então \(\eta^T C = c \). Com isso:

\[
\phi_\beta(X_1 + C) = \max_{\eta \in \mathfrak{R}} \left[-\eta^T X_1 - c \right] = \phi_\beta(X_1) - C
\]
Logo, o CVaR satisfaz o axioma A1.

Axioma A2: \(R(X_1 + X_2) \leq R(X_1) + R(X_2) \)

Substituindo \(X_1 \) por \(X_1 + X_2 \) em (E.3), obtém-se:

\[
\phi^*_\beta(X_1 + X_2) = \max_{\eta \in \mathbb{R}} \left[-\eta^T X_1 - \eta^T X_2 \right] \leq \max_{\eta \in \mathbb{R}} \left[-\eta^T X_1 \right] + \max_{\eta \in \mathbb{R}} \left[-\eta^T X_2 \right]
\]

\[
= \phi^*_\beta(X_1) + \phi^*_\beta(X_2)
\]

Logo, o CVaR satisfaz o axioma A2.

Axioma A3: \(R(\lambda X_1) = \lambda R[X_1] \)

Substituindo \(X_1 \) por \(\lambda X_1 \) em (E.3), obtém-se:

\[
\phi^*_\beta(\lambda X_1) = \max_{\eta \in \mathbb{R}} \left[-\lambda \eta^T X_1 \right] = \lambda \max_{\eta \in \mathbb{R}} \left[-\eta^T X_1 \right] = \lambda \phi^*_\beta(X_1)
\]

Logo, o CVaR satisfaz o axioma A3.

Axioma A4: \(R(X_2) \leq R(X_1) \) se \(X_1 \leq X_2 \)

Como \(\eta \geq 0 \), se \(X_1 \leq X_2 \) então \(-\eta^T X_1 \geq -\eta^T X_2 \) em qualquer vértice de \(\mathbb{R} \).

Logo:

\[
\phi^*_\beta(X_1) = \max_{\eta \in \mathbb{R}} \left[-\eta^T X_1 \right] \geq \max_{\eta \in \mathbb{R}} \left[-\eta^T X_2 \right] = \phi^*_\beta(X_2)
\]

Logo, o CVaR satisfaz o axioma A4.
Conclusão:

Como o CVaR satisfaz os axiomas A1, A2, A3 e A4, é uma medida consistente de risco.
Apêndice F
Comportamento da Fronteira Eficiente de Contratação obtida com a Primeira Abordagem Proposta na Tese

Foi mencionado no capítulo 5 que a função que representa a fronteira eficiente de contratação de energia do modelo média-variância é bem comportada, isto é, pode-se garantir que a variância da distribuição dos valores presentes das remunerações líquidas da geradora aumenta ou se mantém constante com o aumento do valor esperado de tal distribuição requerido pelo investidor. A prova de tal propriedade é apresentada neste apêndice.

O modelo média-variância para otimização de portfólio de contratos de energia proposto nesta tese se caracteriza com um problema de programação quadrática. Seja então o seguinte problema de programação quadrática, escrito em sua forma geral:

Minimizar

\[
\begin{align*}
\frac{1}{2} x^T A x + b^T x \\
\text{s.a.}
\end{align*}
\]

\[
C x \leq \mu
\]

O Lagrangeano de (F.1) é dado por:

\[
L(x, \eta) = \frac{1}{2} x^T A x + b^T x + \eta^T (C x - \mu)
\]

\[
L(x, \eta) = \frac{1}{2} x^T A x + x^T b + \eta^T C x - \eta^T \mu
\]

\[
L(x, \eta) = \frac{1}{2} x^T A x + x^T b + x^T C^T \eta - \eta^T \mu
\]

\[
L(x, \eta) = \frac{1}{2} x^T A x + x^T (b + C^T \eta) - \eta^T \mu
\]
O problema dual associado ao problema (F.1) é dado por:

\[
\begin{align*}
\text{Maximizar } & \quad \eta \geq 0 \\
\text{Minimizar } & \quad \frac{1}{2} x^T A x + x^T (b + C^T \eta) - \eta^T \mu
\end{align*}
\] (F.2)

Como em (F.2) o problema de minimização em \(x \) não possui restrições, uma condição necessária para sua otimalidade é:

\[
\frac{\partial L(x, \eta)}{\partial x} = 0 \implies A x + b + C^T \eta = 0
\] (F.3)

Assumindo-se que a matriz \(A \) é inversível, de (F.3) obtém-se:

\[
x = -A^{-1} (b + C^T \eta)
\] (F.4)

Pré-multiplicando (F.3) por \(x^T \), obtém-se:

\[
x^T (b + C^T \eta) = -x^T A x
\] (F.5)

Substituindo (F.5) em (F.2), obtém-se:

\[
\begin{align*}
\text{Maximizar } & \quad \frac{1}{2} x^T A x - \eta^T \mu
\end{align*}
\] (F.6)

Utilizando (F.4), pode-se escrever:

\[
-\frac{1}{2} x^T A x = \frac{1}{2} x^T (b + C^T \eta) = -\frac{1}{2} (b + C^T \eta)^T \left[A^{-1} \right]^T (b + C^T \eta)
\] (F.7)

Substituindo (F.7) em (F.6), o dual fica:

\[
\begin{align*}
\text{Maximizar } & \quad \frac{1}{2} (b + C^T \eta)^T \left[A^{-1} \right]^T (b + C^T \eta) - \eta^T \mu
\end{align*}
\]
que é equivalente a:

\[\text{Minimizar} \quad \eta \geq 0 \left[\frac{1}{2} \left(b + C^T \eta \right) \left(A^{-1} \right)^T \left(b + C^T \eta \right) + \eta^T \mu \right] \] \hspace{1cm} (F.8)

Assumindo que a matriz \(A \) seja positiva definida e que a matriz \(C \) tenha posto completo, garante-se que o valor ótimo de (F.1) seja igual ao valor ótimo de (F.8).

Seja então \(g(\mu) \) a função obtida a partir da parametrização do problema (F.1) em termos de \(\mu \):

\[
g(\mu) = \text{Minimizar} \quad \frac{1}{2} x^T A x + b^T x \hspace{1cm} \text{s.a.} \hspace{1cm} C x \leq \mu \] \hspace{1cm} (F.9)

Se a matriz \(A \) for positiva definida e a matriz \(C \) tiver posto completo, a função \(g(\mu) \) pode também ser representada pelo dual de (F.9):

\[
g(\mu) = \text{Minimizar} \quad \eta \geq 0 \left[\frac{1}{2} \left(b + C^T \eta \right) \left(A^{-1} \right)^T \left(b + C^T \eta \right) + \eta^T \mu \right] \] \hspace{1cm} (F.10)

Como deve-se satisfazer \(\eta \geq 0 \) em (F.10), conclui-se que se \(\mu_1 \geq \mu_2 \) então \(g(\mu_1) \geq g(\mu_2) \).