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MAXIMUM PRINCIPLE AND APPLICATIONS

Abstract

In this work, we put forward a brief introduction to local second order elliptic operators, ba-
sed on the classical literature or modern approaches to it, such as [1] [2]. My own master
thesis was also used to supply some results. Our object of study are operators that in a
sense behave like the Laplacian operator and some of its variants. We present a number of
elementary properties and establish an Alexandroff-Bakelman-Pucci estimate. As an appli-
cation, we examine symmetry results for solutions of elliptical problems.

Keywords: Classical Solutions, Maximum Principle, ABP estimate,Local Opera-
tors
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PRINCÍPIO DO MÁXIMO E APLICAÇÕES

Resumo

Neste trabalho, damos uma breve introdução a teoria linear de operadores elípticos de se-
gunda ordem, baseada na literatura clássica disponível além de trabalhos modernos, tais
como [1] [2]. Minha dissertação de mestrado também foi utilizada como base para alguns
resultados. Nosso objeto de estudo são operadores que em algum sentido se comportam
como o operador laplaciano. Apresentamos uma série de resultados fundamentais para a
teoria e demonstramos a estimativa Alexandroff-Bakelman-Pucci. Como aplicação, exami-
namos resultados de simetria para soluções de problemas elípticos.

Palavras-chave: Soluções Clássicas, Princípio do Máximo, Estimativa ABP,Operadores
Locais
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1 Introduction

A partial differential equation is a relation between an unknown function of two or
more variables and some of its partial derivatives.In order to be more specific, let
Ω ⊂ Rn be an open subset, fix k a positive integer.

Definition 1.1. An expression of the form:

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0

is called a kth-order partial differential equation, where

F : Rnk × Rnk−1 × . . .Rn × R× Ω→ R

is given and
u : Ω→ R

is the unknown.

Such equation is solved if we can find all functions u such that u verifies it, possibly
while also satisfying some auxiliary boundary conditions on a subsetΓ of ∂Ω

Classification of PDE’s

Depending on the linearity of the functional F we may classify our PDE’s as:

1. Linear:

Definition 1.2. A PDE is called linear if the operator is of the form:

F =
∑
|α|≤k

aα(x)Dα

2. Semi linear

Definition 1.3. A PDE is called semi linear if the operator is of the form

F =
∑
|α|=k

aα(x)Dα + a0(Dk−1, . . . , Du, u, x)

Quasilinear

Definition 1.4. A PDE is called quasilinear if the operator is of the form

F =
∑
|α|=k

aα(Dk−1, . . . , Du, u, x)Dα + a0(Dk−1, . . . , Du, u, x)

Fully Nonlinear

Definition 1.5. A PDE is called fully nonlinear if it depends nonlinearly upon the
highest order derivative

Example 1.1.

1. Linear

(a) Laplace’s Equation
∆u = 0
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(b) Diffusion Equation

ut −∆u = 0

(c) Wave Equation
utt −∆u = 0

2. Semi linear

3. Quasilinear

4. Fully nonlinear

(a) Monge-Ampere Equation
Det(D2u) = 0
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2 Elliptical Equations

On this chapter we are going to define what it means for a PDE to be elliptic and
work through the classic approach

a Some Definitions

From now on we are mostly concerned about second order PDE’s.

Definition 2.1. We say that F is (degenerate) elliptic if

F (x, r, p,X) ≥ F (x, r, p, Y )

for all x ∈ Ω, r ∈ R, p ∈ Rn, X, Y ∈ Sn provided X ≥ Y .

