

Lívia Cristina da Silva Santos

Avaliação do efeito do esgotamento de recursos de controle sobre a estabilidade de tensão e cálculo de ações de controle preventivas

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós–graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio.

Orientador: Prof. Ricardo Bernardo Prada

Lívia Cristina da Silva Santos

Avaliação do efeito do esgotamento de recursos de controle sobre a estabilidade de tensão e cálculo de ações de controle preventivas

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Ricardo Bernardo Prada Orientador Departamento de Engenharia Elétrica – PUC-Rio

> Prof. Carlos Aparecido Ferreira Eletrobrás

Dr. Flávio Rodrigo de Miranda Alves CEPEL

Prof. Márcio da Silveira Carvalho Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 11 de dezembro de 2018.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Lívia Cristina da Silva Santos

Graduou-se em Engenharia eletrônica e de computação na UFRJ (Rio de Janeiro, Brasil) em 2010. Desde 2015 é professora do Instituto Federal Fluminense lecionando disciplinas de eletrônica e programação.

Ficha Catalográfica

Santos, Lívia Cristina da Silva

Avaliação do efeito do esgotamento de recursos de controle sobre a estabilidade de tensão e cálculo de ações de controle preventivas / Lívia Cristina da Silva Santos ; orientador: Ricardo Bernardo Prada. – 2018.

145 f.: il.; 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2018.

Inclui bibliografia

Engenharia Elétrica – Teses. 2. Ações de controle preventivas.
 Colapso de tensão. 4. Estabilidade de tensão.
 Margem de potência.
 Esgotamento de recursos.
 Prada, Ricardo Bernardo.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Engenharia Elétrica.
 III. Título.

CDD: 621.3

Agradecimentos

A meus professores da PUC-Rio pela dedicação, em especial a meu orientador Ricardo Prada pelo apoio e zelo na orientação deste trabalho.

A meu companheiro Tulio Valentim pela paciência, afeto e incentivo ininterruptos.

Aos meus colegas de mestrado pela ajuda, especialmente a Vanessa Gonzales, Diogo Cardoso, Natasha Monteiro, Deborah Kalynne e Patrícia Mansano pelo conhecimento compartilhado.

Aos meus colegas de trabalho do Institutito Federal Fluminense pelo suporte e compreensão em momentos críticos.

Aos meus pais, Lúcia e José Carlos, pelo exemplo contínuo, pelo esforço e pela persistência na jornada que me trouxe até aqui. Agradeço ao meu irmão por seu incentivo, seus conselhos, e por estar sempre a meu lado.

Ao CEPEL— Centro de Pesquisas de Energia Elétrica — pela permissão de uso do *software* Anarede para fins de estudo e pesquisa.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Código de Financiamento 001.

Resumo

Santos, Lívia Cristina da Silva; Prada, Ricardo Bernardo. Avaliação do efeito do esgotamento de recursos de controle sobre a estabilidade de tensão e cálculo de ações de controle preventivas. Rio de Janeiro, 2018. 145p. Dissertação de Mestrado — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Em todos os sistemas de potência, inclusive o brasileiro, verificam-se os níveis de tensão nos barramentos e de corrente nos ramos de transmissão na presença de contingências durante a operação em tempo real. A lista de contingências inclui a perda de qualquer ramo de transmissão, a perda de alguns pares de ramos e, de menor importância, a perda de geração. As condições de estabilidade de tensão também são checadas nesse momento. Esse trabalho simula eventos em que há perda do controle de tensão devido ao esgotamento da fonte controladora em todas as barras de tensão controlada da rede e verifica seus efeitos sobre a estabilidade de tensão. As simulações realizadas incluem também o evento em que há perda de capacidade de aumentar a geração de potência ativa em todos os geradores. Um método de ordenação pelo grau de severidade do evento sobre a estabilidade de tensão é empregado. Além disso, aproveitam-se os resultados obtidos e determinam-se as tensões e gerações mais influentes sobre a estabilidade de tensão de uma certa barra. Com a finalidade de aumentar a margem de potência dessa certa barra, calculam-se ações de controle preventivas, isto é variações nas tensões e, se necessário, nas gerações ativas.

Palavras-chave

Ações de controle preventivas; colapso de tensão; estabilidade de tensão; margem de potência; esgotamento de recursos.

Abstract

Santos, Lívia Cristina da Silva; Prada, Ricardo Bernardo (Advisor). Evaluation of the effect of control resources exhaustion on voltage stability and calculation of preventive control actions. Rio de Janeiro, 2018. 145p. Dissertação de mestrado — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

In all power systems, including the Brazilian one, it is common to check the voltage levels in busbars and current in the transmission branches in presence of contingencies during the real-time operation. The list of contingencies includes loss of any transmission lines, loss of some pairs of branches and, less importantly, loss of power generation. Voltage stability conditions are also checked at that time. This work simulates events in which there is loss of voltage control due to the exhaustion of the control source in all voltage-controlled busbars and verifies its effects on voltage stability. Simulations also include the event which shows loss of capacity to increase the active power generation in all generators. A ranking method is employed to order events by their degree of severity over voltage stability. In addition, the obtained results are used to determine the most influential voltages and generators over the voltage stability of a specific busbar. In order to increase the margin of power of this certain busbar, preventive control actions are calculated by keeping track of variations in voltage and, when necessary, in active power generations.

Keywords

Preventive control actions; voltage collapse; voltage stability; power range; resources exhaustion.

Sumário

1 Introdução	14
1.1 Considerações gerais	14
1.2 Objetivos	14
1.3 Estrutura do trabalho	15
2 Fluxo de potência e controle de tensão	17
2.1 Introdução	17
2.2 Equações	18
2.3 Solução do fluxo de potência pelo Método Newton-Raphson	20
2.3.1 Rede com barras do tipo PQ, PV e V θ	20
2.3.2 Rede com controle local de tensão por LTC	22
2.4 Múltiplas barras <i>swing</i>	24
2.5 Resumo do capítulo	27
3 Estabilidade de tensão	29
3.1 O fenômeno	29
3.2 O Limite de Estabilidade de Tensão (LET)	32
3.3 Avaliação da estabilidade de tensão	36
3.3.1 Método da matriz [D']	36
3.3.2 Módulo do Determinante da Matriz [D']	38
3.3.3 Sinal do Determinante da Matriz [D']	40
3.3.4 Matriz [D'] em barras com controle de tensão	41
3.3.5 Matriz [D'] com múltiplas barras swing	43
3.4 Índices de estabilidade de tensão	46
3.5 Resumo	48
4 Esgotamento de recursos	49
4.1 Método	49
4.2 Índices de influência sobre a estabilidade de tensão	50
4.2.1 Índices de influência na barra	50
4.2.2 Índices de influência no sistema	52
4.3 Modelagem dos esgotamentos	53
4.3.1 Esgotamentos de potência ativa	53
4.3.2 Esgotamentos de potência reativa	55
4.3.3 Esgotamentos de <i>tap</i>	56
4.4 Exemplo ilustrativo	57
4.4.1 Sistema elétrico	57
4.4.2 Fluxo de potência	58
4.4.3 Matriz [D']	59
4.4.4 Matriz [D'] para esgotamento de potência ativa	62
4.4.5 Matriz [D'] para esgotamento de potência reativa	63
4.4.6 Matriz [D'] para esgotamento de <i>tap</i>	63
4.4.7 Resultados	64
4.5 Rede de exemplo: CEPEL-34	66

4.5.1 Determinação das tensões e gerações mais influentes sobre a margem de potência de certa barra da rede	67
4.5.2 Ordenação dos esgotamentos de controle de tensão e de geração de	01
potência ativa por severidade	68
4.6 Resumo	70
T.O INCOUNTED	10
5 Ações de controle preventivas	7 1
5.1 Introdução	71
5.2 Ações de controle preventivas de potência reativa	72
5.2.1 Barras de carga	72
5.2.2 Barras de geração	78
5.3 Ações de controle preventivas de potência ativa	83
5.3.1 Barras de carga	83
5.3.2 Barras de geração	86
5.4 Ações de controle preventivas combinadas: potência ativa e reativa	92
5.5 Sistema Sul-Sudeste	93
5.5.1 Ações de controle preventivas de potência reativa em barras de carga	98
5.5.2 Ações de controle preventivas de potência reativa em barras de geração	103
5.5.3 Ações de controle preventivas de <i>tap</i> de LTC em barras de carga	113
5.5.4 Ações de controle preventivas de <i>tap</i> de LTC em barras de geração	115
5.5.5 Ações de controle preventivas de potência ativa em barras de carga	121
5.5.6 Ações de controle preventivas de potência ativa em barras de geração	123
5.5.7 Ações combinadas: potência ativa e reativa	128
5.6 Resumo	131
6 Conclusões	134
6.1 Trabalhos futuros	136
Referências bibliográficas	137
A Apêndice A	139

