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Abstract 
 

 

Pontes de Miranda, Sofia; Lima Fleck, Julia (Advisor); Piccolo, Stephen (Co-

Advisor). Predicting drug sensitivity of cancer cells based on genomic data. 

Rio de Janeiro 2020. 152p. Dissertação de Mestrado – Departamento de 

Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro. 

 

Accurately predicting drug responses for a given sample based on molecular 

features may help to optimize drug-development pipelines and explain mechanisms 

behind treatment responses. In this dissertation, two case studies were generated, each 

applying different genomic data to predict drug response. Case study 1 evaluated DNA 

methylation profile data as one type of molecular feature that is known to drive 

tumorigenesis and modulate treatment responses. Using genome-wide, DNA 

methylation profiles from 987 cell lines in the Genomics of Drug Sensitivity in Cancer 

(GDSC) database, we used machine-learning algorithms to evaluate the potential to 

predict cytotoxic responses for eight anti-cancer drugs. We compared the performance 

of five classification algorithms and four regression algorithms representing diverse 

methodologies, including tree-, probability-, kernel-, ensemble- and distance-based 

approaches. By applying artificial subsampling in varying degrees, this research aims 

to understand whether training based on relatively extreme outcomes would yield 

improved performance. When using classification or regression algorithms to predict 

discrete or continuous responses, respectively, we consistently observed excellent 

predictive performance when the training and test sets consisted of cell-line data. 

Classification algorithms performed best when we trained the models using cell lines 

with relatively extreme drug-response values, attaining area-under-the-receiver-

operating-characteristic-curve values as high as 0.97. The regression algorithms 

performed best when we trained the models using the full range of drug-response 

values, although this depended on the performance metrics we used. Case study 2 

evaluated RNA-seq data as one of the most popular molecular data used to study drug 

efficacy. By applying a semi-supervised learning approach, this research aimed to 

understand the impact of combining labeled and unlabeled data to improve model 

prediction. Using genome-wide RNA-seq labeled data from an average of 125 AML 
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tumor samples in the Beat AML database (varying by drug type) and 151 unlabeled 

AML tumor samples in The Cancer Genome Atlas (TCGA) database, we used a semi-

supervised model structure to predict cytotoxic responses for four anti-cancer drugs. 

Semi-supervised models were generated, while assessing several parameter 

combinations and were compared against supervised classification algorithms. 

Keywords 

Machine Learning; Genomics; Methylation; RNA-seq; Classification Models; 

Regression Models; Drug Response Prediction; Semi-supervised learning; Supervised 

learning; Cancer. 
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Resumo 
 
 

Pontes de Miranda, Sofia; Lima Fleck, Julia (Advisor); Piccolo, Stephen (Co-

Advisor). Prevendo a eficácia de drogas a partir de células cancerosas 

baseado em dados genômicos. Rio de Janeiro 2020. 152p. Dissertação de 

Mestrado – Departamento de Engenharia Industrial, Pontifícia Universidade 

Católica do Rio de Janeiro. 

 

 

Prever com precisão a resposta a drogas para uma dada amostra baseado em 

características moleculares pode ajudar a otimizar o desenvolvimento de drogas e 

explicar mecanismos por trás das respostas aos tratamentos. Nessa dissertação, dois 

estudos de caso foram gerados, cada um aplicando diferentes dados genômicos para a 

previsão de resposta a drogas. O estudo de caso 1 avaliou dados de perfis de metilação 

de DNA como um tipo de característica molecular que se sabe ser responsável por 

causar tumorigênese e modular a resposta a tratamentos. Usando perfis de metilação 

de 987 linhagens celulares do genoma completo na base de dados Genomics of Drug 

Sensitivity in Cancer (GDSC), utilizamos algoritmos de aprendizado de máquina para 

avaliar o potencial preditivo de respostas citotóxicas para oito drogas contra o câncer. 

Nós comparamos a performance de cinco algoritmos de classificação e quatro 

algoritmos de regressão representando metodologias diversas, incluindo abordagens 

tree-, probability-, kernel-, ensemble- e distance-based. Aplicando sub-amostragem 

artificial em graus variados, essa pesquisa procura avaliar se o treinamento baseado em 

resultados relativamente extremos geraria melhoria no desempenho. Ao utilizar 

algoritmos de classificação e de regressão para prever respostas discretas ou contínuas, 

respectivamente, nós observamos consistentemente excelente desempenho na predição 

quando os conjuntos de treinamento e teste consistiam em dados de linhagens celulares. 

Algoritmos de classificação apresentaram melhor desempenho quando nós treinamos 

os modelos utilizando linhagens celulares com valores de resposta a drogas 

relativamente extremos, obtendo valores de area-under-the-receiver-operating-

characteristic-curve de até 0,97. Os algoritmos de regressão tiveram melhor 

desempenho quando treinamos os modelos utilizado o intervalo completo de valores 

de resposta às drogas, apesar da dependência das métricas de desempenho utilizadas. 
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O estudo de caso 2 avaliou dados de RNA-seq, dados estes comumente utilizados no 

estudo da eficácia de drogas. Aplicando uma abordagem de aprendizado semi-

supervisionado, essa pesquisa busca avaliar o impacto da combinação de dados 

rotulados e não-rotulados para melhorar a predição do modelo. Usando dados rotulados 

de RNA-seq do genoma completo de uma média de 125 amostras de tumor AML 

rotuladas da base de dados Beat AML (separados por tipos de droga) e 151 amostras 

de tumor AML não-rotuladas na base de dados The Cancer Genome Atlas (TCGA), 

utilizamos uma estrutura de modelo semi-supervisionado para prever respostas 

citotóxicas para quatro drogas contra câncer. Modelos semi-supervisionados foram 

gerados, avaliando várias combinações de parâmetros e foram comparados com os 

algoritmos supervisionados de classificação. 

 

Palavras-chave 

Aprendizado de máquina; Genômica; Metilação; Sequenciamento de RNA; 

Modelos de classificação; Modelos de regressão; Predição da eficácia a droga; 

Aprendizado semi-supervisionado; Aprendizado supervisionado; Câncer. 
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“Caminante, son tus huellas el camino y 

nada más; caminante, no hay camino, se 

hace camino al andar.” 

Antonio Machado, Cantares 

 

 

 

 

Traveler, your footprints are the road, 

nothing else; traveler, there is no road; 

you make your own path as you tread. 

 

 

 

 

Caminhante, são tuas pegadas o caminho 

e nada mais; caminhante, não há 

caminho, faz-se o caminho ao caminhar. 
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1 Introduction 
Introduction 

 

 

 

 

 

 

Cancers are complex, dynamic diseases characterized by aberrant cellular 

processes such as excessive proliferation, resistance to apoptosis, and genomic 

instability (Hanahan and Weinberg, 2011). Tumors are caused by somatic variations, 

which can affect individual nucleotides or larger segments of DNA (Yao and Dai, 

2014). Dysregulation of cellular function can also be caused by epigenetic 

modifications, including aberrant DNA methylation (Esteller et al., 2001). One goal of 

cancer research is to advance precision medicine through identifying genomic and 

epigenomic features that influence treatment outcomes in individuals (McLeod, 2013). 

In this context, therapeutic decisions have the potential to be guided by molecular 

signatures. 

Molecular features offer insights to patients’ traits that may impact drug 

response. By studying genomic information, scientists are able to infer patient 

characteristics, understand how they will influence response to treatment and optimize 

treatment decision. Such information can be used to classify cancer patients into groups 

that will most likely benefit from a certain treatment, thus generating a tool to aid in 

clinical decision making.  

When studying cancer, researchers may use patient or cell line samples. Cancer 

cell lines are cell cultures derived from tumor samples. They represent one of the least 

expensive and most studied preclinical models (Masters, 2000). Drug screening in cell 

lines can be used to prioritize candidate drugs for testing in humans. In performing a 

screen, researchers calculate IC50 values, which quantify the amount of drug necessary 

to induce a biological response in half of the cells tested for a given experiment 

(Sebaugh, 2011). Drugs with a relatively high potency (corresponding to low log-

transformed IC50 values) are generally considered to be the strongest candidates for use 

in humans, although patient safety must also be evaluated. After a candidate drug has
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been identified, researchers may seek to identify molecular markers associated with 

those responses, comparing cell lines that respond to the drug against those that do not. 

Such markers might be useful for elucidating drug mechanisms or eventually predicting 

clinical responses in patients (Iorio et al., 2016). 

Over the past decade, researchers have catalogued the molecular profiles of more 

than a thousand cancer cell lines and their responses to hundreds of drugs (Barretina et 

al., 2012; Yang et al., 2013; Rees et al., 2016). In addition, recent efforts to catalog 

molecular profiles in human tumors have resulted in massive collections of publicly 

available molecular data for tumor samples (ICGC, 2010; Tomczak et al., 2015; Forbes 

et al., 2017). These resources have been made publicly available, thus providing an 

opportunity for researchers to identify molecular signatures that predict drug responses 

in preclinical and clinical settings. 

 

1.1 Dissertation Objectives  
Dissertation Objectives  

The objective of this research is to develop new methodologies to accurately 

predict drug response based on molecular features. By exploring data analytics and 

machine learning approaches, this research aims to contribute to clinical decision 

making and the optimization of drug-development pipelines. In particular, this 

dissertation aims to: 

● Evaluate the performance of methylation data to effectively predict drug 

response; 

● Understand the behavior of two learning strategies (supervised and semi-

supervised) when applied to molecular data; 

● Assess different feature selection methods that would be adequate to molecular 

features; 

● Evaluate the impact of subsampling strategies on drug response prediction 

performance. 
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1.2 Dissertation Structure 
Dissertation Structure 

This work is organized in the following structure: 

● Chapter 2 – Methodology. Presents fundamental concepts of biological data, 

data analytics techniques and processes, machine learning fundamentals, 

algorithms and evaluation metrics. The chapter concludes with a review of 

existing literature.  

● Chapter 3 – Case Studies. Details two case studies containing different 

machine learning strategies and applications. Each case study has the following 

structure: 

o Introduction. Introduces each case study, including database details, 

study motivation and brief research description.  

o Methods. Presents machine learning processes and models unique to 

each case study. This topic encompasses the description of 

preprocessing methods, hyperparameters description, model 

development and performance evaluation. 

o Results. Presents main findings of each case study.  

o Discussion. Analyzes obtained results and links it to existent literature. 

o Conclusion. Addresses main conclusions of each case study. 
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2  Methodology 
Methodology 

 

 

 

 

 

 

This section presents the general methodology that may be applied to both 

research modules. Descriptions of used biological data as well as main machine 

learning processes are presented.  

2.1  Biological Data 
Biological Data 

Genomics is an interdisciplinary field in Biology that studies the structure, 

function, evolution, mapping and changes in the complete DNA sequence, including 

all genes (Ginsburg et al., 2009). In this chapter we present the fundamental concepts 

of molecular biology in the field of genomics. 

2.1.1  Genomic Data Fundamentals 
Genomic Data Fundamentals 

Each cell in the human body holds a person’s unique deoxyribonucleic acid, 

also known as DNA. The DNA is composed of two polynucleotide chains that coil 

around each other, forming a double helix; it is responsible for carrying the genetic 

instructions for the development, operation, growth and reproduction of all cells, tasks 

and processes in the human body. Genes are small segments of information within the 

DNA, where each gene is responsible for a specific instruction or trait for that one 

individual. Through the process of transcription, ribonucleic acid (RNA) is created 

based on the DNA. This RNA is then “translated” into proteins, which then carry out 

all functions that are necessary to create and maintain life (Gunder et al., 2011).  

Technologies for profiling gene-expression levels are widely available and reflect the 

downstream effects of genomic and epigenomic aberrations. However, gene-

expression profiles may be difficult to apply in the clinic because of the RNA instability 
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(Geeleher et al., 2017). Moreover, gene-expression data are generated using a wide 

range of technologies (e.g., different types of oligonucleotide microarrays and RNA -

sequencing), and are preprocessed using diverse algorithms. Thus, it is often difficult 

to combine datasets from multiple sources (e.g., preclinical and tumor data).  

DNA methylation is an epigenetic mechanism that controls gene-expression 

levels. The addition of a methyl group to DNA may lead to changes in DNA stability, 

chromatin structure and DNA-protein interactions. Hypermethylation of CpG islands 

in promoter regions of DNA has been acknowledged as an important means of gene 

inactivation and its occurrence has been detected in almost all types of human tumors 

(Esteller, 2002). Similar to genetic alterations, methylation changes to DNA may alter 

a gene's behavior. However, hypermethylation can be reversed with the use of targeted 

therapy (Szyf, 2008), making it an attractive target for anticancer therapy (Szyf, 1994; 

Arechederra et al., 2018). 

In some cases, DNA methylation levels for a single gene may control cellular 

responses for a given drug. For example, MGMT hypermethylation predicts 

temozolomide responses in glioblastomas (Hegi et al., 2005), and BRCA1 

hypermethylation predicts responses to poly ADP ribose polymerase inhibitors in 

breast carcinomas (Island, 2010). However, in many cases, drug responses are likely 

influenced by the combined effects of many genes interacting in the context of 

signaling pathways (Faivre et al., 2006). Accordingly, to maximize our ability to 

predict drug responses, it is critical to account for this complexity.  

 RNA-sequencing (RNA-seq) is a technique used to examine RNA sequences in 

a given sample. It analyses the gene expression transcriptome patterns encoded in the 

RNA (Wang et al., 2009). Transcriptome refers to the complete set of all RNA 

transcripts in a population of cells. Understanding these patterns allows researchers to 

connect the genome information with its functional protein expression behavior. RNA-

seq allows us to know which genes are activated in a given cell, their expression level, 

and when this activation occurs (Ozsolak et al., 2011). By understanding this behavior, 

researchers are able to assess if these changes may indicate disease development. Since 

some of these observations would not be detected by DNA sequencing, RNA-seq 

analysis is a key process to identify genomic features that may influence cancer.  
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2.1.2 Batch Effect Removal 
Batch Effect Removal 

Gene expression technologies are able to measure the expression of several 

thousand genes at a time. Using multiple probes, they are able to assess transcriptome 

patterns and identify changes in response to any perturbation. However, researchers are 

concerned about the reliability of this technology and hence, its utility (Sims, 2009; 

Kathleen Kerr, 2003). These microarray technologies are very sensitive to external 

stimuli and can be affected by a number of different variables, such as reagents from 

different lots, time of the analysis, position of the culture dish and different technicians 

using the machine (Lander, 1999; Müller et al., 2016).  

 Due to this reason, we can observe differences in microarray values depending 

on the batch of a given sample. The term “batch effects” refers to the moment that a 

given sample was analyzed and the variables that may have influenced its results and 

generated possible errors. Batch effects are almost inevitable as gene expression 

microarray technologies can assay few samples per batch; thus, generating small 

differences between each group. Since technologies may be able to analyze up to 96 

samples in each batch and hundreds of samples are needed for any type of analysis, 

batch effects unavoidably impact results.  

To address this issue, scientists have developed ways to adjust data for batch 

effects. There are several processes that have been developed to adjust samples. Ideally, 

they would yield the same results but since they are based on different statistical 

models, their overall effectiveness may vary. A popular process to remove batch effects 

is called “Combating Batch Effects When Combining Batches of Gene Expression 

Microarray Data” (ComBat) (Johnson et al., 2007). It is an empirical based method that 

estimates parameters for location and scale adjustment of each batch for each gene 

independently (Müller et al., 2016). This framework follows an empirical Bayes 

framework for adjusting data that is robust to outliers in small sample sizes (Johnson 

et al., 2007). ComBat is considered one of the most efficient ways to remove batch 

effects and can robustly manage high dimensional data that contains a small number of 

samples (Chen et al., 2011).  
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2.1.3  Databases Description 
Database Description 

In this section, the three databases used in this research are briefly described. 

Access information as well as a short database description are given.  

Obtaining molecular profiles from tumor samples and generating drug 

responses from clinical trials are complex and expensive tasks. For this reason, pre-

clinical biological models that are able to capture the molecular features of cancer and 

the impact of diverse therapeutic treatment options are necessary (Iorio et al., 2016). 

Human cell lines are an important tool for drug development, enabling experimental 

modeling and fostering the understanding of drug development. The Genomics of Drug 

Sensitivity in Cancer (GDSC) database contains data for human cell lines derived from 

common and rare types of adult and childhood cancers. GDSC provides 

pharmacological, genomic, transcriptomic, and epigenetic characterization of over 

1,001 human cancer cell lines (Iorio et al., 2016). Two databases are available, GDSC1 

(curated between 2010 and 2015) and GDSC2 (curated from 2015 onwards), including 

987 and 809 cell line samples, respectively. These datasets can be accessed through the 

GDSC portal (http://www.cancerrxgene.org ). 

 Understanding the difficult access to cancer patients’ molecular information, 

the National Institute of Health (NIH) launched the The Cancer Genome Atlas (TCGA) 

pilot project in 2005. TCGA aims to accelerate comprehensive understanding of cancer 

genetics, new anti-cancer treatment strategies, diagnosis methods and preventive 

approaches (Tomczak, 2015). The TCGA database is an open source project that was 

developed to become a catalogue of cancer genomic profiles. It aims to gather and 

discover cancer genome alterations in large cohorts of over 30 human tumor samples 

(Hutter and Zenklusen, 2018). To encourage integrated multi-dimensional analyses, 

TCGA offers several genetic data structures, including RNA sequencing, MicroRNA 

sequencing, DNA sequencing, SNP-based platforms, Array-based DNA methylation 

sequencing and Reverse-phase protein array for over 30 types of cancer. The TCGA 

platform can be accessed through the Genomic Data Commons (GDC) Portal 

(https://portal.gdc.cancer.gov/). 

Another database covering tumor molecular information is the Beat AML 

project. This database focuses on acute myeloid leukemia (AML), which is a cancer of 

http://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/
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the bone marrow and blood that quickly advances if not treated. In AML, the bone 

marrow produces abnormal platelets and white and red cells. Approximately 20,000 

new cases of AML and 11,000 deaths are expected  in 2020 (Surveillance, 

Epidemiology and End Result Program (SEER), 2020). The Beat AML database 

reports a cohort of 672 tumor samples collected from 562 patients (Tyner et al., 2018). 

Samples were assessed using whole-exome sequencing, RNA sequencing and ex-vivo 

drug sensitivity analyses for 122 anti-cancer drugs. Data availability includes clinical, 

genomic and transcriptomic information from patients. Beat AML can be accessed 

through the Vizome Platform (http://vizome.org/aml/). 

 

2.2  Data Analytics 
Data Analytics 

To analyze the biological data, several machine learning analyses are proposed to 

aid the data interpretation. In this procedure, specific processes and methods are applied 

and are described below.  

 

2.2.1 Supervised vs. Unsupervised vs. Semi-Supervised Learning  

Supervised vs. Unsupervised vs. Semi-Supervised Learning  

 

In the machine learning field, there are two main learning approaches: 

supervised and unsupervised learning. Both approaches use statistics and mathematical 

algorithms to find patterns in data. Thus, by studying previous data, learning its patterns 

and applying these newly found patterns, machine learning models are able to make 

predictions for new data points. 

When we want to make an assessment, we know that we should think about the 

variables (also known as features) that may impact our final decision. For example, if 

we were to answer the question “Should I take my jacket with me when I leave the 

house?”, we know that the answer depends on a couple of variables, such as: how long 

I am staying out, how cold it will be today, whether it is raining, where I am going and 

so on. The answers to these questions are called our input data. They are information 

that will aid us to make a decision.  

http://vizome.org/aml/
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In supervised learning (SL), the machine learning algorithm learns patterns 

based on examples. Thus, by feeding past samples and their final outcomes, the model 

is able to understand patterns that influenced and generated that specific decision. In 

our example, we want to predict if we should take our coat (y) by analyzing our input 

variables (x). We feed both information, x and y, to the model and it will generate a 

mathematical mapping function that will connect each input data combination to the 

correct output data. A key assumption of supervised learning is that our dataset contains 

samples (where each sample is a set of x and y) that represent all possible outcomes. 

This learning process is called “supervised” because it behaves as a teacher, who 

supervises the learning process of his students. As we know the correct output to each 

sample, the algorithm iteratively makes predictions based on our input data and is 

corrected if it makes a mistake. This learning process repeats itself until the algorithm 

has achieved an acceptable learning performance (Friedman et al., 2001). 

Although supervised learning is a very popular strategy, we may not always 

have easy access to a labeled dataset. Unsupervised learning (UL) is where you only 

have input data (x), but no corresponding outputs (y) are available. This learning 

strategy received the name “unsupervised” as we do not know the correct outputs of 

our training set in advance. Therefore, the model is unable to recreate the environment 

of “a teacher supervising the learning process of his students.” Machine learning 

algorithms are left to uncover any existent patterns and structures on their own. The 

model’s goal is to find any underlying data structure, pattern and/or distribution that 

yields more information about the dataset behavior (Friedman et al., 2001).  

Semi-supervised learning (SSL) is a machine learning strategy that comprises 

the previous two strategies, supervised and unsupervised learning. SSL uses a 

combination of a small labeled dataset and a larger unlabeled dataset (Van Engelen et 

al., 2020). The first step is to train a model with the labeled samples (supervised 

learning process). Then, this initial model is used to predict the unlabeled datasets 

pseudo-labels (unsupervised process). This pseudo-labeling approach is called “self-

training method” (also known as “self-learning”), which is one of the most basic 

pseudo-labeling strategies (Triguero et al., 2015). Lastly, we concatenate both datasets, 

now both with outputs, into a new training set and generate a new model. This strategy 
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aims to reduce error and improve accuracy of models generated with a small sample 

size, but it is impossible to guarantee that the introduction of unlabeled data will 

improve performance consistently (Van Engelen et al., 2020).  

 

2.2.2 The High Dimensionality of Biological Data  
The High Dimensionality of Biological Data 

In biomedical research, the need for classification in high dimensional data can 

be a constant challenge. This challenge arises from several factors such as the 

exponential relationship between the computational complexity and the number of 

dimensions (Yu et al., 2003), the exponential increase of the required number of labeled 

samples (Maimon et al., 2002), data sparsity in higher dimensions hampering the 

learning process (Caruana et al., 2008) and high computational cost, leading to long 

training periods and possibly worsen predictions.  

The phrase “curse of dimensionality”, attributed to Richard Bellman (Bellman, 

2015), refers to the various difficulties of using brute force to optimize a mathematical 

function with too many input features. The reduction of dimensionality of a dataset is 

a preprocessing step to solve the problems of a high dimensional dataset. It comprises 

the reduction of unnecessary or redundant data characteristics (features). 

There are two main strategies to reduce dimensionality: feature construction 

and feature selection (FS), where both focus on improving learning performance, 

decreasing computational costs and generating a sturdier model. 

Feature construction assigns the original high dimensional attributes into a 

lower dimensional space, while retaining as much data information as possible. This 

space is normally generated by applying linear and non-linear embedding methods 

(Guyon et al., 2008). However, since feature construction generates a lower 

dimensional space by combining features together, we lose particular feature 

significance. Thus, we do not know the specific impact of a feature in the final problem.  

Due to this problem, feature selection is preferred in bioinformatics (Li et al., 

2017). Feature selection is performed to select relevant and informative features to a 

specific problem, thus generating a feature subset to be used in model creation (Guyon 

et al., 2008). 

DBD
PUC-Rio - Certificação Digital Nº 1912677/CA



11 
Chapter 2. Methodology 

 

 

2.2.3 Feature Selection  
Feature Selection 

Feature selection (FS) consists of identifying a feature subgroup that will 

provide the data information as the original feature set by excluding redundant and/or 

irrelevant features. Features can be defined as irrelevant and redundant if they do not 

contribute to data processing or if they hold similar information as another feature 

(Gnana et al., 2016). The key objective of feature selection is to generate more 

comprehensible models and improve prediction performance, decreasing training time 

and improving evaluation metrics (Gandhi et al., 2017).  

Genomic data includes a large number of features for each sample, each having 

its own biological relevance in healthcare research and patient treatment. Feature 

selection is an efficient way to identify relevant features and reduce dimensionality. A 

FS analysis either outputs a feature rank, where each feature is assigned a relevance 

score (higher score implies higher feature relevance) or outputs a feature subset of 

previously determined size (Guyon et al., 2008).  

FS learning follows a similar structure as the machine learning approaches 

described in section 2.2.1. Learning can be supervised, semi-supervised or 

unsupervised depending on label availability. If the input data contains output labels, 

supervised strategies can be used; if not, unsupervised strategies are applied. If only 

part of the input data contains an output value, semi-supervised strategies can be 

explored (Li et al., 2017).  

Feature selection algorithms have four main approaches: filter, wrapper, 

embedded and hybrid methods (which comprises a combination of the other three 

methods). Filter methods are generally used as a preprocessing step in supervised 

learning, where a feature subset is chosen based on their relationship with the target 

label. This relationship is evaluated based on different univariate statistical techniques 

and feature importance methods. Filter methods are faster and less computationally 

expensive than other methods, being a popular choice when dealing with high 

dimensional data. 
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Wrapper methods search for an optimal feature subsample. This search 

iteratively tries new feature subsets based on inferences made on previous iterations. 

This method presents high accuracy, but usually demands high computer resources as 

it resembles a greedy search problem. Embedded methods portray the benefits of filter 

and wrapper approaches, combining the feature selection and algorithm learning 

process. It is implemented on algorithms that include an intrinsic FS method, such as 

decision trees and neural networks. They are less computationally demanding than 

wrapper methods but have their application limited to specific learning algorithms.  

Information gain (IG) algorithm is a popular information-based filter method. 

It measures the entropy (E) of a given dataset and selects the subset with lower entropy. 

Entropy measures the amount of variance, or uncertainty, in the given data and can be 

defined as (Li et al., 2017): 

𝐸 = − ∑ 𝑝𝑖 × log2 𝑝𝑖

𝑁

𝑖

 

Where N represents the total number of classes in the dataset and pi represents the 

probability of randomly picking a sample of class i. 

Therefore, the amount of entropy of a given dataset represents how 

unpredictable (or how pure) that same dataset is (Guyon et al., 2008). Information gain 

measures how much variance (entropy) is removed when selecting a specific feature 

subset. In other words, it measures the reduction of uncertainty for one variable (output) 

given a known value for another variable (MacKay et al., 2003) and can be formally 

stated as: 

𝐼𝐺 = 𝐼(𝑋, 𝑌) = 𝐸(𝑋) − 𝐸(𝑋|𝑌) 

Where, I(X,Y) is the mutual information (information gain), E(X) is the entropy for X 

and E(X|Y) is the conditional entropy for X given Y.  

Another approach to select an optimal feature subset is by applying similarity-

based methods. ReliefF (Kira et al, 1992) assesses feature importance by evaluating 
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the ability of features to preserve data similarity by building an affinity matrix and then 

obtaining attribute scores. A disadvantage of this method is that it is not capable of 

dealing with feature redundancy (Li et al., 2017). This method is able to estimate 

feature quality in classification problems that have strong dependency between 

attributes. (Urbanowicz et al., 2018). It applies a nearest neighbor-based function to 

identify feature statistics (relevance). Assuming that S instances are randomly selected 

from the total N instances, then the ReliefF feature score can be described as (Li et al., 

2017): 

𝑅𝑒𝑓𝑖𝑒𝑓𝐹 =
1

𝑐
∑ (−

1

𝑡𝑗
× ∑ 𝑑(𝑋(𝑗, 𝑖) − 𝑋(𝑟, 𝑖)) + ∑

1

𝑣𝑗𝑦
𝑦≠𝑦𝑖

×
𝑃(𝑦)

1 − 𝑃(𝑦)
𝑥𝑟∈𝑁𝐻(𝑗)

𝑆

𝑗=1

× ∑ 𝑑(𝑋(𝑗, 𝑖) − 𝑋(𝑟, 𝑖))

𝑥𝑟∈𝑁𝑀(𝑗,𝑦)

) 

Where, NH(j) and NM(j,y) are the nearest instances of xj in the same class and in class 

y. NH(j) size is tj and NM(j,y) size is vjy. P(y) represents the probability of a sample 

being of class y and c represents the total number of classes. 