Definition 2.2. We say that F is uniformly elliptic if there exists λ,Λ > 0 such that
for every N ∈ Sn for every M ∈ Rn2

λ||N || ≤ F (M +N)− F (M) ≤ Λ||N ||

Example 2.1. Consider a second order linear differential operator of the form:

Lu = aij(x)∂i∂ju+ bi(x)∂iu+ c(x)u

Where aij is a real symmetric matrix with eigenvalues between λ,Λ and Einstein
summation convention is used. Then L is (λ, nΛ) elliptic

Remark 2.1. The notion of elipcity depends on the domain.Consider for example the
operator as above with the matrix aij(x) given by:

A(x) =

[
e−|x| 0

0 1

]
From the previous example we get that L is uniformly elliptic on any bounded domain
Ω but only elliptic on the whole space

b Maximum Principle

One of the principal tools from the analysis of elliptic equations is the so called
maximum principle.

In this section we are going to develop the classic maximum principle and some
extensions. For now, we are mostly interested in classical solutions ,i.e, we suppose
u ∈ C2(Ω) ∩ C(Ω̄)

Consider a non divergence second order linear differential operator

Lu = aij(x)∂i∂ju+ bi(x)∂iu+ c(x)u

With bounded measurable coefficients such that |aij|, |bi|, |c| ≤ Λ, and λI ≤ A(x) ≤ ΛI
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Theorem 2.1. Let Ω ⊂ Rn be an open bounded set, if c = 0 and Lu ≥ 0 in Ω then
maxΩ̄ u = max∂Ω u

First let’s consider the case that Lu > 0 in Ω and suppose that maxΩ̄ u > max∂Ω u if
that were the case then there would exist some x0 ∈ Ω such that u(x0) = maxΩ̄ u and
as so we would have ∇u(x0) = 0 and D2u(x0) ≤ 0 and therefore Lu(x0) ≤ 0 which
contradicts the fact that Lu > 0 in Ω

To consider the case where Lu ≥ 0 we are going to consider a perturbation of u
which converges uniformly to u. Define uε(x) = u(x) + εeαx1 with α to be chosen later

Evaluating Luε we obtain

Luε = Lu+ L(eαx1) = Lu+ (a11α + b1)αeαx1 > Lu+ eαx1α(λα− Λ) > 0

Once we take α > Λ
λ
. Applying what we have already proved to uε we get that:

max
Ω̄

uε = max
∂Ω

uε ≤ max
∂Ω

u+ εmax
∂Ω

eαx1

Taking the limit as epsilon goes to zero implies the result

Corollary 2.1. The preceding theorem guarantees the unicity of solution to the
Dirichlet problem:

Lu = f in Ω (1a)

u = g in ∂Ω (1b)

Whenever c(x) ≤ 0 in Ω

Proof. Let u, v be classical solutions of (13a) and (13b). Define w= u-v, as such w
satisfy the following boundary condition problem.

Lw = 0 in Ω

w = 0 in ∂Ω

Applying the previous theorem to w and to -w we obtain maxΩ̄ w = max∂Ω w = 0 and
minΩ̄u = min∂Ωu = 0 which implies that w is identically null, therefore we have u = v
in Ω

Let’s discuss a little bit about the restrictions of the result.In what follows we present
some counter-examples when we remove some hypothesis.

Example 2.2. In the case we assume Ω unbounded we can consider the Dirichlet
problem defined for Ω = {z = (x, y) ∈ R2, |z| > 1} and Lu = ∆u:

Lu = 0 in Ω

u = 0 in ∂Ω

Note that trivially u(x, y) = 0 is a solution and u(x, y) = log(
√
x2 + y2) is also a solution.
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Example 2.3. If we assume that the maximum principle holds assuming c(x) po-
sitive without further conditions we are led to contradiction once we consider the
problem:

Lu = 0 in Ω

u = 0 in ∂Ω

Where Lu = ∆u+ 2u and Ω = {(x, y) ∈ R2, (x, y) ∈ [0, 1]2}.
Note that once again we end up with two solutions to the problem, namely u(x, y) = 0
and u(x, y) = sin(x) sin(y)

The next result, also known as Hop lemma or Hopf-Oleinik theorem, states that the
solution of a uniformly elliptic equation cannot vanish on the boundary where a
extremum is attained.