Lista de figuras

Figura 1	Convenção de sinais para fluxos e injeções de corrente,	
potênc	ia ativa e reativa[1]	20
_		
Figura 2	Circuito de duas barras	29
Figura 3	Limite de estabilidade angular.	31
Figura 4	${\it Maximum\ maximorum}$ observável em figura tridimensional	31
Figura 5	P_1 e Q_1 constantes no plano $\theta_1 v_1$	32
Figura 6	Soluções no plano $v\theta$ para um fator de potência constante	33
Figura 7	Circuito com as Impedâncias da Transmissão e da Carga	34
Figura 8	Curva ϕ constante e o limite de estabilidade de tensão	
no plar		35
Figura 9	Localização dos vetores $\dot{\nabla}P$ e $\dot{\nabla}Q$ no Plano $V\theta$	41
Figura 10	Regiões de operação do sistema	48
Figura 11	Curvas do caso-base e de esgotamentos com suas respec-	
0	nargens de potência e Índices de Influência	51
Figura 12	Regiões de operação de um sistema levando em conside-	-
0	os Índices de Influência e o sinal de β	52
Figura 13	Sistema-teste	57
Figura 14	Índice de influência sobre cada barra	66
Figura 15	Índice de influência de cada esgotamento sobre o sistema	66
Figura 16	Diagrama unifilar da rede CEPEL-34	67
8	0	
Figura 17	Efeito das ações de controle preventivas sobre a margem	
de poté	ência e sobre o ângulo β	73
Figura 18	Ações de controle preventivas implementadas sobre v_{31} ,	
v_{32}, v_{33}	$_{3}$, e v_{34} para incrementar a margem da barra 29	76
Figura 19	Margem de potência da barra 29 em função do II das	
barras	swing quando há incremento de 0,001 pu na tensão dessas	
barras		77
Figura 20	Efeito das ações de controle preventivas sobre a margem	
de poté	ência e sobre o ângulo β da barra 1	79
Figura 21	Ações de controle preventivas implementadas sobre v_{31} ,	
v_{33}, v_{32}	, e v_{34} para incrementar a margem da barra 1	81
Figura 22	Margem de potência da barra 1 em função do II da	
própria	a barra 1 e das barras swing quando há incremento de	
0,001 p	ou na tensão dessas barras	83
Figura 23	Efeito das ações de controle preventivas sobre a margem	
de poté	ência M_{29} e sobre o ângulo β_{29}	86
Figura 24	Ações de controle preventivas implementadas sobre P_{G1} ,	
P_{G31}, I	$P_{G33}, P_{G32}, e P_{G34}$ para incrementar a margem da barra 1	88
Figura 25	Ações de controle preventivas implementadas sobre P_G	
para in	crementar a margem das barras 31, 32, 33 e 34	91

Figura 26 Ações de controle preventivas implementadas sobre v_1 , P_{G1} , P_{G31} , P_{G33} , P_{G32} , e P_{G34} para incrementar a margem da	
barra 1	92
Figura 27 Diagrama unificada da rede S/SE de 65 barras (TB-65)	94
Figura 28 Estado da rede após execução de algoritmo de fluxo de potência continuado parametrizado pelo Anarede	97
Figura 29 Efeito das ações de controle preventivas sobre a margem	91
de potência e sobre o ângulo β	100
Figura 30 Efeito das ações de controle preventivas sobre a margem	100
de potência e sobre o ângulo β	103
Figura 31 Efeito das ações de controle preventivas sobre a margem	100
de potência e sobre o ângulo β	104
Figura 32 Relação entre o índice de influência e o efeito da ação de	104
controle	108
	100
Figura 33 Efeito das ações de controle preventivas sobre a margem	109
de potência e sobre o ângulo β	109
Figura 34 Efeito das ações de controle preventivas sobre a margem	110
de potência e sobre o ângulo β	110
Figura 35 Efeito das ações de controle preventivas sobre a margem	115
de potência e sobre o ângulo β	115
Figura 36 Efeito das ações de controle preventivas sobre a margem	115
de potência e sobre o ângulo β	115
Figura 37 Efeito das ações de controle preventivas sobre a margem	110
de potência e sobre o ângulo β	116
Figura 38 Efeito das ações de controle preventivas sobre a margem	110
de potência e sobre o ângulo β	118
Figura 39 Efeito das ações de controle preventivas sobre a margem	100
de potência e sobre o ângulo β	120
Figura 40 Efeito das ações de controle preventivas sobre a margem	400
de potência e sobre o ângulo β	120
Figura 41 Efeito das ações de controle preventivas sobre a margem	
de potência M_{11} e sobre o ângulo β_{11}	123
Figura 42 Ações de controle preventivas implementadas sobre P_{G1} ,	
P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} ,	
P_{G45} , e P_{G46} para incrementar a margem da barra 2	124
Figura 43 Ações de controle preventivas implementadas sobre P_{G1} ,	
P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} ,	
P_{G45} , e P_{G46} para incrementar a margem da barra 29	126
Figura 44 Ações de controle preventivas implementadas sobre P_{G1} ,	
$P_{G2}, P_{G17}, P_{G18}, P_{G19}, P_{G20}, P_{G26}, P_{G29}, P_{G30}, P_{G31}, P_{G43}, P_{G44},$	
P_{G45} , P_{G46} e v_2 para incrementar a margem da barra 2	130
Figura 45 Ações de controle preventivas implementadas sobre P_{G1} ,	
P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} ,	
P_{G45} , e P_{G46} para incrementar a margem da barra 29	132

Lista de tabelas

Tabela 1	Informações das barras	57
Tabela 2	Informações dos ramos de transmissão	58
Tabela 3	Ponto de operação do sistema-teste	59
Tabela 4	Índices de estabilidade de tensão do sistema-teste	61
Tabela 5	Índices de influência II para cada barra em cada cenário	
de esgo	otamento e índices de influência do esgotamento sobre o	
sistema	a IIS	65
Tabela 6	Ponto de operação e índices de estabilidade de tensão do	
sistema	a CEPEL-34 barras da Figura 16 no caso-base	68
Tabela 7	Índices de estabilidade de tensão do Sistema de 34 barras	69
Tabela 8	Índice de influência de cada esgotamento sobre o sistema	69
Tabela 9	Ações de controle preventivas sobre v_1 implementadas	
para in	acrementar a margem da barra 29	73
Tabela 10	Índices de influência em ordem decrescente conforme	
dados	da Tabela 7	74
Tabela 11	Ações de controle preventivas implementadas sobre v_{31} ,	
v_{33}, v_{32}	v_{2} , e v_{34} para incrementar a margem da barra 29	75
Tabela 12	Ações de controle preventivas sobre v_1 implementadas	
_	ncrementar a margem da barra 1	79
	Ações de controle preventivas implementadas sobre v_{31} ,	
	$_{2}$, e v_{34} para incrementar a margem da barra 1	80
Tabela 14	Ações de controle preventivas implementadas sobre P_{G1} ,	
	P_{G33} , P_{G32} , P_{G33} e P_{G34} para incrementar a margem da	
barra 2		85
	Ações de controle preventivas implementadas sobre P_{G1} ,	
	P_{G33} , P_{G32} , e P_{G34} para incrementar a margem da barra 1	87
Tabela 16	Ações de controle preventivas implementadas sobre P_G	
-	acrementar a margem das barras 31, 32, 33 e 34	90
Tabela 17	Ponto de operação e índices de estabilidade de tensão do	
	a TB-65, da Figura 27 no caso-base	96
	Índices de influência dos esgotamentos sobre as barras	
	29 em ordem crescente	99
Tabela 19	, i	100
	acrementar a margem da barra 11	100
Tabela 20	Ações de controle preventivas implementadas sobre v_1 ,	101
	$v_{18}, v_{19} \in v_{20}$ para incrementar a margem da barra 11	101
Tabela 21	Ações de controle preventivas implementadas sobre v_{26} ,	
	$v_{31}, v_{43}, v_{44}, v_{45} e v_{46}$ para incrementar a margem da	100
barra 1		102
Tabela 22		105
_	Ações de controle preventivas implementades sobre e	105
Tabela 23	Ações de controle preventivas implementadas sobre v_1 ,	106
$v_3, v_{17},$	$v_{18}, v_{19} \in v_{20}$ para incrementar a margem da barra 2	106

