
Jan Jose Hurtado Jauregui

Detail-preserving mesh denoising using
adaptive patches

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Marcelo Gattass

Rio de Janeiro
March 2018

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Jan Jose Hurtado Jauregui

Detail-preserving mesh denoising using
adaptive patches

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
undersigned Examination Committee.

Prof. Marcelo Gattass
Advisor

Departamento de Informática – PUC-Rio

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Prof. Waldemar Celes Filho
Departamento de Informática – PUC-Rio

Prof. Marcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, March 8th, 2018

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

All rights reserved.

Jan Jose Hurtado Jauregui

Graduated in computer science by the Universidad Nacional
de San Agustin (Arequipa, Perú).

Bibliographic data
Hurtado Jauregui, Jan Jose

Detail-preserving mesh denoising using adaptive patches
/ Jan Jose Hurtado Jauregui; advisor: Marcelo Gattass. – Rio
de janeiro: PUC-Rio , Departamento de Informática, 2018.

v., 84 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Procesamento Geométrico;. 3.
Remoção de ruído de malha;. 4. Vizinhança adaptativa.. I.
Gattass, Marcelo. II. Pontifícia Universidade Católica do Rio
de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Acknowledgments

I would like to first thank my parents Rocio Jauregui and Rusbel Hurtado,
and my brother Cristian Hurtado for their continuous support. To my advisor
Marcelo Gattass for his patience, motivation, and guidance. To my jury
conformed by professors that I admire. To my graduation professor Cristian
Lopez del Alamo because he guided and motivated me to start in my research
area. To the professor Ernesto Cuadros because he explained me what is
computer science. To the professor Alex Bronstein for his inmense knowledge
and motivation, in fact, most of my work was inspired in his ideas. Finally, to
the CAPES, PUC-Rio and Tecgraf Institute to support this work.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Abstract

Hurtado Jauregui, Jan Jose; Gattass, Marcelo (Advisor). Detail-
preserving mesh denoising using adaptive patches. Rio de
Janeiro, 2018. 84p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

The acquisition of triangular meshes typically introduces undesired
noise. Mesh denoising is a geometry processing task to remove this kind of
distortion. To preserve the geometric fidelity of the desired mesh, a mesh
denoising algorithm must preserve true details while removing artificial
high-frequencies from the surface. Several algorithms were proposed to
address this problem using a bilateral filtering scheme. In this work, we
propose a two-step algorithm which uses adaptive patches and bilateral
filtering to denoise the normal field, and then update vertex positions fitting
the faces to the denoised normals. The computation of the adaptive patches
is our main contribution. We formulate this computation as local quadratic
optimization problems that we can control to obtain a desired behavior of
the patch. We compared our proposal with several algorithms proposed in
the literature using synthetic and real data.

Keywords
Geometry Processing; Mesh Denoising; Adaptive Patches.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Resumo

Hurtado Jauregui, Jan Jose; Gattass, Marcelo.Remoção de ruído
de malha com preservação de detalhe usando vizinhanças
adaptativas. Rio de Janeiro, 2018. 84p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

A aquisição de malhas triangulares normalmente introduz ruídos
indesejados. A remoção de ruído de malhas é uma tarefa da área de
processamento geométrico que serve para remover esse tipo de distorção.
Para preservar a fidelidade em relação à malha desejada, um algoritmo
de remoção de ruído de malha deve preservar detalhes enquanto remove
altas frequências indesejadas sobre a superfície. Vários algoritmos foram
propostos para resolver este problema usando um esquema de filtragem
bilateral. Neste trabalho, propomos um algoritmo de dois passos que usa
vizinhança adaptativa e filtragem bilateral para remover ruído do campo
normal e, em seguida, atualizar as posições dos vértices ajustando os
triângulos às novas normais. A nossa contribuição principal é a computação
da vizinhança adaptativa. Essa computação é formulada como problemas
locais de otimização quadrática que podem ser controlados para obter o
comportamento desejado da vizinhança. A proposta é comparada visual e
quantitativamente com vários algoritmos propostos na literatura, usando
dados sintéticos e reais.

Palavras-chave
Procesamento Geométrico; Remoção de ruído de malha; Vizinhança

adaptativa.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Table of contents

1 Introduction 13

2 Previous Work 16

3 Anisotropic denoising 18
3.1 Bilateral filtering for images 18
3.2 Joint bilateral filtering for images 18
3.3 Adaptive patches for images 19
3.4 Bilateral filtering for meshes 19
3.5 Bilateral normal filtering for meshes 20
3.6 Guided bilateral normal filtering for meshes 20

4 Adaptive Patches 22
4.1 Continuous setting 22
4.1.1 Error term 22
4.1.2 Distance to the reference point term 23
4.1.3 Regularization term 24
4.1.4 Normal coherence term 24
4.1.5 Parameters 25
4.2 Discretization 25
4.3 Implementation 30

5 Denoising Algorithm 35
5.1 Precomputation 35
5.2 Adaptive patches computation 36
5.3 Adaptive patch based normal filtering 37
5.4 Bilateral normal filtering 38
5.5 Vertex updating 39
5.6 Pipeline 41

6 Denoising algorithm evaluation 43
6.1 Visual Comparison 43
6.2 Metrics 43
6.2.1 Mean distance error metric: 44
6.2.2 Quadric error metric: 45
6.2.3 Tangential error metric: 45
6.2.4 L2 vertex-based mesh-to-mesh error metric: 46
6.2.5 L2 normal-based mesh-to-mesh error metric: 46
6.2.6 Mean square angular error metric: 47
6.2.7 Discrete curvature error metric: 47
6.2.8 Area difference and volume difference: 48

7 Results 49
7.1 Implementation details 49
7.2 Datasets 50

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

7.3 Algorithm parameters 50
7.4 Initial Comparison 52
7.5 Comparison with other algorithms using artificial noise 56
7.5.1 Block mesh 57
7.5.2 Devil mesh 58
7.5.3 Fandisk mesh 59
7.5.4 Joint mesh 60
7.6 Comparison with other algorithms using real data 66
7.6.1 Gargoyle mesh 66
7.6.2 BallJoint mesh 66
7.6.3 Building mesh 67
7.6.4 Keyboard mesh 67
7.7 Performance 72
7.8 Denoising meshes generated from ultrasound exams 76

8 Conclusion and future work 78

Bibliography 80

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

List of figures

Figure 1.1 Range scans. Data obtained from [49]. 14
Figure 1.2 Meshes generated from medical data. Data obtained from

the AIM@SHAPE Shape Repository [2] 14

Figure 3.1 Adaptive patches (image adapted from [36]). 19

Figure 4.1 Reference point in black. Left: crisp subset X ′ represent-
ing the patch. Center-Left: a non regular solution u for optimiza-
tion problem without using the distance term. Center-Right: a
non regular solution u for optimization problem using the dis-
tance term. Right: a regular solution u for optimization problem 23

Figure 4.2 Patch coherence. Left: possible patch with reference
point x′ lying on the wrong side of the shape. Right: possible
patch with reference point x′ lying on the right side of the shape. 24

Figure 4.3 Left: noisy mesh. Center: color mapping of the distance
function, from minimum distance (blue) to maximum distance
(red). Right: color mapping of membership function u, from 0
(blue) to 1 (red). The domain of the optimization problem is
restricted to the non fully red area in the color mapping of
distance function. 27

Figure 4.4 Membership function behavior when including penaliza-
tion for distance to the reference point. Reference point in black.
Left: membership function u obtained without using the dis-
tance to reference point penalization term. Right: membership
function u obtained using the distance to reference point penal-
ization term. Both results do not use a regularization (gradient)
or normal coherence term. 28

Figure 4.5 Gradient possible directions: g1 and g2. 28
Figure 4.6 Membership function behavior when increasing the in-

fluence of regularization term in the optimization problem.
From left to right: less influence to high influence (γ =
0.05, 0.1, 0.2, 0.5, 10, 100). 29

Figure 4.7 Coherence term. Membership function behavior when
including penalization for difference between the normal of each
point and the normal of the reference point. Reference point in
black. Left: membership function u obtained without using the
coherence term . Right: membership function u obtained using
the coherence term. 30

Figure 4.8 Some examples of solutions for adaptive patches. Refer-
ence point in black. First image: noisy block model. 31

Figure 5.1 Pipeline of the proposed denoising algorithm. 42

Figure 6.1 Visualization methods. From left to right: Flat shading,
curvature color mapping and normal mapping. 43

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Figure 7.1 An example using our denoising algorithm. First row
from left to right: original mesh and noisy mesh. Second row
from left to right: resulting mesh using uniform Laplacian
smoothing, resulting mesh of our proposal wihout using the bi-
lateral normal filtering step, and resulting mesh of our proposal
using it. 54

Figure 7.2 An example using our denoising algorithm (showing cur-
vature mapping). First row from left to right: original mesh and
noisy mesh. Second row from left to right: resulting mesh using
uniform Laplacian smoothing, resulting mesh of our proposal
wihout using the bilateral normal filtering step, and resulting
mesh of our proposal using it. 55

Figure 7.3 Results after 20 iterations of vertex updating using
estimated normals. Left: Guided normals using [31]. Right:
Average normal weighted by patch membership function. 56

Figure 7.4 Wrong normal direction in the corner of the resulting
mesh using the Guided mesh normal filtering. Left: resulting
mesh of [31]. Right: our result. 58

Figure 7.5 Results obtained for block model. For each sub-figure,
first row shows a flat rendering, second row shows the mean
curvature and third row shows the normal map. 7.5(a): Original.
7.5(b): Noisy. 7.5(c): [23]. 7.5(d): [24]. 7.5(e): [28]. 7.5(f): [29].
7.5(g): [22]. 7.5(h): [31]. 7.5(i): Our method. 62

Figure 7.6 Results obtained for devil mesh. For each sub-figure,
first row shows a flat rendering, second row shows the mean
curvature and third row shows the normal map. 7.6(a): Original.
7.6(b): Noisy. 7.6(c): [23]. 7.6(d): [24]. 7.6(e): [28]. 7.6(f): [29].
7.6(g): [22]. 7.6(h): [31]. 7.6(i): [33]. 7.6(j): Our method. 63

Figure 7.7 Results obtained for fandisk mesh. For each sub-figure,
first row shows a flat rendering, second row shows the mean
curvature and third row shows the normal map. 7.7(a): Original.
7.7(b): Noisy. 7.7(c): [23]. 7.7(d): [28]. 7.7(e): [29]. 7.7(f): [22].
7.7(g): [31]. 7.7(i): [33]. 7.7(h): [34]. 7.7(j): Our method. 64

Figure 7.8 Results obtained for joint mesh. For each sub-figure,
first row shows a flat rendering, second row shows the mean
curvature and third row shows the normal map. 7.8(a): Original.
7.8(b): Noisy. 7.8(c): [23]. 7.8(d): [28]. 7.8(e): [29]. 7.8(f): [22].
7.8(g): [31]. 7.8(i): [33]. 7.8(h): [34]. 7.8(j): Our method. 65

Figure 7.9 Gargoyle mesh details preserved with our denoising
algorithm. First row: [29]. Second row: [33]. Third row: ours. 66

Figure 7.10 Results obtained for gargoyle model. For each sub-figure,
first row shows a flat rendering, second row shows the mean
curvature and third row shows the normal map. 7.10(a): Noisy.
7.10(b): [23]. 7.10(c): [28]. 7.10(d): [29]. 7.10(e): [22]. 7.10(f):
[31]. 7.10(g): [33]. 7.10(h): Our method. 68
7.10(h) 68

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Figure 7.11 Results obtained for ball joint model. For each sub-figure,
first row shows a flat rendering, second row shows the mean
curvature and third row shows the normal map. 7.11(a): Noisy.
7.11(b): [23]. 7.11(c): [24]. 7.11(d): [28]. 7.11(e): [29]. 7.11(f):
[22]. 7.11(g): [31]. 7.11(h): [33]. 7.11(i): Our method. 69

Figure 7.12 Results obtained for building model. For each sub-figure,
first row shows a flat rendering, second row shows the mean
curvature and third row shows the normal map. 7.12(a): Noisy.
7.12(b): [23]. 7.12(c): [28]. 7.12(d): [29]. 7.12(e): [22]. 7.12(f):
[31]. 7.12(g): Our method. 70

Figure 7.13 Results obtained for keyboard model. For each sub-
figure, first row shows a flat rendering, second row shows the
mean curvature and third row shows the normal map. 7.13(a):
Noisy. 7.13(b): [23]. 7.13(c): [28]. 7.13(d): [29]. 7.13(e): [22].
7.13(f): [31]. 7.13(g): Our method. 71

Figure 7.14 Execution time of our denoising algorithm over meshes
(decimated from dragon mesh) with different number of faces. 72

Figure 7.15 An example using our denoising algorithm. First row
from left to right: original mesh and noisy mesh. Second row
from left to right: resulting mesh using uniform laplacian
smoothing, resulting mesh of our proposal wihout using the bi-
lateral normal filtering step, and resulting mesh of our proposal
using it. 74

Figure 7.16 Execution time of our denoising algorithm using different
maximum number of optimization problem variables, over the
dragon mesh with 50000 number of faces. 75

Figure 7.17 Results obtained from a mesh representing a fetus face.
First row: flat rendering. Second row: curvature mapping. First
column: noisy mesh with staircase artifact. Second column: [29].
Third column: [22]. Fourth column: [31]. Fifth column: Our
method. 76

Figure 7.18 Results obtained from a mesh representing a fetus body.
First group: flat rendering. Second group: curvature mapping.
Starting from left to right and from top to bottom: noisy mesh
with staircase artifact, [29], [22], [31] and our method. 77

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

List of tables

Table 6.1 Classification of metrics 44

Table 7.1 Parameters used for Bilateral mesh denoising [23]. 51
Table 7.2 Parameters used for Non-iterative, feature-preserving

mesh smoothing [24]. 51
Table 7.3 Parameters used for Fast and effective feature-preserving

mesh denoising [28] 51
Table 7.4 Parameters used for Bilateral normal filtering for mesh

denoising [29]. 52
Table 7.5 Parameters used for Mesh denoising via L0 minimization

[22]. 52
Table 7.6 Parameters used for Guided mesh normal filtering [31]. 52
Table 7.7 Parameters used for Mesh denoising based on normal

voting tensor and binary optimization [33]. 53
Table 7.8 Parameters used for Robust and High Fidelity Mesh

Denoising [34]. 53
Table 7.9 Parameters used for our proposal. 53
Table 7.10 Results for sharpSphere mesh 54
Table 7.11 Errors of estimated normals 55
Table 7.12 Time for each step of the algorithm performed over

sharpSphere mesh (10443 vertices and 20882 faces). Total time
equal to 51.472. 56

Table 7.13 Results for block mesh 58
Table 7.14 Results for devil mesh 59
Table 7.15 Results for fandisk mesh 60
Table 7.16 Results for joint mesh 61
Table 7.17 Execution time of our denoising algorithm over meshes

(decimated from dragon mesh) with different number of faces. 72
Table 7.18 Results for decimated dragon meshes 73
Table 7.19 Execution time of our denoising algorithm using different

maximum number of optimization problem variables, over the
dragon mesh with 50000 number of faces. 73

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

1
Introduction

Nowadays 3D surface models are used in several fields and industries such
as medicine, engineering, entertainment, geo-exploration, architecture, cultural
heritage and so on. These models can be acquired from a variety of sources like
3D scanning, 3D imaging, multi-view stereo reconstruction, CAD modeling,
etc. The data generated by these techniques should be processed to be available
for production or any task where it can be used (visualization, simulation,
animation, interaction, etc.). This processing step is called digital geometry
processing which is a field of computer science that uses mathematical models
and algorithms [1].

