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Abstract

Bermúdez Castro, José David; Feitosa, R. Q. (Advisor); Happ, P.
N. (Co-Advisor). SYNTHESIS OF MULTISPECTRAL OP-
TICAL IMAGES FROM SAR/OPTICAL MULTITEM-
PORAL DATA USING CONDITIONAL GENERATIVE
ADVERSARIAL NETWORKS. Rio de Janeiro, 2019. 76p.
Tese de doutorado – Departamento de Engenharia Elétrica, Ponti-
fícia Universidade Católica do Rio de Janeiro.
Optical images from Earth Observation are often affected by the

presence of clouds. In order to reduce these effects, different reconstruction
techniques have been proposed in recent years. A common alternative is
to explore data from active sensors, such as Synthetic Aperture Radar
(SAR), as they are nearly independent on atmospheric conditions and solar
lighting. On the other hand, SAR images are more difficult to interpret
than optical images, requiring specific treatment. Recently, conditional
Generative Adversarial Networks (cGANs) have been widely used to learn
mapping functions that relate data of different domains. This work proposes
a method based on cGANs to synthesize optical data from data of other
sources: data of multiple sensors, multitemporal data and data at multiple
resolutions. The working hypothesis is that the quality of the generated
images benefits from the number of data used as conditioning variables
for cGAN. The proposed solution was evaluated in two databases. As
conditioning data we used co-registered data from SAR at one or two dates
produced by the Sentinel 1 sensor, and optical images produced by the
Sentinel 2 and LANDSAT satellite series, respectively. The experimental
results demonstrated that the proposed solution is able to synthesize
realistic optical data. The quality of the synthesized images was measured
in two ways: firstly, based on the classification accuracy of the generated
images and, secondly, on the spectral similarity of the synthesized images
with reference images. The experiments confirmed the hypothesis that
the proposed method tends to produce better results as we explore more
conditioning data for the cGANs.

Keywords
Deep Learning; Conditional Generative Adversarial Networks; Re-

mote Sensing; Crop Recognition; Wildfire Detection; Cloud Removal
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Resumo

Bermúdez Castro, José David; Feitosa, R. Q.; Happ, P. N.. SIN-
TETIZAÇÃO DE IMAGENS ÓTICAS MULTIESPEC-
TRAIS A PARTIR DE DADOS SAR/ÓTICOS USANDO
REDES GENERATIVAS ADVERSARIAS CONDICIO-
NAIS. Rio de Janeiro, 2019. 76p. Tese de Doutorado – Depar-
tamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

Imagens óticas são frequentemente afetadas pela presença de nuvens. Com
o objetivo de reduzir esses efeitos, diferentes técnicas de reconstrução fo-
ram propostas nos últimos anos. Uma alternativa comum é explorar dados
de sensores ativos, como Radar de Abertura Sintética (SAR), dado que
são pouco dependentes das condições atmosféricas e da iluminação solar.
Por outro lado, as imagens SAR são mais difíceis de interpretar do que as
imagens óticas, exigindo um tratamento específico. Recentemente, as Redes
Adversárias Generativas Condicionais (cGANs - Conditional Generative Ad-
versarial Networks) têm sido amplamente utilizadas para aprender funções
de mapeamento que relaciona dados de diferentes domínios. Este trabalho,
propõe um método baseado em cGANSs para sintetizar dados óticos a par-
tir de dados de outras fontes, incluindo dados de múltiplos sensores, dados
multitemporais e dados em múltiplas resoluções. A hipótese desse trabalho
é que a qualidade das imagens geradas se beneficia do número de dados
utilizados como variáveis condicionantes para a cGAN. A solução proposta
foi avaliada em duas bases de dados. Foram utilizadas como variáveis condi-
cionantes dados corregistrados SAR, de uma ou duas datas produzidos pelo
sensor Sentinel 1, e dados óticos de sensores da série Sentinel 2 e LANDSAT,
respectivamente. Os resultados coletados dos experimentos demonstraram
que a solução proposta é capaz de sintetizar dados óticos realistas. A qua-
lidade das imagens sintetizadas foi medida de duas formas: primeiramente,
com base na acurácia da classificação das imagens geradas e, em segundo
lugar, medindo-se a similaridade espectral das imagens sintetizadas com
imagens de referência. Os experimentos confirmaram a hipótese de que o
método proposto tende a produzir melhores resultados à medida que se
exploram mais variáveis condicionantes para a cGAN.

Palavras-chave
Aprendizado Profundo; Redes Adversárias Generativas; Reconheci-

mento de Culturas Agrícolas; Detecção de Queimadas; Remoção de Nuvens
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1
INTRODUCTION

Earth Observation using Remote Sensing (RS) technology has become a
cost-effective solution for many applications due to the possibility of accessing
free satellite imagery with higher spatial resolution and lower revisiting time.
It allows gathering information suitable for modeling many environmental
processes that exhibit complex spatiotemporal dynamic relationships, such
as cropland or deforestation monitoring. However, for fully exploiting the
available Earth Observation data, it is required to develop methods capable of
dealing with different temporal and spatial resolutions, different sensors and
incomplete and noisy data due to adverse atmospheric conditions (e.g., cloud
coverage) or sensors malfunctioning.

For instance, malfunctioning of sensors like MODIS or Landsat have
been limiting their usage and exploitation for different applications [11]. Aqua
MODIS presents on the 1.6-µm channel (band 6) 15 of the 20 detectors either
nonfunctional or noisy. This has been a serious problem for Aqua MODIS snow
products for instance, which use band 6 primarily for snow detection [12].
The scan line corrector (SLC) of Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) sensor has failed permanently since 2003, inhibiting the retrieval or
scanning of 22% of the pixels in each Landsat 7 SLC-off image. This failure has
seriously limited the scientific applications and usability of ETM+ data [13].

Cloud coverage represents another critical problem for many remote
sensing applications. First, because it cannot be avoided since it results from a
natural phenomenon we cannot control. Second, because it may affect optical
imagery, which is generally preferred for remote sensing applications, leading to
the corruption or missing of the data. But clouds not only represents a problem,
the shadow caused by these further stretch the affected area. For example,
Figure 1.1 shows an image acquired at the municipality of Campo Verde, Mato
Grosso state, Brazil affected by clouds. It observed how the affected area is
extended because of the shadows caused by clouds. Cloud coverage is especially
critical for those applications that demand multitemporal data due to it is
required the observation of the environmental processes at regular temporal
intervals for modeling the problem precisely. Thus, incomplete data on some
dates might dramatically compromise the outcome.
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Chapter 1. INTRODUCTION 13

Figure 1.1: Example of an Optical Remote Sensing image corrupted by clouds
and shadows. Image acquired at municipality of Campo Verde, Mato Grosso,
Brazil.

On average, approximately 35% of the global land surface is obscured
by clouds, where the major concentration is located in the tropical and sub-
tropical regions [14]. For instance, Brazil, which plays an important role in
agricultural production worldwide [15], the cloud coverage strongly limits
the usefulness of optical imagery for identifying, mapping and monitoring
croplands. [16] reports a research to assess cloud cover conditions over four
states in the tropical and sub-tropical Center-South region of Brazil. Results
showed high seasonality of cloud occurrence within the crop year. In particular,
the states close to the Equator line (North) presented the lowest averaged
values (15%) of clear sky occurrence during the main crop period (November
to February), while in South, the clear sky statistic was around 45%. In
these traditional agricultural regions, where approximately 45% of Brazilian
agriculture is concentrated, optical satellite data faces severe constraints for
mapping summer crops.

Likewise, cloud coverage also represents one of the main difficulties for
the design of more accurate methods for monitoring wildfires in the Ama-
zon rainforest [17]. In addition to image corruption, clouds present a similar
spectral response to the burned areas, which produces detection/classification
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Chapter 1. INTRODUCTION 14

errors. The occurrences of wildfires generate large socioeconomic and ecological
impacts [18]. It reduces the forest biomass due to mortality of large trees [19],
changes in tree species composition [20], soil impoverishment, loss of biodiver-
sity and economic losses [21], as well as indirect effects such as worsening air
quality, which affects human health worldwide [22].

An alternative to optical sensors to circumvent the cloud coverage
problem is the usage of active sensors, like Synthetic Aperture Radar (SAR),
which is almost independent of atmospheric conditions neither and solar
illumination [23]. In spite of these advantages over passive sensors, the usage
of SAR data is still challenging because it is less descriptive and more complex
to interpret than optical images. Accordingly, a plethora of reconstruction
techniques [3, 24–27] has been proposed and used in an attempt to remove
the presence of clouds in optical imagery. However, there is still no method
able to completely solve this problem.

In recent years, Deep Learning (DL) techniques have become the state-
of-art of many machine learning applications [28]. Essentially, DL’s paradigm
consists of learning meaningful representation from data instead of the tradi-
tional manual feature engineering. For RS image analysis, DL techniques have
demonstrated better performance than traditional methods based on hand-
crafted features [29]. The main difficulty for RS adaptation relies on the lack
of labeled samples required for optimizing the large set of parameters that
defines a DL model.

Currently, Generative Adversarial Networks (GANs) [30] have attracted
the attention of the machine community due to their capability for capturing
and representing complex probability distributions from data. In some appli-
cations, GANs have been used to synthesize missing data or translating data
among different domains. For instance, an application based on GANs was de-
veloped in [31] for synthesizing photorealistic images of a given input semantic
layout. The model can transform simple paint designs of a segmented land
scene into highly realistic scenes. Also, in [32] GANs were used for creating
art.

For RS, GANs have also been exploited in some applications. In [33], the
authors synthesized SAR data using GANs to perform data augmentation
of less representative classes of the available training set. Results showed
improvements in the classification model after including those synthesized
samples for training the classifier. In this particular case, the GANs were
trained using the label information as a conditional variable for generating
samples of those classes. In the context of recovering missing remote sensed
optical data, some works based on GANs have also been exploited. In [34], a
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Chapter 1. INTRODUCTION 15

method was proposed that relies on cyclic consistent GANs to clean cloudy
images. However, the solution is limited to thin clouds. In [1], the authors
proposed a conditional GAN (cGAN)-based algorithm to recover visible RGB
image components to exploit the Near Infrared (NIR) data. Again, this method
is limited to thin clouds and relies on the NIR, which can only partially
penetrate clouds. A later work [35] overcomes part of these shortcomings by
exploiting SAR instead of NIR data, but this method is also restricted to thin
clouds.

In a recent work [5], we proposed a cGAN-based method that overcomes
the aforementioned limitations. Similar approaches were almost simultaneously
published in [36], [37] and [38]. Basically, a corresponding multispectral optical
image is generated by a cGAN from its SAR counterpart, even in the presence
of thick clouds, using cloud-free image patches of the same region for training.
However, this method presented difficulties for capturing the high spatial data
variability commonly exhibited in some RS applications like the agricultural
ones, for instance. These results indicate that using only a SAR image as
conditional data could not be enough for synthesizing optical images close to
real ones.