Tabela 24 Ações de controle preventivas implementadas sobre v_{26} ,	
$v_{29}, v_{30}, v_{31}, v_{43}, v_{44}, v_{45}$ e v_{46} para incrementar a margem da	
barra 2	107
Tabela 25 Ações de controle preventivas implementadas sobre v_{29}	
para incrementar a margem da barra 29	109
Tabela 26 Ações de controle preventivas implementadas sobre v_1 ,	
$v_2,v_3,v_{17},v_{18},v_{19}$ e v_{20} para incrementar a margem da barra 29	111
Tabela 27 Ações de controle preventivas implementadas sobre v_{20} ,	
$v_{26}, v_{30}, v_{31}, v_{43}, v_{44}, v_{45},$ e v_{46} para incrementar a margem da	
barra 29	112
Tabela 28 Ações de controle preventivas implementadas sobre v_{32} ,	
$v_{48},v_{50},v_{55},v_{62}$ e v_{65} para incrementar a margem da barra 11	114
Tabela 29 Ações de controle preventivas implementadas sobre v_{31} ,	
$v_{33}, v_{32}, e v_{34}$ para incrementar a margem da barra 2	117
Tabela 30 Ações de controle preventivas implementadas sobre v_{31} ,	
$v_{33}, v_{32}, e v_{34}$ para incrementar a margem da barra 29	119
Tabela 31 Ações de controle preventivas implementadas sobre P_{G1} ,	
$P_{G2}, P_{G17}, P_{G18}, P_{G19}, P_{G20}, P_{G26}, P_{G29}, P_{G30}, P_{G31}, P_{G43}, P_{G44},$	
P_{G45} , e P_{G46} para incrementar a margem da barra 11	122
Tabela 32 Ações de controle preventivas implementadas sobre P_{G1} ,	
$P_{G2}, P_{G17}, P_{G18}, P_{G19}, P_{G20}, P_{G26}, P_{G29}, P_{G30}, P_{G31}, P_{G43}, P_{G44},$	
P_{G45} , e P_{G46} para incrementar a margem da barra 2	125
Tabela 33 Ações de controle preventivas implementadas sobre P_{G1} ,	
$P_{G2}, P_{G17}, P_{G18}, P_{G19}, P_{G20}, P_{G26}, P_{G29}, P_{G30}, P_{G31}, P_{G43}, P_{G44},$	40-
P_{G45} , e P_{G46} para incrementar a margem da barra 29	127
Tabela 34 Ações de controle preventivas implementadas sobre P_{G1} ,	
$P_{G2}, P_{G17}, P_{G18}, P_{G19}, P_{G20}, P_{G26}, P_{G29}, P_{G30}, P_{G31}, P_{G43}, P_{G44},$	100
P_{G45} , P_{G46} e v_2 para incrementar a margem da barra 2	129
Tabela 35 Ações de controle preventivas implementadas sobre P_{G1} ,	
P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} ,	101
P_{G45} , P_{G46} e v_{29} para incrementar a margem da barra 29	131
Tabela 36 Informações das barras do sistema CEPEL-34	139
Tabela 37 Informações das linhas do sistema CEPEL-34	140
Tabela 39 Informações das linhas do sistema TB-65	141
Tabela 38 Informações das barras do sistema TB-65	145

Lista de Abreviaturas

CEPEL – Centro de Pesquisas de Energia Elétrica

II - Índice de influência

LEEA – Limite de estabilidade estático angular

LET – Limite de Estabilidade de Tensão

LTC-Load tap changer

1 Introdução

1.1 Considerações gerais

O aumento da demanda por energia elétrica sobrecarrega o sistema de transmissão, problema tradicionalmente resolvido com a inserção de compensação reativa na rede de transmissão, o que possibilita maior transferência de potência em níveis de tensão adequados. No entanto, isso trouxe um novo problema para a operação: a estabilidade de tensão.

A estabilidade de tensão está relacionada à capacidade de um sistema de potência de manter níveis de tensão aceitáveis em todas as barras do sistema sob condições de operação normal ou após ser submetido a uma contingência. Nesse caso, pode haver diminuição progressiva e incontrolável na tensão, resultando no colapso do sistema elétrico.

A manifestação mais conhecida do problema de estabilidade de tensão é a existência de uma máxima potência que pode ser transmitida pela rede elétrica. Assim, há possibilidade de ações de controle de tensão terem efeito oposto ao esperado. Assim, torna-se essencial estudar quão suscetíveis a problemas de estabilidade de tensão as barras do sistema estão.

Analisa-se como as barras se comportariam frente à restrições operativas, como esgotamento da capacidade de controle de tensão ou esgotamento da capacidade de geração de potência ativa. Propõem-se ações de controle preventivas para melhorar as condições de estabilidade de tensão. Estabelece-se relação entre as respostas do sistema aos esgotamentos e resposta do sistema às ações de controle preventivas correspondentes.

1.2 Objetivos

O primeiro objetivo é estudar o esgotamento da capacidade de controle de tensão e de geração de potência ativano que diz respeito à estabilidade de tensão. Um índice é aplicado para mensurar a variação da margem potência nos casos pré-esgotamento e pós-esgotamento. Por fim, é empregado um método de ordenação pelo grau de severidade do evento.

Parte-se da ideia de que quanto mais influente é o esgotamento de tensão ou geração sobre uma certa barra, maior é a possibilidade de variações dessa tensão ou geração provocar variações na margem de potência dessa certa barra. Assim, o segundo objetivo é elaborar ações de controle preventivas que atuem sobre tensões e/ou gerações de potência ativa e que sejam capazes de elevar a margem de potência de certa barra. Isso é especialmente importante para barras cuja margem de potência é pequena ou negativa no caso préesgotamento.

1.3 Estrutura do trabalho

No Capítulo 2, apresentam-se os conceitos básicos relacionados ao problema do fluxo de potência, tais como expressões gerais dos fluxos, a formulação matricial do problema e a aplicação do método de Newton-Raphson à solução do problema. Além disso, é abordada a modelagem para o tratamento de múltiplas barras *swing* no problema básico de fluxo de potência.

No Capítulo 3 traz-se uma abordagem do fenômeno da estabilidade de tensão contendo o estudo das regiões de operação da curva ϕ constante no plano Sv, dos limites de estabilidade estática angular e de estabilidade de tensão, a relação entre o uso de linhas de transmissão perto de sua capacidade máxima e os problemas de estabilidade de tensão. Além disso, apresenta-se uma ferramenta analítica de avaliação das condições nodais associadas ao máximo fluxo de potência ativa e reativa de uma rede de transmissão através da determinação de índices que apontam a região de operação na curva ϕ constante no plano Sv, a margem em MVA para o máximo carregamento e a importância relativa entre as barras.

No Capítulo 4, são definidos os esgotamentos de recursos relacionados à limitação de geração de potência ativa, de geração de potência reativa e de tap de LTC (Load tap changer). A análise de estabilidade de tensão é feita no caso-base e sob essas condições de exaustão de recursos. Com isso, é possível determinar as tensões e gerações mais influentes sobre a margem de potência de certa barra da rede e ordenar os esgotamentos relacionados a tensão e a geração de potência ativa por severidade.

No Capítulo 5 apresentam-se ações de controle baseadas nas constatações do Capítulo 4. Os índices de influência de cada esgotamento são utilizados para fundamentar as ações de controle preventivas baseadas na geração de potência ativa, na geração de potência reativa, na combinação de ambas ou no tap de LTC, com o objetivo de aumentar a margem de potência de certas barras. Estas simulações foram feitas para dois sistemas, onde cada um deles têm

barras operando próximo ao máximo carregamento ou na parte inferior da curva ϕ constante.

O Capítulo 6 traz as principais conclusões sobre o esgotamento de recursos relacionados ao controle de tensão e ao redespacho de potência ativa, e sobre ações de controle preventivas com base na influência dos esgotamentos visando o incremento das margens de potência, assim como sugestões para trabalhos futuros.

2 Fluxo de potência e controle de tensão

2.1 Introdução

O fluxo de carga (ou fluxo de potência) em uma rede de energia elétrica é a determinação do estado de um sistema elétrico. Para isso, os geradores e as cargas são considerados como elementos externos à rede de transmissão, sendo descritos como injeções de potência nos nós a que estão conectados. Além disso, para cada nó da rede de transmissão são aplicadas equações de conservação de potência ativa e reativa. Ou seja, a potência injetada em um nó deve ser igual à potência que sai desse nó através dos elementos internos conectados a ele. Essa abordagem equivale à primeira lei de Kirchhoff. Já a segunda lei de Kirchhoff é utilizada para expressar o fluxo de potência nos componentes internos da rede em função do estado (tensão) dos terminais conectados a eles. Então, o problema de fluxo de potência pode ser formulado como um conjunto de equações algébricas correspondentes às leis de Kirchhoff.