3D surface models obtained from real-world data usually present unde-
sired noise, that can result in problematic effects on later applications. For
example, depth-sensing cameras reconstruct noisy surfaces due to the physical
limitations of the sensors. In Figure 1.1 we show some noisy models generated
by this type of acquisition. As another example, in the case of medical data, a
volume representing the anatomy of the patient can be obtained using several
techniques (e.g., X-ray radiography, medical ultrasound, Magnetic Resonance
Imaging (MRI), etc.). Using a subset of this volume, a 3D model can be re-
constructed to represent the isosurface of the target region. The selection of
a subset is carried out by a segmentation process which can be manual, au-
tomatic or semi-automatic. Due to these intermediate steps, the final model
presents different kind of noise. Bade et al. explain some common noise sources
in [3]: (1) Technical and physical circumstances when acquiring the image (e.g.,
speckle noise in medical ultrasound). (2) Image discretization. (3) Image seg-
mentation. (4) Surface reconstruction. In Figure 1.2 we show some models
generated from medical data.

This kind of problems is treated using denoising techniques, which are
related to noise removal while preserving high-frequency features (details).
Due that it is difficult to distinguish these features from noise, denoising
is challenging problem so far. The denoising step is important in a typical
geometry processing pipeline [1].

In a discrete setting, 3D surface models are commonly represented as
triangle meshes due to its simplicity and easy processing. The denoising task

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 1. Introduction 14

Figure 1.1: Range scans. Data obtained from [49].

Figure 1.2: Meshes generated from medical data. Data obtained from the
AIM@SHAPE Shape Repository [2]

over meshes is called mesh denoising, and it is related to the modification
of the geometric properties of the mesh (e.g., vertex positions). There are
some important considerations in mesh denoising algorithms such as detail-
preserving, low normal variation, volume preservation, etc. Depending on the
application these features determine robustness.

In this work, we propose a new algorithm for detail-preserving mesh
denoising following a two-step scheme. First filtering the normal field and
then updating vertex positions to adapt them to the filtered normals. Our
main contribution is focused on the normal field filtering, which is performed
using adaptive patches computed on the mesh. We formulate local quadratic
optimization problems to compute these patches, such that the behavior of
the patch is influenced by multiple features. The final result of our algorithm
strongly depends on the computation of the adaptive patches.

We performed several experiments to describe our proposal and to
compare it with other denoising algorithms, using synthetic and real data. The
results that we obtained show that our proposal successfully removes the noise

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 1. Introduction 15

while preserving-details, and in most test cases was better than the others. We
evaluated it visually and used several mesh denoising metrics.

This document is structured as follows. In Chapter 2 we present some
previous work relevant to our problem. In Chapter 3 we describe some
important definitions to understand a step of our proposal and a comparison
to a patch-based algorithm. In Chapter 4 we explain how we compute the
adaptive patches, and how we discretize and implement them. In Chapter 5
we explain how our denoising algorithm works. To compare our proposal with
others, in Chapter 6 we show some strategies to evaluate denoising algorithms.
In Chapter 7 we describe our experiments and results. Finally, in Chapter 8
we present our conclusion and future work.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

2
Previous Work

Early smoothing methods tried to minimize functionals such as total
curvature or membrane energy [4, 5, 6] introducing computationally expensive
algorithms. Laplacian smoothing is one of the most used methods due to its
fastest and simplest scheme [7, 8, 9, 10], it moves each vertex iteratively to a
relative position regarding its respective neighboring vertices. Unfortunately,
Laplacian smoothing produces mesh shrinkage which is an important problem
when working with medical data. To avoid this problem, Taubin proposed a
two-step Laplacian smoothing, expanding the mesh on each iteration [11, 12].
The behavior of the algorithm depends on the discretization of the Laplace
operator. Desbrun et al. introduced diffusion flow for irregular mesh smoothing,
using cotangent weights in the Laplace operator [13]. Also, they introduced an
implicit version of the smoothing process. Vollmer et al. extended the Laplacian
smoothing in the same way as Taubin but using different expanding directions
[14].

All the methods above are called isotropic filters, which means that they
are independent of surface geometry. As a counterpart there exists another kind
of filters called anisotropic which usually better preserve geometric features
while removing noise [15]. Based on a diffusion process, numerous anisotropic
filters were proposed [16, 17, 18, 19, 20] extending the idea of anisotropic
diffusion of 2D grids to 3D surfaces. Hildebrant and Polthier used a prescribed
mean curvature flow simplifying the diffusion process [21]. He and Schaefer
proposed a method for sharp features preservation [22] using L0 minimization.

The bilateral filter for images was an important inspiration for a lot
of anisotropic mesh filters. The adaptation of this filter was introduced by
Fleishman et al. [23] and Jones et al. [24], and then generalized by Solomon
et al. [25]. Two step methods, consisting in normal field filtering followed by
vertex updating, were proposed adopting an anisotropic behavior [26, 27, 28].
Using a bilateral filter for normal field filtering, Zheng et al. proposed an
iterative and global scheme for mesh denoising [29]. Wei et al. introduced a
bilateral normal filtering using face normals and vertex normals to reach more
robustness [30]. Using a guidance signal generated by computing an average
normal from consistent patches, Zhang et al. proposed an extension of the

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 2. Previous Work 17

joint bilateral filter [31]. Later, Li et al. tried to improve the consistent patch
definition proposing a new metric [32].

Recently, using binary optimizations, Yadav et al. proposed a normal
voting tensor to denoise the normal field and then update vertices [33]. Then,
in [34], the same authors proposed an edge-weighted Laplace operator to
avoid face normal flip and to be more robust to high-intensity noise. They
use a bilateral normal filtering with a Tukey’s bi-weight function as bilateral
weighting. Wei et al. proposed the usage of consistent neighborhoods, generated
from a tensor voting analysis, to compute new vertex positions in [35].

Our adaptive patch computation follows the idea of computing consistent
patches as shown in [31, 32, 35], performing a new optimization procedure
proposed here. Our denoising algorithm uses these patches to filter the normal
field in an iterative manner, including an optional step that performs a bilateral
filtering [29] over the new normals (to obtain smoother results).

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

3
Anisotropic denoising

3.1
Bilateral filtering for images

The bilateral filtering is an image denoising method which preserves
edges. We can represent an image as a signal g(p), where p is the minimal
structure, i.e. a pixel. Following this notation the bilateral filtering is defined
as follows:

g′(p) = 1
W (p)

∑
q∈N(p)

Kc(||p− q||)Ks(||g(q)− g(p)||)g(q) (3-1)

where g′(p) is the new signal value at pixel p,W (p) is the normalization factor,
N(p) represents the neighboring pixels of p, Kc(x) is the kernel function which
penalize spatial distance between pixels, and Ks(x) is the kernel function
which penalize distance between signal values. The normalization term is
defined as the sum of the weights of all entries included in a sum, such
that for a sum ∑

ωx, we can represent it as W (x) = ∑
ω. Kernel functions

mentioned in this work are defined as Gaussian functions with the following
form: Ki(x) = e−x

2/2σ2
i .

3.2
Joint bilateral filtering for images

The joint bilateral filtering is an extension of bilateral filtering which uses
a guidance image signal g̃(p) to denoise the original signal g(p). The guidance
signal should be defined in the same domain and determines the behavior of
the filter. A joint bilateral filter can be defined as follows:

g′(p) = 1
W (p)

∑
q∈N(p)

Kc(||p− q||)Ks(||g̃(q)− g̃(p)||)g(q) (3-2)

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 3. Anisotropic denoising 19

Figure 3.1: Adaptive patches (image adapted from [36]).

3.3
Adaptive patches for images

In the image processing field, image denoising was addressed using shape
adaptive patches or anisotropic neighborhoods. This idea is focused on the
preservation of features such as edges or corners (detail preservation). For
example, in [36] the authors proposed an image filtering algorithm using
patches generated by consistent 1D signals. These signals are described by
the intensity values of a segment defined on the image. The segments they
use for a sampled pixel are related two the 8 pixel directions: left, right, up,
down and diagonals. The length is selected considering the consistency of the
corresponding segment. Finally, the polygon described by the endpoints of
these segments defines the patch for a given pixel. In Figure 3.1 we show an
example of these adaptive patches.

3.4
Bilateral filtering for meshes

Based on the bilateral filtering for images, Fleishman et al. [23] proposed
an extension for mesh denoising. Their idea is based on computing an approxi-
mated surface for each vertex (i.e. a plane) and use the distance of the nearest
vertices to this surface as a signal distance. In triangular meshes the normal
of the tangent plane of a vertex can be obtained averaging the normals of the
faces containing it. So, the plane can be represented by the normal ni and the
corresponding point xi at vertex vi. The distance between a point xj and this
plane can be computed by 〈ni,xi−xj〉. Using euclidean distance between ver-
tices and the mentioned signal distance, the new vertex position is computed

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 3. Anisotropic denoising 20

as follows:

x′i = xi + ni
1

W (vi)
∑

vj∈Nv(vi)
Kc(||xi − xj||)Ks(hi,j)hij (3-3)

where x′i is the new vertex position, Nv(vi) the set of neighboring vertices of
vertex vi and hij = 〈ni,xi − xj〉. The normal determines the direction of the
movement and the bilateral filtering the step size.

3.5
Bilateral normal filtering for meshes

Instead of filtering vertex positions other authors proposed normal field
filtering, considering normals over the gauss sphere. Zheng et al. [29] introduced
a new way to filter normals considering their positions in the global space. Their
scheme defines a bilateral filter over face normals, using the normals as signal
and the corresponding face centroids as positions. After normal filtering they
use a vertex updating step explained before. The new normals are computed
in the following way:

n′i = 1
W (fi)

∑
fj∈Nf (fi)

AjKc(||ci − cj||)Ks(||nj − ni||)nj (3-4)

where n′i is the new normal, Nf (fi) represents the set of neighboring faces of
face fi, ck is the corresponding centroid of fk, and Ak is the area of the face
fk. This area works as a weight for each triangle, larger areas should be more
influential. After normal filtering a vertex updating step is performed to adapt
the vertices to the new normals.

3.6
Guided bilateral normal filtering for meshes

This algorithm is based on the joint bilateral filter, which uses a guidance
signal (external signal) in a bilateral filtering scheme. The effectiveness of
filtering depends on how similar is the guidance signal to the desired signal.
Zhang et al. proposed normal field filtering [31] in the same way as in [29], but
adopting a joint bilateral filtering scheme:

n′i = 1
W (fi)

∑
fj∈Nf (fi)

AjKc(||ci − cj||)Ks(||ñj − ñi||)nj (3-5)

where ñk is the corresponding guidance signal value of face fk. The guidance
signal is defined as the average normal of a consistent patch centered at the
corresponding face.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 3. Anisotropic denoising 21

To obtain a consistent patch, the authors define a set of regular patches
as candidates, and then select the most consistent. A regular patch P defined
for a face f is conformed by the faces which share any of the vertices of f ,
including f . For a given face f , the set of candidate patches is conformed by
all regular patches which share f . The consistency of a patch is defined by the
following error metric:

H(P) = Φ(P)R(P), (3-6)

where Φ(P) measures the maximum difference between two face normals of
the patch:

Φ(P) = max
fi,fk∈P

||nj − nk||, (3-7)

and R(P) measures the saliency of the patch in the following manner:

R(P) =
maxej∈P φ(ej)
ε+ ∑

ej∈P φ(ej)
, (3-8)

where φ(ej) is the length of the normal difference of two faces conforming the
edge ej and ε is a small positive value to avoid division by 0. The patch with
lowest error is considered the most consistent.

As in bilateral normal filtering, a vertex updating step is needed to obtain
new vertex positions.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

4
Adaptive Patches

In this chapter, we will describe the core of our mesh denoising algorithm,
which is the computation of adaptive patches. As in the image denoising case
where adaptive patches are computed to preserve edges (e.g., [36]), we opted to
compute adaptive patches over meshes and use them to perform a denoising
operation preserving details. These patches have to be robust to noise and
configurable to reach a desired behavior for the denoising algorithm. These
properties define the effectiveness of our denoising algorithm. We will explain
this computation in a continuous setting and then introduce its discretization
and implementation.

4.1
Continuous setting

LetX be a 2-manifold embedded in R3, andX ′ a subset ofX representing
a patch (neighborhood) for a reference point x′ ∈ X. We aim to find an optimal
subset X ′ considering some properties desired in our denoising algorithm. The
first one and the most important is that the patch should be adapted to the
desired shape. Adaptive patches will be helpful to preserve sharp features while
denoising flat regions. As we shown in a previous section this kind of patches
are computed over images using the pixel intensity as the main signal. In our
case, we opted to use the normal field as shape descriptor, such that flat regions
will have low normal variation, and sharp features or curved regions will have
higher normal variation. The patch we want to compute should be piecewise
constant regarding the normal field or with minimal normal variation. In other
words, the normal difference between two points contained in the patch should
be minimum.

4.1.1
Error term

Finding the solution X ′ allows us to formulate a quadratic optimization
problem penalizing the error between two points xi ∈ X ′ and xj ∈ X ′ as

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 23

X ′

X

u

X

u

X

u

X

Figure 4.1: Reference point in black. Left: crisp subset X ′ representing the
patch. Center-Left: a non regular solution u for optimization problem without
using the distance term. Center-Right: a non regular solution u for optimization
problem using the distance term. Right: a regular solution u for optimization
problem

qij = ||ni − nj||. We can write this problem as follows:

min
X′⊆X

∫
xi∈X′

∫
xj∈X′

qijda. (4-1)

Unfortunatelly, in a discrete setting, finding a crisp subset X ′ results
in a NP-Hard combinatorial complexity problem. As suggested in other ap-
plications we can relax the problem defining a fuzzy membership function
u : X → [0, 1] over all the domain X (fuzzy set theory). This function will de-
fine which is the degree of inclusion of a point xi ∈ X to the patch X ′. Instead
of finding the subset X ′, now we want to find the function u (see Figure 4.1).
We can rewrite the problem:

min
u

∫
xi∈X

∫
xj∈X

qijuiujdada s.t. u ∈ [0, 1], (4-2)

where ui = u(xi) and uj = u(xj). Now the optimization will find the member-
ship function u and control the upperbound and lowerbound constraints.

If we try to solve the latter problem it is obvious that the solution can
be u = 0 which leads in a patch without area. To obtain a solution with area
we added a constraint for the solution u, such that the sum of the area of X
weighted by the membership function u should be equal to a fixed value a0.
Rewriting the problem we have:

min
u

∫
xi∈X

∫
xj∈X

qijuiujdada s.t. u ∈ [0, 1] ∧
∫
xi∈X

uda = a0. (4-3)

4.1.2
Distance to the reference point term

We are computing the solution over all the domain, for this reason the
patch can be defined over a far region regarding the reference point. The normal

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 24

Figure 4.2: Patch coherence. Left: possible patch with reference point x′ lying
on the wrong side of the shape. Right: possible patch with reference point x′
lying on the right side of the shape.

field lies on the unit sphere and we do not have any term to control the spatial
information. The patch must be “centered” on the reference point or close to
it. To address this problem we added a term to penalize the distance between
any point of X to the reference point x′ considering the weights of function u:

min
u

∫
xi∈X

∫
xj∈X

qijuiujdada+
∫
xi∈X
||x′ − xi||uida

s.t. u ∈ [0, 1] ∧
∫
xi∈X

uda = a0,
(4-4)

where x′ is the reference point (see Figure 4.1). Here we are using
Euclidean distances but a more exact result can be obtained using geodesic
distances.