 

Another feature selection evaluation approach is statistic-based evaluations. 

The Kruskal-Wallis H test (Kruskal et al., 1952) is a rank-based non-parametric 

statistical test that evaluates whether two or more independent groups are different in 

a variable of interest (output). When applied as a feature selection method, it acts as a 

filter algorithm, testing each feature and generating scores for attributes. It is an 

alternative evaluation to the One Way ANOVA (Ostertagova et al., 2014). The H test 

determines whether the medians of the evaluated groups are different, thus it will 

evaluate if there is a significant difference between groups. It is defined as (Kruskal et 

al., 1952): 

𝐻 𝑇𝑒𝑠𝑡 =  
12

𝑀(𝑀 + 1)
× ∑

𝑅𝑖
2

𝑛𝑖
− 3(𝑀 + 1)

𝑆

𝑖=1

 

Where, S represents the number of samples, ni represents the number of observations 

in the ith sample, 𝑀 = ∑ 𝑛𝑖 and R represents the sum of the ranks in the ith sample.  
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Another filter method to select features is the statistic-based Pearson correlation 

coefficient (PCC). It measures the linear correlation between variables X and Y, 

ranging from -1 to 1; where 1 represents a perfect positive linear correlation, 0 

represents no correlation and -1 represents perfect negative correlation. Pearson can be 

formally defined as: 

𝑃𝐶𝐶 =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋 × 𝜎𝑌
 

Where, cov(X,Y) represent the covariance between the variables X and Y. 𝜎𝑋, 𝜎𝑌 

represent the standard deviation for X and Y, respectively.  

 

2.2.4 Data Subsampling 
Data Subsampling 

Generating machine learning models that require large datasets may be 

computationally expensive. In each model iteration, computer resources requirements 

may be high, thus hampering the learning process. Instead of using the full dataset to 

compute model inferences, one may apply only a subsample set of the full training set. 

This subsampling strategy may be done either randomly or in a specific order. 

While random subsampling will select N arbitrary samples from the dataset, a 

more specific subsample strategy will target explicit subsample groups. This strategy 

can be used to evaluate performance patterns arising from the use of samples with a 

specific characteristic.  

 

2.2.5 Classification and Regression Analyses  
Classification and Regression Analyses  

In supervised learning, there are two main types of analyses. Classification and 

regression strategies follow the same basic supervised concept, which trains a model 

based on a known dataset and its known outputs. The main difference between both 

strategies is the predicted output type. 

In a classification problem, the output variable will be a categorical value. The 

classifier generates different output labels based on the input data. These classifiers can 

be further separated into two different types, binary and multiclass classifiers. In a 

binary classification, there are only two possible output categories such as 0/1, yes/no 
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or high/low. In a multiclass classifier, the output value is one of at least three possible 

categories (such as small, medium and large) and, thus, generating more complex 

models (Harrington, 2012). 

In general, a classification model can be defined by considering S to be the 

training set comprised of xi and yi pairs, where xi is equal to the input data and yi is 

equal to the output label. The classifier then generates a function f(x) that maps each 

input data xi to its associated label yi. 

In a regression problem, the model is trained to generate a continuous numerical 

outcome. Since the predictive model generates a numerical output, model performance 

must be reported as an error, calculated as the difference between observed and 

expected values. Regression models can be easily defined using the same concept as a 

classification task, with the main difference being that yi assumes a numeric value 

instead of a discrete label (Harrington, 2012). 

 

2.2.6 Machine Learning Algorithms  
Machine Learning Algorithms  

The following algorithms were used in this work: (i) Random Forest, (ii) 

Support vector Machine, (iii) Gradient Boosting Machine, (iv) Naïve Bayes and (v) K-

Nearest Neighbors. These techniques were selected due to their frequent use as 

machine learning algorithms in the literature and are described below. 

2.2.6.1 Random Forest (RF) 
Random Forest (RF) 

Random forest (RF) is a supervised learning algorithm where the generated 

“forest” is a combination of decision trees (ensemble strategy) built in a way that each 

tree depends on the values of a random vector each time a split occurs. The RF 

algorithm builds several decision trees and merges them together to obtain a more 

accurate and stable prediction, either a class or a discrete value.  

Every time the branching occurs, the algorithm is not allowed to consider the 

majority of the predictors. Breiman (2001) defines a random forest as a classifier that 

consists of a collection of tree-structured classifiers, where each single structure is an 

independent identically distributed random vector. Several splits will not consider the 

strongest predictors, giving a greater chance to other predictors. This way, the tree is 
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decorrelated, thus reducing the variance over a single tree and consequently making it 

more reliable. (James et al., 2013). When a large number of uncorrelated models are 

generated (decision trees), they function as a group, protecting each other from their 

individual errors and thus, outperforming any of the individual decision tree models. 

In this study, the random forest algorithm uses randomly selected features or a 

combination of features at each node to grow a tree. Samples are classified by taking 

the most popular voted class from all the tree predictors in the forest (Breiman, 2001). 

For feature selection and decision tree pruning, the Gini Index criteria (Breiman et al., 

1984) is used to assess the impurity of the evaluated feature regarding its class.   

2.2.6.2 Support Vector Machines (SVM)  
Support Vector Machines (SVM) 

Originally introduced by Vapnik (1998), SVM method has a robust 

performance with sparse and noisy data, making it one of the most popular techniques 

for regression and classification of datasets (Chang et al., 2011). SVM method allows 

for a nonlinear mapping of an N-dimensional input vector to a high dimensional space 

separated by hyperplanes. The SVM separates a given set of binary training data with 

a hyperplane that is maximally distant from the closest value from the training data 

(Chapelle., Vapnik, Bousquet and Mukherjee, 2002), as observed in Figure 1.  

 

Figure 1 - SVM in R3. 
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In a classification, the hyperplanes represent the decision boundaries that help 

classify the data points. Depending on which side of the hyperplane a data point is 

situated, it will be attributed to a specific class. The dimension of the hyperplane will 

depend on the number of existing features. In regression, the goal is to find a function 

(hyperplane) that approximately predicts discrete values from an input domain while 

allowing a tolerance error (epsilon) in the prediction.  

2.2.6.3 Gradient Boosting Machine (GBM)  
Gradient Boosting Machine (GBM) 

Decision trees method is a simple yet efficient tool that consists of dividing the 

input parameter space into distinct regions that follow a set of if-then rules. However, 

despite several advantages, decision trees have several limitations that cause them to 

be less accurate than other methods (Touzani, Granderson and Fernandes, 2017). To 

overcome these limitations, several methods have been introduced, including gradient 

boosting machines (GBM). The GBM’s main approach is to interactively combine 

“weaker learners” (simpler models) to create a stronger learner that allows for 

improved performance (boosting strategy). This is done in a gradual and sequential 

manner. This method was originally introduced for classification problems by various 

authors (Schapire, 1990; Freund, 1995; Freund et al., 1996). A connection between 

boosting algorithms and loss functions was later added by Friedman, Hastie and 

Tibshirani (2000). Friedman (2001) extended the problem to include regression 

models, where the GBM is treated as an optimization algorithm that aims to minimize 

the loss function. This way, GBM iteratively adds a new weak learner (represented by 

a decision tree) at each step, aiming to continuously decrease the loss function until an 

optimal value is found or a stopping criterion is met.  

The loss function represents a measure that indicates how well the model’s 

coefficients are fitting the data. In a classification task the loss function evaluates the 

prediction performance of the classification algorithm, while in a regression, the loss 

function is based on the error between predicted and real values.  

In this work, gradient boosting machine is applied by using the Extreme 

Gradient Boosting (xgboost) framework, which is similar yet more efficient (Friedman 

et al., 2000; Friedman, 2001). It contains both a linear model solver and tree learning 
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algorithms. It is capable to perform parallel computation on a single machine, thus 

making this framework quicker than the traditional GBM framework (Chen et al., 

2015).  

2.2.6.4 Naïve Bayes Classifier (NB)  
Naïve Bayes Classifier (NB) 

A Bayes classifier is a simple, yet efficient, method to predict the different 

classes of a data set. This method is based on Bayes theorem and is the simplest form 

of a Bayesian network, in which all attributes are considered to be independent (Zhang, 

2004). Thus, the effect of an attribute value on a specific class has no dependence on 

the values of the other attributes, also known as conditional independence. Leung 

(2007) explains the idea of how a naïve Bayesian classifier works: 

 1) Consider S to be the training set. There are m classes (C1, C2, …, Cm), each 

represented by an N-dimensional vector portraying the N values of attributes in that 

class.  

 2) Consider a sample X; the Bayes classifier will estimate which class X 

belongs to, according to the class with the highest posterior probability conditioned on 

X. Therefore, we find the class that maximizes P(Ci|X ). According to Bayes theorem, 

we have: 

𝑃(𝐶𝑖|𝑋) =  
𝑃(𝑋|𝐶𝑖) × 𝑃(𝐶𝑖)

𝑃(𝑋)
 

where: 

● P(Ci) – probability of Ci occurring 

● P(X) – probability of X occurring 

● P(Ci|X) – probability of Ci occurring given that X has already occurred 

● P(X|Ci) – probability of X occurring given that Ci has already occurred 

2.2.6.5 K-Nearest Neighbors (KNN)  
K-Nearest Neighbors (KNN) 

KNN is a classifier method that is commonly used in decision procedures that 

classify a variable into a category of the nearest sample in the training set (Cover T & 

Hart P, 1967). Considering a test observation xi and a positive integer K, the classifier 

identifies the K-neighbors in the training data closest to xi. It then estimates the fraction 
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of points of this group whose response values are equal to j (James et al., 2013). This 

idea is also applicable to regressions. A classification example based on Figure 2 is 

provided as follows. 

Assuming two existing categories (blue star and red triangle), an individual 

would like to classify a new variable (black square). We may consider the following 

rules: 

● K=1  1-NN rule decides that the new variable belongs to the category of the 

nearest neighbor and ignores all others. 

● K=2 or more  K-NN rule decides that the new variable belongs to the 

category of the majority of votes of the k neighbors. 

 

 

Figure 2 - KNN classification technique. Adapted from (Cover and Hart, 1967). 

1-NN: The square will be classified as a blue star. 5-NN: The square will be classified 

as a red triangle. 10-NN: The square will be classified as a blue star. 

 

2.2.7 Evaluation Metrics 
Evaluation Metrics 

When evaluating a model, evaluating algorithm performance is an essential step 

in an effective analysis. A key aspect of evaluation metrics is their ability to 
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discriminate between different model results, aiding our quest in the creation and 

selection of a model which provides high accuracy when predicting future data. 

2.2.7.1 Classification  
Classification 

When assessing the outputs from a classification model, we can generate a 

confusion matrix. It is a M x M matrix, where M corresponds to the number of existent 

classes being predicted. In this research, M=2, thus, obtaining a 2 x 2 matrix (Figure 

3). 

 

 
Figure 3 – Confusion Matrix. 

 

Where: 
● 𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

● 𝑇𝑁 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

● 𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

● 𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

From this matrix, we are able to obtain specific metrics defined below. 

● Accuracy (ACC) : the proportion of the total number of predictions that were 

correct. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 

● Positive Predictive Value (PPV): the proportion of positive cases that were 

correctly identified. 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

● Negative Predictive Value (NPV): the proportion of negative cases that were 

correctly identified. 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

● Recall: the proportion of actual positive cases which are correctly identified. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

● Specificity: the proportion of actual negative cases which are correctly 

identified. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

When we aim for the best precision and recall at the same time, we evaluate the 

F1 score, which is the harmonic mean of the precision and recall values for the given 

classification task (Forman, 2003). 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

When predicting a binary (2 classes) problem, another evaluation strategy is 

also possible. The Matthews Correlation Coefficient (MCC) consists of regarding the 

predicted and real values as two different variables and then compute their correlation 

coefficient. The higher the correlation, better the prediction. MCC ranges from -1 to 1, 

where 1 corresponds to a perfect positive correlation, thus the model is predicting well 

(Baldi et al., 2000).  

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 

Lastly, the area under the receiver operating characteristic curve (AUC) metric 

is one of the most popular metrics when evaluating a binary classification problem. The 

receiver operating characteristic (ROC) curve represents a plot between the false 

positive rate (1-Specificity) and the True Positive rate (also known as Sensitivity, 

portraying the performance of a classification model at all possible classification 

probability thresholds. AUC then measures the area under the ROC curve, ranging in 

values from 0 to 1. An AUC value of 1 represents a model whose predictions are 100% 

correct and an AUC value of 0 represents a model with 100% wrong predictions (Fan 

et al., 2006).  

2.2.7.2 Regression  
Regression 

When designing a regression model, we are attempting to reduce the error 

between predicted and expected values. We use a function, called the cost function, to 

measure this error. 
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The Mean Absolute Error (MAE) is the average of the absolute differences 

between the expected value and the model predicted value. It measures how different 

the predicted value was from the actual value (Hyndman, 2006).  

𝑀𝐴𝐸 =  
∑ |𝑜 − 𝑒|𝑁

𝑖=1

𝑁
  

Where, 𝑒 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒  and  𝑁 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒. 

The Root Mean Squared Error (RMSE) is the root-squared of the average 

difference between the real value and the predicted value. The root square ensures 

robust results, preventing positive and negative differences from cancelling each other 

out (Hyndman, 2006). 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑒 − 𝑜)2𝑁

𝑖=1

𝑁
 

Where, 𝑒 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒  and  𝑁 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒. 

Another evaluation metric is R-squared, which is a statistical measure that 

represents the proportion of variance in the dependent variable (predicted value) that is 

predictable from the independent variables (input data). In other words, it represents 

how well fitted is the regression model. The closer the r-squared value is to 1, the better 

fitted is the model (Cameron and Windmeijer, 1997).  

𝑅2 =  1 −
∑ (𝑒 − 𝑜)2𝑁

𝑖=1

∑ (𝑒 − 𝑎)2𝑁
𝑖=1

 

Where, 𝑒 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 𝑁 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 and 

𝑎 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

The last evaluation regression metric used in this research is Spearman’s rank 

correlation coefficient (SCC). SCC is a nonparametric metric which measures the 

association strength between two variables on an ordinal scale. This statistical measure 

measures how much ranked variables are associated based on an increasing or 

decreasing relationship (monotonic function). Spearman’s rho, which is also denoted, 

ranges between -1 to 1, where a 1 value indicates a perfect association of ranks, a 0 
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value indicates no association and a -1 value indicates a perfect negative association of 

ranks (Spearman, 1961). 

𝑆𝐶𝐶 =  
6 × ∑ 𝑑𝑖

2𝑁
𝑖=1

𝑁(𝑁2 − 1)
 

Where, 𝑑 = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑝𝑎𝑖𝑟𝑒𝑑 𝑟𝑎𝑛𝑘𝑠 and 𝑁 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒. 
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2.3 Literature Review  
Literature Review  

Many computational methods have been proposed to predict anticancer drug 

sensitivity based on genetic, genomic or epigenomic features of cancer samples. The 

most common approach is to generate a drug-specific model, which is independently 

trained using molecular observations and drug-response data from cancerous samples 

tested with each drug individually. Linear-regression based, drug-specific models have 

been developed using gene expression data (Barretina et al., 2012; Geeleher et al., 

2014; Iorio et al., 2016) or a combination of gene expression data and other genomic 

data types, such as copy number alterations and DNA methylation (Chen and Sun, 

2017). Non-linear models using a single data type or multiple data types have also been 

proposed, including artificial neural networks, random forests, support vector machines 

(SVM), kernel regression, latent and Bayesian approaches, attractor landscape analysis 

of network dynamics, unsupervised pathway activity models, and recommender 

systems (Costello et al., 2014; Dong et al., 2015; Zhang et al., 2015; Ammad-ud-din et 

al., 2016; Corte's-Ciriano et al., 2016; Gupta et al., 2016; Ammad-ud-din et al., 2017; 

Choi et al., 2017; Rahman et al., 2017;  Ali et al., 2018; Chang et al., 2018; Dhruba et 

al., 2018; Ding et al. 2018; Huang et al., 2018; Suphavilai et al., 2018; Wang et al., 

2019; Xu et al., 2019; Emdadi et al., 2020). Transfer-learning techniques have also 

been proposed to improve drug-response prediction performance for one type of cancer 

by incorporating data from other types of cancer (Turki et al., 2017; Zhu et al., 2020). 

Drug response information has also been modeled in combination with chemical drug 

properties using elastic net regression, support vector machines, regularized matrix 

factorization and manifold Learning (Menden et al., 2013; Yuan et al., 2016; Wang et 

al., 2017; Moughari et al., 2020; Su et al., 2020). 

Most recent cell-line studies have emphasized the potential to predict drug 

responses based on gene-expression profiles (Costello et al., 2014; Yuan et al., 2014; 

Zhao et al., 2015; Chiu et al., 2019; Parca et al., 2019). 

This dissertation aims to expand existing research to include new prediction 

strategies and processes. By exploring additional machine learning and data analytics 

methods, we aim to contribute to new state of the art approaches when predicting drug 

efficacy.  
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In this research, we explore the effect of artificial subsampling the data in 

varying proportions. We show the impact on predictive models and its performance 

when training on relatively extreme outcomes. This subsampling approach had yet to 

be tested and yielded great results. Classification models portrayed improved outcomes 

when applying this subsampling technique.  

This research also explores the effect of applying a semi-supervised model in 

genomic data. We evaluate possible changes in several hyperparameters within model 

creation, further understanding algorithm patterns and behavior within this new 

strategy. As a semi-supervised learning approach becomes more popular in healthcare 

data analytics, we hope to contribute to general modeling knowledge when dealing 

with this new prediction model setup.  
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3 Case Studies 
Case Studies 
 

 

 

 

 

 

3.1 Case Study 1 - Predicting drug sensitivity of cancer cells based on DNA methylation levels 

Case Study 1 - Predicting drug sensitivity of cancer cells based on DNA 

methylation levels 

 

3.1.1 Introduction 
Introduction 

In this study, we use DNA methylation profiles from preclinical samples to model drug 

responses for eight anti-cancer drugs. We compare the performance of five classification 

algorithms and four regression algorithms that encompass a diverse range of methodologies, 

including tree-based, probability-based, kernel-based, ensemble-based and distance-based 

approaches. We use classical algorithms as a way to establish a performance baseline against 

which other algorithms might be compared when working with DNA methylation profiles. For 

regression, we predict IC50 values directly. For classification, we use discretized IC50 values. For 

both types of algorithm, we artificially subsample the data to varying degrees to evaluate whether 

training models based on relatively extreme outcomes would yield improved performance; we 

assess our ability to predict drug responses using as few as 10% of the cell lines (those with the 

most extreme IC50 values). An underlying motivation of this approach was to decrease data-

generation costs. For example, if it could be shown that generating data for relatively few (extreme) 

responders performs as well as or better than generating data for responders across the full range 

of response values, cost savings may result. Perhaps surprisingly, the classification algorithms 

performed best when only 10-20% of the cell lines were used. The regression algorithms 

performed best when we trained the models using the full range of drug-response values, although 

this depended on the performance metrics we used. Finally, we derived classification models from 

the cell-line data and predicted drug responses for TCGA patients. In most cases, the models failed 

to generalize effectively; however, predictions by the Random Forests algorithm were significantly 

correlated  with Temozolomide responses for low-grade gliomas. 
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3.1.2 Methods 
Methods 

The GDSC database contains data for human cell lines derived from common and rare 

types of adult and childhood cancers. GDSC provides multiple types of molecular data for these 

cell lines in addition to response values for 265 anti-cancer drugs. In this work, we used database 

version GDSC1, which includes data for 987 cell lines curated between 2010 and 2015 (Iorio et 

al., 2016). Drug responses were measured as the natural log of the fitted IC50 value. The more 

sensitive the cell line, the lower the IC50 value for any given drug. We developed machine-learning 

models of drug response using DNA methylation data from GDSC1 that had been preprocessed 

and summarized as gene-level beta values (Iorio et al., 2016); these values ranged between 0 and 

1 (higher values indicated relatively high methylation for a given gene). We used all available 

methylation regions, represented by gene-level summarized values, as input to the classification 

and regression algorithms. 

 For external validation, we used DNA methylation data and clinical drug-response values 

from TCGA. We selected eight drugs that were administered to TCGA patients and present in 

GDSC: Gefitinib, Cisplatin, Docetaxel, Doxorubicin, Etoposide, Gemcitabine, Paclitaxel and 

Temozolomide. These drugs represent a variety of molecular mechanisms, including DNA 

crosslinking, microtubule stabilization and pyrimidine anti-metabolization. Aside from Gefitinib, 

which we used for model optimization on GDSC data, these drugs were associated with the largest 

number of patient drug-response values in TCGA (Huang et al., 2020). GDSC provides DNA 

methylation values for 6,035 TCGA samples that had been preprocessed using the same pipeline 

as the GDSC samples. We obtained drug-response data for TCGA patients from (Ding et al., 2016).  

Cell lines with missing IC50 values were excluded on a per-drug basis; thus, sample sizes 

differed across the drugs. We applied Z-score normalization on a per-gene basis across all samples 

in GDSC and TCGA. Next, we used ComBat (Leek et al., 2020) to adjust for systematic differences 

between the two datasets (GDSC and TCGA); we also specified cell type as a covariate to adjust 

for methylation patterns associated with this factor. 

We started with a classification analysis. Classification algorithms are widely available, 

and their predictions are intuitive to interpret—they assign probabilities to each sample for each 

class. To enable classification for the GDSC cell lines, we discretized the IC50 values into "low" 

and "high" values. However, the choice of a threshold for distinguishing low and high values was 
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necessarily arbitrary. Initially, we used the median IC50 value across all cell lines as a threshold. 

However, cell lines with an IC50 just above or below this threshold naturally showed very little 

difference in their drug responses, even though they were assigned to different classes. In contrast, 

cell lines with extreme IC50 values (far from the threshold) had much more distinct drug responses. 

To investigate the effects of using a threshold to discretize the IC50 values for classification, we 

used subsampling. We created 10 different scenarios that included increasing percentages of the 

overall data. First, we sorted the samples by IC50 value in ascending order. For the first scenario, 

we evaluated cell lines with the 5% lowest and 5% highest IC50 values (10% of the total data). In 

the next scenario, we evaluated cell lines with the 10% lowest and 10% highest IC50 values (20% 

of the total data), and so on. The last scenario included all the data, where the lowest 50% were 

considered to have low IC50 values and the highest 50% were considered to have high values 

(Figure S1). For the regression analysis, we followed a similar process for subsampling, but 

retained the continuous nature of the IC50 values. 

For both classification and regression, we used the Random Forests (tree-based) (Breiman, 

2001), Support Vector Machines (kernel-based) (Vapnik, 1998), Gradient Boosting Machines 

(ensemble-based) (Breiman, 1997) and k-Nearest Neighbors (distance-based) (Cover and Hart, 

1967) algorithms. We used the Naïve Bayes (probability-based) (Maron, 1961) algorithm for 

classification, but not for regression, because this algorithm is only designed for classification 

analyses. We performed the analyses using the R programming language (R Core Team, 2019) 

and Rstudio (https://rstudio.com). The machine-learning algorithms were implemented in the 

following R packages: mlr (Bischl et al., 2016), e1071 (Meyer et al., 2019), xgboost (Chen et al., 

2015), randomForest (Liaw and Wiener, 2002), and kknn (Schliep and Hechenbichler, 2016).  

Using the GDSC cell-line data, we sought to select the best hyperparameters for each 

algorithm via nested cross validation. We used the mlr package (Bischl et al., 2016) to randomly 

assign the cell lines to 10 outer folds and 5 inner folds (per outer fold). For each combination of 

algorithm and data-subsampling scenario, we evaluated the performance of all hyperparameter 

combinations (Table 1) using the inner folds; we used MMCE (Mean Misclassification Error) 

(Schiffner et al., 2016) for classification and MSE (Mean Squared Error) (Hyndman, 2006) for 

regression as evaluation metrics in the inner folds (defaults in mlr). For the outer-fold predictions, 

we assessed performance for predicting drug responses using several performance metrics. This 

enabled us to evaluate how consistently the algorithms performed. For the classification analysis, 
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we used accuracy (1 - MMCE), area under the receiver operating characteristic curve (AUC) (Fan 

et al., 2006), F1 measure (Forman, 2003), Matthews correlation coefficient (MCC) (Baldi et al., 

2000), recall and specificity. For the regression analysis, we used Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE) (Hyndman, 2006), R-squared coefficient of determination 

(Cameron and Windmeijer, 1997) and Spearman’s rank correlation coefficient (SCC) (Spearman, 

1961). 

 

Table 1: Descriptions of the algorithms we tested and hyperparameters that we evaluated 

via nested cross validation. Hyperparameter optimization was performed for all tested 

algorithms. All parameter combinations for each algorithm were evaluated via nested cross 

validation; optimal combinations were then used for outer-fold predictions.  

Algorithm Hyperparameters Definition Tested Values 

classif.svm and 

regr.svm 

1. Kernel The kernel function used to 

transform data to higher-

dimensional spaces and then 

become linearly separable. 

Linear; Radial; 

Polynomial; 

Sigmoid 

2. Cost The regularization parameter 

in the cost function, to 

penalize missing 

classifications. 

0.1; 1; 10; 100 

3. Scale Whether the variables should 

be scaled. 

True; False 

classif.randomForest 

and regr.randomForest 

1. Ntree The number of trees to grow. 100; 500; 1000 

2. Nodesize Minimum size of terminal 

nodes. 

1; 3; 5; 7 

3. Importance Whether the importance of 

predictors should be assessed. 

True; False 

classif.kknn and 

regr.kknn 

1. K The number of neighbors 

considered. 

3; 7; 10 

2. Scale Whether to scale variables to 

have equal standard deviation. 

True; False 

classif.naiveBayes 1. Laplace  The amount of Laplace 

(additive) smoothing. 

0; 1; 5; 10  
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classif.xgboost 1. Nround The maximum number of 

boosting iterations. 

100; 250; 500 

2. Max_depth The maximum depth of a tree. 1; 5; 10 

3. Eta How much the contribution of 

each tree is scaled to the 

overall approximation, to 

control the learning rate. 

0.1; 0.3; 0.5 

regr.xgboost 1. Nround The maximum number of 

boosting iterations. 

100; 250; 500 

2. Eta How much the contribution of 

each tree is scaled to the 

overall approximation, to 

control the learning rate. 

0.1; 0.3; 0.5 

 

After assessing the algorithms separately for the classification and regression approaches, 

we evaluated the predictive ability of these two types of tasks against one another. We calculated 

the Spearman correlation coefficient as a nonparametric measure of the concordance between the 

predicted probabilities (classification algorithms) and predicted IC50 values (regression 

algorithms). 

For the classification and regression analyses, we used feature selection to identify genes 

deemed to be most informative. We performed an information-gain analysis, assigning an 

importance score to each feature (gene). More specifically, we estimated the relative importance 

of each gene based on the conditional entropy of the class variable with respect to that gene. 

Entropy measures the amount of randomness in the information. Thus, higher information gain 

implies lower entropy. This analysis was implemented using the FSelectorRcpp package 

(Zawadzki and Kosinski, 2020). To assess the functional relevance of the top-ranked genes, we 

used a gene-set overlap technique implemented in the Molecular Signatures Database 3.0 

(Liberzon et al., 2011). As candidate gene sets, we included the C2 (curated gene sets), C4 

(computational genes sets), and C6 (oncogenic signature gene sets). We used a False Discovery 

Rate q-value threshold of 0.05. 

For additional validation, we trained classification models based on discretized drug 

responses in the GDSC cell lines and then predicted patient drug responses using tumor data from 

TCGA. These patient responses were based on clinical data, having no direct relation to IC50 
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values. Because the patient-response values were categorical in nature, we only performed 

classification for these data. We used nested cross validation to perform hyperparameter 

optimization using the GDSC (training) data. To evaluate the relationship between the predicted 

labels and actual clinical responses, we calculated Spearman’s rank correlation coefficient and a 

corresponding p-value for each combination of algorithm and data-subsampling scenario; then we 

used the Benjamini-Hochberg False Discovery Rate to adjust for multiple tests (Benjamini and 

Hochberg, 1995). 

