4 FORMAÇÃO DO PREÇO E EXPANSÃO DA OFERTA

Nesta sessão discutimos a formação do preço spot, que no atual marco regulatório do mercado brasileiro de energia elétrica, é o custo marginal de operação (CMO) determinado pelo modelo de otimização do despacho da geração.

Nesta sessão mostramos que o modelo vigente não sinaliza de forma eficaz a necessidade de expansão do sistema e propomos modelos alternativos que corrijam esta distorção.

4.1 Introdução

Por definição, o preço spot reflete o equilíbrio instantâneo (*clearing*) de oferta e procura. O atual (2003) marco regulatório do mercado brasileiro de energia elétrica define o preço da energia elétrica como sendo o custo marginal de operação (CMO), determinado pelo modelo de otimização do despacho da geração, que visa minimizar o custo operativo do sistema ao longo do tempo.

O financiamento da expansão auto-sustentada da capacidade de geração é baseado⁸ na venda da produção futura através dos contratos de longo prazo. Por outro lado, os contratos são derivativos, cujo preço ("forward price") é função da expectativa dos agentes vendedores e compradores sobre os cenários futuros de preço spot.

Portanto, o preço spot não só reflete o equilíbrio de curto prazo, mas também é a base do equilíbrio de longo prazo. Neste sentido, a eficácia do modelo de formação do preço na indução e viabilização <u>econômica</u> da expansão marginal da oferta, é uma medida da <u>adequação</u> do modelo de despacho.

É certo que ao reduzir a incerteza da renda, os contratos aumentam a viabilidade dos investimentos. Contudo, devemos lembrar que no marco regulatório atual, o despacho é totalmente desvinculado dos requisitos impostos pela contratação. Por isso não consideramos o efeito dos contratos na nossa análise de viabilidade dos investimentos, enquanto medida da adequação do modelo de despacho da geração.

_

⁸ Esquemas de "*Project Finance*" (OLIVEIRA *et al.* 1998)

4.2 Modelo de Despacho da Geração Hidrotérmica

Num mercado regulado de energia, o objetivo da sociedade, representado na função objetivo do modelo de otimização do despacho da geração, é minimizar o custo operativo do sistema ao longo do tempo.

O custo operativo em cada instante de tempo (período) é função do estado do sistema, dado pela demanda, custo marginal de operação das térmicas, do nível do estoque e da afluência hídrica.

A princípio, todas estas variáveis são incertas e seguem processos temporais que podem ser modelados como processos estocásticos Markovianos.

No entanto, dada a pequena participação da geração termelétrica no sistema brasileiro, o custo marginal da geração termelétrica é usualmente aproximado pelo seu valor esperado.

Por outro lado, o horizonte de planejamento da operação do sistema, é relativamente curto (5 anos, no caso brasileiro) e usualmente a demanda também é aproximada pelo seu valor esperado, embora sejam feitos estudos de sensibilidade considerando previsão de maior e menor crescimento.

Assim, o custo de operação do sistema é descrito escrito como função de somente duas variáveis de estado, estoque e afluência: " $W_t(e_t,a_t)$ ".

Sendo a afluência e o estoque descritos como processos estocásticos Markovianos e sendo a função-objetivo separável no tempo, o problema do despacho ótimo da geração hidrotérmica pode ser descrito como um problema de Programação Dinâmica Estocástica (PDE) (BERTSEKAS 1976), e o custo operativo pode ser expresso pela seguinte equação recursiva (equação de Bellman):

$$W_t(e_t, a_t) = \min_h [w(D_t - h_t) + E_t\{W_{t+1}(e_{t+1}, a_{t+1} | e_t, a_t, h_t)\} \rho] \dots eq.(23)$$

Onde:

• $w(D_t-h_t)$: custo operativo imediato devido à geração termelétrica e ao eventual déficit de energia (discutido adiante)

- W_{t+1}(e_{t+1},a_{t+1}|e_t,a_t,h_t)}: custo operativo total desde o próximo período até o
 horizonte de planejamento, para o estoque e afluência previstas, dados
 o estoque atual, o histórico de afluências e o despacho da geração
 hidrelétrica.
- ρ : taxa de desconto = $(1+r)^{-1}$, onde r = 10% a.a⁹.

A figura abaixo ilustra o processo recursivo de cálculo do custo operativo.

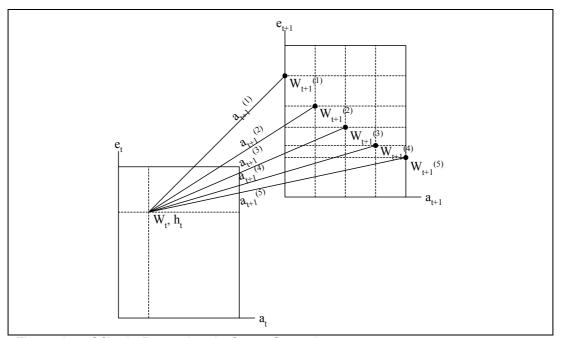


Figura 15 - Cálculo Recursivo do Custo Operativo

Integrando a equação recursiva do custo operativo ao longo do tempo, obtemos a expressão do custo operativo no instante atual (t=0), quando é tomada a decisão de despacho da geração:

$$W_0(e_0, a_0) = \min_{h^*(e_t, a_t, t)} \sum_{t=0}^{T} W_t(e_t, a_t, h_t) \rho^t \qquad eq.(24)$$

O custo imediato " $w(D_t-h_t)$ " é a soma do custo da geração termelétrica complementar ($c_n \ g_{n,t}$) e da penalização pelo eventual déficit ($d_i \ f_{i,t}$). Assim, os custo imediato é função da diferença entre a demanda atual " D_t " e o despacho hidrelétrico total " h_t ":

$$w(D_t-h_t) = \sum_n c_n g_{n,t} + \sum_i d_i f_{i,t}$$
 eq.(25)

 $^{^{9}}$ A taxa de desconto de ρ = 0.909 correspondente à taxa de juros de 10% a.a. é adotada pelo ONS.

$$\sum_{n} g_{n,t} + \sum_{i} f_{i,t} = D_{t} - h_{t}$$
 eq.(26)

Onde:

- g_{n,t}: produção do n-ésimo gerador térmico.
- f_{i.t}: profundidade do déficit (i-ésimo patamar).
- c_n: custo marginal de operação da n-ésimo gerador térmico.
- d_i: custo marginal do i-ésimo patamar de déficit.

A produção de cada gerador térmico é limitada à respectiva capacidade e também à geração mínima: $G_n^{min} \leq g_{n,t} \leq G_n^{max}$

Analogamente, o déficit em cada patamar é limitado à profundidade do patamar, que é um percentual da demanda: $f_{i,t} \leq F^{max}_i \ D_t$, sendo o último patamar ilimitado.

As térmicas são despachadas em ordem crescente de custo marginal e, portanto, o custo da geração termelétrica complementar é uma função convexa crescente da demanda residual (subtraída da geração hidrelétrica). Analogamente, o custo de déficit também é uma função convexa crescente da demanda não atendida¹⁰. Assim, o custo imediato é uma função convexa crescente da diferença entre a demanda e o despacho hidrelétrico, como ilustrado na figura abaixo.

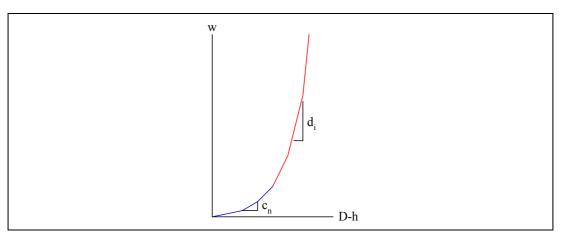


Figura 16- Custo Marginal da Geração Térmica e do Déficit

¹⁰ Na metodologia atual, definida na Resolução GCE 109/2001, o custo de déficit é escalonado em 4 patamares de acordo com a profundidade do déficit, que é uma percentagem do valor da demanda.

O estoque evolui segundo a equação de balanço hídrico, sujeito à restrição de capacidade de armazenamento e de estoque mínimo requerido:

$$e_{t+1} = e_t + a_t - h_t - v_t$$
 $E^{min} \le e_{t+1} \le E^{max}$ eq.(27)

Onde " v_t " é o vertimento.