Theorem 2.2. Let u ∈ C2(BR) ∩ C(B̄R) satisfying

Lu ≤ 0 in BR

u > 0 in BR

u(x0) = 0 x0 ∈ ∂BR

Then for every direction ξ ∈ Rn such that (ξ, ν) > 0 we have

lim inf
t→0+

u(x0 + tξ)− u(x0)

t
> 0

where ν is the radial normal vector pointing inward to ∂BR at x0

Proof. The idea behind the proof is to construct a radial function φ which will play
the role of a barrier from below for u.

First of all, we may without loss of generality suppose that c ≤ 0

In fact, if
aij∂i∂ju+ bi∂iu+ cu ≤ 0

Using that u is positive in BR and summing −c+u on both sides we have

aij∂i∂ju+ bi∂iu− c−u ≤ −c+u ≤ 0

Therefore, we may start the demonstration assuming c ≤ 0 if not consider the modi-
fied operator L̄u = aij∂i∂ju+ bi∂iu− c−u
Once surpassed those frivolities define

φ(x) = ε(|x|−α −R−α)

where ε(α) is such that ε((R
2

)−α −R−α) < min|x|=R
2
u > 0 and α is still to be chosen.
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It’s easy to check that φ is radial and for R

2
< r < R:

L(
φ

ε
) ≥ αr−α−2(λ(α + 1)− (n− 1)Λ)− Λ| − αr−α−1|+ c(r−α −R−α) ≥

αr−α−2(λ(α + 1)− (n− 1)Λ− Λr) + cr−α ≥
The above expression is positive once we choose α big enough. Therefore φ satisfies:

Lφ ≥ 0 ≥ Lu in BR \BR
2

φ(R) = 0 = u(x0) = min
|x|=R

u

φ(
R

2
) ≤ min

|x|=R
2

u

φ′(R) < 0

Taking t small enough in order that x0+tξ ∈ BR\BR
2

and using the maximum principle
to obtain φ ≤ u in BR \BR

2
we obtain

lim inf
t→0+

u(x0 + tξ)− u(x0)

t
≥ lim inf

t→0+

φ(x0 + tξ)− φ(x0)

t
= ∇φ(x0) · ξ =

φ(R)

R
x0 · ξ = −φ(R)(ν, ξ) > 0

Theorem 2.3. Strong Maximum Principle: Let u ∈ C2(Ω) ∩ C(Ω̄) satisfying

Lu ≤ 0 in Ω

u ≥ 0 on ∂Ω

Then either u ≡ 0 or u is strictly positive.

Proof. Let Ω0 = {x ∈ Ω | u(x) = 0} and Ω+ = {x ∈ Ω | u(x) > 0}. Suppose that both
sets are nonempty, otherwise there is nothing to be proven. Take z ∈ Ω+ such that
d(z,Ω0) < d( ∂Ω). Consider a ball of radius R such that BR(z) is entirely contained
in Ω+ and ∂BR(z) ∩ ∂Ω0 is nonempty. Let y be a point in this intercession, clearly y
is a minimum point therefore ∇u(y) = 0 which contradicts, Hopf lemma applied to
BR(z).

Corollary 2.2. Let u, v ∈ C2(Ω) ∩ C(Ω̄) satisfying

Lu ≤ Lv in Ω

u ≥ v on ∂BR

Then either u and v are identical or u > v in Ω.

Proof. Just apply the strong maximum principle to the function w := u− v.
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Up to this point we have shown results which characterize an operator satisfying
the maximum principle depending on the sign of the coefficients. Now we present
another way to prove the validity of the maximum principle.

Theorem 2.4. If there exists a strictly positive supersolution ψ of Lu = 0, or in other
words, ψ ∈ C2(Ω) ∩ C1(Ω̄) such that

Lψ ≤ 0 in Ω

u >0 on ∂Ω

Then L satisfies the maximum principle in Ω.

Proof. Suppose that u is a C2(Ω) ∩ C(Ω̄) function satisfying,

Lu ≤ 0 in Ω

u ≥0 on ∂Ω

we want to conclude that u is a positive function.