Based on that, in this thesis we propose an extension to these methods
to synthesize multispectral optical images. Basically, the framework involves
taking the SAR counterpart and a SAR-optical pair from the same area in
another date as conditioning data for the cGAN. We hypothesize that more
realistic outcomes can be produced using a cGAN by exploiting the temporal
relations in the optic domain in addition to the SAR-optical correspondence.
Our main contribution is a new cGAN-based framework capable to synthesize
multispectral optical data in regions where such data is not available, due to
thick cloud coverage or any other cause, from coregistered SAR-optical image
pairs in different dates.

Besides, the method handles data from satellite sensors of different
spatial resolutions using learnable up/downsampling interpolation coefficients.
Finally, the quality of the synthesized images is evaluated in terms of similarity
metrics, as well as in terms of semantic segmentation performance. Since this
is the final goal in many applications, we further propose to use the pixel-
wise classification accuracy as an additional quality metric for the synthesized
images.

DBD
PUC-Rio - Certificação Digital Nº 1512718/CA



Chapter 1. INTRODUCTION 16

1.1
Objectives

The objectives of this work are the following:

– General objective:
Propose a new method for synthesizing remote sensing optical data
from multisensor and multitemporal data using conditional generative
adversarial networks (cGANs).

– Specific objectives:

1. Propose a method to synthesize multispectral optical images from
SAR data of the same region acquired in the same date (multisensor
synthesis).

2. Propose an extension of the previous method to also take advantage
of optical images from the same region acquired at a different date
(multitemporal synthesis).

3. Propose an extension of the previous methods to consider data of
the same region from SAR images acquired in the same date and
optical and SAR images acquired in a different date (multisensor
and multitemporal synthesis).

4. Evaluate the proposed methods on critical multitemporal applica-
tions.

1.2
Contributions and Novelties

The main contributions of this work are the following:

1. A method able to estimate missing optical data from SAR data.

2. A method able to recover missing optical data from optical and/or SAR
data from another date.

3. A cGANs architecture able to work with data of different sensors and
spatial resolutions.
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1.3
Organization of the remainder parts

Chapter 2 describes the related works available in the literature for cloud
removal and synthesis of optical imagery for RS applications.

Chapter 3 provides the theory and fundamental concepts of relevant
subjects addressed in this thesis for a better understanding of the proposed
method.

Chapter 4 introduces and explains the proposed method for synthesizing
remote sensing optical imagery.

Chapter 5 presents the experiments conducted to evaluate the proposed
method, including the datasets, the used features, the cGAN architecture, the
experimental protocol and the experimental results.

Chapter 6 summarizes the conclusions derived from the performed ex-
periments and provides directions for further development of the proposed
method.
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2
RELATED WORKS

This chapter summarizes the works related to this research that have
been proposed so far. Most of them were developed in the context of cloud
removal, since it is one of the main missing data problem in optical imagery.

According to [24], cloud removal techniques can be categorized into
spectral-based, spatial-based, temporal-based and hybrid methods.

2.0.1
Spectral-based

These techniques use the multispectral bands’ information from the
affected image in order to recover the regions covered by clouds. For example,
in [39, 40] the authors consider that clouds are mostly composed of spectral low-
frequency components and can, in theory, be removed via high-pass filtering.
Nevertheless, discovering the optimal cut-off frequency to separate clouds is
usually difficult and done empirically. Furthermore, the filtering process also
affects the spectral information of cloud-free regions. Because of that, this
technique is usually employed to remove thin clouds.

In [27], the authors take into account that the Landsat 8 cirrus band
(band 9) provides detection of high-altitude cloud contamination that may
not be visible in other spectral bands. Based on that, the authors developed a
method for cirrus cloud contamination correction. They used linear regression
for estimating a relationship between a visible or infrared band and the
cirrus band using data from a homogeneous land cover area, i.e., a region
characterized by similar pixel intensity values if it is not contaminated by
clouds. Then, the estimated relationship is used to remove the cirrus clouds.
The main difficulty of the method is to automatically identify homogeneous
regions from cirrus contaminated data. So, it usually requires prior knowledge
about the imaged scene for manually selecting these locations.

2.0.2
Spatial-based

The spatial-based methods use the cloud-free local neighboring informa-
tion for recovering missing data. For instance, [41] proposes the use of inpaint-
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Chapter 2. RELATED WORKS 19

ing techniques [42] for filling corrupted regions in RS images. The authors
assumed that the affected area shares some statistics with its neighborhood.
The basic idea consists of copying the patches from the neighborhood and
duplicating them to fill the affected area. The approach first fills the patches
positioned on the boundaries. Then, this procedure is repeated iteratively until
the whole corrupted area is filled. Nevertheless, the accuracy of the method
decreases as the cloudy area increases due to the number of patches that have
to be replaced. Additionally, it is necessary to correctly identify the boundaries
of the affected regions. In summary, the inpainting image does not retrieve the
missing data, but synthesizes plausible data for the affected locations if the
corrupted area is small and similar to its neighborhood.

2.0.3
Temporal-based

On the other hand, temporal-based approaches use data from other co-
registered cloud-free images acquired at different dates to interpolate the
missing information. These approaches have the capacity of dealing with
both thin and thick clouds. The simplest approaches are based on image
replacement, which consists in replacing the pixels affected by clouds by the
pixels located at the same position of another image of the same sensor [25, 43].
Then, a post-processing step reduces the spectral differences among the pixels
of the different images. However, depending on the dynamic of the problem,
differences in spectral information can be too high to be corrected during
this post-processing step. More elaborated approaches use a multitemporal
co-registered image sequence in order to build a time series model to infer
pixels covered by clouds [44, 45]. The main problem in this approach is
to acquire enough cloud-free images in different dates. Additionally, these
methods presents problems for dealing with cloud shadows.

2.0.4
Hybrid methods

Lastly, hybrid methods combine different data sources (spectral, spatial
and temporal) to design more robust solutions. In [46], a hybrid technique
was proposed to model data for recovering data gaps for snow covering
estimates. The method uses a Terra/Aqua MODIS time series and a Hidden
Markov Random Field framework for integrating MODIS spectral, spatial and
temporal contextual information together with an environmental association
such as surface topography. The critical issue in this method is the size of the
spatiotemporal neighborhood over which spatiotemporal interaction potentials
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Chapter 2. RELATED WORKS 20

are defined. [47] employs a time series of Landsat images for filling small and
large area gaps in corrupted Landsat data. To do that, the authors proposed an
algorithm that uses the spectral-angle-mapper (SAM) [48] similarity metric in
both spatial and temporal domain, denoted as SAMSTS. Specifically, for each
corrupted pixel, the algorithm searches for an alternative similar pixel located
in a non-affected region of the image. The similar pixel locations are determined
by the following pipeline. First, they stack the image time series across the
spectral band dimension, and the resulting image tensor is then segmented
across the time and the spatial domains. After that, the generated segments are
clusterized. So, given a specific image of the time series contaminated by clouds,
for each cloudy segment, an alternative cloud-free segment is determined based
on the cluster information. Finally, the affected pixels of cloudy-segments are
replaced by similar ones from cloud-free segments. The method, however, has
limitations when rapid changes occur, e.g., due to agricultural harvesting or
flooding.

Another strategy is the usage of Synthetic Aperture Radar (SAR) images
as auxiliary data source for recovering data of optical remote sensing images. A
simple procedure was proposed in [26] which consists of replacing the missing
pixels by pixels from the cloud-free regions using an interpolation function.
This interpolation function employs the SAR image (from the same acquired
date of the corrupted image) as the base for replacing the affected pixels. For
each cloudy pixel, the method first looks for a pixel location in the cloud-free
image region, where the SAR data are similar. Then, the co-registered optical
pixel is selected for replacing the cloudy one. However, differences in the spatial
resolutions and speckle noise hardly affect this approach.

Recently, a set of new methods based on the Generative Adversarial Net-
works (GANs) paradigm has been proposed. GANs were firstly introduced
in [30] and have been widely investigated since then by the computer vi-
sion community. More recently, conditional Generative Adversarial Networks
(cGANs) [49] have been broadly used in different image generation tasks, such
as image inpainting [50], image manipulation [51], and image translation [52].
For image translation, for instance, a cGAN learns a nonlinear mapping func-
tion capable to transform an image from one domain (say X) to another (say
Y ). Based on that, [1] employs a cGAN to recover visible light RGB images
from multispectral RGB-NIR images. Basically, they assume that the NIR
band is almost not affected by thin clouds, and can be used to synthesize cloud-
free RGB images. Firstly, they created a set of synthesized cloudy images by
using a cloud synthesizing algorithm over a set of multispectral cloud-free im-
ages. Each synthesized cloudy RGB-NIR image has its associated ground truth
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cloud-free RGB image. Then, a cGAN model is trained to map from images
covered by clouds to the corresponding cloud-free counterpart as illustrated in
Figure 2.1. However, this approach can not deal with thick clouds and white
objects, which are in appearance similar to clouds. This occurs because in prac-
tice the NIR band is also sensible to clouds, especially thick clouds. Moreover,
the mentioned work does not report any numerical quality assessment and is
limited to a mere subjective evaluation.

cGAN
Simulated cloudy

RGB

NIR

Cloud-free
RGB

Figure 2.1: Illustration of the approach proposed by [1]. A cGAN model is
trained for mapping from simulated RGB-NIR cloudy images to the corre-
sponding cloud-free RGB.

Instead of using cGANs, [2] proposed the use of Cycle-GANs for mapping
cloud-free RGB images from cloudy ones. A Cycle-GAN is an extension of the
cGANs concept in which, instead of just learning to map from X (cloud-free
images) to Y (cloudy images) domain, it also learns to map back from Y to X
domain (See Figure 2.2). For some applications, Cycle-GANs perform better
than analogous cGANs. The advantage of this approach is that Cycle-GANs
allow the use of cloudy - cloud-free pair of images that are not co-registered for
training the model. Contrary to [1], this method does not use an algorithm for
simulating the cloudy images over the cloud-free. Instead, it builds a dataset by
selecting patches from real cloudy and cloud-free optical images. Cycle-GANs
are trained for mapping from the cloudy domain to the cloud-free domain and
vice-versa. However, the method does not use any cloud-free auxiliary data for
conditioning. Thus, the model may synthesize samples that may significantly
diverge from a real image. Experiments showed that the model fails in the
presence of thick clouds and also for large affected areas. Besides, the fact that
this method considers only the RGB spectral bands limits its use.
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Cloudy images 
domain

X

Cloud-free images 
domain

Y

cGAN 1

cGAN 2

Figure 2.2: Illustration of the approach proposed by [2]. Two cGAN models
are trained: one for mapping from RGB cloudy images to the cloud-free RGB
images and the other one to map from cloud-free RGB image to RGB cloudy
images.