Num sistema com aproveitamento em cascata, com vários afluentes, a vazão afluente " a_t " a um reservatório inclui a vazão lateral e a vazão defluente dos reservatórios a montante.

O preço *spot* "s" em cada estado do sistema é o custo marginal de operação (CMO), que é o custo de atendimento à demanda (equilíbrio instantâneo de mercado), definido como o incremento do custo operativo decorrente de um incremento infinitesimal na demanda.

$$s_t(e_t, a_t) = \partial W_t(e_t, a_t) / \partial D_t \qquad eq.(28)$$

O CMO é a variável dual correspondente à equação (condição) de equilíbrio entre oferta e demanda (eq. 25).

4.2.1 PROGRAMAÇÃO DINÂMICA DUAL ESTOCÁSTICA

A utilização direta da programação dinâmica estocástica (PDE) é computacionalmente inviável para um sistema com um número de usinas, como é o caso do sistema brasileiro, pois o número de estados "L" cresce exponencialmente com o número "N" de usinas hidrelétricas, como indicado na expressão a seguir, onde a faixa de possíveis valores do volume foi dividida em "M" valores (estados) e a afluência em "K" valores (estados): $L = M^N K^N$

Uma solução interativa para o problema completo, ou seja, com todas as usinas hidrelétricas, e qualquer número de estados é obtida através da programação dinâmica dual estocástica (PDDE) (PEREIRA *et al.* 1985, 1998(a,b), 1999), que estima a forma aproximada (linearizada por partes) do custo operativo em função do estoque e da afluência, para uma gama de estados (estoque e afluência) relevantes, determinados por simulação. A PDDE estima o valor aproximado da função de custo operativo para um subconjunto relevante de estados. Esta aproximação é obtida através da técnica de Benders, que aproxima a função de custo, que é convexa, por um conjunto de funções lineares, como ilustrado na figura abaixo.

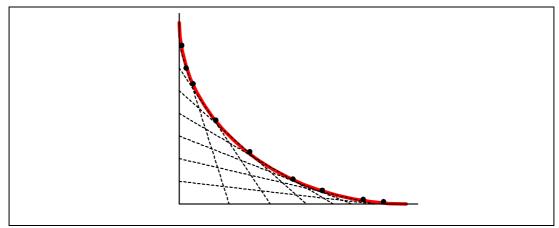


Figura 17 – Aproximação Linear por Partes de uma Função Convexa

4.2.2 O Custo de Déficit como Sinalizador da Expansão

O custo de déficit "d" é o parâmetro de controle do "custo de oportunidade de uso das reservas hídricas" e, por extensão, é o parâmetro de controle do preço *spot* e da renda dos geradores. Portanto, o custo de déficit controla a sinalização da necessidade de expansão da oferta e a viabilidade dessa expansão.

No modelo de mercado em que o planejamento da expansão é determinativo, o custo de déficit é definido endogenamente (implicitamente) de modo a viabilizar os investimentos definidos no plano, ou seja, de modo a garantir que o valor esperado do custo marginal de operação (CMO) seja igual ao valor do custo marginal de expansão (CME).

A determinação implícita do custo de déficit é economicamente consistente se a tarifa efetivamente refletir o CMO e o financiamento da expansão do sistema for endógeno (expansão auto sustentada). No entanto estes pressupostos do modelo monopolista estatal nunca se verificaram no Brasil, sobretudo a partir da década de 1970 quando a tarifa de energia foi severamente limitada dentro de uma política de controle da inflação. (FORTUNATO *et al.* 1990; ROSA *et al.* 1998)

A igualdade E{CMO} = CME é a condição básica de equilíbrio de mercado no longo prazo, como ilustrado na figura abaixo, uma vez que se E{CMO} < CME seria mais econômico atender a um incremento da demanda com os recursos existentes e se E{CMO} > CME, então seria mais econômico atender ao incremento da demanda através da expansão dos recursos existentes.

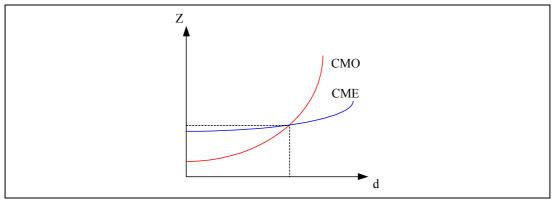


Figura 18 - Equilíbrio de Mercado a Longo Prazo

A mudança do marco regulatório para o mercado não monopolista, no qual o planejamento da expansão não é determinativo, tornou inconsistente a metodologia de determinação implícita do custo de déficit, que passou então a utilizar como critério o "custo social do déficit" ¹¹, definido como o impacto no PIB causado pela redução do consumo de energia elétrica, calculado em função da elasticidade consumo do PIB:

$$d = \partial Y_t / \partial D_t = \varepsilon_t(Y, D) Y_t / D_t \qquad eq.(29)$$

- Y_t: produto interno bruto no período "t"
- D_t: consumo de energia elétrica no período "t"
- $\bullet \qquad \epsilon_t(Y,D) \equiv \left(\partial Y/Y_t\right)/\left(\partial D/D_t\right) : \quad \text{elasticidade} \quad \text{do} \quad \text{PIB} \quad \text{em} \quad \text{relação} \quad \text{ao} \\ \quad \text{consumo de energia elétrica}$

A eficácia do custo de déficit como controle da viabilidade da expansão é limitada, como ilustrado na figura abaixo, na qual se pode observar que a carga crítica (demanda atendida com risco de 5%) praticamente não se altera com a duplicação do custo de déficit.

¹¹ A atual metodologia para determinação do Custo de Déficit foi debatida através da Audiência Pública ANEEL 002/2001 e fixado através da Resolução GCE 109/2001

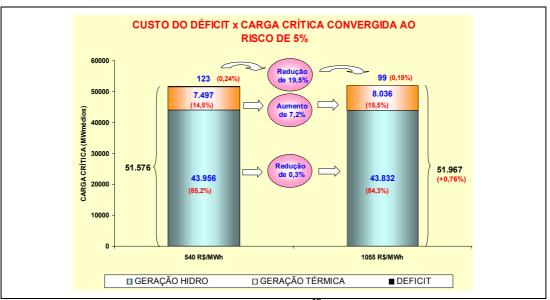


Figura 19 – Déficit de Energia x Custo de Déficit¹²

Por outro lado, se o estado do sistema estiver suficientemente degradado, ou seja, se o estoque for baixo e a tendência de afluência futura for abaixo da média, então o CMO é praticamente proporcional ao custo de déficit, como ilustrado na figura abaixo que mostra o CMO às vésperas do racionamento¹³, considerando o custo de déficit igual a R\$684/MWh e R\$1145/MWh.

¹² Seminário sobre o Custo de Déficit de Energia Elétrica – SEN/MME – Out. 2001 – Análise da Influência do Custo de Déficit sobre o Planejamento da Expansão da Geração – Arthur Stainer (CCPE/MME)

¹³ Redução compulsória de 20% da demanda nos subsistemas Sudeste e Nordeste, no período de Julho de 2001 a Março de 2002 (9 meses)

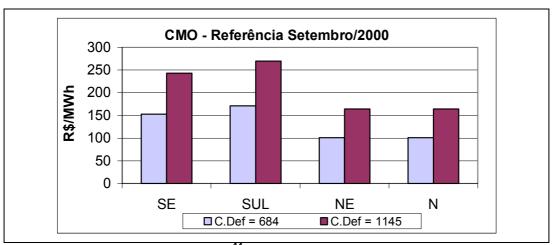


Figura 20 – CMO x Custo de Déficit¹⁴

A principal causa da baixa eficácia do custo de déficit como sinalizador e indutor da expansão é que, no curto e médio prazos, a probabilidade dos estados de déficit é pequena exceto se o estado do sistema for muito degradado (baixo estoque e baixa afluência), o que, por construção, deve ser raro. Em outras palavras, o modelo é "míope", pois déficits no longo prazo contam pouco no custo de operação atual.

A figura abaixo ilustra a superfície do custo operativo num determinado período, em função do estoque (e) e da afluência (a).