The idea here in this proof is to construct an auxiliary function v depending on u and
ψsuch that v will satisfy an elliptic equation with the maximum principle propriety.
Definev := u

ψ
note that v is well defined since ψ is strictly positive.

From the definition of v it is clear that v satisfies the equation:

Aijvij + (b+
A∇ψ
ψ

) · ∇v +
Lψ

ψ
≤ 0 in Ω

u >0 on ∂Ω

Note that the 0-order term is negative hence we may apply the maximum principle
for v = uψ, obtain that v is a positive function and hence since ψ is positive we
conclude that so is u.
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3 A priori estimates

Corollary 3.1. Let Ω be a bounded set and L a second order (λ,Λ) uniformly el-
liptic operator with bounded coefficients and c(x) ≤ 0. There exists a constant
C(n, λ,Λ, diamΩ) ≥ 0 such that if Lu = f then

sup
x∈Ω

u(x) ≤ sup
x∈∂Ω

u(x) + sup
x∈Ω

f(x) (12)

Proof. Let M := supx∈Ω f(x), K := supx∈∂Ω u(x), define ξ(x) = K + MΨ(x) = K +
M(exp(αd0)− exp(αx1)). It follows from the definition that ξ satisfies:

Lξ = −M ≤ −f− ≤ f ≤ Lu in Ω (13a)

ξ ≥ K ≥ u+ ≥= g on ∂Ω (13b)

Therefore, the result is a direct conclusion from the maximum principle.

The above inequality may be stated in a more general form which is known in the
literature as the Alexandrov-Bakelman-Pucci estimate, or ABP estimate for short.
This will enable us to move from measure theory estimates to pointwise estimates.
Later in this monograph, such an estimate will be an essential element in the proof
of the Harnack Inequality. This gives us information over the growth of solutions.

In what follows we introduce the definition of concave envelope for a class of functi-
ons u : Rd → R. First, we put forward the definition of affine function.

Definition 3.1. A function of the form

`(x) = a+ b · x,

with a ∈ R and b ∈ Rd is called affine.

Remark 3.1. There is also the natural extension of affine functions, namely, vectorial
affine maps, which are of the form:

`(x) = a+ b · x,

where a ∈ Rd, b ∈ L(Rd,Rd). In this case, ` also describes a plane in the ambient
space.

Definition 3.2. Let u : Rd → R be such that

u(x) ≤ 0 , x ∈ Ω̄

The concave envelope of u in Ω at x is denoted by Γ(x) and defined as follows:

Γ(x) =
{

min{`(x), ` affine | `(x) ≥ u+(x) in Ω}

Next we establish some proprieties of the function Γ.

Lemma 3.1. Let Γ : Rd → R be as in Definition 3.2, Γ is concave.
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Proof. The proof follows from the fact that the minimum of concave functions is
concave. Γ is the minimum of affine functions. Recalling that every affine function
is concave, we conclude that Γ is concave.

As a corollary of the previous lemma, we prove the continuity of Γ in Ω as a direct
consequence of Theorem A.2.

Given a function u : Rd → R satisfying the conditions in Definition 3.2, one may
consider the concave envelope Γ as on above and define the contact set of u as
follows.

Definition 3.3. If u satisfies the conditions of Definition 3.2, we define the contact
set of u, denoted by Σu as:

Σu := {y ∈ Ω |u(y) = Γ(y)}.

Remark 3.2. Unless we are dealing simultaneously with more than one concave en-
velope, we will not use the subindex in order to preserve the clarity of the notation.

Lemma 3.2. The set Σu = {y ∈ Ω|u = Γ} is closed.

Proof. Since u is lower semicontinuous and Γ is continuous, u − Γ is lower semicon-
tinuous and therefore {u = Γ} is the preimage of a closed set by a lower semiconti-
nuous function. The result follows from classic consideration in Analysis.

Remark 3.3. The superdifferential of Γ is always nonempty in Ω since Γ is concave.

