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Abstract

Defaveri, Lucianno Augusto Coddato Antunes; Morgado, Welles
Antonio Martinez (Advisor); Queiróz, Sílvio Manuel Duarte (Co-
Advisor). Nonlinear Brownian Machines. Rio de Janeiro, 2018.
105p. Tese de doutorado – Departamento de Física, Pontifícia
Universidade Católica do Rio de Janeiro.
In the recent decade we have seen great interest in the physics of

single particle microscopic engines. Not only we have seen advances in the
theoretical understanding of how such systems behave but also, thanks
to the advanced level of microscopic manipulations, we are capable of
reproducing these systems in experimental situations. The literature is quite
large when considering machines where a single particle is subjected to a
harmonic potential where we can control the stiffness and in contact with
a heat bath of controllable temperature. Motivated by these outstanding
results, we have decided to investigate an alternative mechanism to studying
machines. We propose and investigate a setup where a single particle with
an internal nonlinear potential in contact with a heat bath of temperature
T that we can control, then we introduce an external quadratic potential
centered in a position L which will break the internal symmetry and create
a direction where the particle can fluctuate to with greater ease. We can
use this symmetry breaking to convert heat into work. Starting with a
nonlinear correction to a predominantly linear internal potential, we use
perturbation theory to solve the Langevin equation of the system up to the
first order o k4 and obtain the expected work and absorbed heat. We then
relax the restriction of a small nonlinear by imposing that the cycle periods
are so large that, at least to some extent, the system can be considered
in equilibrium with the heat bath. Using classical statistical mechanics we
obtain results for a wider range of nonlinearities. Since the key component of
our machines is the asymmetry, we extend the internal potential to the more
general but not always analytical form Vi(x) ∝ |x|α which we label α-type
potential. Using primarily numerical techniques investigate its properties
and outputs for different values of α. Lastly we study the Carnot cycle
by replacing the adiabatical branches with isentropic ones, investigating
the relationship between α and the isentropic trajectories. All results are
compared with numerical simulations.

Keywords
Statistical Physics; Thermal Engines; Thermodynamics; Nonequili-

brium Physics;
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Resumo

Defaveri, Lucianno Augusto Coddato Antunes; Morgado, Wel-
les Antonio Martinez; Queiróz, Sílvio Manuel Duarte. Máquinas
Brownianas Não Lineares. Rio de Janeiro, 2018. 105p. Tese de
Doutorado – Departamento de Física, Pontifícia Universidade Ca-
tólica do Rio de Janeiro.
Na última década temos visto grande interesse na física de motores mi-

croscópicos de uma particula. Não só temos visto grandes avanços na descri-
ção teórica de como esses sistemas se comportam como também, graças aos
avanços na área de manipulação microscópica, somos capazes de reproduzir
esses sistemas experimentalmente. A literatura é vasta quando considera-
mos máquinas onde uma partícula é sujeita a um potencial harmônico onde
podemos controlar sua rigidez e em contato com um banho térmico de tem-
peratura controlável. Motivados por esses resultados fascinantes, decidimos
investigar um mecanismo alternativo para o estudo de máquinas. Propomos
e investigamos uma configuração onde uma única partícula com potencial
interno não linear em contato com um banho térmico de temperatura T que
controlamos, em seguida introduzimos um potencial quadrático externo cen-
trado em uma posição L que quebrará a simetria criando uma direção onde
a partícula pode flutuar com maior facilidade. Podemos usar essa quebra
de simetria para converter calor em trabalho. Começando com uma cor-
reção não linear ao potencial interno predominantemente linear, usamos a
teoria de perturbação para resolver a equação de Langevin do sistema até
a primeira ordem da não linearidade k4 e obtemos o trabalho esperado e
o calor absorvido. Então relaxamos a restrição de pequena não linearidade
impondo que o período de cada ciclo seja tão grande que, ao menos parcial-
mente, o sistema possa ser considerado em equilíbrio com o banho térmico.
Usando mecânica estatística clássica obtemos resultados para um alcance
maior das não linearidades. Uma vez que a componente central de nossas
máquinas é a assimetria, extendemos o potencial interno para o mais ge-
ral, embora nem sempre analítico Vi(x) ∝ |x|α, que chamamos de potencial
tipo-α. Usando principalmente técnicas numéricas investigamos as proprie-
dades e resultados para diferentes valores de α. Por fim estudamos o ciclo
de Carnot substituindo os ramos adiabáticos com isentrópicos, investigando
o relacionamento entre α e as trajetórias isentrópicas. Todos os resultados
são comparados com simulações numéricas.

Palavras-chave
Física Estatística; Motores Térmicos; Termodinâmica; Física de

Não Equilíbrio;
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1
Introduction

When Nicolas Sadi Carnot embarked upon the quest to understand the
intrinsic nature of thermal machines, the world had already been irreversibly
changed by the industrial revolution. The economical value of steam engines
in industry was quite clear, and that caused the development of machines to
greatly outpace any physical theory to describe it.

Looking at history from our privileged position, it’s easy to understate
the achievement made by Carnot. His book “Réflexions sur la puissance motrice
du feu et sur les machines propres à développer cette puissance" (Reflections on
the Motive Power of Fire) was published in 1824; Josiah Willard Gibbs would
only be born in 1839, Ludwig Boltzmann in 1834, Hermann von Helmholtz
would only publish his treatise on the conservation of energy 1847, and Rudolf
Clausius would state the first law of thermodynamics in 1850.

Whilst Newton claimed that he could see further by standing in the
shoulders of giants, the french military engineer had very few shoulders to stand
on when it came to investigating the thermodynamic properties of machines.
His work contained a very simple mathematical framework, nevertheless he
managed, in a remarkable feature of careful investigation and intuition, to
obtain cornerstone properties of a machine, as well as the notion of a maximum
efficiency

ξC = 1− TC
TH

, (1-1)

which still today, after so much development in the field of statistical physics,
stands as an insurmountable boundary in efficiency.

Almost two hundred years later, with a vast array of techniques to
manipulate ever smaller systems, the possibility of creating a one particle
microscopic engine was elevated from a simple thought experiment to an
attainable experimental reality.

The principles of equilibrium statistical mechanics were developed
analysing systems so large that their internal fluctuations are negligible and
macroscopic physics ruled them. One particle systems, however, are strongly
affected by fluctuations, the proverbial scenario where a glass unshatters it-
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Chapter 1. Introduction 15

self would be still a rare, but present effect. In this regime, highly driven by
fluctuations, kinesin molecular motors are know to convert chemical energy
from molecules of adenosinetriphosphate (ATP) into work, at near 60% effi-
ciency [1, 2].

Several interesting mechanisms for working machines have been proposed
and studied through the years, like ratchet potentials in both classical [3,4] and
quantum [5] mechanics. Such systems are influence by unbiased fluctuations
that, when combined with the asymmetric dynamic induced by the ratchet
potential lead to the transport of particles.

Another alternative mechanism is to consider a Brownian particle sub-
jected to a harmonic potential of controllable stiffness k(t) in contact with a
heat bath of controlled temperature. Such systems have been extensively stud-
ied both analytically and numerically [6–10]. We will label such machines as
modulated frequency models.

Throughout there have been many experimental realizations of one
particle heat engines, from molecular engines that convert the internal chemical
energy into work [11], photonic engines [12], colloidal Brownian particles
trapped in elliptical well potentials [13] and to optical laser traps [14], ions
confined in a linear Pauli trap [15] and a single optically trapped Brownian
particle [16].

Brownian motors have also been studied extensively within the frame-
work of quantum mechanics [8,17–32]. Fascinating results have been obtained
such as thermal machines driven by vacuum forces [33] and reversible engines
for electrons [34].

For artificial systems operating at maximum power, the reported values
for the efficiency are coherent with the values of the Carnot cycle under the
maximum power constraint, discovered by Novikov [35] and rediscovered by
Curzon and Ahlborn [36]. We call this the Novikov-Curzon-Ahlborn limit
(NCA).

It is also possible to create Brownian information machines that operate
using feedback from information obtained through constant measurements
of the system [12, 37–40]. Information machines are capable of breaking
the classical Carnot limit [41], which does not violate the second law of
thermodynamics when we take into account the entropy generated by the
measurement process.

Small systems operating under realistic conditions may not reach the
Carnot limit due to several causes, such as irreversible heat flows [42, 43] or
the presence of friction. Furthermore, the generated power, a very important
characteristic of a thermal machine, does not easily reach maxima near quasi-
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Chapter 1. Introduction 16

static conditions, despite some arguments that point to a possible surpassing of
the NCA limit for systems with broken time-reversal symmetry [44]. There is
also some evidence that high efficiency is possible at finite power [45]. However,
in general, the efficiency at maximum power does depend on the protocol
parameter space [46,47].

ξNCA = 1−
√
TC
TH

. (1-2)

The properties of nonlinearities in stochastic models is also studied in the
similar context of energy harvesters. Such devices are capable of converting
natural occurring vibrations into useful energy. The linear energy harvester is
very limited, since it can only effectively convert fluctuations at frequencies
close to its harmonic mode. With the addition of nonlinearities, the spectrum
of useful frequencies widens, increasing the practical applicability of such
devices [48, 48–52].

In this thesis we propose a model where the Brownian particle is
subjected to a nonlinear potential being deformed by an external harmonic
potential and, following the same asymmetry principle that makes machines
with ratchet potentials possible, is capable of directing the fluctuations of an
unbiased heat source. Manipulating the point of application of the external
potential L and the bath temperature T , we can use the directed fluctuations
to convert heat into work.

The first half of chapter 2 will be dedicated to the definition of the model
we shall employ on the rest of this work. We will attempt to explain the role
of each element in the dynamical equation 2-2 as well as the cycles we will be
using. We will also provide an intuitive explanation on the nature of nonlinear
machines and how a nonlinear potential can be used as a means to convert
heat into work.

In the second half of chapter 3 we will consider that the internal potential
is strongly quadratic with a small quartic correction. If the nonlinearity k4

is small enough, we will be able to use perturbation theory to expand the
solutions of 2-2 in series of k4. The work and heat output are then obtained for
our cycle choices up to the first order of k4 and we comment on the advantages
and limitations of this approach.

By relaxing the restriction of small k4 and imposing that the cycle time
is large enough for the system to be considered, at least to some extent, in
equilibrium with the heat bath, we are capable of employing classical statistical
mechanics. In chapter 4 we use this new framework to recover the analytical
results obtained in the previous chapter for small k4 and uncover the behaviour
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of work and heat output for large k4. Turning to numerical calculation of the
equilibrium probability distributions we are capable of obtaining results for
larger values for k4. However, even the maximum work output obtained is still
on a scale ten times lower than the heat intake.

One of the main concepts of our work is that the nonlinearities are
merely a tool for obtaining asymmetric potentials, so we extend the range of
nonlinearities in chapter 5 to a more general internal potential. We investigate
the internal potential Vi(x) ∝ |x|α, which we label as α-type potential and
proceed to investigate the effect the exponent alpha has on work and heat
outputs. Analytical results are presented for very specific cases, most of the
results however can only be obtained numerically.

The efficiency of the elliptical cycles is very poor when compared to
the expected Carnot efficiency. We create the same effect of an adiabatic
process by imposing that the system entropy remains unchanged in the
branches that connect the isotherms. We obtain that the isentropic trajectories
are intrinsically connected with the nonlinearities and, more importantly,
the exponent of the potential. In order to obtain a meaningful temperature
difference between the hot and cold phases, we end up having to deform the
potential with values of ∆L orders of magnitude larger than ∆T , imposing
several restrictions on the actual applicability of such trajectories in an
experimental scenario.

Lastly, we present a brief summary of all the results obtained in this work.
We also present clearly the core concepts we have learned with this study and
a brief glimpse of the possible directions we may take from here. The first
two chapters consist of a detailed version of the results published by Defaveri
et. al. [53], while Chapter 4 contains results of an yet unpublished work. The
nonlinear models presented in Chapter 2 and 4 are our original contribution
to the study of Brownian machines and more specifically, how nonlinearities
in the potential can be used to convert heat into work.
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2
Perturbative Approach

We will start this chapter providing a simple explanation of the model to
be used throughout the thesis. We explain how linear machines cannot produce
net work output, how non-linearities are essential to creating asymmetric
potentials, and how that asymmetry is responsible for the efficiency of the
machine.

The potential considered will consist of quadratic and quartic terms, and
by imposing that the energy contained in the quartic mode be much smaller
than in the quadratic one it is possible to employ perturbation theory and
obtain analytical results.

2.1
The Model

We consider a system composed by a single Brownian particle (which
will abbreviate BP) with mass m subjected to a potential V (x), with x being
the position coordinate (for the momentum we will be using small capital p).
Throughout this chapter we will consider V (x) = k2

2 x
2 + k4

4 x
4. The system is

then driven by an external linear force Fe = −kL(x − L(t)), where we (the
experimentalist in a practical situation) have full control of L. Using a simple
mechanical analogy, this force can be seen as a spring connected to a piston
located at position L (see figure 2.1). The potential associated with this force is
Ve(x) = kL

2 (x−L)2, therefore we cannot alter the concavity of the potential (or
the stiffness of the spring) like in the case of the modulated frequency model,
only the position where it is applied.

The system is also in contact with a heat bath, which we shall model
using the stochastic force η(t). In an experimental situation, a heat bath could
consist of a viscous liquid [14,16] composed by a very large number of particles
when compared to the system. From the perspective of the BP, since the bath
is composed of such a large number of particles, following the central limit
theorem, the distribution of the stochastic force is Gaussian with cumulants:

〈
η(t)

〉
C

= 0 ;
〈
η(t)η(t′)

〉
C

= 2mγT (t)δ(t− t′), (2-1)
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x(t)

k4

k2

kL
Piston

L(t)

m

Figure 2.1: An analogous mechanical representation of our Brownian machine.

where 〈〉C represents the cumulants. The Dirac delta term imposes that there
is no correlation between two different instants in time. We are capable of
exerting full control over the bath temperature T (t). There is also a dissipative
interaction between the heat bath and the system (fluctuation dissipation
theorem).

We will impose periodic protocols over L(t) and T (t) to account for the
machine’s operation cycles. The particle is free to visit all points in the axis.
Since the potential will become too steep for large values of x, we may interpret
L(t) as a soft volume, since it can extend the range where the particle is more
likely to be found. In a more standard machine the phase space is composed
of the volume and temperature (V, T ), we will use (L, T ).

The final equation of motion is the Langevin-type equation [54–56]

mẍ+mγẋ+ V ′i (x) = −kL
(
x− L

)
+ η(t), (2-2)

where γ represents the exchange rate between the bath and the system and the
main potential we shall study is Vi(x) = k2

2 x
2+ k4

4 x
4. By adding and subtracting

kL(x−L)L̇ on both sides of equation 2-2 and performing some algebra we can
write [

mẍ+ V ′(x)
]
ẋ =

[
η(t)−mγẋ− kL

(
x− L

)]
ẋ[

mẍ+ V ′(x)
]
ẋ− kLxL̇+ kLLL̇ = kLLL̇− kLxL̇+

[
η(t)−mγẋ− kL

(
x− L

)]
ẋ

d

dt

[
m

2 ẋ
2 + V (x) + kL

2 (x− L)2
]

︸ ︷︷ ︸
dU/dt

= −kL(x− L)L̇︸ ︷︷ ︸
d̄W/dt

+
(
η(t)ẋ−mγẋ2

)
︸ ︷︷ ︸

d̄Q/dt

, (2-3)

where we recover the familiar result of the First Law of Thermodynamics
dU = dW + dQ. Note that the internal energy is an exact differential term,
indicating that it does not depend on the trajectory in the phase space while the
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work and heat are inexact differentials individually but when added together
become exact.