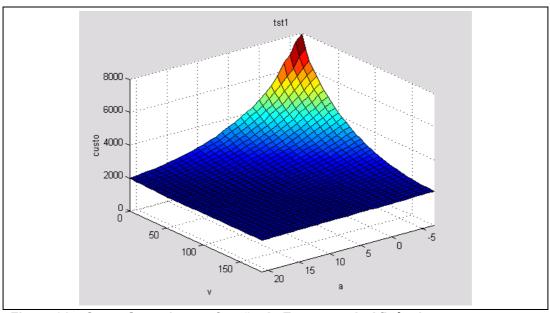


Figura 21 – Custo Operativo em função do Estoque e da Afluência

¹⁴ Seminário sobre o Custo de Déficit de Energia Elétrica – SEN/MME – Out. 2001 – Influência do Custo de Déficit na Operação do Sistema - Marcelo Prais (ONS)

Pode-se notar a convexidade e também a pouca variação do custo operativo numa larga porção de estados, alterando-se significativamente somente para os estados críticos (baixa afluência / baixo estoque), que só são significativamente prováveis se o estoque anterior for baixo e a tendência hidrológica for baixa (menor que a média histórica). Esta combinação de estados só começa a se tornar mais provável quando o sistema está degradado, deplecionando excessivamente as reservas hídricas devido à falta de capacidade para atendimento à demanda. Essa é a causa da miopia do modelo de despacho.

4.3 Modelos Alternativos de Despacho da Geração e Formação do Preço Spot

Para garantir a viabilidade econômica da expansão, propomos 3 modelos alternativos de despacho / formação do preço: (i) Aversão ao Risco, (ii) Margem de Investimento e (iii) Preço Mínimo, descritos a seguir.

4.3.1 Aversão ao Risco

Como pode ser observado na Figura 21, reproduzida abaixo, e discutido na seção 4.2.2, o custo operativo é praticamente constante (custo marginal de operação nulo) na maior parte dos estados (afluência e estoque), aumentando significativamente somente numa pequena região correspondente aos estados de baixa afluência / baixo estoque.

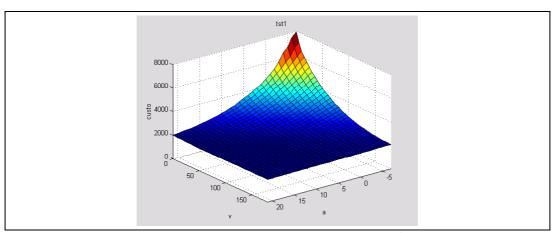


Figura 21 - Custo Operativo em função do Estoque e da Afluência

A pequena curvatura da superfície da função de custo implica na baixa sensibilidade da função de custo operativo em relação ao custo de déficit, tornando o modelo "míope", i.e., o custo de déficit só começa a influenciar o preço quando o estado do sistema já está muito degradado.

Para aumentar a sensibilidade do modelo ao custo futuro, propomos modificar a função de custo operativo, tomando o "equivalente certo" do custo futuro "W*" ao invés do valor esperado:

Modelo Original:

$$W_t(e_t, a_t) = \min_h W(D_t - h_t) + E_t\{W_{t+1}(e_{t+1}, a_{t+1} | e_t, a_t, h_t)\} \rho$$

Modelo Alternativo:

$$\begin{split} W_t(e_t, a_t) &= \text{min }_h \ \ w(D_t - h_t) + W^*_{t+1}(e_{t+1}, a_{t+1} \mid e_t, \ a_t, \ h_t) \ \rho_0 \ \dots \dots \ \ \text{eq.} (30) \\ W^*_{t+1}(e_{t+1}, a_{t+1} \mid e_t, \ a_t, \ h_t) &= \bar{U}^{-1}(E\{\bar{U}(W_{t+1}(e_{t+1}, a_{t+1} \mid e_t, \ a_t, \ h_t))\})) \end{split}$$

Vale observar que:

- por se tratar de um "custo", a atitude frente ao risco (custos elevados) é modelada pela "Função Desutilidade $\bar{U}(x)$ ";
- a taxa de desconto " ρ_0 " do equivalente certo do custo futuro " $W*_{t+1}$ " é a taxa básica de juros, uma vez que a aversão ao risco já está incluída na "função desutilidade".

A "função desutilidade" utilizada é a função potência, indicada abaixo. Essa função expressa uma aversão a risco inversamente proporcional ao nível de "riqueza", representando mais fielmente a atitude da sociedade:

$$\bar{\mathbf{U}}(\mathbf{x}) = \mathbf{x}^{\lambda} / \lambda \quad \lambda > 1$$
 eq.(31)

As figuras abaixo mostram a distribuição de probabilidade acumulada da produção hidrelétrica, do estoque de água e do preço spot, obtidas com o modelo original e com o modelo "avesso ao risco" para os seguintes graus de aversão ao risco: 2.00 (u1), 2.30 (u2), 3.23 (u3), 4.65 (U4) e 6.40 (u5).

Pode-se observar que a distribuição de probabilidade da produção hidrelétrica no modelo original domina estocasticamente¹⁵ a distribuição de probabilidade da produção hidrelétrica no modelo com aversão a risco, pois a produção hidrelétrica tende a ser menor no modelo com aversão a risco que no modelo original e essa tendência se acentua à medida que aumenta o grau de aversão ao risco.

Dominância estocástica de 1º grau: a distribuição dominante apresenta menor probabilidade de valores menores que a distribuição dominada

Conseqüentemente, o estoque de água nos reservatórios tende a ser maior no modelo com aversão a risco do que no modelo original e o preço spot tende a ser maior no modelo com aversão a risco do que no modelo original, ou seja, as distribuições de probabilidade do estoque e do preço spot obtidas com o modelo avesso ao risco dominam estocasticamente as obtidas com o modelo original.

O despacho da geração hidrelétrica é apresentado em valores por unidade (p.u.) da demanda, ou seja, o despacho igual a 1.00 significa que toda a demanda está sendo atendida pela geração hidrelétrica.

O estoque é apresentado em valores por unidade (p.u.) do estoque máximo.

O preço spot é apresentado em valores por unidade (p.u.) do "valor normativo" (VN), de US\$33.00/MWh, ou seja, o preço spot = 1.00 equivale a US\$33.00/MWh.

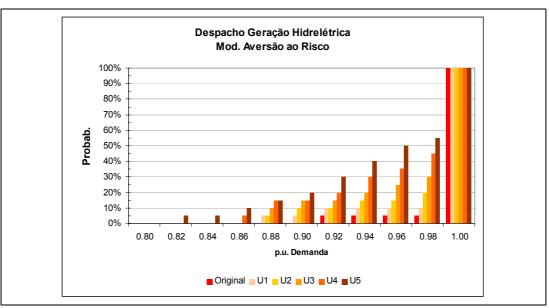


Figura 22 – Distribuição Produção Hidrelétrica Modelos Original e Avesso a Risco

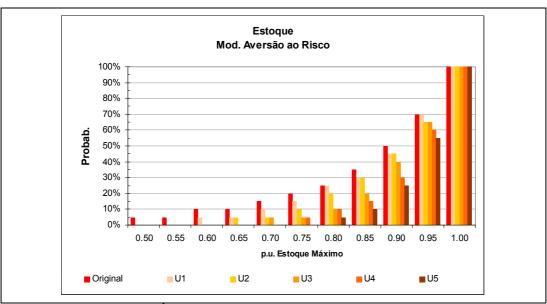


Figura 23 – Estoque de Água nos Reservatórios Modelos Original e Avesso a Risco

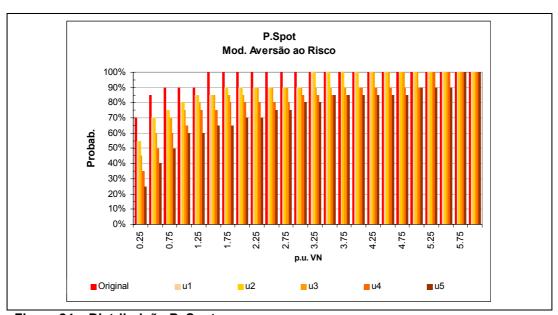


Figura 24 – Distribuição P. Spot Modelos Original e com Aversão a Risco

4.3.2 Preço Spot Mínimo

Num sistema tão fortemente hidrelétrico como o brasileiro, a geração termelétrica tem um papel importante para a complementação energética durante os períodos de baixa afluência, mas sua produção anual é muito baixa, o que torna praticamente inviável o investimento em geração termelétrica com o fluxo de caixa obtido pela venda da energia no mercado spot.