Para cada barra há variáveis que podem ser incógnitas ou dados do problema de fluxo de potência. Para uma formulação básica, as quatro variáveis são:

 v_k é módulo da tensão nodal (barra k);

 θ_k é o ângulo da tensão nodal;

 P_k é a injeção líquida (geração menos carga) de potência ativa nodal; e

 Q_k é a injeção líquida (geração menos carga) de potência ativa nodal.

Dependendo de quais destas variáveis são tratadas como incógnitas e quais são tratadas como dados do problema de fluxo de potência, podem ser definidos os tipos de barras.

PQ é uma barra de carga, sem controle de tensão. Desse modo, P_k e Q_k são fornecidos (especificados a priori) e v_k e θ_k são calculados.

PV é uma barra com dispositivos de controle, tais como os geradores e compensadores síncronos, que permitem manter o módulo da tensão e a injeção de potência ativa em valores especificados. Assim, P_k e v_k são conhecidos (especificados a priori) e Q_k e θ_k são calculados.

PQV é uma barra de carga, que tem sua tensão controlada remotamente por uma ou mais barras ou por um ou mais transformadores. Assim, P_k , Q_k e v_k são conhecidos (especificados a priori) e θ_k é calculado.

 $V\theta$, também chamada de barra de referência, slack ou swing é uma barra de referência angular e, usualmente, também fecha o balanço de potência ativa do sistema, levando em consideração as perdas do sistema de transmissão. Desse modo, v_k e θ_k são fornecidos (especificados a priori) e P_k e Q_k são calculados.

V é uma barra que integra o conjunto das barras slack ou swing, fecha o balanço de potência ativa do sistema, levando em consideração as perdas ativas do sistema de transmissão. Desse modo, v_k é conhecido e P_k , Q_k e θ_k são calculados.

2.2 Equações

O conjunto de equações do problema do fluxo de carga é formado por duas equações para cada barra, resultado da imposição da conservação das potências ativa e reativa associadas, o que equivale à primeira lei de Kirchhoff [1]:

$$P_k = \sum_{m \in \Omega_K} P_{km}(v_k, v_m, \theta_k, \theta_m, a_{km}, \phi_{km})$$
(2.1)

$$P_k = \sum_{m \in \Omega_K} P_{km}(v_k, v_m, \theta_k, \theta_m, a_{km}, \phi_{km})$$

$$Q_k + Q_k^{sh} = \sum_{m \in \Omega_K} Q_{km}(v_k, v_m, \theta_k, \theta_m, a_{km}, \phi_{km})$$

$$(2.1)$$

para k=1 a NB, onde:

NB é o número de barras na rede;

 Ω_K é o conjunto de barras vizinhas à barra k;

 Q_k^{sh} é a injeção de potência reativa devido ao elemento shunt conectado na barra k;

 P_{km} é o fluxo de potência ativa no ramo k-m;

 Q_{km} é o fluxo de potência reativa no ramo k-m;

 v_k é o módulo da tensão da barra k;

 v_m é o módulo da tensão da barra m;

 θ_k é o ângulo da tensão na barra k;

 θ_m é o ângulo da tensão na barra m;

 a_{km} é o tap do transformador no ramo k-m;

 ϕ_{km} é a defasagem promovida pelo transformador do ramo k-m.

De acordo com [1], de forma generalizada, as equações de fluxo de potência ativa e reativa no ramo k-m podem ser escritas como:

$$P_{km} = (a_{km}v_k)^2 g_{km} + (a_{km}v_k)v_m g_{km} cos(\theta_{km} + \psi_{km}) - (a_{km}v_k)v_m b_{km} sen(\theta_{km} + \psi_{km})$$
(2.3)

$$Q_{km} = -(a_{km}v_k)^2(b_{km} + b_{km}^{sh}) -(a_{km}v_k)v_m b_{km}cos(\theta_{km} + \psi_{km}) - (a_{km}v_k)v_m g_{km}sen(\theta_{km} + \psi_{km})$$
(2.4)

onde:

 g_{km} é a condutância no ramo k-m;

 b_{km} é a susceptância no ramo k-m;

 b_{km}^{sh} é a susceptância devido ao elemento shunt no ramo k-m;

líquidas P_k e Q_k injetadas em uma barra k são dadas por:

$$\theta_{km} = \theta_k - \theta_m.$$

Assim, caso o ramo k-m seja uma linha de transmissão, $a_{km}=1$ e $\psi_{km}=0$. Por simplicidade, ao longo desse trabalho serão abordados somente transformadores em fase, portanto $\psi_{km}=0$. Então, as potências ativas e reativa

$$P_k = v_k \sum_{m \in \Lambda_K} a_{km} (G_{km} cos\theta_{km} + B_{km} sen\theta_{km})$$
 (2.5)

$$Q_k = v_k \sum_{m \in \Lambda_K} a_{km} (G_{km} sen\theta_{km} - B_{km} cos\theta_{km})$$
(2.6)

para k=1 a NB, onde:

 Λ_K é formado pelo conjunto Ω_K e pela barra k;

 G_{km} é elemento da matriz de condutância nodal;

 B_{km} é elemento da matriz de susceptância nodal.

As equações (2.1) a (2.6) adotam a convenção de sinais conforme a Figura 1, em que as injeções líquidas de potência são positivas quando entram na barra (geração) e negativas quando saem da barra (carga). Analogamente, os fluxos de potência são considerados positivos quando entram na barra e negativos quando saem da barra.

Então, a modelagem do problema de fluxo de potência pode ser resumida como um sistema de equações das variáveis de fluxo de potência ativa e reativa em função das variáveis módulo de tensões, dos ângulos das barras da rede e dos taps de LTC(Load Tap Changer).

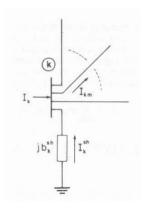


Figura 1: Convenção de sinais para fluxos e injeções de corrente, potência ativa e reativa[1]

2.3 Solução do fluxo de potência pelo Método Newton-Raphson

2.3.1 Rede com barras do tipo PQ, PV e V θ

Considerando uma rede sem LTC, o sistema do problema de fluxo de potência determinado por (2.5) e (2.6) é reescrito como funções das incógnitas de módulo de tensões e dos ângulos das barras da rede conforme (2.7).

onde:

$$\overline{P} = \begin{bmatrix} P_1 \\ \vdots \\ P_k \\ \vdots \\ P_m \\ \vdots \\ P_{NB} \end{bmatrix} \qquad \begin{bmatrix} Q_1 \\ \vdots \\ Q_k \\ \vdots \\ Q_m \\ \vdots \\ Q_{NB} \end{bmatrix} \qquad \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_k \\ \vdots \\ \theta_m \\ \vdots \\ \theta_{NB} \end{bmatrix} \qquad \overline{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_k \\ \vdots \\ v_m \\ \vdots \\ v_{NB} \end{bmatrix}$$
(2.8)

O problema de cálculo de fluxo de potência é multivariado e usualmente possui múltiplas soluções. Portanto, a especificação de algumas variáveis a priori permite que a solução encontrada seja próxima do ponto de operação desejado, ou seja, possibilita que algumas características do sistema sejam obedecidas. Aqui, a busca pela solução do problema de fluxo de potência será feita utilizando o método de Newton-Raphson conforme descrito em [1].

Determinar o ponto de operação de uma rede elétrica formada apenas por barras do tipo PQ, PV e V θ , é sinônimo de encontrar a solução de (2.7)

em que as potências calculadas atendem aos valores especificados para elas.

Após a finalização do processo de Newton-Raphson, os resultados obtidos para as incógnitas são combinados com as grandezas determinadas a priori-ângulo da barra de referência angular e tensões das barras de tensão controlada, e utilizados na etapa posterior, que consiste em resolver (2.5) para barras swing e (2.6) para barras swing e do tipo PV.

Dessa forma, o sistema de equações a ser resolvido pelo método de Newton-Raphson é composto por duas equações e duas incógnitas para cada barra PQ e uma equação e uma incógnita para cada barra PV. Ou seja, se N_{PQ} e N_{PV} representam as quantidades de barras PQ e PV, respectivamente, trata-se de um sistema de $2N_{PQ} + N_{PV}$ equações algébricas não lineares com o mesmo número de incógnitas.