A later work [3] overcomes part of those shortcomings by exploiting
SAR as auxiliary data instead of NIR data for recovering missing information
in Sentinel-2 optical imagery (See Figure 2.3). The authors also extend the
method for multispectral optical images with more than 3 bands. However,
the method is also restricted to thin clouds. Similar to [1], they use a cloud
synthesizing algorithm over a set of multispectral cloud-free optical images for
generating the corresponding set of cloudy images. After that, they stack on
each synthesized cloudy image, a co-registered SAR image at approximately
the same acquisition date. Finally, the cGANs are trained to map from these
cloudy-SAR images to the associated cloud-free version. The method depends
on how realistic are the synthesized clouds. In real scenarios the method may
not perform well.

cGAN

SAR

Multiespectral
cloudy image

Multiespectral
cloud-free image

Figure 2.3: Illustration of the approach proposed by [3]. A cGAN model is
trained for mapping from simulated Multiespectral-SAR cloudy images to the
corresponding cloud-free Multispectral optical.

In [5] and [4] cGANs and SAR data are also used for recovering cloudy
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optical images. Instead of using an algorithm for synthesizing clouds, they train
a cGAN to learn a direct non-linear mapping function through the generator
network, which inputs SAR data and outputs a corresponding plausible optical
data (See Figure 2.4 ). This function is learned by employing co-registered
SAR/Optical pairs of patches from cloud-free regions and then, the learned
model is used for synthesizing a cloud-free optical image. In [5], the method was
evaluated in terms of image classification for agricultural applications, while
in [4] it was assessed using similarity performance metrics. Even though the
proposed method in [5] outperforms the classification rates of the baseline (the
direct classification of the SAR image using GLCM features), the performance
of the method is still poor in comparison with the classification of the real
optical images (the cloud-free optical images). These results indicate that the
cGANs model did not capture the complete spatial data variability of the
scene, commonly observed in agricultural applications. In these cases, using
only a SAR image as conditional data could not be enough for synthesizing
optical images close to real ones.

cGAN

SAR

Multiespectral
cloudy image

Multiespectral
cloud-free image

Figure 2.4: Illustration of the approach proposed by [4, 5]. A cGAN model
is trained for mapping from SAR images to the corresponding cloud-free
Multispectral optical.

To close this review, we quote [37], a recent work developed parallel to
ours that contains some of the ideas contained in our proposal. Basically, it
uses the adversarial training for pretraining a Fully Convolutional Network
(FCN) for semantic segmentation of SAR imagery. First, similar to [5] and [4],
the authors propose training a cGAN model to synthesize optical data from
SAR. The so trained generator is modified to perform semantic segmentation
of SAR imagery. Specifically, they attach a softmax classification layer at the
end of the generator network. Next, by using a small set of labeled samples,
the weights of the last three layers are fine-tuned. Basically, they use the
adversarial training as a method for initializing the weights of the FCN in
an unsupervised fashion and then the weights of the final layers are improved
via fine-tuning. The experimental results showed that the proposed approach
performed better than training the classifier from scratch. In addition, they
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assessed the stability of the approach in terms of the number of labeled samples
used for the supervised part, showing that the performance method is almost
not affected in comparison with the models trained from scratch. However, the
authors report difficulties to deal with agricultural fields information due to
significant differences in appearance between the two evaluated SAR images
in those areas. These discrepancies in appearance are related to the differences
in acquisition dates of the SAR images (one month of difference). During this
period, the vegetation appearance changed affecting the performance of the
classifier.
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3
FUNDAMENTALS

This chapter aims to present the theoretical foundations for a proper
understanding of the proposed method. First, a brief introduction to passive
and active sensors for acquiring RS imagery is given. Second, basic concepts
associated with Convolutional Neural Networks (CNN) are presented. Finally,
the fundamentals of Generative Adversarial Networks are introduced.

3.1
Remote Sensing

Remote Sensing (RS) is "the art, science, and technology of observing an
object, scene, or phenomenon by instrument-based techniques without physical
contact with the target of interest" [7]. For example, a conventional camera
can be considered as a remote sensing instrument because a photo taken with
these devices does not involve direct contact with the object. In contrast, an
accelerometer, for instance, cannot be regarded as a RS instrument because
the sensor must be in contact with the phenomenon to be able to measure it.

Different RS platforms can be used for assisting in inventorying, mapping
and monitoring Earth resources. They can be operated from airborne (aircraft,
helicopters, and unmanned aerial vehicles (UAVs)) and from space (satellites
and space shuttles). Each of them offer particular characteristics that can
be advantageous for some applications [53]. Table 3.1 summarizes the main
characteristics and advantages of each of these technologies.

RS sensors present a broad variety of spatial, temporal and spectral
resolutions. But primarily, they can be categorized into two types: passive
and active sensors. Passive sensors use external energy sources that illuminate
the objects, e.g., sunlight, whereas active ones have their own energy source.
Figure 3.1 illustrates the physics of how these sensors work.
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Table 3.1: Advantages and disadvantages of main platforms for remote sensing
data collection. Related costs to each platform are based on [10].

Platform Characteristics

Satellite

Advantages:

• Access to some free images.
• Clear and stable images.
• Large area within each image.
• Good historical data.

Disadvantages:

• High cost for high spatial resolution images.
• Clouds may hide ground features.
• Fixed schedule.
• Data may not be collected at critical times.

Aircraft

Advantages:

• Relative flexible availability.
• Relatively high spatial resolution.
• Changeable sensors

Disadvantages:

• High cost.
• Availability depends on weather condition.

UAV

Advantages:

• Flexible availability.
• Relative low cost.
• High and ultra high spatial resolutions.
• Changeable sensors.

Disadvantages:

• Relative unstable platform can create blurred images.
• Geographic distortion.
• May require certification to operate.
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Passive
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Sunlight

Skylight
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Pulse
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a) b)

Figure 3.1: Passive vs Active sensors. a) A passive sensor uses external energy
sources. b) An active sensor uses its own source of energy. Adapted from [6].

3.1.1
Passive Sensors

Passive sensors measure the energy present emitted or reflected by the
scene or the object being monitored. The main source of natural energy
measured by passive sensors is the reflected radiation of sunlight. As illustrated
in Figure 3.1, the total energy measured by the sensor Ltot is composed by
the reflected energy (a fraction of the incident radiation E by the sunlight and
skylight) and the path radiance Lp (reflected by the atmosphere). The reflected
energy is computed as ρET/π, where ρ represents the reflectance of an object
and T is the atmospheric transmittance [6]. Other examples are the thermal
infrared and passive microwave sensors, which measure natural Earth energy
emissions [54].

The radiation is an electromagnetic wave characterized by its wavelength.
Not all objects reflect the same wavelength, which depends on the nature of
each material [54]. Passive sensors are engineered so that they can measure
radiation at different wavelengths. As a matter of fact, they can measure the
human visible spectrum light [390-700 nm], infrared [750-1 nm], ultraviolet
[100-400 nm] and other other wavelengths [7] . Figure 3.2 illustrates the
organization of the electromagnetic spectrum in terms of wavelength ranges.

An example of RS passive sensor based technology is optical imagery,
which normally has multiple band sensors specialized in measuring wavelengths
within specific ranges. For instance, a multispectral optical image usually
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Figure 3.2: Electromagnetic spectrum. Adapted from [7].

has from 3 to 12 bands, while a hyperspectral imaging technology can have
hundreds.

The major drawback of optical imagery is that it is affected by the
weather conditions. For instance, cloud coverage can disrupt image acquisition.
The sunlight is reflected by the clouds and blocked by cloud-shadows. This is
a common problem that limits Earth Observation with passive sensors.

3.1.2
Active Sensors

Active Sensors illuminate the object to be observed using their own
energy source [7]. Specifically, they emit the radiation toward the target and
measure the intensity of waves that are backscattered. Examples of active
sensors are the Synthetic Aperture Radar (SAR) and the Light Detection
and Ranging (LiDAR). In this work, we focus on SAR due to its capability
of producing suitable resolution images as optical sensors, as well as the
accessibility to imagery from free satellite platforms. In contrast, LiDAR
produces a cloud of points related to the distance between the instrument and
the target, which is more suitable for getting information about the elevation
of the study area.

This type of sensors has the advantage of being almost independent on
the weather and daylight conditions. They operate on the microwave spectrum
range, can penetrate the atmosphere and are not backscattered by the clouds,
smoke, light rain and snow.
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Active Sensors can also offer affordable revisit times in comparison with
passive ones.That ability to operate independently on weather conditions
is critical in regions like the Amazon Rainforest, where the cloud coverage
represents a hindrance to the use of optical imagery. On the other hand, SAR
imagery is generally difficult to interpret visually. Thus, for many applications,
specifically those focused on vegetation, classification accuracy is usually lower
for SAR images than for optical ones.

In addition to the intensity of reflected radiation, the phase information
of the electromagnetic waves can also be exploited for performing interfero-
metric analysis. For instance, it can be used for the measurement of small
displacements in structures [55], estimates crop height [56], etc.

In short, passive and active sensors present different advantages and
disadvantages. Therefore, depending on the application, one of them may be
the best source of information. In other cases, the fusion of both technologies
may provide the best result.

3.2
Convolutional Neural Networks

Convolutional Neural Networks (CNNs or ConvNets) are a family of neu-
ral networks specialized in processing data that exhibits a 2D grid-like topol-
ogy [57]. CNNs are inspired in the animal visual cortex operation where each
neuron/kernel is focused in processing information associated to a restricted
location of the visual field known as the receptive field. The entire visual field
is covered by the arrange of receptive fields of different neurons that partially
overlap.

INPUT
32x32

Convolutions Subsampling Convolutions Full connection
Full connection softmax

OUTPUT
 10

F6: layer
 84

C5: layer
120

S4: f. maps 16@5x5
C3: f. maps 16@10x10C1: feature maps

6@28x28

Subsampling

S2: f. maps
6@14x14

Figure 3.3: LeNet-5 architecture. First proposed CNN’s architecture for hand-
written and machine-printed character recognition in 1990’s. Adapted from [8]

DBD
PUC-Rio - Certificação Digital Nº 1512718/CA



Chapter 3. FUNDAMENTALS 30

3.2.1
Layers of Convolutional Networks

Figure 3.3 illustrates the first CNN architecture proposed by [8], known
as LeNet-5. It consists of seven layers: the Input layer, two sets of consecutive
Convolutional and Pooling layers, two successive Fully-Connected layers, and
an Output layer. More complex CNN architectures usually stack many convo-
lutional and pooling layers. The following is a non-exhaustive description of
the layers commonly used on the current CNN.