Viabilizar economicamente a geração termelétrica somente com a renda da venda da energia pode ser excessivamente oneroso para o sistema. Alternativamente, pode-se viabilizar a geração termelétrica através de remuneração complementar "ΔR" pela sua capacidade disponível (ociosa) de geração ("capacity fee"), ou seja, quando o preço spot é inferior ao seu custo marginal.

O modelo do preço mínimo impõe um limite inferior ao preço spot " \underline{s} " e remunera as usinas térmicas não despachadas.

Regra de formação do preço:

$$s_t = \max [\underline{s}, \pi_t]$$
 eq.(32)

Onde " π_t " é o custo marginal de operação do sistema: $\pi_t = \partial W_t / \partial D_t$

 Indenização às térmicas não despachadas e cujo custo marginal (c_n) seja inferior ao preço spot:

$$\Delta R_t(\underline{s}) = \sum_{n \in I(\underline{s})} (\underline{s} - c_n) G_n \dots eq.(33)$$

Onde " $I(\underline{s})$ " é o conjunto das térmicas a serem indenizadas:

$$I(\underline{s}) = \{ n \mid \pi_t \le c_n \le \underline{s} \}$$
 eq.(34)

Este esquema de indenização de térmicas não despachadas é similar ao de pagamento de "Encargos de Serviços ao Sistema" (ESS), que é praticado no atual marco regulatório para as térmicas que não são despachadas fisicamente por alguma restrição do sistema ("constrained off"), embora tenham custo marginal menor que o preço spot.

Naturalmente esse modelo não afeta o despacho e simplesmente trunca a distribuição de probabilidade do preço spot, como mostrado na figura abaixo que apresenta as distribuições de probabilidade acumulada obtidas com o modelo original e com o modelo de preço mínimo, para os seguintes níveis de preço mínimo (US\$/MWh): 10.50, 13.50, 22.00, 27.80 e 46.00.

O preço spot é apresentado em valores por unidade (p.u.) do Valor Normativo (VN) de US\$33.00/MWh.

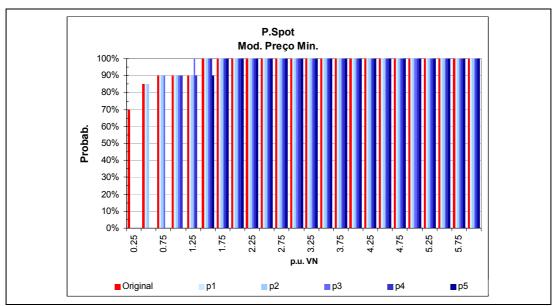


Figura 25 - Distribuição P. Spot - Modelos Original e com Preço Mínimo

4.3.3 MARGEM DE INVESTIMENTO

Em condições normais de operação (equilíbrio de mercado) do sistema brasileiro, a demanda é totalmente¹⁶ atendida pela geração hidrelétrica, cujo custo operativo direto é pequeno, levando a um custo marginal de operação do sistema (CMO) muito inferior ao menor custo marginal da geração termelétrica.

Se o CMO resultante da operação em equilíbrio é insuficiente para remunerar o investimento em geração, o sistema tende para a escassez.

O modelo de "margem de investimento" incrementa o custo de operação, adicionando uma fração " ψ " do Valor Normativo (VN)¹⁷ "i*" ao custo variável proporcional ao custo marginal de operação, como mostrado na equação abaixo.

$$w(e_t, a_t, h_t) = \sum_n c_n g_{n,t} + \sum_i f_{i,t} d_{i,t} + \psi_H i^* h_t + \psi_G i^* g_t \dots eq.(35)$$

As figuras abaixo apresentam as distribuições de probabilidade acumulada do preço spot, do despacho e do estoque, para os seguintes valores de margem de investimento, em percentuais do Valor Normativo (US\$33.00/MWh):

• níveis de margem de investimento em geração hidrelétrica " ψ_H ": 29.7%, 41.2%, 74.2%, 99.5%, 184.5%

¹⁶ A menos de termelétricas que operam de forma contínua por inflexibilidade operativa ou comercial

¹⁷ O Valor Normativo é utilizado como um valor de referência para o custo marginal de expansão.

• níveis de margem de investimento em geração termelétrica " ψ_G ": 25.5%, 35.3%, 63.6%, 85.3%, 158.2%

Pode-se observar que a distribuição do preço spot é deslocada para a direita à medida em que se aumenta a margem de investimento. Também pode-se observar que o despacho da geração hidrelétrica com o modelo de margem de investimento tende a ser um pouco menor que no modelo original, pois o aumento do custo operativo da geração hidrelétrica torna a geração termelétrica existente mais competitiva. Essa redução da produção hidrelétrica só não é mais pronunciado porque a margem de investimento também é adicionada ao custo operativo da geração termelétrica incremental. A tendência de redução da produção hidrelétrica deve resultar numa tendência de aumento do estoque de energia nos reservatórios, mas a reduzida magnitude dessa tendência não aparece no histograma.

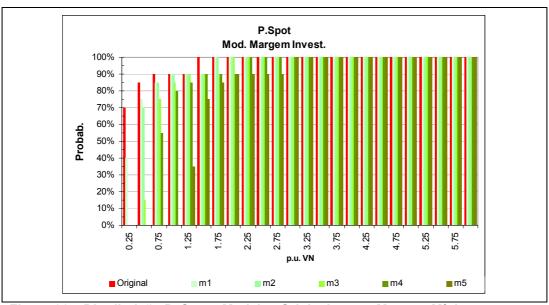


Figura 26 – Distribuição P. Spot - Modelos Original e com Margem Mínima

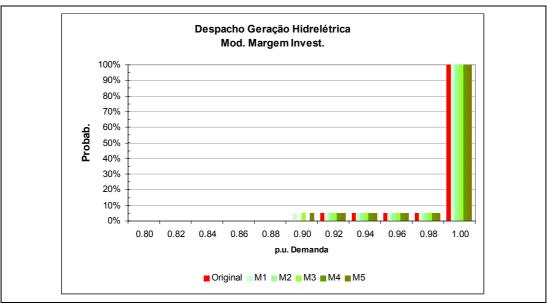


Figura 27 – Despacho da Geração Hidrelétrica - Modelos Original e com Margem Mínima

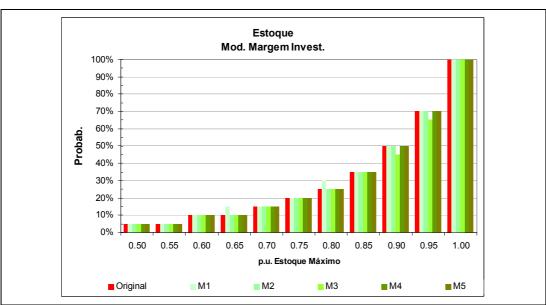


Figura 28 – Estoque de Energia - Modelos Original e com Margem Mínima

4.4 VIABILIDADE ECONÔMICA DA EXPANSÃO DA OFERTA

Tradicionalmente a viabilidade de um investimento é analisada sob o critério do Valor Presente Líquido (VPL), que é diferença entre o valor presente esperado das rendas futuras " $E\{V(\tilde{R})\}$ " e o custo do investimento "I", que assume que os investimentos são realizados sempre que o valor esperado do VPL é positivo, ou de forma mais conservadora, que o VPL é positivo numa certa proporção " α " do cenários.

$$E\{V(\tilde{R})\} - I \ge 0 \quad \text{eq.}(36)$$

$$P(V(\tilde{R})) - I \ge 0 > \alpha$$
 eq.(37)

No entanto, existem diversos casos de projetos com VPL positivo que não são implementados, e por outro lado, casos de projetos implementados com VPL negativo. Razões estratégicas e incertezas são, portanto, considerados na avaliação dos investimentos.

Caso o investidor possa escolher o momento ótimo de investimento, a incerteza econômica ou técnica pode recomendar o adiamento do investimento mesmo quando o VPL é positivo, como ilustrado na figura abaixo.

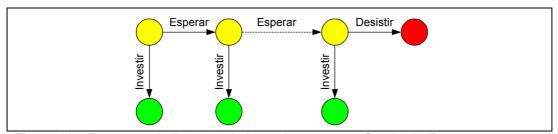


Figura 29 – Processo de Decisão de Investimento com Opção de Espera

As questões de valoração das decisões gerenciais são consideradas na Teoria das Opções Reais (DIXIT *et al.* 1994), que mostra que o investidor pode auferir ganhos expressivos, em especial, ao considerar investimentos de baixo VPL, ou seja, opções "at-the-money".