2.1.1
Step and elliptical cycles

In order to perform an adiabatic transformation upon a macroscopic
system, one would simply remove any contact between the heat bath and
the system’s particles. When dealing with a microscopic system however, it
becomes experimentally harder to remove the contact between system particles
and external bath.

An alternative [14–16] to disconnecting the heat bath from the system
is to evaluate isentropic trajectories. We will discuss this topic carefully in
chapter 5 and appendix D. Note however that only isentropy and adiabaticity
are only equivalent when dealing with classical statistical mechanics, on a
realistic single particle system the adiabatical restriction is

d̄Q

dt
= 0, (2-4)

so there is no heat flow between bath and BP.
By imposing that the cycle period τ is much larger than 1/γ, or

equivalently that Ω � γ, we ensure that as the system navigates the phase
space of (L, T ), there will be enough time for the system to equilibrate at least
partially with the bath.

For the piston position we will use the protocol [53]

L(t) = Lm + ∆L
2 cos(Ωt), (2-5)

and for the bath temperature we shall use two distinct protocols: the step
cycle, where the Brownian particle first undergoes a compression phase (Lm +
∆L/2 → Lm − ∆L/2) while in contact with a heat source of temperature
TH , after we instantaneously switch the heat source for a colder one of
temperature TC , following by an expansion back to the starting value of L
(Lm − ∆L/2 → Lm + ∆L/2). At the end, we switch the heat source back to
the original (TH) and the cycle restarts. The alternative is the elliptical cycle,
where L and T are constantly changing but very slowly. The temperature
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(4)(2)

TH

(1)

TC
(3)

L

T

(a)

TH

TC

(1)(2)

L

T

(b)

Figure 2.2: Figure on top represents a step cycle (a) and the elliptical cycle
is represented on the bottom (b). For the step cycle, compression phase
(Lm + ∆L/2 → Lm − ∆L/2) is performed (labelled 1) in contact with the
hot source (TH), at the end there we instantaneously switch (labelled 2) with
the cold source (TC) following by an expansion (Lm − ∆L/2 → Lm + ∆L/2,
labelled 3). At the end we instantaneously switch back to the hot source
(labelled 4). For the elliptical cycle, both T and L change continuously with
the BP absorbing heat while T increases (labelled 1) and rejecting heat when
T decreases (labelled 2).
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protocols are

T step(t) =

 TH if nτ < t(n+ 1/2)τ
TC if (n+ 1/2)τ < t < (n+ 1)τ

(2-6)

T ell(t) = Tm + ∆T
2 sin(Ωt), (2-7)

where we can write that TH = Tm+∆T/2 and TC = Tm−∆T/2, in other words,
TH and TC represent the maximum and minimum temperature respectively
while ∆T is the gap between the two and Tm the average temperature. The
cycles are represented in figure 2.2.

Since the step cycle is very similar to the Stirling cycle we would like to
draw attention to the fact that, unlike in an actual Stirling machine, during
the isocoric trajectories (constant L) the system does exchange heat with the
reservoirs which decreases the overall efficiency, we shall obtain how much in
the end of this chapter.

2.1.2
Work Calculations

The work rate into the system is written as

d̄W

dt
= −kL

(
x− L

)
L̇ = PW (t). (2-8)

The work output per cycle of the n-th cycle is defined as

Wn =
∫ nτ

(n−1)τ
dt PW (t) =

∫ nτ

(n−1)τ
dt
{
− kL(x− L)L̇

}
, (2-9)

which is a stochastic discrete variable (since x is also stochastic), and τ is the
period of a cycle. We are going to define the expected work output W as both
the average over ensembles and a time average over a very large number of
cycles:

W = lim
N→∞

1
N

N∑
n=0

〈
Wn

〉
, (2-10)

here we introduce the notation that W (or any function F ) represents the
value of an individual cycle while W (F) represents the cycle expectation.
Both the work output per cycle and the instantaneous power have a stochastic
nature, however because the work is defined already as a time average over the
instantaneous power, it will fluctuate far less.

Also we would like to draw attention to the sign when defining the work
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as in 2-3: we are taking the perspective of the particle, therefore if W > 0 the
particle is gaining work while if W < 0 then the particle is providing work to
the piston, and by extension us. Thus we define the useful work as −W .

2.1.3
Heat calculations

The instantaneous heat flow is represented by two terms with distinct
roles

d̄Q

dt
=

[
η(t)v(t)−mγv2(t)

]
= PQ(t), (2-11)

where the first term η(t)ẋ, that we will henceforth refer as fluctuation term
is the only term capable of injecting energy into the system. The second
term, the dissipation term, is always removing energy from the system. In the
experimental scenario it represents the interaction between the system and a
medium composed of several smaller particles, and the large Brownian particle
collides with the smaller bath particles constantly.

If the system is at a higher temperature than the bath, the dissipation
term will be dominant over the fluctuation until the particle reaches thermal
equilibrium at the same temperature as the heat bath; if the particle is at a
lower temperature, the fluctuation term will dominate the energy exchange
heating up the system.

We would like to also draw attention to the fact that the fluctuation is
quite noisy; in fact, it becomes clear when evaluating its second moment:

〈(
η(t)ẋ(t)

)2〉
= 〈η(t)η(t)〉〈v(t)v(t)〉+ ... , (2-12)

that its variance is divergent since 〈η(t)η(t)〉 ∝ δ(0). This is a characteristic
of the Langevin model, which has a too broad spectrum. In comparison, the
dissipation fluctuates far less.

The heat intake QH of the system is defined in the time interval where
the heat flow is positive, 〈PQ(t)〉 > 0, while the expelled heat QC is defined
when 〈dQ/dt〉 < 0. Of course if 〈PQ(t)〉 = 0 there is no heat exchange between
the heat bath and the system. The average heat flow is〈

d̄Q

dt

〉
= 〈η(t)ẋ(t)〉 −mγ〈ẋ2(t)〉 = γ

(
T (t)− Ti(t)

)
, (2-13)

where the first result is explained in the appendix A and we have defined Ti
as the system’s internal temperature. This picture is quite straightforward,
the average heat flow is proportional to the difference between the bath
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temperature and the system temperature and the role of γ is the rate with
which this exchange happens and if the system is at the bath temperature,
there will be no heat exchange.

We can bring a lot of clarity to the heat flow between reservoir and system
by analysing the linear problem:

mẍ+mγẋ+mω2x = η(t), (2-14)

where η has the same properties as the ones outlined in equation 2-1. Knowing
that the Green function of the damped harmonic oscillator (assuming that
γ < ω) is

G(t) = e−γt/2
sin

(
t
√
ω2 − γ2/4

)
m
√
ω2 − γ2/4

, (2-15)

we can write the solution of 2-14 as

x(t) =
∫ t

−∞
G(t− s)η(s)ds, (2-16)

and

v(t) =
∫ t

−∞
Ġ(t− s)η(s) ds+G(0)︸ ︷︷ ︸

=0

η(t) =
∫ t

−∞
Ġ(t− s)η(s) ds. (2-17)

Using the result from appendix A we can write that 〈η(t)v(t)〉 = γT (t) and
using the previous equation we can write that

〈v2(t)〉 =
∫ t

−∞
〈η(s1)η(s2)〉Ġ(t− s1)Ġ(t− s2) ds1ds2

= 2mγ
∫ t

−∞
T (t)Ġ2(t− s) ds. (2-18)

In order to understand how our system will behave with the abrupt changes
in temperature, let us solve previous equation considering the particle was
in contact with a heat bath of temperature T1 for t < 0 and for t > 0 we
instantaneously change the bath temperature to T2 > T1. The solution is:

mγ〈v2(t)〉 = 2m2γ2
∫ t

−∞
T (t)Ġ2(t− s) ds.

= γT2 − γ(T2 − T1)e−γt
ω

2 − γ2

4 cos
(
t
√

4ω2 − γ2 + φ0
)

ω2 − γ2/4

 ,(2-19)
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Figure 2.3: We present here the ensemble averages obtained through numerical
simulations of equation 2-14. The parameters used were γ = ω = m = 1.

where the phase is

φ0 = arctan
(

γ√
4ω2 − γ2

)
. (2-20)

We can demonstrate now two very intuitive results

mγ〈v2(0)〉 = γT1 ; mγ〈v2(t� 1/γ)〉 = γT2, (2-21)

as we have stated before, γ is the time scale of the heat exchange between the
reservoir and the system. By imposing that τγ � 1, the system will require
but a small fraction of the overall cycle time to equilibrate with the bath.
We have performed numerical simulations of 〈v2〉 for non-linear potentials to
demonstrate that the time scale of the temperature is still quite close to the
linear system, the results are shown in figure 2.3.

Considering now that the system is in contact with a reservoir with the
same temperature as the one in the elliptical cycle

mγ〈v2(t)〉 = γTm + A(Ω) γ∆T sin(Ωt)−B(Ω) γ∆T cos(Ωt), (2-22)
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where we have defined:

A(Ω) =
2γ
(
4ω4 + γ2Ω2 − 3ω2Ω2 + Ω4

)
(γ2 + Ω2)

(
4γ2Ω2 + (Ω2 − 4ω2)2

)
B(Ω) =

Ω
(
8ω4 + γ2Ω2 − 6ω2Ω2 + Ω4

)
(γ2 + Ω2)

(
4γ2Ω2 + (Ω2 − 4ω2)2

) .
Considering that Ω� ω and Ω� γ we can write equation 2-22 as

mγ〈v2(t)〉 ≈ γTm + γ∆T
2 sin(Ωt)− Ω ∆T

2 cos(Ωt), (2-23)

in order to obtain the heat flow between system and reservoir:

PQ(t) = 〈η(t)v(t)〉 −mγ〈v2(t)〉 ≈ Ω∆T
2 cos(Ωt). (2-24)

This term is very small, however we must include it in our calculations, note
that when integrating in the time inverval where PQ is positive we obtain the
absorbed heat (QH), we will obtain

QH =
∫ 3τ/2

τ/2
dt PQ(t) = ∆T, (2-25)

which is clearly non-negligible. We performed numerical simulations to demon-
strate the validity of equation 2-22 even for nonlinear systems, the results are
shown in figure 2.4.

2.2
The Role of Non-Linearities

Now we shall go into detail on the role that the nonlinearities in the
potential V (x) have in the conversion of heat into work. Let us take first a
purely mathematical perspective, if the internal potential where to be linear,
the Langevin equation describing the system becomes

mẍ+mγẋ+ k2x = −kL
(
x− L

)
+ η(t), (2-26)

which can be easily solved using the Laplace Transform L(x) = x̃(s):

(
ms2 +mγ s+ k2 + kL

)
︸ ︷︷ ︸

R(s)

x̃(s) = −kLL̃(s) + η̃(s)

x̃(s) = η̃(s)
R(s) −

kLL̃(s)
R(s) , (2-27)
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Figure 2.4: We present here the ensemble averages obtained through numerical
simulations of equation 2-14 with the elliptical temperature. The parameters
used where γ = ω = m = 1. The solid line represents the result for the linear
case 2-22.

so we conclude that the average power (or the expected power) is proportional
to the expected position〈

dW

dt

〉
= −kL

(
〈x〉 − L

)
L̇, (2-28)

but the expected position depends only on L̃(s):

〈x̃(s)〉 = −kLL̃(s)
R(s) , (2-29)

and is completely independent of the temperature. In other words, if we were
to disconnect the system from the heat bath, the expected power would not
depend on T ! Thus, the linear machine is incapable of converting heat into
work.

From a mathematical perspective it is very easy to explain this result.
Equation 2-8 shows us that the work rate is linearly dependent on the position
x, and from equation 2-2 the position is linearly dependent on L and η (T ). If
the governing Langevin equation were non-linear, like for instance

mẍ+mγẋ+ k2x+ k4x
3 = −kL

(
x− L

)
+ η(t), (2-30)
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η̃, kLL̃, s
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Non-Linear System

Figure 2.5: Visual representation of a dynamical equation. In the linear case, on
top, the answer consists on the sum of the two individual entries contributions
while for the nonlinear system, bottom, the answer consists in a non-trivial
combination of the two.

now x is no longer a linear sum of the independent responses from L and η,
and in this case there will be mixing of the dynamic from the bath and from
the external piston (see figure 2.5).

However we are still left with questions. For instance, not all non-linear
systems are capable of converting heat into work (we demonstrate this in
chapter 3), the non-linearity is necessary but no sufficient. So let us take a
more physical approach to the problem of: what makes a machine?

Consider a system of N ideal gas particles at temperature T . Following
the law of ideal gasses, the pressure necessary to constrain these particles inside
a box of volume V obeys

p V = NT, (2-31)

where we are taking the temperature in energy units (kB = 1). The particles
of the gas are in constant collision with the walls of the box, and from 2-31 we
can conclude that the higher the temperature, the higher the pressure on the
walls.

Consider that one of the walls of this volume V is a piston, when the
gas particles are at a high temperature T2, the particles will collide with the
piston and drive its displacement which in turn becomes a source of work. The
gas particles are now performing this work in the external environment, this
process converts the heat contained within the gas particles into work (see a
representation in figure 2.6).

We cannot just stop here. As stated in the previous chapter, the correct
way to operate machines is through cycles, so we must return our piston to its
original position. If this compression is performed while the system remains at
temperature T2, then the pressure that the gas particles apply to the piston will
be the same and we would be required to spend the same amount of work we
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Figure 2.6: A simple representation of two stages of a machine. With the high
temperature TH , we move the piston in the direction of the pressure from the
particles. With the lower temperature TC , because the pressure on the piston
is now lower, we require less work to push it back to its original position, thus
having a net gain of work at the end of the cycle.

just managed to obtain in the expansion phase. However, if the temperature
has been lowered to T1 < T2, now the pressure on the piston walls is lower
following 2-31. Once the original volume is restored we return the system
particles to their original temperature.

We described above a very simple machine (roughly a Stirling cycle) in
order to highlight the most important aspect of a machine: the fluctuations
must have some sort of bias. In this case, the fluctuations drive the system to
occupy an even larger volume, which is why we require the pressure p to keep
the particles contained inside a given volume. When the system is at a high
temperature, use this tendency to occupy more volume, let the particles spend
their energy pushing the piston even further and then, with the system at a
lower temperature, we shall face less resistance from the particles and we can
push the piston back to its original gaining net work.

When we move to a setting composed of a single particle it becomes
less intuitive. The BP is subjected to the effective potential V (x) = k2

2 x
2 +

kL
2 (x − L)2, the Langevin equation governing the evolution of such system is
equation 2-26. Using purely mathematical principles we have concluded that
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such potential cannot convert heat into work. We can reach the same conclusion
from a much clearer physical perspective simply by looking at the potential.