1. Input: it is a 3D tensor (multidimensional array of data), arranged as
(width(w), height(h), depth(d)), which holds the raw pixel values of the
evaluated image. The width and height refer to the spatial dimension of
image while the depth to the numbers of channels.

2. Convolutional: it inputs a 3D tensor of data and outputs a 3D tensor
of neuron’s activation, whose channels are known as feature maps. It
performs the image convolution operation between the input data and
the kernels, followed by a non-linear activation function. Specifically, each
kernel is a k×k×d multidimensional array of parameters (weights) that
slides over the input data, computing the Frobenius inner product at
each image location. The values of these parameters are optimized by
supervised training. The result is a 3D tensor which dimension depends
on the spatial dimension of the input, the stride size, the padding size,
and the number of selected kernels.

3. Batch Normalization: It is a trainable normalization layer used to
improve training convergence [58]. The key idea is to shift and scale
the values of a feature map distribution before it is evaluated by the
non-linear activation function at each training batch. In simple words,
after the convolution, the resulting feature maps are normalized by
subtracting the batch mean and dividing it by the batch standard
deviation. This process helps to prevent the network from stuck in points
of the parameter space where the gradient of activation functions are
equal to zero, implying in no parameters’ updated.

However, this normalization might not be beneficial for all cases. It
depends on the data, the network architecture and the batch size. So,
batch normalization lets the optimization algorithm decides when this
process should be applied and the degree of the normalization. Therefore,
batch normalization incorporates two trainable parameters to each layer:
the gamma parameter, which multiplies the normalized output to control
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the scale, and the beta parameter which controls the shift position of the
normalized data.

4. Activation function: After the convolution or the Batch Normaliza-
tion, if it was considered, the resultant feature map goes through a non-
linear activation function. Figure 3.4 illustrates the most common non-
linear activation functions, sigmoid, tanh, Rectified Linear Unit (ReLU),
Leaky-ReLU and exponential LU.

5. Pooling: it produces a summary over a neighborhood around each pixel.
Usually, pooling is performed with a stride greater than one, which
implies in downsampling the feature maps on the spatial domain (depth
remains unchanged) to reduce the number of parameters of subsequent
layers, increase the receptive field, reduce the computation cost, and also
control overfitting. The most common variant is the max-pooling, which
consists of filtering the feature maps by applying a 2 × 2 filter with a
stride of 2×2, replacing all values inside the filter by the maximum value
among them.

6. Fully-Connected (FC): it inputs a 3D or a 1D tensor and outputs an
1D vector of neuron activations. Likewise regular neural networks, each
neuron of this layer is connected to all neurons of the previous layer.

7. Dropout: Dropout is a regularization technique for addressing the
problem of overfitting in deep neural networks with a large number of
parameters [9]. The method consists in randomly dropping neural units
from the neural network, as well as their connections, during the training
phase. In other words, the set of network parameters to be optimized
change randomly at each iteration. This process emulates training a
large ensemble of models that share their parameters. Figure 3.5 shows
an example of the application of dropout to a neural network with two
hidden layers. The resulting network is a "thinned" network in which the
number of neural units to be dropped for each layer is specified by the
corresponding parameter p

layer
. Each p

layer
indicates the probability of a

neural unit to be dropped.

At testing time, the dropout p
layer

is set to zero and all connections are
restored. In order to estimate the contributions of all "thinned" possible
trained models, an approximation is made by scaling-down the weights of
the network. Specifically, the weights are multiplied for the corresponding
parameter p

layer
defined for each neural unit.
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8. Output: it is another FC layer, which inputs the feature vector of
the previous FC layer and computes the class scores. The result is a
vector of dimension equal to the number of classes, where each position
corresponds to a class score. Usually, the scores are normalized through
a Softmax activation function to get the probability distribution for the
different classes.

3.2.2
Fully Convolutional Networks

Fully Convolutional Networks (FCN) are a set of CNNs initially designed
for the task of pixel-wise dense prediction. As illustrated in Figure 3.6, it
inputs an image and outputs another one with the same spatial dimensions.
Depending on the application, the output corresponds to a label image
(semantic segmentation), a reconstruction of the input image (convolutional
autoencoders) or a version from other domain of the input (image translation).

Traditional CNNs involve multiple max-pooling operations which reduce
sucessively the spatial resolution of the feature maps. In order to produce
a pixel-wise dense prediction, the FCNs introduce the deconvolution layers
to recover the original spatial resolution reduced by earlier downsamplings
layers. In practice, deconvolution is implemented as the transposed convolution
operator. As shown in Figure 3.6, the number of deconvolution layers are
usually equal to the number of downsampling operation.
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Figure 3.6: Example of a FCN architecture. The network inputs a RGB image
and outputs its corresponding segmentation.

Skip Connections: It concatenates the feature map outputs from the
deconvolution layers with the corresponding ones from the downsampling stage
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Figure 3.4: Illustration of non-linear activation functions.

(a) Standard Neural Net. (b) After applying dropout.

Figure 3.5: Dropout Neural Network Model. (a) A standard neural network
with 2 hidden layers. (b): An example of a "thinned" network produced by
applying dropout to the network on the left. Crossed units have been dropped.
Illustration taken from [9]

.
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(see Figure 3.6). It aims to recover fine details that might have vanished due
to successive downsamplings.

3.3
Generative Models

Given a set of m training samples {x(i)}, drawn from an unknown data-
generating distribution pdata(x), a Generative Model [59] takes the {x(i)} sam-
ples to learn how to represent an estimate of that distribution by follow-
ing a particular approach. The resulting model is a probability distribution
pmodel(x; θ) parameterized by parameters θ. Depending on the method em-
ployed, pmodel(x; θ) can be used to synthesize samples from pdata(x) or/and to
estimate pmodel(x(i); θ) explicitly.

A plethora of methods for learning generative models from data has been
proposed in the recent few years. Classical approaches are based on the prin-
ciple of maximum a posteriori and maximum likelihood estimates [60].
A survey about this theme is beyond the scope of this thesis. Instead, we will
focus on Generative Adversarial Networks (GANs) [30], which represents the
state-of-the-art in the field.

3.3.1
Generative Adversarial Networks (GANs)

GANs [30], are generative models designed initially in the context of
modeling image distributions. It is composed of two networks: a Generator
(G) that synthesizes images x, and a Discriminator (D) that determines if an
image is synthetic or real. Both networks are trained in a two-player adversarial
scheme, as can be seen in Figure 3.7: while the Generator tries to learn how
to produce realistic images to fool the Discriminator, the Discriminator tries
to correctly discriminate between synthesized and real images.

Formally, given any data distribution pdata(x), the Generator G learns
a distribution pmodel(x; θ) such that the Discriminator can hardly distinguish
between samples coming from pdata(x) and pmodel(x; θ).

Generally, pmodel(x; θ) is a complex distribution, so that sampling from
it is generally not a simple task. GANs circumvent this hindrance by taking
a simple distribution pz(z) easy to sample from (e.g., a normal or an uniform
distribution), and learns a function G that maps samples from pz(z) to samples
from pmodel(x; θ).

A GAN is trained in a min-max game searching for the optimal mapping
function G∗, specifically:
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Figure 3.7: GANs training procedure. The Generator learns a function G that
maps from a random noise vector z to an output image. The Discriminator
learns to distinguish between real and fake (synthetic) images.

G∗ = arg minG maxD LGAN(G,D) (3-1)
where LGAN(G,D) is the GAN objective function defined by,

LGAN(G,D) = Ex∼pdata(x)[logD(x)]
+ Ez∼p(z)[log(1−D(G(z))]

(3-2)

where E and log are the expectation and logarithmic operators, respectively,
and z is a random noise vector that follows a prior known noise distribution
p(z).

The solution of Equation 3-1 is obtained by training the GeneratorG and
Discriminator D alternately. The Discriminator is trained with real images and
with images produced by the last trained Generator. Similarly, the outcome
of the last trained Discriminator is used to train the Generator. At the end of
several training cycles, the Generator is expected to produce images that the
Discriminator is not able to distinguish from real ones.

3.3.2
Conditional Generative Adversarial Networks (cGANs)

Conditional GANs, introduced by Mirza and colleagues [49], are an
extension of the GANs concept. cGANs hold many similarities with the original
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Real or fake pair ? Real or fake pair ?
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Discriminator (D)

Generator (G)

Figure 3.8: cGANs training procedure. The Discriminator learns to classify
between real and fake pairs of images. The Generator learns a mapping function
that takes as input a real image and outputs a realistic synthetic image from
other domain. Illustration inspired in (Isola et al., 2017).

GANs, but instead of dealing with a single image, they handle a pair of
co-registered images. The schema is again composed by two networks: the
Discriminator, which takes as input a pair of images and learns to correctly
identify if they are real-real or real-fake pair, and the Generator that learns
how to generate synthetic images capable of fooling the Discriminator. The
cGAN model is described in Figure 3.8.

Therefore, the Generator synthesizes images in a very specific condition:
it processes a population of real images of a given domain, and learns to
generate synthetic images from another domain, that should compose pairs
of real-synthetic images realistic enough to fool the Discriminator. Many
applications explore this characteristic for image translation, and in this work,
we use it in the context of optical from SAR image synthesis.

In a more formal way, the input to the Discriminator consists of samples
from two domains (y and x), and the Generator synthesizes samples from
one of those domains (say x). Given any conditional probability distribution
pdata(y|x), the Generator learns a conditional distribution pmodel(y|x; θ) given x,
such that the Discriminator can hardly distinguish between the associated pair
of samples (y and x) coming from pdata(y) and pdata(x), respectively, and the
corresponding pair coming from pmodel(y|x; θ) and pdata(x). The loss function
for conditional GANs is expressed by Equation 3-3.
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LcGAN(G,D) = Ex,y∼pdata(x,y)[logD(x, y)]+
Ex∼p(x),z∼p(z) [log(1−D(x,G(x, z))]

(3-3)

Usually, a L1 norm distance loss is added to the Generator objective
function to drive it to produce less blurred images, as shown in Equation 3-4,

G∗ = arg minG maxD LGAN(G,D) + λLL1(G) (3-4)
where λ is a regularization term, and LL1(G) is defined as follows,

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1] (3-5)
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4
PROPOSED METHOD

This chapter describes the proposed methods for synthesizing optical
satellite images from different domains using cGANs. It is important to
emphasize that the method described in the following was initially structured
for the context of cloud removal, but it can easily be extended to other problems
of missing data.

The proposed method is summarized in Figure 4.1. Let Oa represents
an optical satellite image acquired at date ta with characteristics (e.g., spatial
resolution, sensor sensitivity, etc) desirable for a particular application (e.g.,
image categorization, semantic image segmentation, etc). Let’s suppose that
data from a collection of M sites {om

a : 1 ≤ m ≤ M} ⊂ Oa is missing, due to
sensor malfunctioning or by adverse atmospheric conditions during the image
acquisition phase or any other reason.