Os investimentos em geração de energia tipicamente possuem custos irreversíveis de grande magnitude. Investimentos em geração elétrica no Brasil

apresentam características particulares, como a grande variabilidade da receita estimada do gerador e incertezas regulatórias, que, segundo a ótica da Teoria das Opções Reais, depreciam os investimentos no setor, o que explica em parte as dificuldades observadas na expansão da geração sob o atual marco regulatório.

O valor da opção de espera é similar à de uma opção de compra¹⁸ e, como tal, o seu valor aumenta com a incerteza sobre os resultados, como ilustrado na figura abaixo. Esta constatação reforça o argumento da Teoria das Opções Reais, em relação à atratividade dos investimentos.

Figura 30 - Valor da Opção de Compra x Incerteza dos Resultados

A existência da opção de espera para o exercício do investimento, depende da natureza do investidor, se público ou privado. O investidor público, tipicamente, segue um planejamento rígido, no qual há pouca ou nenhuma flexibilidade para decisão do investimento em função das perspectivas de mercado. O investidor privado, em geral, condiciona sua decisão às perspectivas de mercado e à possibilidade de exercício do investimento pela concorrência¹⁹. (Moreira et al. 2003; Gomes 2002; Castro 2000)

Neste estudo analisamos a viabilidade dos investimentos na expansão da geração sob o critério do valor esperado do VPL e também analisamos se a opção de investimento é suficientemente atrativa ("deep-in-the-money") para ser exercida em 95% dos cenários, mas devemos ressalvar que ambos os critérios são muito mais rigorosos que o critério de valor esperado do VPL que tipicamente é aplicado pelo investidor público.

¹⁸ A opção de espera é semelhante a uma opção de compra ("call option") do tipo "americano" é aquela que pode ser exercida a qualquer instante durante o prazo de vigência, em contraposição ao tipo "europeu", que só pode ser exercida no final desse prazo.

¹⁹ Neste trabalho não estamos considerando a concorrência pelo investimento.

4.4.1 VALOR DO INVESTIMENTO

Em cada período de tempo, a renda líquida do investimento (r_t) é o produto da produção do gerador (g_t, h_t) , multiplicada pelo preço *spot* $(s_t)^{20}$ e, no caso dos geradores térmicos, subtraída do custo operativo. Como a produção e o preço spot são função do estado (estoque e afluência) do sistema, a renda líquida do investimento (r_t) em cada período também é:

$$r_{i,t}(e_t,a_t) = (s_t(e_t,a_t) - c_i) g_{i,t}(e_t,a_t) \Delta t$$
 eq.(38)

$$r_{h,t}(e_t,a_t) = s_t(e_t,a_t) h_t(e_t,a_t) \Delta t$$
 eq.(39)

Onde "∆t" é a duração de um período, tipicamente, de 1 mês (730 h).

O valor presente da renda acumulada pelo gerador pela venda da energia a partir de cada período de tempo (R_t) até o final da vida útil do gerador (N_t) períodos) é uma variável estocástica, função do estado do sistema, que pode ser descrita pela seguinte equação recursiva (Bellman), onde a renda futura é descontada pela taxa de juros " ρ " ajustada ao risco:

$$R_t(e_t, a_t) = r_t(e_t, a_t) + E_t\{R_{t+1}(e_{t+1}, a_{t+1} \mid e_t, a_t) \rho\}$$
 eq.(40)

Integrando a expressão recursiva do valor presente da renda acumulada ao longo da vida útil do gerador (N períodos), obtemos a renda acumulada no início da operação:

$$R_{t}(e_{t}, a_{t}) = E_{t} \left\{ \sum_{\tau=t}^{t+N} r_{\tau}(e_{\tau}, a_{\tau}) \rho^{\tau} \right\}$$
 eq.(41)

Considerando a opção de espera, o investimento deve ser realizado somente no instante em que o VPL do exercício imediato é maior que o valor presente esperado 21 da opção de investimento no próximo período (O_{t+1}):

$$E_t\{V(R_t)\}-I \ge C_{t+1} \rho_0$$
 eq.(42)

O valor da opção de espera pode ser calculado de forma recursiva, considerando um prazo máximo (horizonte de planejamento) para que o investimento seja realizado ou abandonado.

²⁰ Lembrando que a nossa análise considera somente a viabilidade econômica e não a viabilidade financeira dos investimentos e que por isso não consideramos a contratação de longo prazo.

²¹ O valor presente da opção de investimento é descontado à taxa livre de risco.

Na expiração do prazo de investimento não há opção de espera e vale a regra do VPL:

$$O_T(e_T, a_T) = \max [R_T(e_T, a_T) - I, 0]$$
 eq.(43)

Durante a vigência da opção de investimento (horizonte de planejamento), o valor da opção é dado pelo máximo entre "investir" ou "esperar":

$$O_t(e_t, a_t) = \max [R_t(e_t, a_t) - I, E_t^* \{O_{t+1}(e_{t+1}, a_{t+1}) \rho_0\}] \dots eq.(44)$$

O valor esperado da opção de investimento deve ser calculado pela probabilidade que "neutraliza o risco" para poder descontado pela taxa básica ("livre de risco") de juros²². A probabilidade que "neutraliza o risco" é aquela na qual o valor esperado do valor futuro " $E_{t+1}^*\{\widetilde{x}_{t+1}\}$ " é igual ao valor atual " x_t ":

$$E_{t+1}^* \{ \tilde{\mathbf{x}}_{t+1} \} = \mathbf{x}_t$$
 eq.(45)

Essa é a condição que descreve o processo estocástico "Martingale" e a probabilidade que "neutraliza o risco" é chamada de probabilidade equivalente de Martingale.

A única fonte de incerteza considerada na formação da renda do gerador foi o preço spot e, por sua vez, a única fonte de incerteza considerada na formação do preço spot foi a afluência, cuja distribuição de probabilidades é conhecida (estimada). Assim, em cada período e estado (estoque, afluência) do sistema podemos transladar a média da distribuição de probabilidade de transição para os estados futuros de modo a atender a condição de Martingale e dessa forma calcular o valor esperado da renda, sob a probabilidade equivalente de Martingale.

²² Adotamos para a "taxa de juros livre de risco" o valor de 6% a.a. que é a taxa de juros para títulos de longo prazo do Tesouro Norte-americano.

4.5 ESTUDO DE CASO

Para avaliar os modelos propostos e compará-los ao atual modelo de despacho, foi feito um estudo de caso, simulando a operação de um sistema hidrotérmico simplificado, com características energéticas similares ao subsistema Sudeste do mercado brasileiro, verificando a rentabilidade e a atratividade de investimentos em geração hidrelétrica, termelétrica e num portfolio de geração hidrotérmica, para diversos níveis de custo da energia para o consumidor, correspondendo a requisitos de viabilidade e atratividade dos investimentos.

4.5.1 Modelo do Sistema

O sistema utilizado na simulação tem as características básicas do subsistema sudeste, que concentra a maior parte da geração e do mercado brasileiro, adotando as seguintes simplificações:

- toda a geração hidrelétrica foi concentrada numa geração equivalente, com capacidade inicial (H₀) de 43 GW e o reservatório com capacidade inicial (E₀) de 178 GW médios;
- a geração termelétrica existente foi concentrada em 3 grupos, de acordo com o custo marginal de operação:

	G₀ (GW)	c (US\$/MWh)
1	1.5	34.00
2	1.0	52.00
3	0.5	133.00

Tabela 3 – Características das Térmicas Existentes

não há restrição nem perdas na transmissão

Como discutido nas premissas do modelo de despacho, a demanda é suposta evoluir como um processo determinístico, crescendo 4% a.a., que é a

taxa de crescimento da demanda esperada para o Brasil no período 2003 – 2007, focalizado neste estudo de caso.

$$D_t = D_0 e^{\kappa t}$$
 eq.(46)

A capacidade da geração hidrelétrica e a da termelétrica evoluem ao longo do tempo para acompanhar o crescimento da demanda. A demanda inicial é de 25.8 GWh, que corresponde a aproximadamente à "energia assegurada" (60% da capacidade) provida pela geração hidrelétrica, ou seja, a demanda deverá ser inteiramente atendida pela geração hidrelétrica em, pelo menos, 95% dos cenários ao longo do tempo, o que, sob o modelo original, resulta em preços baixos a maior parte do tempo.