4.1.3
Regularization term

One problem with the possible solution in the latter formulation is that
it can be too irregular (see Figure 4.1). To avoid this problem, we follow the
idea of the Mumford-Shah functional trying to minimize the boundary length
of the solution. Because we have a continuous function u instead of a crisp set
X ′, we opted to use the squared gradient norm of u as a penalization term.

min
u

∫
xi∈X

∫
xj∈X

qijuiujdada+
∫
xi∈X
||x′ − xi||uida

+
∫
X
||∇u||2da s.t. u ∈ [0, 1] ∧

∫
xi∈X

uda = a0,
(4-5)

4.1.4
Normal coherence term

Depending on the influence of each of the previous terms we can obtain
a solution including the reference point or not. If not it is possible to obtain a

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 25

solution which has no coherence with the desired reference point normal (see
Figure 4.1). For example, if we have a noisy cube and we are computing a
patch with a reference point close to an edge, the solution can lie in the wrong
face because probably this region is flatter.

min
u

∫
xi∈X

∫
xj∈X

qijuiujdada+
∫
xi∈X
||x′ − xi||uida

+
∫
X
||∇u||2da+

∫
xi∈X
||n′ − ni||uida

s.t. u ∈ [0, 1] ∧
∫
xi∈X

uda = a0,

(4-6)

where n′ is the normal of the reference point, and ni is the normal of
the point xi. Solving this optimization problem will give us the adaptive patch
described by a membership function u.

4.1.5
Parameters

To control the behavior of the optimization problem we introduced four
parameters unfluencing each term of the optimization:

min
u
α

∫
xi∈X

∫
xj∈X

qijuiujdada+ β
∫
xi∈X
||x′ − xi||uida

+γ
∫
X
||∇u||2da+ δ

∫
xi∈X
||n′ − ni||uida

s.t. u ∈ [0, 1] ∧
∫
xi∈X

uda = a0,

(4-7)

where α controls the normal error difference, β controls the distance to
the reference point, γ controls the regularity of u and δ the normal coherence
regarding the reference point.

4.2
Discretization

Due that our denoising algorithm works over triangular meshes, we have
two candidates to use as sampled points to represent the manifold: vertex
positions and face centroids. We opted to use face centroids because our
algorithm uses the normal field generated by face normals. A triangular mesh
M can be represented as a set of m vertices V = {v1, . . . , vm} and a set
of n faces F = {f1, . . . , fn}. Each face (triangle) is described by the three
indices of the vertices that conform it. The position of the mesh vertices can
be represented as X = {x1, . . . ,xm} where xi = x(vi) = (x(vi), y(vi), z(vi))T .

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 26

Face centroids can be represented as C = {c1, . . . , cn} where ci = c(fi) =
(x(fi), y(fi), z(fi))T . In a similar way, we can represent face normals as N =
{n1, . . . ,nn} where ni = n(fi) = (nx(fi), ny(fi), nz(fi))T . Given a face f

conformed by the vertices v1, v2 and v3, its corresponding normal can be
obtained by n = (x2 − x1) × (x3 − x1). The direction of the normal will
depend on the order of the vertices (clockwise or counterclockwise).

We will define a patch over the face domain which is represented by the
face centroids. If we define the patch as a crisp subset, we can represent it as
a subset of faces F ′ ⊆ F . In our formulation we define a membership function
over this domain (F), so we can represent it as a vector u = {u1, . . . , un}T

where ui represents the membership value of face fi. Due that our sampled
points are all face centroids and we want to integrate it over all the domain we
need the area that they represent. We assume that the area for each centroid
is the area of the corresponding face. We can represent all areas by a vector
a = {a1, . . . , an}T containing all face areas as entries. Also we can represent
them using a diagonal matrix A such that (aii) = ai.

The first term of the optimization problem has a quadratic form and in
a discrete setting can be rewritten as follows:

n∑
i=1

n∑
j=1

qijuiaiujaj, (4-8)

using a matrix form we have:

uTATQAu, (4-9)

where A is the diagonal matrix containing face areas and Q is an error matrix
containing all normal differences between two faces (or centroids). Each entry
of Q is defined by qij = ||ni − nj||.

The lowerbound and upperbound constraints can be represented by the
vectors 0 and 1, which are n-dimensional vectors containing in all their entries
0s and 1s respectively. The area constraint results in a single linear constraint∑n
i aiui = a0, whose matrix representation is: aTu = a0. Now, considering the

error term and the constraints we have:

min
u

uTATQAu s.t. 0 ≤ u ≤ 1 ∧ aTu = a0. (4-10)

In practice, we restrict the domain of the optimization problem to a
regular neighborhood limited by a given radius. In Figure 4.3 we show an
example of how a membership function looks like. It is important to say that
the example we show in this figure uses all terms defined in the optimization

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 27

Figure 4.3: Left: noisy mesh. Center: color mapping of the distance function,
from minimum distance (blue) to maximum distance (red). Right: color
mapping of membership function u, from 0 (blue) to 1 (red). The domain
of the optimization problem is restricted to the non fully red area in the color
mapping of distance function.

problem and it is restricted to the domain generated by a fixed radius.
According to our formulation, we need a term that penalizes the distance

between any point inside the patch to the reference point. As we mentioned
before, we are working on face centroids, so the distance between two points
is defined by the euclidean distance between the corresponding face centroids.
We can consider a n × n matrix D containing all distances between two pair
of points: dij = ||ci − cj||. The distance term is linear, so if the reference
point index is k we can use the kth column of D in the optimization problem.
For convenience we will call this vector as d. Also, we have to integrate this
distance penalization over the involved area. Let us denote the area of the
reference point as a′ (area of the reference face). This term can be described
by a′∑n

i diaiui, and in a matrix form by dTa′Au. Rewriting the optimization
problem we have:

min
u

uTATQAu + dTa′Au s.t. 0 ≤ u ≤ 1 ∧ aTu = a0. (4-11)

In Figure 4.4 we show an example of a solution using the distance to the
reference point and without using it.

Now, to regularize the solution we have to introduce the squared gradient
norm term. So we have to define a gradient norm operator and its respective
matrix form. To simplify this definition, we approximate it with the following
formulation. We assume that u is constant over all the face (triangle), so the
gradient norm is 0 within it. For this reason, we only need to integrate the
gradient norm over the edges. Adopting the mentioned scheme, for each point
over an edge that shares faces fi and fj, the gradient should be orthogonal

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 28

Figure 4.4: Membership function behavior when including penalization for
distance to the reference point. Reference point in black. Left: membership
function u obtained without using the distance to reference point penalization
term. Right: membership function u obtained using the distance to reference
point penalization term. Both results do not use a regularization (gradient) or
normal coherence term.

Figure 4.5: Gradient possible directions: g1 and g2.

to the edge and has only two possible directions depending on u values (see
Figure 4.5). Due that we have only two possible gradient directions we can
think about it as a 1D gradient, such that the norm of the gradient over an
edge point is equal to |ui − uj|. Following this idea, integrating the gradient
norm over all points of the edge results in the following expression:

l|ui − uj|, (4-12)

where l is the edge length.
With this formulation we can define the gradient norm operator as the

following matrix:

G = (gij) =


∑
fk∈Nf (fi) lik i = j

−lij eij ∈ E
0 otherwise

(4-13)

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 29

Figure 4.6: Membership function behavior when increasing the influence of
regularization term in the optimization problem. From left to right: less
influence to high influence (γ = 0.05, 0.1, 0.2, 0.5, 10, 100).

where Nf (fi) is a set containing edge based neighboring faces of fi, E is the
set of all edges of the mesh, eij is an edge sharing faces fi and fj, and lij is the
lenght of the edge eij. So, the squared gradient norm of u can be calculated as
follows:

||∇u||2 ≈ (Gu)2 = uTGTGu. (4-14)

Rewritting the optimization problem we have:

min
u

uTATQAu + dTa′Au + uTGTGu s.t. 0 ≤ u ≤ 1 ∧ aTu = a0 (4-15)

When giving more influence to this term, we will obtain more regular
solutions, i.e., with a lower variation of u. In Figure 4.6 we can see how the
solution behaves when increasing this influence. It is important to balance the
influence of this term to obtain regular solutions and be careful about too
smooth solutions which are not helpful for our denoising algorithm (solutions
not adapted to the shape).

The coherence term which penalizes the difference between the normal of
a point and the normal of the reference point is linear. So we can discretize it
in the same manner as in the distance to the reference point discretization.
Let us denote the area of the reference point as a′ (area of the reference
face) and the normal of the reference point as n′. We can write this term as
a′

∑n
i ||ni−n′||aiui, and in a matrix form as fTa′Au, where f is a n dimensional

vector containing in ith position the normal difference between the reference
face and the face fi. Rewritting the optimization problem we have:

min
u

uTATQAu + dTa′Au + uTGTGu + fTa′Au s.t. 0 ≤ u ≤ 1 ∧ aTu = a0

(4-16)

In Figure 4.7 we show an example of a solution using the coherence term
and a solution without using it.

Considering the parameters that control the optimization behavior we

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 30

Figure 4.7: Coherence term. Membership function behavior when including
penalization for difference between the normal of each point and the normal
of the reference point. Reference point in black. Left: membership function u
obtained without using the coherence term . Right: membership function u
obtained using the coherence term.

have the following quadratic optimization problem for each face centroid of
the mesh:

min
u
αuTATQAu + βdTa′Au + γuTGTGu + δfTa′Au

s.t. 0 ≤ u ≤ 1 ∧ aTu = a0.
(4-17)

Factorizing, it leads to a typical quadratic optimization problem with
a quadratic term, a linear term, upper bound constraints, lower bound con-
straints, and a single linear equality constraint. In Figure 4.8 we show some
examples of solutions for the noisy block model.

4.3
Implementation

Due that our proposal was developed for triangular meshes, we use a
half-edge based data structure to represent them. This data structure allows
us to iterate over the mesh elements in linear time following the topology. We
precompute some relevant information for the adaptive patch computation:
face areas, face centroids, face normals and all distances between the centroids
of two pair of faces. To the first three items, we can perform the computation
shown in Algorithm 1, where mesh is the input mesh with F as corresponding
faces, areas is an array containing face areas, centroids is an array containing
face centroids, normals is an array containing face normals, and Nv(f) is the
set of vertices which define the face f .

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 31

Figure 4.8: Some examples of solutions for adaptive patches. Reference point
in black. First image: noisy block model.

Algorithm 1: Compute mesh face areas, centroids and normals
Input : mesh
Output: areas, centroids, normals

1 foreach f ∈ F do
2 p1 ← empty()
3 p2 ← empty()
4 p3 ← empty()
5 foreach v ∈ Nv(f) do
6 pi ← x(v)
7 end
8 areas(f)← length(0.5 ∗ ((p2 − p1)× (p2 − p3)))
9 centroids(f)← (p1 + p2 + p3)/3

10 normals(f)← (p2 − p1)× (p3 − p1)
11 end

As we mentioned before we need the distances between two pair of faces
and restrict the domain to a small radius based neighborhood of the reference
point. We adopted a geometrical neighborhood, which follows the topology
neighborhood expansion behavior, until a neighbor fall out of a defined

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 32

euclidean sphere (with a fixed radius and centered at the reference point). The
first level of a topology neighborhood for a single face f is defined as the set of
faces which share any of the vertices of f . Following a breadth-first traversal,
we can expand the neighborhood considering the limits of the Euclidean
sphere, and compute a sparse distance matrix containing the distances between
two pair of faces mutually reached. If the faces were not mutually reached,
the value in the sparse matrix is ∞ (such as 0 value in a typical sparse
matrix). In Algorithm 2 we show how we compute this distance matrix
which is helpful to define the distances and the geometrical neighborhoods.
In the algorithm, mesh is the input mesh, maximumDistance is the radius of
the limiter Euclidean sphere, centroids is a vector containing face centroids,
distanceMatrix is the resulting sparse matrix of distances, and Nf (fi) is the
vertex based face neighborhood (first level topology neighborhood) of face fi.

Algorithm 2: Compute radius based face distances
Input : mesh, maximumDistance, centroids
Output: distanceMatrix

1 fill(distanceMatrix, Inf)
2 foreach fi ∈ F do
3 ci ← centroids(fi)
4 queue← empty()
5 queue.push(fi, 0)
6 distanceMatrix(i, i) = 0
7 mark fi as visited
8 while not queue.isEmpty() do
9 (fc, dc)← queue.front()

10 distanceMatrix(i, c) = dc

11 queue.pop()
12 foreach fj ∈ Nf (fi) do
13 cj ← centroid(fj)
14 if fj not visited and

length(ci − cj) <= maximumDistance then
15 queue.push(fj, length(ci − cj))
16 end
17 mark fj as visited
18 end
19 end
20 end

Now, we have to build the optimization problem based on the subdomain

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 33

defined in the sparse distance matrix. In Algorithm 3 we show how to set up
each term of the formulation and how to call the solver. mesh is the input
mesh, areas is an array containing face areas, centroids is an array containing
face centroids, normals is an array containing face normals, distanceMatrix

is the sparse distance matrix, fk is the face of the reference point, α the
parameter which controls the normal error difference, β the parameter which
controls the distance to the reference point, γ the parameter which controls
the regularity of u, δ the parameter which controls the normal coherence
regarding the reference point, and a0 the area constraint. In the algorithm we
use the following functions: numOfNIV returns the number of non infinity
values of a vector of the sparse distance matrix, facesOfNIV returns the
neighboring faces of a vector of the sparse distance matrix, edgesOfNIV
returns the edges of the neighborhood defined in a vector of the sparse distance
matrix (avoiding boundary edges), normalsOfNIV returns the normals of the
neighborhood defined in a vector of the sparse distance matrix, nonInfV alues
returns the distances of neighboring faces of a vector of the sparse distance
matrix, genSparseV ector returns a sparse vector (with 0 values) based on the
distribution of the correspoding distanceMatrix vector, zeros(m) initialize a
m-dimensional vector containing 0s, ones(m) initialize a m-dimensional vector
containing 1s and zeros(m,n) am×nmatrix containing 0s. To find the solution
of the optimization problem we can use any solver which supports a quadratic
term and the defined constraints.