As equações que compõem este sistema podem ser escritas do seguinte modo:

[A D] [D Desp] ([o])

 $g = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} P - P^{esp} \\ Q - Q^{esp} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \theta \\ v \end{bmatrix} \end{pmatrix}$ (2.9)

e é resolvido através dos seguintes passos:

- 1. calculam-se os valores de P_k e Q_k utilizando os valores atuais de θ_k e v_k ;
- 2. determinam-se o resíduo de P_k , sendo $\Delta P_k \triangleq P_k P_k^{esp}$ e o resíduo de Q_k , sendo $\Delta Q_k \triangleq Q_k Q_k^{esp}$;
- 3. comparam-se os resíduos com a tolerância ϵ especificada. Caso $m\acute{a}x|\Delta P_k| \leq \epsilon$ e $m\acute{a}x|\Delta Q_k| \leq \epsilon$, aceita-se a solução atual e o processo iterativo é encerrado. Caso contrário passa-se ao próximo passo;
- 4. lineariza-se a função g em torno do ponto determinado pela solução atual por intermédio da série de Taylor, desprezando-se os termos de ordem superior a 1;
- 5. calcula-se a matriz Jacobiano;
- 6. determinam-se as variações $\Delta \theta_k$ e Δv_k ;
- 7. atualizam-se as variáveis θ_k e v_k ; e
- 8. retorna-se ao passo 1.

Portanto, é possível chegar a um sistema linearizado de (2.5) e (2.6) conforme (2.10):

$$\begin{bmatrix} \Delta \underline{P} \\ \Delta \underline{Q} \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{\partial \underline{P}}{\partial \underline{\theta}} \frac{\partial \underline{P}}{\partial \underline{v}} \\ \frac{\partial \underline{Q}}{\partial \underline{\theta}} \frac{\partial \underline{Q}}{\partial \underline{v}} \end{bmatrix}}_{\mathbf{I}} \begin{bmatrix} \Delta \underline{\theta} \\ \Delta \underline{v} \end{bmatrix}$$
(2.10)

onde:

- $-\Delta \underline{P}$ é o resíduo da potência ativa de todas as barras do sistema, exceto barras do tipo V θ ;
- $-\Delta \underline{Q}$ é o resíduo da potência reativa de todas as barras do sistema, exceto barras do tipo PV e V θ ;
- $-\Delta\underline{\theta}$ é a atualização da variável $\underline{\theta}$ na iteração atual para a próxima iteração para todas as barras do sistema, exceto barras do tipo $V\theta$;
- $-\Delta \underline{v}$ é a atualização da variável \underline{v} na iteração atual para a próxima iteração para todas as barras do sistema, exceto barras do tipo PV e V θ ; e
- J é a matriz Jacobiano.

Portanto, o modelo linearizado de (2.5) e (2.6) inclui Q_k apenas de barras cuja potência reativa líquida seja especificada e P_k apenas de barras cuja potência ativa líquida seja especificada. Nota-se que a barra de referência angular (tipo $V\theta$) não tem P_k especificada, pois a ela alocam-se as perdas ôhmicas da rede elétrica.

2.3.2 Rede com controle local de tensão por LTC

[1] Considerando uma rede com LTC, o sistema de equações o problema de fluxo de potência determinado por (2.5) e (2.6) é reescrito como funções das incógnitas de módulo de tensões, dos ângulos das barras da rede e *taps* dos LTC conforme (2.11).

Em outras palavras, se uma rede elétrica tem uma barra m controlada localmente por um LTC conectado a uma barra k, o sistema do problema de fluxo de potência determinado por (2.5) e (2.6) reescrito como função das incógnitas de módulo de tensões, dos ângulos das barras da rede e dos *taps* de LTC é:

$$\overline{P} = \begin{bmatrix} P_1 \\ \vdots \\ P_k \\ \vdots \\ P_m \\ \vdots \\ P_{NB} \end{bmatrix} \overline{Q} = \begin{bmatrix} Q_1 \\ \vdots \\ Q_k \\ \vdots \\ Q_m \\ \vdots \\ Q_{NB} \end{bmatrix} \overline{\theta} = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_k \\ \vdots \\ \theta_m \\ \vdots \\ \theta_{NB} \end{bmatrix} \overline{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_k \\ \vdots \\ v_m \\ \vdots \\ v_{NB} \end{bmatrix} \overline{a} = \begin{bmatrix} \vdots \\ a_{km} \\ \vdots \\ v_{NB} \end{bmatrix}$$

$$(2.12)$$

Nesse caso, a barra m é do tipo PQV e, portanto, as variáveis de potência ativa líquida injetada (P_m) , de potência reativa líquida injetada (Q_m) e de módulo de tensão (v_m) são especificadas em valores P_m^{esp} , Q_m^{esp} e v_m^{esp} , ou seja, são variáveis de controle. Por outro lado, as variáveis tap do LTC (a_{km}) e de ângulo (θ_m) são incógnitas do problema, ou seja, são variáveis de estado.

As iterações do método Newton-Raphson para a solução de (2.11) utilizam o sistema linearizado (2.13), onde Δa_{km} é a atualização da variável a_{km} na iteração atual para a próxima iteração para barra m do tipo PQV; e a coluna da matriz Jacobiano relativa a a_{km} tem valores diferentes de zero apenas para $\frac{\partial P_k}{\partial a_{km}}$, $\frac{\partial P_m}{\partial a_{km}}$, $\frac{\partial Q_k}{\partial a_{km}}$ e $\frac{\partial P_k}{\partial a_{km}}$.

Por fim, os resultados obtidos para as incógnitas são combinados com as variáveis determinadas a priori - ângulo da barra de referência e tensões das barras de tensão controlada, e então utilizados na etapa posterior, que consiste em resolver (2.5) para barra swing e (2.6) para barras swing e do tipo PV.

2.4 Múltiplas barras *swing*

Com o aumento do emprego de geração distribuída, há necessidade de revisão das ferramentas de fluxo de potência utilizadas para planejamento e operação do sistema. Nesse sentido, em [2], questiona-se a premissa de existência de somente uma barra *swing*, ideia tipicamente empregada em algoritmos para cálculo de fluxo de carga. No lugar disso, sugere-se um modelo de barras *swing* distribuídas. Assim, há maior aderência à realidade de operação de sistemas de potência.

Aqui, o uso de múltiplas barras swing é feito segundo [3]. Assim, a distribuição de perdas ativas entre as barras swing deve ter a mesma relação de proporcionalidade que as gerações de potência ativa das barras swing considerando a rede elétrica sem perdas ativas. Para isso, há inclusão de equações de controle no problema geral de fluxo de potência.

O desejado é ter-se as barras swing com suas gerações ativas livres para variar e um ângulo de tensão de referência angular (fixo). Ou seja, apenas uma barra swing teria seu ângulo fixo. Já nas demais, os ângulos seriam variáveis. Empregando-se este conceito no problema de fluxo de carga, (2.18) ficaria sub-determinado, podendo dar origem a mais de uma solução. O critério adicional para tornar o sistema linearizado de equações quadrado é a distribuição de perdas ativas entre as barras swing. Isto é realizado através da inclusão de equações de controle no problema geral de fluxo de potência¹.

A relação das potências ativas geradas pelas barras swing é especificada pelos respectivos dados iniciais de barra do sistema, assumindo-se que estes representam a distribuição da carga entre as unidades geradoras, sem levar em conta as perdas na rede. Logo, esta relação é obtida através das potências ativas geradas especificadas a priori nas barras swing.

Dado um sistema composto por n barras swing, o critério de proporcionalidade das perdas ativas pode ser traduzido matematicamente por [10]:

$$P_{G1} = \alpha_{12} P_{G2}$$

$$P_{G2} = \alpha_{23} P_{G3}$$
...
$$P_{G(n-1)} = \alpha_{(n-1)n} P_{Gn}$$
(2.14)

¹Usando fluxo de potência lienarizado

A relação entre os fatores de participação das n barras *swing* são obtidas através das seguintes expressões:

$$\alpha_{12} = \frac{P_{G1_0}}{P_{G2_0}}$$

$$\alpha_{23} = \frac{P_{G2_0}}{P_{G3_0}}$$
...
$$\alpha_{(n-1)n} = \frac{P_{G(n-1)_0}}{P_{Gn_0}}$$
(2.15)

onde os sub-índices "0" representam os valores especificados inicialmente, desconsiderando-se as perdas. Reescrevendo (2.14) obtém-se:

$$g_{1} = P_{G1}^{(h)} - \alpha_{12} P_{G2}^{(h)}$$

$$g_{2} = P_{G2}^{(h)} - \alpha_{23} P_{G3}^{(h)}$$
...
$$g_{(n-1)} = P_{G(n-1)}^{(h)} - \alpha_{(n-1)n} P_{Gn}^{(h)}$$
(2.16)

A forma linearizada das novas equações de controle a serem incorporadas ao sistema linearizado das equações de fluxo de potência é:

$$\Delta g_{1} = \Delta P_{G1}^{(h)} - \alpha_{12} \Delta P_{G2}^{(h)}$$

$$\Delta g_{2} = \Delta P_{G2}^{(h)} - \alpha_{23} \Delta P_{G3}^{(h)}$$

$$\cdots$$

$$\Delta g_{(n-1)} = \Delta P_{G(n-1)}^{(h)} - \alpha_{(n-1)n} \Delta P_{Gn}^{(h)}$$
(2.17)