Let’s further assume that there is a set of N variables {fn : 1 ≤ n ≤ N}
for which the mapping function,

F : {fk
n : 1 ≤ n ≤ N, and 1 < k ≤ K} → {ok

a : 1 ≤ k ≤ K} ⊂ Oa (4-1)

is unique, where K indicates the set of non-missing sites. Under such assump-
tions, a cGAN can be regarded as a method to learn the distribution

p(oa|f1, f2, ..., fN) (4-2)
whereby {f1, f2, .., fN} represents the variables that properly define the ap-
plication scenario. So, equation 4-2 represents the target conditional proba-
bility distribution we are actually after. If such distribution is known, real-
istic data samples for the sites {om

a } can be drawn, as long as the values of
{fm

1 , f
m
2 , .., f

m
N } are known.

However, in realistic scenarios it is generally impossible to determine all
relevant conditioning variables of a given application. Usually, we manage to
capture only L, for L < N of such variables. Under these constraints it is
possible to estimate p(oa|f1, f2, ..., fL) instead of p(oa|f1, f2, ..., fN).

We hypothesize that the more conditioning variables are incorporated in
the generative model, the more accurate will be the estimate of the distribution
we are interested in. Our work hypothesis can be formally expressed in the
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missing sitesclean sites

variables that define
the application scenario

k

is unique

cGAN

Ideal Scenario

we can capture

only l

Real Scenario

cGAN

Figure 4.1: Proposed method. A cGANs is used to map from set of f1, f2, ..., fL)
observable variables to a non-missing data optical image Oa. White circles
represent the sites with missing data.

following way:

p(oa|f1, f2, ..., fL)→ p(oa|f1, f2, ..., fN) as L→ N (4-3)
To investigate this hypothesis, we propose the use of conditional Gener-

ative Adversarial Networks (cGANs) to implicitly estimate p(oa|f1, f2, ..., fL).
In a typical cGAN, the Generator learns a nonlinear mapping function

G : x → y, which contains an implicit model of the underlying conditional
probability distribution p(y|x) learned by training.

Nevertheless, in many reported cGANs applications, the Generator often
produces an output incompatible with the underlying application scenario.
This is because estimating probability distributions from a limited data
set is knowingly an ill-posed problem due to the large number of different
distributions that can give rise to the observed samples. To mitigate this
problem, constraints have been imposed to the cGAN design. The standard
approach consists of adding regularization terms to the loss function, such as
the L1 norm in Equation 3-4. However, these solutions are often not enough
depending on the complexity of the distribution being modeled.

In contrast, we propose to impose more restrictions on the cGANs models
by adding conditioning data. Formally, the objective function for training a
cGANs model is generalized as follow,

DBD
PUC-Rio - Certificação Digital Nº 1512718/CA



Chapter 4. PROPOSED METHOD 40

G∗ = arg minG maxDEf1,f2,...,fL,oa∼pdata(f1,f2,...,fL,oa)[logD(f1, f2, ..., fL, oa)]
+ Ef1∼p(f1),f2∼p(f2),...,fL∼p(fL),z∼p(z) [log(1−D(f1, f2, ..., fL, G(f1, f2, ..., fL, z))]

+ λLL1(G)
(4-4)

In this work, we explored both temporal and modal relationships. As for
the modal relationship, the goal can be achieved by including co-registered
SAR at the same (or approximately the same) date.

As for the temporal relationship, it can be accomplished by exploiting
conditioning data from the same domain of the target image, as well as from
others domain, but at different acquisition dates.

We examine some variants of the proposed strategy, as illustrated in
Figure 4.2. It comprises two pairs co-registered Optical/SAR images acquired
at dates ta and tb, respectively. The Optical images are represented by O

while the corresponding SAR by S. In this scheme, part of the optical image
(white color circles) of (Oa) represents the area covered by clouds while the
rest of the image is supposed to be cloud-free. (Sa), (Sb) and (Ob) represent
the conditioning variables to be used by the cGANs model for synthesizing a
plausible Oa sample.

Figure 4.2: Overview of scenario explorer in this thesis. O symbolizes an optical
image and S a SAR image. The optical image Oa simulate the image covered
by clouds. White circles represent the regions covered by clouds.
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a) Monotemporal scenario:

c) Multitemporal scenario:

b) Multitemporal scenario:

time time
cGAN

d) Multitemporal scenario:

time time
cGAN

time time
cGAN

time time
cGAN

Figure 4.3: Variants exploited of the scenario illustrated in Figure 4.2. White
circles represents the regions covered by clouds.

We first investigate the scenario where only the SAR image at date ta
(Sa) is available to condition the cGAN design (Figure 4.3-a). In this solution,
named hereafter as monotemporal, only modal relationships are exploited for
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conditioning the Generator. In fact, it represents the particular case of a
cGAN model conditioned by just one variable. Then, we examine what we call
multitemporal scenarios where data at another date tb can be used to condition
the cGAN. Two variants are explored: either using a SAR (Sb) (Figure 4.3-
b) or an optical image (Ob) (Figure 4.3-c) at date tb. Finally, we consider a
variant that exploits all data (Figure 4.3-d). These variants, named hereafter
as multitemporal, involve modal and temporal relations. At follows we first
describe monotemporal approach and then the multitemporal variants.

4.0.1
Monotemporal approach

As part of this thesis, we published in [5] a research about the monotem-
poral variant. In this work, we proposed a method based on cGANs to synthe-
size optical images from SAR data for recovering regions covered by clouds. In
this context, it was considered the fact that SAR images are nearly independent
of atmospheric conditions and solar illumination to learn, via cGANs, a condi-
tional probabilistic model p(oa|sa) for mapping SAR data to optical cloud-free
images. It is important to emphasize that this method is not restricted to the
use of SAR imagery. As we said earlier, data of other sensors could be used or
incorporated as conditioning variables as long as it does not present missing
data. However, the quality of the synthesized image is expected to be different
depending on the capacity of the other sensor technology for capturing relevant
information about the environmental process being modeled.

Given a co-registered SAR image (Sa) acquired approximately at the
same acquisition date (ta) of the corrupted image (Oa), in the monotemporal
approach, the cGAN model is trained using a collection of corresponding
SAR/Optical patches {sa, oa} extracted over the cloud-free region of the optical
image. Figure 4.4 illustrates the principal steps of the method processing chain.

For this configuration, the cGAN optimization objective function de-
scribed in Equation 4-4 takes the following form,

G∗ = arg minG maxDEsa,oa∼pdata(sa,oa)[logD(sa, oa)]+
Esa∼p(sa),z∼p(z) [log(1−D(sa, G(sa, z))] + λLL1(G)

(4-5)

Once this model has been optimized, the conditional probability under-
lying the Generator network is used for synthesizing plausible optical images
Ôa.

4.0.2
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Figure 4.4: Monotemporal method for cloud removal of optical satellite images.
A cGAN is trained to learn a nonlinear mapping function G that maps from a
co-registered SAR image at ta to a plausible optical image at ta. White circles
represent the regions covered by clouds.

Multitemporal approach

Figure 4.5 illustrates the processing chain of the multitemporal approach
when the aforementioned images are considered as conditioning variables in
the cGAN model.

Figure 4.6 describes the training process of the cGANs model for more
than one conditional variable. Essentially, it involves stacking all conditioning
images along its channels dimension before being fed to the Generator and
Discriminator Networks. This research was published in [61] as part of this
thesis.

Given a collection of co-registered {ok
a, s

k
a, o

k
b , s

k
b} training patches, ex-

tracted over the cloud-free region of the corrupted optical image Oa, the
cGAN optimization function for the multitemporal method assumes the fol-
lowing form,

G∗ = arg minG maxDEsa,sb,ob,oa∼pdata(sa,sb,ob,oa)[logD(sa, sb, ob, oa)]+
Esa∼p(sa),sa∼p(sa),sb∼p(ob),z∼p(z) [log(1−D(sa, sb, ob, G(sa, sb, ob, z))] + λLL1(G)

(4-6)

Likewise the monotemporal approach, the trained Generator is then used
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Figure 4.5: Proposed multitemporal method for cloud removal in optical
satellite images. A cGAN is trained to learn a nonlinear mapping function
G that maps a set of three co-registered images (SAR at ta, and SAR plus
optical at tb) to a plausible optical image at ta. White circles represent the
regions covered by clouds.

Discriminator (D) Discriminator (D)

Generator (G)

real or synthesized pair ? real or synthesized pair ?

Figure 4.6: The cGAN Generator learns a nonlinear function G that maps a
set of three co-registered images (SAR at ta, and SAR plus optical at tb) to
a plausible optical image at ta. The cGAN Discriminator learns a function D
that separates real from synthetic optical images produced by the Generator.
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for synthesizing an estimate of the Oa image.
In summary, both monotemporal and multitemporal methods involve the

following steps.
First, the cloud-free regions are identified via visual observation or

by using a cloud detection algorithm like the Fmask [62] and sen2cor [63]
algorithms for Landsat and Sentinel 2 satellite imagery, respectively.

Second, a collection of corresponding patches over the previously identi-
fied cloud-free region are extracted through the sliding window procedure with
a fixed stride. For the monotemporal method we collect pairs of cloud-free
co-registered optical/SAR patches from date ta (Oa, and Sa), whereas for the
multitemporal method the correspondent co-registered patches at date tb (Otb

and Sb) are also extracted.
Third, the cGAN model is trained upon the extracted groups of patches,

as illustrated in Figure 4.6.
Fourth, once the cGAN has been trained, optical patches over cloudy

areas at ta are synthesized by the generator using as input the corresponding
SAR patches at ta, for the monotemporal method, as well as correspondent
SAR and optical patches at tb, for the multitemporal approach.

Finally, the predicted optical patches are concatenated to build a mosaic
over the cloudy areas. At patch boundaries, the prediction tends to be less
accurate because less spatial context is considered for their generation. This
effect can be attenuated by generating overlapping patches and retaining only
their central part, which can be subsequently merged to produce a smoother
mosaic.

Note that, the cGAN must be trained on a set of cloud-free patches that
represents the distribution of missing data. It is, therefore, important that the
cloud-free samples encompass most of (ideally all) the classes that may be
present on the area covered by clouds. Otherwise, the cGAN will not be able
to capture all data variability present on the target image during its training
phase. In other words, if there are classes on the cloudy area that are not
represented on the samples collected over the cloud-free region, the nonlinear
mapping function may not be able to synthesize plausible data for the cloud
covered regions.