We can control the number of variables for the optimization problem
including the n nearest faces to the reference point instead of all the neighbor-
hood. The latter is important to avoid optimization problems with a too large
number of variables which can generate a bottleneck in our implementation.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 4. Adaptive Patches 34

Algorithm 3: Compute membership function u
Input : mesh, areas, centroids, normals, distanceMatrix, fk, α,

β, γ, δ, a0

Output: u

1 n← numOfNIV (distanceMatrix(k))
2 Fk ← facesOfNIV (distanceMatrix(k))
3 Ek ← edgesOfNIV (distanceMatrix(k)) // only non-boundary

edges of the subset
4 Nk ← normalsOfNIV (distanceMatrix(k))
5 d← nonInfV alues(distanceMatrix(k))
6 f ← zeros(n)
7 a← zeros(n)
8 Q← zeros(n, n)
9 G← zeros(n, n)

10 foreach fi ∈ Fk do
11 a(i)← areas(i)
12 f(i)← length(Nk(i)− normals(k))
13 perimeter ← 0
14 foreach fj ∈ Fk do
15 Q(i, j)← length(Nk(i)−Nk(j))
16 if eij ∈ Ek and i 6= j then
17 G(i, j)← −length(eij)
18 G(j, i)← −length(eij)
19 perimeter ← perimeter + length(eij)
20 end
21 end
22 G(i, i)← perimeter

23 end
24 A← diag(a)
25 H← αATQA + γGTG
26 bT ← βdTareas(k)A + δfTareas(k)A
27 0← zeros(n)
28 1← ones(n)
29 u = arg minu uTHu + bTu s.t. 0 ≤ u ≤ 1 ∧ aTu = a0 // solves

the optimization problem
30 u← genSparseV ector(u, distanceMatrix(k)) // returns a

sparse vector with the same distribution followed in
distanceMatrix(k)

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

5
Denoising Algorithm

The proposed algorithm is based on a local iterative scheme as well as
many of mesh denoising algorithms. We aim to compute new vertex positions
such that the new mesh suffers less noise while preserving details. It is
important to say that our algorithm follows two main stages: normal field
filtering and vertex updating. The normal field filtering is divided into two
steps: filtering based on adaptive patches and bilateral filtering. Here, we
explain each step of the algorithm independently and how the entire algorithm
works.

5.1
Precomputation

Due that our formulation can be very sensitive to scaling, we introduce
a previous step to normalize vertex positions. First, we compute the average
edge length just iterating over the edge set and accumulating the corresponding
lengths to obtain the average value. In Algorithm 4 we show the pseudocode
to compute it.

Algorithm 4: Average Edge Length
Input : E
Output: avg

1 foreach v ∈ V do
2 avg ← (0,0,0)
3 foreach e ∈ E do
4 avg ← length(e)
5 end
6 avg ← avg/length(E)
7 end

Then, we assume that the average edge length is equal to one unit in
our rescaled space, such that our scale factor is equal to 1/avg, where avg is
the average edge length. In Algorithm 5 we show how to compute the new
positions.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 5. Denoising Algorithm 36

Algorithm 5: Normalization
Input : V ,E
Output: X

1 foreach v ∈ V do
2 avg ← averageEdgeLength(E)
3 scaleFactor ← 1/avg
4 foreach v ∈ V do
5 X(i)← x(v) ∗ scaleFactor
6 end
7 end

Due that it is important to retrieve the mesh in the original scale, we
can use the inverse of the scale factor to compute the positions in our original
space. In Algorithm 6 we show how to do it.

Algorithm 6: Retrieval
Input : V , scaleFactor
Output: X

1 foreach v ∈ V do
2 ret← 1 / scaleFactor
3 foreach v ∈ V do
4 X(i)← x(v) ∗ ret
5 end
6 end

5.2
Adaptive patches computation

In this step, we compute the adaptive patch (defined by a membership
function) for each face of the mesh. So, we first have to compute the areas,
centroids, normals and the distance matrix, to use them in the adaptive
patch computation algorithm. In Algorithm 7 we show how to compute all
membership functions and store them as a membership matrix. The latter is a
sparse matrix containing 0s as null values and the corresponding membership
values as not null values. We follow the same idea used for the distance matrix.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 5. Denoising Algorithm 37

Algorithm 7: Compute adaptive patches
Input : mesh, areas, centroids, normals, distanceMatrix, α, β,

γ, δ
Output: membershipMatrix

1 foreach fi ∈ F do
2 membershipMatrix(i)← adaptivePatch(mesh, areas,

centroids, normals, distanceMatrix, fi, α, β, γ, δ, a0)
3 end

5.3
Adaptive patch based normal filtering

Once we have the membership functions, we use them to filter the
normals. Membership functions work as local kernels in a filtering process,
so we can use the membership values as weights to filter normals. The new
normal of a face f can be computed as follows:

n′ =
∑
fi∈F

niuiai, (5-1)

where ui is the membership value of face fi, ai is the area of face fi, and n′

the new normal which should be normalized. We update the normals in an
iterative manner.

In Algorithm 8 we show the implementation of this step. In the algorithm,
mesh is the input mesh with F as corresponding faces, areas is an array
containing face areas, centroids is an array containing face centroids, normals
is an array containing face normals, membershipMatrix is a sparse matrix
containing all membership functions, iterations is the number of filtering
iterations to be performed, facesOfNZV returns the faces with non zero
membership value, normalsOfNZV returns the normals of faces with non
zero membership value, nonZeroV alues return non zero membership values,
areasOfNZV returns the areas of faces with non zero membership value, and
normalize return the unitary vector of a given vector.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 5. Denoising Algorithm 38

Algorithm 8: Patch Based Filtering
Input : mesh, areas, normals, membershipMatrix, iterations
Output: newNormals

1 for i← 1 to iterations do
2 foreach fi ∈ F do
3 Fi ← facesOfNZV (membershipMatrix(i))
4 Ni ← normalsOfNZV (membershipMatrix(i))
5 u← nonZeroV alues(membershipMatrix(i))
6 a← areasOfNZV (membershipMatrix(i))
7 newNormal← (0, 0, 0)
8 foreach fj ∈ Fi do
9 newNormal ← newNormal +Ni(j) ∗ u(j) ∗ a(j)

10 end
11 newNormals(i)← normalize(newNormal)
12 end
13 normals← newNormals

14 end

5.4
Bilateral normal filtering

After we apply the adaptive patch based filtering we filter the normals
in a bilateral manner following the approach of [29]. The difference is that we
use the neighborhoods and distances defined in our sparse distance matrix. So,
for a face fi we can compute the new normal as follows:

n′i = 1
W (fi)

∑
fj∈F

AjKc(distanceMatrix(i, j))Ks(||nj − ni||)nj. (5-2)

We update these normals in an iterative manner.
We show the implementation of Algorithm 9, where mesh is the input

mesh with F as corresponding faces, areas is an array containing face ar-
eas, centroids is an array containing face centroids, normals is an array con-
taining face normals, membershipMatrix is a sparse matrix containing all
membership functions, iterations is the number of filtering iterations to be
performed, facesOfNZV returns the faces with non zero membership value,
normalsOfNZV returns the normals of faces with non zero membership value,
centroidsOfNZV returns the centroids of faces with non zero membership
value, σc a parameter of the spatial weight gaussian function, σs a parame-
ter of the signal weight gaussian function, nonZeroV alues return non zero

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 5. Denoising Algorithm 39

membership values, areasOfNZV returns the areas of faces with non zero
membership value.

Algorithm 9: Bilateral Normal Filtering
Input : mesh, areas, normals, centroids, distanceMatrix,

iterations, σc, σs
Output: newNormals

1 for i← 1 to iterations do
2 foreach fi ∈ F do
3 Fi ← facesOfNZV (distanceMatrix(i))
4 Ni ← normalsOfNZV (distanceMatrix(i))
5 Ci ← centroidsOfNZV (distanceMatrix(i))
6 u← nonZeroV alues(distanceMatrix(i))
7 a← areasOfNZV (distanceMatrix(i))
8 newNormal← (0, 0, 0)
9 weightSum← 0

10 foreach fj ∈ Fi do
11 spatialDistance← length(centroids(i)− Ci(j))
12 signalDistance← length(normals(i)−Ni(j))
13 spatialWeight← exp(−0.5 ∗ spatialDistance2/σ2

c)
14 signalWeight← exp(−0.5 ∗ signalDistance2/σ2

s)
15 weight← a(j) ∗ spatialWeight ∗ signalWeight

16 newNormal ← newNormal +Ni(j) ∗ weight
17 weightSum← weightSum+ weight

18 end
19 newNormals(i)← newNormal/weightSum

20 end
21 normals← newNormals

22 end

5.5
Vertex updating

With a set of filtered normals now we have to adapt the vertex positions
to fit the involved faces to the new face normals. Taubin proposed in [26] to
use orthogonality between the new normal and the edges of the corresponding
face, such that the vertex updating step minimizes the following energy:

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 5. Denoising Algorithm 40

E(M) =


nf · (xj − xi)

nf · (xk − xj) , ∀f(i, j, k)

nf · (xi − xk)

(5-3)

where nf is the normal of face f and i, j, k its corresponding vertex indices. In
a few words the optimization problem tries to find new vertex positions which
preserve the normal nf . There are different ways to approximate a solution to
this problem. In this work we adopt the approach of [28], which defines the
new vertex position as:

x′i = xi + 1
|Fv(vi)|

∑
fk∈Fv(vi)

n′k(n′k · (ck − xi)) (5-4)

where Fv(vi) represents the set of faces shared by the vertex vi, n′k the new
normal of face fk and ck the centroid of fk. We perform this update iteratively
(vertex iterations).

In Algorithm 10 we show how to implement this step, where mesh is the
input mesh, newNormals is an array containing the desired face normals, and
iterations is the number of iterations to be performed.

Algorithm 10: Vertex updating
Input : mesh, newNormals, iterations
Output: newPositions

1 for i← 1 to iterations do
2 foreach vi ∈ V do
3 position← x(vi) tempPosition← (0, 0, 0)
4 numFaces← 0
5 foreach fj ∈ Nf (vi) do
6 tempPosition← tempPosition+ newNormals(j) ∗

〈newNormals(j), (centroids(j)− position)〉
7 numFaces← numFaces+ 1
8 end
9 newPositions(i)← position+ tempPosition

10 end
11 normals← newNormals

12 end

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 5. Denoising Algorithm 41

5.6
Pipeline

Inspired by real noisy data processing, we proposed this algorithm for
meshes with low noise intensity, similar to the noise produced in range scans
or medical data reconstructions. In the case that the intensity of the noise
is too high, we previously filter the mesh using a few iterations of bilateral
filtering of normals with vertex updating [29]. We opted to prefilter the mesh
in these cases because the adaptive patch computation can compute not desired
solutions that can introduce artifacts when performing the filtering step. The
latter happens due that the high normal variation in the input mesh turns
unstable the optimization.

The proposed denoising algorithm works as follows. We receive as input
a noisy mesh and return as output a denoised mesh. Then, we have to
compute the information that normal filters need, such as areas, centroids
and normals (precomputation). Using the computed centroids we obtain the
distances between them. With this information, we compute the adaptive
patches that we are going to use in the filtering process (adaptive patches
computation). We filter the normal field using the adaptive patch based
scheme, performing a number of iterations (adaptive patch based normal
filtering). Then, we filter the new normal field using a bilateral scheme
in an iterative manner (bilateral normal filtering). With these normals we
perform a vertex updating step with a given number of iterations. All of these
steps can be executed iteratively too (external iterations). We have several
parameters involved here: the number of external iterations (iterations), the
number of patch based filtering iterations (patchF ilteringIterations), the
number of bilateral normal filtering iterations (bilateralNormalIterations),
the number of vertex updating iterations (vertexIterations), the maximum
distance considered in the distance matrix (maxDistance), the maximum
number of variables considered for the optimization problems (maxV ars), the
parameters of adaptive patch computation (α, β, γ and δ) and the parameters
of the kernels in the bilateral normal filtering (σc and σs). In Figure 5.1 we
show the pipeline of the algorithm and in Algorithm 11 the pseudocode.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 5. Denoising Algorithm 42

Adaptive
Patches
Compu-
tation

Normal
Filtering

Vertex
Updating

Noisy Mesh Denoised Mesh

Adaptive
Patch Based

Bilateral
Normal

external iterations

Figure 5.1: Pipeline of the proposed denoising algorithm.

Algorithm 11: Denoising
Input : mesh, iterations, patchF ilteringIterations,

bilateralNormalIterations, vertexIterations,
maxDistance, maxV ars, α, β, γ, δ, σc, σs

Output: positions

1 for i← 1 to iterations do
2 (areas, centroids, normals) = precomputation(mesh)
3 distanceMatrix = computeDistances(mesh, centroids,

maxDistance,maxV ars)
4 membershipMatrix = computeAdaptivePatches(mesh, areas,

centroids, normals, distanceMatrix, α, β, γ, δ)
5 normals← patchBasedF iltering(mesh, areas, normals,

membershipMatrix, patchF ilteringIterations)
6 normals← bilateralNormalF iltering(mesh, areas, normals,

centroids, distanceMatrix, bilateralNormalIterations, σc, σs)
7 positions← vertexUpdating(mesh, normals, vertexIterations)
8 end

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

6
Denoising algorithm evaluation

This chapter discusses different strategies to evaluate visually and nu-
merically the results of a denoising algorithm.

6.1
Visual Comparison

We can evaluate the results of denoising algorithms with different visu-
alization methods. In this work, we will use three. The first one is a simple
rendering of the mesh using flat shading. The color of the faces in this mode is
helpful for noise identification. The second one is a rendering using mean cur-
vature values as vertex colors, in an RGB scale from red to blue. The curvature
is a good feature to compare the smoothness of two meshes. Also, it is related
to a metric explained in the next section. And the last one is a normal color
mapping over the mesh. This approach works like the flat shading but with
more differentiation. All the visualization methods proposed here were used in
several works about mesh smoothing. In Figure 6.1 we show an example.

6.2
Metrics

Geometry processing algorithms are usually evaluated measuring the
similarity between the resulting output and the desired output (ground truth).
In the case of 2-manifolds, which can be represented as meshes, several
similarity metrics were proposed in the literature [37, 38, 39, 40, 41, 27,

Figure 6.1: Visualization methods. From left to right: Flat shading, curvature
color mapping and normal mapping.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 6. Denoising algorithm evaluation 44

42]. Most of them are related to measuring the 3D distance between the
manifolds, such as the computation of the Hausdorff distance. Another family
of metrics measures the difference regarding intrinsic or extrinsic properties
of the manifold (e.g., curvature, normals, etc.). In the next section, we will
explain some of these metrics which are relevant to the specific problem of
mesh denoising. The classification of the metrics is shown in Table 6.1.

Type Metrics

Distance
based

Mean distance error [37]
Quadric error metric [43]
L2 vertex-based mesh-to-mesh error metric [40, 41]

Normal based
Tangential Error Metric [39]
L2 normal-based mesh-to-mesh error metric [40, 41]
Mean Square Angular Error [38, 27]

Curvature based Discrete curvature error metric [39]

Table 6.1: Classification of metrics

In this section, we will denote the elements of the evaluated result with
an apostrophe (′) and the elements of the desired result without it. We use
M to represent a mesh conformed by a set of vertices V and a set of faces F .
The coordinates of elements of V are represented as X. When we denote the
area of a vertex, it is equal to the barycentric area, and when we denote the
area of a face it is equal to the triangle area. The centroid of a face is denoted
by c and the normal as n. Nf (v) represents the neighboring faces of vertex
v, Nv(v) represents the neighboring vertices of vertex v, and Nf (f) represents
the neighboring faces of face f .