O novo critério estabelecido teve por objetivo criar n-1 novas equações para tornar a matriz Jacobiano inversível. Essas equações são responsáveis por manter a proporcionalidade das gerações das potências ativas pelas barras swing, como desejado. Além disso, há inclusão de n novas incógnitas, os incrementos de potência ativa gerada das n barras swing. Por fim, incorporamse as equações das injeções nodais de potência ativa das n barras swing, fazendo com que a matriz Jacobiano fique quadrada. Em (2.18), é representada a forma genérica do sistema linearizado expandido a ser resolvido a cada iteração pelo método de Newton-Raphson, onde "m" é uma barra de carga.

$$\begin{bmatrix} \Delta P_{1}^{*} \\ \vdots \\ \Delta P_{n}^{*} \\ \Delta P_{n}^{*} \\ \vdots \\ \Delta Q_{m} \\ \vdots \\ \Delta g_{(n-1)} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{1}^{*}}{\partial \theta_{2}} & \cdots & \frac{\partial P_{1}^{*}}{\partial \theta_{n}} & \frac{\partial P_{1}^{*}}{\partial \theta_{n}} & \frac{\partial P_{1}^{*}}{\partial v_{m}} & \cdots & \frac{\partial P_{1}^{*}}{\partial P_{G_{1}}} & \cdots & \frac{\partial P_{1}^{*}}{\partial P_{G_{n}}} \\ \vdots \\ \Delta Q_{m} \\ \vdots \\ \Delta g_{(n-1)} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{1}^{*}}{\partial \theta_{2}} & \cdots & \frac{\partial P_{1}^{*}}{\partial \theta_{n}} & \frac{\partial P_{1}^{*}}{\partial \theta_{n}} & \frac{\partial P_{1}^{*}}{\partial v_{m}} & \cdots & \frac{\partial P_{n}^{*}}{\partial P_{G_{1}}} & \cdots & \frac{\partial P_{n}^{*}}{\partial P_{G_{n}}} \\ \frac{\partial P_{m}}{\partial \theta_{2}} & \cdots & \frac{\partial P_{m}}{\partial \theta_{n}} & \frac{\partial P_{m}}{\partial \theta_{m}} & \frac{\partial P_{m}}{\partial v_{m}} & \cdots & \frac{\partial P_{m}}{\partial P_{G_{1}}} & \cdots & \frac{\partial P_{m}}{\partial P_{G_{n}}} \\ \vdots \\ \Delta g_{1} \\ \vdots \\ \Delta g_{(n-1)} \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{\partial P_{1}^{*}}{\partial \theta_{2}} & \cdots & \frac{\partial P_{1}^{*}}{\partial \theta_{n}} & \frac{\partial P_{1}^{*}}{\partial \theta_{m}} & \frac{\partial P_{1}^{*}}{\partial v_{m}} & \cdots & \frac{\partial P_{n}^{*}}{\partial P_{G_{1}}} & \cdots & \frac{\partial P_{n}^{*}}{\partial P_{G_{n}}} \\ \vdots \\ \Delta g_{(n-1)} \end{bmatrix} \underbrace{\begin{bmatrix} \frac{\partial P_{1}^{*}}{\partial \theta_{2}} & \cdots & \frac{\partial P_{m}^{*}}{\partial \theta_{n}} & \frac{\partial P_{m}}{\partial \theta_{m}} & \frac{\partial P_{m}}{\partial v_{m}} & \cdots & \frac{\partial Q_{m}}{\partial P_{G_{1}}} & \cdots & \frac{\partial Q_{m}}{\partial P_{G_{n}}} \\ \vdots \\ \Delta P_{G_{n}} \end{bmatrix}}_{J} \underbrace{\begin{bmatrix} \Delta \theta_{2} \\ \vdots \\ \Delta \theta_{n} \\ \Delta v_{m} \\ \vdots \\ \Delta P_{G_{n}} \end{bmatrix}}_{J} \underbrace{\begin{bmatrix} \frac{\partial P_{1}^{*}}{\partial \theta_{2}} & \cdots & \frac{\partial P_{1}^{*}}{\partial \theta_{n}} & \frac{\partial P_{1}^{*}}{\partial \theta_{m}} & \frac{\partial P_{1}^{*}}{\partial v_{m}} & \cdots & \frac{\partial P_{m}^{*}}{\partial P_{G_{1}}} & \cdots & \frac{\partial P_{m}^{*}}{\partial P_{G_{n}}} \\ \vdots \\ \Delta P_{G_{n}} \end{bmatrix}}_{J} \underbrace{\begin{bmatrix} \Delta \theta_{2} \\ \vdots \\ \Delta \theta_{n} \\ \Delta v_{m} \\ \vdots \\ \Delta P_{G_{n}} \end{bmatrix}}_{J} \underbrace{\begin{bmatrix} \Delta \theta_{2} \\ \vdots \\ \Delta \theta_{n} \\ \Delta v_{m} \\ \vdots \\ \Delta P_{G_{n}} \end{bmatrix}}_{J} \underbrace{\begin{bmatrix} \Delta \theta_{2} \\ \vdots \\ \Delta \theta_{n} \\ \Delta v_{m} \\ \vdots \\ \Delta P_{G_{n}} \end{bmatrix}}_{J} \underbrace{\begin{bmatrix} \Delta \theta_{2} \\ \vdots \\ \Delta \theta_{n} \\ \Delta v_{m} \\ \vdots \\ \Delta P_{G_{n}} \end{bmatrix}}_{J} \underbrace{\begin{bmatrix} \Delta \theta_{2} \\ \vdots \\ \Delta \theta_{n} \\ \Delta v_{m} \\ \vdots \\ \Delta P_{G_{n}} \end{bmatrix}}_{J} \underbrace{\begin{bmatrix} \Delta \theta_{2} \\ \vdots \\ \Delta \theta_{n} \\ \Delta v_{m} \\ \vdots \\ \Delta v_{m} \\ \vdots$$

Em (2.18), as novas variáveis de estado incorporadas são os incrementos de potência ativa gerada das n barras swing (ΔP_{G1} ... ΔP_{Gn}). Em contrapartida, são incluídas a equação da potência ativa referente a cada barra swing (ΔP_1^* ... ΔP_n^*) e as equações de controle (Δg_1 ... $\Delta g_{(n-1)}$). Assim, se i for uma barra swing, a forma linearizada da equação de potência ativa da barra i é dada por:

$$\Delta P_i^* = P_{Gi}^{(h)} - P_{Li} - P_i^{(h)} = -\Delta P_{Gi} + \frac{\partial P_i^*}{\partial \theta} \Delta \underline{\theta} + \frac{\partial P_i^*}{\partial v} \Delta \underline{v}$$
 (2.19)

Ao final da h-ésima iteração do processo de solução, a potência ativa gerada da barra i é atualizada por:

$$P_{Gi}^{(h+1)} = P_{Gi}^{(h)} + \Delta P_{Gi}^{(h)} \tag{2.20}$$

Em (2.18), os elementos das colunas adicionadas à matriz Jacobiano são todos nulos, exceto nas posições correspondentes às injeções de potência ativa das barras *swing*, onde as derivadas são iguais a -1. Nas linhas das equações adicionais, somente os elementos das colunas referentes aos incrementos de potência ativa gerada das barras *swing* relacionadas são diferentes de zero. Portanto, a matriz Jacobiano é:

$$J = \begin{bmatrix} \frac{\partial P_1}{\partial \theta_2} & \dots & \frac{\partial P_1}{\partial \theta_n} & \dots & \frac{\partial P_1}{\partial \theta_m} & \frac{\partial P_1}{\partial v_m} & \dots & -1 & \dots & 0 \\ \vdots & & & & & & & & \\ \frac{\partial P_n}{\partial \theta_2} & \dots & \frac{\partial P_n}{\partial \theta_n} & \dots & \frac{\partial P_n}{\partial \theta_m} & \frac{\partial P_n}{\partial v_m} & \dots & 0 & \dots & -1 \\ \vdots & & & & & & & & \\ \frac{\partial P_m}{\partial \theta_2} & \dots & \frac{\partial P_m}{\partial \theta_n} & \dots & \frac{\partial P_m}{\partial \theta_m} & \frac{\partial P_m}{\partial v_m} & \dots & 0 & \dots & 0 \\ \vdots & & & & & & & & \\ \frac{\partial Q_m}{\partial \theta_2} & \dots & \frac{\partial Q_m}{\partial \theta_n} & \dots & \frac{\partial Q_m}{\partial \theta_m} & \frac{\partial Q_m}{\partial v_m} & \dots & 0 & \dots & 0 \\ \vdots & & & & & & & & \\ \frac{\partial g_1}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_n} & \dots & \frac{\partial g_1}{\partial \theta_m} & \frac{\partial g_1}{\partial v_m} & \dots & 1 & \dots & 0 \\ \vdots & & & & & & & \\ \frac{\partial g_{(n-1)}}{\partial \theta_2} & \dots & \frac{\partial g_{(n-1)}}{\partial \theta_n} & \dots & \frac{\partial g_{(n-1)}}{\partial \theta_m} & \frac{\partial g_{(n-1)}}{\partial v_m} & \dots & \frac{\partial g_{(n-1)}}{\partial P_{G1}} & \dots & -\alpha_{N(N-1)} \end{bmatrix}$$

$$(2.21)$$

Uma característica importante deste modelo é que as equações de potência ativa das barras *swing* são mantidas no sistema matricial do fluxo de potência. No entanto, na modelagem correspondente ao modelo clássico, as equações de potência ativa das barras *swing* são removidas do problema.