Remark 3.4. If u is differentiable the superdifferential of Γ coincides with Du. On
the other hand if Γ is differentiable DΓ coincides with the superdifferential of the
function Γ.

Lemma 3.3. Let u,Γ : Rd → R be as in Definition 3.2, then

( supu

diamΩ

)d
|B1| ≤ |∇u(Σu)|

Proof. Consider a conic function of the form w(x) := a ·
(

1− |x|
R

)
it is clear that

|∇w(Ω)| = |Ba/R|. Let u be as in Definition 3.2, take a = supΩ u > 0 and R = diam(Ω).
Notice that if you take an hyperplane coming down from infinity that touches the
graph of w at its vertex, then it also touches the graph of u in an interior point.
Therefore we obtain:

( supu

diamΩ

)d
|B1| ≤ |∇w(Ω)| ≤ |∇u(Σu)|
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Theorem 3.1. Let Ω be a bounded set, and L a second order (λ,Λ) uniformly elliptic
operator with coefficients in Ln(Ω) and c(x) ≤ 0. There is a constant C(n, λ,Λ, diamΩ) ≥
0 such that, if Lu = f ∈ Ln then:

sup
x∈Ω

u(x) ≤ sup
x∈∂Ω

u(x) + C||f ||Ln(Ω) (14)

Proof. We will restrict our attention to the case b ≡ 0, the interested reader may
consult on classical sources for how to contour this difficulty. Notice that we may
suppose that u is a negative function on the border of Ω by considering the auxiliary
function v := u− sup∂ Ωu. Hence, from the previous lemma we obtain:

( supu

diamΩ

)d
|B1| ≤ |∇u(Σu)|.

One may rewrite the last term as

|∇u(Σu)| =
∫
∇u(Σu)

1dx =

∫
Σu

|D2u(x)|dx

But notice that on the set Σu u is a concave function, hence D2u is a negative matrix.
Consider the generalized inequality of arithmetic and geometric means, which say
that for given two d-dimensional non negative matrices:

det(AB) ≤
(
Tr(AB)

d

)d
We may apply the above inequality to the matrix B = −D2u and obtain:

|∇u(Σu)| ≤
∫

Σu

∣∣∣∣−Tr(AD2u(x))dx

detA

∣∣∣∣
which imply the result.

Theorem 3.2 (Maximum Principle for small domain). Let L be as in the theorem
before, additionally suppose that ||b(x)||Ln(Ω), ||c+(x)||L∞(Ω) < B , then given d0 > 0
there is δ(n, λ,B, d0) such that if diamΩ < d0, and |Ω| < δ, L satisfies the maximum
principle in Ω.

Proof. Let u ∈ C2(Ω) ∩ C0(Ω), satisfying:

Lu ≥ 0 em Ω (15a)

u ≤ 0 em ∂Ω (15b)

we aim to show that u ≤ 0 in Ω. For that, consider the auxiliary operator given by:

L[u] = aij(x)uxixj(x) + bi(x)uxi(x)− c−(x)u(x) ≥ −c+(x)u+(x) =: f.
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Note that the 0-order term of this operator is negative, hence we may use the ABP
estimate to obtain:

sup
x∈Ω

u(x) ≤ sup
x∈∂Ω

u(x) + C||c+u+||Ln(Ω) ≤ CB|Ω|1/n sup
x∈Ω

u+(x) (16)

Choosing a suffiently small δ > 0 such that CBδ1/n < 1/2 we obtain:

sup
x∈Ω

u(x) ≤ 1

2
sup
x∈Ω

u+(x)

Therefore u ≤ 0 in Ω as desired.
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4 Moving Planes Method

With the above result avaliable, we may introduce a common tool in the study of
partial differential equations known as moving planes, to expose the utility of this
technique we will demonstrate the following result.