6.2.1
Mean distance error metric:

Let us denote by d(x1, x2) the euclidean distance between x1 and x2. The
minimum distance between a point x and a 2-manifold S is defined as follows:

e(x, S) = min
x′∈S

d(x, x′). (6-1)

The Hausdorff distance measures how far two manifolds are from each other.
Given two manifolds S ′ and S, the Hausdorff distance (dH) between them is
defined as:

dH(S1, S2) = max(E(S1, S2), E(S2, S1)) (6-2)

E(S1, S2) = max
p∈S1

(e(p, S2)). (6-3)

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 6. Denoising algorithm evaluation 45

Using a one-side distance, i.e. d(S1, S2) = E(S1, S2), Cignoni et al.
introduced and implemented the mean distance for triangular meshes [37].
It uses regular sampled distances to compute a total distance between them.
In the continuous setting, the mean distance is defined as follows:

EM(S1, S2) = 1
area(S1)

∫
S1
e(p, S2)ds. (6-4)

Adapting it to triangular meshes and using our notation:

EM(M ′,M) = 1∑
f ′

k
∈F ′ area(f ′k)

∑
v′

i∈V ′

area(v′i)dist(x′i, T), (6-5)

where T ∈ F is the nearest triangle to the point x′i

6.2.2
Quadric error metric:

The quadric error metric was introduced by Garland and Heckbert in
[43], and then used in [39] to define another metric. Given a point x′ of the
resulting mesh M ′, the quadric which represents the distance between it and
a point x (point of vertex v) of the desired mesh M , is computed as follows:

Qv(x′) =
∑

f∈Nf (v)
area(f)Qf (x′), (6-6)

where Qf (x′) measures the squared distance between the point x′ and the
plane generated by the face f . This quadric Qf (x′) can be arranged by:

Qf (x′) = (nTx′ + d)2, (6-7)

where n is the unit normal at face f , d = −nTxk and xk is any point defined
on f . In this work, we compute the mean quadric error, using vertex areas as
weights:

QEv = 1∑
f ′

k
∈F ′ area(f ′k)

∑
v′

i∈V ′

area(v′i)Qv(x′i), (6-8)

where v ∈ V is the nearest vertex to x′i.

6.2.3
Tangential error metric:

This metric was introduced in [39]. It measures the magnitude of a
difference vector between two normals. In the case of mesh smoothing, these

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 6. Denoising algorithm evaluation 46

normals correspond to the resulting vertex and desired vertex respectively. The
unit normal of a vertex can be approximated as a weighted sum of neighboring
faces normals:

ni =
∑

fj∈Nf (vi)
wjnj. (6-9)

The weights wj usually are the face areas, i.e. area(fj). Lets assume that
ni is normalized (i.e. ni = ni/||ni||). The error between the resulting normal
n′ and the desired normal n which is the normal of v, is defined as follows:

T v(n′) = ||n− n′||, (6-10)

where n is the normal of vertex v ∈ V . Considering all the mesh, we can
compute the mean tangential error metric:

TEv = 1∑
f ′

k
∈F ′ area(f ′k)

∑
v′

i∈V ′

area(v′i)T v(n′i), (6-11)

where v ∈ V is the nearest vertex to v′i.

6.2.4
L2 vertex-based mesh-to-mesh error metric:

This metric measures the L2 average distance between each vertex of the
resulting mesh and the nearest triangle of the desired mesh, using barycentric
area as weight and total area as normalization factor [40, 41]. It is defined as
follows:

Ev =
√√√√ 1

3 ∑
f ′

k
∈F ′ area(f ′k)

∑
v′

i∈V ′

∑
f ′

j∈Nf (v′
i)
area(f ′j)dist(x′i, T)2, (6-12)

where T ∈ F is the nearest triangle to the point x′i and dist measures the L2

distance between them. This expression can also be written in the following
form:

Ev =
√√√√ 1∑

f ′
k
∈F ′ area(f ′k)

∑
v′

i∈V ′

area(v′i)dist(x′i, T)2. (6-13)

6.2.5
L2 normal-based mesh-to-mesh error metric:

It measures deviations between the corresponding face (triangle) normals
of two meshes M and M ′ [40, 41]. Given a face f ′i ∈ F ′ with normal ni, and

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 6. Denoising algorithm evaluation 47

its corresponding nearest face f ∈ F with normal n, the L2 normal-based
mesh-to-mesh error metric is defined as:

En =
√√√√ 1∑

f ′
k
∈F ′ area(f ′k)

∑
f ′

i∈F ′

area(f ′i)||n− n′i||2. (6-14)

6.2.6
Mean square angular error metric:

The Mean Square Angular Error (MSAE) is a normal error metric
which measures the angle difference between the resulting face normal and
the corresponding desired normal [38, 27]:

MSAE = E[∠(n,n′)], (6-15)

where n is the corresponding desired normal of n′. It can be computed as
follows:

MSAE = 1
n′f

∑
f ′

i∈F ′

acos(nTn′i), (6-16)

where n′f is the number of faces of the resulting mesh M ′, and n is the normal
of the nearest face f ∈ F to face f ′i ∈ F ′.

6.2.7
Discrete curvature error metric:

Kim et al. used curvature to define a robust metric for evaluation of
mesh simpilification algorithms [39]. Their approach uses gaussian curvature,
mean curvature or principal curvatures to define curvature on each vertex of
a triangle mesh. Assuming that we have a curvature mapping for each vertex
c : V → R, the discrete curvature error metric for a resulting vertex v′ ∈ V ′

regarding its corresponding desired vertex v ∈ V (nearest vertex in M), is
defined as follows:

Cv(v′) = ||c(v)− c(v′)||. (6-17)

The mean discrete curvature error can be computed by:

CEv = 1∑
f ′

k
∈F ′ area(f ′k)

∑
v′

i∈V ′

area(v′i)Cv(v′i), (6-18)

where v ∈ V is the nearest vertex to v′ ∈ V ′. Based on [44], the discretization

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 6. Denoising algorithm evaluation 48

of curvatures are described in the following sections.
In our experiments, we only use the mean curvature to define the

curvature of a mesh. The mean curvature is defined by κH = (κ1 +κ2)/2. Using
the Laplace-Beltrami operator based on cotangent weights, mean curvature can
be discretized as:

K(v) = 1
2area(v)

∑
vi∈Nv(v)

(cotαi + cot βi)(x− xi), (6-19)

κH(v) = ||K(v)||
2 , (6-20)

where αi and βi are the opposite angles to the edge which connects vertex v
and vi.

6.2.8
Area difference and volume difference:

To measure area and volume preservation, we compute the difference of
area and volume between the resulting mesh M ′ and the desired mesh M . The
area of a mesh is calculated as the sum of all faces of a mesh: ∑

f∈F area(f).
The volume of a mesh is computed following the approach of Zhang and Chen
[45], where the total mesh volume is computed as the sum of the signed volumes
of tetrahedrons formed by the joint of each triangle and the origin. Given a
triangle f with points A = (x1, y1, z1), B = (x2, y2, z2) and C = (x3, y3, z3),
whose orientation for normal computation is ACB, the signed volume of the
corresponding tetrahedron is computed as:

TetV ol(f) = 1
6(−x3y2z1 + x2y3z1 + x3y1z2 − x1y3z2 − x2y1z3 + x1y2z3).

(6-21)

The total mesh volume is defined as:

V ol(M)
∑
fi∈F

TetV ol(fi). (6-22)

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

7
Results

To evaluate the proposed method, this chapter presents some visual and
numerical results using synthetic and real data.

7.1
Implementation details

All of our code was implemented using C++ programming language. To
reduce the time complexity and memory space consumption (space complexity)
for mesh data representation, we need to use efficient data structures. For this
reason, we used an implementation of a half-edge data structure contained in
OpenMesh library [46]. Neighbors, areas, normals, centroids, and angles can be
computed navigating over the mesh using iterators and circulators of this data
structure. To solve the quadratic optimization problems we used the CPLEX
library1 which supports all constraints that we define. Also, we developed an
interface to interact with patch behavior using Qt library and OpenGL. This
interface was useful to formulate the optimization problem and to find suitable
parameters for our experiments.

In the case of metrics implementation, we used a KD-Tree data structure
for nearest neighbor search (i.e., nanoflann [47]). The problem of finding the
nearest vertex of a target vertex, it can be obtained using a simple nearest
neighbor query in the KD-Tree. The problem is more complicated when finding
the nearest triangle to a target vertex or the nearest triangle to a target
triangle. In both cases, we first select a set of candidate triangles using a
range query and then use brute force to select the nearest triangle of this set.
Given a set A = X ∪ C, where C is a set containing all face centroids, the set
of candidate triangles (faces) Fc is defined as:

Fc = {f ∈ F |f ⊃ b,b ∈ B},

B = {a ∈ A|dist(a,p) ≤ r},

where p is the target point, r is the tolerance radius, and f ⊃ b denotes that
face f contains the point b. In other words, the candidate faces are all faces

1https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 50

containing points of A which are within the tolerance radius. The tolerance
radius we use is equal to two times the average edge length. In the case of the
nearest triangle to a vertex, we use the coordinate of the target vertex as p. In
the case of the nearest triangle to a triangle, we use the centroid of the target
triangle as p. To compute the distance between a point and a triangle, we just
project the point on the triangle plane and find the nearest edge or vertex
regarding the projection. In the case of the triangle to triangle distance, we
use the same method of point to triangle distance, using the centroid as point.
In [48], the authors describe the point to triangle distance in more detail.

All our experiments were performed on an Intel (R) Core (TM) i7-
4770 CPU @ 3.40GHz processor with 16,0 GB RAM and Windows 8.1 64-bit
operating system.

7.2
Datasets

All the meshes used in these experiments were obtained from the
AIM@SHAPE Shape Repository [2], The Stanford 3D Scanning Repository2

and the SHREC15: Range Scans based 3D Shape Retrieval [49]. Most of the
images were generated using MeshLab3. For some algorithms, we used the im-
plementation of [31] provided in their repository4. The parameters of other
algorithm for our test cases were based on the parameters provided in the cor-
responding work. In the case that the test case was not used in a work, we
adjust manually the parameters following the recommendations or adopting
similar parameters used for similar shapes.

7.3
Algorithm parameters

Our method was compared with the following anisotropic denoising
algorithms: Bilateral mesh denoising [23], Non-iterative, feature-preserving
mesh smoothing [24], Fast and effective feature-preserving mesh denoising
[28], Bilateral normal filtering for mesh denoising [29], Mesh denoising via L0

minimization [22], Guided mesh normal filtering [31], Mesh denoising based
on normal voting tensor and binary optimization [33], and Robust and High
Fidelity Mesh Denoising [34]. The parameters used for this comparison are
detailed in Tables 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7 and 7.8 respectively,
where ||e|| is the average edge length. For parameter explanation, please read
the corresponding reference or the supplementary material provided in [31].

2http://graphics.stanford.edu/data/3Dscanrep/
3http://www.meshlab.net/
4https://github.com/bldeng/GuidedDenoising

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 51

Table 7.1: Parameters used for Bilateral mesh denoising [23].

mesh iterations
Block 15
Devil 12
Fandisk 10
Joint 15
Balljoint 10
Gargoyle 20
Building 20
Keyboard 20

Table 7.2: Parameters used for Non-iterative, feature-preserving mesh smooth-
ing [24].

mesh σf σg
Block 1.3||e|| 1.2||e||
Devil 1.4||e|| 1.6||e||
Fandisk 1.3||e|| 1.4||e||
Joint 1.3||e|| 1.2||e||
Balljoint 1.0||e|| 1.0||e||
Gargoyle 1.0||e|| 1.0||e||
Building 1.0||e|| 1.0||e||
Keyboard 1.0||e|| 1.0||e||

Table 7.3: Parameters used for Fast and effective feature-preserving mesh
denoising [28]

mesh T
normal itera-
tions

vertex itera-
tions

Block 0.4 30 20
Devil 0.5 8 8
Fandisk 0.55 20 40
Joint 0.4 30 20
Balljoint 0.9 10 10
Gargoyle 0.5 10 10
Building 0.5 5 10
Keyboard 0.5 5 10

The parameters used for our proposal are described in Table 7.9. We use
2||e|| as maximum distance and 100 as the maximum number of variables for
the optimization problems (with the exception that sharpSphere uses 20 as
the maximum number of variables, and dragon do not use a specific maximum
distance or maximum number of variables). The area constraint we selected
is equal to 20% of the total area of the neighborhood delimited by maximum
distance and the maximum number of variables. The bilateral normal filtering
step is executed with σs = 0.35 and σc as the average distance between face

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 52

Table 7.4: Parameters used for Bilateral normal filtering for mesh denoising
[29].

mesh σs
normal itera-
tions

vertex itera-
tions

Block 0.35 45 20
Devil 0.45 6 6
Fandisk 0.35 25 20
Joint 0.35 45 20
Balljoint 0.7 10 10
Gargoyle 0.7 10 10
Building 0.7 5 10
Keyboard 0.7 5 10

Table 7.5: Parameters used for Mesh denoising via L0 minimization [22].

mesh λ α0 β0 µα µβ βmax
Block 0.55 0.00389 0.001 0.5 1.414 1000
Devil 0.01 0.00149 0.001 0.5 1.414 1000
Fandisk 0.01 0.00346 0.001 0.5 1.414 1000
Joint 0.55 0.00389 0.001 0.5 1.414 1000
Balljoint 0.1 0.0001 0.001 0.5 1.414 1000
Gargoyle 0.1 0.0001 0.001 0.5 1.414 1000
Building 0.01 0.0001 0.001 0.5 1.414 1000
Keyboard 0.1 0.0001 0.001 0.5 1.414 1000

Table 7.6: Parameters used for Guided mesh normal filtering [31].

mesh σc σs
normal itera-
tions

vertex itera-
tions

Block 2||e|| 0.3 40 30
Devil 2||e|| 0.35 6 6
Fandisk 2||e|| 0.25 25 20
Joint 2||e|| 0.3 40 30
Balljoint 2||e|| 0.7 10 10
Gargoyle 2||e|| 0.7 10 10
Building 2||e|| 0.7 5 10
Keyboard 2||e|| 0.7 5 10

centroids.

7.4
Initial Comparison

As a first experiment, working on the sharpSphere mesh, we want to show
the behavior of our algorithm compared to the uniform Laplacian smoothing.
Uniform Laplacian smoothing is an isotropic denoising method (does not
preserve details and produces mesh shrinkage). We corrupted the mesh with

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 53

Table 7.7: Parameters used for Mesh denoising based on normal voting tensor
and binary optimization [33].

mesh radius τ iterations
Devil 0.1 1.0 30
Fandisk 0.3 0.2 50
Joint 0.3 0.05 60
Balljoint ND ND ND
Gargoyle ND ND ND

Table 7.8: Parameters used for Robust and High Fidelity Mesh Denoising [34].

mesh σs λI iterations
Fandisk 0.55 0.2 100
Joint 1 0.2 150

Table 7.9: Parameters used for our proposal.

mesh α β γ δ
external
itera-
tions

patch
based
itera-
tions

bilateral
itera-
tions

vertex
itera-
tions

SharpSphere 1.0 2.0 0.8 8 3 3 5 10
Dragon 1.0 1.0 0.2 10 2 3 0 10
Block 1.0 1.0 0.1 30 3 5 2 10
Devil 1.0 1.0 0.01 40 1 5 2 10
Fandisk 1.0 1.0 0.2 10 3 5 2 10
Joint 1.0 2.0 0.3 30 3 6 2 10
Balljoint 1.0 1.0 0.1 5 2 3 2 10
Gargoyle 1.0 1.0 0.2 10 2 5 1 10
Building 1.0 1.0 0.2 20 2 3 1 10
Keyboard 1.0 1.0 0.2 20 2 3 1 10

artificial noise (i.e., Gaussian noise following normal direction and σ equal to
0.1 times the average edge length), and then performed the uniform Laplacian
smoothing and our method over it. In the case of our method, we tested it
using the bilateral normal filtering step and without using it. In Figure 7.1 we
show the corresponding results and in Figure 7.2 the corresponding curvature
mapping.