It is similarly important that the difference between the acquisition dates
of SAR and optical image pairs taken as referring to the same date should be
as short as possible. This is important to reduce the impact of possible changes
of classes distribution or even appearance of changes in a class, like seasonal
variations in crops, for instance. So, depending on the application, this time
difference can be a crucial factor to achieve a quality result.
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In addition, two aspects must be observed for the multitemporal method.
First, the training samples collected from the optical image Ob must be cloud-
free. Second, those samples must have been generated by the same sensor,
which acquired the cloudy optical image Oa in order to model just temporal
relationships. Although the method is not restricted to the use of the same
optical sensor-based technology of the cloudy image, in the explored scenario
the complexity of the model is expected to increase if another sensors are used.
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5
EXPERIMENTAL ANALYSIS

This chapter reports the set of experiments conducted to assess the
capability of the proposed methods for synthesizing multispectral optical
images from SAR/Optical multitemporal data. Most of the works on cloud
removal assessed the performance in terms of similarity metric between the
synthesized data and a reference. In this work, in addition to these similarity
metrics, we also evaluated the quality of the synthesized images in terms
of semantic image segmentation performance, since it is the focus of our
application. Additionally, we present a visual comparison analysis between
the original image and its corresponding synthesized ones.

5.1
Datasets

Two different scenarios were selected for evaluating experimentally the
performance of the proposed methods. The first one corresponds to a crop
recognition application and the second one to the wildfire detection. The two
datasets are described in the following.

5.1.1
Campo Verde

This dataset [64] refers to Campo Verde municipality in the state of
Mato Grosso, Brazil, which has an extension of approximately 4782 km2

(see Figure 5.1). Four co-registered images were taken from this locality: two
Landsat 8 OLI and two Sentinel-1A SAR scenes with 30 m and 10 m spatial
resolution, respectively. Table 5.1 summarizes the acquisition dates of the
corresponding images.

Table 5.1: Acquisition dates for Campo Verde dataset.
Image Sensor Acquisition Date
Oa Landsat 8 OLI 05 May 2016
Ob Landsat 8 OLI 24 May 2017
Sa Sentinel 1A 08 May 2016
Sb Sentinel 1A 20 May 2017
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Note that the images at (tb) were acquired approximately one year after
the target date (ta). Therefore, those images refer to the same cropping season
and are expected to contain approximately identical crops with differences in
spatial distribution.

Nine land cover classes were considered for this work. Four of them are
related to crop types (maize, cotton, sorghum and noncommercial crops), and
five are related to non crop classes (pasture, eucalyptus, soil, turfgrass, and
Cerrado). Table 5.1 indicates the class occurrences.

Table 5.2: Class occurrences for Campo Verde dataset.
Class % # pixels
Maize 35.79 243,097
Cotton 45.33 307,883
Sorghum 0.94 6,404
NCC 3.87 26,328
Pasture 8.58 58,308
Eucalyptus 2.53 17,250
Soil 0.36 2,457
Turfgrass 0.02 108
Cerrado 2.55 17,349

5.1.2
Rio Branco

This dataset is from Rio Branco municipality, located in the state of
Acre, Brazil with an extension of 8,836 km2 [17] (See Figure 5.2). Similar to
Campo Verde, this dataset comprises four images, two Sentinel-2A, and two
Sentinel-1A SAR, all of them with 10 m of spatial resolution. The acquisition
dates are indicated in Table 5.3.

Table 5.3: Acquisition dates for Rio Branco dataset.
Image Sensor Acquisition Date
Oa Sentinel-2A 25 Aug 2016
Ob Sentinel-2A 31 Jul 2017
Sa Sentinel 1A 09 Sep 2016
Sb Sentinel 1A 31 Jul 2017

The occurrence of wildfires in the region is driven by deforestation
and extractivism, which generate ignition sources mainly in areas close to
the forest [65]. Table 5.4 summarizes the distribution of wildfire and non-
wildfire samples in the study region. Main land cover classes include burned
areas, forest, agricultural use, areas without vegetation and water bodies. The
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Figure 5.1: Study area: Campo Verde, Mato Grosso state, Brazil.

experiments performed using this dataset were only focused on detection of
the burned areas.

Table 5.4: Class occurrences for Rio Branco dataset.
Class % # pixels
Wildfire 0.90 869,211
Non-wildfire 99.0 95.194,563

5.2
Evaluation Metrics

In this thesis we adopted the Overall Accuracy and F1-score performance
metric of the semantic segmentation outcome. In addition, we used the
Root Mean Square Error, Peak Signal-to-Noise Ratio and the Spectral Angle
Mapper as similarity metrics for comparing the synthesized images with their
correspondent references. The definition of each metric is given next,

– Overall Accuracy (OA): The OA indicates the percent of samples cor-
rectly classified by the model, being 100% a perfect classification.

OA = number of correctly predicted samples

total of samples to predict
(5-1)

– F1-score: F1-score can be interpreted as the harmonic mean between
Precision and Recall. The F1-score reaches its best value at 100 and
worst score at 0. The relative contribution of Precision and Recall to the
F1-score are equal [66].
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Figure 5.2: Study area: Rio Branco, Acre state, Brazil. Wildfire samples are
represented in red.

F1 = 2× Precision×Recall
Precision+Recall

× 100% (5-2)

where Precision and Recall are defined as follow,

Precision = tp

tp+ fp
(5-3)

and,
Recall = tp

tp+ fn
(5-4)

being tp the number of true positives, fp the number of false positives
and fn the number of false negatives.

For Campo Verde dataset, which represents a multiclass problem, we
report the average F1-score. It consists of computing the precision and
recall of all the classes, calculates the F1-score per class, and then
calculate the average of each measure.

– Root Mean Square Error (RMSE): Given am×n image I and a synthetic
version Î, the RMSE is defined by,

RMSE =
√√√√ 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)− Î(i, j)]2 (5-5)

Lower values of RMSE indicate high similarity between compared images.
The maximum score that the RMSE reaches depends on the image data
type. In this work, all images were codified as 16-bit signed integers.
Thus, the maximum value is 65, 535 for two complete different pixels.
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– Peak Signal-to-Noise Ratio (PSNR): The PSNR (in db) is defined as,

PSNR = 20 ∗ log10

(
IMAX

RMSE

)
(5-6)

where IMAX is the maximum possible pixel value of an image. Contrary
to the RMSE metric, high values of PSNR are associated with good
quality of the synthesized image.

– Spectral Angle Mapper (SAM): The SAM measures the spectral angle
between the spectral signatures of the pixels from two images [48].

θ(x, y) = cos−1(
∑nb

i=1 xiyi

(∑nb
i=1 x

2
i )

1
2 ∗ (∑nb

i=1 y
2
i ) 1

2
) (5-7)

where nb represents the number of spectral bands of the image, and x and
y refers to pixel from image I and Î at particular location. Like RMSE,
lower values of SAM are related to a high similarity between images.

5.3
Network Architectures

The Generator and Discriminator network architectures used in this
work are based on the architectures proposed in [52]. In particular, we
modified these architectures to be able to work with multispectral optical
images and multiresolution sensors. More specifically, we took as base a
Tensorflow [67] implementation of the pix2pix [52] framework1 and adapted
it for our framework2. We adopted a specific architecture for each method
and for each dataset since the characteristics of their input and output
images are different. The configuration of these networks are described in
details in Table 5.5 and Table 5.6 for Campo Verde and Rio Branco dataset,
respectively. In these tables, symbols C, B, R and D denote convolution (C),
batch normalization (B), ReLU (R) and dropout (D) for each layer. The
numbers of filters, filter dimensions and convolution strides are indicated in
this sequence in parentheses. All filters are square, and the stride is equal in the
horizontal and vertical directions. Similar to [52], we remove the dependency
of the random noise vector z from the cGAN’s objective function by applying
the dropout regularization on several layers of the Generator at both training
and test time.

For Campo Verde, the input patches have 256 × 256 pixels for Landsat
images and 768 × 768 for the corresponding SAR data. In order to deal with
the difference in the spatial resolution, we included a 2D convolutional layer

1https://github.com/yenchenlin/pix2pix-tensorflow
2https://github.com/bermudezjose/SAR2Optical-using-cGANS

https://github.com/yenchenlin/pix2pix-tensorflow
https://github.com/bermudezjose/SAR2Optical-using-cGANS
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Table 5.5: Network Architectures for Campo Verde.
Encoder Decoder Discriminator

CBR(4, 5, 3)∗ CBRD(512, 5, 2) CBR(4, 5, 3)∗

CR(64, 5, 2)∗∗ CBRD(512, 5, 2) CR(64, 5, 2)∗∗

CBR(128, 5, 2) CBRD(512, 5, 2) CBR(128, 5, 2)
CBR(256, 5, 2) CBRD(512, 5, 2) CBR(256, 5, 2)
CBR(512, 5, 2) CBRD(256, 5, 2) CBR(512, 5, 2)
CBR(512, 5, 2) CBRD(128, 5, 2) sigmoid(.)
CBR(512, 5, 2) CBRD(64, 5, 2)
CBR(512, 5, 2) C(7, 5, 2)
CBR(512, 5, 2) tanh (.)

∗The input is the concatenation of Sa and Sb patches. ∗∗The
input is the concatenation of the output of the prior layer and
the Ob patches.

Table 5.6: Network Architectures for Rio Branco.

Encoder Decoder Discriminator
CR(64, 5, 2)∗ CBRD(512, 5, 2) CR(64, 5, 2)∗

CBR(128, 5, 2) CBRD(512, 5, 2) CBR(128, 5, 2)
CBR(256, 5, 2) CBRD(512, 5, 2) CBR(256, 5, 2)
CBR(512, 5, 2) CBRD(256, 5, 2) CBR(512, 5, 2)
CBR(512, 5, 2) CBRD(128, 5, 2) sigmoid(.)
CBR(512, 5, 2) CBRD(64, 5, 2)
CBR(512, 5, 2) C(4, 5, 2)

tanh (.)
∗The input is the concatenation of Sa, Sb and Ob patches.

in the cGAN network to map the SAR patches to the resolution of the optical
data. This process is illustrated in Figure 5.3 and Figure 5.4, respectively, for
the Generator and Discriminator architectures for the multitemporal method.
Similar scheme was followed for monotemporal approach. We preferred to
introduce the 2D convolutional layer instead of downsampling the SAR patches
via a traditional image interpolation function. In this way, we rely on the
capacity of the convolutional layer to learn an interpolation function tailored
to our application, which is supposed to result into less information loss than
traditional interpolation techniques [68].

Downsampling was not necessary for Rio Branco, since the optical and
SAR images have the same spatial resolution. For this dataset, we worked
with smaller patches of 128 × 128 pixels seeking to balance the proportion of
wildfires pixels per patch. This way, we tried to avoid that the cGANs learn
only the majority classes and disregard the wildfires.
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Figure 5.3: Generator Network architecture for the monotemporal approach
used for Campo Verde dataset.

Figure 5.4: Discriminator Network architecture for the multitemporal approach
used for Campo Verde dataset.