 

3.1.3 Results 

Results 

Using data from 987 cell lines, we used machine-learning algorithms to evaluate the 

potential to predict cytotoxic responses based on genome-wide, DNA methylation profiles. 

Second, we examined which genes were most predictive of these responses. Finally, we evaluated 

the feasibility of predicting clinical responses in humans based on models derived from cell-line 

data. 

3.1.3.1 Classification analysis using cell-line data 
Classification analysis using cell-line data 

We collected DNA methylation data and IC50 response values for eight drugs from the 

GDSC repository. In our initial analysis, we aimed to predict categories (classes) of drug 

sensitivity. These categories represented whether each cell line exhibited a "low" or "high" 

response to each drug, corresponding to relatively low or high IC50 values, respectively. This 

categorization facilitated a simplified yet intuitive interpretation of the treatment outcomes and 

enabled us to use classification algorithms, which have been implemented for a broader range of 

algorithmic methodologies than regression algorithms. 

Before performing classification, we categorized each cell line on a per-drug basis, 

according to whether its IC50 value was greater than the median across all cell lines. One limitation 

of categorizing the cell lines in this way was that cell lines just above or below the median threshold 

showed a relatively small difference in IC50 values, even though they were assigned to different 

classes. Generally, IC50 values did not follow a multimodal distribution (Figure 4). Therefore, we 

evaluated whether classification performance could be improved by excluding cell lines with an 

IC50 value relatively close to the median, even though this would reduce the amount of data 
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available for training and testing. We evaluated ten scenarios that varied the number of cell lines 

used. In the most extreme scenario, we used methylation data for cell lines with the 5% lowest and 

5% highest IC50 values. In describing these subsampling scenarios, we use a notation that indicates 

the percentage of samples on each side of the distribution as well as the algorithm type. For 

example, when we analyzed the samples with the 5% highest and 5% lowest IC50 values and 

employed a classification algorithm, we indicate this using "+-5%c". The equivalent scenario for 

regression was represented as +-5%r.  

 

Figure 4: Histograms for each drug based on drug response (IC50 values) for the GDSC 

dataset. The black line represents the median value for each subsample across all available cell 

lines for each drug. 

 

We evaluated the performance of five classification algorithms using six performance 

metrics (see Methods). In addition, we optimized hyperparameters via nested cross validation; 

Table 1 lists the hyperparameters we evaluated. Initially, we evaluated Gefitinib, an EGFR 

inhibitor. Overall, the algorithms performed best when relatively few cell lines (+-5%c and +-

10%c) were used to train and test the models, attaining area-under-the-receiver-operating-

characteristic curve (AUC) and classification-accuracy values as high as 0.93 and 0.84 (Table 2). 

This pattern was consistent across all five algorithms and all six metrics that we evaluated (Figure 

5). However, the SVM algorithm consistently achieved higher classification performance than the 

other algorithms for this drug. 
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Figure 5: Gefitinib classification results across six metrics. These "spider" graphs illustrate 

how each classification algorithm performed in each subsampling scenario via cross validation 

on the GDSC cell-line data. Results that are further away from the center represent higher metric 

values (relatively better performance) than results closer to it. These metrics are accuracy (ACC), 

specificity, recall, Matthews correlation coefficient (MCC), F1 score (F1) and area under the 

receiver operating characteristic curve (AUC). Scenarios that used relatively few cell lines—but 

those with the most extreme IC50 values— performed best for all algorithms. Specific metric 

values may be found in Table 2. 

 

Table 2:  Classification results for all subsampling scenarios and algorithms for Gefitinib. 

Bold font indicates the best-performing combination for each metric. 

Scenario Method ACC AUC F1 MCC Recall Specificity 

+-5%c SVM 0.82 0.93 0.80 0.65 0.85 0.78 

+-5%c Random Forest 0.82 0.82 0.82 0.66 0.89 0.74 

+-5%c KNN 0.72 0.84 0.67 0.45 0.63 0.80 

+-5%c XGBoost 0.77 0.83 0.75 0.54 0.76 0.78 

+-5%c Naïve Bayes 0.73 0.74 0.73 0.45 0.76 0.70 
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+-10%c SVM 0.84 0.92 0.82 0.69 0.85 0.83 

+-10%c Random Forest 0.80 0.89 0.79 0.61 0.84 0.77 

+-10%c KNN 0.75 0.86 0.71 0.49 0.68 0.83 

+-10%c XGBoost 0.78 0.88 0.77 0.56 0.80 0.75 

+-10%c Naïve Bayes 0.68 0.69 0.66 0.35 0.68 0.67 

+-15%c SVM 0.81 0.86 0.81 0.63 0.83 0.79 

+-15%c Random Forest 0.75 0.84 0.75 0.50 0.78 0.71 

+-15%c KNN 0.72 0.79 0.71 0.45 0.71 0.73 

+-15%c XGBoost 0.74 0.83 0.75 0.51 0.80 0.68 

+-15%c Naïve Bayes 0.66 0.66 0.68 0.32 0.76 0.56 

+-20%c SVM 0.75 0.83 0.75 0.51 0.77 0.73 

+-20%c Random Forest 0.72 0.80 0.73 0.44 0.76 0.69 

+-20%c KNN 0.68 0.78 0.69 0.37 0.71 0.66 

+-20%c XGBoost 0.72 0.80 0.73 0.44 0.76 0.69 

+-20%c Naïve Bayes 0.64 0.64 0.68 0.28 0.79 0.48 

+-25%c SVM 0.74 0.81 0.75 0.48 0.78 0.70 

+-25%c Random Forest 0.72 0.79 0.74 0.45 0.79 0.66 

+-25%c KNN 0.70 0.77 0.71 0.41 0.73 0.68 

+-25%c XGBoost 0.72 0.79 0.72 0.43 0.74 0.70 

+-25%c Naïve Bayes 0.60 0.62 0.67 0.23 0.80 0.41 

+-30%c SVM 0.72 0.78 0.74 0.45 0.78 0.66 

+-30%c Random Forest 0.69 0.75 0.70 0.38 0.74 0.63 

+-30%c KNN 0.68 0.75 0.70 0.37 0.74 0.63 

+-30%c XGBoost 0.69 0.77 0.70 0.38 0.74 0.63 

+-30%c Naïve Bayes 0.60 0.60 0.66 0.21 0.79 0.41 

+-35%c SVM 0.68 0.76 0.70 0.37 0.72 0.64 

+-35%c Random Forest 0.67 0.73 0.69 0.34 0.73 0.60 

+-35%c KNN 0.67 0.71 0.68 0.34 0.70 0.64 

+-35%c XGBoost 0.66 0.70 0.67 0.32 0.69 0.62 

+-35%c Naïve Bayes 0.59 0.60 0.66 0.20 0.79 0.40 

+-40%c SVM 0.67 0.73 0.68 0.35 0.71 0.63 

+-40%c Random Forest 0.65 0.71 0.67 0.30 0.71 0.58 

+-40%c KNN 0.60 0.66 0.61 0.21 0.64 0.57 

+-40%c XGBoost 0.65 0.70 0.65 0.29 0.68 0.61 

+-40%c Naïve Bayes 0.57 0.58 0.64 0.16 0.78 0.36 

+-45%c SVM 0.67 0.72 0.69 0.35 0.72 0.62 

+-45%c Random Forest 0.64 0.70 0.66 0.30 0.71 0.57 

+-45%c KNN 0.63 0.66 0.64 0.26 0.66 0.60 

+-45%c XGBoost 0.65 0.69 0.65 0.31 0.67 0.62 

+-45%c Naïve Bayes 0.58 0.59 0.65 0.18 0.78 0.39 
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+-50%c SVM 0.65 0.70 0.66 0.30 0.70 0.60 

+-50%c Random Forest 0.64 0.69 0.66 0.29 0.70 0.59 

+-50%c KNN 0.60 0.65 0.60 0.20 0.61 0.59 

+-50%c XGBoost 0.63 0.68 0.64 0.27 0.65 0.62 

+-50%c Naïve Bayes 0.58 0.59 0.64 0.17 0.77 0.39 

 

When evaluating the seven remaining drugs, we continued to see a trend in which using a 

relatively small proportion of the data resulted in better classification performance. For Cisplatin, 

Docetaxel, Doxorubicin, and Etoposide, the best performance was attained for +-5%c and +-10%c, 

and the best-performing algorithms were always SVM or Random Forests (RF) (Tables S1-S7). 

In contrast, for Gemcitabine, the highest AUC value (0.82) was obtained for +-15%c (SVM 

algorithm). For Paclitaxel, the Random Forests algorithm performed best for +-10%c (AUC = 

0.75). The overall highest AUC value was attained for Docetaxel (0.97, +-10%c, Random Forests 

and SVM). Figures S2-S8 illustrate these results across all algorithms, metrics, and drugs and show 

that generally the top-performing algorithms were consistent across all metrics, although these 

patterns were less consistent in scenarios where the highest AUC values were lower than 0.80.  

To further analyze combinations of subsampling scenarios and classification algorithms, 

we ranked the AUC values for all combinations and for each drug (where the lowest rank was 

considered best and represented the highest AUC value). Subsequently, we calculated the average 

AUC rank across all drugs. The best performance was attained for +-10%c (SVM) and +-10%c 

(Random Forests), achieving average ranks of 4.75 and 5.13, respectively (Table 3). When we 

evaluated the minimum, mean, and maximum AUC values for each combination of drug and 

algorithm, Docetaxel attained the best overall performance (Table 4).  

 

Table 3: Summary of AUC values across all combinations of subsampling scenario and 

algorithm. We ranked the AUC values for each combination and then calculated the average 

rank across the combinations (lower ranks imply better performance). In addition, this table lists 

the minimum, maximum, and standard deviation AUC value across the combinations. 

Scenario Method 
Average 

AUC Rank 

Min AUC 

Value 

Max AUC 

Value 

Standard 

Deviation 

AUC 

Value 
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+-10%c Random Forest 4.75 0.72 0.97 0.08 

+-10%c SVM 5.13 0.65 0.97 0.10 

+-5%c SVM 5.14 0.74 0.95 0.08 

+-15%c XGBoost 7.50 0.68 0.94 0.09 

+-15%c SVM 7.63 0.66 0.93 0.10 

+-5%c Random Forest 7.71 0.77 0.93 0.06 

+-5%c XGBoost 7.86 0.69 0.96 0.09 

+-15%c Random Forest 9.13 0.70 0.92 0.08 

+-10%c XGBoost 10.13 0.58 0.94 0.12 

+-20%c SVM 10.75 0.66 0.92 0.09 

+-25%c SVM 11.25 0.70 0.90 0.07 

+-10%c KNN 12.75 0.67 0.91 0.09 

+-5%c KNN 13.14 0.69 0.92 0.07 

+-25%c XGBoost 15.38 0.67 0.89 0.07 

+-20%c XGBoost 15.88 0.65 0.91 0.09 

+-20%c Random Forest 16.00 0.64 0.91 0.08 

+-30%c SVM 16.25 0.68 0.86 0.06 

+-25%c Random Forest 16.50 0.70 0.88 0.07 

+-35%c SVM 19.00 0.68 0.84 0.05 

+-30%c XGBoost 20.50 0.62 0.87 0.08 

+-30%c Random Forest 20.63 0.65 0.85 0.07 

+-15%c KNN 21.25 0.61 0.87 0.10 

+-20%c KNN 23.38 0.63 0.88 0.09 

+-35%c Random Forest 24.13 0.65 0.82 0.06 

+-35%c XGBoost 25.25 0.61 0.83 0.07 

+-40%c SVM 26.00 0.66 0.81 0.05 

+-25%c KNN 26.63 0.62 0.85 0.08 

+-30%c KNN 26.63 0.64 0.83 0.07 

+-40%c XGBoost 26.88 0.62 0.79 0.05 
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+-45%c SVM 28.25 0.65 0.77 0.04 

+-5%c Naïve Bayes 28.57 0.64 0.79 0.05 

+-40%c Random Forest 28.63 0.65 0.79 0.05 

+-35%c KNN 32.25 0.62 0.78 0.06 

+-50%c SVM 32.38 0.64 0.76 0.04 

+-45%c XGBoost 32.63 0.61 0.76 0.05 

+-50%c XGBoost 32.63 0.59 0.78 0.06 

+-45%c Random Forest 33.00 0.62 0.77 0.05 

+-10%c Naïve Bayes 34.75 0.57 0.81 0.09 

+-50%c Random Forest 36.38 0.62 0.76 0.05 

+-40%c KNN 37.50 0.62 0.75 0.05 

+-45%c KNN 39.00 0.60 0.72 0.04 

+-15%c Naïve Bayes 41.13 0.57 0.75 0.07 

+-50%c KNN 41.88 0.59 0.71 0.04 

+-20%c Naïve Bayes 43.38 0.54 0.76 0.07 

+-25%c Naïve Bayes 44.13 0.57 0.72 0.06 

+-30%c Naïve Bayes 44.25 0.57 0.71 0.05 

+-35%c Naïve Bayes 45.50 0.57 0.68 0.04 

+-40%c Naïve Bayes 47.13 0.57 0.67 0.04 

+-45%c Naïve Bayes 47.63 0.56 0.66 0.04 

+-50%c Naïve Bayes 48.75 0.55 0.64 0.04 

 

Table 4: Minimum, mean and maximum AUC value for each combination of drug and 

algorithm, averaged across all subsampling scenarios.  

Drug Method Min Mean Max 

Gefitinib SVM 0.70 0.80 0.93 

Gefitinib Random Forest 0.69 0.77 0.89 

Gefitinib Naïve Bayes 0.58 0.63 0.74 

Gefitinib KNN 0.65 0.75 0.86 

Gefitinib XGBoost 0.68 0.77 0.88 
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Cisplatin SVM 0.66 0.78 0.88 

Cisplatin Random Forest 0.65 0.76 0.86 

Cisplatin Naïve Bayes 0.59 0.63 0.73 

Cisplatin KNN 0.60 0.72 0.84 

Cisplatin XGBoost 0.69 0.78 0.87 

Paclitaxel SVM 0.65 0.68 0.72 

Paclitaxel Random Forest 0.64 0.69 0.72 

Paclitaxel Naïve Bayes 0.54 0.58 0.61 

Paclitaxel KNN 0.61 0.65 0.68 

Paclitaxel XGBoost 0.58 0.67 0.73 

Temozolomide SVM 0.74 0.84 0.95 

Temozolomide Random Forest 0.73 0.82 0.90 

Temozolomide Naïve Bayes 0.63 0.69 0.76 

Temozolomide KNN 0.68 0.79 0.92 

Temozolomide XGBoost 0.74 0.83 0.93 

Etoposide SVM 0.66 0.75 0.88 

Etoposide Random Forest 0.63 0.71 0.89 

Etoposide Naïve Bayes 0.56 0.61 0.71 

Etoposide KNN 0.59 0.68 0.84 

Etoposide XGBoost 0.66 0.74 0.86 

Gemcitabine SVM 0.65 0.74 0.82 

Gemcitabine Random Forest 0.66 0.72 0.78 

Gemcitabine Naïve Bayes 0.56 0.59 0.73 

Gemcitabine KNN 0.62 0.66 0.69 

Gemcitabine XGBoost 0.67 0.73 0.79 

Docetaxel SVM 0.76 0.87 0.97 

Docetaxel Random Forest 0.76 0.86 0.97 

Docetaxel Naïve Bayes 0.64 0.72 0.81 

Docetaxel KNN 0.71 0.81 0.91 

Docetaxel XGBoost 0.76 0.87 0.96 

Doxorubicin SVM 0.64 0.70 0.80 

Doxorubicin Random Forest 0.62 0.68 0.78 

Doxorubicin Naïve Bayes 0.56 0.58 0.64 

Doxorubicin KNN 0.59 0.65 0.79 

Doxorubicin XGBoost 0.59 0.65 0.71 
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3.1.3.2 Regression analysis using cell-line data 
Regression analysis using cell-line data 

We performed a regression analysis using the same DNA methylation data but with 

continuous IC50 response values for the same eight drugs. For this analysis, we applied four 

regression algorithms and evaluated their performance using nested cross validation and four 

performance metrics (RMSE, MAE, R-squared and SCC). As with the classification analysis, we 

performed data subsampling to evaluate the effects of using relatively extreme IC50 values. For 

Gefitinib and the MAE and RMSE metrics, all algorithms performed best when all cell lines were 

used to train and test the models, attaining RMSE values as low as 0.95 (lower is better, see Table 

5). However, for the R-squared and SCC metrics, the +-5%r subsampling scenario resulted in the 

best performance in some cases. Typically, the magnitude of the differences between the original 

and predicted IC50 values was larger toward the extremes, resulting in relatively high MAE and 

RMSE values when middle values were excluded. In contrast, SCC is a rank-based metric, and the 

algorithms struggled most to differentiate between IC50 values toward the middle of the 

distribution. We observed similar patterns for the other seven drugs (Tables S8-S14).  

Across all drugs and metrics, the SVM and Random Forests algorithms performed best for 

every combination of drug and performance metric (Figure 6). Furthermore, predictive 

performance was highly consistent for all metrics (Figures S9-S15). When evaluating the mean 

RMSE ranked values (where the lowest rank was considered best and represented the lowest 

RMSE value), the RF and SVM algorithms and the +-50%r scenarios performed best (Table 6), 

and predictions for Temozolomide were more accurate overall than those for other drugs (Table 

7). 

 

Table 5:  Regression results for all combinations of subsampling scenarios and algorithms 

for Gefitinib. Bold font indicates the best-performing combination for each metric.  

Scenario Method MAE RMSE R2 Spearman 

+-5%r SVM 1.28 1.54 0.50 0.63 

+-5%r Random Forest 1.61 1.83 0.31 0.51 

+-5%r KNN 1.54 1.96 0.18 0.46 

+-5%r XGBoost 1.36 1.84 0.36 0.48 

+-10%r SVM 1.08 1.36 0.46 0.60 

+-10%r Random Forest 1.26 1.53 0.34 0.53 
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+-10%r KNN 1.27 1.65 0.21 0.47 

+-10%r XGBoost 1.17 1.56 0.31 0.50 

+-15%r SVM 1.11 1.37 0.35 0.57 

+-15%r Random Forest 1.18 1.41 0.33 0.53 

+-15%r KNN 1.18 1.52 0.20 0.47 

+-15%r XGBoost 1.16 1.48 0.25 0.50 

+-20%r SVM 1.04 1.27 0.35 0.59 

+-20%r Random Forest 1.11 1.32 0.30 0.53 

+-20%r KNN 1.10 1.42 0.18 0.48 

+-20%r XGBoost 1.13 1.42 0.18 0.44 

+-25%r SVM 0.99 1.21 0.31 0.54 

+-25%r Random Forest 1.04 1.24 0.28 0.52 

+-25%r KNN 1.02 1.32 0.18 0.47 

+-25%r XGBoost 1.03 1.26 0.26 0.51 

+-30%r SVM 0.92 1.14 0.31 0.54 

+-30%r Random Forest 0.97 1.18 0.26 0.49 

+-30%r KNN 0.96 1.25 0.17 0.45 

+-30%r XGBoost 0.97 1.20 0.23 0.47 

+-35%r SVM 0.88 1.10 0.25 0.52 

+-35%r Random Forest 0.93 1.14 0.21 0.45 

+-35%r KNN 0.92 1.20 0.10 0.40 

+-35%r XGBoost 0.92 1.15 0.18 0.42 

+-40%r SVM 0.84 1.06 0.22 0.44 

+-40%r Random Forest 0.86 1.06 0.21 0.43 

+-40%r KNN 0.88 1.14 0.10 0.36 

+-40%r XGBoost 0.88 1.10 0.16 0.39 

+-45%r SVM 0.79 1.01 0.21 0.44 

+-45%r Random Forest 0.80 1.02 0.21 0.42 

+-45%r KNN 0.84 1.10 0.06 0.35 

+-45%r XGBoost 0.81 1.04 0.18 0.40 

+-50%r SVM 0.73 0.95 0.23 0.45 

+-50%r Random Forest 0.74 0.95 0.22 0.43 

+-50%r KNN 0.78 1.02 0.10 0.36 

+-50%r XGBoost 0.75 0.95 0.22 0.41 
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Figure 6: Gefitinib regression results across four metrics. These "spider" graphs illustrate 

how each regression algorithm performed in each subsampling scenario via cross validation on 

the GDSC cell-line data. Results that are further away from the center represent higher metric 

values (relatively better performance) than results closer to it.  These metrics are RMSE (Root 

Mean Square Error), MAE (Mean Absolute Error), R-squared and Spearman correlation 

coefficient. Scenarios that used all cell lines performed best for all algorithms. Specific metric 

values may be found in Table 5. 

Table 6: Average RMSE rank for all combinations of subsampling scenarios and 

algorithms. RMSE values were ranked for each drug and were then averaged. Lower ranks 

imply a better result. We also include standard deviation and the minimum and maximum RMSE 

values. Bold font indicates the best-performing combination for each metric. 
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Scenario Method 
Average 

RMSE Rank 

Min 

RMSE 

Value 

Max 

RMSE 

Value 

Standard 

Deviation 

RMSE 

Value 

+-50%r Random Forest 1.50 0.67 2.53 0.61 

+-50%r SVM 1.75 0.68 2.56 0.61 

+-50%r XGBoost 2.88 0.69 2.54 0.61 

+-45%r SVM 4.38 0.69 2.66 0.64 

+-45%r Random Forest 4.75 0.70 2.65 0.63 

+-50%r KNN 6.75 0.73 2.70 0.64 

+-45%r XGBoost 6.88 0.73 2.67 0.64 

+-40%r SVM 8.00 0.72 2.77 0.67 

+-40%r Random Forest 8.88 0.73 2.78 0.67 

+-45%r KNN 10.50 0.78 2.82 0.66 

+-40%r XGBoost 11.00 0.78 2.82 0.67 

+-35%r SVM 11.75 0.76 2.92 0.71 

+-35%r Random Forest 13.00 0.76 2.94 0.71 

+-40%r KNN 13.88 0.81 2.94 0.69 

+-30%r SVM 15.38 0.80 3.07 0.75 

+-35%r XGBoost 15.88 0.81 3.02 0.74 

+-30%r Random Forest 16.63 0.79 3.09 0.75 

+-35%r KNN 18.75 0.84 3.09 0.73 

+-30%r XGBoost 19.25 0.84 3.17 0.77 

+-25%r SVM 19.88 0.80 3.25 0.81 

+-25%r Random Forest 21.25 0.84 3.33 0.82 

+-30%r KNN 21.63 0.88 3.28 0.79 

+-20%r SVM 23.13 0.82 3.50 0.89 

+-25%r XGBoost 23.25 0.88 3.40 0.82 

+-25%r KNN 25.13 0.92 3.48 0.84 

+-20%r Random Forest 25.75 0.90 3.55 0.89 

+-15%r SVM 26.88 0.86 3.57 0.91 

+-20%r XGBoost 28.75 0.93 3.71 0.92 

+-20%r KNN 29.50 0.97 3.82 0.94 

+-15%r Random Forest 29.63 0.95 3.71 0.92 

+-10%r SVM 30.25 0.93 3.94 1.02 

+-15%r KNN 32.50 1.03 4.07 1.01 

+-15%r XGBoost 33.13 1.06 4.00 1.02 

+-10%r Random Forest 33.63 1.02 4.14 1.04 

+-10%r XGBoost 35.38 1.11 4.37 1.13 

+-5%r SVM 36.25 1.16 4.15 1.04 
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+-10%r KNN 36.25 1.16 4.51 1.11 

+-5%r Random Forest 37.50 1.28 4.30 1.01 

+-5%r KNN 38.88 1.35 4.47 1.01 

+-5%r XGBoost 39.75 1.49 4.79 1.28 

 

Table 7: Minimum, mean and maximum RMSE value for each drug and algorithm 

combination, averaged across all subsampling scenarios.  

Drug Method Min Mean Max 

Gefitinib SVM 0.95 1.20 1.54 

Gefitinib Random Forest 0.95 1.27 1.83 

Gefitinib KNN 1.02 1.36 1.96 

Gefitinib XGBoost 0.95 1.30 1.84 

Cisplatin SVM 1.04 1.36 2.14 

Cisplatin Random Forest 1.04 1.38 2.11 

Cisplatin KNN 1.10 1.44 2.16 

Cisplatin XGBoost 1.05 1.43 2.16 

Paclitaxel SVM 1.87 2.50 3.56 

Paclitaxel Random Forest 1.84 2.50 3.58 

Paclitaxel KNN 1.95 2.64 3.74 

Paclitaxel XGBoost 1.91 2.75 4.74 

Temozolomide SVM 0.68 0.82 1.16 

Temozolomide Random Forest 0.67 0.86 1.28 

Temozolomide KNN 0.73 0.95 1.35 

Temozolomide XGBoost 0.69 0.93 1.49 

Etoposide SVM 1.80 2.30 2.93 

Etoposide Random Forest 1.84 2.36 2.93 

Etoposide KNN 1.94 2.49 3.03 

Etoposide XGBoost 1.89 2.48 3.28 

Gemcitabine SVM 2.56 3.24 4.15 

Gemcitabine Random Forest 2.53 3.30 4.30 

Gemcitabine KNN 2.70 3.52 4.51 

Gemcitabine XGBoost 2.54 3.45 4.79 

Docetaxel SVM 1.22 1.47 1.99 

Docetaxel Random Forest 1.23 1.52 2.14 

Docetaxel KNN 1.34 1.69 2.74 

Docetaxel XGBoost 1.25 1.55 2.23 

Doxorubicin SVM 1.59 2.14 3.17 
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Doxorubicin Random Forest 1.58 2.16 3.28 

Doxorubicin KNN 1.69 2.24 3.21 

Doxorubicin XGBoost 1.61 2.25 3.51 

 

3.1.3.3 Classification and regression evaluation 
Classification and regression evaluation 

As a way to compare the predictions of the classification versus regression algorithms, we 

used SCC as a nonparametric measure. For the classification algorithms, we calculated the SCC 

between the probabilistic predictions that these algorithms produced and the original IC50 values. 

For the regression algorithms we used the SCC values that quantified the correlation between the 

predicted and actual IC50 values. Then for each combination of subsampling scenario and drug, we 

compared the SCC for the same algorithm types against each other (Figure 7). These coefficients 

were strongly correlated with each other, illustrating that the classification and regression 

algorithms typically ranked the patients similarly in relation to the original IC50 values. 

 

Figure 7: Spearman correlation coefficient results for classification algorithms (predicted 

probabilities) and regression algorithms (predicted IC50 values). For the classification analyses, 

we calculated the Spearman correlation coefficient between the predicted probabilities and the 

original IC50 values. These are represented on the x-axis. The y-axis represents the Spearman 

coefficients from the regression analyses. Each dot reflects results for a particular combination of 

drug, subsampling scenario and algorithm. 
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3.1.3.4 Informative genes for predicting cell-line responses 
Informative genes for predicting cell-line responses 

The DNA methylation assays target CpG islands associated with genes across the genome. 

After identifying analysis scenarios that resulted in optimal performance for classification and 

regression, we used feature ranking to identify genes that were most informative in these scenarios. 