Também é suposto que a razão entre a capacidade de geração hidrelétrica e a de geração termelétrica é mantida constante e que a expansão da geração termelétrica é feita com um gerador que é mais eficiente que os existentes e seu custo marginal de operação é de US\$32/MWh, o que corresponde aproximadamente a um gerador térmico a gás natural com ciclo combinado.

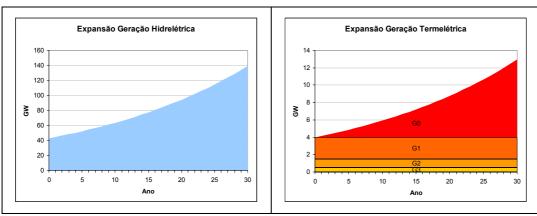


Figura 31 – Evolução da Capacidade de Geração

Portanto, a capacidade de geração do sistema é suposta evoluir segundo as seguintes expressões:

$$(S_t - S_0) = k (D_t - D_0)$$
 eq.(47)

$$H_t = \gamma S_t$$
 $G_t = (1 - \gamma) S_t \rightarrow S_t = H_t + G_t$ eq.(48)

A afluência hídrica das bacias brasileiras é modelada como um processo estocástico sazonal e autoregressivo, condicionalmente estacionário (média e variância sazonais), conhecido como modelo PAR (*periodic auto-regressive*) ²³:

²³ Manual de Metodologia do SDDP (PSR)

$$(a_t - \mu_{m(t)})/\sigma_{m(t)} = \sum_p \phi^p_{m(t)} (a_{t-1} - \mu_{m(t-1)})/\sigma_{m(t-1)} + \xi_t \dots eq.(49)$$

$$\xi_t = e^{\epsilon\,t} + \psi_t \hspace{0.5cm} \epsilon_t \sim N(0, s_{m(t)}) \hspace{0.5cm} \text{eq.} (50)$$

Uma análise precisa da afluência das bacias brasileiras recomenda que ela seja modelada por um processo PAR, de ordem variável, chegando a atingir ordem 6. No entanto, neste estudo simplificamos o modelo para ordem 1, a fim de reduzir o esforço computacional na utilização da programação dinâmica estocástica (PDE). Os parâmetros do modelo adotado para a afluência são apresentados na tabela abaixo.

mês	1	2	3	4	5	6	7	8	9	10	11	12
ф	0.65	0.59	0.67	0.79	0.77	0.82	0.89	0.84	0.84	0.68	0.74	0.72
μ	4862	5148	4820	3593	2653	2269	1878	1575	1595	1911	2411	3602
σ	1357	1531	1402	9659	6992	8014	5224	4047	6009	6723	7137	9826
s	0.760	0.807	0.742	0.613	0.638	0.572	0.456	0.543	0.543	0.733	0.673	0.694

Tabela 4 – Parâmetros do Modelo PAR(1) da Afluência

É importante observar que este modelo se refere à afluência convertida em termos do seu equivalente energético, ou seja, é a "energia natural afluente" (ENA) e por isso, o valor médio evolui de acordo com a capacidade de geração hidrelétrica.

$$\mu_{m(t)} / \mu_{m(0)} = H_t / H_0$$
 eq.(51)

Esta mesma evolução é aplicada à capacidade de armazenagem (E):

$$E_t / E_0 = H_t / H_0$$
 eq.(52)

4.5.2 Modelo dos Investimentos

Foram estudados investimentos em geração hidrelétrica, em geração termelétrica e num portfolio dos dois tipos de geração (portfolio hidrotérmico), composto na mesma proporção de cada tipo de geração que o sistema do modelo, ou seja, 91.5% de geração hidrelétrica e 8,5% de geração termelétrica. Os investimentos são marginais e não afetam a capacidade do sistema.

Os atuais orçamentos dos investimentos em geração hidrelétrica indicam um custo de investimento em torno de US\$ 700/kW, que é bem inferior ao projetado pela curva de custos de investimentos em geração do Plano de Expansão 2001-2010. O custo de investimento em geração termelétrica foi

suposto ser de US\$ 650/kW, que corresponde aproximadamente a uma termelétrica a gás natural, de ciclo combinado e porte médio.

A vida útil da usina hidrelétrica é suposta ser de 40 anos e a da usina termelétrica de 20 anos. No entanto os investimentos são perpetuados, isto é, replicados ao final da respectiva vida útil.

As características dos investimentos são indicadas na tabela abaixo.

	Custo de Investimento (US\$/kW)	Vida Útil (anos)		
Hidrelétrica	700.00	40		
Termelétrica	600.00	20		

Tabela 5 – Características dos Investimentos

O fluxo de caixa dos investimentos é descontado a uma taxa de 12% a.a.

4.5.3 METODOLOGIA

No atual marco regulatório brasileiro, espera-se que os novos investimentos sejam realizados, predominantemente, pelo setor privado, e por isto é crítico analisar a viabilidade e a atratividade dos investimentos nos termos discutidos na seção anterior. Entretanto, o sistema deve ser desenhado de forma que a viabilidade dos investimentos seja alcançada ao menor custo da energia ("C") para o consumidor final, definido como o valor presente esperado dos pagamentos futuros feitos pelos consumidores durante o horizonte de planejamento T, ou seja, o produto do preço *spot* pela demanda do sistema (D):

$$C_{t}(e_{t}, a_{t}) = E_{t} \left\{ \sum_{\tau=t}^{T} (s_{\tau}(e_{\tau}, a_{\tau}) D_{\tau} + \Delta R_{\tau}) \beta^{\tau} \right\}$$
 eq.(53)

Na expressão acima consideramos que a taxa de desconto (β), adotada pelo regulador para valoração do valor presente do custo da energia para o consumidor, pode ser diferente da adotada para valoração do custo operativo do sistema e também incluímos o incremento de renda (ΔR) que, no modelo de preço mínimo, é pago aos geradores térmicos não despachados.

O custo da energia para o consumidor é crescente com a renda obtida pelo investidor sob cada ajuste do par6ametro de controle de cada modelo. De forma a poder comparar os modelos alternativos, estabelecemos níveis de custo da energia para o consumidor, correspondentes a requisitos de viabilidade /

atratividade dos investimentos, como indicado na tabela abaixo, onde o custo da energia é indicado em percentuais do custo da energia valorada pelo "valor normativo" (s*) ao invés do preço spot, como indicado na equação abaixo.

$$C^* = \sum_{\tau=0}^{T} (s * D_{\tau}) \beta^{\tau}$$
 eq.(54)

Condição de Investimento	Custo Energia C/C*	Aversão ao Risco	P. Min. US\$/MWh	Margem Invest.
Viável ¹ para Geração Hidrotérmica e Portfolio	54%	2.00	10.50	25.5%
Viável para Geração Termelétrica	61%	2.30	13.50	35.3%
Atrativo ² para Geração Hidrotérmica e Portfolio	83%	3.23	22.00	63.6%
Custo da Energia = Custo Normativo	100%	4.65	27.90	85.3%
Atrativo² para Geração Termelétrica	157%	6.40	46.00	158.2%

Tabela 6 - Ajuste dos Modelos

Observações:

- 1 Viabilidade: valor esperado do VPL é positivo
- 2 Atratividade: opção de investimento é exercida no 1º período do horizonte de investimento em 95% dos cenários.

A distribuição de probabilidade da renda é obtida por simulação da operação com 2000 trajetórias de afluência, a partir do estado inicial. O processo estocástico autoregressivo da afluência converge para o regime em cerca de 24 períodos. Por isso, são consideradas as distribuições de probabilidade do preço e da renda observadas a partir do período 25.