In figure 2.7 we can see the probability distribution obtained using
equilibrium statistical mechanics (more on that in chapter 3), notice how the
position expectation is the same as the minimal potential xm regardless of
the temperature. That is because the external potential we introduced, Ve did
not break the symmetry of the effective potential, the particle finds the same
resistance when fluctuating to the left or to the right of the minimum, and
since the work output is linearly proportional to the expectation of x as shown
in 2-8, the net work is going to be null.

When we introduce a non-harmonic potential into the problem, V (x) =
k2
2 x

2 + k4
4 x

4 + kL
2 (x− L)2, we have that for different values of L the potential

is no longer symmetric, it becomes deformed and, as a result, to the left of
the minimal position (x < xm) it becomes softer meanwhile to the right of the
minimal (x > xm) it becomes stepper. The fluctuations of η(t) are unbiased,
but the particle has less opposition to fluctuating to the left of the minimum
than to the right of it. The asymmetry in the potential created a preferred
direction to the BP and, as a result, stronger fluctuations shift the expected
position even further from the minimal potential as we can see in figure 2.8.

Now the parallel is clear, when the system is at a higher temperature we
will follow the preferred direction of the particle and perform a contraction,
and at a lower temperature, with weaker opposition by the fluctuations, L will
revert to its original position performing an expansion. The work output in
both branches will be different and the net work production of the cycle will
be non-zero. We illustrate this point in figure 2.9.

2.3
Perturbative Approach

The task of solving a non-linear differential equation is quite challeng-
ing, the vast majority array of methods, like both the Fourier and Laplace
transform, or the Green Function method work better when the equations are
linear. In order to extract analytical results from equation 2-30 we will employ
perturbation theory to expand the solutions as series of the non-linear term
k4.

The use of harmonic potentials is not only due to the simplicity that it
provides when it comes to obtaining analytical solutions, it also represents a
first approximation to a naturally occurring confining potential. It is a natural
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Figure 2.7: The figure on the top represents (a) the effective potential V (x) =
k2
2 x

2 + kL
2 (x−L)2 and on the bottom (b) represents the probability distribution

of the particle at different temperatures. The solid black line represents 〈x〉,
which does not change with the temperature. We have considered k2 = 1 and
kL = 1.
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Figure 2.8: The figure on the top (a) represents the effective potential V (x) =
k2
2 x

2 + k4
4 x

4 + kL
2 (x − L)2 and on the bottom (b) represents the probability

distribution of the particle at different temperatures. The solid black line
represents 〈x〉, which increases with the temperature. We have considered
k2 = 1, kL = 1 and k4 = 1.
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〈x〉

x

ρ

〈x〉

x

ρ

L

T

Figure 2.9: The step cycle is represented where we have highlighted the
same displacement L but for different temperatures in order to compare
compression with expansion phases. The power output for the fixed value of L
is PW = −kL

(
〈x〉TH − 〈x〉TC

)
L̇, which is negative since 〈x〉TH > 〈x〉TC .

first step to introduce the second term of such an expansion,

Vi(x) = V0 + V ′′i (0)
2 x2 + V

(4)
i (0)
24 x4 +O(x6) ≈ k2

2 x
2 + k4

4 x
4, (2-32)

which also justifies the use of perturbation theory. The coordinates can be
perturbatively expanded as [53,57–59].

x = x0 + k4x1 +O(k2
4) ; v = v0 + k4v1 +O(k2

4), (2-33)

and after replacing these terms in equation 2-30 and separating according to
k4 we obtain the following recursive relationship

O(k0
4) : mv̇0 +mγv0 + k2x0 = −kL(x0 − L) + η(t)

O(k1
4) : mv̇1 +mγv1 + k2x1 = −x3

0. (2-34)
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The first equation is the linear approximation (k4 = 0) and can be solved using
Laplace transform or Green’s function, with the solution of x0(t) we can now
solve the differential equation for x1(t) using x0 as a driving force.

Following the assumption that the energy in the harmonic mode φ2 is
much larger than in the quartic mode φ4 (φ2 � φ4), the average energy U
calculated as

U = 〈U〉 =
〈
m

2 v
2 + k2

2 x
2 + k4

4 x
4 + kL

2 (x− L)2
〉

(2-35)

can also be expanded in a series of k4 to the first order

U ≈ m

2 〈v
2
0〉+ k2 + kL

2 〈x2
0〉+ k4

4 〈x
4
0〉 =

= m

2
(
〈v2

0〉c + 〈v0〉2c
)

+ k2 + kL
2

(
〈x2

0〉c + 〈x0〉2
)

+ k4

4
(
3〈x2

0〉2c + 〈x0〉4
)

since the energy, up to the first order expansion in k4 is only a function of the
zero order terms x0 and v0, we can evaluate previous equation directly, leading
to the result

T + m

2 〈v0〉2 + k2 + kL
2 〈x0〉2︸ ︷︷ ︸

φ2

+ 3k4T
2

(k2 + kL)2 + k4

4 〈x0〉4︸ ︷︷ ︸
φ4

, (2-36)

and by separating the thermal components from the deterministic ones we can
write the two restrictions

1� k4T

(k2 + kL)2 ; 1� k4L
2
m

k2 + kL
, (2-37)

where Lm is the average value of L(t) in time. Both restrictions must be
respected simultaneously for the expansion to be a valid approximation.

By taking the Laplace transform of 2-34 we have that

x̃0(s) = kLL̃(s)
mR(s) + η̃(s)

mR(s)

x̃1(s) = − lim
ε→0

∫ dq1dq2dq3

(2π)3mR(s)
x̃0(iq1 + ε)x̃0(iq2 + ε)x̃0(iq3 + ε)

s− iq1 − iq2 − iq3 − 3ε , (2-38)

where we have made use of the result in appendix B:

L{x3
0(t)} = lim

ε→0

∫ dq1dq2dq3

(2π)3
x̃0(iq1 + ε)x̃0(iq2 + ε)x̃0(iq3 + ε)

s− iq1 − iq2 − iq3 − 3ε , (2-39)

we have also defined that R(s) = s2 + γs+ ω2 (and k2 + kL = mω2).
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2.4
Work Output

Let us remind ourselves of the work expression

W = lim
N→∞

1
N

∫ Nτ

0
−kL

{
〈x〉 − L(t)

}
L̇(t) dt

= lim
N→∞

−kL
N

∫ τN

0
〈x〉L̇ dt. (2-40)

We can also expand W as a series of k4

W = W0 + k4W1 +O(k2
2) = lim

N→∞
−kL
N

∫ τN

0

{
〈x0〉+ k4〈x1〉+O(k2

4)
}
L̇ dt

= − lim
N→∞

kL
N

∫ τN

0
〈x0〉L̇ dt− lim

N→∞

kLk4

N

∫ τN

0
〈x1〉L̇ dt+O(k2

4). (2-41)

In order to perform the calculations we will make use of the techniques outlined
in appendix B, where the time average is expressed in terms of the Laplace
transform of our functions

W0 = − lim
N→∞

lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 kLτ(iq1 + iq2 + 2ε)〈x̃0(iq1 + ε)〉 ˜̇L(iq2 + ε)

W1 = − lim
N→∞

lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 kLτ(iq1 + iq2 + 2ε)〈x̃1(iq1 + ε)〉 ˜̇L(iq2 + ε).

2.4.1
Zeroth order

Since the average of the zeroth term in the position

〈x̃0(s)〉 =
〈
kLL̃(s)
mR(s) + η̃(s)

mR(s)

〉

= kLL̃(s)
mR(s) , (2-42)

and there is no dependence on the temperature, the zeroth order work is
identical for both step and elliptical cycles

W0 = − lim
N→∞

lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 kLτ(iq1 + iq2 + 2ε)〈x̃0(iq1 + ε)〉 ˜̇L(iq2 + ε)

= − lim
N→∞

lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 k
2
Lτ(iq1 + iq2 + 2ε) L̃(iq1 + ε) ˜̇L(iq2 + ε)

mR(iq1 + ε)

= πmγk2
L∆L2

4(k2 + kL)2 Ω +O(Ω4), (2-43)
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since the sign of the output is positive, the machine is absorbing the work.
This represents an irreversible loss for Ω > 0, caused by the mechanical friction
between the BP and the surrounding bath particles, as attested by the factor
γ in the numerator.

2.4.2
First Order

The average of the first order term of the position starts to become quite
cumbersome

〈x̃1(s)〉 = − lim
ε→0

1
mR(s)

∫ dq1dq2dq3

(2π)3
〈x̃0(iq1 + ε)x̃0(iq2 + ε)x̃0(iq3 + ε)〉

s− iq1 − iq2 − iq3 − 3ε ,

= − lim
ε→0

1
mR(s)

∫ dq1dq2dq3

(2π)3
〈x̃0(iq1 + ε)〉〈x̃0(iq2 + ε)〉〈x̃0(iq3 + ε)〉

s− iq1 − iq2 − iq3 − 3ε −

− lim
ε→0

3
mR(s)

∫ dq1dq2dq3

(2π)3
〈x̃0(iq1 + ε)〉〈x̃0(iq2 + ε)x̃0(iq3 + ε)〉

s− iq1 − iq2 − iq3 − 3ε

= lim
ε→0

1
mR(s)

∫ dq1dq2dq3

(2π)3

k3
LL̃(iq1+ε)L̃(iq2+ε)L̃(iq3+ε)

m3R(iq1+ε)R(iq2+ε)R(iq3+ε)

s− iq1 − iq2 − iq3 − 3ε +

+ lim
ε→0

3
mR(s)

∫ dq1dq2dq3

(2π)3

kLL̃(iq1+ε)〈η̃(iq2+ε)η̃(iq3+ε)〉
m3R(iq1+ε)R(iq2+ε)R(iq3+ε)

s− iq1 − iq2 − iq3 − 3ε , (2-44)

and the first order of the work output is enormously more cumbersome, we
will limit ourselves here to calculate the reduced

W1 = − lim
N→∞

lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 kL k4τ(iq1 + iq2 + 2ε)〈x̃0(iq1 + ε)〉 ˜̇L(iq2 + ε).

For the first order correction we obtain terms that do not depend on the cycle
time (Ω)

Well
1 = −3πkLk4Lm∆L∆T ell

4(k2 + kL)3 − 3πmγk4k
2
L∆L2

2(k2 + kL)4

{
Tm + k2

L(∆L2 + 16Lm)
16(k2 + kL)

}
Ω

Wstep
1 = −3kLk4Lm∆L∆T step

(k2 + kL)3 − 3πmγk4k
2
L∆L2

2(k2 + kL)4

{
Tm + k2

L(∆L2 + 16Lm)
16(k2 + kL)

}
Ω.

Note that all the main ingredients we intuitively expect a working machine to
possess are present: we have Lm, which ensures that the potential deformation
remains biased (if we had Lm = 0 the deformation on the positive side would
be compensated by the equivalent on the negative side), and of course ∆T .

The terms dependent on cycle period do not violate the second law thanks
to the presence of the much larger zeroth term W0 which is a consequence of
the restriction imposed in 2-37. In other words, they are not too large.

Also, we decided to label the temperature difference specifying the cycle
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(∆T step and ∆T ell) because if we consider ∆T ell = 4∆T step/π, all terms in the
first order become identical. It is simple to understand this relation when one
looks at the Fourier series of the step cycle temperature:

T (t) = Tm + 2
π

∆T step sin(Ωt) + 2
3π∆T step sin(3Ωt) + ... (2-45)

by choosing that ∆T ell = 4∆T step/π the elliptical cycle becomes the first order
expansion of the step cycle.

2.5
Heat Exchanges

Following the definition of heat rate outlined in section 2.1.3, the amount
of heat exchanged in the time interval between 0 and t is

Q(t) =
∫ t

0
ds
〈
η(s)v(s)−mγv2(s)

〉
. (2-46)

Using the result of appendix A, we have that

Q(t) = γ
∫ t

0
ds
{
T (s)−m

〈
v2(s)

〉}
. (2-47)

In order to evaluate the heat exchanged we need to evaluate 〈v2(t)〉. In section
2.1.3 we have also outlined the phases in which the system is either absorbing
or rejecting heat to/from reservoir. For the elliptical cycle the heat is absorbed
when the bath temperature rises, in the step cycle its absorbed when the
system is in contact with the higher temperature. To evaluate the heat only in
the desired regions we will make use of the early and late time averages defined
in appendix B.

QH =
〈
η(t)v(t)−mγv2(t)

〉early
= Tm + ∆T

2 −mγ
〈
v2(t)

〉early
(2-48)

QC =
〈
η(t)v(t)−mγv2(t)

〉late
= Tm −

∆T
2 −mγ

〈
v2(t)

〉early
(2-49)

For reasons that will become clear by the end of the section, we will only
calculate the zeroth order of 〈v2(t)〉. The early and late time averages are
written as
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〈v2
0(t)early = lim

N→∞
lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 τE(iq1 + iq2 + 2ε)〈ṽ0(iq + ε)ṽ0(iq2 + ε)〉

= lim
N→∞

lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 τE(iq1 + iq2 + 2ε)(iq1 + ε)(iq2 + ε)×

× 〈x̃0(iq + ε)x̃0(iq2 + ε)〉

= lim
N→∞

lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 τE(iq1 + iq2 + 2ε)(iq1 + ε)(iq2 + ε)×

×
{
k2
LL̃(iq1 + ε)L̃(iq2 + ε)

m2R(iq1 + ε)R(iq2 + ε) + 〈η̃(iq1 + ε)η̃(iq1 + ε)〉
m2R(iq1 + ε)R(iq2 + ε)

}
(2-50)

〈v2
0(t)late = lim

N→∞
lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 τL(iq1 + iq2 + 2ε)〈ṽ0(iq + ε)ṽ0(iq2 + ε)〉

= lim
N→∞

lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 τL(iq1 + iq2 + 2ε)(iq1 + ε)(iq2 + ε)×

× 〈x̃0(iq + ε)x̃0(iq2 + ε)〉

= lim
N→∞

lim
ε→0

∫ ∞
−∞

dq1dq2

(2π)2 τL(iq1 + iq2 + 2ε)(iq1 + ε)(iq2 + ε)×

×
{
k2
LL̃(iq1 + ε)L̃(iq2 + ε)

m2R(iq1 + ε)R(iq2 + ε) + 〈η̃(iq1 + ε)η̃(iq1 + ε)〉
m2R(iq1 + ε)R(iq2 + ε)

}
(2-51)

with results

〈v2
0(t)early = πk2

L∆L2

8(k2 + kL)2 Ω + 2Tm −∆T
2m (2-52)

〈v2
0(t)late = πk2

L∆L2

8(k2 + kL)2 Ω + 2Tm + ∆T
2m . (2-53)

Replacing our findings in

QH = Tm + ∆T
2 − πmγk2

L∆L2

8(k2 + kL)2 Ω− 2Tm −∆T
2m = ∆T − πmγk2

L∆L2

8(k2 + kL)2 Ω(2-54)

QC = Tm −
∆T
2 − πmγk2

L∆L2

8(k2 + kL)2 Ω− 2Tm + ∆T
2m = −∆T − πmγk2

L∆L2

8(k2 + kL)2 Ω,(2-55)

note that if we add both terms we would get the heat exchange of the entire
cycle

Q = Q1 +Q2 = −πmγk
2
L∆L2

4(k2 + kL)2 Ω, (2-56)

which, in accordance with the first law of thermodynamics Q+W = 0, at the
end of a cycle.