For the classification analysis, we focused on the +-5%c scenario. For the regression task, we 

focused on the +-50%r scenario. Table 8 lists the 20 top-ranked genes for Gefitinib. The CTGF 

gene was ranked 1st for the classification analysis and 13th for the regression analysis. The CTGF 

protein plays important roles in signaling pathways that control tissue remodeling via cellular 

adhesion, extracellular matrix deposition, and myofibroblast activation (Lipson, 2012); these 

processes are known to influence tumorigenesis and may alter drug responses (Hirohashi and 

Kanai, 2003). For example, EGFR is expressed in many head and neck squamous cell carcinomas 

and non-small cell lung carcinomas, yet many of these patients do not respond to Gefitinib 

treatment (Frederick et al., 2007). This lack of response has been associated with a loss of cell-cell 

adhesion, elongation of cells and tumor-cell invasion of the extracellular matrix (Yauch et al., 

2005; Thomson et al., 2005; Witta et al., 2006). F11R was ranked second in importance for the 

classification analysis and seventeenth for the regression analysis. The protein encoded by this 

gene is a junctional adhesion molecule that regulates the integrity of tight junctions and 

permeability (Naik and Eckfeld, 2003). Although these associations provide some support for our 

feature-ranking results and that adhesion processes are important to Gefitinib responses, none of 

the other top-20 genes overlapped between the classification and regression analysis. The lack of 

agreement between the classification and regression results is not surprising. For example, even 

though the Random Forests algorithm uses a similar methodology for classification and regression, 

it is not unlikely that different genes would be selected for classification versus regression. We 

used data for thousands of genes, and different genes may exhibit similar methylation patterns, so 

the algorithms may choose different (correlated) genes by random chance. Secondly, the 

algorithms optimized against different objective functions for classification versus regression; 

even small differences in how the algorithms prioritized genes could lead to large differences in 

the gene ranks. However, the SVM and RF models represent multivariate patterns; thus, known 

cancer genes may alter drug responses in combination with the genes identified via our univariate 

feature-selection approach, even if they are not among the top-ranked genes. 
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Table 8: Most informative genes for predicting cell-line responses for Gefitinib. We used an 

information-gain analysis to rank genes based on their association with Gefitinib drug response. 

Genomic coordinates are based on build 37 of the human genome. We used information gain to 

rank the genes; higher scores indicate more informativeness. 

Classification Regression 

Gene Coordinates Score Gene Coordinates Score 

CTGF chr6:132271356-132271658 0.272 SNAI2 chr8:49835987-49836231 0.060 

F11R chr1:160990718-160991225 0.248 CARD10 chr22:37914768-37915883 0.055 

MUM1 chr19:1354420-1355350 0.228 PTGFRN chr1:117452203-117453452 0.053 

RXRB, 

SLC39A7 
chr6:33167885-33168715 0.220 PNMAL1 chr19:46974557-46975073 0.053 

DUSP7 chr3:52089652-52090845 0.204 
A2M, 

LOC144571 
chr12:9217328-9217715 0.052 

TFAP2A chr6:10419399-10420323 0.203 DGKZ chr11:46366876-46367101 0.052 

C20orf56 chr20:22559553-22560001 0.201 SDCBP2 chr20:1305899-1306554 0.052 

RAB38 chr11:87908243-87908614 0.201 

ACAP1, 

KCTD11, 

TMEM95 

chr17:7254622-7255808 0.052 

RAB34 chr17:27044168-27045049 0.196 
ANKRD57, 

SEPT10 
chr2:110370906-110373301 0.051 

VIM chr10:17270430-17272617 0.192 SLC44A2 chr19:10735999-10736396 0.050 

PAK6 chr15:40531244-40531589 0.192 ALOX12 chr17:6898820-6900427 0.049 

GATA2 chr3:128215212-128216905 0.190 ZNF625 chr19:12266998-12267686 0.048 

SLC9A2 chr2:103235376-103236554 0.188 CTGF chr6:132271356-132271658 0.048 

C20orf56 chr20:22557517-22559240 0.187 KLF5 chr13:73632860-73634370 0.048 

FERMT1 chr20:6103436-6103970 0.186 NCOR2 chr12:125003217-125003482 0.048 

RBM4B chr11:66444997-66445471 0.185 
TBCD, 

ZNF750 
chr17:80790368-80790581 0.047 

ORAI2 chr7:102073605-102074334 0.183 F11R chr1:160990718-160991225 0.046 

LOC338799, 

SETD1B 
chr12:122240899-122243390 0.181 OR10H1 chr19:15918423-15918704 0.045 

ABHD5 chr3:43731998-43733108 0.181 PLEK2 chr14:67878534-67879167 0.044 

MAZ chr16:29818681-29819554 0.176 DGUOK chr2:74153853-74154281 0.043 

 

Tables S15-S21 indicate the top-20 ranked genes for the other 7 drugs. To gain insight 

regarding the roles that these genes might play in drug responses, we identified gene sets (e.g., 

pathways, oncogenic signatures) that significantly overlapped with these genes (Tables S22-S23). 

For the classification analysis, we identified significant gene sets for 5 drugs (Gefitinib, Cisplatin, 

Docetaxel, Doxorubicin, Etoposide). Many of these gene sets are associated with cell 
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differentiation, cell-cell communication and drug resistance; however, these mechanisms did not 

always align with the respective drugs or target proteins that we expected based on the drugs' 

known mechanisms. We observed similar patterns for the regression analysis. Two perhaps notable 

findings are that 1) a gene set associated with EGFR overexpression was associated with Gefitinib 

responses (this drug targets EGFR) and 2) a gene set associated with Gefitinib resistance was 

associated with Cisplatin responses, and it has been shown that Cisplatin's ability to induce cell 

death is dependent in part on EGFR signaling in some cases (Arany et al., 2004). 

 

3.1.3.5 Using methylation profiles from cell lines to predict tumor/patient drug responses 
Using methylation profiles from cell lines to predict tumor/patient drug responses 

The above analyses used methylation profiles to predict drug responses in cell lines. Via 

cross validation, we showed that high levels of predictive accuracy are attainable using this 

approach. We also found that subsampled datasets with more extreme IC50 values yielded the best 

classification results and that the SVM and Random Forests algorithms typically produced the 

most accurate results. Next we evaluated whether this performance would hold true in a 

translational-medicine context. The GDSC repository provides methylation profiles for 6,035 

tumors from TCGA; these data had been preprocessed using the same methodology as the GDSC 

samples, thus enabling easier integration and reducing technical biases. For 1,638 TCGA patients, 

clinical drug-response information was available. These data indicate clinical outcomes over the 

course of the patients' treatment by physicians (not as part of clinical trials). In many cases, drug-

response values for multiple drugs were recorded for a given patient. Each response value was 

categorized as "clinical progressive disease," "stable disease," "partial response," or "complete 

response". These respective categories represent increasing levels of response to a given drug. 

We trained the SVM and Random Forests classification algorithms on the full GDSC 

dataset and predicted drug-response categories for each TCGA patient for which methylation and 

drug-response data were available. Based on our cross-validation results from the GDSC analysis, 

we focused on the +-5%c and +-10%c scenarios. For each TCGA test sample, our models 

generated a probabilistic prediction indicating whether that patient would respond to a given drug. 

We compared these predictions against the ordinal clinical responses for each combination of 

subsampling scenario (+-5%c and +-10%c), drug, and algorithm (SVM and RF); we calculated the 

SCC and a corresponding p-value for each comparison and adjusted for multiple tests. Generally, 
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the predictions exhibited low correlation with clinical responses (Table 9); However, the 

predictions for lower-grade glioma patients who had been treated with Temozolomide were 

relatively strongly correlated with clinical responses (rho = 0.372; FDR = 0.014), though this result 

was specific to the Random Forests algorithm and the +-5%c scenario (Figure 8). Temozolomide 

is an oral alkylating agent, is used commonly to treat lower-grade glioma patients, and may reduce 

seizures and improve prognosis (Rees, 2015). 
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Figure 8: Predicting patient drug response from cell-line methylation profiles for 

Temozolomide (n=85). For each TCGA test sample, we used classification models from the 

GDSC data (+-5%c Random Forest) to generate probabilistic predictions of drug response.  
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Table 9: Correlation between predicted drug responses based on GDSC cell lines and 

recorded clinical responses in TCGA patients for selected combinations of subsampling 

scenarios and algorithms across all drugs. We treated the clinical drug responses as an ordinal 

variable and used the Spearman rank correlation coefficient to assess the extent to which the 

predicted responses correlated with the clinical responses. FDR = Benjamini-Hochberg False 

Discovery Rate. 

Drug Scenario Algorithm # Samples Spearman P-value FDR 

Gefitinib +-5%c SVM 2 1.000 1.00E+00 1.000 

Gefitinib +-5%c Random Forest 2 1.000 1.00E+00 1.000 

Gefitinib +-10%c SVM 2 1.000 1.00E+00 1.000 

Gefitinib +-10%c Random Forest 2 -1.000 1.00E+00 1.000 

Cisplatin +-5%c SVM 189 -0.127 8.11E-02 0.331 

Cisplatin +-5%c Random Forest 189 0.041 5.72E-01 0.721 

Cisplatin +-10%c SVM 189 -0.051 4.82E-01 0.697 

Cisplatin +-10%c Random Forest 189 0.100 1.72E-01 0.424 

Paclitaxel +-5%c SVM 110 0.234 1.40E-02 0.149 

Paclitaxel +-5%c Random Forest 110 -0.163 8.84E-02 0.331 

Paclitaxel +-10%c SVM 110 0.104 2.80E-01 0.498 

Paclitaxel +-10%c Random Forest 110 -0.073 4.48E-01 0.697 

Temozolomide +-5%c SVM 85 -0.217 4.65E-02 0.331 

Temozolomide +-5%c Random Forest 85 0.372 4.53E-04 0.014 

Temozolomide +-10%c SVM 85 -0.060 5.86E-01 0.721 

Temozolomide +-10%c Random Forest 85 0.176 1.07E-01 0.343 

Etoposide +-5%c SVM 31 0.125 5.01E-01 0.697 

Etoposide +-5%c Random Forest 31 -0.260 1.58E-01 0.422 

Etoposide +-10%c SVM 31 0.083 6.58E-01 0.753 

Etoposide +-10%c Random Forest 31 -0.223 2.29E-01 0.440 
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Gemcitabine +-5%c SVM 56 -0.235 8.11E-02 0.331 

Gemcitabine +-5%c Random Forest 56 0.227 9.30E-02 0.331 

Gemcitabine +-10%c SVM 56 -0.170 2.10E-01 0.440 

Gemcitabine +-10%c Random Forest 56 0.207 1.25E-01 0.364 

Docetaxel +-5%c SVM 61 0.132 3.09E-01 0.521 

Docetaxel +-5%c Random Forest 61 -0.158 2.25E-01 0.440 

Docetaxel +-10%c SVM 61 0.096 4.60E-01 0.697 

Docetaxel +-10%c Random Forest 61 -0.155 2.34E-01 0.440 

Doxorubicin +-5%c SVM 61 -0.237 6.56E-02 0.331 

Doxorubicin +-5%c Random Forest 61 0.338 7.78E-03 0.125 

Doxorubicin +-10%c SVM 61 -0.063 6.31E-01 0.748 

Doxorubicin +-10%c Random Forest 61 0.075 5.67E-01 0.721 

 

3.1.4 Discussion 
Discussion 

In an ideal setting, patient data would be used to train predictive models for clinical drug 

responses directly, as these data may accurately reflect tumor behavior in patients. Environmental 

factors, the tumor microenvironment, co-existing conditions, and a variety of other factors can 

affect a tumor's behavior in ways that may not be accounted for in preclinical studies. However, 

acquiring drug-response data directly from human patients may require conducting many 

experimental tests on a given patient, which could be unethical, harmful, and subject to many 

confounding factors. In addition, patients are typically assigned standard-of-care protocols based 

on their specific cancer type. As a result, experimental drug-response data for large patient cohorts 

are scarcely available. An alternative approach is to use preclinical samples to identify molecular 

signatures of drug response and later use those signatures to predict clinical drug responses in 

patients. 

Cell lines serve as preclinical models for drug development. Being able to accurately 

predict drug responses for a given cell line based on molecular features may help in optimizing 

drug-development pipelines and explain mechanisms behind treatment responses. We focused on 

DNA methylation profiles as one type of molecular feature that is known to drive tumorigenesis 
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and modulate treatment responses (Esteller, 2002). When using classification or regression 

algorithms to predict discrete or continuous responses, respectively, we consistently observed 

excellent predictive performance when the training and test sets both consisted of cell-line data. 

Although conventional wisdom advises against discretizing a continuous response variable, where 

possible, due to loss of information, we wished to evaluate the potential to make effective 

predictions in this scenario, in part because clinical treatment responses are sometimes represented 

as discrete values. 

Of note, this study focuses primarily on evaluating the effect of subsampling on model 

performance rather than on introducing new algorithms. Using subsampling, we observed that 

classification performance generally improved as more extreme examples were used for training 

and testing, whereas the opposite was often true for the regression analyses. This suggests that 

during regression, the algorithms benefitted from seeing examples across a diverse range of IC50 

values for a given drug, whereas the classification algorithms were confounded by seeing examples 

with relatively similar drug responses, even though sample sizes were smaller. However, again we 

note that the regression results often differed depending on the evaluation metric used. These 

results have potential financial implications: if researchers can identify cell lines that are extreme 

responders for a particular drug, they may only need to generate costly molecular profiles for those 

cell lines. Future research may elucidate whether this finding generalizes to other types of 

molecular data and other drugs. 

Previous efforts to associate DNA methylation levels with drug responses include work 

from Shen et al. (2007) who quantified methylation for 32 CpG islands in the NCI-60 cell lines, 

creating a sensitivity database for ~30k drugs and identifying biomarkers that predict drug 

sensitivity. Instead, our work uses microarray data to quantify methylation levels for thousands of 

genes across 987 cell lines but for fewer drugs. Rather than searching for individual genes that 

predict drug sensitivity, we constructed predictive models that represent patterns spanning as many 

as thousands of genes. Such an approach may better represent complex interactions among genes 

and thus yield improved predictive power, but a tradeoff is reduced model interpretability. We 

sought to shed some insight into the biological mechanisms that influence drug responses via 

feature selection, but methods for deriving such insights from genome-wide data are still in their 

infancy. Recent work using mathematical optimization models shows promise as a way to integrate 
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molecular data from cell lines with drug-sensitivity information to infer resistance mechanisms 

(Fleck et al., 2016; Fleck et al., 2019). 

A variety of computational methods have been proposed to predict drug responses for cell 

lines based on molecular data. Classical algorithms like decision trees and support vector machines 

have been used to predict the clinical efficiency of anti-cancer drugs and to classify drug responses 

(Stetson et al., 2015; Borisov et al., 2018; Oskooei et al., 2018; Webber et al., 2018; Parca et al., 

2019; Su et al., 2019). Neural networks (Menden et al., 2013) and deep neural networks (Chiu et 

al., 2019) have been used to predict drug response based on genomic profiles from cell lines. Other 

techniques have included elastic net regression (Basu et al., 2013; Webber et al., 2018; Parca et 

al., 2019), linear ridge regression (Geeleher et al., 2017), and LASSO regression (Huang et al., 

2020). Alternative approaches based on computational linear algebra or network structures have 

also been applied to infer drug response in cell lines; these include matrix factorization (Guan et 

al., 2019), matrix completion (Nguyen and Le, 2018), and link prediction (Stanfield et al., 2017) 

methods. Finally, a community-based competition assessed the ability to predict therapeutic 

responses in cell lines using 44 regression-based algorithms (Costello et al., 2014). In our study 

we used diverse algorithms, but our primary focus was data subsampling and evaluating the 

potential to make accurate predictions of drug response in cell lines using relatively extreme 

responders, rather than to introduce new algorithms. 

We attempted to predict clinical responses for patients from TCGA, but the accuracy of 

these predictions was typically poor. Integrating datasets can introduce batch effects (Leek et al., 

2010) and other systematic biases; we attempted to mitigate these biases using data that had been 

preprocessed identically for GDSC and TCGA and using an empirical Bayesian method. However, 

subtle differences in the way biological samples are handled and processed in the lab can make 

generalization difficult to achieve. Furthermore, inherent differences between cell lines and tumors 

may confound such predictions. Cell lines are grown in a controlled environment, and the cells are 

relatively homogeneous, whereas tumor samples are a heterogeneous milieu of cells. In addition, 

TCGA tumor responses were based on clinical observations, so there was no direct mapping 

between these measurements and IC50 values for the cell lines. Furthermore, our approach to 

quantifying predictive performance was different for the GDSC cross-validation analysis 

compared to the TCGA training/testing analysis. In the former, the class variable represented two 

possible outcomes (response and non-response). In the latter, the class variable was ordinal. Yet 
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another challenge was that we used cell lines from all available cell types in GDSC. Better 

accuracy might be attained when training and testing on a single cell type; however, larger sample 

sizes would be necessary. 

Our study has additional limitations that could be addressed in future research. For one, we 

focused on DNA methylation profiles in isolation, but other types of molecular features likely 

modulate treatment responses. A number of cell-line studies have used gene-expression profiles to 

predict drug responses, and future studies could evaluate the potential benefits of incorporating 

more than one type of molecular feature into response-prediction models. The treatment-response 

data were often imbalanced, meaning that not all response classes included similar numbers of 

patients. Hence, additional work could analyze the effect of class imbalance on model 

performance. Finally, we adjusted the methylation data for dataset and cell type using an empirical 

Bayesian framework. However, as few as 2-3 samples were available for some of the cell types, 

so the correction method may have had difficulty adjusting based on such small numbers of 

examples. 

 

3.1.5 Conclusion 
Conclusion 

We applied machine-learning algorithms to predict cytotoxic responses for eight anti-

cancer drugs using genome-wide, DNA methylation profiles from 987 cell lines from the 

Genomics of Drug Sensitivity in Cancer (GDSC) database. We then compared the performance of 

the classification and regression algorithms and evaluated the effect of sample size on model 

performance by artificially subsampling the data to varying degrees. The classification algorithms 

performed best when relatively few cell lines were used to train and test the models, attaining AUC 

values as high as 0.97. In contrast, the regression algorithms typically performed best when all cell 

lines were used to train and test the models, though this result depended on the evaluation metric 

used. For additional validation, we evaluated our ability to train a model based on drug responses 

in the GDSC cell lines and then accurately predict patient drug responses using data from The 

Cancer Genome Atlas (TCGA). Because patient-response values are categorical in nature, we only 

performed classification for these data. In most cases, classification algorithms trained on the full 

GDSC dataset to predict drug-response categories for TCGA patients were unable to identify 

patterns in the cell-line methylation data that translated to patient responses. 
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3.2 Case Study 2 - Predicting drug sensitivity of cancer cells based on RNA sequencing data 

Case Study 2 - Predicting drug sensitivity of cancer cells based on RNA 

sequencing data 

 

3.2.1 Introduction 
Introduction 

This study uses RNA-sequencing data from AML tumor samples to model drug efficacy 

from four drugs. We evaluate the performance of five classification algorithms in a semi-

supervised learning setting. Tree-based, probability-based, kernel-based, ensemble-based and 

distance-based methodologies are studied in this research. Since obtaining molecular profiles from 

tumor samples and generating drug responses in clinical trials can be complex and expensive (Iorio 

et al., 2016), an underlying motivation for this approach is to find new strategies to expand the size 

of the training dataset when developing models based on tumor data.  

In a semi-supervised learning environment, these classical algorithms were applied to 

understand their behavior and patterns in self-training procedure. We use Beat AML labeled data 

and TCGA AML unlabeled data as input values and discretized IC50 values as output labels. An 

initial classifier is generated using labeled samples to predict pseudo-labels for unlabeled data. 

Then, a new training set is generated using original labeled data and unlabeled data with predicted 

pseudo-labels. Subsequently, a new classifier is generated using this new training set.  

 Specific algorithms yielded best performance when applying a semi-supervised learning 

strategy; support vector machines and naïve Bayes algorithms presented best results in most 

scenarios. Feature selection analysis showed that models performed best when selecting features 

over the 0.45 threshold score. Finally, we also observed that probabilistic prediction acceptance 

threshold did not impact models.  
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3.2.2 Methods 
Methods 

The BeatAML database contains data for human tumors derived from Acute Myeloid 

Leukemia (AML) cancer. It provides multiple types of clinical and molecular data for these 

samples as well as response values for 122 anti-cancer drugs. The TCGA database contains tumor 

data derived from over 30 types of cancer, including AML. In this research, we use Beat AML 

transcriptome profiling data and drug response values, also known as our labeled data. We also 

use TCGA AML transcriptome profiling data, known as our unlabeled data. Drug responses were 

measured as the IC50 value; the more sensitive the cell line, the lower the IC50 value for any given 

drug. We developed semi-supervised machine learning models of drug response using RNA-seq 

data from both Beat AML and TCGA, both following the HTSeq-Counts pipeline. We selected 4 

drugs commonly used as AML anti-cancer treatment: Gilteritinib, Midostaurin, Quizartinib and 

Venetoclax. The Genomic Data Commons (GDC) Data Portal provides Beat AML RNA-seq 

values for 288 samples and for 302 TCGA AML samples. Both data had been preprocessed using 

the same pipeline. Drug response data for Beat AML patients were obtained from the Vizome 

portal (Tyner et al., 2018). 

 For both Beat AML and TCGA databases, RNA-Seq samples were filtered to include only 

first diagnosis patients over 18 years old. Only one sample per-patient was included. For Beat 

AML, samples with missing IC50 values were excluded on a per-drug basis; thus, sample sizes 

differed across the drugs. We applied Z-score normalization on a per-gene basis across all samples 

in Beat AML and TCGA AML. Next, we used ComBat (Leek et al., 2020) to adjust for systematic 

differences between the two datasets (Beat AML and TCGA AML). We opted for a classification 

analysis as their predictions are intuitive to interpret as they assign probabilities to each class as a 

classification threshold. To enable classification for the Beat AML patient samples, we discretized 

the IC50 values into "low" and "high" values. The used threshold was the median IC50 value across 

all samples.  

 We performed a feature selection analysis to reduce data dimensionality by identifying 

most informative genes. This evaluation is performed for each drug, on their Beat AML training 

set. Training set represents 80% of total samples of each drug and testing set represents the other 

20%. We applied three feature selection methods independently: the Kruskal-Wallis test, Pearson 

correlation and ReliefF. We chose these three algorithms as they showed the top performance 
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when evaluated against other methods in a genomic environment; this result was obtained as 

preliminary data from research done by Piccolo Lab (Brigham Young University, USA). The 

Kruskal-Wallis algorithm was implemented using R software and the kruskal.test function, which 

is already pre-installed in R. Pearson correlation and ReliefF algorithms were implemented using 

the Weka software (Eibe et al., 2016) and the functions CorrelationAttributeEval and 

ReliefFAttributeEval respectively. All three strategies are filter tasks, each generating an 

importance score to each feature (gene) as a final output. For each output list, we normalize score 

values (min-max normalization), ensuring that each gene will always have an importance score 

between 0 and 1. We then average the three scores obtained by each gene, generating an average 

score for each feature. Subsequently, we generated 11 feature selection scenarios to be evaluated; 

this was performed by ordering genes based on their average scores and then, creating several cuts 

on the data based on different threshold values. For the first scenario, if a gene had an average 

score greater than 0.3, the gene was included in the scenario “Cut30”. In the next scenario, if the 

gene had an average score value greater than 0.35, it would be included in the “Cut35” scenario, 

and so on. The last scenario (“Cut80”) included genes that had an average rank score above 0.8. 

We then generated training and testing sets for each feature selection scenario, where each scenario 

set would contain accepted features only. After finalizing feature selection evaluation and scenario 

creation, we then started model development. 

A semi-supervised self-training model encompasses supervised and unsupervised learning 

(Van Engelen et al., 2020). We use a labelled dataset (Beat AML); in other words, we possess both 

the input information (RNA-seq) and output labels (IC50 values) for these samples. We also utilize 

an unlabeled dataset (TCGA AML), for which we only have access to the RNA-seq data. First, we 

generated a supervised classifier using the labeled dataset. Using this classifier, we predicted 

pseudo-labels to TCGA samples. Each predicted label comes with a probabilistic prediction, 

indicating whether that patient would respond to a given drug. In other words, this probability 

indicates how certain the model is that a specific patient would respond well (or not) to a particular 

treatment. After each TCGA sample had received a pseudo-label (and a probabilistic prediction), 

we defined if we would want to include this new labeled data (TCGA AML) to our original labeled 

dataset (Beat AML). To make this decision, we looked at the probabilistic prediction of each 

sample. If one sample had a probabilistic prediction above a certain acceptance threshold, we 

DBD
PUC-Rio - Certificação Digital Nº 1912677/CA



58 
Chapter 3. Case Studies 

 

would accept the pseudo-label and concatenate this new sample with the BeatAML data, thus 

generating a new training set. 

We generated 10 probabilistic prediction acceptance thresholds to be evaluated, varying 

acceptance values from 0.5 to 0.9. For the first scenario, if an output label had a probabilistic 

prediction above 0.5, the sample would be included in the training set. In the next scenario, if an 

output label had a probabilistic prediction above 0.55, the sample would be included in the training 

set, and so on. The last scenario accepted samples in which the probabilistic predictions were above 

0.9. 

By performing this evaluation, we generated a new supervised training set built from the 

Beat AML dataset and approved TCGA AML samples. We then trained a new classification model 

using this new training set. This final model was then evaluated using our Beat AML test set. We 

used the Random Forests (tree-based) (Breiman, 2001), Support Vector Machines (kernel-based) 

(Vapnik, 1998), Gradient Boosting Machines (ensemble-based) (Breiman, 1997), k-Nearest 

Neighbors (distance-based) (Cover and Hart, 1967) and Naïve Bayes (probability-based) (Maron, 

1961) algorithms for classification. We performed the analyses using the R programming language 

(R Core Team, 2019) and Rstudio (https://rstudio.com). The machine-learning algorithms were 

implemented in the following R packages: mlr (Bischl et al., 2016), e1071 (Meyer et al., 2019), 

xgboost (Chen et al., 2015), randomForest (Liaw and Wiener, 2002) and kknn (Schliep and 

Hechenbichler, 2016). During the training of all classifiers, we sought to select the best 

hyperparameters for each algorithm via 5-fold cross validation of the training set. 

For each combination of drug, algorithm, feature selection scenario and probabilistic 

prediction acceptance threshold, we evaluated the performance of all hyperparameter 

combinations (Table 10) and assessed performance for predicting drug responses using several 

evaluation metrics. We used accuracy, area under the receiver operating characteristic curve 

(AUC) (Fan et al., 2006), F1 measure (Forman, 2003), Matthews correlation coefficient (MCC) 

(Baldi et al., 2000), recall and specificity. We also generated supervised classifiers using only Beat 

AML data and compared performance across learning strategies. 
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Table 10: Descriptions of the algorithms we tested and hyperparameters that we evaluated 

via nested cross validation. Hyperparameter optimization was performed for all tested 

algorithms. All parameter combinations for each algorithm were evaluated via nested cross 

validation; optimal combinations were then used for outer-fold predictions.  

Algorithm Hyperparameters Definition Tested Values 

classif.svm  1. Kernel The kernel function used to 

transform data to higher-

dimensional spaces and then 

become linearly separable. 

Linear; Radial; 

Polynomial; 

Sigmoid 

2. Cost The regularization parameter 

in the cost function, to 

penalize missing 

classifications. 

0.1; 1; 10; 100 

3. Scale Whether the variables should 

be scaled. 

True; False 

classif.randomForest  1. Ntree The number of trees to grow. 100; 500; 1000 

2. Nodesize Minimum size of terminal 

nodes. 

1; 3; 5; 7 

3. Importance Whether the importance of 

predictors should be assessed. 

True; False 

classif.kknn 1. K The number of neighbors 

considered. 

3; 7; 10 

2. Scale Whether to scale variables to 

have equal standard deviation. 

True; False 

classif.naiveBayes 1. Laplace  The amount of Laplace 

(additive) smoothing. 

0; 1; 5; 10  

classif.xgboost 1. Nround The maximum number of 

boosting iterations. 

100; 250; 500 

2. Max_depth The maximum depth of a tree. 1; 5; 10 

3. Eta How much the contribution of 

each tree is scaled to the 

overall approximation, to 

control the learning rate. 