2.5 Resumo do capítulo

No problema do fluxo de carga, há injeção de potência através dos geradores e extração de potência pelas cargas de uma rede elétrica. Assim, a busca pela solução consiste em avaliar como a rede responde à essas interferências externas levando em consideração a primeira lei Kirchhoff e a segunda lei de Kirchoff, segundo a qual o fluxo de potência é função do estado de elementos da rede. Em outras palavras, a injeção líquida de potência em um nó da rede é dado pela tensão dos nós, pelos valores dos taps e pelas características intrínsecas dos elementos do sistema elétrico.

A resolução numérica do problema do fluxo de potência é feita utilizandose primeiramente o método de Newton Raphson com os dados das barras com potência especificada a priori. Desse modo, há ajuste das variáveis de estado: módulo e ângulo de tensões e *tap* de LTC, de tal modo que as especificações de potência sejam atendidas. Em seguida, são calculadas as injeções ou extrações líquidas de potência das barras restantes, considerando-se que as especificações de tensão são respeitadas e que as perdas do sistema podem ser compensadas. Ou seja, aqui considera-se infinita a capacidade dos geradores.

Além das restrições já citadas, inclui-se uma relação adicional: as proporções entre as gerações de potência ativa das barras *swing* no sistema sem perdas devem ser iguais às do sistema com perdas. Ou seja, as perdas do sis-

tema são distribuidas entre as barras swing na mesma proporção de geração de potência ativa dessas barras quando considera-se a rede sem perdas.

Assim, do ponto de vista do trabalho nesta dissertação, deve-se ressaltar que a modelagem do problema de fluxo de potência utilizando o método de Newton-Raphson permite contemplar dois mecanismos importantes: o controle de tensão e o despacho de potência ativa. A inserção desses mecanismos é feita incluindo-se novas equações controle.

3 Estabilidade de tensão

Mecanismos de controle de tensão garantem a capacidade de um sistema elétrico de manter tensões aceitáveis em todas as barras da rede sob condições normais e após ser submetido a distúrbios. A perda da estabilidade de tensão ocorre em um sistema quando há um declínio progressivo e incontrolável na tensão. Isso pode ser consequência de uma perturbação, um aumento na demanda de carga ou outro tipo de alteração nas condições do sistema elétrico.

O uso extensivo de compensação de potência reativa permite que linhas de transmissão sejam usadas perto de sua capacidade máxima, o que pode levar a problemas de estabilidade de tensão na operação de sistemas elétricos.

Ao longo deste capítulo será descrito como o fenômeno de estabilidade de tensão em redes elétricas está associado às condições nodais do sistema, sendo relacionado ao máximo fluxo de potência ativa e reativa transmitida dos geradores para as cargas. Além disso, será detalhado como ações de controle de tensão tem o efeito oposto ao esperado quando um sistema elétrico enfrenta problemas relacionados a esse fenômeno.

3.1 O fenômeno

Para compreensão do fenômeno de estabilidade de tensão será analisado um circuito elétrico simples, conforme Figura 2, formado por um gerador de capacidade infinita, uma carga modelada por potência constante e uma linha de transmissão, de impedância $Z_t \angle \alpha_t$ sem limite térmico. Os valores das admitâncias shunt da linha de transmissão serão desprezados sem perda de generalidade.

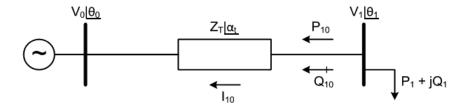


Figura 2: Circuito de duas barras

Além disso, são considerados:

$$v_0 = 1$$
pu
 $\theta_0 = 0^\circ$
 $Z_t = 0,2$ pu
 $\alpha = 70^\circ$
 $0 < P_0 < +\infty$
 $-\infty < Q_0 < +\infty$

O conjugado da potência aparente saindo da barra 1 para a barra 0 é:

$$S_{10}^* = P_{10} - jQ_{10} = v_1^* I_{10} (3.1)$$

onde

$$I_{10} = \frac{v_1 \angle \theta_1 - v_0 \angle \theta_0}{Z_t \angle \alpha_t} \tag{3.2}$$

е

$$v_1^* = v_1 \angle -\theta_1 \tag{3.3}$$

Substituindo (3.2) e (3.3) em (3.1), conclui-se que:

$$S_{10}^* = \frac{v_1 v_0 cos(\theta_{10} + \alpha_t)}{Z_t} - j \left[\frac{v_1^2 sen(\alpha_t) - v_1 v_0 sen(\theta_{10} + \alpha_t)}{Z_t} \right]$$
(3.4)

Comparando (3.1) e (3.4), entende-se que:

$$P_{10} = -P_1 = \frac{v_1^2 cos(\alpha_t) - v_1 v_0 cos(\theta_{10} + \alpha_t)}{Z_t}$$
(3.5)

$$Q_{10} = -Q_1 = \frac{v_1^2 sen(\alpha_t) - v_1 v_0 sen(\theta_{10} + \alpha_t)}{Z_t}$$
(3.6)

Na Figura 3 é apresentado um conjunto de curvas em que cada uma delas mostra a potência ativa consumida na carga $(-P_{10})$ em função da defasagem angular de tensão (θ_1) para um dado valor de tensão v_1 na carga. Em todas as curvas, nota-se que o máximo da potência ativa que pode ser transmitida à carga ocorre para valores de $\theta_1 = -\alpha_t$. Esse fato dá origem ao conceito de limite de estabilidade estático angular (LEEA) - linha vertical que passa por $\theta_1 = -\alpha_t$ e divide as regiões de operação instável e de operação estável.

Na Figura 4 é mostrado um gráfico tridimensional para a potência ativa dada por (3.5), ou seja, $P_1(v_1, \theta_1)$.

Tanto através da Figura 3 quanto da Figura 4, pode-se constatar que a medida que v_1 aumenta (através do suporte de potência reativa), o valor máximo possível para P_1 também aumenta. Apesar disso, em ambas as figuras mostra-se que P_1 não pode crescer indefinidamente mesmo que haja capacidade geração infinita de geração de potência reativa para tal. Ou seja, há uma máxima carga "maximum maximorum" P_1 que pode ser alimentada pela rede.

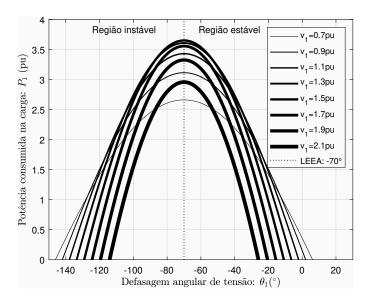


Figura 3: Limite de estabilidade angular.

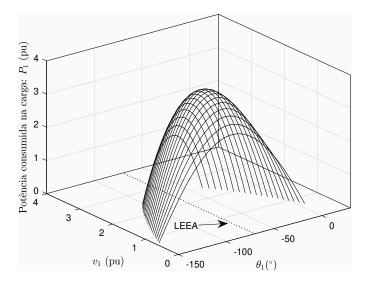


Figura 4: Maximum maximorum observável em figura tridimensional

A existência de uma carga máxima que pode ser alimentada pela rede elétrica é uma questão importante, o que motiva a análise do sistema fora do plano $P_1\theta_1$. Portanto, verificam-se as características do sistema elétrico no plano θ_1v_1 .

Em (3.5) e (3.6) a potência na barra de carga é função de duas variáveis: o módulo e o ângulo de sua tensão. Então, fixando-se P_1 em (3.5), pode-se variar θ_{10} e calcular o valor de v_1 . Assim, é possível traçar a curva P_1 constante no plano θ_1v_1 . Isso equivale a traçar curvas de nível perpendiculares ao plano θ_1v_1 da Figura 4. Analogamente, fixando-se Q_1 em (3.6), pode-se variar θ_{10} e calcular o valor de v_1 . Assim, seria possível traçar a curva Q_1 constante no plano θ_1v_1 .