5.4
Experimental Protocol

For the experimental analysis we selected two pairs of co-registered cloud-
free optical/SAR images from both datasets, acquired on the dates mentioned
in Sections 5.1.1 and 5.1.2. The images acquired in 2016 were associated with
the target date (ta), whereas the images from 2017 were associated with the
other date (tb).

We split the imaged areas into two spatially disjointed sets, as shown
in Figure 5.5 and Figure 5.6 for Campo Verde and Rio Branco datasets,
respectively. We used all regions of the first set (blue color) for simulating the
regions with unavailable optical data at ta. These regions are referred as cloudy
hereinafter. Similarly, we selected all regions of the second set (green color) to
represent the regions in which optical data were available at both dates. These
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Figure 5.5: Distribution of training (blue) and testing (green) regions used on
experiments for Campo Verde dataset.

regions are named clear hereafter. The criteria for selecting the clear and
cloudy regions consisted of guaranteeing the representation of all classes in
both regions. For Campo Verde, the cloudy and clear sets contained 327,248
and 1,571,515 pixels, respectively. For the Rio Branco dataset, 26,184,068 and
69,860,629 pixels were included in the cloudy and clear sets, respectively. The
cGANs were trained upon the clear regions, while methods’ performance were
evaluated on cloudy regions.

For Campo Verde, we only considered patches around agricultural areas in
order to specialize the cGANs model to cropland. Data outside the agricultural
area were not considered to train the cGANs model due to could present
information not related to the problem that might degrade the cGANs model
for agricultural mapping. For the experiments on Rio Branco, we selected
training samples in order to balance the number of samples per class. In
particular, we followed a stratified sampling procedure consisting of extracting
more patches from areas with presence of wildfires.

Training patches were extracted from the clear regions following the
sliding window strategy. Specifically, 4,000 SAR-optical patches were cropped
for each dataset. These samples were augmented by applying random cropping
and horizontal and vertical flip transformations to the first set of patches. In
all experiments, the networks were trained for 100 epochs using the Adam [69]
optimizer with default parameters: learning rate=0.001, β1=0.9 and β2=0.999.

The performance of the methods was assessed in terms of semantic
segmentation metrics and similarity metrics. The pixel-wise accuracy of the
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testing region
training region

Figure 5.6: Distribution of clear(blue) and simulated cloudy (green) regions
used on experiments for Rio Branco dataset. Wildfire samples are represented
in red.

semantic segmentation were computed upon the cloudy regions of the SAR or
real/synthetic optical images at ta. The results in all cases were obtained by a
Random Forest (RF) [70] classifier, which used as pixel-wise feature descriptor,
the vector comprising bands 1 to 7 for Landsat images and the Red, Green,
Blue and NIR bands for Sentinel 2 images. For the SAR images, we computed
features based on the Gray Level Co-occurrence Matrix (GLCM). Specifically,
we used the VV and VH polarizations for computing the GLCM correlation,
homogeneity, mean and variance in four directions (0, 45, 90 and 135 degrees)
using 7×7 windows. Then, each SAR pixel was represented by a feature vector
of dimensionality 32.

For each evaluated image, an RF model was trained upon the clear region
using the corresponding pixel descriptor of the assessed image. In particular,
for Campo Verde dataset the RFs were trained on approximately 25% of the
clear pixels . For Rio Branco, all available wildfire samples on clear regions,
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and the same number of samples of the non-wildfire complementary class were
used for training the RF classifiers.

We selected the RF as the algorithm for performing the semantic segmen-
tation task due to its performance in classification, speed, and insensitivity to
overfitting [71]. Indeed, this classifier has become popular within the RS com-
munity because of these characteristics.

As similarity metrics, we computed the root mean square error, the
spectral angle mapper and the Peak Signal-to-Noise Ratio, as defined in
Section 5.2. These metrics were computed only on cloudy regions, i.e., we
evaluated only the testing set.

5.5
Results

5.5.1
Semantic Segmentation

The bar graphs illustrated in Figure 5.7 and Figure 5.8 summarize the
results of the experiments carried out in Campo Verde and Rio Branco datasets,
respectively. Each figure shows the classification performance achieved by the
RF classifier over the cloudy pixels for the evaluated images in terms of Overall
Accuracy (OA) and average F1-score.

From left to right, the first bar group (Oa) refers to the classification of
the cloudy pixels of the optical image acquired at ta assuming that this data is
available. Recall that the real optical data over cloudy regions were available
in our data set. These results were regarded as the best image that could be
possibly synthesized. In other words, these bars represent the upper bound for
the classification accuracy. Note that the performance of RF classifier in this
image Oa was superior to the other assessed images.

The second bar group (Sa) relates to classification performance of the
SAR data at ta using GLCM-based features. We decided to use GLCM features
because they are by far the most commonly used SAR descriptor data in RS
applications. In this work, GLCM-based features served as a baseline. Notice
that, for Campo Verde the classification of SAR data at ta presented the lowest
accuracy while for Rio Branco dataset, the second lowest one.

The third bar group from the left (Ob) corresponds to the classification of
the optical image acquired at tb over cloudy regions, considering the reference at
ta. The inclusion of these results in our reports was motivated by the following
rationale. Replacing the cloudy optical image (Oa) by a cloud-free optical image
(Ob) of the same area and the same sensor, but at a different acquisition date,
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Figure 5.7: Result for Campo Verde in terms of OA and Average F1-score.

Figure 5.8: Result for Rio Branco in terms of OA and Average F1-score.

can be an acceptable solution for some applications. Note that this variant
would be plausible in areas with low temporal dynamic. So, we carried out this
experiment to verify whether this approach would make sense for our datasets,
i.e., if the images at ta and tb are similar. The Figures show that our results
clearly refuted this hypothesis. Observe that the accuracies for image Ob in
both datasets were significantly lower than those obtained for Oa. Nonetheless,
this variant surpassed its SAR counterpart at ta(Sa), in Campo Verde and was
the poorest variant considered in our experiments on Rio Branco dataset.

The next four bar groups indicate the performance obtained on the
semantic segmentation of optical images synthesized by the cGAN Generator
using different conditioning data. The fourth group from left, (G[Sa]), refers
to the classification of the synthesized optical images at ta produced by
the monotemporal variant (as in [5]) from the correspondent SAR data at
the same date (ta). This model performed better than the Sa variant by
approximately 10.8% and 8.5% in terms of OA for Campo Verde and Rio
Branco, respectively. These results are consistent with the accuracies reported
in [5]. The monotemporal approach was outperformed by the Ob variant in
terms of OA and F1-score in Campo Verde. In Rio Branco dataset these
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variants performed similarly. It is important to emphasize that this variant
does not create any information that is not already contained in the SAR data.
The results just show that the method was able to extract more discriminative
representations than the GLCM-based features.

The three rightmost bar groups refer to the multitemporal variants of
our method. In these experiments, the conditioning data comprised the SAR
data at ta combined with SAR at tb, optical at tb and both. These variants are
denoted in Figure 5.7 and Figure 5.8 by G[SaSb], G[SaOb] and G[SaSbOb], re-
spectively. All of them outperformed their monotemporal counterpart (G[Sa])
in terms of OA, with accuracy gains between 3.8% and 5.8% for Campo V erde
and between 3.5% and 9.0% for Rio Branco.

The G[SaSb] and G[SaOb] bars in both plots also reveal that the per-
formance gain from including data from another date (tb) to condition the
cGAN was greater for the optical image than for the SAR data, especially for
the experiments on Rio Branco dataset. This result is not surprising, because
data of the same optical domain was added as conditioning variable. Here, the
cGAN is focused into modeling the temporal relationship between the cloudy
and cloud-free image.

The right-most bars in both plots (G[SaSbOb]) present the best accuracies
among the synthesis approaches. They correspond to forming the conditioning
data with both optical and SAR data from tb in addition to the SAR data at
ta. This variant was the closest one to the ideal performance, represented by
the leftmost bars for both datasets. Indeed, (G[SaSbOb]) was 10% lower for
Campo Verde and only 0.7% lower for the Rio branco dataset in terms of OA.
As for the F1-scores the difference was approximately 5% for both datasets.

The F1-scores were much lower than OA in both plots for all variants.
The reason lies in the high class imbalance in the test data, particularly for
Campo Verde. However, the plots show a similar relative profile for OA and
F1-score.

5.5.2
Visual Analysis

Figure 5.9 shows snips of the evaluated images (the original images and
the images synthesized by each of the tested variants), and the corresponding
classification maps form Campo Verde dataset. The first and third columns
contain the evaluated images, and the second and fourth columns show the
corresponding classification maps delivered by the RF classifier. For the SAR
image, Sa, VH polarization is presented and for the optical images, a RGB
true color composition.
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Figure 5.9: Snips of the evaluated images (the original images and the images
synthesized by each of the tested variants), and the corresponding classification
maps delivered by the RF classifier over the cloudy pixels for Campo Verde
dataset. The RF was trained upon each of these images. The snips of optical
images correspond to the RGB composition band. The contrast was adjusted
for better visualization.

A comparison with the reference shows that, except for the SAR image
(G[Sa]), the RF classifier managed to correctly classify most of the maize and
cotton samples, which represent the majority classes. In contrast, the Sorghum
samples were almost totally misclassified, even for the real optical image Oa.
Recall that this class represents only 0.02% of labeled samples. Also, it can be
perceived confusion between the Cerrado, Pasture and NCC samples, and also
between maize and cotton.

Notice that some parcels of image Ob belonging to classes maize and
cotton were classified as Eucalyptus. This error might have been caused by
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the temporal displacement between the image acquisition date and the date
the reference data refers to.

All classification maps presented the salt-and-pepper effect, typical of
pixel-wise classification approaches, especially in the map produced from SAR,
(Figure 5.9-e -Sa). This effect was particularly significant in the results ob-
tained by the monotemporal (Figure 5.9-i - G[Sa]) and multitemporal (Fig-
ure 5.9-k - G[SaSb]) approaches, and declined for the variants (Figure 5.9-m -
G[SaOb]) and (Figure 5.9-o - G[SaSbOb]).

The last two rows show the improvements brought by the inclusion of
more conditional variables in the cGANs scheme. In fact, the salt-and-pepper
effect became nearly imperceptible in some parcels, e.g., in parcels belonging
to maize and cotton classes in image Figure 5.9-o (G[SaSbOb]).

Figure 5.9 shows how close were the synthesized images to the corre-
sponding real ones in terms of the spectral information and the geometry of
the objects. For example, the structure of rivers and crop parcels were pre-
served in most cases. Indeed, the synthesized images were not perfect as some
regions did not match their correspondent in the real image.

It is notorious that the multitemporal approaches produced images closer
to the real ones than the monotemporal approach. These results also support
the hypothesis that the inclusion of conditioning variables that convey multi-
temporal relations into the cGAN framework helps to improve the synthetic
images.