In Table 7.10 we show the error between the original mesh (not corrupted)
and the resulting one, using all metrics presented before. The label “ours”
represents our method without bilateral filtering step and the label “ours (*)”
our method using it.

As we can see, our algorithm successfully removes the noise while
preserving details without introducing too much deformation. The resulting

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 54

Figure 7.1: An example using our denoising algorithm. First row from left to
right: original mesh and noisy mesh. Second row from left to right: resulting
mesh using uniform Laplacian smoothing, resulting mesh of our proposal
wihout using the bilateral normal filtering step, and resulting mesh of our
proposal using it.

shape is very near to the original one. The Laplacian smoothing does not
preserve details, introduces deformation and suffers shrinkage. The latter is
based on the visualization of the resulting mesh and the high error for each
metric. The resulting mesh which uses the bilateral normal filtering step looks
more smooth than the other, but it is worse regarding the quantitative analysis
(metrics). Depending on the application we can choose the behavior of our
proposed algorithm.

Table 7.10: Results for sharpSphere mesh

Mean
Vertex
Dis-
tance

L2
Vertex
Based

Mean
Quadric MSAE

L2 Nor-
mal
Based

Tangential

Mean
Discrete
Curva-
ture

Area
Error

Volume
Error

Uniform 0.010836 0.022663 0.019531 8.975630 0.059854 0.086991 0.192965 0.120947 0.029940
Ours 0.000962 0.001673 0.001288 6.572030 0.012719 0.011032 0.076498 0.005788 0.000364
Ours (*) 0.001548 0.003932 0.001643 9.372330 0.036556 0.016079 0.085570 0.009088 0.001526

In [31] the authors proposed the computation of consistent patches to
obtain a guidance normal. Due that our proposal was inspired by this idea we
can compare these guidance normals and the average normals weighted by our
patch membership functions. So, using the same corrupted mesh, we computed
the corresponding normals and compared them using the MSAE and the L2
Normal Based metric. In Table 7.11 we show these errors.

Our estimated normal field have a lower error than the guidance normal
field of [31]. To show it visually, we performed a vertex updating step using

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 55

Figure 7.2: An example using our denoising algorithm (showing curvature
mapping). First row from left to right: original mesh and noisy mesh. Second
row from left to right: resulting mesh using uniform Laplacian smoothing,
resulting mesh of our proposal wihout using the bilateral normal filtering step,
and resulting mesh of our proposal using it.

Table 7.11: Errors of estimated normals

MSAE L2 Normal
Based

Guidance normals [31] 8.34329 0.01603
Our normals 5.90240 0.00816

these normals and 20 as the number of iterations. In Figure 7.3 we show the
generated meshes.

Based on the latter experiment, we can say that our estimated normal
field is better than the guidance normal field estimated in [31]. Our approach
generates less flat regions when the triangulation is irregular. Their approach
generate large flat regions because their patch selection depends on regular
topology neighborhoods.

To have a notion of the execution time of each step of our denoising
algorithm, in Table 7.12 we show the timing values for the example presented in
this section. We show the computation of the distance matrix, the computation
of the adaptive patches, the execution of patch-based normal filtering and
bilateral normal filtering, and the vertex updating step. As we can see, the
bottleneck of our algorithm is in the computation of adaptive patches, due
that quadratic optimization problems have high computational cost.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 56

Figure 7.3: Results after 20 iterations of vertex updating using estimated
normals. Left: Guided normals using [31]. Right: Average normal weighted
by patch membership function.

Table 7.12: Time for each step of the algorithm performed over sharpSphere
mesh (10443 vertices and 20882 faces). Total time equal to 51.472.

Step time percentage
Distance computation 1.379s 7%

Adaptive patches 15.676s 84%
Normal filtering 1.524s 8%
Vertex updating 0.023s 1%

7.5
Comparison with other algorithms using artificial noise

A common way to measure the effectiveness of a mesh denoising algo-
rithm is by generating synthetic data. We add artificial noise to a clean mesh,
perform a denoising algorithm over it, and then measure the similarity between
the denoised mesh and the clean mesh. When having a noisy mesh as input
without an optimal version (clean mesh) to compare it (e.g., 3D scan, isosurface
from medical volume, etc.), the results can only be evaluated visually.

Some metrics presented in this work were designed for error measurement
of remeshing algorithms, but are useful for denoising algorithms too. In fact,
several works about mesh denoising use them for comparison purposes. In
general, all metrics measure the similarity between two meshes regarding a
specific feature (coordinates, normal field or curvature).

Distance-based metrics are the most commonly used, for this reason, we
use different approaches measuring mesh-to-mesh distance; These approaches
use sampled distances based on vertex-to-vertex distance or vertex-to-face
distance. This will help us to measure how far, in a spatial sense, is the denoised
mesh to the original (clean mesh).

The normal field of a mesh describes the shape of the mesh on the
Gaussian sphere (first-order behavior). Comparing this mapping is helpful to

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 57

define how similar is a shape to another. So, this kind of metrics measures
how similar are two meshes regarding their shapes. In the context of mesh
denoising, two shapes can be spatially very close but far regarding the normal
field.

The curvature is a feature which describes the variation of the normal
field (second-order behavior). In that sense, curvature will give us a higher
order feature to compare two meshes. Following the idea of [39], it will give us
a more robust comparison.

Area difference and volume difference are helpful to measure robustness
regarding area and volume preservation, and consequently to have the notion
if the mesh was shrunken or deformed too much.

We will present four test cases to compare the results visually (flat
shading, curvature mapping, and normal mapping) and using all the exposed
metrics.

7.5.1
Block mesh

This is an irregular mesh presenting sharp features with large flat
and rounded areas. We corrupted the mesh with artificial Gaussian noise
following vertex normal directions. The standard deviation σ used for the
Gaussian distribution is equal to 0.1l, where l is the average edge length of
the corresponding mesh.

In Figure 7.5, we show the results obtained through this mesh. As we
can see, the results of [23] and [24] are not good; their approaches deform too
much the shape. [31] introduces an area with wrong normal direction in some
corners of the shape (See Figure 7.4). [28] and [29] generate smooth meshes
with sharp feature preservation. But the original mesh has small flat regions
in rounded areas, it is not totally smooth there (see the curvature mapping for
better understanding). Also, these approaches are very sensible to triangulation
irregularity. [22] tries to preserve these small flat regions but introducing too
large ones, resulting in undesired artifacts. Our method generates a better
result regarding the others, because we preserve sharp features and most of
the flat small regions, while denoising the entire shape. The patterns generated
by the curvature mapping are close to the original model than the other
approaches.

In Table 7.13 we show the errors for all metrics evaluating each algorithm.
Each row represents an algorithm and each column a metric. As we can see, our
proposal has the minimum error in distance-based metrics. So, our resulting
mesh is closer to the original than the results obtained from other algorithms.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 58

Figure 7.4: Wrong normal direction in the corner of the resulting mesh using
the Guided mesh normal filtering. Left: resulting mesh of [31]. Right: our result.

In the case of normal based metrics, we have the minimum error for metrics
that integrate the error over the corresponding area. MSAE is less robust than
the others in this sense. Our curvature error is very similar to the lowest, and
we can say that our method has a good preservation of area and volume in
this case.

Table 7.13: Results for block mesh
Mean
Vertex
Dis-
tance

L2
Vertex
Based

Mean
Quadric MSAE

L2 Nor-
mal
Based

Tangential

Mean
Discrete
Curva-
ture

Area
Error

Volume
Error

[23] 0.030743 0.052414 0.042734 9.477970 0.035246 0.043968 0.109589 0.103718 0.045399
[24] 0.002910 0.004648 0.004019 5.537650 0.011929 0.004498 0.074113 0.011371 0.009549
[28] 0.002159 0.011088 0.002844 2.172140 0.004683 0.002574 0.029590 0.003375 0.000300
[29] 0.001960 0.010192 0.002583 2.088220 0.004298 0.002258 0.029038 0.003223 0.000210
[22] 0.012640 0.020213 0.019013 6.127930 0.024389 0.021592 0.109556 0.040437 0.024038
[31] 0.001249 0.004180 0.001698 1.845830 0.002676 0.001282 0.028262 0.002161 0.000849
Ours 0.000565 0.001280 0.000743 1.906880 0.002001 0.000741 0.029958 0.000186 0.000433

7.5.2
Devil mesh

This mesh presents different kind of features with irregular triangulation.
We corrupted this mesh with artificial Gaussian noise following random
directions. The standard deviation σ used for the Gaussian distribution is
equal to 0.15l, where l is the average edge length of the corresponding mesh.
To initialize the data for our algorithm, we performed one iteration of bilateral
normal filtering and seven iterations of vertex updating to smooth high-
intensity noise.

In Figure 7.6, we show the results obtained for this mesh. [23] and [24],
deformed too much the original mesh. [22] introduces too many flat regions.
[33] better preserve thin regions like the horns and teeth but does not totally
remove the noise (see the noise near the teeth). [28] and [29] generate a smooth
result near to the original, but they suffer shrinkage in the mentioned thin
regions (due that these regions have large triangles). Also, these methods do
not preserve too many sharp features near the eyes. [31] generates large flat
regions due to the irregularity of the triangulation. We think that our method

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 59

generates a more balanced result regarding the mentioned problems of other
methods.

In Table 7.14 we show the errors for all metrics evaluating each algorithm.
Each row represents an algorithm and each column a metric. We can see that
our result is not the best (minimum) in any metric but in most cases is close
to it. Due that we opted to generate a balanced result regarding some features,
the numerical results are balanced too. The errors of [29] are very low because
the input shape has large smooth regions which is a characteristic of their
resulting meshes.

Table 7.14: Results for devil mesh
Mean
Vertex
Dis-
tance

L2
Vertex
Based

Mean
Quadric MSAE

L2 Nor-
mal
Based

Tangential

Mean
Discrete
Curva-
ture

Area
Error

Volume
Error

[23] 0.061277 0.110973 0.236219 19.697900 0.055170 0.047678 0.090284 0.051443 0.045645
[24] 0.001293 0.002800 0.002289 21.237300 0.021589 0.013026 0.087991 0.000364 0.002621
[28] 0.001439 0.002880 0.003540 14.043200 0.012654 0.008911 0.055849 0.007806 0.000582
[29] 0.000713 0.001537 0.001824 12.171400 0.009654 0.005781 0.054567 0.005617 0.000425
[22] 0.002531 0.004560 0.007108 13.830100 0.017459 0.010314 0.114528 0.001686 0.001786
[31] 0.001623 0.003079 0.005048 10.454200 0.015233 0.008054 0.094668 0.002629 0.001326
[33] 0.000737 0.001548 0.001493 16.880800 0.014129 0.006974 0.079952 0.000209 0.002375
Ours 0.000987 0.001902 0.002686 11.574200 0.010632 0.006796 0.075106 0.003970 0.000722

7.5.3
Fandisk mesh

This mesh presents sharp features with flat and rounded areas. We
corrupted the mesh with artificial Gaussian noise following random directions.
The standard deviation σ used for the Gaussian distribution is equal to 0.3l,
where l is the average edge length of the corresponding mesh. To initialize
the data for our algorithm, we performed three iterations of bilateral normal
filtering and seven iterations of vertex updating to smooth high-intensity noise.

In Figure 7.7, we show the results obtained for this mesh. [23] does
not remove all the noise and introduces some not desired artifacts. [28], [29],
[33] and [34] blurred too much the edges with low dihedral angle between
involved faces. [22] better preserve these features but blurring them a little
and introducing flat regions. [31] has a correct preservation of these edges
when the dihedral angle is high enough. Our result is the most similar to the
original mesh because we preserved better these edges without introducing not
desired flat regions. If we see the curvature mapping of the original mesh, these
challenging edges are in thin regions with high curvature (positive or negative),
and our result generates the most similar result in this sense.

In Table 7.15 we show the errors for all metrics evaluating each algorithm.
Each row represents an algorithm and each column a metric. Regarding the
distance based metrics, we have not the minimum error in all of them, but

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 60

all errors are close to it. In the case of normal based metrics we have the
minimum error for all of them, so, our algorithm better preserves the shape
of the original mesh. Our curvature error is not the minimum because we
introduce some small flat regions with curvature 0. We preserve better the
area and volume than the other algorithms.

Table 7.15: Results for fandisk mesh
Mean
Vertex
Dis-
tance

L2
Vertex
Based

Mean
Quadric MSAE

L2 Nor-
mal
Based

Tangential

Mean
Discrete
Curva-
ture

Area
Error

Volume
Error

[23] 0.000330 0.000671 0.000010 9.821170 0.041399 0.038493 0.598858 0.073705 0.016398
[24] 0.000238 0.000433 0.000007 9.984250 0.043886 0.016946 0.780315 0.007715 0.008510
[28] 0.000128 0.000364 0.000004 4.188150 0.014546 0.017077 0.138360 0.016164 0.000733
[29] 0.000081 0.000213 0.000003 3.377610 0.008664 0.011561 0.131381 0.012807 0.001007
[22] 0.000355 0.000630 0.000011 6.979130 0.028042 0.029579 0.197488 0.056925 0.017092
[31] 0.000046 0.000117 0.000002 2.627640 0.007719 0.006241 0.113402 0.007576 0.000049
[33] 0.000072 0.000191 0.000002 3.289700 0.009118 0.009494 0.122689 0.008392 0.001656
[34] 0.000066 0.000185 0.000002 2.493830 0.006311 0.004888 0.097299 0.010766 0.000840
Ours 0.000048 0.000156 0.000001 2.351650 0.005791 0.004378 0.116578 0.004723 0.000813

7.5.4
Joint mesh

As in the case of block mesh, this one has an irregular triangulation
and presents sharp features with large flat and rounded areas. We corrupted
the mesh with artificial Gaussian noise following vertex normal directions. The
standard deviation σ used for the Gaussian distribution is equal to 0.35l, where
l is the average edge length of the corresponding mesh. To initialize the data
for our algorithm, we performed three iterations of bilateral normal filtering
and seven iterations of vertex updating to smooth high-intensity noise.

In Figure 7.8, we show the results obtained for this mesh. [23] does not
remove all the noise and introduces some not desired artifacts. [28], [29] and
[22] introduce some artifacts in sharp regions. [31] generates flat regions in
rounded areas deforming the holes of the volume represented by the shape.
The results of [33] and [34] are very similar to the original mesh. Our algorithm
generates a shape, preserving the sharp features and rounded areas but not
sufficiently smooth to reach the original shape smoothness. Maybe performing
more bilateral filtering iterations we can obtain a more similar result.

In Table 7.16 we show the errors for all metrics evaluating each algorithm.
Each row represents an algorithm and each column a metric. We have better
preservation of area and volume, and better results in L2 distance-based
metrics. In fact, the best results are spread between our proposal, [33], and
[34].