Unlike the result obtained for the work output, the heat does contain
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terms that do not depend on the cycle duration, this is why we will not
be calculating beyond the zeroth order, these terms will be dominant when
compared to the first order. For the work output, we could always choose Ω
to be so small that only the stationary terms remain relevant, but even then
the efficiency of our machine would be

efficiency = 3πkLk4Lm∆L
4(k2 + kL)3

∆T
∆T = 3πkLk4Lm∆L

4(k2 + kL)3 � 1 (2-57)

which is much smaller than the Carnot efficiency. In experimental situations,
the efficiency can also be quite low [15].

2.6
Final Remarks

In this chapter we presented the quartic model and its relevant properties.
We focussed on providing a simple and intuitive perspective while describing
the role of each component in our equations of motion.

Employing perturbation theory we are able to solve equation 2-2 ana-
lytically up to any order of k4; a task which is easier said than done when
one considers how the components become quite cumbersome. Nevertheless,
the biggest downfall of this approach is that, for the cycles we employed, the
heat absorption is gigantic when compared to the work produced, rendering
the efficiency quite insignificant.

In the next chapter we will attempt to improve the machine by investi-
gating larger nonlinearities. However, in order to achieve this higher range of
k4 we will be making an equilibrium hypothesis, which is only consistent with
Gaussian heat baths. If we were dealing with more exotic types of reservoirs (of
Poissonian nature for instance), then perturbation theory would be our only
tool to investigate these problems.
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3
The Quasi-Static Regime

In the previous chapter we analysed the nonlinear machine using pertur-
bation theory to obtain analytical results. This decision greatly narrows the
range of values of k4 we may investigate.

We will now soften the restrictions on k4 by imposing more severe ones
to the cycle time. Previously we have considered that the cycle duration was
the largest time scale of the problem (or Ω � ω2, γ), such a restriction was
taken not only to obtain the approximation but also due to the fact that in
an experimental situation, we would expect the piston position (a parameter
which varies as a known protocol) will operate much slower than the internal
vibrations of the system. Now we will consider that the cycle time is long
enough (Ω → 0) so that at all points we may consider the system and bath
to be in equilibrium with each other. This new restriction we shall henceforth
refer as quasi-static regime.

Within this regime, we are allowed to invoke the heavy machinery that
is classical statistical mechanics (Boltzmann and Gibbs), which will in turn
allow for analytical predictions to be made.

3.1
Equilibrium Distribution

Consider that our system is in equilibrium with a heat bath of tempera-
ture T with its ensemble distribution written as

ρ(x, p) = 1
Z
e−H(x,p)/T , (3-1)

where Z is the partition function defined as

Z =
∫
dxdp e−H(x,p)/T . (3-2)

The system Hamiltonian can be written as,

H(x, p, L) = p2

2m + k2

2 x
2 + k4

4 x
4 + kL

2 (x− L)2, (3-3)
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the work gained (or lost) to change the parameter L by dL is

dW =
〈
∂H
∂L

〉
dL = FL dL. (3-4)

where FL = −kL
〈
x − L

〉
is the conjugate of L. The work rate can also be

written in terms of the free energy F as

dW = −kL
(
〈x〉 − L

)
dL = ∂

∂L

{
−T lnZ(L, T )︸ ︷︷ ︸

F (L,T )

}∣∣∣∣∣∣
T

dL. (3-5)

In a full cycle, the amount of work that can be produced is evaluated as

W =
∮ ∂

∂L
F (L, T )

∣∣∣∣∣
T

dL, (3-6)

where we draw attention to the fact that the derivative with respect to L

is taken at constant T while the integration is made on a trajectory in the
phase-space of L × T which implies a dependency between T and L. Since
the step cycle is composed of two branches where the temperature is constant,
separating the integration in two

Wstep =
∫ L1

L2

∂

∂L
F (L, TH) dL+

∫ L2

L1

∂

∂L
F (L, TC) dL =

= F (L1, TH)− F (L2, TH) + F (L2, TC)− F (L1, TC), (3-7)

and since the sudden changes in temperature happen with a constant L, there
will be no work change. It is also possible to express the previous result using
the partition functions

Wstep = TH ln Z(L2, TH)
Z(L1, TH) − TC ln Z(L2, TC)

Z(L1, TC) . (3-8)

So far we have expressed our cycles using mainly figure 2.2 as representation
since we can control only L and T directly. However, that representation is not
as clear as a pressure by volume (p×V ) representation for the ideal gas. With
the tools of classical statistics we are able to, at least numerically, present them
in a clearer way, using the First law we obtain

∮
cycle

dU =
∮

cycle

T dS +
∮

cycle

FL dL = 0, (3-9)

we can now express the work output using two sets of conjugated variables
∮

cycle

FL dL = −
∮

cycle

T dS =W , (3-10)
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which we have represented for a particular case in figure 3.1. We can now
demonstrate the statement made in subsection 2.2, consider a hypothetical
system with Hamiltonian

Hsym(x, p) = p2

2m + k2

2 (x− L)2 + k4

4 (x− L)4, (3-11)

the potential is clearly nonlinear, so the mathematical restriction is obeyed,
however it remains symmetrical for any value of L as shown in figure 3.2.
Because of that, the particles will have no preferred direction, oscillating
equally in both directions as

〈x〉sym = L, (3-12)

making
∮

cycle

FL dL = 0. (3-13)

3.2
Small Nonlinearity Approximation (k4 → 0)

For small non-linearites we find ourselves in the same regime of the
previous chapter 2 so we must recover the results which do not depend on
cycle time. The partition function can be approximated as

Z ≈
∫ ∞
−∞

dx dp
{

1− k4

4T x
4
}
e
−β
{
p2
2m+ k2

2 x
2+ kL

2 (x−L)2
}

= Z0 + k4Z1, (3-14)

where β = 1/T . We also defined the linear partition function as

Z0 = 2πT
√

m

k2 + kL
e
− k2kLL

2
2T (k2+kL) (3-15)

and first nonlinear the correction

Z1 = π

(k2 + kL)2

√
m

k2 + kL

{
k4
LL

4

2(k2 + kL)2 + 6k2
LL

2T

k2 + kL
+ 3T 2

}
. (3-16)

and using the definition of the work output in Eq. (3-5) we obtain

d̄W ≈ −kL
∫ ∞
−∞

dxdp x

{
1− k4

4T x
4
}

Z0 + k4Z1
e
−β
{
p2
2m+ k2

2 x
2+ kL

2 (x−L)2
}
dL+ kLLdL

≈ kLk2

k2 + kL
LdL+ k4

k4
LL

3 + 3k2kLLT + 3k3
LLT

(k2 + kL)3 dL. (3-17)
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Figure 3.1: Here we represent a cycle from the perspective of the conjugated
variables, the top figure (a) represents the plot of temperature versus entropy
(T × S) while the bottom figure (b) represents the plot of FL × Lm which is
equivalent to the p × V plot of an ideal gas. Following 3-10, the work output
is the area between the two lines. The red line represents the step cycle while
the blue dotted line represents the elliptical cycle. Both cases have Lm, ∆L,
Tm and ∆T .
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Figure 3.2: Nonlinear potentials that remain symmetric.

Using previous equation to calculate the work output we obtain

Well = −3πkLk4Lm∆L∆T ell

4(k2 + kL)3

Wstep = −3kLk4Lm∆L∆T step

(k2 + kL)3 ,

thus recovering the results presented in chapter 2 when one takes the limit
Ω→ 0. Using the same approximation we write the internal energy up to the
first order of k4

U ≈ T + k2kL
2(k2 + kL)L

2 + k4

{
k4
LL

4

4(k2 + kL)4 −
3T 2

4(k2 + kL)2

}
, (3-18)

and using the conservation of energy

d̄Q = dU −d̄W ,

we obtain the heat exchanged for the step

Qstep
H = +∆T + 3k4∆T

2(k2 + kL)2

{
k2
LLm∆L

(k2 + kL) − Tm
}

+ 3k4k
2
LTmLm∆L

2(k2 + kL)3 +O(k2
4)(3-19)

Qstep
C = −∆T + 3k4∆T

2(k2 + kL)2

{
k2
LLm∆L

(k2 + kL) + Tm

}
− 3k4k

2
LTmLm∆L

2(k2 + kL)3 +O(k2
4),(3-20)
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and elliptical cycles

Qell
H = +∆T + 3πk4∆T

4(k2 + kL)2

{
k2
LLm∆L

(k2 + kL) − Tm
}

+ 3k4k
2
LTmLm∆L

2(k2 + kL)3 +O(k2
4)(3-21)

Qell
C = −∆T + 3πk4∆T

4(k2 + kL)2

{
k2
LLm∆L

(k2 + kL) + Tm

}
− 3k4k

2
LTmLm∆L

2(k2 + kL)3 +O(k2
4),(3-22)

leading to the same efficiency as equation 2-57.
Now consider that, like in the Stirling engine, during the isochoric process

(represented by path (1) in figure 2.2) the heat exchange is internal. The
resulting heat exchange becomes

Qhyp
H = 3kLk4Lm∆LTH

(k2 + kL)3 (3-23)

Qhyp
C = 3kLk4Lm∆LTC

(k2 + kL)3 , (3-24)

leading to the Carnot efficiency

ξ = − W
QH

= ∆T
TH

= ξC . (3-25)

With such results we can now state with certainty that the low efficiency is a
direct consequence of the isochoric branch.

3.2.1
Large Nonlinearity Approximation (k4 →∞)

In the quasi-static regime it is also possible to study the limit where the
nonlinearity is very large, in this case the majority of the energy is contained
in the quartic mode rather than the harmonic one. After performing a change
of variables in the definition of the partition function: k4 → 4T/ε4 and x→ εy

we obtain

Z =
√
πmTe−

kL
2T L

2
∫ ∞
−∞

ε dy e−
k2+kL

2T ε2y2+ kLL

T
Lεye−y

4
. (3-26)

The limit ε→ 0 (k4 →∞) yields the approximate value

Z ≈
√
πmT

2 e−
kL
2T L

2
ε

{
Γ
(1

4

)
− ε2

[
k2 + kL

2T − k2
L

2T 2

]
Γ
(3

4

)}
+O(ε3), (3-27)
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leading to the work rate

dW = kLLdL

{
1− ε2kL

Γ(3/4)
Γ(1/4)

}
+O(ε4)

= kLLdL

{
1− 1√

k4

2kLΓ(3/4)√
T Γ(1/4)

}
+O(1/k4), (3-28)

where Γ(x) is the Gamma function. The work produced in a complete cycle is

W = − 1√
k4

∮
dL

2k2
LL Γ (3/4)√
T (L)Γ (1/4)

+O(1/k4). (3-29)

The work output of the step cycle is quite straightforward

Wstep = −
2k2

LLm∆L
(√

TH −
√
TC
)
Γ (3/4)

√
k4THTC Γ (1/4)

, (3-30)

while the elliptical cycle requires a bit more effort, first we parametrize the
trajectory using a new variable θ as

L(θ) = Lm + ∆L
2 cos(θ) ; dL = −∆L

2 sin(θ)dθ ; T (θ) = Tm + ∆T
2 sin(θ),(3-31)

making the work output

Well = −2k2
LLm∆L Γ (3/4)√
k4Tm Γ (1/4)

∫ 0

2π
dθ

1 + ∆L
2Lm cos θ√

1 + ∆T
2Tm sin θ

sin θ, (3-32)

we point out that the integration is always positive. Notice that both elliptical
and step cycles present the same asymptotic behaviour of 1/

√
k4.

The internal energy is

U = 1
2kLL

2 + 3T
4 + ε2

{
(k2 + kL)T − 3k2

LL
2

2
√

2T Γ(1/4)2

}

= 1
2kLL

2 + 3T
4 + 1√

k4

{
(k2 + kL)T − 3k2

LL
2

√
2T Γ(1/4)2

}
(3-33)

where the zeroth term of the expansion corresponds to the internal energy of a
massive particle subjected to a quartic potential. Using these results with the
First law of thermodynamics we obtain the heat outputs

Qstep
H = Qell

H = 3
4∆T +O(1/

√
k4) (3-34)

Qstep
C = Qell

C = −3
4∆T +O(1/

√
k4), (3-35)
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leading to efficiencies that are also of the order of the approximationO(1/
√
k4).

3.3
Convergence Issue

Employing the procedure described in the previous two sections numer-
ically we can directly evaluate for defined sets of parameters the value of the
coefficients of our expansion using any cycle. Take the work output expanded
up to the N -th order, in the limit of small nonlinearity

W =
N∑
n=1

wn k
n
4 , (3-36)

and in the large k4 limit

W =
N∑
n=1

w′n k
−n/2
4 , (3-37)

one could assume that by increasing the value of N we would systematically
increase the range of validity of our approximation but that is not the case.
The series alternates but the absolute value of each wn increases exponentially
as shown in figure 3.3 [53].

Comparing previous results with numerical calculations shown in Fig. 3.4
[53] we observe that increasing the order of our expansions does improve
accuracy of the result, but cannot overcome a range of validity for small k4

(or large k4) that does not provide any insight on the point of maximal work
output. This is an unfortunate consequence of the fact that we have chosen
to expand highly convergent Gaussians by means of polynomial series, which
will always diverge for a sufficiently high value of the variable (in our case the
position x). Thus, if for instance k4 is large (but not so large as to justify the
large value expansion) the integration in Z will cover a large domain where
the polynomial begins to diverge from the Gaussian.

To circumvent this problem we decided to employ a less intuitive approx-
imation, but one that presents absolute convergence and can be used for any
range of k4. Starting by redefining the partition function as

Z =
√
πmT

∫ ∞
−∞

e−
k2
2T x

2− kL2T (x−L)2 k4
4T x

4
dx

=
√
πmT

2

∫ ∞
−∞

{
e−

kL
2T (x−L)2 + e−

kL
2T (x+L)2

}
e−

k2
2T x

2− k4
4T x

4

=
√
πmT e−

kLL
2

2T

∫ ∞
−∞

sinh
(
kLL

T
x

)
e−

k2
2T x

2− kL2T x
2− k4

4T x
4
, (3-38)
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Figure 3.3: The red points represent the absolute values of the expansion con-
stants, on the top (a) we represent the approximation for small nonlinearities,
the figure on the bottom (b) for large nonlinearities. For small nonlinearities
the values grow so rapidly that by the tenth term we already have values up
to 1012, for large nonlinearities the growth is much more tamed, but still very
clear. The auxiliary blue line highlights how the growth is exponential in both
cases. The values used are ∆T = ∆L = m = k2 = kL = 1 and Lm = Tm = 1.5.
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Figure 3.4: The solid (black) line represents the numerical integration of
equation 3-6, using our analytical expansions for the step cycle. The dotted
lines, blue and violet depict expansions of equation 3-6 for small values of k4
while the dot-dashed lines, orange and red, depict expansions for large values of
k4. For both cases we display the first and tenth orders to illustrate how there
is no conversion radius. The values used are ∆T = ∆L = m = k2 = kL = 1
and Lm = Tm = 3/2.

we can now expand the hyperbolic sine as a polynomial series. Because sinh(x)
does not converge, the polynomial representation remains good approximation
to the original function even when we drastically increase the value of x. The
series for the hyperbolic sine are

sinh(x) =
∞∑
n=0

x2n+1

(2n)! , (3-39)

that we may use to evaluate the partition function

Z =
√
πmT e−

kLL
2

2T

∫ ∞
−∞

∞∑
n=0

1
(2n)!