Figure 5.10 shows snips of the results from a particular location of a
cloudy region of Rio Branco dataset produced by all tested variants. The first
and third columns show the evaluated images in NIRGB composition, whereas
the second and fourth columns show their correspondent classification maps.
For this dataset we didn’t use the RGB composition because it is easier to
identify visually the wildfire samples from the NIRGB composition. As in
the results for Campo Verde experiments, we present here a snip of the VH
polarization band together with its prediction map.

Comparing the snip of the NIRGB composition of image Oa (Figure 5.10-
b) with the corresponding reference (Figure 5.10-a), we notice a set of pixels
spread over the image that are not labeled as wildfires, but visually present a
similar spectral response to wildfires. In fact, the classification map of image
Oa (Figure 5.10-c) shows that the RF classifier assigned many of these pixels
to the wildfire class. This scenario illustrates the complexity of the problem.
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Figure 5.10: Snips of the evaluated images (the original images and the images
synthesized by each of the tested variants), and the corresponding classification
maps delivered by the RF classifier over the cloudy pixels for Rio Branco
dataset. The RF was trained upon each of these images. The snips of optical
images correspond to the RGB composition band. The contrast was adjusted
for better visualization.

Figure 5.10-d and Figure 5.10-e show the SAR image and its associated
classification map, respectively. The difficulty to interpret SAR data in com-
parison to optical images is even more evident in this dataset. Therefore, the
images synthesized by the proposed methods can also help to support in the
visual inspection of this data.

The classification of the SAR image (Figure 5.10-e) presented the worst
classification performance among all evaluated images considering the salt-and-
pepper effect. It is most pronounced in this image, following the same pattern
already observed in the results for Campo Verde dataset.
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As for image Ob, the changes in spectral appearance relative to Oa are
substantial. These difference in appearance explain the poor classification
performance of this image, which was the worst among other evaluated
alternatives for this dataset (see Figure 5.8). Particularly, it can be seen
that from ta to tb most of the affected areas started recovering from wildfire.
Also, it can be distinguished the emergence of possible new damaged regions,
which augment even more the complexity of the problem. In fact, the classifier
predicted both the recovered and the possible new damaged zones as wildfire.

The snips in the last two rows refer to images synthesized by cGANs mod-
els. Among the NIRGB compositions, themonotemporal variant (Figure 5.10h)
presented the worst image quality. Similar to what occurred in Campo Verde,
this image is blurred and the boundaries of patches, after mosaicking them, are
easily recognizable. Furthermore, on some areas that started recovering, the
cGANs generated images with similar spectral appearance of wildfire spots. In
consequence, these regions were also classified as wildfires.

Contrarily, the shortcomings discerned in the monotemporal image (Fig-
ure 5.10-h - G[Sa]) were less pronounced in the results produced by the multi-
temporal variants, especially in the images synthesized by the cGANs models
that included the image Ob (Figure 5.10−l and Figure 5.10−n) as conditioning
variable. In those cases, the optical image (Ob) of the other date improved con-
siderably the quality of the synthesized output. For instance, the cGANs were
able to discern between wildfires and recovered areas, where the monotemporal
model assigned both to wildfire. In the same way, the salt-and-pepper effect
diminished in the generated classification maps.

5.5.3
Similarity Metrics

Table 5.7 and Table 5.8 summarize the results of computing the similarity
metrics over the cloudy pixels, between the target (Oa) and synthesized optical
images (G[Sa], G[SaSbOb], G[SaOb] and G[SaSb]) for Campo Verde and Rio
Branco datasets, respectively. For completeness, Ob was also included in the
table as a baseline, i.e., to verify if using a cloud-free image from other date
would be enough. The similarity was measured in terms of the following
metrics: Root Mean Square Error (RMSE), Spectral Angle Mapper (SAM),
and Peak Signal-to-Noise Ratio (PSNR) as presented in Section 5.2. Recall
that the most similar image has low values of RMSE and SAM, and high
values of PSNR.

For both datasets, the similarity metrics improved as more conditioning
variables have been used to synthesize the output image, in particular when
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Table 5.7: Similarity metrics for Campo Verde dataset.
Metrics Ob G[Sa] G[SaSb] G[SaOb] G[SaSbOb]
RMSE 9217 1424 581 488 471
SAM 16,32 5,67 2,22 1,84 1,78
PSNR(dB) 16,35 29,69 35,83 36,73 37,11

Table 5.8: Similarity metrics for Rio Branco dataset.
Metrics Ob G[Sa] G[SaSb] G[SaOb] G[SaSbOb]
RMSE 5374 1122 993 849 737
SAM 9.68 6,30 5,61 5,68 4,72
PSNR(dB) 19.30 31,97 32,61 34,43 35,08

the optical image of the other date (Ob) was included. In contrast, the real
optical image acquired at date tb (Ob) achieved the worst results.

Indeed, the difference in performance between (Ob) and G[SaSbOb] was
remarkable for both datasets. Particularly, the results for image G[SaSbOb]
were 19.56 and 7.29 times lower in terms of RMSE, 9.16 and 2.1 times lower in
terms of SAM, and 21dB and 15.8dB higher in terms of PSNR, when compared
to image (Ob) for Campo Verde and Rio Branco dataset, respectively.

Concerning the images synthesized by the cGANs, the monotemporal
(G[Sa]) approach presented the worst similarity values, followed, in increasing
order, by the multitemporal variants, G[SaSb], G[SaOb] and G[SaSbOb]. Here,
the images G[SaSbOb]) outperformed their counterparts G[Sa] in up to 3 times
in terms of RMSE and SAM metrics, and up to 7dB in terms of PSNR.

Although the images synthesized using all three conditioning data
(G[SaSbOb]) presented the best similarity values, the results of G[SaOb] vari-
ants were not far behind. These results are compatible with those reported
in Figure 5.7 and Figure 5.8, where similar patterns in the OA and F1-score
values were observed.

It is worth emphasizing the substantial differences between images Ob

and those synthesized by the cGANs models. This supports the conclusion
that in our experiments the cGANs did not merely copy the information of
Ob, when this image was used as conditioning data.

In comparison with the results reported in Figure 5.7 and Figure 5.8,
where G[Sa] performed better than Ob for Rio Branco and similar for Campo
Verde, in terms of the similarity metrics, the values of images G[Sa] were
consistently better than that of images Ob for both datasets. These results
show that the monotemporal approach is still a good alternative to deal with
the problem of missing data in optical imagery when just SAR data at the
same date is available.
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It is also important to stress the consistency among the results in Tables
5.7 and 5.8 and in the corresponding Figures 5.7 and Figure 5.8 for all
evaluated variants. In summary, these results consistently support our working
hypothesis that the more conditioning variables, the more realistic are the
optical images synthesized by cGANs.

Figure 5.11 and Figure 5.12 show the heatmaps of RMSE and SAM met-
rics from the same image locations of the snips of Figure 5.9 and Figure 5.10,
respectively. The heatmaps indicate for each pixel site how different are the
synthesized and the reference spectral values. A darker color is associated with
similar spectral information in terms of the computed metric, while brighter
colors represent higher dissimilarity. To facilitate the analysis, the figures also
shows the correspondent target images (Oa) and their references.

The heatmaps show that imageOb was the most discrepant one in relation
to the target. It exhibited the highest RMSE and SAM values. In Campo Verde,
RMSE was almost constant at a high value for all sites. In terms of SAM,
the major variations took place over rivers and some specific crop fields. For
Rio Branco, the major differences for both metrics were located over regions
affected by wildfires. These results are consistent with Figure 5.10-f , where
regions more recently affected by wildfire can be distinguished from recovering
regions.

With regards to the synthesized images, the monotemporal approach
(Figure 5.11-f and Figure 5.12-f) presented the highest RMSE and SAM val-
ues for both datasets. Particularly, this behavior was more evident for Campo
Verde dataset than Rio Branco, where the differences among synthesized im-
ages are not so large as for Campo Verde. These results are consistent with the
values reported in Table 5.7 and Table 5.8.

Interestingly, some of the synthesized images of Campo Verde are patchy:
some synthetic patches are closer to the correspondent reference than others.
This behavior is possibly related to the spectral variability over the crop
phenological stages. In this case, the cGAN has possibly generated samples
from the same class, but in a different phenological stage.

Regarding the Rio Branco dataset, the largest deviation of the synthe-
sized images from the reference occurred over wildfire samples. This pattern is
more apparent in the SAM heatmaps, where some pixels present high scores
for this metric.
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Figure 5.11: Snip of heatmaps of RMSE and SAM metrics from the same image
locations of the snips of Figure 5.9 for Campo Verde dataset.
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Figure 5.12: Snip of heatmaps of RMSE and SAM metrics from the same image
locations of the snips of Figure 5.10 for Rio Branco dataset.
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6
CONCLUSIONS

In this work, we proposed a framework based on cGANs to synthesize
Remote Sensing optical data from multisensor, multitemporal and multires-
olution data. Particularly, the framework is able to generate missing optical
data due to thick clouds that totally block the spectral information. In fact,
this approach can be applied to any other problem that causes data missing
or corrupting in some regions of an image.

The proposal was evaluated in terms of classification as well as in
terms of spectral similarity of the generated images in relation to an optical
ground truth. The experiments were carried out on two datasets from two
municipalities in Brazil. The first dataset focus on crop recognition, while the
second one on wildfire detection.

The experimental analysis showed that the accuracy of a pixel-wise
classification conducted on the optical images generated by the proposed
strategy was close to the results achieved on the reference cloud-free images
for both applications.

The experiments confirmed the working hypothesis that the quality of
synthesized images improved as more data was added to condition the cGAN
operation. In particular, information from the same optical sensor at another
date improved significantly the classification performance.

It is important to emphasize that the method does not create any new
information that is not already embedded in the conditioning data. It just
learns more discriminative representations than conventional features.

The conclusions drawn from the similarity analysis were consistent with
the results observed in the experiments for image classification. In addition, a
visual inspection leads to the same conclusions.

The obtained results open up multiple possibilities for future work. We
believe that even better results might be achieved by fine-tuning the networks’
architectures and their hyperparameters. In particular, semisupervised tech-
niques for cGAN training may also improve the quality of synthesized images.
Above all, we believe that the choice of additional conditioning variables for
the cGAN design for different applications constitutes a promising research
direction.
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Although the proposed method was initially structured for the context
of cloud removal, it can easily be extended to other problems of missing data.
For instance, it can be used for filling corrupted data commonly present in
Time Series Cube Data applications [72]. Future works can be addressed to
explore the capability of the proposed method in this scenario. Finally, another
possible application to explore is the recovering missing data in Landsat 7
imagery affected by acquisition errors in the SLC sensor.
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