0.1; 0.3; 0.5 
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3.2.3 Results 
Results 

Using data from Beat AML and TCGA AML, we applied a semi-supervised learning 

approach to evaluate the potential to predict drug response based on genome-wide RNA 

sequencing data. We assess several hyperparameters within the model to understand their impact 

on model behavior.  

We collected RNA-seq data and IC50 response values for four drugs from the Beat AML 

database and RNA-seq data from TCGA AML. We aimed to predict categories (classes) of drug 

sensitivity, where each category represented whether each cell line exhibited a "low" or "high" 

response to each drug. Each class corresponded to relatively low or high IC50 values. We 

categorized each cell line on a per-drug basis, according to whether its IC50 value was greater than 

the median across all cell lines. This categorization promotes a simplified yet intuitive 

interpretation of the treatment outcomes while enabling the use of diverse classification methods. 

To reduce dimensionality, we performed a feature selection analysis. We applied three FS 

methods independently and used their average score list to generate several feature selection 

scenarios to be assessed. Subsequently, during the development of the semi-supervised model, we 

also wanted to evaluate the impact of different probabilistic prediction acceptance thresholds. For 

each combination of drug, algorithm, feature selection scenario and probabilistic prediction 

acceptance threshold, we optimized algorithms’ hyperparameters via 5-fold cross validation and 

assessed the semi-supervised model performance for predicting drug responses. This generates a 

total of 550 scenarios for each drug (11 FS scenarios x 5 algorithms x 10 Probability Thresholds). 

To evaluate the performance of the semi-supervised learning strategy, we compared 

obtained AUC values to the ones resulting from a supervised model. Initially, we evaluated the 

impact of the probabilistic prediction acceptance threshold. Overall, the classification algorithms 

were not greatly impacted by this parameter. We expected that as the threshold became higher, 

performance would improve as a result of more certainty in pseudo-labels precision. However, by 

analyzing Figure 9, it is clear that is it not possible to pinpoint a single threshold value which 

would improve the results for the different drug and algorithm combinations, with each of them 

responding differently to the distinct thresholds. Venetoclax shows improvement in relation to the 
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supervised model with any combination of algorithm and threshold, while Quizartinib presents 

deteriorated results. Naïve Bayes algorithm exhibits no correlation between the delta AUC and the 

threshold. 

 

Figure 9 – Probabilistic prediction acceptance threshold analysis. Bar graphs illustrate the 

performance of each threshold in each combination of algorithm and drug scenario. Y-axis 

represents the Delta AUC value (Semi-supervised model AUC value minus Supervised model 

AUC value). Higher AUC values (higher bars) represent relatively better performance. Expected 

results were that as threshold values increased, semi-supervised performance would improve. 

However, no single threshold value portrays significant improvement in Delta AUC. Also, Naïve 

Bayes algorithm was not impacted by different thresholds.  

 

Since it was not feasible to choose a single threshold to be applied constantly to the 

different scenarios, we decided to use the average Delta AUC value found for the different 

thresholds. By doing so, we reduce the impact of any outlier, and it is possible to compare the 

different scenarios without having to take the effect of the different thresholds into account. 
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Having ruled out the impact of the threshold on the results, it was possible to analyze the 

impact of each algorithm in the analysis of the different drugs. Figure 10 illustrates what we had 

already observed in Figure 9. The SVM algorithm shows the best results all around, also being 

very consistent in terms of the absolute value found for the different drugs, apart from Quizartinib. 

The spider graph also shows that the drug Venetoclax presents good results for all methods, having 

very consistent and positive results. Also, Gilteritinib has inconsistent results, varying greatly 

based on the applied algorithm, as well as having the lowest overall value from all the Method-

Drug combinations. Quartizinib showed very consistent, but also very poor results, having mainly 

negative ones, meaning it was consistently outperformed by the supervised learning strategy.  

 

 

Figure 10 – Classification algorithm results across the four analyzed drugs.  The “spider” 

graph illustrates drug performance across different algorithms in a semi-supervised environment. 

Results were averaged between all probabilistic prediction acceptance thresholds and feature 

selection scenarios. Spider graph presents the Delta AUC (Semi-supervised model AUC value 

minus Supervised model AUC value), ranging from -0.3 to 0.3. Results that are further away 

from the center represent higher AUC values (relatively better performance) than results closer 

to it. SVM algorithm presents best performance for Gilteritinib, Midostaurin and Quizartinib. For 

Venetoclax, XGBoost and SVM present best and second-best performance respectively. 

Venetoclax also presents constant higher results across the four evaluated drugs. 
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Table 11 complements the conclusions that were drawn from Figure 10 by presenting with 

exact values what we could perceive in the previous graph. Midostaurin and Venetoclax portrayed 

most consistent positive results, beating the supervised learning the most times. 

 

Table 11: Minimum, mean and maximum AUC value for each combination of drug and 

algorithm, averaged across all probabilistic prediction thresholds and feature selection 

scenarios. Bold font indicates the best-performing combinations.  

Drug Method Min Mean Max 

Gilteritinib SVM -0.222 0.126 0.290 

Gilteritinib RF -0.332 -0.082 0.036 

Gilteritinib NB -0.222 0.006 0.240 

Gilteritinib KNN -0.333 -0.096 0.093 

Gilteritinib XGBoost -0.387 -0.254 -0.006 

Midostaurin SVM 0.024 0.142 0.362 

Midostaurin RF -0.165 0.054 0.217 

Midostaurin NB -0.124 0.034 0.143 

Midostaurin KNN -0.231 -0.017 0.129 

Midostaurin XGBoost -0.109 0.081 0.180 

Quizartinib SVM -0.101 0.004 0.098 

Quizartinib RF -0.138 -0.091 0.051 

Quizartinib NB -0.180 -0.035 0.056 

Quizartinib KNN -0.087 -0.003 0.054 

Quizartinib XGBoost -0.127 -0.028 0.078 

Venetoclax SVM 0.088 0.162 0.253 

Venetoclax RF 0.126 0.159 0.218 

Venetoclax NB 0.052 0.137 0.220 

Venetoclax KNN 0.077 0.141 0.206 

Venetoclax XGBoost 0.108 0.164 0.294 
 

Table 12 also confirms that the SVM algorithm showed best performance in a semi-

supervised learning environment. Second-best classification method was Naïve Bayes, portraying 

higher average AUC values when compared to the other three algorithms. The table also shows 

that the Average AUC values were mostly positive, meaning that, overall, the semi-supervised 

classifier presented better results than the supervised learning method. 
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Table 12: Summary of AUC values across all combinations of FS scenario and algorithm, 

averaged across all probabilistic prediction thresholds and drugs.  

Scenario Method 
Average 

AUC Value 
Min AUC 

Value 
Max AUC 

Value 

Standard 
Deviation 
AUC Value 

50 SVM 0.178 0.037 0.362 0.144 

70 SVM 0.150 0.034 0.252 0.096 

55 SVM 0.148 -0.003 0.291 0.123 

45 SVM 0.142 0.065 0.243 0.083 

75 NB 0.124 0.012 0.220 0.093 

60 NB 0.116 0.049 0.194 0.062 

75 SVM 0.115 -0.017 0.251 0.121 

30 SVM 0.105 0.063 0.156 0.042 

55 NB 0.104 -0.035 0.240 0.113 

70 NB 0.104 0.006 0.216 0.094 

60 SVM 0.100 -0.057 0.195 0.122 

65 SVM 0.087 -0.101 0.253 0.154 

35 SVM 0.082 -0.039 0.187 0.105 

70 XGBoost 0.079 -0.030 0.187 0.112 

75 XGBoost 0.078 -0.015 0.211 0.098 

40 SVM 0.069 -0.041 0.156 0.084 

50 KNN 0.065 -0.060 0.147 0.094 

75 KNN 0.063 0.013 0.142 0.058 

70 RF 0.060 -0.099 0.217 0.159 

65 NB 0.043 -0.073 0.174 0.106 

75 RF 0.039 -0.097 0.185 0.134 

55 RF 0.035 -0.102 0.148 0.108 

30 KNN 0.029 -0.087 0.206 0.129 

70 KNN 0.029 -0.111 0.106 0.098 

50 NB 0.026 -0.059 0.111 0.070 

80 SVM 0.022 -0.222 0.186 0.177 

80 NB 0.020 -0.222 0.208 0.179 

45 RF 0.020 -0.104 0.153 0.112 

55 KNN 0.018 -0.059 0.119 0.076 

35 KNN 0.018 -0.132 0.204 0.147 

40 RF 0.015 -0.138 0.126 0.114 

30 RF 0.014 -0.132 0.186 0.137 

40 NB 0.007 -0.110 0.103 0.088 
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65 RF 0.005 -0.188 0.167 0.179 

35 RF 0.004 -0.127 0.142 0.115 

60 KNN 0.004 -0.104 0.120 0.111 

45 NB 0.003 -0.089 0.073 0.068 

55 XGBoost 0.003 -0.262 0.187 0.198 

50 RF -0.001 -0.121 0.127 0.126 

60 XGBoost -0.001 -0.249 0.140 0.173 

50 XGBoost -0.004 -0.265 0.139 0.185 

65 KNN -0.019 -0.231 0.165 0.176 

45 KNN -0.020 -0.151 0.099 0.119 

80 XGBoost -0.021 -0.347 0.294 0.274 

60 RF -0.022 -0.215 0.145 0.157 

65 XGBoost -0.035 -0.286 0.166 0.194 

35 XGBoost -0.044 -0.387 0.211 0.263 

45 XGBoost -0.045 -0.310 0.125 0.198 

30 XGBoost -0.050 -0.342 0.152 0.226 

80 RF -0.057 -0.332 0.218 0.241 

40 KNN -0.058 -0.333 0.150 0.203 

80 KNN -0.059 -0.285 0.180 0.202 

40 XGBoost -0.063 -0.330 0.172 0.219 

35 NB -0.073 -0.158 0.052 0.092 

30 NB -0.082 -0.180 0.090 0.119 

 

Table 12, in conjunction with the heatmaps below (Figure 11), aids in the identification of 

the best feature selection scenarios for the semi-supervised classifier. It becomes explicit that there 

is no evident winning FS scenario when evaluating all possible drug-algorithm combinations. Top 

performer combination varies depending on which drug and algorithm is being evaluated. 

However, it was possible to identify that the low scenarios, from 30 to 45, had the worst results in 

general. 
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Figure 11 – Delta AUC variation across all drug, scenario and classification method 

combination. Heatmaps illustrate semi-supervised versus supervised AUC performance across all 

combinations of scenario and classification methods. For each combination, results were averaged 

across all probabilistic prediction thresholds. Top performing scenario varies according to drug 

and algorithm being evaluated.  

 

3.2.4 Discussion 
Discussion 

When generating predictive models for drug response, tumor data should be used directly 

as they reflect the full patient characteristics. Environmental factors, the tumor microenvironment, 

co-existing conditions and a variety of other factors can affect a tumor's behavior in ways that may 

not be accounted for in preclinical studies. However, acquiring patient molecular and drug 

response data can be an expensive and complex process.  

As a result, experimental drug response data for tumor databases are limited. Patient 

cohorts tend to have small sample sizes, hampering the training phase of model development. To 

overcome this difficulty, data analytics processes and machine learning strategies are pursued 

when generating predictive models. 
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Most popular predictive models’ strategies follow a supervised learning approach, 

requiring large amounts of molecular features and cytotoxic responses. Since large tumor cohorts 

are scarcely available, other learning strategies may adapt better to this molecular data. We focused 

on a semi-supervised learning approach to train a classification model based on RNA-sequencing 

data. When comparing the semi-supervised model performance against a more traditional 

supervised approach, we observed prediction improvements in several tested scenarios.  

The current study focuses primarily on evaluating the impact of a semi-supervised self-

training approach on molecular data. In this procedure, a supervised classification model is trained 

using labelled data. This classifier is then used to predict pseudo-labels to unlabeled samples. Then, 

most confident predictions are added to our labeled data, generating a new training set. The 

classifier is re-trained using this new training set, composed of original labeled data and pseudo-

labelled data. We evaluated the influence of several model parameters on prediction performance, 

including the number of used features, the probabilistic prediction acceptance threshold and the 

used base learner. Rather than introducing new prediction algorithms, we focused on 

understanding the impact of this learning strategy on molecular features. We observed that specific 

algorithms (SVM and Naïve Bayes) and that feature selection scenarios containing features with 

scores over 0.45 performed best in this semi-supervised strategy. The probabilistic prediction 

acceptance threshold did not seem to impact prediction performance. The results from this work  

require future validation before they can be extended to other types of molecular data and other 

drugs. 

Research efforts dedicated to the application of semi-supervised learning in healthcare 

include work in breast cancer diagnosis (Zemmal et al., 2016; Peng et al 2016), lung cancer 

diagnosis (Khosravan et al., 2018), skin cancer diagnosis (Masood et al., 2015), lymph node 

metastases diagnosis (Jaiswal et al., 2019), cancer recurrence (Park et al., 2014; Shi et al., 2011), 

cancer sub-type detection (Bair et al., 2004; Koestler et al., 2010; Steinfeld et al., 2008), cancer 

patient clustering (Ma et al., 2018), protein classification (Weston et al., 2005), cancer survival 

analysis (Chai et al., 2017) and phenotype prediction (Smith et al., 2020). Rampášek et al. (2019) 

generated a Drug Response Variational Autoencoder (Dr. Vae) that applies latent representation 

of underlying gene states before and after drug use. In this study, we focused on expanding the 

current semi-supervised knowledge when predicting drug response.  
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Some limitations of our study need to be further investigated in future research. Our efforts 

have been directed to RNA-sequencing data, but other types of molecular features may be 

important in conjunction to RNA-seq to assess treatment responses. Second, features were selected 

based on machine learning algorithms but were not evaluated from a biological perspective. Hence, 

additional work could analyze the effect of choosing features based on biological knowledge 

versus from a machine learning perspective. Another analysis to be explored would be to test 

different pseudo-labeled techniques; we applied the self-training semi-supervised method, which 

is considered the most basic pseudo-labeling approach existent. Diverse semi-supervised 

methodologies have been created and applied to other research areas and we analyze one possible 

approach; other strategies could also be tested in the molecular biology environment.  

 

3.2.5 Conclusion 
Conclusion 

Using a semi-supervised learning strategy, machine learning algorithms were applied to 

predict drug sensitivity to 4 anti-cancer drugs. Acute myeloid leukemia tumor samples derived 

from two databases were used to generate these models. We obtained Beat AML genome wide 

RNA-seq data and drug response values and attained AML RNA-seq data from The Cancer 

Genome Atlas (TCGA). Several parameters were assessed during model development to further 

understand their impact on model’s behavior. For each combination of drug, algorithm, feature 

selection scenario and probabilistic prediction acceptance threshold, we evaluated the efficiency 

of the generated classifiers and compared their performance against a supervised classification 

model. Support vector machines (SVM) presented best performance in a semi-supervised setting, 

attaining AUC improvements over the supervised model in most scenarios. When evaluating 

feature selection scenarios, a greater reduction in original features yielded best results. 

Probabilistic prediction acceptance threshold did not impact the semi-supervised model.
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5.1 Supplementary Figures 
Supplementary Figures 

 

 

(Supplementary Figure) Figure S1: Example of subsampling process. When performing 

classification, we discretized drug-response (IC50) values. To evaluate alternative thresholds for 

discretization, we performed a subsampling analysis. In Scenario 1 illustrated above, we considered the 

cell lines with the lowest and highest 5% of IC50 values. In Scenario 2, we considered the cell lines with 

the lowest and highest 10% of IC50 values. Each scenario used 10% more data than the previous scenario 

(5% on each side). This pattern continues until all data were considered in the analysis.
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(Supplementary Figure) Figure S2: Graphs for Cisplatin classification analysis. The graphs compare 

different scenarios ranked in order of best result. GDSC cell-line data were used to generate ten 

subsampling scenarios, which we then tested via nested cross validation. Scenarios that are further away 

from the center represent higher metric values than scenarios closer to it. The evaluated metrics for each 

algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient (MCC), F1 score (F1) 

and area under the receiver operating characteristic curve (AUC). 
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(Supplementary Figure) Figure S3: Graphs for Docetaxel classification analysis. The graphs compare 

different scenarios ranked in order of best result. GDSC cell-line data were used to generate ten 

subsampling scenarios, which we then tested via nested cross validation. Scenarios that are further away 

from the center represent higher metric values than scenarios closer to it. The evaluated metrics for each 

algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient (MCC), F1 score (F1) 

and area under the receiver operating characteristic curve (AUC). 
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(Supplementary Figure) Figure S4: Graphs for Doxorubicin classification analysis. The graphs 

compare different scenarios ranked in order of best result. GDSC cell-line data were used to generate ten 

subsampling scenarios, which we then tested via nested cross validation. Scenarios that are further away 

from the center represent higher metric values than scenarios closer to it. The evaluated metrics for each 

algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient (MCC), F1 score (F1) 

and area under the receiver operating characteristic curve (AUC). 
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(Supplementary Figure) Figure S5: Graphs for Etoposide classification analysis. The graphs 

compare different scenarios ranked in order of best result. GDSC cell-line data were used to generate ten 

subsampling scenarios, which we then tested via nested cross validation. Scenarios that are further away 

from the center represent higher metric values than scenarios closer to it. The evaluated metrics for each 

algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient (MCC), F1 score (F1) 

and area under the receiver operating characteristic curve (AUC). 
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(Supplementary Figure) Figure S6: Graphs for Gemcitabine classification analysis. The graphs 

compare different scenarios ranked in order of best result. GDSC cell-line data were used to generate ten 

subsampling scenarios, which we then tested via nested cross validation. Scenarios that are further away 

from the center represent higher metric values than scenarios closer to it. The evaluated metrics for each 

algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient (MCC), F1 score (F1) 

and area under the receiver operating characteristic curve (AUC). 
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(Supplementary Figure) Figure S7: Graphs for Paclitaxel classification analysis. The graphs compare 

different scenarios ranked in order of best result. GDSC cell-line data were used to generate ten 

subsampling scenarios, which we then tested via nested cross validation. Scenarios that are further away 

from the center represent higher metric values than scenarios closer to it. The evaluated metrics for each 

algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient (MCC), F1 score (F1) 

and area under the receiver operating characteristic curve (AUC). 
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(Supplementary Figure) Figure S8: Graphs for Temozolomide classification analysis. The graphs 

compare different scenarios ranked in order of best result. GDSC cell-line data were used to generate ten 

subsampling scenarios, which we then tested via nested cross validation. Scenarios that are further away 

from the center represent higher metric values than scenarios closer to it. The evaluated metrics for each 

algorithm are accuracy (ACC), specificity, recall, Matthews correlation coefficient (MCC), F1 score (F1) 

and area under the receiver operating characteristic curve (AUC). 

  

DBD
PUC-Rio - Certificação Digital Nº 1912677/CA



94 
Appendix 

 

 

 

(Supplementary Figure) Figure S9: Graphs for Cisplatin regression analysis. We used DNA 

methylation data from cell lines to predict continuous IC50 response values using four regression 

algorithms. We evaluated the algorithms' performance via nested cross validation for ten subsampling 

scenarios. Graphs illustrate performance for these scenarios, ranked in order of relative performance for 

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and Spearman 

correlation coefficient. Scenarios further away from the center represent relatively low metric values (and 

thus better performance). Scenarios that used all cell lines performed best for all algorithms. 
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(Supplementary Figure) Figure S10: Graphs for Docetaxel regression analysis. We used DNA 

methylation data from cell lines to predict continuous IC50 response values using four regression 

algorithms. We evaluated the algorithms' performance via nested cross validation for ten subsampling 

scenarios. Graphs illustrate performance for these scenarios, ranked in order of relative performance for 

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and Spearman 

correlation coefficient. Scenarios further away from the center represent relatively low metric values (and 

thus better performance). Scenarios that used all cell lines performed best for all algorithms. 
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(Supplementary Figure) Figure S11: Graphs for Doxorubicin regression analysis. We used DNA 

methylation data from cell lines to predict continuous IC50 response values using four regression 

algorithms. We evaluated the algorithms' performance via nested cross validation for ten subsampling 

scenarios. Graphs illustrate performance for these scenarios, ranked in order of relative performance for 

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and Spearman 

correlation coefficient. Scenarios further away from the center represent relatively low metric values (and 

thus better performance). Scenarios that used all cell lines performed best for all algorithms. 
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(Supplementary Figure) Figure S12: Graphs for Etoposide regression analysis. We used DNA 

methylation data from cell lines to predict continuous IC50 response values using four regression 

algorithms. We evaluated the algorithms' performance via nested cross validation for ten subsampling 

scenarios. Graphs illustrate performance for these scenarios, ranked in order of relative performance for 

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and Spearman 

correlation coefficient. Scenarios further away from the center represent relatively low metric values (and 

thus better performance). Scenarios that used all cell lines performed best for all algorithms. 
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(Supplementary Figure) Figure S13: Graphs for Gemcitabine regression analysis. We used DNA 

methylation data from cell lines to predict continuous IC50 response values using four regression 

algorithms. We evaluated the algorithms' performance via nested cross validation for ten subsampling 

scenarios. Graphs illustrate performance for these scenarios, ranked in order of relative performance for 

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and Spearman 

correlation coefficient. Scenarios further away from the center represent relatively low metric values (and 

thus better performance). Scenarios that used all cell lines performed best for all algorithms. 
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(Supplementary Figure) Figure S14: Graphs for Paclitaxel regression analysis. We used DNA 

methylation data from cell lines to predict continuous IC50 response values using four regression 

algorithms. We evaluated the algorithms' performance via nested cross validation for ten subsampling 

scenarios. Graphs illustrate performance for these scenarios, ranked in order of relative performance for 

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and Spearman 

correlation coefficient. Scenarios further away from the center represent relatively low metric values (and 

thus better performance). Scenarios that used all cell lines performed best for all algorithms. 
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(Supplementary Figure) Figure S15: Graphs for Temozolomide regression analysis. We used DNA 

methylation data from cell lines to predict continuous IC50 response values using four regression 

algorithms. We evaluated the algorithms' performance via nested cross validation for ten subsampling 

scenarios. Graphs illustrate performance for these scenarios, ranked in order of relative performance for 

four metrics: RMSE (Root Mean Square Error), MAE (Mean Absolute Error), R-squared and Spearman 

correlation coefficient. Scenarios further away from the center represent relatively low metric values (and 

thus better performance). Scenarios that used all cell lines performed best for all algorithms. 
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5.2 Supplementary Tables 
Supplementary Tables 

 

(Supplementary Table) Table S1:  Classification results for all combinations of 

subsampling scenarios and algorithms for Cisplatin. Bold font indicates the best-

performing combination for each metric. 

Scenario Method ACC AUC F1 MCC Recall Specificity 

+-5%c SVM 0.74 0.80 0.72 0.46 0.70 0.78 

+-5%c Random Forest 0.72 0.79 0.70 0.42 0.67 0.76 

+-5%c KNN 0.74 0.78 0.74 0.43 0.72 0.76 

+-5%c XGBoost 0.76 0.81 0.72 0.53 0.70 0.83 

+-5%c Naïve Bayes 0.67 0.67 0.66 0.32 0.65 0.67 

+-10%c SVM 0.84 0.88 0.83 0.67 0.84 0.85 

+-10%c Random Forest 0.79 0.86 0.79 0.58 0.77 0.81 

+-10%c KNN 0.81 0.84 0.79 0.60 0.78 0.84 

+-10%c XGBoost 0.77 0.85 0.77 0.55 0.77 0.77 

+-10%c Naïve Bayes 0.74 0.73 0.75 0.46 0.80 0.68 

+-15%c SVM 0.77 0.88 0.75 0.54 0.75 0.78 

+-15%c Random Forest 0.74 0.84 0.73 0.49 0.73 0.76 

+-15%c KNN 0.72 0.80 0.71 0.43 0.72 0.71 

+-15%c XGBoost 0.79 0.87 0.77 0.59 0.75 0.83 

+-15%c Naïve Bayes 0.64 0.64 0.68 0.31 0.79 0.50 

+-20%c SVM 0.76 0.84 0.76 0.55 0.77 0.76 

+-20%c Random Forest 0.71 0.79 0.70 0.45 0.69 0.74 

+-20%c KNN 0.69 0.77 0.68 0.38 0.69 0.69 

+-20%c XGBoost 0.73 0.84 0.72 0.49 0.71 0.76 

+-20%c Naïve Bayes 0.62 0.62 0.67 0.26 0.80 0.43 

+-25%c SVM 0.70 0.77 0.69 0.39 0.70 0.69 

+-25%c Random Forest 0.68 0.75 0.67 0.37 0.65 0.72 

+-25%c KNN 0.65 0.72 0.64 0.29 0.63 0.67 

+-25%c XGBoost 0.72 0.80 0.71 0.45 0.70 0.75 

+-25%c Naïve Bayes 0.62 0.62 0.66 0.25 0.76 0.48 

+-30%c SVM 0.71 0.79 0.71 0.42 0.71 0.71 

+-30%c Random Forest 0.68 0.76 0.67 0.37 0.65 0.72 

+-30%c KNN 0.66 0.72 0.65 0.32 0.63 0.69 

+-30%c XGBoost 0.69 0.77 0.68 0.39 0.65 0.73 

+-30%c Naïve Bayes 0.61 0.62 0.66 0.24 0.77 0.45 

+-35%c SVM 0.69 0.76 0.69 0.38 0.70 0.67 

+-35%c Random Forest 0.64 0.72 0.63 0.29 0.62 0.67 
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+-35%c KNN 0.63 0.68 0.61 0.27 0.59 0.68 

+-35%c XGBoost 0.68 0.75 0.67 0.37 0.67 0.69 

+-35%c Naïve Bayes 0.59 0.60 0.63 0.18 0.71 0.47 

+-40%c SVM 0.67 0.72 0.67 0.34 0.68 0.66 

+-40%c Random Forest 0.65 0.71 0.64 0.30 0.61 0.69 

+-40%c KNN 0.63 0.66 0.62 0.26 0.62 0.64 

+-40%c XGBoost 0.65 0.72 0.64 0.30 0.62 0.68 

+-40%c Naïve Bayes 0.58 0.60 0.62 0.16 0.69 0.48 

+-45%c SVM 0.63 0.70 0.63 0.26 0.62 0.63 

+-45%c Random Forest 0.63 0.69 0.62 0.27 0.59 0.68 

+-45%c KNN 0.60 0.64 0.60 0.21 0.59 0.61 

+-45%c XGBoost 0.64 0.70 0.63 0.29 0.61 0.67 

+-45%c Naïve Bayes 0.58 0.59 0.61 0.17 0.66 0.50 

+-50%c SVM 0.62 0.66 0.61 0.24 0.60 0.64 

+-50%c Random Forest 0.61 0.65 0.60 0.22 0.59 0.63 

+-50%c KNN 0.57 0.60 0.57 0.14 0.57 0.57 

+-50%c XGBoost 0.64 0.69 0.63 0.29 0.61 0.68 

+-50%c Naïve Bayes 0.58 0.60 0.60 0.16 0.65 0.51 
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(Supplementary Table) Table S2:  Classification results for all combinations of 

subsampling scenarios and algorithms for Docetaxel. Bold font indicates the best-

performing combination for each metric. 