Theorem 4.1. Let Ω be an open,bounded, convex and symmetric in the x1 di-
rection,furthermore suppose that f : R+ → R is a lipschitz function and u ∈ C2(Ω) ∩
C(Ω) satisfying:

∆u+ f(u) = 0 em Ω (17a)

u > 0 em Ω (17b)

u = 0 em ∂Ω (17c)

Hence u(x1, x2, . . . , xn) = u(−x1, x2, . . . , xn)∀x = (x1, x2, . . . , xn) ∈ Ω e ux1 < 0, ∀x such
that x1 > 0

Remark 4.1. The above result is still valid if we change the laplacian for another
operator satisfying the maximum principle that is symmetric with respect to the
axis x1 = 0.

Proof. We will start defining the following quantities:

• Tλ = {x ∈ Ω|x1 = λ}
• xλ = (2λ− x1, x2, ..., xn)

• Σλ = {x ∈ Ω|x1 = λ}
• wλ(x) = u(xλ)− u(x) for x ∈ Σλ

This way, it is clear that:
∆wλ + f(uλ)− f(u) = 0 (18)

defining cλ(x) as:

cλ(x) =
f(uλ(x))− f(u(x))

uλ(x)− u(x)
, uλ(x) 6= qu(x) (19a)

cλ(x) = 0 , uλ(x) = u(x) (19b)

Hence, we may write that wλ satisfies the Dirichlet problem:

∆wλ(x) + c(x)wλ(x) = 0 in Σλ (20a)

wλ ≥ 0 on ∂Σλ (20b)

As f is Lipschitz we obtain cλ is uniformely bounded therefore the previous estiamtes
are avaliable in our case.

We will split the argument in two parts, first let R := sup{λ ∈ R|Tλ 6= ∅}. We will show
that for every value of λ sufficiently close to R, wλ > 0. Following we will consider
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the case wλ > 0 for λ > 0, and we will show the existence of λ < λ such wλ > 0. This is
enough to obtain the result by a symmetry argument which will be later presented.

In order to show the existence of such λ, let δ > 0 as in Theorem 3.2 and choose λ
such that |Σλ| < δ, it follows ftom the maximum principle for small domains that L
satisfies the maximum principle in Σλ. Therefore, either wλ > 0 or wλ ≡ 0. As wλ > 0
on ∂Σλ ∩ ∂Ω, it follows that wλ > 0 in Σλ, hence the first part of the argument is
concluded.

To prove the second part of the argument, consider λ∗ := inf{λ ∈ (0, R)|wλ > 0 em Σλ.
From the previous argument we know that λ∗ is well defined since this set is non
empty. We want to show that λ∗ = 0, since due to the symmetry of the problem
we could repeat the same argument starting at the other side and obtain w0 ≡ 0
as desired. Suppose for the sake of contradiction λ∗ > 0, from continuity we in fact
have wλ∗ ≥ 0 in Σλ∗. As before, either wλ∗ > 0 or wλ∗ ≡ 0, analogously we conclude
that wλ∗ > 0.

Let K ⊂ Σλ∗ a compact set such that |Σλ∗ \K| < δ/2. Hence, due to continuity there
is ε0 > 0 such that λ∗ > ε0 satisfying:

wλ(x) ≥ infK wλ∗

2
> 0 ∀λ ∈ (λ∗ − ε0, λ) (21a)

|Σλ∗ \K| < δ (21b)

From the maximum principle for small domains it follows that wλ > 0 wich contradict
the definition of λ∗. In this manner we obtain w0 ≡ 0, applying the Höpf lemma to uλ
at points on Tλ ∩ ∂Σλ we obtain:

0 <
∂wλ
∂ν

= −2
∂u

∂x1

(λ, x2, ..., xn). (22)

from where we conclude uxi(λ, x2, ..., xn) < 0

a Application:

Theorem 4.2. Let Ω = BR(0) , suppose that f : Rn → R is a lipschitz function and
u ∈ C2(Ω) ∩ C(Ω) satisfying:

∆u+ f(u) = 0 in Ω (23a)

u > 0 in Ω (23b)

u = 0 on ∂Ω (23c)

Then u(x1, x2, . . . , xn) = u(r) e u′(r) < 0,∀r ∈ (0, R).