(
kL L

T
x

)2n+1

e−
k2
2T x

2− kL2T x
2− k4

4T x
4
, (3-40)

which can be calculated exactly using the confluent hypergeometric function

M(a, b, z) = 1
Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt, (3-41)
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Figure 3.5: The solid black line represents the numerical integration of
equation 3-6 while the dashed red line represents the absolutely convergent
expansion for N = 2 and the dotted blue line for N = 4. The values used are
∆T = ∆L = m = k2 = kL = 1 and Lm = Tm = 3/2.

as

Z =
√
πmT e−

kL+k2
2T L2

∞∑
n=0

( √
2kL L

(k4T 3)1/4

)2n Γ
(
n+ 1

2

)
(2n)!2n+ 1

2
×

× M

(
1
4 + n

2 ,
1
2 ,

(k2 + kL)2

4k4T

)
. (3-42)

Albeit being quite cumbersome, this approximation converges far better than
the first two as we show in figure 3.5. However, because of the non trivial
algebraic role of our parameters (L, T , etc), it unfortunately does not provide
much insight on the interplay of such parameters in the final answer.

3.4
Numerical Approach

Having analysed the system using the equilibrium approach, we now turn
to numerical integration to validate our findings. We start by writing equation
2-2 as [54,55]

ṗ = −γp− kL(x− L)− k2x− k4x
3 + η(t),

ẋ = p

m
(3-43)
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now we use equation A-7 from Appendix A

dpt =
{
− γpt − k2xt − k4x

4
t − kL(xt − Lt)

}
dt+ dGt (3-44)

dxt = pt
m
dt. (3-45)

where dGt is the Wiener process defined according to equation A-3

dGt =
∫ t+dt

t
η(t′)dt′. (3-46)

We shall employ the forward Euler method to solve equation 2-2, the time will
be discretized in steps of duration δt = 0.0001, the current instant of time will
be tn = nδt. Every cycle will consist of NS steps defined as NS = τ/δt (τ is
the protocol period) and we will perform a total of NC = 100000 of cycles.

The discrete version of equation 3-43 is

pn+1 = pn + δt
(
−γ pn − k2 xn − k4 x

3
n − kL[xn − L(tn)]

)
+ dGn

xn+1 = xn + δt
(
pn
m

)
, (3-47)

with the Wiener process defined by

dGn =
∫ (n+1)δt

nδt
η(t′)dt′. (3-48)

From the correlation of dGn

〈dGndGm〉 =
∫ (n+1)δt

nδt
dt′
∫ (m+1)δt

mδt
dt′′〈η(t′)η(t′′)〉

= 2γmT (tn) δt δn,m, (3-49)

we can conclude that |dGn| ∝
√
δt. Using a stochastic discrete variable with

Gaussian distribution that obeys

〈φn〉C = 0 ; 〈φnφm〉C = δn,m, (3-50)

we define

ψn =
√

2γmT (tn)φn, (3-51)

where we have

dGn = φn
√
δt. (3-52)
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The discrete equations of motion become

pn+1 = pn + δt
(
−γ pn − k2 xn − k4 x

3
n − kL[xn − L(tn)]

)
+
√
δtφn

xn+1 = xn + δt
(
pn
m

)
, (3-53)

which, as a consequence of |dGn| ∝
√
δt, will have precision of

√
dt [60, 61].

The work output of the m-cycle is defined as

Wm = −kL
NS∑
n=0

(xn − Ln) L̇(tn)δt (3-54)

with the expected work

W = 1
NC

NC∑
m=1

Wm. (3-55)

The heat output is written as

Qm =
N∑
n=0

{(
pn+1 + pn

2

)
ψn − γ p2

n

}
δt, (3-56)

where we are making explicit use of the Stratonovich definition, which is nec-
essary for Q to have its physical representation, as demonstrated in Appendix
A. Likewise, the expected heat during each phase is

QH = 1
NC

NC/2∑
m=1

Qm (3-57)

QC = 1
NC

NC∑
m=NC/2

Qm. (3-58)

All cycles are evaluated back to back, meaning that (xNS , pNS) of the last cycle
will be the initial conditions (x0, p0) of the next cycle. At the start of every
program we run a couple of cycles to ensure the information of the initial
conditions have been erased.

3.5
Numerical Results

In this section we present the results. The validity of the analytical quasi-
static approach is confirmed in figure 3.6 where the the work output defined by
3-55 is evaluated by different values of the nonlinearity k4. Not only the dot-
dashed green line is within statistical error, but it is also in accordance with
the results in Chapter 1 that indicate the equilibrium result as a maximal point
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only achievable for extremely slow cycles.
Regardless of weather elliptical or step cycles are considered, the work

produced per cycle has shown the emergence of a Gaussian distribution defined
as

p(W ) = 1√
2πσ2

W

e
− (w−W)2

2σ2
W , (3-59)

where the variance is evaluated as

σW =

√√√√ 1
NC

NC∑
m=1

W 2
m −W2. (3-60)

To explain this result, we return to the definition of the work output as
3-55 [53]. The equilibrium approach considers that on a given instant the
probability distribution of the position xn will obey equation 3-1, the work
output is the written as

Wm ∝
1
NS

NS∑
n=1

xnL̇n δt, (3-61)

which, following the central limit theorem, since ρ(x) ∝ e−(kL/2T )x2−(k4/4T )x4 ,
will converge to a Gaussian distribution. The results are presented in figure
3.7 [53]. From equation 3-59 we derive the standard fluctuation relation

p(−W )
p(W ) = exp

{
2W
σ2
W

W

}
, (3-62)

shown to be true in figure 3.8 [53]. We also investigated the instantaneous
power

w ≡ PW (tn), (3-63)

and we have verified that its probability does not resemble the work Gaussians,
which is expected since the instantaneous power is driven more directly by the
bath fluctuations. The distributions present a peculiar shape, with a central
point of much higher probability as shown in figures 3.9 [53] and 3.10. As it
was indicated by both the small and large k4 approximations, the absorbed
heat QH was found to be roughly similar for both step and elliptical cycles.
The values obtained were also much larger than the maximum power, making
the efficiency for both cycles inferior to 10%, five times less than the associated
Carnot efficiency.
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Figure 3.6: Average work performed by the machine −W × k4 with m = k2 =
kL = γ = 1, Lm = 3/2, ∆L = 1 and Ω = π/100. The solid blue line corresponds
to the step cycle with TH = 2 and TC = 1, whereas the green dotdashed line
depicts the analytical results assuming the local equilibrium approach which
yields maximum at k4 = 1.47. The red dashed line corresponds to the elliptical
cycle equivalent to the first order Fourier series of the step cycle with Tm = 1.5
and ∆T = π/2. The orange dotted line corresponds to the step cycle for the
same maximal and minimal temperatures of the previous cycle, TH = 3/2+π/4
and TC = 3/2− π/4.

3.6
Final Remarks

Within the quasi-static limit we were able to recover, with significant
less algebraic effort, the same stationary results as in Chapter 2 for the case of
small nonlinearities. We were also able to investigate the opposite limit where
the nonlinearities play the dominant role. However, as figure 3.4 illustrates,
the k4 value that maximizes the work output is out of the range of both
approximations.

Making use of numerical analysis we extended the validity of these results
outside the quasi-static limit, as figure 3.6 clearly shows, it is possible to make
accurate predictions of the dependence of the work output with the nonlinear
term k4 even despite finite time effects.

The efficiency is still quite low, however if we compared with the expected
efficiency from Chapter 1, where η was on the order of the perturbative
restriction, the 10% represents a monumental step forward, even though we
are still five times short of the maximum Carnot efficiency.
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Figure 3.7: Distribution of the work per cycle p(W ) ×W in log-lin scale for
the step cycle with TH = 2 and TC = 1 on the top (a) and for the elliptical
cycle with Tm = 3/2 and ∆T = π/2 on the bottom (b). The parameters used
m = k2 = kL = γ = 1, Lm = 3/2, ∆L = 1 and Ω = π/100.
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Figure 3.8: Distribution of the work per cycle p(−W )/P (W ) × W in log-
lin scale for the step cycle with TH = 2 and TC = 1 on the top and for
the elliptical cycle with Tm = 3/2 and ∆T = π/2. The parameters used
m = k2 = kL = γ = 1, ∆L = 1 and Ω = π/100.
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Figure 3.9: On the top (a) the distribution of the instantaneous power p(w)×w
in log-lin and lin-lin in the inset for the elliptical cycle with Tm = 3/2,
∆T = π/2 and m = k2 = kL = γ = 1, k4 = 1.5, Lm = 3/2, ∆L = 1
and Ω = π/100. On the bottom (b) the step cycle with the same parameters
(reminding that Tm is the average temperature and ∆T the temperature gap.)
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Figure 3.10: The fluctuation relation p(−w)/p(w)× w in log-lin scale for the
step cycle with parameters TH = 2, TC = 1, m = k2 = kL = γ = 1, k4 = 1.5,
Lm = 3/2, ∆L = 1 and Ω = π/100.
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4
Generalized Nonlinear Machines

In the previous chapters we have studied extensively the properties of a
machine composed of a single particle under the influence of a nonlinear quartic
potential as k4x

4/4, which in nature could represent a FPUT-α potential [62].
In a more realistic situation we may be faced with more exotic types of
potentials [52, 63]. Motivated by this, we dedicate Chapter 4 to study a more
general class of nonlinear potential.

4.1
The α−type Potential

As we have stated previously in chapter 2, the nonlinearity is responsible
for making the potential asymmetric under deformations. Previously we dedi-
cated our analysis to the role that the nonlinearity played in the work output,
however by focusing our attention merely on k4, which controls the intensity
of the nonlinear potential, we now will focus on the exponent.

We define the α-type potential as

Vα(x) = kα
α

∣∣∣∣xσ
∣∣∣∣α (4-1)

which is very similar to the potential defined by Rossello et al [52] in the context
of energy harvesters, for integer exponents. The α-type is more general since
we shall consider α to be a real positive number. The force related can be
written as

Fα(x) =


−kα

σ

∣∣∣x
σ

∣∣∣α−1
for x > 0

0 for |x| = 0
kα
σ

∣∣∣x
σ

∣∣∣α−1
for x < 0

, (4-2)

and the equivalent Langevin equation of motion

mẍ+mγẋ = −kL(x− L) + Fα(x) + η(t). (4-3)

Immediately it becomes clear that the perturbative approach used in Chapter
2 is not very useful when attempting to provide analytical solutions to this
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non analytical force. Therefore we shall focus our analysis to numerical results,
providing analytical solutions to a few distinct limits of α: for very large values
of α the potential will behave like a perfect wall, confining the particle in the
length |x| < x0 where

x0 = lim
α→∞

σ
(
αT

kα

) 1
α

→ σ, (4-4)

therefore the confinement does not depend on parameters like kα or T .

4.2
The Role of α in the asymmetry

In section 2.2 of Chapter 2 we demonstrated how the quartic nonlinearity
becomes asymmetric when deformed by an external quadratic potential. The
asymmetry creates a bias in the motion of the BP causing the expected position
〈x〉 to shift from the of minimal potential position xm.

We highlight in figure 4.1, for different values of the exponent below the
quadratic (sublinear) the asymmetry become steeper on the left side of xm
and softer on the right, while values above the threshold (superlinear) have
the same behaviour as outlined in section 2.2 of Chapter 2.

The α-type potential is the internal potential of the BP, centred at the
origin pinning the particle to it. The external potential Ve(x) = kL(x−L)2/2 is
centred at position L, and it represents our interaction with the BP. We act to
effectively pull the particle from the origin using our external potential. In the
linear case, α− 2, the superposition of parabolic potentials is also a parabola.

When we consider the superlinear, α > 2 limit, the internal potential now
grows more rapidly with distance than our applied external potential, meaning
that the more we pull, the more it resists - hence the asymmetry. Introducing
fluctuations with the heat bath this asymmetric potential makes it easier for
the particle to fluctuate back to the origin rather than further from it.

The sublinear, α < 2, limit acts exactly the opposite. Now the external
potential grows faster with the distance, so when connected to a heat bath the
particle will fluctuate more easily in the direction to the left of the minimal
potential. Because of that, using the same cycles as Chapters 2 and 3, we
expect the machine to behave as a refrigerator, due to its bias inversion.

This effect is demonstrated on the top of figure 4.2, where we plot the
difference between the expectation and the minimal potential keeping the
temperature and the displacement fixed, and change the value of the exponent
from the sublinear to the superlinear limits. For α < 2 we have that 〈x〉 > xm,
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Figure 4.1: On the top (a) the potential, on the bottom (b) the probability
density for the position x for different values of the exponent α. In the linear
regime, α = 2, the density is symmetric, for over linear values of α we recover
the effect displayed in figure 2.8. For sub linear values of α the bias switches
direction and the expected position shifts to the right of the minimal potential.
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the particle moves in the direction of the displacement, and for α > 2 we have
〈x〉 < xm, the particle moves away from the displacement, back to the origin.

On the right of figure 4.2 we show how the effect of increasing temperature
is different from the sub- and superlinear cases. We plot the expectation of the
coordinate x divided by the minimal potential one xm, for T = 0, where there
is no fluctuation, we have clearly that

〈x〉T→0 = xm. (4-5)

As the temperature increases and the fluctuations become stronger, the bias
induced by the potential becomes clear. For superlinear, the new expectation
follows the flatter side of the potential, becoming less than xm, while for the
sublinear case the deformation is stronger and pulls the particle towards L,
causing the expectation to become larger than xm.

4.3
Numerical Approach

Even within the equilibrium approach, the complexity in the definition of
the α-type potential makes it quite difficult to analytically solve the problem,
so we will be analysing the system mainly numerically. We start with the
equations of motion

ṗ = −γp+ Fα(x)− kL(x− L) + η(t) (4-6)

ẋ = p

m
, (4-7)

using equation A-7 from Appendix A we write

dpt = {−γpt + Fα(xt)− kL(xt − Lt)} dt+ dGt

dxt = pt
m
dt. (4-8)

Unlike in previous chapter where we employed the forward Euler method, we
will now use the Henon method which is a second order Runge-Kutta method
for stochastic differential equations. The time will be discretized in steps of
duration δt = 0.0001, current instant of time will be tn = nδt. Every cycle
consists of NS steps defined as NS = τ/δt (τ is the protocol period) and we
will perform a total of NC = 100000 cycles.