Scenario Method ACC AUC F1 MCC Recall Specificity 

+-5%c SVM 0.85 0.95 0.84 0.73 0.89 0.80 

+-5%c Random Forest 0.82 0.93 0.81 0.67 0.80 0.83 

+-5%c KNN 0.72 0.81 0.66 0.47 0.63 0.80 

+-5%c XGBoost 0.84 0.96 0.82 0.69 0.83 0.85 

+-5%c Naïve Bayes 0.74 0.79 0.73 0.54 0.72 0.76 

+-10%c SVM 0.89 0.97 0.89 0.78 0.91 0.87 

+-10%c Random Forest 0.88 0.97 0.87 0.76 0.89 0.87 

+-10%c KNN 0.83 0.91 0.80 0.66 0.74 0.91 

+-10%c XGBoost 0.86 0.94 0.85 0.71 0.86 0.86 

+-10%c Naïve Bayes 0.79 0.81 0.78 0.58 0.73 0.86 

+-15%c SVM 0.86 0.93 0.86 0.72 0.85 0.88 

+-15%c Random Forest 0.84 0.92 0.83 0.69 0.83 0.85 

+-15%c KNN 0.82 0.87 0.80 0.64 0.77 0.86 

+-15%c XGBoost 0.86 0.94 0.85 0.72 0.86 0.86 

+-15%c Naïve Bayes 0.69 0.75 0.62 0.41 0.53 0.86 

+-20%c SVM 0.85 0.92 0.84 0.69 0.84 0.85 

+-20%c Random Forest 0.83 0.91 0.83 0.66 0.84 0.82 

+-20%c KNN 0.79 0.88 0.78 0.60 0.75 0.84 

+-20%c XGBoost 0.84 0.91 0.84 0.67 0.84 0.83 

+-20%c Naïve Bayes 0.71 0.76 0.65 0.43 0.57 0.85 

+-25%c SVM 0.84 0.90 0.84 0.68 0.85 0.83 

+-25%c Random Forest 0.82 0.88 0.83 0.65 0.84 0.81 

+-25%c KNN 0.77 0.85 0.77 0.56 0.75 0.80 

+-25%c XGBoost 0.83 0.89 0.83 0.66 0.84 0.81 

+-25%c Naïve Bayes 0.66 0.72 0.59 0.35 0.49 0.83 

+-30%c SVM 0.79 0.86 0.79 0.58 0.81 0.77 

+-30%c Random Forest 0.80 0.85 0.80 0.59 0.80 0.79 

+-30%c KNN 0.77 0.83 0.76 0.54 0.74 0.79 

+-30%c XGBoost 0.81 0.87 0.82 0.63 0.83 0.80 

+-30%c Naïve Bayes 0.65 0.71 0.57 0.33 0.47 0.83 

+-35%c SVM 0.77 0.84 0.77 0.55 0.78 0.77 

+-35%c Random Forest 0.75 0.82 0.75 0.51 0.75 0.76 

+-35%c KNN 0.73 0.78 0.73 0.47 0.73 0.74 

+-35%c XGBoost 0.77 0.83 0.77 0.55 0.77 0.78 

+-35%c Naïve Bayes 0.64 0.68 0.56 0.31 0.47 0.82 

+-40%c SVM 0.73 0.81 0.73 0.46 0.75 0.71 
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+-40%c Random Forest 0.72 0.79 0.70 0.43 0.69 0.74 

+-40%c KNN 0.71 0.75 0.70 0.42 0.69 0.73 

+-40%c XGBoost 0.73 0.79 0.72 0.45 0.71 0.74 

+-40%c Naïve Bayes 0.64 0.67 0.55 0.29 0.45 0.83 

+-45%c SVM 0.70 0.77 0.70 0.40 0.71 0.68 

+-45%c Random Forest 0.71 0.77 0.71 0.43 0.71 0.71 

+-45%c KNN 0.67 0.72 0.66 0.34 0.67 0.66 

+-45%c XGBoost 0.69 0.76 0.68 0.38 0.68 0.70 

+-45%c Naïve Bayes 0.62 0.65 0.53 0.26 0.43 0.81 

+-50%c SVM 0.70 0.76 0.70 0.40 0.71 0.69 

+-50%c Random Forest 0.71 0.76 0.71 0.41 0.71 0.70 

+-50%c KNN 0.66 0.71 0.67 0.32 0.68 0.64 

+-50%c XGBoost 0.71 0.78 0.71 0.42 0.71 0.71 

+-50%c Naïve Bayes 0.60 0.64 0.48 0.21 0.38 0.81 
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(Supplementary Table) Table S3:  Classification results for all combinations of 

subsampling scenarios and algorithms for Doxorubicin. Bold font indicates the best-

performing combination for each metric. 

Scenario Method ACC AUC F1 MCC Recall Specificity 

+-5%c SVM 0.71 0.80 0.69 0.45 0.70 0.72 

+-5%c Random Forest 0.66 0.78 0.61 0.36 0.63 0.70 

+-5%c KNN 0.65 0.79 0.57 0.36 0.51 0.79 

+-5%c XGBoost 0.70 0.69 0.67 0.45 0.65 0.74 

+-5%c Naïve Bayes 0.61 0.64 0.56 0.25 0.53 0.67 

+-10%c SVM 0.71 0.80 0.71 0.45 0.72 0.70 

+-10%c Random Forest 0.65 0.76 0.67 0.37 0.71 0.59 

+-10%c KNN 0.67 0.72 0.67 0.39 0.66 0.67 

+-10%c XGBoost 0.63 0.71 0.62 0.28 0.62 0.64 

+-10%c Naïve Bayes 0.57 0.59 0.62 0.20 0.72 0.42 

+-15%c SVM 0.69 0.72 0.67 0.39 0.67 0.71 

+-15%c Random Forest 0.64 0.70 0.62 0.29 0.62 0.66 

+-15%c KNN 0.60 0.63 0.57 0.21 0.54 0.66 

+-15%c XGBoost 0.63 0.68 0.61 0.26 0.60 0.66 

+-15%c Naïve Bayes 0.57 0.57 0.61 0.14 0.74 0.40 

+-20%c SVM 0.65 0.70 0.65 0.32 0.67 0.64 

+-20%c Random Forest 0.64 0.70 0.64 0.28 0.63 0.65 

+-20%c KNN 0.63 0.67 0.61 0.25 0.60 0.66 

+-20%c XGBoost 0.65 0.68 0.64 0.29 0.65 0.65 

+-20%c Naïve Bayes 0.56 0.57 0.62 0.12 0.74 0.37 

+-25%c SVM 0.68 0.73 0.68 0.36 0.69 0.67 

+-25%c Random Forest 0.63 0.70 0.63 0.27 0.63 0.63 

+-25%c KNN 0.61 0.65 0.59 0.22 0.57 0.65 

+-25%c XGBoost 0.64 0.68 0.63 0.29 0.62 0.67 

+-25%c Naïve Bayes 0.57 0.57 0.63 0.15 0.75 0.39 

+-30%c SVM 0.63 0.68 0.63 0.27 0.63 0.63 

+-30%c Random Forest 0.59 0.65 0.59 0.18 0.59 0.60 

+-30%c KNN 0.59 0.64 0.57 0.17 0.55 0.63 

+-30%c XGBoost 0.58 0.62 0.57 0.16 0.56 0.60 

+-30%c Naïve Bayes 0.58 0.57 0.64 0.17 0.75 0.41 

+-35%c SVM 0.63 0.68 0.63 0.26 0.63 0.62 

+-35%c Random Forest 0.60 0.65 0.60 0.19 0.60 0.59 

+-35%c KNN 0.59 0.62 0.58 0.18 0.57 0.61 

+-35%c XGBoost 0.57 0.61 0.56 0.14 0.55 0.58 

+-35%c Naïve Bayes 0.56 0.57 0.63 0.13 0.74 0.38 

+-40%c SVM 0.61 0.66 0.60 0.24 0.60 0.62 
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+-40%c Random Forest 0.57 0.65 0.57 0.16 0.56 0.58 

+-40%c KNN 0.58 0.62 0.57 0.18 0.55 0.62 

+-40%c XGBoost 0.59 0.62 0.57 0.18 0.56 0.62 

+-40%c Naïve Bayes 0.58 0.58 0.64 0.17 0.76 0.40 

+-45%c SVM 0.60 0.65 0.60 0.20 0.60 0.60 

+-45%c Random Forest 0.58 0.62 0.58 0.16 0.59 0.56 

+-45%c KNN 0.56 0.60 0.52 0.13 0.49 0.63 

+-45%c XGBoost 0.58 0.61 0.59 0.16 0.59 0.56 

+-45%c Naïve Bayes 0.55 0.56 0.61 0.11 0.71 0.40 

+-50%c SVM 0.59 0.64 0.59 0.19 0.59 0.59 

+-50%c Random Forest 0.59 0.62 0.59 0.19 0.59 0.60 

+-50%c KNN 0.59 0.59 0.56 0.17 0.54 0.63 

+-50%c XGBoost 0.57 0.59 0.57 0.15 0.58 0.56 

+-50%c Naïve Bayes 0.55 0.56 0.61 0.11 0.70 0.40 
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(Supplementary Table) Table S4:  Classification results for all combinations of 

subsampling scenarios and algorithms for Etoposide. Bold font indicates the best-

performing combination for each metric. 

Scenario Method ACC AUC F1 MCC Recall Specificity 

+-5%c SVM 0.80 0.88 0.80 0.61 0.81 0.79 

+-5%c Random Forest 0.79 0.89 0.79 0.58 0.79 0.79 

+-5%c KNN 0.78 0.84 0.81 0.54 0.88 0.67 

+-5%c XGBoost 0.76 0.86 0.77 0.56 0.77 0.77 

+-5%c Naïve Bayes 0.71 0.71 0.73 0.40 0.79 0.63 

+-10%c SVM 0.72 0.84 0.71 0.44 0.70 0.74 

+-10%c Random Forest 0.72 0.82 0.71 0.44 0.72 0.71 

+-10%c KNN 0.68 0.77 0.67 0.37 0.69 0.68 

+-10%c XGBoost 0.74 0.82 0.73 0.47 0.75 0.74 

+-10%c Naïve Bayes 0.66 0.66 0.69 0.30 0.79 0.53 

+-15%c SVM 0.73 0.78 0.74 0.47 0.75 0.72 

+-15%c Random Forest 0.69 0.75 0.69 0.38 0.73 0.65 

+-15%c KNN 0.63 0.70 0.63 0.25 0.68 0.58 

+-15%c XGBoost 0.69 0.76 0.69 0.38 0.72 0.66 

+-15%c Naïve Bayes 0.65 0.65 0.70 0.30 0.82 0.47 

+-20%c SVM 0.69 0.77 0.69 0.40 0.71 0.68 

+-20%c Random Forest 0.67 0.73 0.67 0.35 0.72 0.62 

+-20%c KNN 0.61 0.69 0.62 0.24 0.65 0.57 

+-20%c XGBoost 0.69 0.75 0.70 0.39 0.73 0.65 

+-20%c Naïve Bayes 0.61 0.61 0.66 0.23 0.79 0.43 

+-25%c SVM 0.71 0.77 0.69 0.42 0.71 0.71 

+-25%c Random Forest 0.64 0.70 0.65 0.28 0.70 0.57 

+-25%c KNN 0.61 0.67 0.60 0.22 0.60 0.61 

+-25%c XGBoost 0.69 0.77 0.68 0.37 0.70 0.67 

+-25%c Naïve Bayes 0.59 0.60 0.65 0.19 0.78 0.39 

+-30%c SVM 0.68 0.74 0.67 0.36 0.68 0.67 

+-30%c Random Forest 0.62 0.67 0.64 0.23 0.70 0.53 

+-30%c KNN 0.61 0.65 0.62 0.23 0.64 0.58 

+-30%c XGBoost 0.66 0.72 0.66 0.32 0.67 0.65 

+-30%c Naïve Bayes 0.58 0.58 0.64 0.16 0.78 0.37 

+-35%c SVM 0.64 0.71 0.64 0.29 0.63 0.65 

+-35%c Random Forest 0.63 0.67 0.65 0.26 0.69 0.57 

+-35%c KNN 0.61 0.65 0.60 0.22 0.58 0.64 

+-35%c XGBoost 0.61 0.66 0.61 0.22 0.62 0.59 

+-35%c Naïve Bayes 0.58 0.58 0.65 0.17 0.78 0.38 

+-40%c SVM 0.63 0.67 0.63 0.25 0.65 0.61 
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+-40%c Random Forest 0.59 0.65 0.60 0.18 0.62 0.55 

+-40%c KNN 0.57 0.62 0.56 0.14 0.55 0.59 

+-40%c XGBoost 0.65 0.68 0.65 0.29 0.68 0.62 

+-40%c Naïve Bayes 0.57 0.58 0.64 0.16 0.78 0.36 

+-45%c SVM 0.64 0.68 0.64 0.28 0.64 0.64 

+-45%c Random Forest 0.60 0.64 0.62 0.21 0.65 0.56 

+-45%c KNN 0.57 0.61 0.56 0.14 0.55 0.59 

+-45%c XGBoost 0.63 0.68 0.63 0.26 0.64 0.61 

+-45%c Naïve Bayes 0.57 0.58 0.65 0.16 0.79 0.36 

+-50%c SVM 0.62 0.66 0.62 0.24 0.63 0.61 

+-50%c Random Forest 0.59 0.63 0.60 0.19 0.64 0.55 

+-50%c KNN 0.57 0.59 0.55 0.13 0.54 0.59 

+-50%c XGBoost 0.64 0.68 0.65 0.28 0.66 0.61 

+-50%c Naïve Bayes 0.55 0.56 0.62 0.11 0.76 0.34 
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(Supplementary Table) Table S5:  Classification results for all combinations of 

subsampling scenarios and algorithms for Gemcitabine. Bold font indicates the best-

performing combination for each metric. 

Scenario Method ACC AUC F1 MCC Recall Specificity 

+-5%c SVM 0.68 0.74 0.67 0.33 0.74 0.62 

+-5%c Random Forest 0.65 0.77 0.64 0.34 0.64 0.64 

+-5%c KNN 0.69 0.69 0.59 0.32 0.64 0.74 

+-5%c XGBoost 0.72 0.76 0.70 0.44 0.69 0.74 

+-5%c Naïve Bayes 0.67 0.73 0.67 0.40 0.74 0.60 

+-10%c SVM 0.74 0.80 0.73 0.47 0.75 0.72 

+-10%c Random Forest 0.65 0.76 0.65 0.31 0.67 0.64 

+-10%c KNN 0.59 0.67 0.56 0.20 0.54 0.65 

+-10%c XGBoost 0.64 0.75 0.63 0.32 0.65 0.62 

+-10%c Naïve Bayes 0.59 0.59 0.63 0.18 0.73 0.46 

+-15%c SVM 0.75 0.82 0.75 0.53 0.72 0.78 

+-15%c Random Forest 0.71 0.78 0.71 0.44 0.71 0.70 

+-15%c KNN 0.65 0.69 0.63 0.32 0.61 0.69 

+-15%c XGBoost 0.71 0.79 0.71 0.46 0.69 0.73 

+-15%c Naïve Bayes 0.59 0.60 0.66 0.20 0.80 0.39 

+-20%c SVM 0.70 0.77 0.69 0.40 0.69 0.71 

+-20%c Random Forest 0.66 0.73 0.66 0.33 0.66 0.66 

+-20%c KNN 0.56 0.63 0.53 0.12 0.50 0.62 

+-20%c XGBoost 0.66 0.72 0.65 0.33 0.64 0.69 

+-20%c Naïve Bayes 0.59 0.59 0.66 0.19 0.80 0.37 

+-25%c SVM 0.68 0.74 0.68 0.36 0.67 0.69 

+-25%c Random Forest 0.66 0.72 0.66 0.32 0.65 0.67 

+-25%c KNN 0.61 0.66 0.58 0.21 0.54 0.68 

+-25%c XGBoost 0.68 0.72 0.67 0.36 0.67 0.69 

+-25%c Naïve Bayes 0.57 0.58 0.64 0.16 0.77 0.37 

+-30%c SVM 0.70 0.74 0.69 0.40 0.69 0.71 

+-30%c Random Forest 0.65 0.72 0.64 0.30 0.64 0.67 

+-30%c KNN 0.63 0.69 0.60 0.26 0.57 0.69 

+-30%c XGBoost 0.66 0.73 0.64 0.32 0.64 0.68 

+-30%c Naïve Bayes 0.57 0.58 0.64 0.15 0.77 0.37 

+-35%c SVM 0.66 0.71 0.66 0.33 0.66 0.67 

+-35%c Random Forest 0.65 0.70 0.65 0.31 0.64 0.67 

+-35%c KNN 0.61 0.67 0.59 0.23 0.56 0.66 

+-35%c XGBoost 0.65 0.73 0.64 0.30 0.63 0.67 

+-35%c Naïve Bayes 0.56 0.57 0.64 0.14 0.78 0.34 

+-40%c SVM 0.63 0.70 0.63 0.26 0.62 0.64 
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+-40%c Random Forest 0.65 0.69 0.65 0.30 0.65 0.64 

+-40%c KNN 0.60 0.65 0.57 0.20 0.54 0.65 

+-40%c XGBoost 0.66 0.72 0.65 0.33 0.63 0.69 

+-40%c Naïve Bayes 0.56 0.57 0.64 0.14 0.77 0.36 

+-45%c SVM 0.63 0.67 0.63 0.25 0.64 0.61 

+-45%c Random Forest 0.62 0.66 0.63 0.25 0.65 0.60 

+-45%c KNN 0.58 0.63 0.57 0.17 0.55 0.61 

+-45%c XGBoost 0.64 0.67 0.63 0.27 0.62 0.65 

+-45%c Naïve Bayes 0.56 0.57 0.64 0.14 0.78 0.34 

+-50%c SVM 0.61 0.65 0.61 0.23 0.61 0.62 

+-50%c Random Forest 0.62 0.66 0.63 0.25 0.64 0.61 

+-50%c KNN 0.60 0.62 0.58 0.20 0.57 0.63 

+-50%c XGBoost 0.61 0.67 0.62 0.23 0.62 0.60 

+-50%c Naïve Bayes 0.56 0.56 0.63 0.12 0.78 0.34 
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(Supplementary Table) Table S6:  Classification results for all combinations of 

subsampling scenarios and algorithms for Paclitaxel. Bold font indicates the best-

performing combination for each metric. 

Scenario Method ACC AUC F1 MCC Recall Specificity 

+-5%c SVM 0.58 NA 0.50 0.22 0.55 0.60 

+-5%c Random Forest 0.55 NA 0.39 0.12 0.45 0.65 

+-5%c KNN 0.55 NA 0.29 0.15 0.30 0.80 

+-5%c XGBoost 0.40 NA 0.30 -0.18 0.35 0.45 

+-5%c Naïve Bayes 0.50 NA 0.40 -0.02 0.50 0.50 

+-10%c SVM 0.56 0.65 0.43 0.27 0.44 0.69 

+-10%c Random Forest 0.63 0.72 0.59 0.33 0.56 0.69 

+-10%c KNN 0.61 0.68 0.48 0.30 0.38 0.82 

+-10%c XGBoost 0.55 0.58 0.52 0.18 0.49 0.62 

+-10%c Naïve Bayes 0.56 0.57 0.57 0.17 0.62 0.51 

+-15%c SVM 0.63 0.66 0.64 0.25 0.69 0.56 

+-15%c Random Forest 0.70 0.70 0.68 0.41 0.64 0.76 

+-15%c KNN 0.62 0.61 0.56 0.24 0.51 0.75 

+-15%c XGBoost 0.66 0.73 0.63 0.33 0.61 0.71 

+-15%c Naïve Bayes 0.59 0.59 0.59 0.18 0.61 0.58 

+-20%c SVM 0.59 0.66 0.55 0.19 0.54 0.63 

+-20%c Random Forest 0.55 0.64 0.52 0.12 0.51 0.59 

+-20%c KNN 0.65 0.65 0.60 0.31 0.57 0.73 

+-20%c XGBoost 0.63 0.65 0.58 0.24 0.56 0.70 

+-20%c Naïve Bayes 0.55 0.54 0.53 0.07 0.54 0.54 

+-25%c SVM 0.64 0.70 0.63 0.31 0.64 0.64 

+-25%c Random Forest 0.64 0.71 0.60 0.29 0.56 0.71 

+-25%c KNN 0.61 0.62 0.57 0.23 0.53 0.68 

+-25%c XGBoost 0.62 0.67 0.57 0.25 0.54 0.69 

+-25%c Naïve Bayes 0.55 0.57 0.55 0.09 0.58 0.52 

+-30%c SVM 0.63 0.69 0.62 0.28 0.62 0.64 

+-30%c Random Forest 0.62 0.70 0.59 0.24 0.55 0.68 

+-30%c KNN 0.62 0.68 0.59 0.23 0.57 0.68 

+-30%c XGBoost 0.62 0.67 0.59 0.26 0.56 0.69 

+-30%c Naïve Bayes 0.60 0.61 0.61 0.19 0.65 0.55 

+-35%c SVM 0.62 0.72 0.60 0.28 0.56 0.69 

+-35%c Random Forest 0.61 0.69 0.58 0.23 0.54 0.67 

+-35%c KNN 0.56 0.63 0.53 0.13 0.51 0.61 

+-35%c XGBoost 0.64 0.69 0.62 0.28 0.60 0.68 

+-35%c Naïve Bayes 0.58 0.60 0.60 0.17 0.66 0.50 

+-40%c SVM 0.60 0.66 0.60 0.20 0.58 0.63 
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+-40%c Random Forest 0.60 0.67 0.57 0.21 0.54 0.66 

+-40%c KNN 0.56 0.63 0.53 0.12 0.51 0.61 

+-40%c XGBoost 0.62 0.68 0.60 0.24 0.57 0.66 

+-40%c Naïve Bayes 0.55 0.57 0.59 0.11 0.66 0.45 

+-45%c SVM 0.63 0.67 0.61 0.25 0.59 0.67 

+-45%c Random Forest 0.61 0.68 0.59 0.22 0.56 0.65 

+-45%c KNN 0.63 0.66 0.60 0.25 0.56 0.69 

+-45%c XGBoost 0.62 0.66 0.59 0.24 0.56 0.67 

+-45%c Naïve Bayes 0.58 0.59 0.60 0.18 0.64 0.52 

+-50%c SVM 0.62 0.68 0.60 0.24 0.56 0.68 

+-50%c Random Forest 0.58 0.66 0.57 0.16 0.55 0.60 

+-50%c KNN 0.60 0.65 0.56 0.20 0.53 0.67 

+-50%c XGBoost 0.62 0.67 0.62 0.25 0.61 0.63 

+-50%c Naïve Bayes 0.55 0.55 0.57 0.10 0.60 0.50 
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(Supplementary Table) Table S7:  Classification results for all combinations of 

subsampling scenarios and algorithms for Temozolomide. Bold font indicates the best-

performing combination for each metric. 

Scenario Method ACC AUC F1 MCC Recall Specificity 

+-5%c SVM 0.88 0.93 0.84 0.73 0.89 0.86 

+-5%c Random Forest 0.80 0.89 0.77 0.59 0.84 0.77 

+-5%c KNN 0.80 0.92 0.73 0.59 0.70 0.89 

+-5%c XGBoost 0.87 0.89 0.83 0.72 0.91 0.84 

+-5%c Naïve Bayes 0.70 0.69 0.69 0.39 0.77 0.64 

+-10%c SVM 0.87 0.95 0.86 0.74 0.92 0.81 

+-10%c Random Forest 0.82 0.90 0.82 0.64 0.88 0.76 

+-10%c KNN 0.76 0.84 0.75 0.53 0.76 0.76 

+-10%c XGBoost 0.85 0.93 0.85 0.73 0.91 0.80 

+-10%c Naïve Bayes 0.76 0.76 0.77 0.52 0.91 0.61 

+-15%c SVM 0.86 0.91 0.86 0.72 0.87 0.84 

+-15%c Random Forest 0.80 0.88 0.80 0.60 0.84 0.75 

+-15%c KNN 0.78 0.85 0.79 0.57 0.83 0.73 

+-15%c XGBoost 0.83 0.90 0.84 0.65 0.87 0.78 

+-15%c Naïve Bayes 0.71 0.73 0.75 0.45 0.87 0.56 

+-20%c SVM 0.81 0.87 0.81 0.63 0.84 0.79 

+-20%c Random Forest 0.76 0.84 0.78 0.53 0.84 0.69 

+-20%c KNN 0.73 0.81 0.73 0.46 0.77 0.68 

+-20%c XGBoost 0.76 0.84 0.76 0.51 0.78 0.73 

+-20%c Naïve Bayes 0.70 0.71 0.75 0.42 0.88 0.52 

+-25%c SVM 0.76 0.86 0.77 0.53 0.78 0.74 

+-25%c Random Forest 0.73 0.83 0.75 0.47 0.82 0.64 

+-25%c KNN 0.71 0.81 0.72 0.43 0.77 0.65 

+-25%c XGBoost 0.74 0.83 0.75 0.50 0.80 0.69 

+-25%c Naïve Bayes 0.68 0.69 0.73 0.38 0.86 0.49 

+-30%c SVM 0.76 0.83 0.76 0.52 0.79 0.73 

+-30%c Random Forest 0.71 0.81 0.73 0.43 0.77 0.65 

+-30%c KNN 0.70 0.78 0.72 0.41 0.76 0.65 

+-30%c XGBoost 0.73 0.81 0.74 0.47 0.77 0.70 

+-30%c Naïve Bayes 0.68 0.69 0.73 0.39 0.87 0.49 

+-35%c SVM 0.73 0.80 0.73 0.46 0.74 0.72 

+-35%c Random Forest 0.71 0.79 0.73 0.43 0.78 0.64 

+-35%c KNN 0.69 0.77 0.70 0.38 0.74 0.63 

+-35%c XGBoost 0.71 0.78 0.72 0.42 0.76 0.66 

+-35%c Naïve Bayes 0.67 0.68 0.72 0.36 0.86 0.47 

+-40%c SVM 0.70 0.77 0.70 0.39 0.72 0.67 
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+-40%c Random Forest 0.70 0.77 0.71 0.41 0.76 0.65 

+-40%c KNN 0.67 0.74 0.69 0.35 0.73 0.62 

+-40%c XGBoost 0.71 0.77 0.72 0.42 0.77 0.65 

+-40%c Naïve Bayes 0.65 0.66 0.71 0.33 0.85 0.45 

+-45%c SVM 0.68 0.76 0.69 0.37 0.71 0.65 

+-45%c Random Forest 0.66 0.74 0.69 0.34 0.74 0.59 

+-45%c KNN 0.64 0.71 0.66 0.28 0.71 0.57 

+-45%c XGBoost 0.69 0.75 0.69 0.38 0.72 0.65 

+-45%c Naïve Bayes 0.64 0.66 0.70 0.32 0.85 0.43 

+-50%c SVM 0.68 0.74 0.69 0.36 0.71 0.66 

+-50%c Random Forest 0.66 0.73 0.68 0.32 0.72 0.59 

+-50%c KNN 0.63 0.68 0.65 0.26 0.69 0.56 

+-50%c XGBoost 0.68 0.74 0.69 0.36 0.70 0.66 

+-50%c Naïve Bayes 0.62 0.63 0.69 0.26 0.83 0.41 
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(Supplementary Table) Table S8:  Regression results for all combinations of 

subsampling scenarios and algorithms for Cisplatin. Bold font indicates the best-

performing combination for each metric. 