Proof. This result is a corollary from the previous one. Note that the ball is an open,
bounded, convex and symmetric in all directions. Applying the previous result for
each direction we obtain that u is radial and the sign og the derivative is a direct
consequence fromthe chain rule.
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A Appendix

With the finality of guiding the reader through the theory developed in the follo-
wing chapters, this chapter will present some basic facts of analysis which are not
commonly taught at the more mainstream analysis courses, but are nonetheless ne-
cessary for the correct understatement of what follows. The following results were
in part found and the interested reader may look for deeper results and applications
at [3].

Definition A.1. A subset C ⊂ Rd is said to be convex if (1− λ)x + λy ∈ C whenever
x, y ∈ C and λ ∈ [0, 1]

Definition A.2. Let f : S ⊂ Rd → R ∪ {∞}. The set

{(x, µ) |x ∈, µ ∈ R, µ ≥ f(x)}

is called the epigraph of f and is denoted by epi(f).

Definition A.3. A function f : S ⊂ Rd → R ∪ {∞} is said to be convex if epi(f) is a
convex set.

Remark A.1. A convex function must have a convex domain. On the other hand, a
locally convex function does not have such a restriction and as such has important
applications in regularity theory.

Definition A.4. A function f : S ⊂ Rd → R ∪ {∞} is said to be concave if −f is a
convex function.

Lemma A.1. Every convex function f : S ⊂ Rd → R ∪ {∞} can be extended to a
convex function f̄ : Rd → R ∪ {∞}.

Proof. Define f̄ : Rd → R ∪ {∞} as

f̄(x) =

{
f(x) x ∈ S
+∞ x /∈ S

Let (x, µ), (y, ν) ∈ Rd+1 ∩ epi(f̄), therefore (1 − t)(x, µ) + t(y, ν) ∈ epi(f) ⊂ epi(f̄) for
every t between 0 and 1. As a direct consequence epi(f̄) is convex and convexity of
f̄ follows.

In light of the previous result, the following lemmas will be stated assuming the
function f is defined over the whole space Rd.

Lemma A.2. A function f : Rd → R is convex if and only if

f((1− λ)x+ λy) < (1− λ)α + λβ ∀λ ∈ (0, 1)

whenever f(x) < α, f(y) < β.
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Proof. Suppose f is convex. Since α > f(x) and β > f(y), the pairs (x, α) and (y, β)
are in epi(f). Since f is convex, the epigraph of f is a convex set, which implies:

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) < (1− λ)α + λβ λ ∈ (0, 1).

on the other hand, suppose the inequality is true. Let (x, α), (y, β) ∈ epi(f) and λ ∈
(0, 1). Thenf((1 − λ)x + λy) < (1 − λ)α + λβ which implies that the epigraph of f is
convex and therefore the function f is convex.

Corollary A.1 (Jensen’s Inequality). Let f : Rd → R be a convex function. Then

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) λ ∈ [0, 1].

Proof. It follows from Lemma A.2 taking the infimum over α, β such that f(x) <
α, f(y) < β.

Definition A.5. Let C ⊂ Rd be a convex set, and suppose f : C → R is concave.
A vector p ∈ Rd is a supergradient of the function f at the point x ∈ Rd if for every
y ∈ Rd

f(y) ≤ f(x) + p · (y − x).

Analogously, if f is a convex function, we say that p ∈ Rd is a subgradient of f at
x ∈ Rd if

f(y) ≥ f(x) + p · (y − x).

In both cases we denote the set of all supergradients and subgradients of f at the
point x as ∂f(x)

Definition A.6. A convex function satisfying the assumption A.5 is said to be super-
differentiable at a point x ∈ Rd if ∂f(x) is non-void. In the same manner we define
that a concave function f as in A.5 is subdifferentiable at x.

Theorem A.1. A concave function on a convex set in Rd is superdifferentiable at
each interior point.