4.5.4 RESULTADOS

As figuras abaixo mostram a rentabilidade "y" dos investimentos sob cada um dos modelos alternativos, ajustados nos níveis indicados na tabela acima (Tabela 6). A rentabilidade dos investimentos é definida como a razão entre o valor esperado do VPL e o custo dos investimentos:

$$y = E\{VPL\} / I$$
 eq.(55)

Rentabilidade dos Investimentos em Geração Hidrelétrica

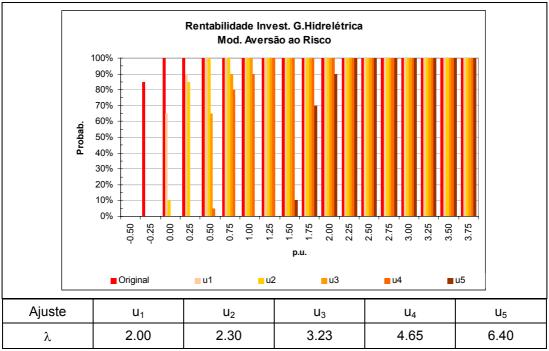


Figura 32 - Rentabilidade do Investimento em Geração Hidrelétrica Modelo com Aversão ao Risco

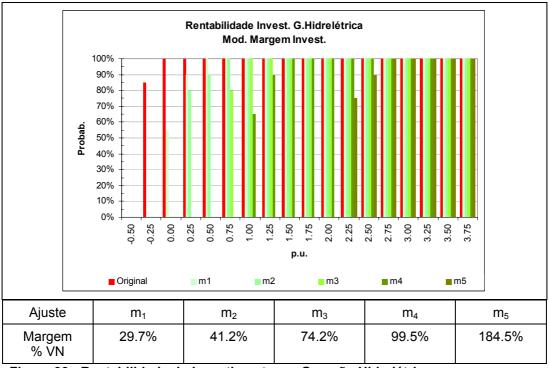


Figura 33 - Rentabilidade do Investimento em Geração Hidrelétrica Modelo com Margem de Investimento

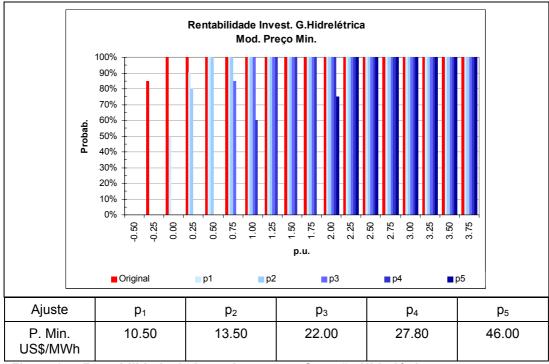


Figura 34 - Rentabilidade do Investimento em Geração Hidrelétrica Modelo com Preço Mínimo

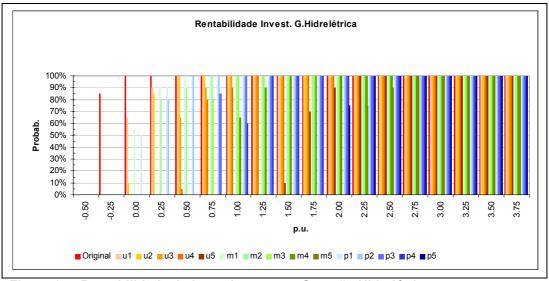


Figura 35 - Rentabilidade do Investimento em Geração Hidrelétrica Todos os Modelos

Pode-se observar que:

 A rentabilidade do investimento em geração hidrelétrica sob o modelo original é negativa em 85% dos cenários, indicando a ineficácia desse modelo na viabilização da expansão da geração hidrelétrica, mesmo para o baixo custo de investimento considerado.

- Em todos os modelos alternativos a rentabilidade do investimento em geração hidrelétrica é positiva mesmo para o menor valor do ajuste, o que corresponde a um custo da energia para o investidor de 54% do "custo normativo".
- O modelo com "aversão ao risco" é o mais eficaz para viabilizar os investimentos em geração hidrelétrica, i.e., a distribuição de probabilidade acumulada da rentabilidade obtida sob este modelo domina estocasticamente²⁴ as obtidas sob os demais modelos.

²⁴ Dominância estocástica de 1^a ordem: menor probabilidade de menores valores.

Rentabilidade dos Investimentos em Geração Termelétrica

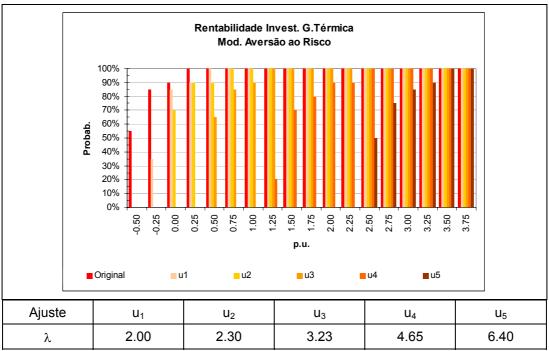


Figura 36 - Rentabilidade do Investimento em Geração Termelétrica Modelo com Aversão ao Risco

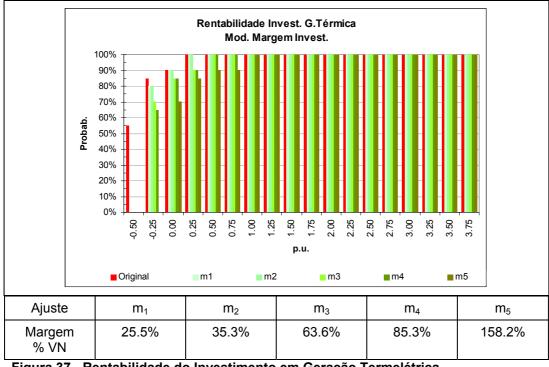


Figura 37 - Rentabilidade do Investimento em Geração Termelétrica Modelo com Margem de Investimento

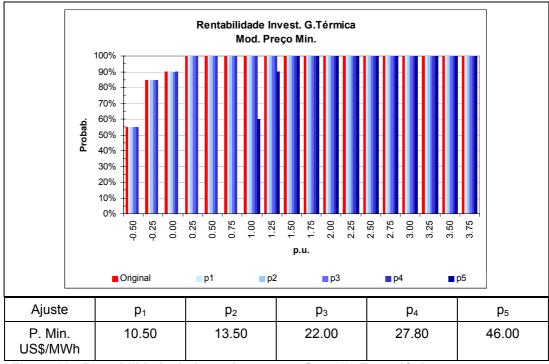


Figura 38 - Rentabilidade do Investimento em Geração Termelétrica Modelo com Preço Mínimo

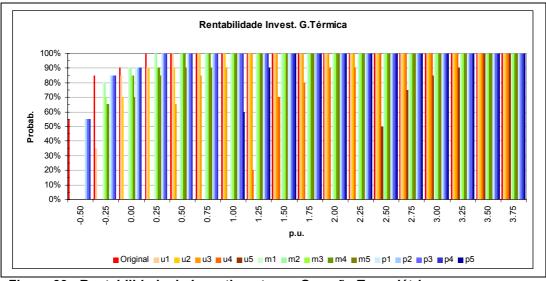


Figura 39 - Rentabilidade do Investimento em Geração Termelétrica Todos os Modelos

Pode-se observar que:

 A rentabilidade do investimento em geração termelétrica sob o modelo original é negativa em 85% dos cenários e muito negativa em 55% dos cenários, indicando a ineficácia desse modelo na viabilização da expansão da geração termelétrica.

- A rentabilidade do investimento em geração termelétrica só foi estritamente positiva somente sob o modelo com "aversão ao risco" ajustado a partir do nível "u2", correspondendo a um custo de energia de 61% do custo normativo e sob o modelo com "preço mínimo" ajustado a partir do nível "p5", o que demonstra a dificuldade em viabilizar os investimentos em geração termelétrica, mesmo com a renda suplementar obtida sob o modelo de "preço mínimo".
- O modelo com "margem de investimento" é quase tão ineficaz para viabilizar os investimentos em geração termelétrica quanto o modelo original. Isto se explica pela perda de competitividade que o modelo de "margem de investimento" impõe à geração termelétrica. Possivelmente um modelo de margem de investimento que adicionasse a margem somente ao custo da geração hidrelétrica seria eficaz.
- O modelo com "aversão ao risco" é o mais eficaz para viabilizar os investimentos em geração termelétrica, i.e., a distribuição de probabilidade acumulada da rentabilidade obtida sob este modelo domina estocasticamente²⁵ as obtidas sob os demais modelos.

²⁵ Dominância estocástica de 1^a ordem: menor probabilidade de menores valores.