Scenario Method MAE RMSE R2 Spearman 

+-5%r SVM 1.82 2.14 0.11 0.35 

+-5%r Random Forest 1.81 2.11 0.13 0.37 

+-5%r KNN 1.74 2.16 0.10 0.44 

+-5%r XGBoost 1.60 2.16 0.07 0.43 

+-10%r SVM 1.26 1.59 0.37 0.49 

+-10%r Random Forest 1.41 1.67 0.30 0.49 

+-10%r KNN 1.31 1.67 0.31 0.46 

+-10%r XGBoost 1.36 1.78 0.20 0.39 

+-15%r SVM 1.17 1.44 0.39 0.63 

+-15%r Random Forest 1.29 1.52 0.32 0.56 

+-15%r KNN 1.30 1.62 0.23 0.45 

+-15%r XGBoost 1.30 1.65 0.20 0.45 

+-20%r SVM 1.11 1.40 0.31 0.57 

+-20%r Random Forest 1.21 1.43 0.28 0.55 

+-20%r KNN 1.23 1.51 0.18 0.46 

+-20%r XGBoost 1.21 1.48 0.23 0.47 

+-25%r SVM 1.08 1.33 0.24 0.52 

+-25%r Random Forest 1.14 1.34 0.23 0.51 

+-25%r KNN 1.17 1.43 0.13 0.41 

+-25%r XGBoost 1.14 1.40 0.16 0.45 

+-30%r SVM 0.99 1.23 0.26 0.52 

+-30%r Random Forest 1.06 1.26 0.24 0.51 

+-30%r KNN 1.10 1.34 0.13 0.40 

+-30%r XGBoost 1.04 1.28 0.21 0.49 

+-35%r SVM 0.96 1.19 0.23 0.51 

+-35%r Random Forest 1.00 1.20 0.21 0.48 

+-35%r KNN 1.03 1.28 0.10 0.38 

+-35%r XGBoost 1.01 1.24 0.16 0.43 

+-40%r SVM 0.92 1.15 0.17 0.46 

+-40%r Random Forest 0.94 1.14 0.19 0.44 

+-40%r KNN 0.97 1.20 0.10 0.35 

+-40%r XGBoost 0.94 1.16 0.16 0.42 

+-45%r SVM 0.86 1.09 0.17 0.45 

+-45%r Random Forest 0.87 1.08 0.19 0.44 

+-45%r KNN 0.91 1.14 0.09 0.33 

+-45%r XGBoost 0.89 1.11 0.15 0.38 
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+-50%r SVM 0.82 1.04 0.16 0.41 

+-50%r Random Forest 0.82 1.04 0.17 0.40 

+-50%r KNN 0.86 1.10 0.07 0.31 

+-50%r XGBoost 0.82 1.05 0.15 0.38 
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 (Supplementary Table) Table S9:  Regression results for all combinations of 

subsampling scenarios and algorithms for Docetaxel. Bold font indicates the best-

performing combination for each metric. 

Scenario Method MAE RMSE R2 Spearman 

+-5%r SVM 1.60 1.99 0.51 0.67 

+-5%r Random Forest 1.86 2.14 0.44 0.65 

+-5%r KNN 2.05 2.74 0.10 0.50 

+-5%r XGBoost 1.55 2.23 0.39 0.66 

+-10%r SVM 1.23 1.62 0.59 0.62 

+-10%r Random Forest 1.35 1.69 0.55 0.63 

+-10%r KNN 1.34 1.94 0.43 0.55 

+-10%r XGBoost 1.14 1.62 0.58 0.65 

+-15%r SVM 1.20 1.54 0.56 0.67 

+-15%r Random Forest 1.31 1.64 0.50 0.69 

+-15%r KNN 1.26 1.76 0.43 0.61 

+-15%r XGBoost 1.26 1.70 0.46 0.64 

+-20%r SVM 1.14 1.47 0.50 0.66 

+-20%r Random Forest 1.23 1.54 0.47 0.67 

+-20%r KNN 1.25 1.68 0.35 0.60 

+-20%r XGBoost 1.26 1.63 0.39 0.62 

+-25%r SVM 1.15 1.46 0.44 0.67 

+-25%r Random Forest 1.19 1.48 0.43 0.66 

+-25%r KNN 1.19 1.58 0.34 0.59 

+-25%r XGBoost 1.20 1.55 0.38 0.60 

+-30%r SVM 1.12 1.43 0.39 0.64 

+-30%r Random Forest 1.17 1.44 0.38 0.64 

+-30%r KNN 1.17 1.52 0.30 0.58 

+-30%r XGBoost 1.18 1.49 0.34 0.59 

+-35%r SVM 1.09 1.38 0.35 0.63 

+-35%r Random Forest 1.13 1.39 0.34 0.62 

+-35%r KNN 1.16 1.50 0.23 0.56 

+-35%r XGBoost 1.12 1.39 0.34 0.60 

+-40%r SVM 1.04 1.30 0.35 0.61 

+-40%r Random Forest 1.09 1.34 0.32 0.58 

+-40%r KNN 1.13 1.45 0.19 0.51 
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+-40%r XGBoost 1.09 1.36 0.29 0.57 

+-45%r SVM 1.00 1.26 0.32 0.59 

+-45%r Random Forest 1.03 1.28 0.30 0.58 

+-45%r KNN 1.07 1.39 0.17 0.49 

+-45%r XGBoost 1.04 1.30 0.27 0.53 

+-50%r SVM 0.95 1.22 0.30 0.56 

+-50%r Random Forest 0.98 1.24 0.28 0.54 

+-50%r KNN 1.03 1.34 0.15 0.47 

+-50%r XGBoost 0.99 1.25 0.26 0.51 
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(Supplementary Table) Table S10:  Regression results for all combinations of 

subsampling scenarios and algorithms for Doxorubicin. Bold font indicates the best-

performing combination for each metric. 

Scenario Method MAE RMSE R2 Spearman 

+-5%r SVM 2.83 3.17 0.06 0.39 

+-5%r Random Forest 3.02 3.28 -0.01 0.33 

+-5%r KNN 2.71 3.21 0.03 0.45 

+-5%r XGBoost 2.82 3.51 -0.17 0.23 

+-10%r SVM 2.34 2.63 0.06 0.48 

+-10%r Random Forest 2.53 2.75 0.00 0.37 

+-10%r KNN 2.33 2.74 -0.02 0.41 

+-10%r XGBoost 2.40 2.87 -0.11 0.40 

+-15%r SVM 2.18 2.45 0.14 0.40 

+-15%r Random Forest 2.23 2.46 0.13 0.40 

+-15%r KNN 2.23 2.60 0.02 0.32 

+-15%r XGBoost 2.25 2.61 0.01 0.29 

+-20%r SVM 1.96 2.25 0.08 0.40 

+-20%r Random Forest 2.04 2.27 0.07 0.40 

+-20%r KNN 1.96 2.33 0.01 0.37 

+-20%r XGBoost 2.00 2.34 0.02 0.34 

+-25%r SVM 1.79 2.10 0.12 0.36 

+-25%r Random Forest 1.84 2.08 0.13 0.36 

+-25%r KNN 1.82 2.21 0.03 0.29 

+-25%r XGBoost 1.82 2.14 0.08 0.34 

+-30%r SVM 1.66 1.94 0.13 0.37 

+-30%r Random Forest 1.71 1.96 0.11 0.35 

+-30%r KNN 1.71 2.07 0.01 0.27 

+-30%r XGBoost 1.72 2.04 0.05 0.29 

+-35%r SVM 1.54 1.83 0.11 0.34 

+-35%r Random Forest 1.57 1.84 0.11 0.33 

+-35%r KNN 1.59 1.94 0.01 0.26 

+-35%r XGBoost 1.57 1.89 0.06 0.29 

+-40%r SVM 1.44 1.75 0.09 0.33 

+-40%r Random Forest 1.47 1.76 0.08 0.30 

+-40%r KNN 1.49 1.83 -0.01 0.26 

+-40%r XGBoost 1.48 1.80 0.04 0.24 

+-45%r SVM 1.33 1.64 0.09 0.35 

+-45%r Random Forest 1.35 1.66 0.08 0.29 

+-45%r KNN 1.41 1.75 -0.03 0.26 

+-45%r XGBoost 1.37 1.70 0.02 0.24 
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+-50%r SVM 1.24 1.59 0.06 0.30 

+-50%r Random Forest 1.25 1.58 0.07 0.27 

+-50%r KNN 1.33 1.69 -0.05 0.21 

+-50%r XGBoost 1.28 1.61 0.04 0.24 
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(Supplementary Table) Table S11:  Regression results for all combinations of 

subsampling scenarios and algorithms for Etoposide. Bold font indicates the best-

performing combination for each metric. 

Scenario Method MAE RMSE R2 Spearman 

+-5%r SVM 2.32 2.93 0.36 0.49 

+-5%r Random Forest 2.36 2.93 0.36 0.49 

+-5%r KNN 2.29 3.03 0.32 0.43 

+-5%r XGBoost 2.33 3.28 0.23 0.37 

+-10%r SVM 2.27 2.77 0.21 0.49 

+-10%r Random Forest 2.44 2.88 0.15 0.44 

+-10%r KNN 2.40 2.99 0.05 0.40 

+-10%r XGBoost 2.50 3.24 -0.09 0.29 

+-15%r SVM 2.21 2.62 0.27 0.53 

+-15%r Random Forest 2.37 2.70 0.22 0.48 

+-15%r KNN 2.36 2.86 0.13 0.43 

+-15%r XGBoost 2.37 2.89 0.11 0.39 

+-20%r SVM 2.13 2.48 0.20 0.52 

+-20%r Random Forest 2.28 2.57 0.14 0.45 

+-20%r KNN 2.28 2.71 0.03 0.41 

+-20%r XGBoost 2.23 2.66 0.08 0.40 

+-25%r SVM 1.98 2.31 0.22 0.48 

+-25%r Random Forest 2.13 2.39 0.15 0.43 

+-25%r KNN 2.11 2.51 0.07 0.36 

+-25%r XGBoost 2.04 2.39 0.15 0.42 

+-30%r SVM 1.90 2.20 0.17 0.44 

+-30%r Random Forest 2.00 2.26 0.13 0.39 

+-30%r KNN 2.02 2.41 0.00 0.28 

+-30%r XGBoost 1.96 2.29 0.10 0.36 

+-35%r SVM 1.78 2.10 0.16 0.42 

+-35%r Random Forest 1.86 2.14 0.13 0.36 

+-35%r KNN 1.87 2.25 0.04 0.29 

+-35%r XGBoost 1.86 2.20 0.08 0.30 

+-40%r SVM 1.65 1.96 0.16 0.41 

+-40%r Random Forest 1.72 2.02 0.11 0.37 

+-40%r KNN 1.76 2.14 0.01 0.28 

+-40%r XGBoost 1.69 2.01 0.12 0.37 

+-45%r SVM 1.52 1.86 0.17 0.43 

+-45%r Random Forest 1.59 1.91 0.13 0.38 

+-45%r KNN 1.64 2.03 0.01 0.27 

+-45%r XGBoost 1.60 1.94 0.10 0.32 
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+-50%r SVM 1.46 1.80 0.14 0.38 

+-50%r Random Forest 1.49 1.84 0.09 0.32 

+-50%r KNN 1.56 1.94 -0.01 0.24 

+-50%r XGBoost 1.53 1.89 0.04 0.26 

(Supplementary Table) Table S12:  Regression results for all combinations of 

subsampling scenarios and algorithms for Gemcitabine. Bold font indicates the best-

performing combination for each metric. 

Scenario Method MAE RMSE R2 Spearman 

+-5%r SVM 3.52 4.15 0.20 0.45 

+-5%r Random Forest 3.98 4.30 0.15 0.43 

+-5%r KNN 3.71 4.47 0.07 0.39 

+-5%r XGBoost 3.79 4.79 -0.04 0.41 

+-10%r SVM 3.35 3.94 0.09 0.45 

+-10%r Random Forest 3.87 4.14 0.01 0.39 

+-10%r KNN 3.93 4.51 -0.19 0.26 

+-10%r XGBoost 3.72 4.37 -0.12 0.31 

+-15%r SVM 3.02 3.57 0.24 0.48 

+-15%r Random Forest 3.39 3.71 0.18 0.42 

+-15%r KNN 3.45 4.07 0.01 0.33 

+-15%r XGBoost 3.39 4.00 0.04 0.31 

+-20%r SVM 3.02 3.50 0.15 0.44 

+-20%r Random Forest 3.26 3.55 0.12 0.40 

+-20%r KNN 3.28 3.82 -0.03 0.25 

+-20%r XGBoost 3.18 3.71 0.03 0.30 

+-25%r SVM 2.81 3.25 0.17 0.43 

+-25%r Random Forest 3.01 3.33 0.13 0.37 

+-25%r KNN 2.92 3.48 0.05 0.31 

+-25%r XGBoost 2.91 3.40 0.09 0.33 

+-30%r SVM 2.63 3.07 0.16 0.42 

+-30%r Random Forest 2.73 3.09 0.15 0.38 

+-30%r KNN 2.72 3.28 0.05 0.31 

+-30%r XGBoost 2.69 3.17 0.11 0.33 

+-35%r SVM 2.50 2.92 0.15 0.41 

+-35%r Random Forest 2.58 2.94 0.14 0.38 

+-35%r KNN 2.57 3.09 0.05 0.31 

+-35%r XGBoost 2.57 3.02 0.08 0.31 

+-40%r SVM 2.36 2.77 0.13 0.40 

+-40%r Random Forest 2.18 2.66 0.10 0.33 

+-40%r KNN 2.41 2.94 0.03 0.29 

+-40%r XGBoost 2.36 2.82 0.11 0.36 
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+-45%r SVM 2.23 2.66 0.11 0.36 

+-45%r Random Forest 2.17 2.61 0.10 0.34 

+-45%r KNN 2.28 2.82 0.00 0.27 

+-45%r XGBoost 2.23 2.67 0.10 0.35 

+-50%r SVM 2.10 2.56 0.08 0.33 

+-50%r Random Forest 2.11 2.54 0.10 0.34 

+-50%r KNN 2.16 2.70 -0.02 0.25 

+-50%r XGBoost 2.08 2.54 0.09 0.33 
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(Supplementary Table) Table S13:  Regression results for all combinations of 

subsampling scenarios and algorithms for Paclitaxel. Bold font indicates the best-

performing combination for each metric. 

Scenario Method MAE RMSE R2 Spearman 

+-5%r SVM 3.27 3.56 -151.71 0.08 

+-5%r Random Forest 3.39 3.58 -134.10 0.04 

+-5%r KNN 3.18 3.74 -111.03 0.24 

+-5%r XGBoost 3.96 4.74 -166.85 -0.14 

+-10%r SVM 2.85 3.10 -0.01 0.38 

+-10%r Random Forest 2.95 3.11 -0.02 0.30 

+-10%r KNN 2.84 3.36 -0.18 0.39 

+-10%r XGBoost 2.66 3.35 -0.18 0.19 

+-15%r SVM 2.57 2.80 0.07 0.27 

+-15%r Random Forest 2.66 2.82 0.06 0.28 

+-15%r KNN 2.60 3.07 -0.12 0.20 

+-15%r XGBoost 2.71 3.26 -0.26 0.13 

+-20%r SVM 2.40 2.67 0.01 0.24 

+-20%r Random Forest 2.52 2.71 -0.01 0.15 

+-20%r KNN 2.36 2.79 -0.08 0.17 

+-20%r XGBoost 2.41 2.79 -0.08 0.19 

+-25%r SVM 2.18 2.48 0.04 0.26 

+-25%r Random Forest 2.25 2.47 0.04 0.26 

+-25%r KNN 2.18 2.60 -0.06 0.22 

+-25%r XGBoost 2.12 2.48 0.03 0.29 

+-30%r SVM 2.02 2.29 0.09 0.32 

+-30%r Random Forest 2.04 2.28 0.09 0.32 

+-30%r KNN 1.96 2.36 0.03 0.29 

+-30%r XGBoost 2.05 2.40 0.00 0.24 

+-35%r SVM 1.85 2.18 0.05 0.34 

+-35%r Random Forest 1.89 2.17 0.06 0.28 

+-35%r KNN 1.90 2.29 -0.06 0.23 

+-35%r XGBoost 1.97 2.35 -0.11 0.16 

+-40%r SVM 1.73 2.05 0.05 0.30 

+-40%r Random Forest 1.75 2.04 0.05 0.31 

+-40%r KNN 1.76 2.15 -0.04 0.22 

+-40%r XGBoost 1.82 2.18 -0.09 0.18 

+-45%r SVM 1.63 1.98 0.01 0.27 

+-45%r Random Forest 1.62 1.95 0.04 0.29 

+-45%r KNN 1.65 2.03 -0.04 0.26 

+-45%r XGBoost 1.65 2.03 -0.02 0.24 
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+-50%r SVM 1.49 1.87 0.04 0.29 

+-50%r Random Forest 1.50 1.84 0.07 0.31 

+-50%r KNN 1.54 1.95 -0.04 0.23 

+-50%r XGBoost 1.56 1.91 -0.02 0.23 

(Supplementary Table) Table S14:  Regression results for all combinations of 

subsampling scenarios and algorithms for Temozolomide. Bold font indicates the best-

performing combination for each metric. 

Scenario Method MAE RMSE R2 Spearman 

+-5%r SVM 0.88 1.16 0.50 0.65 

+-5%r Random Forest 1.06 1.28 0.40 0.61 

+-5%r KNN 1.03 1.35 0.33 0.65 

+-5%r XGBoost 1.04 1.49 0.21 0.62 

+-10%r SVM 0.72 0.93 0.57 0.69 

+-10%r Random Forest 0.83 1.02 0.47 0.62 

+-10%r KNN 0.87 1.16 0.32 0.58 

+-10%r XGBoost 0.82 1.11 0.37 0.62 

+-15%r SVM 0.66 0.86 0.56 0.69 

+-15%r Random Forest 0.76 0.95 0.46 0.65 

+-15%r KNN 0.75 1.03 0.36 0.60 

+-15%r XGBoost 0.81 1.06 0.33 0.56 

+-20%r SVM 0.64 0.82 0.47 0.68 

+-20%r Random Forest 0.73 0.90 0.37 0.62 

+-20%r KNN 0.73 0.97 0.27 0.52 

+-20%r XGBoost 0.72 0.93 0.32 0.60 

+-25%r SVM 0.63 0.80 0.41 0.64 

+-25%r Random Forest 0.68 0.84 0.36 0.61 

+-25%r KNN 0.69 0.92 0.24 0.53 

+-25%r XGBoost 0.70 0.88 0.29 0.54 

+-30%r SVM 0.63 0.80 0.34 0.59 

+-30%r Random Forest 0.63 0.79 0.37 0.60 

+-30%r KNN 0.67 0.88 0.22 0.50 

+-30%r XGBoost 0.67 0.84 0.29 0.54 

+-35%r SVM 0.60 0.76 0.32 0.55 

+-35%r Random Forest 0.61 0.76 0.31 0.56 

+-35%r KNN 0.65 0.84 0.15 0.47 

+-35%r XGBoost 0.63 0.81 0.22 0.51 

+-40%r SVM 0.57 0.72 0.31 0.55 

+-40%r Random Forest 0.57 0.73 0.29 0.53 

+-40%r KNN 0.63 0.81 0.08 0.45 

+-40%r XGBoost 0.60 0.78 0.17 0.49 
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+-45%r SVM 0.54 0.69 0.29 0.53 

+-45%r Random Forest 0.54 0.70 0.27 0.51 

+-45%r KNN 0.59 0.78 0.07 0.42 

+-45%r XGBoost 0.56 0.73 0.19 0.49 

+-50%r SVM 0.52 0.68 0.22 0.50 

+-50%r Random Forest 0.51 0.67 0.26 0.49 

+-50%r KNN 0.55 0.73 0.10 0.41 

+-50%r XGBoost 0.53 0.69 0.21 0.48 
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(Supplementary Table) Table S15: Informative genes for predicting cell-line responses 

for Cisplatin. We used the feature selection to identify informative genes for Cisplatin drug-

response prediction. Genomic coordinates are based on build 37 of the human genome. We 

used information gain to rank the genes;  a higher score indicates a more informative gene.  

Classification Regression 

Gene Coordinates 
Scor

e 
Gene Coordinates 

Scor

e 

CGN chr1:151483573-151483902 

0.25

1 C17orf81, CLDN7 chr17:7164285-7166245 

0.06

9 

CLDN4, 

WBSCR27 chr7:73245434-73246045 

0.20

7 

CLDN4, 

WBSCR27 chr7:73245434-73246045 

0.06

6 

JMJD6, 

MXRA7 chr17:74706465-74707067 

0.19

9 CLDN3 chr7:73183379-73185115 

0.05

9 

MYO5C chr15:52587353-52588172 

0.19

6 ESRP1 chr8:95652455-95652873 

0.05

6 

C17orf81, 

CLDN7 chr17:7164285-7166245 

0.19

5 CDH1 chr16:68771034-68772344 

0.05

5 

FUT2 chr19:49206443-49206818 

0.18

8 

TUBGCP2, 

ZNF511 chr10:135123238-135123448 

0.05

1 

ID3 chr1:23885682-23886212 

0.18

7 

IFT172, 

KRTCAP3, 

NRBP1 chr2:27664939-27665151 

0.05

1 

EFR3A chr8:132916322-132917060 

0.18

6 LAD1 chr1:201368560-201369032 

0.04

9 

LOC100129354

, NBEAL2 chr3:47050486-47051609 

0.18

5 

TUBGCP2, 

ZNF511 chr10:135122851-135123109 

0.04

7 

AKR1B1 chr7:134143115-134144063 

0.18

3 SPINT1 chr15:41135719-41137210 

0.04

6 

TUBGCP2, 

ZNF511 chr10:135122851-135123109 

0.17

7 HRC chr19:49655102-49655395 

0.04

5 

BRD3 chr9:136919143-136919376 

0.17

5 SYK chr9:93563775-93564546 

0.04

4 

KIRREL2, 

NPHS1 chr19:36347044-36348101 

0.17

4 C1orf172 chr1:27286065-27287101 

0.04

3 

FKBP2, 

VEGFB chr11:64008283-64009487 

0.17

3 CGN chr1:151483573-151483902 

0.04

3 

BASP1 chr5:17275369-17275638 

0.17

1 ESRP1 chr8:95653898-95654733 

0.04

3 

CMTM3 chr16:66638254-66639561 

0.17

1 LLGL2, TSEN54 chr17:73520956-73522540 

0.04

3 

CCDC19 chr1:159869901-159870143 

0.17

0 RAB4A chr1:229406646-229407129 

0.04

2 

ITGA5 chr12:54811981-54812202 

0.17

0 MYO5C chr15:52587353-52588172 

0.04

2 

VIM chr10:17270430-17272617 

0.16

9 MAP7 chr6:136870826-136872145 

0.04

1 

EPS8L2, 

TMEM80 chr11:705794-706534 

0.16

9 CDC42BPG chr11:64611714-64612634 

0.04

1 
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(Supplementary Table) Table S16: Informative genes for predicting cell-line responses 

for Docetaxel. We used the feature selection to identify informative genes for Docetaxel 

drug-response prediction. Genomic coordinates are based on build 37 of the human genome. 

We used information gain to rank the genes;  a higher score indicates a more informative 

gene. 

Classification Regression 

Gene Coordinates 
Scor

e 
Gene Coordinates 

Scor

e 

ELK3 chr12:96588665-96589145 

0.35

7 NFATC2 chr20:50158904-50159509 

0.08

6 

DAPK3 chr19:3970536-3970746 

0.32

7 VGLL4 chr3:11610137-11610370 

0.08

3 

SNAI2 chr8:49835987-49836231 

0.30

2 CSNK1E chr22:38712684-38713333 

0.07

3 

EXT1 chr8:119123974-119124432 

0.29

6 

COL7A1, 

UQCRC1 chr3:48631882-48632901 

0.06

9 

VGLL4 chr3:11610137-11610370 

0.28

8 FLRT2 chr14:85996494-85996958 

0.06

8 

MMP14, 

MRPL52 chr14:23305893-23307013 

0.26

8 C8orf58, PDLIM2 chr8:22456091-22456508 

0.06

8 

NCOR2 chr12:125003217-125003482 

0.26

4 DAPK3 chr19:3970536-3970746 

0.06

7 

CMAH chr6:25139920-25140246 

0.26

1 PLEKHG5 chr1:6545143-6545559 

0.06

3 

PRNP chr20:4666827-4667874 

0.25

3 EMP3 chr19:48833394-48833720 

0.06

3 

PLEKHG5 chr1:6550083-6551115 

0.25

0 RAB34 chr17:27044168-27045049 

0.06

2 

DUSP5 chr10:112257163-112258684 

0.24

8 C22orf9, MIR1249 chr22:45598721-45599080 

0.06

0 

CBR3 chr21:37507198-37508259 

0.24

0 ELK3 chr12:96588665-96589145 

0.06

0 

TNK2 chr3:195622187-195623033 

0.24

0 PIK3CG chr7:106508057-106508733 

0.05

9 

GADD45A chr1:68150913-68152270 

0.23

6 PTRF chr17:40573740-40575526 

0.05

9 

FLRT2 chr14:85996494-85996958 

0.23

2 EIF3G chr19:10230162-10230682 

0.05

9 

ZC3H7B chr22:41697388-41698601 

0.23

2 ERBB2 chr17:37856448-37856891 

0.05

9 

EIF3G chr19:10230162-10230682 

0.23

1 

HCFC1R1, 

THOC6, 

TNFRSF12A chr16:3073686-3074443 

0.05

8 

GPR176 chr15:40211961-40213444 

0.22

8 SOLH chr16:587567-588172 

0.05

6 

COL7A1, 

UQCRC1 chr3:48631882-48632901 

0.22

8 INPP5D chr2:233925091-233925318 

0.05

6 

PTK2 chr8:142010440-142011907 

0.22

0 COG5, DUS4L chr7:107204114-107204797 

0.05

6 
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(Supplementary Table) Table S17: Informative genes for predicting cell-line responses 

for Doxorubicin. We used the feature selection to identify informative genes for 

Doxorubicin drug-response prediction. Genomic coordinates are based on build 37 of the 

human genome. We used information gain to rank the genes;  a higher score indicates a more 

informative gene. 

Classification Regression 

Gene Coordinates 
Scor

e 
Gene Coordinates 

Scor

e 

SKAP1 chr17:46507344-46507778 

0.19

5 TMEM177 chr2:120436530-120437010 

0.03

3 

SLC27A2 chr15:50474322-50475186 

0.19

4 NEK10 chr3:27410612-27411066 

0.03

1 

PYGM, 

RASGRP2 chr11:64509433-64513826 

0.18

8 ZFP3 chr17:4981357-4981979 

0.02

8 

CGN, MIR554, 

TUFT1 chr1:151512661-151513199 

0.18

4 WDYHV1 chr8:124428605-124429425 

0.02

7 

LACTB2, 

XKR9 chr8:71581050-71581650 

0.18

1 PPM1H chr12:63328143-63329135 

0.02

7 

MXRA8 chr1:1289707-1291126 

0.17

3 NCRNA00029 chr20:61665780-61666555 

0.02

7 

CAMK2N1 chr1:20810462-20813511 

0.17

3 MATN2 chr8:98881311-98881843 

0.02

6 

OSTC chr4:109571693-109572039 

0.17

3 RIMKLA chr1:42845978-42846988 

0.02

6 

PTK2 chr8:142010440-142011907 

0.16

9 INHBB chr2:121101800-121104534 

0.02

6 

CGN chr1:151483573-151483902 

0.16

7 GDA chr9:74764241-74764903 

0.02

6 

SCIN chr7:12610165-12610834 

0.16

6 CMAS chr12:22199062-22199589 

0.02

5 

C2orf43 chr2:21022564-21022934 

0.16

2 ATP1B2 chr17:7554139-7555338 

0.02

5 

TMEM45B chr11:129685737-129686211 

0.15

5 C3orf57 chr3:161089626-161090649 

0.02

5 

TMEM177 chr2:120436530-120437010 

0.15

3 C8orf84 chr8:74005021-74005856 

0.02

4 

RG9MTD3 chr9:37753655-37753949 

0.15

2 

STYXL1, 

TMEM120A chr7:75623357-75624164 

0.02

4 

CLDN4, 

WBSCR27 chr7:73245434-73246045 

0.15

1 ICA1 chr7:8301031-8302252 

0.02

4 

GAL chr11:68451359-68452846 

0.15

0 YBX2 chr17:7197431-7198417 

0.02

4 

CGB7 chr19:49559222-49560497 

0.15

0 

TUBGCP2, 

ZNF511 chr10:135123238-135123448 

0.02

4 

COMMD2 chr3:149469909-149470388 

0.15

0 CP110, GDE1 chr16:19535074-19535635 

0.02

4 

PODXL chr7:131242693-131243006 

0.15

0 TMEM219 chr16:29973023-29973570 

0.02

4 
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(Supplementary Table) Table S18: Informative genes for predicting cell-line responses 

for Etoposide. We used the feature selection to identify informative genes for Etoposide 

drug-response prediction. Genomic coordinates are based on build 37 of the human genome. 