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 61

Table 7.16: Results for joint mesh

Mean
Vertex
Dis-
tance

L2
Vertex
Based

Mean
Quadric MSAE

L2 Nor-
mal
Based

Tangential

Mean
Discrete
Curva-
ture

Area
Error

Volume
Error

[23] 5.28e-6 1.23e-5 4.28e-9 5.339180 0.016951 0.020971 0.973744 0.026317 0.003270
[24] 4.44e-6 8.12e-6 3.62e-9 6.708570 0.020659 0.011200 1.242240 0.005358 0.001581
[28] 7.06e-7 2.43e-6 6.09e-10 1.470930 0.002508 0.003977 0.227227 0.002814 0.000115
[29] 5.5e-7 1.11e-6 4.86e-10 1.250500 0.001493 0.003002 0.201129 0.000855 0.000152
[22] 4.9e-6 1.34e-5 4.14e-9 3.187840 0.005773 0.010923 0.218453 0.019501 0.002809
[31] 5.82e-7 1.48e-6 4.78e-10 1.304530 0.001645 0.003050 0.154981 0.000719 0.000215
[33] 4.84e-7 1.29e-6 4.2e-10 0.930990 0.000756 0.003247 0.113735 0.000917 0.000223
[34] 5.69e-7 1.06e-6 4.89e-10 0.986475 0.000882 0.000977 0.160960 0.003271 0.000583
Ours 5.67e-7 1.04e-6 4.67e-10 1.051820 0.000601 0.001352 0.180188 0.000203 0.000066

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 62

7.5(a): 7.5(b): 7.5(c): 7.5(d): 7.5(e):

7.5(f): 7.5(g): 7.5(h): 7.5(i):

Figure 7.5: Results obtained for block model. For each sub-figure, first row
shows a flat rendering, second row shows the mean curvature and third row
shows the normal map. 7.5(a): Original. 7.5(b): Noisy. 7.5(c): [23]. 7.5(d): [24].
7.5(e): [28]. 7.5(f): [29]. 7.5(g): [22]. 7.5(h): [31]. 7.5(i): Our method.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 63

7.6(a): 7.6(b): 7.6(c): 7.6(d): 7.6(e):

7.6(f): 7.6(g): 7.6(h): 7.6(i): 7.6(j):

Figure 7.6: Results obtained for devil mesh. For each sub-figure, first row shows
a flat rendering, second row shows the mean curvature and third row shows
the normal map. 7.6(a): Original. 7.6(b): Noisy. 7.6(c): [23]. 7.6(d): [24]. 7.6(e):
[28]. 7.6(f): [29]. 7.6(g): [22]. 7.6(h): [31]. 7.6(i): [33]. 7.6(j): Our method.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 64

7.7(a): 7.7(b): 7.7(c): 7.7(d): 7.7(e):

7.7(f): 7.7(g): 7.7(h): 7.7(i): 7.7(j):

Figure 7.7: Results obtained for fandisk mesh. For each sub-figure, first row
shows a flat rendering, second row shows the mean curvature and third row
shows the normal map. 7.7(a): Original. 7.7(b): Noisy. 7.7(c): [23]. 7.7(d): [28].
7.7(e): [29]. 7.7(f): [22]. 7.7(g): [31]. 7.7(i): [33]. 7.7(h): [34]. 7.7(j): Our method.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 65

7.8(a): 7.8(b): 7.8(c): 7.8(d):

7.8(e): 7.8(f): 7.8(g): 7.8(h):

7.8(i): 7.8(j):

Figure 7.8: Results obtained for joint mesh. For each sub-figure, first row shows
a flat rendering, second row shows the mean curvature and third row shows
the normal map. 7.8(a): Original. 7.8(b): Noisy. 7.8(c): [23]. 7.8(d): [28]. 7.8(e):
[29]. 7.8(f): [22]. 7.8(g): [31]. 7.8(i): [33]. 7.8(h): [34]. 7.8(j): Our method.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 66

7.6
Comparison with other algorithms using real data

In this section, we will visually compare the results over real data
generated from medical reconstruction and data acquired from 3D scans. We
have 4 test cases, and we will try to explain the behavior of our proposal
compared to the other ones.

7.6.1
Gargoyle mesh

This mesh was acquired using a 3D scanner. It has several holes and
irregular triangulation (connection of vertices with a high difference between
depth values in the acquisition).

In Figure 7.10, we show the results obtained for this mesh. As in the
previous case, [23] does not successfully remove the noise. [22] removes the
noise but removing small details too. The other approaches generate blurred
results in these small details. For example, the details that are near the neck,
are blurred in all of these cases (See Figure 7.9). In counterpart, our resulting
mesh better preserves these details and generates thinner regions with high
curvature resulting in a well-defined mesh.

Figure 7.9: Gargoyle mesh details preserved with our denoising algorithm. First
row: [29]. Second row: [33]. Third row: ours.

7.6.2
BallJoint mesh

This mesh was reconstructed from medical data and represents a bone of
the human body. It has large smooth regions corrupted with noise and some
sharp edges.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 67

In Figure 7.11, we show the results obtained for this mesh. [23] and [24] do
not remove the noise very well. [22] generates too many flat regions, removing
the smoothness of the shape. The curvature mapping of this approach shows
thin regions with high curvature. [29] and [31] smooth too much the shape,
removing some sharp features. [33] does not preserve the continuity of sharp
features. The results of [28] and our denoising algorithm successfully remove the
noise while preserving the sharp features and their continuity. The difference
is that their result is more blurred than ours which is more defined.

7.6.3
Building mesh

This mesh was acquired using a 3D scanner and represents the front of
a building with some details.

In Figure 7.12, we show the results obtained for this mesh. [23] does
not successfully remove the noise. [28], [29], and [31] blurred too much the
sharp regions like the intersections between bricks. [22] better preserves these
regions but removing small details. Our approach generates a well-defined
mesh, preserving most of the details and removing the noise.

7.6.4
Keyboard mesh

This mesh was also acquired using a 3D scanner and represents a
keyboard of a computer. The mesh has edges and several flat regions.

In Figure 7.13, we show the results obtained for this mesh. [23] does not
remove all the noise inside flat regions. [28], [29] and [31] remove this noise but
generating rounded edges. [22] and our approach generate more defined sharp
features and flat areas.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 68

7.10(a): 7.10(b): 7.10(c): 7.10(d):

7.10(e): 7.10(f): 7.10(g): 7.10(h):

Figure 7.10: Results obtained for gargoyle model. For each sub-figure, first row
shows a flat rendering, second row shows the mean curvature and third row
shows the normal map. 7.10(a): Noisy. 7.10(b): [23]. 7.10(c): [28]. 7.10(d): [29].
7.10(e): [22]. 7.10(f): [31]. 7.10(g): [33]. 7.10(h): Our method.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 69

7.11(a): 7.11(b): 7.11(c): 7.11(d): 7.11(e):

7.11(f): 7.11(g): 7.11(h): 7.11(i):

Figure 7.11: Results obtained for ball joint model. For each sub-figure, first
row shows a flat rendering, second row shows the mean curvature and third
row shows the normal map. 7.11(a): Noisy. 7.11(b): [23]. 7.11(c): [24]. 7.11(d):
[28]. 7.11(e): [29]. 7.11(f): [22]. 7.11(g): [31]. 7.11(h): [33]. 7.11(i): Our method.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 70

7.12(a): 7.12(b): 7.12(c): 7.12(d):

7.12(e): 7.12(f): 7.12(g):

Figure 7.12: Results obtained for building model. For each sub-figure, first row
shows a flat rendering, second row shows the mean curvature and third row
shows the normal map. 7.12(a): Noisy. 7.12(b): [23]. 7.12(c): [28]. 7.12(d): [29].
7.12(e): [22]. 7.12(f): [31]. 7.12(g): Our method.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 71

7.13(a): 7.13(b): 7.13(c): 7.13(d):

7.13(e): 7.13(f): 7.13(g):

Figure 7.13: Results obtained for keyboard model. For each sub-figure, first
row shows a flat rendering, second row shows the mean curvature and third
row shows the normal map. 7.13(a): Noisy. 7.13(b): [23]. 7.13(c): [28]. 7.13(d):
[29]. 7.13(e): [22]. 7.13(f): [31]. 7.13(g): Our method.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 72

7.7
Performance

To measure the performance of our implementation we did some experi-
ments varying the size of the input and the maximum number of variables for
the optimization problems.

For the first experiment, we used the dragon mesh, resampling it to
100K, 75K, 50K, 25K and 10K number of faces. Then we added Gaussian
noise following vertex normal directions with an intensity of 0.1l (l equal to
average edge length). We want to measure the execution time for all of them
using the same parameters. The maximum distance allowed in the distance
computation is two times the average distance between two face centroids,
and the maximum number of variables allowed in the optimization problems is
20 (the parameters of the algorithm are defined in experiment specifications).
In Table 7.17 we show the execution times and in Figure 7.14 its respective
graph.

Table 7.17: Execution time of our denoising algorithm over meshes (decimated
from dragon mesh) with different number of faces.

number of faces 10K 25K 50K 75K 100K
time (s) 16.953 48.03 99.482 139.197 181.457

0 0.25 0.5 0.75 1
·105

0

50

100

150

200

number of faces

tim
e
(s
)

Execution time of denoising algorithm

Figure 7.14: Execution time of our denoising algorithm over meshes (decimated
from dragon mesh) with different number of faces.

As we can see, the function that describes the execution time regarding
the number of faces, has a linear growth. This happens because the optimiza-

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 73

tion problems have the same maximum number of variables in all cases, result-
ing in a constant time operation. Due that the adaptive patches computation
step iterates over all triangles the computational cost is O(n) with n as the
number of faces. The other steps of the algorithm are linear too if the number
of iterations nad maximum distance are sufficiently low. It is important to say
that the assumed constant time for each optimization problem can be very
high depending on the size. In Figure 7.15 we show the resulting meshes for
each decimated dragon mesh and in Table 7.18 the corresponding numerical
results. These results were not generated tunning the parameters to obtain
better results regarding the metrics because we wanted to use same values in
all cases to have a better comparison.

Table 7.18: Results for decimated dragon meshes

Number
of faces

Mean
Vertex
Dis-
tance

L2
Vertex
Based

Mean
Quadric MSAE

L2 Nor-
mal
Based

Tangential

Mean
Discrete
Curva-
ture

Area
Error

Volume
Error

10K 2.61e-7 4.62e-7 1.35e-11 17.88320 0.09160 0.05182 0.09356 0.03355 0.00655
25K 8.37e-8 1.57e-7 1.59e-12 13.54610 0.05850 0.02670 0.09931 0.01441 0.00403
50K 3.17e-8 6.07e-8 2.98e-13 10.55370 0.03674 0.01583 0.08550 0.00603 0.00119
75K 1.81e-8 3.48e-8 1.12e-13 9.08896 0.02825 0.01229 0.08093 0.00321 0.00065
100K 1.23e-8 2.38e-8 5.74e-14 8.24435 0.02394 0.01046 0.07852 0.00224 0.00052

In the second experiment, we opted to increment the maximum number
of variables for the optimization problem. We performed the algorithm over the
dragon mesh with 50000 number of faces. We also fixed the maximum allowed
distance to 5 times the average distance between face centroids, to reach the
maximum number of variables. The timing results are shown in Table 7.19 and
its respective graph in Figure 7.16. We can see that the function describing
the execution times has an exponential growth since the quadratic problem
optimizations depend on the complexity of the solver. We recommend fixing
the number of variables to a small value based on the topology of the mesh.

Table 7.19: Execution time of our denoising algorithm using different maximum
number of optimization problem variables, over the dragon mesh with 50000
number of faces.

number of variables 20 40 60 80 100
time (s) 125.418 210.603 339.913 521.772 839.643

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 74

Figure 7.15: An example using our denoising algorithm. First row from left to
right: original mesh and noisy mesh. Second row from left to right: resulting
mesh using uniform laplacian smoothing, resulting mesh of our proposal wihout
using the bilateral normal filtering step, and resulting mesh of our proposal
using it.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 75

0 20 40 60 80 1000

250

500

750

1,000

number of variables

tim
e
(s
)

Execution time of denoising algorithm

Figure 7.16: Execution time of our denoising algorithm using different maxi-
mum number of optimization problem variables, over the dragon mesh with
50000 number of faces.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 76

7.8
Denoising meshes generated from ultrasound exams

As a use case, we perform a comparison of our denoising algorithm over
two meshes generated from medical ultrasound data. In specific, the meshes
were obtained from fetal ultrasound exams using the following steps: an active
contour based segmentation is performed to describe the shape of the fetus and
then a mesh is reconstructed using the algorithm Marching Cubes [50]. Both
meshes present the staircase artifact which is a common mesh distortion when
reconstructing isosurfaces of slice based volumes. We perform the filtering of
these meshes in two steps. First we remove the staircase artifact using our
algorithm with the following parameters: α = 1.0, β = 1.0, γ = 0.2, δ = 0,
external iterations = 1, patch based iterations = 2, bilateral iterations = 0,
and vertex iterations = 10. Then we remove the noise using our algorithm with
the following parameters: α = 1.0, β = 1.0, γ = 0.2, δ = 15, external iterations
= 2, patch based iterations = 3, bilateral iterations = 5, and vertex iterations
= 10. In Figure 7.17 and Figure 7.18 we show our results compared with other
methods.

Figure 7.17: Results obtained from a mesh representing a fetus face. First row:
flat rendering. Second row: curvature mapping. First column: noisy mesh with
staircase artifact. Second column: [29]. Third column: [22]. Fourth column:
[31]. Fifth column: Our method.

As we can see in both cases, [29] does not remove the noise generated by
the staircase aritfact, [22] smooth too much the mesh, and [31] preserve better
the details. Our results present better definition of details resulting in thinner
and continuous regions with high or low curvature. For example, in the case
of the fetus face, our algorithm preserves more details of the lips.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 7. Results 77

Figure 7.18: Results obtained from a mesh representing a fetus body. First
group: flat rendering. Second group: curvature mapping. Starting from left to
right and from top to bottom: noisy mesh with staircase artifact, [29], [22],
[31] and our method.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

8
Conclusion and future work

We proposed an algorithm for triangular mesh denoising with detail
preservation. The core of our algorithm is a new adaptive patch computation.
We compared our proposal with the current state-of-the-art denoising algo-
rithms. Our comparison is performed visually and numerically using several
metrics. Finally, we also present performance results to illustrate the complex-
ity of our algorithm (using different sizes of input data and a different number
of variables for the optimization problems).

The pipeline of our denoising algorithm is very simple and similar to
other methods. The main difference lies in the new adaptive patch computation
step. The result of our method is dependent on the choice of the optimization
parameters, that presents some complexity but also allows great flexibility. We
explain the behavior when changing the values of the parameters, allowing
the reader to have a more intuitive notion of how the solution is influenced.
The denoising algorithm can have multiple behaviors when tuning these
parameters. For example, we can convert our filter to a near Gaussian blurring
filter if we set a high value to β, or convert it to a bilateral filter if only take
into account the distance to the reference point term and the normal coherence
term.