Proof. Let f be a concave function defined on a convex set C ⊂ Rd, and let x be an
interior point of C. Consider the strict subgraph of f ,S, as:

S := {(y, α) ∈ C × R : α < f(y)}

It follows from the concavity of f that S is a convex set. Also clear is the fact that the
pair (x, f(x)) does not belong to the set S. By the Separating Hyperplane Theorem
we obtain a nonzero pair (p, λ) ∈ Rd × R such that:

p · x+ λf(x) ≥ p · y + λα, (24)

where the inequality above holds for every y ∈ C, α < f(y). It follows from letting α
tend to infinity that λ must be a non-negative number. We proceed to conclude a
stronger fact, namely, that λ is indeed strictly positive. Suppose, in order to obtain
a contradiction, that λ = 0. Since x is an interior point, for some ε > 0 the ball Bε(x)
is contained in C. Considering points of the form y = x ± εz, with z ∈ B1, in 24 we
obtain: {

0 ≥ p · z
0 ≥ −p · z (25)
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We conclude that p must be zero, which contradicts the fact that (p, λ) is nonzero,
therefore λ is strictly positive.

Since λ is strictly positive, dividing the whole expression in 24 by λ we obtain:

f(x) + (y − x) · (−p
λ

) ≥ α

The result follows from letting α tend to f(y) and noticing that− p
λ
∈ ∂f(x).

Theorem A.2. Let A be an open convex subset of a finite dimensional vector space
over R, let f : A→ R be a bounded convex function. Then f is continuous on A.

Proof. Let A and f be as in the theorem, let x ∈ A an arbitrary point. Consider P the
parallelepiped centered at x lying completely inside A, such parallelepiped exists
since A is open. Let y ∈ ∂P , for λ ∈ [0, 1], convexity of f implies

f((1− λ)x+ λy) ≤ f(x) + λ[f(y)− f(x)]. (26)

Also, for α ∈ [0, 1/2], it follows that

f(x) = f

(
(1− α)

[
(1− 2α)x

1− α
+

αy

1− α

]
+ α(2x− y)

)
≤ (1− α)f(

(1− 2α)x

1− α
+

αy

1− α
) + αf(2x− y)

Choosing λ as α
1−α we obtain

(1 + λ)f(x) ≤ f((1− λ)x+ λy) + λf(2x− y). (27)

Using the two enumerated inequalities we obtain

−(λf(2x− y)− f(x)) ≤ f(x+ λ(y − x))− f(x) ≤ λ(f(y)− f(x)).

Since both y, 2x− y are in ∂P , the above inequality implies that a strict maximum of
f cannot be attained in the interior, another conclusion of the previous inequality is
that for any vector z ∈ Pλ := {x+ λ(y − x) : y ∈ ∂P}, is true that

|f(z)− f(x)| ≤ λ| sup
y∈∂P

f(y)− f(x)|

16



 

 

 

 
B Abbreviations

Br: The open ball centered at the origin with radius r.
Br(x0): The open ball centered at the point(x0) with radius r.
S(d): The space of dxd real symmetric matrices.

17



 

 

 

 
References

[1] L. Evans, Partial Differential Equations, 2nd ed., ser. Graduate Studies in
Mathematics. American Mathematical Society, Providence, Ri, 2010, vol. 19.
[Online]. Available: https://doi.org/10.1090/gsm/019

[2] B. Sirakov, Modern Theory of Nonlinear Elliptic PDE, 1st ed., ser. Colóquio Brasi-
leiro de Matemática. IMPA, 2015, vol. 30.

[3] R. Rockafellar, Convex analysis, ser. Princeton Mathematical Series, No. 28. Prin-
ceton University Press, Princeton, N.J., 1970.

18

https://doi.org/10.1090/gsm/019

	Introduction
	Elliptical Equations
	Some Definitions
	Maximum Principle

	A priori estimates
	Moving Planes Method
	Application:

	Appendix
	Abbreviations