While the forward Euler method uses only the slope at the current instant
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Figure 4.2: On the top (a) we plot the difference between the expected position
〈x〉 and the minimal potential position xm for different values of α. Note that
for α < 2 the difference is positive, hence 〈x〉 > xm and negative for values of
α > 2. On the bottom (b) we plot the effects of temperature on the value of
the expected coordinate for different values of α.
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to calculate the step as

κx1 = pn
m

(4-9)

κp1 = −γpn − Fα(xn)− kL
(
xn − Ln

)
= h(xn, pn, Ln), (4-10)

the Henon method takes a “super" slope as an average of the current slopes
(κx1, κp1) with a step forward slope

κx2 = pn
m

+ δt κp1 (4-11)

κp2 = h(xn + δt κx1, pn + δt κp1 + δtψn, Ln+1) (4-12)

to increase the accuracy of the answer from
√
δt to δt

xn+1 = xn + δt
(
κx1 + κx2

2

)
(4-13)

pn+1 = pn + δt
(
κp1 + κp2

2

)
+ δt ψn. (4-14)

Here we use the same definition of ψn as in equation 3-51.
In the previous chapter we analysed the instantaneous distribution of

the work rate defined in equation 3-63, the results, however, consisted of an
awkward shape [53]. Instead of evaluating the instantaneous work rate at any
time, now we will calculate several ensemble averages defined as

〈x(t)〉 =
∫
dxdp ρ(x, p)x, (4-15)

〈PW (t)〉 =
∫
dxdp ρ(x, p) {−kL(x− L)} , (4-16)

〈H(t)〉 =
∫
dxdp ρ(x, p)H(x, p). (4-17)

where ρ(x, p) is the equilibrium probability distribution for the α-type model.
In our discretized version we will interpret the ensemble average as an instan-
taneous average over several cycles

〈x(t)〉 = 1
NC

NC∑
m=1

x(t+mτ), (4-18)

〈PW (t)〉 = 1
NC

NC∑
m=1

PW (t+mτ), (4-19)

〈H(t)〉 = 1
NC

NC∑
m=1
H(t+mτ). (4-20)
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We will also evaluate the work produced during the m-th cycle

Wm = −kL
NS∑
n=0

(xn − Ln) L̇(tn)δt (4-21)

and the expected work

W = 1
NC

NC∑
m=1

Wm. (4-22)

In the following we will use the step cycle, with the displacement defined as

L(t) = Lm + ∆L
2 cos(Ωt), (4-23)

and the temperature

T step(t) = =

 TH if nτ < t(n+ 1/2)τ
TC if (n+ 1/2)τ < t < (n+ 1)τ

(4-24)

and will evaluate for different values of the exponent α.

4.4
Numerical Results

Using the ensemble averages, we further validate the predictions of the
equilibrium approach. In figure 4.3, it becomes quite clear how the equilibrium
averages correctly predict the position behaviour and by increasing the number
of cycles we can increase its precision.

The results for the ensemble averages of the expected position, expected
internal energy, and instantaneous power are presented in figures 4.4 to 4.7. Our
predictions obtained using equilibrium theory agree quite well with numerical
results, the only problem is, of course, on the instants immediately after the
sudden temperature jumps of the step cycle.

Within the quasi-static regime, the system is considered to be at thermal
equilibrium with the heat bath at all times, however in a realistic scenario,
the BP will require some time to thermalize, in section 2.1.3 of Chapter 2
we evaluated that the necessary time is on the magnitude of 1/γ. Since the
time required to thermalize is so small when compared to the overall time
cycle that the approach is still accurate (1/γ ≈ 1 � τ = 100). We also
illustrate the work production by plotting side by side a comparison between
the instantaneous power of the hot phase (in dotted red) and the cold phase
(in solid blue) on the lower right side in figures 4.4 to 4.7. As the value of α
approaches 2, the values become closer and closer, meaning all the work gained
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Figure 4.3: The ensemble average of the position for different numbers of
cycles NC , the cycle used was the step cycle. For NC = 10000 the ensemble
average is already quite close to the equilibrium expectation. The values are
kα = kL = m = γ = ∆L1, Lm = 1.5, TH = 2, TC = 1

is also lost, until it crosses the linear threshold and changes sign, confirming
that indeed, for α < 2 the machine behaves like a refrigerator.

Our results regarding the work produced per cycle show the emergence
of a Gaussian distribution for W , demonstrating that the result in Chapter 3
does not depend on the α. The work distribution can be written as

p(W ) = 1√
2πσ2

W

e
− (w−W)2

2σ2
W , (4-25)

which we present in figure 4.8. We also conclude that the distributions must
obey the standard fluctuation relation

p(−W )
p(W ) = exp

{
2W
σ2
W

W

}
. (4-26)

This result is displayed in figure 4.9, where we point out that the values of
W and σW were obtained from the simulations. The work output follows
the equilibrium distribution quite closely as shown in figure 4.10 for the step
cycle. We also present the results for the elliptical cycle, which displayed better
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Ensemble - α = 1.2
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Figure 4.4: The ensemble average of the expected position on the top left,
internal energy on the top right, instantaneous power bellow left and a
comparisson between of the instantaneous power during the hot phase in red
and cold phase in dotted blue. The values used are kα = kL = m = γ = ∆L =
1, Lm = 1.5, TH = 2, TC = 1 for the exponent α = 1.2.

conversion to the expectation than the step cycle. The heat absorbed remain
close to the temperature gap ∆T = 1, making the best efficiency close to 15%.

4.5
Adiabaticity versus isentropy

During an adiabatic process, the system and the heat bath do not
exchange heat. In a macroscopic system it is possible to perform such process
simply by removing contact between the heat source and the system using
some sort of thermal isolation. The microscopic equivalent of that scenario
would be to take the Langevin equation

mẍ+ V ′(x) = −kL(x− L) + η(t)−mγv −→ mẍ+ V ′(x) = −kL(x− L).(4-27)
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Ensemble - α = 2.0
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Figure 4.5: The ensemble average of the expected position on the top left,
internal energy on the top right, instantaneous power bellow left and a
comparisson between of the instantaneous power during the hot phase in red
and cold phase in dotted blue. The values used are kα = kL = m = γ = ∆L =
1, Lm = 1.5, TH = 2, TC = 1 for the exponent α = 2.0.

When considering a microscopic system, however in an experimental situation
the system is often immersed on a viscous fluid which represents the heat bath
and cannot be easily separated [14, 16, 64]. Alternatively, from the definition
of an adiabatic process, one could also impose that〈

d̄Q

dt

〉
=

〈
η(t)v(t)−mγv2(t)

〉
= 0, (4-28)

but even on a linear case this approach requires the solution of a nontrivial
integral differential equation.

The most common and by far the simplest alternative is to impose
an isentropic condition: take the definition of entropy for the equivalent
probability distribution [6, 64,65]

S = −
∫
dxdp ρ(x, p) ln ρ(x, p), (4-29)

and impose that the entropy remains constant throughout the process

dS = ∂S

∂L
dL+ ∂S

∂T
dT = 0. (4-30)
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Ensemble - α = 2.2
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Figure 4.6: The ensemble average of the expected position on the top left,
internal energy on the top right, instantaneous power bellow left and a
comparisson between of the instantaneous power during the hot phase in red
and cold phase in dotted blue. The values used are kα = kL = m = γ = ∆L =
1, Lm = 1.5, TH = 2, TC = 1 for the exponent α = 2.2.

While in classical statistical mechanics there is no difference between isentropy
and adiabaticity,

d̄Q = TdS , (4-31)

however in a realistic scenario the definition of adiabaticity becomes wider. For
instance, a process could be done so quickly that there is no time for the system
exchange heat with the reservoir, such process would be adiabatical but not
isentropic. Since our cycle periods are bounded by a quasi-static restriction,
the approach by isentropies much better suited.

The isentropic trajectories are used in the following way: we are interested
in going from a point in the phase space of L and T , which we can label (L0, T0)
to another point very close (L0 + dL, T0 + dT ), where both points have the
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Ensemble - α = 6.0
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Figure 4.7: The ensemble average of the expected position on the top left,
internal energy on the top right, instantaneous power bellow left and a
comparisson between the instantaneous power during the hot phase in red
and cold phase in dotted blue, the area between curves is the work output.
The values used are kα = kL = m = γ = ∆L1, Lm = 1.5, TH = 2, TC = 1 for
the exponent α = 6.0.

same entropy

S(L0, T0) = S(L0 + dL, S0 + dT ), (4-32)

so we must obtain, for a given displacement dL what must be the equivalent
displacement dT for the entropy to remain constant. We have dedicated
Appendix D to the derivation of this restriction, the final result is

dT = dL

T

〈
∂H
∂L

〉
− ∂〈H〉

∂L

∂〈H〉
∂T

∣∣∣∣∣∣
L0,T0

= T

〈
H∂H

∂L

〉
C

〈H2〉C

∣∣∣∣∣∣
L0,T0

dL, (4-33)

the denominator is quite straightforward, it is the definition of heat capacity.
In the numerator we have an intuitive result, the first term ∂〈H〉

∂L
how much

the internal energy changed from the displacement dL, while the term
〈
∂H
∂L

〉
represents how much of that energy was in work form, the difference between
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Figure 4.8: Distribution of the work per cycle p(W )×W for different values
of α using the step cycle operating between TH = 2 and TC = 1. The cycle
period is τ = 200 or Ω = π/100 and m = kα = kL = γ = σ = 1. The solid
lines are defined by equation 4-25 using the respective W and σW for each α.
We highlight how the average work shifts from positive for α < 2 to negative
α > 2 and exactly in α = 2 the average work is zero.

both terms yields as result how much entropy this exchange generated.

4.6
α-type Isentropy

For an ideal gas, the adiabatic process obeys the restriction

p V Γ = constant, (4-34)

TV Γ−1 = constant, (4-35)

which will be connected to the BP properties (namely its degrees of freedom)
by means of Γ, which is the ration between the heat capacity at constant
pressure and at constant volume

Γ = Cp
CV

. (4-36)
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Figure 4.9: The fluctuation relations p(−W )/p(W )×W presented in the log-
linear scale for the different values of α presented in figure 4.8. The solid blue
lines were obtained using equation 4-25 with the respective values of W and
σW .
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Figure 4.10: Average work performed by the machine on a W × α plot with
m = 1 = γ = kL = kα. The cycle used was the step cycle with Lm = 3/2,
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Figure 4.11: Average work performed by the machine on a W × α plot
with m = γ = kL = kα = σ = 1. The cycle used was the elliptical cycle
with Lm = 3/2, ∆L = 1, TC = 1 and TH = 2. The internal potential of
the particle represented in the blue line also contains a quadratic pinning
Vi(x) = kα|x/σ|α/α+ k2(x−L)2/2, where k2 = 1. The pinning does not affect
the qualitative behaviour, only decreases the overall work output. By increasing
the cycle period to τ = 1000, we observe that the points more disconnected to
the curve get closer.
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The value of γ is constant as both heat capacities are constant for the ideal
gas as a consequence of the quadratic Hamiltonian. Our BP is governed by
an α-type potential will not be constant, and will in fact depend on the
nonlinearities.

Let us evaluate the isentropic trajectories for a BP subjected to a
quadratic potential. As we stated in Chapter 2, a linear system cannot be
used as a machine, but it is possible to evaluate its isentropic process exactly.
Starting from the Hamiltonian

H(x, p) = p2

2m + k2

2 x
2 + kL

2 (x− L)2, (4-37)

the force is defined as

∂H

∂L
= −kL(x− L), (4-38)

evaluating 〈
H
∂H

∂L

〉
= k2kLLT

k2 + kL
+ k2

2k
2
LL

3

2(k2 + kL)2〈
∂H

∂L

〉
= k2kL

k2 + kL
L

〈H〉 = k2kLL
2

2(k2 + kL)L
2 + T

〈H2〉 = k2
2k

2
LL

4

4(k2 + kL)2L
4 + k2kL

k2 + kL
L2T + 2T 2,

leads to the result that〈
H
∂H

∂L

〉
− 〈H〉

〈
∂H

∂L

〉
= 0. (4-39)

Therefore, only if we maintain the temperature constant will the process be
isentropic, there is no coupling between the temperature and the displacement
in the definition of entropy. Further examples and a more detailed derivation
can be found in Appendix D.

For the more general case of the α-type potential, it becomes quite
difficult to obtain analytical expressions for the isentropic processes. For that
reason, we will be using mostly numerical calculations of equation 4-33 to
obtain the isentropic trajectories.

The external potential applied to the particle is centred at the position
L while the internal potential, in this case the α-type is centred at the origin.
The position of minimal potential represents the point where the external force,
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pulling the particle to L and the internal force, pulling the particle to the origin
x = 0 become constant.

In the sublinear limit, α < 2, the exponent of the external potential is
larger than the internal leading to a stronger interaction. Starting with L = 0
the potential is clearly symmetric, early displacements cause great asymmetry
in the direction of L, thus reducing the internal temperature of the BP. When
the displacement L becomes large enough, the BP effectively “steals" the
particle from its internal potential. There is only a small range of values were
both internal and external potentials are coupled in the probability function
of the BP, as we increase the value of L, the external potential dominates the
internal, reducing the problem to a linear machine. As a consequence, as we
show in figure 4.12, the isentropic processes converge on the isotherms for large
values of L.

The superlinear behaviour is different, because the internal exponent α is
larger than the external potential, the displacement L and temperature T never
decouple. We highlight this effect in figure 4.13, were we show a set of isentropic
processes for α = 8, with an isolated longer process. Unlike the sublinear model,
here the internal potential becomes steeper, pulling the particle closer to the
origin, so that as we increase the value of L, so does the internal temperature.

To demonstrate that the isentropic trajectories obtained can be used
effectively as adiabatic processes we performed a series of numerical simulations
for α = 5. In a realistic situation it is very difficult to disconnect the particle
from the heat bath, however for the numerical simulations it is quite simple
to recreate this effect. At the end of each isotherm we simply disconnect the
particle from bath as

mẍ+ V ′(x) = −kL(x− L) + η(t)−mγv −→ mẍ+ V ′(x) = −kL(x− L).(4-40)

The results of these simulations are displayed in 4.14, where we compare
the internal temperature of the BP and compare it with the equivalent bath
temperature obtained through the isentropic condition. The efficiency obtained
was 38%, much closer to the 50% expected in the Carnot limit. For machines
with exponents in the sublinear limit (α < 2), the temperature gap available
for such cases is very small and we could only produce a very limited Carnot
cycle configuration.
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Figure 4.12: A large set of isentropic processes with sublinear potentials
(α = 0.75) on the top (a). There is a very brief range of values of displacements
where the potential will be asymmetric. Starting with L = 0 the potential
is clearly symmetric, early displacements cause great asymmetry but as the
displacements increase, the external potential Ve becomes dominant over the
sublinear internal potential effectively decoupling L and S. Bottom figure (b)
represents the this decoupling effect. The parameters used were m = kL = 1
and kα = 1.5.
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Figure 4.13: The isentropic trajectories of overlinear potentials (α = 8) on
the top (a). Early increases in L will intensify the potential asymmetry and
increase its temperature. On the bottom (b), a specific isentropic trajectory
demonstrates that, even for very large displacements, L and S never decou-
ple. Note that in order to obtain temperature shifts it is necessary employ
displacements ten time larger. The parameters used were m = kL = 1 and
kα = 1.5.
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Figure 4.14: Representation of a Carnot cycle for a nonlinear Brownian
machine. The dashed lines are the isentropic processes while the solid lines
represent the internal temperature of the particle, defined as 〈v2〉/m, where
the adiabaticity was achieved by removing the contact with the heat sources.
The present cycle verifies exactly the isentropic relations proposed on equation
4-33. The parameters used were m = γ = kL = σ = 1 and kα = 5.