We used information gain to rank the genes;  a higher score indicates a more informative 

gene. 

Classification Regression 

Gene Coordinates 
Scor

e 
Gene Coordinates 

Scor

e 

GNMT, PEX6 chr6:42928218-42928810 

0.36

7 C8orf84 chr8:74005021-74005856 

0.04

1 

TRUB1 chr10:116697893-116698376 

0.31

4 RBP4 chr10:95360389-95361387 

0.03

9 

RHPN2 chr19:33555246-33556431 

0.30

8 AQP11 chr11:77300360-77301391 

0.03

6 

USP43, WDR16 chr17:9548389-9549616 

0.30

3 TBR1 chr2:162270888-162271413 

0.03

5 

ARHGAP21 chr10:25011963-25013816 

0.30

1 

ANKRD37, 

UFSP2 chr4:186317143-186318255 

0.03

5 

HOOK1 chr1:60280624-60281048 

0.30

0 LACTB2, XKR9 chr8:71581050-71581650 

0.03

4 

ANKRD13D, 

SSH3 chr11:67070807-67071801 

0.29

9 PCCA chr13:100740956-100741805 

0.03

4 

SLC44A2 chr19:10735999-10736396 

0.29

0 FAM111B chr11:58873889-58874486 

0.03

4 

SPRY4 chr5:141705391-141705688 

0.29

0 

CGN, MIR554, 

TUFT1 chr1:151512661-151513199 

0.03

3 

DDAH1 chr1:85929940-85931168 

0.28

8 C5orf49 chr5:7850957-7851413 

0.03

3 

RHOU chr1:228870810-228872297 

0.28

8 TJP1 chr15:30114110-30115215 

0.03

3 

MARVELD3 chr16:71659829-71660747 

0.28

2 

DNAJC5, 

TPD52L2 chr20:62525796-62526638 

0.03

3 

MOSC2 chr1:220921411-220922176 

0.27

9 RNF20 chr9:104295917-104296232 

0.03

2 

IFT88 chr13:21140951-21141719 

0.27

9 EPB41L4B chr9:112083333-112083549 

0.03

2 

KRT18 chr12:53342805-53343162 

0.27

8 EPS8 chr12:15941718-15942740 

0.03

2 

CYB5A chr18:71958141-71959770 

0.27

6 GNMT, PEX6 chr6:42928218-42928810 

0.03

2 

CRB3, 

DENND1C chr19:6463991-6464780 

0.27

6 

CYP39A1, 

SLC25A27 chr6:46620541-46621189 

0.03

1 

EPS8 chr12:15941718-15942740 

0.27

5 LOC646762 chr7:29724188-29725436 

0.03

1 

TMEM171 chr5:72415611-72416766 

0.27

4 RHEB chr7:151216068-151217901 

0.03

1 

ADCY6 chr12:49183049-49183282 

0.27

1 TMEM45B chr11:129685737-129686211 

0.03

1 
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(Supplementary Table) Table S19: Informative genes for predicting cell-line responses 

for Gemcitabine.We used the feature selection to identify informative genes for 

Gemcitabine drug-response prediction. Genomic coordinates are based on build 37 of the 

human genome. We used information gain to rank the genes;  a higher score indicates a more 

informative gene.  

Classification Regression 

Gene Coordinates 
Scor

e 
Gene Coordinates 

Scor

e 

IFFO1, NOP2 chr12:6664425-6665336 

0.22

0 YBX2 chr17:7197431-7198417 

0.03

3 

LOC100287834 chr7:62858468-62858826 

0.21

6 TMEM177 chr2:120436530-120437010 

0.03

2 

TNK1 chr17:7284223-7284687 

0.20

3 MACROD2 chr20:13976700-13977068 

0.03

2 

RNF39 chr6:30042918-30043500 

0.19

9 ZNF793 chr19:37997790-37998125 

0.03

2 

C1orf229 chr1:247274585-247275757 

0.19

0 CCDC64 chr12:120426547-120428066 

0.03

0 

SLC44A2 chr19:10735999-10736396 

0.18

5 

DUSP8, HCCA2, 

LOC338651 chr11:1593550-1594378 

0.03

0 

FAM174B chr15:93198374-93199181 

0.18

4 NEK10 chr3:27410612-27411066 

0.02

9 

EFNA1 chr1:155098434-155100451 

0.18

3 CHN1 chr2:175869574-175870289 

0.02

9 

LAD1 chr1:201368560-201369032 

0.18

3 ATP6V1C2 chr2:10861206-10862382 

0.02

9 

BIRC8 chr19:53794411-53794732 

0.18

2 TLR2 chr4:154605086-154606052 

0.02

9 

YBX2 chr17:7197431-7198417 

0.17

9 ZNF514 chr2:95824802-95825721 

0.02

8 

CRB3, 

DENND1C chr19:6463991-6464780 

0.17

9 CA8 chr8:61193312-61194195 

0.02

8 

KIAA0284 chr14:105332408-105332651 

0.17

8 C17orf81, CLDN7 chr17:7164285-7166245 

0.02

7 

LOC100287704

, 

LOC100287834 chr7:62809609-62809812 

0.17

8 SCAI chr9:127905675-127905947 

0.02

7 

CFDP1 chr16:75466850-75467527 

0.17

6 MANSC1 chr12:12502942-12503465 

0.02

7 

C11orf90 chr11:93583374-93583717 

0.17

2 SHC2 chr19:457800-462256 

0.02

7 

CYR61, 

DDAH1 chr1:86046362-86047240 

0.16

6 STK25 chr2:242447017-242448558 

0.02

7 

TEAD4 chr12:3067960-3069444 

0.16

6 ACPL2 chr3:140951193-140951451 

0.02

7 

CAMK2G chr10:75633600-75634796 

0.16

2 ZFP3 chr17:4981357-4981979 

0.02

7 

HM13 chr20:30102057-30102856 

0.16

2 RUFY1 chr5:178986513-178986999 

0.02

7 
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(Supplementary Table) Table S20: Informative genes for predicting cell-line responses 

for Paclitaxel. We used the feature selection to identify informative genes for Paclitaxel 

drug-response prediction. Genomic coordinates are based on build 37 of the human genome. 

We used information gain to rank the genes;  a higher score indicates a more informative 

gene.  

Classification Regression 

Gene Coordinates 
Scor

e 
Gene Coordinates 

Scor

e 

C2orf29 chr2:101869023-101869876 

0.34

7 TUBB2B chr6:3227025-3229688 

0.06

2 

LMO2 chr11:33890357-33891495 

0.34

2 PRDM6 chr5:122424905-122425958 

0.05

9 

BLOC1S1, 

ITGA7, RDH5 chr12:56109798-56110298 

0.31

5 ONECUT3 chr19:1753216-1755606 

0.05

9 

CTNNA2 chr2:79739696-79740243 

0.30

7 DGKA chr12:56325774-56326223 

0.05

6 

DTNA chr18:32073444-32074292 

0.27

4 PNMAL1 chr19:46974557-46975073 

0.05

6 

CDC40, 

WASF1 chr6:110500025-110500966 

0.27

4 AP1S1, VGF chr7:100806279-100809064 

0.05

4 

HMGA1 chr6:34202567-34206193 

0.27

4 CNTNAP2 chr7:145813030-145814084 

0.05

4 

PHYHIPL chr10:60935827-60937049 

0.24

4 ZFP36 chr19:39897241-39898942 

0.05

4 

GALNTL6 chr4:172733734-172735118 

0.24

4 SLC10A4 chr4:48485362-48486473 

0.05

4 

ZNF625 chr19:12266998-12267686 

0.24

4 PAPOLB, RADIL chr7:4901336-4901753 

0.05

3 

ATP5J, GABPA chr21:27106814-27108211 

0.23

8 TMEM25, TTC36 chr11:118401235-118402069 

0.05

3 

psiTPTE22 chr22:17083384-17083628 

0.23

8 ABCB1 chr7:87230059-87230260 

0.05

3 

CACNG8 chr19:54466357-54466725 

0.23

0 NOL4 chr18:31802358-31803792 

0.05

3 

FBXO36, 

TRIP12 chr2:230785912-230787665 

0.22

4 DLL3 chr19:39989397-39990140 

0.05

2 

EYA4 chr6:133562086-133563586 

0.22

4 MCFD2, TTC7A chr2:47167858-47168978 

0.05

2 

EBPL chr13:50265224-50265598 

0.22

4 B3GAT1 chr11:134257428-134257631 

0.05

2 

DPRXP4, 

RNF135 chr17:29298046-29298606 

0.22

4 ADAMTS3 chr4:73434855-73435321 

0.05

1 

AIM1 chr6:106959764-106960985 

0.22

4 MAP3K12 chr12:53886562-53887101 

0.05

1 

IMMP2L chr7:111202079-111202683 

0.22

4 C6orf97 chr6:151814980-151815527 

0.05

1 

SFPQ chr1:35657467-35658811 

0.21

6 PIK3R3 chr1:46598126-46599129 

0.05

1 
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(Supplementary Table) Table S21: Informative genes for predicting cell-line responses 

for Temozolomide. We used the feature selection to identify informative genes for 

Temozolomide drug-response prediction. Genomic coordinates are based on build 37 of the 

human genome. We used information gain to rank the genes;  a higher score indicates a more 

informative gene. 

Classification Regression 

Gene Coordinates 
Scor

e 
Gene Coordinates 

Scor

e 

TJP1 chr15:30114110-30115215 

0.34

5 NELF, PNPLA7 chr9:140356314-140356987 

0.08

7 

AGAP2, 

LOC100130776 chr12:58119909-58121551 

0.32

9 TJP1 chr15:30114110-30115215 

0.08

5 

ARHGAP29 chr1:94702690-94703344 

0.31

6 MGAT1 chr5:180229375-180230147 

0.08

2 

C4orf14, 

POLR2B chr4:57842634-57843893 

0.30

7 PLEKHA1 chr10:124134088-124134933 

0.08

2 

RARA chr17:38472958-38473201 

0.29

8 DDAH1 chr1:85929940-85931168 

0.08

1 

ZNF280D chr15:57025347-57026150 

0.29

5 TEAD1 chr11:12695414-12696981 

0.08

1 

SYDE1 chr19:15217951-15218617 

0.28

3 DSTN chr20:17549628-17550051 

0.07

9 

TUBGCP2, 

ZNF511 chr10:135122851-135123109 

0.28

1 ICAM3, RAVER1 chr19:10443688-10446022 

0.07

7 

ACP1, SH3YL1 chr2:263400-265238 

0.27

7 SLC44A2 chr19:10735999-10736396 

0.07

6 

TBC1D12 chr10:96162023-96163327 

0.27

5 CHST12 chr7:2442792-2444011 

0.07

5 

CTU1 chr19:51607207-51607840 

0.27

4 FERMT3, STIP1 chr11:63974829-63975048 

0.07

5 

LARGE chr22:34315841-34318637 

0.27

2 GAS2L3 chr12:100967293-100967845 

0.07

5 

UTRN chr6:144605926-144608280 

0.26

9 CASZ1 chr1:10853894-10856964 

0.07

4 

AK1 chr9:130639738-130640143 

0.26

9 SPN chr16:29675845-29676120 

0.07

4 

DOCK1 chr10:128593609-128595048 

0.26

9 PTPN14 chr1:214724104-214725056 

0.07

4 

NSUN7 chr4:40751842-40752493 

0.26

7 LOC100133985 chr2:70352204-70352531 

0.07

3 

PARD6G chr18:78004028-78005438 

0.26

4 ERRFI1 chr1:8085554-8086854 

0.07

3 

RRN3P2 chr16:29086220-29086434 

0.26

2 

TMEM149, 

U2AF1L4 chr19:36231186-36232219 

0.07

3 

PKN1 chr19:14551998-14552255 

0.25

9 FAT1 chr4:187644319-187648253 

0.07

2 

AGAP2 chr12:58132478-58132734 

0.25

9 GNG7 chr19:2578956-2579746 

0.07

2 
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(Supplementary Table) Table S22: Gene-set analysis for the classification analysis. We 

used a statistical overrepresentation test to identify protein classes associated with the top-20 

ranked genes in the feature-selection analysis. 

Gefitinib 

Gene Set Name  

[# Genes (K)] 
Description 

# Genes in 

Overlap (k) 
p-value  

FDR q-

value 

KOINUMA_TARGETS_

OF_SMAD2_OR_SMAD3

  

[843] 

Genes with promoters occupied by 

SMAD2 or SMAD3 [GeneID=4087, 

4088] in HaCaT cells (keratinocyte) 

according to a ChIP-chip analysis. 

 

9 1.81 e-10 1.32 e-6 

GENTILE_UV_RESPON

SE_CLUSTER_D4 [54] 

Cluster d4: genes progressively down-

regulated in WS1 cells (fibroblast) 

through 12 h after irradiation with high 

dose UV-C. 

 

3 3.02 e-6 1.1 e-2 

FRIDMAN_SENESCENC

E_UP [77] 

Genes up-regulated in senescent cells. 

 

3 8.85 e-6 2.15 e-2 

SHEDDEN_LUNG_ 

CANCER_GOOD_ 

SURVIVAL_A12 [320] 

Cluster 12 of method A: up-regulation of 

these genes in patients with non-small 

cell lung cancer (NSCLC) predicts good 

survival outcome. 

 

4 2.15 e-5 3.9 e-2 

TSUNODA_CISPLATIN_ 

RESISTANCE_UP [15] 

Genes up-regulated in bladder cancer 

cells resistant to cisplatin 

[PubChem=2767] compared to the 

parental cells sensitive to the drug. 

2 2.74 e-5 3.98 e-2 

 

Cisplatin 

Gene Set Name  

[# Genes (K)] 
Description 

# Genes in 

Overlap (k) 
p-value  

FDR q-

value 

CHARAFE_BREAST_ 

CANCER_LUMINAL_VS

_MESEN_SENCHYMAL

_ 

DN [465] 

Genes down-regulated in luminal-like 

breast cancer cell lines compared to the 

mesenchymal-like ones. 

 

 

6 7.17 e-7 4.94 e-3 

KOINUMA_TARGETS_

OF_SMAD2_OR_SMAD3

  

[843] 

Genes with promoters occupied by 

SMAD2 or SMAD3 [GeneID=4087, 

4088] in HaCaT cells (keratinocyte) 

according to a ChIP-chip analysis. 

 

7 1.43 e-6 4.94 e-3 

REACTOME_CELL_CEL

L_COMMUNICATION [1

30] 

Cell-Cell communication 

 

 

4 2.04 e-6 4.94 e-3 

SENGUPTA_ 

NASOPHARYNGEAL_ 

CARCINOMA_DN [358] 

Genes down-regulated in nsopharyngeal 

carcinoma relative to the normal tissue. 

 

5 4.59 e-6 8.35 e-3 

HUPER_BREAST_BASA

L_VS_LUMINAL_DN [5

8] 

Genes down-regulated in basal mammary 

epithelial cells compared to the luminal 

ones. 

 

3 9.19 e-6 1.34 e-2 

GU_PDEF_TARGETS_U

P  

[71] 

Integrin, VEGF, Wnt and TGFbeta 

signaling pathway genes up-regulated in 

PC-3 cells (prostate cancer) after 

3 1.69 e-5 1.55 e-2 
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knockdown of PDEF [GeneID=25803] by 

RNAi. 

 

ONDER_CDH1_TARGE

TS_2_DN [473] 

Genes down-regulated in HMLE cells 

(immortalized nontransformed mammary 

epithelium) after E-cadhedrin (CDH1) 

[GeneID=999] knockdown by RNAi. 

 

5 1.76 e-5 1.55 e-2 

COLDREN_GEFITINIB_ 

RESISTANCE_DN [228] 

Genes down-regulated in NSCLC (non-

small cell lung carcinoma) cell lines 

resistant to gefitinib [PubChem=123631] 

compared to the sensitive ones. 

 

4 1.88 e-5 1.55 e-2 

WP_PRIMARY_FOCAL_ 

SEGMENTAL_ 

GLOMERULOSC_ 

OSCLEROSIS_FSGS [74] 

Primary Focal Segmental 

Glomerulosclerosis FSGS 

 

 

 

3 1.92 e-5 1.55 e-2 

FERRANDO_T_ALL_ 

WITH_MLL_ENL_ 

FUSION_UP [89] 

 

Top 100 genes positively associated with 

T-cell acute lymphoblastic leukemia 

MLL T-ALL) expressing MLL-ENL 

fusion [GeneID=4297;4298]. 

3 3.33 e-5 2.23 e-2 

 

Docetaxel 

Gene Set Name  
[# Genes (K)] 

Description 
# Genes in 
Overlap (k) 

p-value  
FDR q-
value 

CHARAFE_BREAST_ 

CANCER_LUMINAL_VS

_MESEN_SENCHYMAL

_ 

DN [465] 

Genes down-regulated in luminal-like 

breast cancer cell lines compared to the 

mesenchymal-like ones. 

 

 

7 3.97 e-9 1.82 e-5 

LIM_MAMMARY_ 

STEM_CELL_UP [481] 

Genes consistently up-regulated in 

mammary stem cells both in mouse and 

human species. 

 

7 5.02 e-9 1.82 e-5 

HUANG_DASATINIB_ 

RESISTANCE_UP [80] 

Genes whose expression positively 

correlated with sensitivity of breast 

cancer cell lines to dasatinib 

[PubChem=3062316]. 

 

4 1.05 e-7 2.54 e-4 

KOINUMA_TARGETS_

OF_SMAD2_OR_SMAD3

  

[843] 

Genes with promoters occupied by 

SMAD2 or SMAD3 [GeneID=4087, 

4088] in HaCaT cells (keratinocyte) 

according to a ChIP-chip analysis. 

 

7 2.3 e-7 4.19 e-4 

PETROVA_ 

ENDOTHELIUM_ 

LYMPHATIC_VS_BLOO

D_OOD_DN [162] 

Genes down-regulated in BEC (blood 

endothelial cells) compared to LEC 

(lymphatic endothelial cells). 

 

 

4 1.78 e-6 2.59 e-3 

SESTO_RESPONSE_TO_

UV_C5 [46] 

Cluster 5: genes changed in primary 

keratinocytes by UVB irradiation. 

 

3 2.15 e-6 2.6 e-3 

EGFR_UP.V1_UP [192] Genes up-regulated in MCF-7 cells 

(breast cancer) positive for ESR1 [Gene 

ID=2099] and engineered to express 

4 3.49 e-6 3.35 e-3 
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ligand-activatable EGFR [Gene 

ID=1956]. 

 

MITSIADES_RESPONSE

_ 

TO_APLIDIN_UP [446] 

Genes up-regulated in the MM1S cells 

(multiple myeloma) after treatment with 

aplidin [PubChem=44152164], a marine-

derived compound with potential anti-

cancer properties. 

 

5 3.76 e-6 3.35 e-3 

CHARAFE_BREAST_ 

CANCER_LUMINAL_VS

_ 

BASAL_SAL_DN [455] 

Genes down-regulated in luminal-like 

breast cancer cell lines compared to the 

basal-like ones. 

 

5 4.15 e-6 3.35 e-3 

ENK_UV_RESPONSE_ 

EPIDERMIS_DN [513] 

Genes down-regulated in epidermis after 

to UVB irradiation. 

5 7.42 e-6 5.4 e-3 

 

Doxorubicin 

Gene Set Name  

[# Genes (K)] 
Description 

# Genes in 

Overlap (k) 
p-value  

FDR q-

value 

CHARAFE_BREAST_ 

CANCER_LUMINAL_VS

_ 

MESEN_SENCHYMAL_ 

UP [453] 

Genes up-regulated in luminal-like breast 

cancer cell lines compared to the 

mesenchymal-like ones. 

 

 

5 6.43 e-6 2.61 e-2 

PILON_KLF1_TARGETS
_ 

UP [501] 

Genes up-regulated in erythroid 
progenitor cells from fetal livers of E13.5 

embryos with KLF1 [GeneID=10661] 

knockout compared to those from the 

wild type embryos. 

 

5 1.05 e-5 2.61 e-2 

DUTERTRE_ESTRADIO

L_RESPONSE_24HR_ 

DN [504] 

Genes down-regulated in MCF7 cells 

(breast cancer) at 24 h of estradiol 

[PubChem=5757] treatment. 

 

5 1.08 e-5 2.61 e-2 

MIKKELSEN_MEF_HCP

_ 

WITH_H3K27ME3 [590] 

Genes with high-CpG-density promoters 

(HCP) bearing histone H3 trimethylation 

mark at K27 (H3K27me3) in MEF cells 

(embryonic fibroblast). 

5 2.29 e-5 4.17 e-2 

 

Etoposide 

Gene Set Name  

[# Genes (K)] 
Description 

# Genes in 

Overlap (k) 
p-value  

FDR q-

value 

CHARAFE_BREAST_ 

CANCER_LUMINAL_ 

VS_MESEN_ 

SENCHYMAL_UP [453] 

Genes up-regulated in luminal-like breast 

cancer cell lines compared to the 

mesenchymal-like ones. 

 

 

6 2.29 e-7 1.66 e-3 

MODULE_180 [119] Genes in the cancer module 180. 

 

4 7.5 e-7 2.73 e-3 

LIM_MAMMARY_ 

STEM_CELL_DN [416] 

Genes consistently down-regulated in 

mammary stem cells both in mouse and 

human species. 

 

5 4.25 e-6 1.03 e-2 

MODULE_342 [213] Genes in the cancer module 342. 

 

4 7.59 e-6 1.38 e-2 
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MEISSNER_NPC_HCP_ 

WITH_H3_ 

UNMETHYLATED [542] 

Genes with high-CpG-density promoters 

(HCP) that have no histone H3 

methylation marks in neural precursor 

cells (NPC). 

 

5 1.53 e-5 1.96 e-2 

BOYLAN_MULTIPLE_

MYELOMA_D_DN [82] 

Genes down-regulated in group D of 

tumors arising from overexpression of 

BCL2L1 and MYC [GeneID=598;4609] 

in plasma cells. 

 

3 1.62 e-5 1.96 e-2 

MEISSNER_BRAIN_HC

P_WITH_H3K27ME3 [27

1] 

Genes with high-CpG-density promoters 

(HCP) bearing the H3K27 tri-methylation 

(H3K27me3) mark in brain. 

4 1.95 e-5 2.03 e-2 

 

Gemcitabine 

No overlaps found. 

 

Paclitaxel 

No overlaps found. 

 

Temozolomide 

No overlaps found. 
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(Supplementary Table) Table S23: Gene-set evaluation using GSEA for the regression 

analysis. We used a statistical overrepresentation test to identify protein classes associated 

with the top-20 ranked genes in the feature-selection analysis. 

Gefitinib 

Gene Set Name  

[# Genes (K)] 
Description 

# Genes in 

Overlap (k) 
p-value  

FDR q-

value 

RICKMAN_TUMOR_ 

DIFFERENTIATED_WE

LL_ 

VS_PS_POORLY_DN [38

0] 

Down-regulated genes that vary between 

HNSCC (head and neck squamous cell 

carcinoma) groups formed on the basis of 

their level of pathological differentiation: 

well vs poorly differentiated tumors. 

5 3.4 e-6 1.9 e-2 

     

EGFR_UP.V1_UP  

[192] 

Genes up-regulated in MCF-7 cells 

(breast cancer) positive for ESR1 [Gene 

ID=2099] and engineered to express 

ligand-activatable EGFR [Gene 

ID=1956]. 

 

4 5.97 e-6 1.9 e-2 

COLLER_MYC_ 

TARGETS_DN [7] 

Genes down-regulated in 293T 

(transformed fetal renal cell) upon 

expression of MYC [GeneID=4609]. 

2 7.83 e-6 1.9 e-2 

 

Cisplatin 

Gene Set Name  

[# Genes (K)] 
Description 

# Genes in 

Overlap (k) 
p-value  

FDR q-

value 

HOLLERN_EMT_BREA

ST_ 

TUMOR_DN [123] 

Genes that that have low expression in 

mammary tumors of epithelial-

mesenchymal transition (EMT) histology. 

 

9 2.26 e-17 1.64 e-

13 

CHARAFE_BREAST_ 

CANCER_LUMINAL_VS

_ 

MESEN_SENCHYMAL_ 

UP [453] 

Genes up-regulated in luminal-like breast 

cancer cell lines compared to the 

mesenchymal-like ones. 

11 7.47 e-16 2.72 e-

12 

     

ONDER_CDH1_TARGE

TS_ 

2_DN [473] 

Genes down-regulated in HMLE cells 

(immortalized nontransformed mammary 

epithelium) after E-cadhedrin (CDH1) 

[GeneID=999] knockdown by RNAi. 

 

9 4.61 e-12 1.12 e-8 

COLDREN_GEFITINIB_ 

RESISTANCE_DN [228] 

Genes down-regulated in NSCLC (non-

small cell lung carcinoma) cell lines 

resistant to gefitinib [PubChem=123631] 

compared to the sensitive ones. 

 

7 5.61 e-11 1.02 e-7 

MCBRYAN_PUBERTAL

_ 

BREAST_4_5WK_UP [27

0] 

Genes up-regulated during pubertal 

mammary gland development between 

week 4 and 5. 

 

7 1.83 e-10 2.66 e-7 

WU_CELL_MIGRATION

  

[183] 

Genes associated with migration rate of 

40 human bladder cancer cells. 

 

6 1.05 e-9 1.27 e-6 
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LIM_MAMMARY_STE

M_ 

CELL_DN  

[416] 

Genes consistently down-regulated in 

mammary stem cells both in mouse and 

human species. 

 

7 3.67 e-9 3.82 e-6 

BOYAULT_LIVER_CAN

CER_ 

SUBCLASS_G1_UP  

[116] 

Up-regulated genes in hepatocellular 

carcinoma (HCC) subclass G1, defined 

by unsupervised clustering. 

 

5 7.58 e-9 6.89 e-6 

MODULE_180 [119] Genes in the cancer module 180. 

 

5 8.62 e-9 6.97 e-6 

KEGG_TIGHT_ 

JUNCTION [132] 

Tight junction. 5 1.45 e-8 1.06 e-5 

 

Docetaxel 

Gene Set Name  

[# Genes (K)] 
Description 

# Genes in 

Overlap (k) 
p-value  

FDR q-

value 

NIKOLSKY_BREAST_ 

CANCER_16P13_ 

AMPLICON [119] 

Genes within amplicon 16p13 identified 

in a study of 191 breast tumor samples. 

 

 

4 1.05 e-6 7.64 e-3 

CHARAFE_BREAST_ 

CANCER_LUMINAL_VS

_ 

MESEN_SENCHYMAL_ 

DN [465] 

Genes down-regulated in luminal-like 

breast cancer cell lines compared to the 

mesenchymal-like ones. 

5 1.11 e-5 2.89 e-2 

     

KOINUMA_TARGETS_

OF_ 

SMAD2_OR_SMAD3 [84

3] 

Genes with promoters occupied by 

SMAD2 or SMAD3 [GeneID=4087, 

4088] in HaCaT cells (keratinocyte) 

according to a ChIP-chip analysis. 

 

6 1.37 e-5 2.89 e-2 

KEGG_B_CELL_RECEP

TOR_SIGNALING_PAT

HWAY [75] 

B cell receptor signaling pathway 3 1.59 e-5 2.89 e-2 

 

Doxorubicin 

No overlaps found. 

 

Etoposide 

Gene Set Name  

[# Genes (K)] 
Description 

# Genes in 

Overlap (k) 
p-value  

FDR q-

value 

SENGUPTA_NASOPHA

RYNGEAL_CARCINOM

A_DN  

[358] 

Genes down-regulated in nsopharyngeal 

carcinoma relative to the normal tissue. 

5 3.12 e-6 2.27 e-2 

 

Gemcitabine 

No overlaps found. 

 

Paclitaxel 

No overlaps found. 

 

Temozolomide 

No overlaps found. 
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