Rentabilidade dos Investimentos no Portfolio de Geração Hidrotérmica

Figura 40 - Rentabilidade do Investimento no Portfolio de Geração Hidrotérmica Modelo com Aversão ao Risco

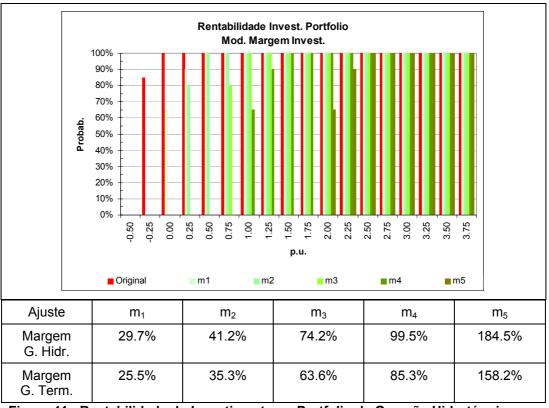


Figura 41 - Rentabilidade do Investimento no Portfolio de Geração Hidrotérmica Modelo com Margem de Investimento

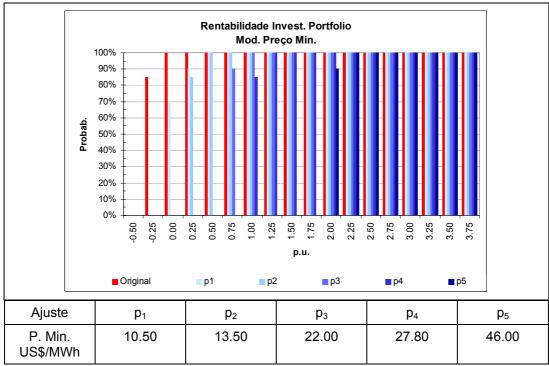


Figura 42 - Rentabilidade do Investimento no Portfolio de Geração Hidrotérmica Modelo com Preço Mínimo

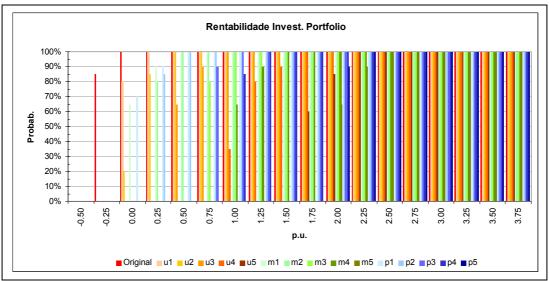


Figura 43 - Rentabilidade do Investimento no Portfolio de Geração Hidrotérmica Todos os Modelos

Os resultados obtidos para o investimento no portfolio de geração hidrotérmica são bastante próximos aos obtidos para os investimentos em geração hidrelétrica. Esta similaridade é explicada pela proporção (91%) de geração hidrelétrica no portfolio. Contudo pode-se notar uma piora nos resultados obtidos sob o modelo de "margem de investimento" que já havia se mostrado bastante ineficaz para os investimentos em geração termelétrica.

A tabela abaixo apresenta o valor médio da rentabilidade "y" dos investimentos considerados, obtida sob cada um dos modelos e nível de ajuste.

É interessante observar que embora o modelo de "aversão ao risco" seja o mais eficaz sob o ponto de vista de dominância estocástica, o modelo de "preço mínimo" é melhor do ponto de vista de maior valor médio de rentabilidade ao menor custo para o consumidor (valor esperado da relação custo / benefício).

Modelo	Ajuste	Custo Energia (% C*)	Rentabilidade G. Hidr.	Rentabilidade G. Term.	Rentabilidade Portfolio
Original	-	34%	-37%	-41%	-38%
Aversão	u1	54%	1%	-12%	-6%
Risco	u2	61%	12%	1%	11%
	u3	83%	50%	54%	50%
	u4	100%	66%	148%	110%
	u5	157%	169%	263%	177%
Margem	m1	54%	5%	-33%	2%
Investimento	m2	61%	21%	-31%	16%
	m3	83%	67%	-24%	67%
	m4	100%	102%	-18%	102%
	m5	157%	221%	6%	203%
Preço	p1	54%	4%	-40%	2%
Mínimo	p2	61%	21%	-41%	16%
	р3	83%	66%	-42%	60%
	p4	100%	103%	-41%	92%
	p5	157%	200%	106%	193%

Tabela 7 – Rentabilidade Média dos Investimentos (p.u.) – Todos os Modelos

A tabela abaixo apresenta a atratividade²⁶ dos investimentos considerados, obtida sob cada um dos modelos e nível de ajuste.

Modelo	Ajuste	Custo Energia (% C*)	Atratividade G. Hidr.	Atratividade G. Term.	Atratividade Portfolio
Original	-	34%	1%	1%	1%
Aversão	u1	54%	6%	4%	3%
Risco	u2	61%	8%	4%	8%
	u3	83%	11%	7%	10%
	u4	100%	10%	13%	13%
	u5	157%	18%	18%	19%
Margem	m1	54%	7%	2%	6%
Investimento	m2	61%	10%	2%	9%
	m3	83%	19%	2%	18%
	m4	100%	36%	2%	36%
	m5	157%	100%	6%	100%
Preço	p1	54%	5%	1%	4%
Mínimo	p2	61%	7%	1%	7%
	р3	83%	100%	1%	100%
	p4	100%	100%	1%	100%
	p5	157%	100%	100%	100%

Tabela 8 – Atratividade Média dos Investimentos – Todos os Modelos

Pode-se observar que:

- Sob o modelo original a atratividade dos investimentos é muito baixa (a opção de investimento só seria exercida no 1º período em 1% dos cenários).
- A atratividade é pouco sensível ao ajuste do modelo de aversão ao risco, apresentando valores relativamente baixos, até mesmo para ajustes que levam a um valor elevado (157% do Custo Normativo) para o custo da energia. A pouca sensibilidade da atratividade ao grau de aversão ao risco é devida ao aumento da incerteza da renda que seria obtida sob este modelo anulando o efeito positivo do aumento do valor médio da rentabilidade com o incremento do grau de aversão ao risco.

²⁶ Atratividade: a proporção dos cenários nos quais a opção de investimento é exercida no 1o período

- A atratividade também se mostrou pouco sensível à margem de investimento (modelo de "margem de investimento").
- O modelo de "preço mínimo" se mostrou o mais eficaz do ponto de vista de atratividade dos investimentos, sendo o único modelo sob o qual se obteve atratividade superior a 95% para investimentos em geração térmica. Esta performance é devida ao fato que o modelo de preço mínimo limita à direita a distribuição do preço spot, eliminado, a partir de um certo nível de preço mínimo, os cenários de renda insuficiente.

Os resultados e conclusões desse estudo sobre a atratividade dos investimentos devem ser vistos com cautela uma vez que a incerteza da renda afeta profundamente o exercício da opção de investimento e esta incerteza pode ser mitigada pela contratação de longo prazo, que não foi considerada neste estudo.

Uma métrica alternativa da incerteza da rentabilidade dos investimentos é a proporção dos cenários em que a rentabilidade (VPL) é positiva, como mostrado na tabela abaixo.

Modelo	Ajuste	Custo Energia (% C*)	% VPL > 0 G. Hidr.	% VPL > 0 G. Term.	% VPL > 0 Portfolio
Original	-	34%	4%	6%	4%
u1	2.00	54%	31%	13%	20%
u2	2.30	61%	88%	27%	81%
u3	3.23	83%	100%	100%	100%
u4	4.65	100%	100%	100%	100%
u5	6.40	157%	100%	100%	100%
m1	1.40%	54%	41%	8%	30%
m2	1.94%	61%	100%	9%	100%
m3	3.50%	83%	100%	11%	100%
m4	4.69%	100%	100%	13%	100%
m5	8.70%	157%	100%	29%	100%
p1	10.50	54%	45%	6%	29%
p2	13.50	61%	100%	6%	100%
р3	22.00	83%	100%	5%	100%
p4	27.80	100%	100%	5%	100%
р5	46.00	157%	100%	100%	100%

Tabela 9 - Percentual de Rentabilidade Positiva - Todos os Modelos

Os resultados confirmam que o modelo "avesso ao risco" apresenta o melhor desempenho, pois todos os investimentos obtêm rentabilidade positiva em 100% dos cenários ao menor custo da energia, a um valor inferior ao normativo (C^*) .

Em resumo, se pode concluir que o modelo "avesso ao risco" permite viabilizar, de forma robusta, todos os investimentos, a um custo de energia para o consumidor inferior ao limite permitido pelo regulador (Custo Normativo).