4.7
Final Remarks

We have introduced a new type of internal potential, which we labelled
α-type, in order to better understand the connection between the exponent
α and the work output. The reasoning presented in section 2.2 of Chapter 2
mainly from an intuitive perspective holds true for the α-type potential. This
new potential also encompasses the results obtained in the previous chapters
when α = 4, while also allowing us to probe further the role nonlinearities play
in the conversion of heat into work.

DBD
PUC-Rio - Certificação Digital Nº 1413524/CA



Chapter 4. Generalized Nonlinear Machines 79

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 100 200 300 400 500 600 700

T

L

Carnot α = 2.5

Figure 4.15: Representation of a Carnot cycle for a nonlinear Brownian
machine. The solid lines represent the internal temperature of the particle,
defined as 〈v2〉/m, where the adiabaticity was achieved by removing the
contact with the heat sources. Note that in order to obtain a ∆T = 1,
we had to displace the potential by ∆L ≈ 700, which severely limits the
applicability of the isentropics in experimental situations. The parameters used
were m = γ = kL = σ = 1 and kα = 2.5.
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5
Final Remarks

5.1
What have we done?

We started Chapter 2 mainly focused on providing a complete description
of our model. Starting with the Langevin equation (Eq. 2-2) describing the
system dynamics, our goal was to provide a clear physical picture of the role
every term was meant to represent in describing the dynamics of an actual BP.
The impossibility of a machine with quadratic internal potential was explained,
together with a very intuitive explanation to the key role of asymmetry to have
an efficient machine.

Assuming a small nonlinear correction to a predominantly linear one
which is consistent with scenarios where we are expanding in a power series
a naturally occurring confining potential, we were able to use perturbation
theory to obtain the work and heat output per cycle.

In chapter 3 we dropped the small nonlinear restriction and, by imposing
an equilibrium restriction on the cycle period (or equivalently Ω→ 0) we were
able to use the tools of equilibrium statistical mechanics to evaluate the work
and heat outputs. Despite managing to increase the value of the work output
by almost 100 times, that value was still much lower than the heat intake
during the hot phase. The maximum efficiency obtained was of ≈ 10% while
the expected Carnot efficiency was 50%.

Since the key element is that the potential be asymmetric, we decided to
extend the definition of our internal potential. Solving the Langevin equation
(Eq. 2-2) perturbatively would have been a very challenging task if the
interaction was non-analytical, however, within the equilibrium regime the
analysis becomes quite simple. In order to investigate the influence different
exponents may have on the work output, we define and investigate the α-type
potential Vα ∝ |x|α. We show that if α < 2, which we label sub-linear regime
the machine behaves like a refrigerator while in the over-linear regime α > 2
it behaves closely to the results obtained in Chapter 3.

Lastly, we create an “effectively" adiabatical process by imposing that
the displacements in the potential dL and temperature dT are made in
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a very specific way to maintain the entropy constant [6, 16, 18, 65]. For
massless harmonic systems with modulated frequency the isentropic trajectory
is quite straightforward proportional to T , for our nonlinear systems however,
such trajectories strongly depend on the system properties, specially on the
exponent α. In order to effectively change the system temperature by ∆T we
are forced to deform the potential by a ∆L orders of magnitude higher greatly
limiting the attainability of isentropic trajectories in the context of nonlinear
machines. Despite this drawbacks, for values of α > 2 we were capable of
obtaining a very efficient Carnot equivalent.

5.2
What have we learned?

System Potential

Our work in chapter 2 started with a small quartic correction to a
quadratic potential, and we relaxed the restriction of small nonlinearities in
chapter 3 considering a general quartic potential. In the end we attempted to
study a wider range of values with the introduction of the α-type potentials
in chapter 4.

After analysing these different types of potentials we can underline the
most important characteristic that any potential which could be used as a
machine must obey: when we deform it with an external potential it must
become asymmetric. As we stated in section 2.2 of chapter 2 and latter in
section 4.2 of chapter 4, nonlinearities are the means by which a potential
becomes asymmetric, a nonlinear potential that remains symmetric could not
be used to create a machine.

Most importantly, the tools employed in this work are not restricted
to the simple polynomial (or α-types) we presented here and could be easily
extended, at least numerically, to any type of potential. In an experimental
situation, if we know the BP’s potential with some degree of precision and
that by deforming it using some experimental technique available it becomes
asymmetric then the fluctuations will be guided and the set-up will be able to
convert heat into work.

Cycle Choice

The cycles we have studied extensively are the step and elliptical cycle
(chapters 1 to 4), which are suboptimal in terms of efficiency when compared
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to the Carnot cycle. In chapter 5 we used isentropic conditions to create an
actual Carnot cycle.

In an experimental scenario, the heat bath is generally composed by
a large number of particles diluted in some sort of viscous liquid which will
surround the BP, such a setting would be consistent with 2-2. The temperature
can be introduced by either directly heating the system with a laser [14] or
simply vibrating the system with an external white noise generator [16].

As we change the temperature, we can expect the bath particles to
require some time τB to reach the new temperature. In a situation where the
particles require a long time when compared to the temporal resolution of our
measurements, the step cycle becomes the ideal choice since it only undergoes
two changes in the temperature per cycle. If the bath particles are quick to
reach the applied temperature, the elliptical cycle or the Carnot cycle become
an approachable choice.

The Carnot cycle is plagued by two problems: the isentropic trajectories
require a great deal of precision regarding the BP’s potential, which may not
always be possible, and in order to reach a sensible ∆T we may be forced to
cause deformations that are too large for a real system. If the Carnot cycle
becomes an experimental impossibility, the elliptical cycle becomes the optimal
solution.

5.3
Where can we go from here?

Our work here contemplates many directions. Within the topic of energy
harvesters, the addition of nonlinear potentials (usually V ∝ x4) is capable of
widening the frequency range where the device is efficient. It has been shown
that there is an optimal exponent to the potential [52] when investigating
integer exponents, we could employ our techniques to the energy harvester
attempting to uncover whether a non-integer exponent (the α type potential)
may improve the efficiency even further.

Most of our assumptions involved some kind of equilibrium, or quasi-
equilibrium notion (small Ω). The classical theoretical Carnot machine is
unachievable in reality since the hypothesis of equilibrium statistics require
the cycle period to be immensely large. In realistic scenarios it is common to
search for a practical trade-off between maximum power output and efficiency
[43, 66–68]. We would like to investigate the behaviour of our BP with a
protocol frequency Ω ≈ ω2 and attempt to recover the Novikov-Curzon-
Albhorn efficiency by maximizing the power.

A very interesting topic would be to consider the repercussions of
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introducing a non equilibrium bath, like a Poissonian reservoir. It is known that
the interplay between Gaussian-Poisson baths is capable of causing “apparent"
violations of the second law of thermodynamics such as the reversion of the law
of conduction [58]. We could create a machine employing the same principles
which caused the heat flow inversion.

Lastly, but definitely not least, following on the footsteps of other great
experimental achievements [12–16,69], we could search for a working substance
that, when deformed has its potential become asymmetric allowing us to
recreate our results experimentally.
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A
Stratonovich Calculus

In chapter 2 we have made several statements regarding the nature of the
terms in the equations of motion of our system. All of these were crafted by using
an extensive amount of intuition regarding the physical interpretation of these
constituent terms, specifically we have labelled η(t)v(t) as the fluctuating heat
flow, and because of the stochastic nature of η(t), we cannot naively assume that
the rules of regular differential calculus will always be applicable to such a quantity.

Our aim in this section is to demonstrate that, by considering Stratonobich’s
prescription to integration, we may continue to use rules of regular differential
calculus. Let us start by defining the Wiener function

G(t)−G(0) =
∫ t

0
η(t′)dt′, (A-1)

and we’ll be very careful with our deductions since in our case, unlike the more
general definitions regarding the Wiener process, the temperature in our problem
is a function of time:

〈η(t)〉 = 0 ; 〈η(t)η(t′)〉 = 2mγT (t)δ(t− t′). (A-2)

Taking the differential of the Wiener function G(t),

dGt = G(t+ dt)−G(t) =
∫ t+dt

t
η(t′)dt′ (A-3)

and even though it is tempting, we cannot naively consider that dGt = η(t′)dt′.
We also evaluate that

〈dGtdGt′〉 =
∫ t′+dt

t′
ds′

∫ t+dt

t
ds 〈η(s)η(s′)〉

=
∫ t′+dt

t′
ds′

∫ t+dt

t
ds 2mγT (s)δ(s− s′), (A-4)
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so only when t = t′ the previous correlation will be non zero

〈dG2
t 〉 =

∫ t+dt

t
dsds′ 〈η(s)η(s′)〉

=
∫ t+dt

t
dsds′ 2mγT (s)δ(s− s′) = 2mγ

∫ t+dt

t
T (s)ds, (A-5)

= 2mγT (t)dt.

The equations of motion in chapter 2 can be written as

dp

dt
=

{
− γp− V ′(x)− kL(x− L)

}
+ η(t)

dx

dt
= p

m
, (A-6)

evaluating

dpt =
∫ t+dt

t

dp

dt
dt′ =

{
− γpt − V ′(xt)− kL(xt − Lt)

}
dt+ dGt

dpt = a(pt, xt, Lt)dt+ dGt (A-7)

dxt = pt
m
dt

where we have defined a(pt, xt, Lt) = −γpt − V ′(xt) − kL(xt − Lt), which for
simplicity we will abbreviate as at.

We can discretize the motion as

pt+dt = pt + atdt+ dGt

xt+dt = xt + pt
m
dt. (A-8)

Following Stratonovich lemma (which we are representing with a ◦) we have
that [55]

∫ t

0
p(t′)η(t′)dt′ =

∫ t

0
p(t′) ◦ dGt′ (A-9)

we also have that [55, 56]

p(t) ◦ dGt = pt+dt + pt
2 dGt = dpt

2 dGt + pt dGt, (A-10)

from the discretized equation we can conclude that the momenta p at an instant
t is a function of dGt′ only at times t′ < t, and therefore 〈pt dGt〉 = 0 and for the
same reasoning 〈at dGt〉 = 0. The remaining term

〈p(t) ◦ dGt〉 = 1
2〈dptdGt〉 = 1

2

{
〈at dGt〉+ 〈dG2

t 〉
}

= 1
2〈dG

2
t 〉

= mγT (t). (A-11)
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Lastly, since v = p/m we obtain

〈
η(t)v(t)

〉
= γT (t). (A-12)
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B
General Calculations

B.1
Time Average of a Single Function

The time average of a function f is defined as

f(t) = lim
λ→∞

1
λ

∫ λ

0
dt f(t) = lim

λ→∞

1
λ

∫ λ

0
dt
∫ ∞

0
dt1δ(t− t1)f(t1), (B-1)

we replace

δ(t) = lim
ε→0+

∫ ∞
−∞

dq

2π e(iq+ε)t, (B-2)

f(t) = lim
λ→∞

1
λ

∫ λ

0
dt f(t) = lim

λ→∞
lim
ε→0+

1
λ

∫ λ

0
dt
∫ ∞

0
dt1

∫ ∞
−∞

dq

2π e(iq+ε)(t−t1)f(t1)

= lim
λ→∞

lim
ε→0+

1
λ

∫ ∞
−∞

dq

2π

∫ λ

0
e(iq+ε)tdt

∫ ∞
0

e−(iq+ε)t1f(t1)dt1,

now we identify that the last term is the definition of the Laplace Transform, and
the middle integration can be easily done:

f(t) = lim
λ→∞

lim
ε→0+

∫ ∞
−∞

dq

2π
e(iq+ε)λ − 1
(iq + ε)λ f̃(iq + ε). (B-3)

In order to simplify further we will define the time auxiliary function

τ(x) = exλ − 1
xλ

, (B-4)

allowing us to write

f(t) = lim
λ→∞

lim
ε→0+

∫ ∞
−∞

dq

2πτ
(
iq + ε

)
f̃(iq + ε) (B-5)

the result may be extended to the average of the product of two functions (which
we will use specifically):

f(t)g(t) = lim
λ→∞

lim
ε→0+

∫ ∞
−∞

dq1dq2

(2π)2
e(iq1+iq2+2ε)λ − 1
(iq1 + iq2 + 2ε)λf̃(iq1 + ε)g̃(iq2 + ε),(B-6)
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or of several functions

n∏
j=1

fj(t) = lim
λ→∞

lim
ε→0+

∫ ∞
−∞

∏n
j=1 dqj

(2π)n
e
∑n

j=1(iqj+ε)λ − 1∑n
j=1(iqj + ε)λ

n∏
j=1

f̃j(iq1 + ε).(B-7)

B.2
Broken Time Averages

In order ot correctly obtain the absorbed heat QH we must evaluate the
time average of Q(t) only during the hot phase (and equivalently during the cold
phase to obtain QC). So we will also obtain the time average on broken intervals
of period θ as shown in figure B.1:

θ/2 θ 2θ 3θ 4θ

t

f(t)g(t)

Figure B.1: This is a visual representation of the broken averages. The dark
blue represents the early time average and the light blue represents the late
time average.

f(t) = f(t)late + f(t)early =

= lim
n→∞

n∑
m=0

1
nθ


∫ (m+1/2)θ

mθ
f(t)dt+

∫ (m+1)θ

(m+1/2)θ
f(t)dt

. (B-8)

The early average:

f(t)early = lim
n→∞

n∑
m=0

1
nθ

∫ (m+1/2)θ

mθ
f(t)dt =

= lim
n→∞

lim
ε→0

n∑
m=0

∫ ∞
−∞

dq

2π
1
nθ

∫ (m+1/2)θ

mθ
e(iq+ε)tdt f̃(iq + ε)

= lim
n→∞

lim
ε→0

∫ ∞
−∞

dq

2π
1
nθ

n∑
m=0

e(iq+ε)θm

e(iq+ε)θ/2 − 1
(iq + ε)

f̃(iq + ε),

with the geometric sum being:

n∑
m=0

e(iq+ε)θm = e(iq+ε)θn − 1
e(iq+ε)θ − 1 = e(iq+ε)θn − 1

(e(iq+ε)θ/2 − 1)(e(iq+ε)θ/2 + 1) . (B-9)
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Replacing the previous result we obtain the final expression:

f(t)early = lim
n→∞

lim
ε→0

∫ ∞
−∞

dq

2π
e(iq+ε)nθ − 1

nθ(iq + ε)
(
e(iq+ε)θ/2 + 1

) f̃(iq + ε). (B-10)

In order to simplify the result even further we will define the early time average
function:

τE(x) = ex − 1
nθ
(
ex/2 + 1

)
x
, (B-11)

making

f(t)early = lim
n→∞

lim
ε→0

∫ ∞
−∞

dq

2πτE(iq + ε)f̃(iq + ε). (B-12)