The adaptive patch formulation has a quadratic and a linear term, and
integrates them over the involved area. The proportion between a parameter
of a quadratic term and a parameter of a linear term, strongly depends on the
scale of the mesh. For this reason, we proposed to normalize the mesh before
performing these operations. Also, our formulation can result in a non-convex
quadratic optimization problem. For example, in the case of block mesh, we
have 76% of non-convex problems due to the large flat regions that can have
multiple local minima solutions. We can use a non-convex optimization solver,
but it highly increment our computational time. In these cases we use the local
minima as our solution yielding in good results in our denoising algorithm. The
terms that we use in the formulation are helpful to ensure that the local minima
is a desired solution.

Using synthetic noise, we obtained low error regarding the metrics and
in most cases the lowest one (compared with the other algorithms). The

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Chapter 8. Conclusion and future work 79

visualization of these results and the results using real data, looks better than
the visualization of the others in most cases. Tuning the parameters of our
algorithm, we can address different problems which depend on the nature of
the data. The parameters for our algorithm used in our experiments are not the
best ones; we tried to obtain them by manual tests evaluating the visualization
of the result. Also, the tool that we implemented to show the behavior of the
patches with dynamic interaction with the parameters, was helpful for our
tests.

The computational time of our algorithm has a near-linear cost but with
high constant time for the number of triangles. The limitation of the number
of variables allows us to define our algorithm in this way. The quadratic
optimization problems are the heaviest operations in the pipeline.

We only used the face normal field to describe the shape of the mesh. It
is possible to use the vertex normal field too and generate a more robust
description of the shape that allows us to compute more robust adaptive
patches. This merging of normal fields was used in other denoising algorithms.
Also, we can use the normal field generated by approximated tangent planes to
depend less on basic element (vertex or face) description. We will experiment
with these possibilities in future work.

Our approach was focused on denoising of triangular meshes, using face
centroids as sampled points of the represented 2-manifold. We can use the
vertex position as sampled points and perform the optimization problems on
this domain instead of the face based domain. The vertex based domain was
better studied in the literature and has more accurate approximations (e.g.,
gradient norm operator). If we work on this domain, we can extend our proposal
to 3D point clouds.

We found that our adaptive patches based on normal fields can be used
in other applications like mesh segmentation, remeshing or feature detection.
Also, instead of using normal fields to describe the data, we can use other
descriptors like curvature, heat kernels, saliency, etc. We hope to address other
applications in later work.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Bibliography

[1] BOTSCH, M.; KOBBELT, L.; PAULY, M.; ALLIEZ, P. ; LEVY, B.. Polygon
Mesh Processing. Ak Peters Series. Taylor & Francis, 2010.

[2] Aim@shape shape repository. http://visionair.ge.imati.cnr.
it. Accessed: 2017-05-01.

[3] BADE, R.; HAASE, J. ; PREIM, B.. Comparison of fundamental
mesh smoothing algorithms for medical surface models. In: IN
SIMULATION UND VISUALISIERUNG (2006, p. 289–304, 2006.

[4] TERZOPOULOS, D.. The computation of visible-surface represen-
tations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(4):417–438, Jul 1988.

[5] WELCH, W.; WITKIN, A.. Free-form shape design using triangulated
surfaces. In: PROCEEDINGS OF THE 21ST ANNUAL CONFERENCE ON
COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, SIGGRAPH
’94, p. 247–256, New York, NY, USA, 1994. ACM.

[6] KOBBELT, L.. Discrete fairing. In: IN PROCEEDINGS OF THE
SEVENTH IMA CONFERENCE ON THE MATHEMATICS OF SURFACES,
p. 101–131, 1997.

[7] ABRAMOWSKI, S.; MÜLLER, H.. Geometrisches Modellieren. Reihe
Informatik. BI-Wiss.-Verlag, 1991.

[8] CANANN, S. A.; STEPHENSON, M. B. ; BLACKER, T.. Optismoothing:
An optimization-driven approach to mesh smoothing. Finite
Elements in Analysis and Design, 13(2):185 – 190, 1993.

[9] FREITAG, L. A.. On combining laplacian and optimization-based
mesh smoothing techniques. ASME APPLIED MECHANICS DIVISION-
PUBLICATIONS-AMD, 220:37–44, 1997.

[10] AMENTA, N.; BERN, M. ; EPPSTEIN, D.. Optimal point placement
for mesh smoothing. Journal of Algorithms, 30(2):302–322, 1999.

http://visionair.ge.imati.cnr.it
http://visionair.ge.imati.cnr.it
DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Bibliography 81

[11] TAUBIN, G.. Curve and surface smoothing without shrinkage.
In: COMPUTER VISION, 1995. PROCEEDINGS., FIFTH INTERNATIONAL
CONFERENCE ON, p. 852–857. IEEE, 1995.

[12] TAUBIN, G.. Geometric signal processing on polygonal meshes.
Eurographics State of the Art Reports, 4(3):81–96, 2000.

[13] DESBRUN, M.; MEYER, M.; SCHRÖDER, P. ; BARR, A. H.. Implicit
fairing of irregular meshes using diffusion and curvature flow.
In: PROCEEDINGS OF THE 26TH ANNUAL CONFERENCE ON COM-
PUTER GRAPHICS AND INTERACTIVE TECHNIQUES, p. 317–324. ACM
Press/Addison-Wesley Publishing Co., 1999.

[14] VOLLMER, J.; MENCL, R. ; MUELLER, H.. Improved laplacian
smoothing of noisy surface meshes. In: COMPUTER GRAPHICS FO-
RUM, volumen 18, p. 131–138. Wiley Online Library, 1999.

[15] WEI, M.. Feature-preserving Surface Mesh Smoothing, Denois-
ing and Applications in Biomedical Modeling. PhD thesis, THE
CHINESE UNIVERSITY OF HONG KONG (HONG KONG), 2014.

[16] OHTAKE, Y.; BELYAEV, A. G. ; BOGAEVSKI, I. A.. Polyhedral sur-
face smoothing with simultaneous mesh regularization. In: GEO-
METRIC MODELING AND PROCESSING 2000. THEORY AND APPLICA-
TIONS. PROCEEDINGS, p. 229–237. IEEE, 2000.

[17] DESBRUN, M.; MEYER, M.; SCHRÖDER, P. ; BARR, A. H.. Anisotropic
feature-preserving denoising of height fields and bivariate data.
In: GRAPHICS INTERFACE, volumen 11, p. 145–152. Citeseer, 2000.

[18] CLARENZ, U.; DIEWALD, U. ; RUMPF, M.. Anisotropic geometric dif-
fusion in surface processing. In: PROCEEDINGS OF THE CONFER-
ENCE ON VISUALIZATION’00, p. 397–405. IEEE Computer Society Press,
2000.

[19] BAJAJ, C. L.; XU, G.. Anisotropic diffusion of surfaces and func-
tions on surfaces. ACM Transactions on Graphics (TOG), 22(1):4–32,
2003.

[20] EL OUAFDI, A. F.; ZIOU, D.. A global physical method for manifold
smoothing. In: 2008 IEEE INTERNATIONAL CONFERENCE ON SHAPE
MODELING AND APPLICATIONS, 2008.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Bibliography 82

[21] HILDEBRANDT, K.; POLTHIER, K.. Anisotropic filtering of non-
linear surface features. In: COMPUTER GRAPHICS FORUM, volu-
men 23, p. 391–400. Wiley Online Library, 2004.

[22] HE, L.; SCHAEFER, S.. Mesh denoising via l 0 minimization. ACM
Transactions on Graphics (TOG), 32(4):64, 2013.

[23] FLEISHMAN, S.; DRORI, I. ; COHEN-OR, D.. Bilateral mesh denoising.
In: ACM TRANSACTIONS ON GRAPHICS (TOG), volumen 22, p. 950–953.
ACM, 2003.

[24] JONES, T. R.; DURAND, F. ; DESBRUN, M.. Non-iterative, feature-
preserving mesh smoothing. In: ACM TRANSACTIONS ON GRAPHICS
(TOG), volumen 22, p. 943–949. ACM, 2003.

[25] SOLOMON, J.; CRANE, K.; BUTSCHER, A. ; WOJTAN, C.. A gen-
eral framework for bilateral and mean shift filtering. CoRR,
abs/1405.4734, 2014.

[26] TAUBIN, G.. Linear anisotropic mesh filtering. Res. Rep. RC2213
IBM, 1(4), 2001.

[27] SHEN, Y.; BARNER, K. E.. Fuzzy vector median-based surface
smoothing. IEEE Transactions on Visualization and Computer Graphics,
10(3):252–265, May 2004.

[28] SUN, X.; ROSIN, P.; MARTIN, R. ; LANGBEIN, F.. Fast and effective
feature-preserving mesh denoising. IEEE transactions on visualization
and computer graphics, 13(5):925–938, 2007.

[29] ZHENG, Y.; FU, H.; AU, O. K.-C. ; TAI, C.-L.. Bilateral normal filtering
for mesh denoising. IEEE Transactions on Visualization and Computer
Graphics, 17(10):1521–1530, 2011.

[30] WEI, M.; YU, J.; PANG, W.-M.; WANG, J.; QIN, J.; LIU, L. ; HENG, P.-
A.. Bi-normal filtering for mesh denoising. IEEE transactions on
visualization and computer graphics, 21(1):43–55, 2015.

[31] ZHANG, W.; DENG, B.; ZHANG, J.; BOUAZIZ, S. ; LIU, L.. Guided mesh
normal filtering. In: COMPUTER GRAPHICS FORUM, volumen 34, p.
23–34. Wiley Online Library, 2015.

[32] LI, T.; WANG, J.; LIU, H. ; LIU, L.-G.. Efficient mesh denoising via
robust normal filtering and alternate vertex updating. 2016.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Bibliography 83

[33] YADAV, S.; REITEBUCH, U. ; POLTHIER, K.. Mesh denoising based
on normal voting tensor and binary optimization. arXiv preprint
arXiv:1607.07427, 2016.

[34] YADAV, S. K.; REITEBUCH, U. ; POLTHIER, K.. Robust and high
fidelity mesh denoising. CoRR, abs/1711.05341, 2017.

[35] WEI, M.; LIANG, L.; PANG, W.-M.; WANG, J.; LI, W. ; WU, H.. Tensor
voting guided mesh denoising. IEEE Transactions on Automation
Science and Engineering, 14(2):931–945, 2017.

[36] FOI, A.; KATKOVNIK, V. ; EGIAZARIAN, K.. Signal-dependent noise
removal in pointwise shape-adaptive dct domain with locally
adaptive variance. In: SIGNAL PROCESSING CONFERENCE, 2007
15TH EUROPEAN, p. 2159–2163. IEEE, 2007.

[37] CIGNONI, P.; ROCCHINI, C. ; SCOPIGNO, R.. Metro: Measuring error
on simplified surfaces. Technical report, Paris, France, France, 1996.

[38] NEHORAI, A.; HAWKES, M.. Performance bounds for estimating
vector systems. IEEE Transactions on Signal Processing, 48(6):1737–1749,
Jun 2000.

[39] KIM, S.-J.; KIM, S.-K. ; KIM, C.-H.. Discrete differential error metric
for surface simplification. In: 10TH PACIFIC CONFERENCE ON
COMPUTER GRAPHICS AND APPLICATIONS, 2002. PROCEEDINGS., p.
276–283, 2002.

[40] YAGOU, H.; OHTAKE, Y. ; BELYAEV, A.. Mesh smoothing via mean
and median filtering applied to face normals. In: GEOMETRIC
MODELING AND PROCESSING. THEORY AND APPLICATIONS. GMP
2002. PROCEEDINGS, p. 124–131, 2002.

[41] BELYAEV, A.; OHTAKE, Y.. A comparison of mesh smoothing meth-
ods. In: ISRAEL-KOREA BI-NATIONAL CONFERENCE ON GEOMETRIC
MODELING AND COMPUTER GRAPHICS, volumen 2. Citeseer, 2003.

[42] ALFACE, P. R.; DE CRAENE, M. ; MACQ, B. B.. Three-dimensional
image quality measurement for the benchmarking of 3d water-
marking schemes. In: ELECTRONIC IMAGING 2005, p. 230–240. Inter-
national Society for Optics and Photonics, 2005.

[43] GARLAND, M.; HECKBERT, P. S.. Surface simplification using
quadric error metrics. In: PROCEEDINGS OF THE 24TH ANNUAL

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

Bibliography 84

CONFERENCE ON COMPUTER GRAPHICS AND INTERACTIVE TECH-
NIQUES, SIGGRAPH ’97, p. 209–216, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[44] MEYER, M.; DESBRUN, M.; SCHRÖDER, P. ; BARR, A. H.. Discrete
Differential-Geometry Operators for Triangulated 2-Manifolds,
p. 35–57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[45] ZHANG, C.; CHEN, T.. Efficient feature extraction for 2d/3d ob-
jects in mesh representation. In: PROCEEDINGS 2001 INTERNA-
TIONAL CONFERENCE ON IMAGE PROCESSING (CAT. NO.01CH37205),
volumen 3, p. 935–938 vol.3, 2001.

[46] BOTSCH, M.; STEINBERG, S.; BISCHOFF, S. ; KOBBELT, L.. Openmesh
- a generic and efficient polygon mesh data structure, 2002.

[47] BLANCO, J. L.. nanoflann: a c++ header-only fork of flann, a
library for nearest neighbor (nn) wih kd-trees, 2014.

[48] ASPERT, N.; SANTA-CRUZ, D. ; EBRAHIMI, T.. Mesh: measuring er-
rors between surfaces using the hausdorff distance. In: PROCEED-
INGS. IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND
EXPO, volumen 1, p. 705–708 vol.1, 2002.

[49] GODIL, A.; DUTAGACI, H.; BUSTOS, B.; CHOI, S.; DONG, S.; FURUYA,
T.; LI, H.; LINK, N.; MORIYAMA, A.; MERUANE, R. ; OTHERS. Shrec’15:
Range scans based 3d shape retrieval. 2015.

[50] LORENSEN, W. E.; CLINE, H. E.. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph.,
21(4):163–169, Aug. 1987.

DBD
PUC-Rio - Certificação Digital Nº 1613324/CA

	Detail-preserving mesh denoising using adaptive patches
	Resumo
	Table of contents
	Introduction
	Previous Work
	Anisotropic denoising
	Bilateral filtering for images
	Joint bilateral filtering for images
	Adaptive patches for images
	Bilateral filtering for meshes
	Bilateral normal filtering for meshes
	Guided bilateral normal filtering for meshes

	Adaptive Patches
	Continuous setting
	Error term
	Distance to the reference point term
	Regularization term
	Normal coherence term
	Parameters

	Discretization
	Implementation

	Denoising Algorithm
	Precomputation
	Adaptive patches computation
	Adaptive patch based normal filtering
	Bilateral normal filtering
	Vertex updating
	Pipeline

	Denoising algorithm evaluation
	Visual Comparison
	Metrics
	Mean distance error metric:
	Quadric error metric:
	Tangential error metric:
	L2 vertex-based mesh-to-mesh error metric:
	L2 normal-based mesh-to-mesh error metric:
	Mean square angular error metric:
	Discrete curvature error metric:
	Area difference and volume difference:

	Results
	Implementation details
	Datasets
	Algorithm parameters
	Initial Comparison
	Comparison with other algorithms using artificial noise
	Block mesh
	Devil mesh
	Fandisk mesh
	Joint mesh

	Comparison with other algorithms using real data
	Gargoyle mesh
	BallJoint mesh
	Building mesh
	Keyboard mesh

	Performance
	Denoising meshes generated from ultrasound exams

	Conclusion and future work
	Bibliography