For the late average

f(t)late = lim
n→∞

n∑
m=0

1
nθ

∫ (m+1)θ

(m+1/2)θ
f(t)dt =

= lim
n→∞

lim
ε→0

n∑
m=0

∫ ∞
−∞

dq

2π
1
nθ

∫ (m+1)θ

(m+1/2)θ
e(iq+ε)tdt f̃(iq + ε)

= lim
n→∞

lim
ε→0

∫ ∞
−∞

dq

2π
1
nθ

n∑
m=0

e(iq+ε)θm

e(iq+ε)θ/2 − 1
(iq + ε)

e(iq+ε)θ/2f̃(iq + ε),

and using the geometric sum result

f(t)late = lim
n→∞

lim
ε→0

∫ ∞
−∞

dq

2π

(
e(iq+ε)nθ − 1

)
e(iq+ε)θ/2

nθ(iq + ε)
(
e(iq+ε)θ/2 + 1

) f̃(iq + ε). (B-13)

we can also define the late time average function as

τL(x) =

(
exN − 1

)
exθ/2

nθ
(
ex/2 + 1

)
x

(B-14)

which allows us to rewrite

f(t)late = lim
n→∞

lim
ε→0

∫ ∞
−∞

dq

2πτL(iq + ε)f̃(iq + ε). (B-15)

B.3
An Illustrative Example

Before evaluating the example, we will take this opportunity to illustrate
the most important (and convenient) propriety of the auxiliary time functions
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introduced, namely τ , τE and τL. Starting with the simpler complete time average,
if we take the limit

lim
x→0

τ(ix) = lim
x→0

eixλ − 1
ixλ

= 1, (B-16)

we can see that the result does not depend on λ. If we consider x 6= 0 (with x
being real) then

τ(ix) ≤ 1
xλ

(B-17)

so if we take the limit when λ goes to infinity we have

lim
λ→∞

τ(ix) = 0. (B-18)

For the early and late functions we have a similar result with the only difference
being how many points the function isn’t null:

lim
x→0

τE(ix) = 1
2 (B-19)

lim
x→0

τL(ix) = 1
2 (B-20)

lim
x→(2n+1)Ω

τE(ix) = − i

(2n+ 1)π (B-21)

lim
x→(2n+1)Ω

τL(ix) = + i

(2n+ 1)π , (B-22)

where we have defined Ω = 2π/θ. For any other value of x we have that

lim
λ→∞

τE(ix) = 0 (B-23)

lim
λ→∞

τL(ix) = 0. (B-24)

These last results are very useful; in order to evaluate the time average as defined
in B-5, B-12 and B-15 we will be usually using Jordan’s Lemma to integrate on a
semi-circle in the complex plane. Since there are no poles contained in the auxiliary
functions, the only poles that will account for Cauchy residue integration will be
associated with f̃ .

The auxiliary functions have the key role to filter the transient averages from
the secular averages. We can see this in principle in action with our example:

cos2(Ωt) = lim
λ→∞

lim
ε→0

∫ ∞
−∞

dq

2πτ(iq + ε) (iq + ε)2 + 2Ω2

(iq + ε)
(
(iq + ε)2 + 4Ω2

) , (B-25)

to solve this naively we would need to evaluate the residue over q = iε,
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q = ±2Ω + iε, but we can simplify our calculations because, as we discovered
before, only the first pole (q = iε) will yield a non-zero result in the auxiliary term,
so we can ignore the rest to obtain that

cos2(Ωt) = τ(0)
(−i

2

)
= 1

2 . (B-26)
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C
Useful Laplace Transforms

Here we focus on obtaining some Transforms that will be used in chapter 2.

C.1
Laplace Transform of x3(t)

For the model presented in chapter 2, we will obtain the expression for

L{x3(t)}(s) =
∫ ∞

0
x3(t)e−stdt =

=
∫ ∞

0
e−stδ(t− t1)δ(t− t2)δ(t− t3)x(t1)x(t2)x(t3)dtdt1dt2dt3

= lim
ε→0+

∞∫
−∞

dq1dq2dq3

(2π)3

∞∫
0

dtdt1dt2dt3 e
−ste(iq1+ε)(t−t1)e(iq2+ε)(t−t2) ×

× e(iq2+ε)(t−t2)x(t1)x(t2)x(t3) =

= lim
ε→0+

∞∫
−∞

dq1dq2dq3

(2π)3

∞∫
0

dt e−(s+iq1+iq2+iq3+3ε)t
∞∫
0

e−(iq1+ε)t1x(t1)dt1 ×

×
∞∫
0

e−(iq2+ε)t2x(t2)dt2
∞∫
0

e−(iq3+ε)t3x(t3)dt3

L{x3(t)}(s) = lim
ε→0+

∞∫
−∞

dq1dq2dq3

(2π)3
x̃(iq1 + ε)x̃(iq2 + ε)x̃(iq3 + ε)
s− iq1 − iq2 − iq3 − 3ε , (C-1)

since the derivation of the previous relation was quite straightforward, its easy to
see that in fact

lim
λ→∞
L{xn(t)}(s) = lim

ε→0+

∞∫
−∞

∏n
j=1 dqj

(2π)n

∏n
j=1 x̃(iqj + ε)

s−∑n
j=1(iqj + ε) (C-2)

C.2
Correlation with Time-Dependent Temperature

We obtain the Laplace transform of the noise correlation when the temper-
ature is a function of time. Starting with the correlation

〈η(t1)η(t2)〉 = 2mγT (t1)δ(t1 − t2), (C-3)
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and the Laplace transform is written as

〈η̃(s1)η̃(s2)〉 =
∫ ∞

0
〈η(t1)η(t2)〉e−s1t1−s2t2dt1dt2. (C-4)

Integrating first in t2

〈η̃(s1)η̃(s2)〉 =
∫ ∞

0
dt1

∫ ∞
0

dt2 2mγT (t1)δ(t1 − t2)e−s1t1−s2t2

=
∫ ∞

0
dt1 2mγT (t1)e−t1(s1−s2)

〈η̃(s1)η̃(s2)〉 = 2mγ T̃ (s1 + s2)
s1 + s2

(C-5)

] Where T̃ is the Laplace transform of the temperature.

C.3
Laplace Transform of the Temperature

For the elliptical cycle, the Laplace transform of T (t) is quite straightforward

T (t) = Tm + ∆T
2 sin(Ωt) −→ T̃ (s) = Tm

s
+ ∆T

2
Ω

s2 + Ω2 . (C-6)

The transform of the step cycle temperature is not as straightforward, we present
the calculations here
∫ ∞

0
e−stT (t) dt =

∞∑
n=0

∫ (n+1/2)θ

nθ
TH e

−st dt+
∫ (n+1)θ

(n+1/2)θ
TC e

−st dt

=
∞∑
n=0

TH
s
e−snθ

(
1− e−sθ/2

)
+ TC e

−sθ/2

s
e−snθ

(
1− e−sθ/2

)

=
{ ∞∑
n=0

e−snθ
}{

TH + TC e
−sθ/2

s

}(
1− e−sθ/2

)

= 1
1− e−sθ

{
TH + TC e

−sθ/2

s

}(
1− e−sθ/2

)
T̃ (s) = TH + TC e

−sθ/2

s
[
1 + e−sθ/2

] . (C-7)
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D
Isentropic Process Derivation

Here we present the complete calculations necessary to obtain dS = 0, or in
an expanded form

dS(L, T ) = ∂S

∂L
dL+ ∂S

∂T
dT = ∂S

∂L
dL− 1

T 2
∂S

∂β
dT = 0. (D-1)

Expanding the entropy we obtain

S(L, T ) = −
∫
dΓ
{

ln e−βH(Γ)

Z(L, T )

}
e−βH(Γ)

Z(L, T )

=
∫
dΓ
{
βH(Γ) + lnZ(L, T )

} e−βH(Γ)

Z(L, T )

= β
∫
dΓH(Γ) e

−βH(Γ)

Z(L, T ) + lnZ(L, T )
∫
dΓ e−βH(Γ)

Z(L, T ) =

=
∫
dΓ βH(Γ) e

−βH(Γ)

Z(L, T ) + lnZ(L, T ). (D-2)

We will perform our calculations using the previous explicit result for the entropy,
however we can clearly identify the Maxwell relation S = F/T − E/T . Let us
derive some useful expressions beforehand

∂

∂L
lnZ = 1

Z

∂Z

∂L
= 1
Z

∫
dΓ′ ∂

∂L
e−βH(Γ′) = − β

Z

∫
dΓ′ ∂H

∂L
e−βH(Γ′) = −β

〈
∂H
∂L

〉
∂

∂β
lnZ = 1

Z

∂Z

∂β
= 1
Z

∫
dΓ′ ∂

∂β
e−βH(Γ′) = − 1

Z

∫
dΓ′H e−βH(Γ′) = −〈H〉

∂

∂L

1
Z

= − 1
Z2

∂Z

∂L
= − 1

Z2

∫
dΓ′ ∂

∂L
e−βH(Γ′) = β

Z2

∫
dΓ′ ∂H

∂L
e−βH(Γ′) = β

Z

〈
∂H
∂L

〉
∂

∂β

1
Z

= − 1
Z2

∂Z

∂β
= − 1

Z2

∫
dΓ′ ∂

∂β
e−βH(Γ′) = 1

Z2

∫
dΓ′H e−βH(Γ′) = 1

Z
〈H〉
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Using these results we can write

∂S

∂L
=

∫
dΓ
{
β
∂H
∂L

e−βH(Γ)

Z
+ βH ∂

∂L

e−βH(Γ)

Z

}
+ ∂

∂L
lnZ

= β

〈
∂H
∂L

〉
+
∫
dΓ
{
βH ∂

∂L

e−βH(Γ)

Z

}
− β

〈
∂H
∂L

〉
=
∫
dΓ
{
βH ∂

∂L

e−βH(Γ)

Z

}

= −β2
∫
dΓH∂H

∂L

e−βH(Γ)

Z
+ β

∫
dΓHe−βH(Γ) ∂

∂L

1
Z

0

= −β2
〈
H∂H
∂L

〉
+ β

∫
dΓHe−βH(Γ) β

Z

〈
∂H
∂L

〉
∂S

∂L
= −β2

〈
H∂H
∂L

〉
+ β2〈H〉

〈
∂H
∂L

〉
, (D-3)

and

∂S

∂β
= ∂

∂β

∫
dΓ βH(Γ) e

−βH(Γ)

Z(L, T ) + ∂

∂β
lnZ(L, T )

=
∫
dΓHe

−βH(Γ)

Z
+
∫
dΓ βH ∂

∂β

e−βH(Γ)

Z
− 〈H〉 = 〈H〉+

∫
dΓ βH ∂

∂β

e−βH(Γ)

Z
− 〈H〉

= −
∫
dΓ βH2 e

−βH

Z
+
∫
dΓ βH e−βH(Γ) ∂

∂β

1
Z

= −β〈H2〉+
∫
dΓβHe

−βH(Γ)

Z
〈H〉

∂S

∂β
= β〈H〉2 − β〈H2〉. (D-4)

Replacing our findings in the iso-entropic restriction we obtain the definitive version
of the restriction

dS = 0 −→ −β2
{〈
H∂H
∂L

〉
− 〈H〉

〈
∂H
∂L

〉}
dL+ β

{
〈H2〉 − 〈H〉2

}
dT = 0

dT = T

〈
H∂H

∂L

〉
− 〈H〉

〈
∂H
∂L

〉
〈H2〉 − 〈H〉2

dL = T

〈
H∂H

∂L

〉
c

〈H2〉c
dL. (D-5)

In other words, assume that we start from a point in the phase space (L0, T0) to
the point (L1, T1)→ (L0 + dL, T0 + dT ), by choosing a small enough dL we can
obtain dT using the previous equation as:

dT = T0

〈
H ∂H

∂L

〉
− 〈H〉

〈
∂H
∂L

〉
〈H2〉 − 〈H〉2

∣∣∣∣∣∣
L0,T0

dL. (D-6)
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D.1
Interpreting the result

Let us define the work capacity of our system as

∂〈H〉
∂L

=
〈
∂H
∂L

〉
− 1
T

〈
H∂H
∂L

〉
c

, (D-7)

in other words, the work capacity represents the rate in which the internal energy
changes by displacing the value of L without distinguishing weather that energy is
in the form of work or heat. We may write〈

H∂H
∂L

〉
c

= −T
{〈

∂H
∂L

〉
− ∂〈H〉

∂L

}
, (D-8)

which allows us to interpret the left hand side of the previous equation is
proportional to the heat rate, since we subtracted the work rate from the complete
energy change, caused by a displacement in L.

The isentropic restriction is therefore expressed quite intuitively as: the heat
change in the system resulting from a displacement dL must be the opposite of
the resulting from a temperature displacement dT , if that is true, then the system
can be seen as isolated.

D.2
Examples

Modulated Frequency - Overdamped

If the damping constant is much larger than the mass, the equations of
motion become [6]

γẋ+ k(t)x = η(t). (D-9)

The Hamiltonian of this system is

H(x) = k(t)
2 x2, (D-10)

unlike in the previous example where the length L was the protocol parameter, in
this case we the stiffness of the harmonic potential k(t). We can write the power
output

∂H

∂k
= x2

2 = H

k
, (D-11)
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so that the isentropic restriction becomes〈
H
∂H

∂L

〉
− 〈H〉

〈
∂H

∂L

〉
= 1

k

{
〈H2〉 − 〈H〉2

}
, (D-12)

which leads us to

dT = T

k

〈H2〉 − 〈H〉2

〈H2〉 − 〈H〉2
dL −→ dT

T
= dk

k
→ dT

dk
= T

k
−→ T = αk. (D-13)

which is in accordance with the literature [6]. We have outlined this result in
Chapter 1, having the temperature proportional to the stiffness will not only ensure
that the entropy is unchanged, but it also will make the probability density remain
constant

ρ(x) ∝ e−
k

2T x
2 = e−

1
2αx

2
. (D-14)

Modulated Frequency - Underdamped

In the underdamped limit the particle mass is large enough when compared
to the dissipation, the equations of motion are

mẍ+ γẋ+ k(t)x = η(t), (D-15)

with Hamiltonian

H(x, p) = p2

2m + k(t)
2 x2. (D-16)

The power output can be written as

∂H

∂k
=
H − p2

2m
k

, (D-17)

which we use to derive that〈
H
∂H

∂L

〉
− 〈H〉

〈
∂H

∂L

〉
= T 2

k
− T 2

2k = T 2

2k . (D-18)

leading to the isentropic condition〈
H ∂H

∂k

〉
− 〈H〉

〈
∂H
∂k

〉
〈H2〉 − 〈H〉2

= 1
2k .
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Therefore, the isentropic process for an underdamped system is

dT = T

2kdk −→
dT

T
= dk

2k → lnT = 1
2 ln k + C → T = αk1/2, (D-19)

which is also in accordance with the literature avaliable literature [16]. The
difference can be understood from the probability function

ρ(x, p) ∝ e−
p2

2mT −
k

2T x
2
, (D-20)

in the massless case, k and T must only compensate each other, but in the massive
case we must take into account the entropy change caused by the momenta p,
which is why k must increase as T 2 to compensate that effect.
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