Nesse contexto, na Figura 5 mostram-se curvas de nível para alguns valores de P_1 constante e Q_1 constante.

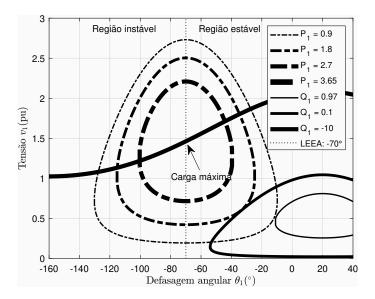


Figura 5: P_1 e Q_1 constantes no plano $\theta_1 v_1$

Assim, observa-se novamente a existência de uma máxima carga que pode ser atendida – "maximum maximorum" – mesmo com compensação ilimitada de potência reativa. Ou seja, as curvas das Figuras 3, 4 e 5 indicam uma máxima potência que pode ser transmitida para uma carga mesmo que o fator de potência da barra 1 pudesse ser totalmente capacitivo.

3.2 O Limite de Estabilidade de Tensão (LET)

O sistema elétrico da Figura 2 com fator de potência fixo será analisado, sem que haja perda de generalidade. Na Figura 6 são exibidas três possibilidades de solução para tensão na carga para o sistema elétrico da Figura 2.

Para esse sistema elétrico (Figura 2), o fator de potência é $\phi = 41, 19^{\circ}$, calculado usando:

$$tan\phi = \frac{\frac{v_1^2 sen(\alpha_t) - v_1 v_0 sen(\theta_{10} + \alpha_t)}{Z_t}}{\frac{v_1^2 cos(\alpha_t) - v_1 v_0 cos(\theta_{10} + \alpha_t)}{Z_t}}$$
(3.7)

Já v_1 pode ser calculado usando-se (3.5), (3.6) e (3.7), gerando:

$$v_1 = \frac{v_0[sen(\theta_{10} + \alpha_t) - tan(\phi) + cos(\theta_{10} + \alpha_t)]}{sen(\alpha_t) - tan(\phi) + cos(\alpha_t)}$$
(3.8)

Na Figura 6, caso seja considerado o par de curvas P_a e Q_a (correspondente à potência aparente $S_a = P_a + jQ_a$ com fator de potência $\phi = 41, 19^{\circ}$),

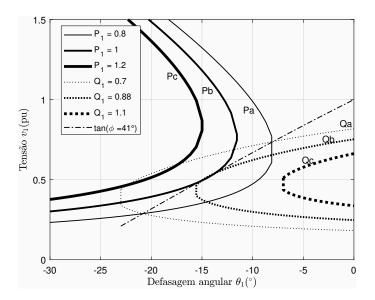


Figura 6: Soluções no plano $v\theta$ para um fator de potência constante

observa-se que ambas se cortam em dois pontos, ou seja, em duas soluções de tensão. Portanto, para uma única carga existem duas soluções (θ_1, v_1) .

Caso haja aumento de carga mantendo o fator de potência ϕ , as curvas de potência ativa e reativa se afastam. Como exemplo, basta observar o par de curvas P_b e Q_b (correspondente à potência aparente $S_b = P_b + jQ_b$ com fator de potência $\phi = 41, 19^{\circ}$). Nota-se que ambas se tocam em um único ponto. Esse ponto corresponde à carga máxima que pode ser alimentada com esse fator de potência, já que, para cargas maiores, as duas curvas (P_c e Q_c , por exemplo) não se cortam (o que significa que não há solução de tensão).

Repetindo-se os mesmos gráficos para diferentes fatores de potência conclui-se que, para cada fator de potência, existe uma carga ativa e reativa máxima que pode ser alimentada. Esse máximo é determinado pela relação entre a impedância da carga e a impedância da linha de transmissão, conforme será visto nessa seção.

A corrente que flui no circuito mostrado na Figura 7, correspondente ao diagrama unifilar da Figura 2 é:

$$\dot{I_{01}} = \frac{\dot{v_0}}{Z_t \angle \alpha_t + Z_c \angle \phi} \tag{3.9}$$

$$I_{01} = \frac{v_0}{\sqrt{(Z_t cos(\alpha_t) + Z_c cos(\phi))^2 + (Z_t sen(\alpha_t) + Z_c sen(\phi))^2}}$$
(3.10)

A potência ativa que flui a partir da barra de carga, que é igual ao negativo da potência consumida na carga, é:

$$P_{10} = -P_1 = -I_{01}^2 Z_c cos(\phi) (3.11)$$

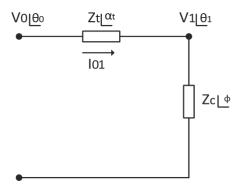


Figura 7: Circuito com as Impedâncias da Transmissão e da Carga

A potência elétrica injetada na barra 1 pode ser calculada substituindo-se (3.10) em (3.11):

$$P_{10} = -\frac{v_0^2 Z_c cos(\phi)}{Z_t^2 + 2Z_t Z_c (cos(\alpha_t) cos(\phi) + sen(\alpha_t) sen(\phi)) + Z_c^2}$$
(3.12)

Reescrevendo (3.12) obtem-se (3.13):

$$P_{10} = \frac{v_0^2 Z_c cos(\phi)}{Z_t^2 + Z_c^2 + 2Z_t Z_c cos(\alpha - \phi)}$$
(3.13)

De (3.13), fazendo-se $\partial P_1/\partial Z_c=0$, encontra-se o valor de Z_c que maximiza a potência ativa na carga : $Z_c=Z_t$. Adicionalmente $\partial^2 P_1/\partial Z_c^2<0$ certifica que $Z_c=Z_t$ é um ponto de máximo.

Para o ponto de máximo carregamento (onde $P_1 = P_1^{m\acute{a}x}$), o módulo da impedância da carga é igual ao módulo da impedância da linha de transmissão: $Z_c = Z_t$. Por outro lado, como $P_1 = -P_{10}$, então de (3.13), tem-se:

$$P_1^{m\acute{a}x} = \frac{-v_0^2 Z_c cos(\phi)}{2Z_c^2 [1 + cos(\alpha_t - \phi)]} = -\frac{v_0^2 cos(\phi)}{4Z_c cos^2(\frac{\alpha_t - \phi}{2})} = \frac{v_0^2 cos(\phi)}{4Z_c cos^2(\frac{\alpha_t - \phi}{2})} \quad (3.14)$$

Para $P_1^{m\acute{a}x}$ e uma dada impedância de carga Z_c com fator de potência ϕ :

$$v_1 = Z_c I_{01} : v_1 = \frac{v_0 Z_c}{\sqrt{2Z_t^2 (1 + \cos(\alpha_t - \phi))}} : v_1^c = \frac{v_0}{2\cos(\frac{\alpha_t - \phi}{2})}$$
(3.15)

onde v_1^c é a tensão crítica na barra 1, ou seja, a tensão na barra 1 no ponto de carregamento máximo.

Como, $\dot{v_1} = \dot{Z_c} \dot{I_{01}}$, tem-se:

$$v_1 \angle \theta_1 = Z_c \angle \phi \frac{\dot{v_0}}{Z_t \angle \alpha_t + Z_c \angle \phi}$$
 (3.16)

Considerando só a parte real:

$$v_1^c = \frac{v_0}{2\cos\theta_1} \tag{3.17}$$

Igualando-se (3.15) e (3.17):

$$v_1^c = \frac{v_0}{2\cos\theta_1} = \frac{v_0}{2\cos(\frac{\alpha_t - \phi}{2})} :: \theta_1^c = \frac{\alpha_t - \phi}{2}$$
 (3.18)

O conjunto dos pontos que satisfazem a relação $Z_c = Z_t$ formam o Limite de Estabilidade de Tensão – LET, que é o lugar geométrico das tensões em módulo e ângulo (v_1 e θ_1), onde o módulo da impedância equivalente da carga é igual ao módulo da impedância da linha de transmissão série. O LET representa os pontos da máxima transmissão de potência à carga, uma para cada fator de potência (o que depende de eventual compensação reativa da carga). Em outras palavras, o LET passa pelas "pontas" de todas as curvas para ϕ constante no plano Sv, isto é, une todos os pontos de máximo carregamento. Ou ainda, variando-se ϕ e utilizando-se (3.18) traça-se o LET sobre as curvas de ϕ constante no plano Sv, conforme ilustrado na Figura 8.



Figura 8: Curva ϕ constante e o limite de estabilidade de tensão no plano Sv.

Na Figura 8 é mostrado um exemplo onde estão representadas diferentes curvas, uma para cada fator de potência. Observa-se que, para cada valor de ϕ há uma potência máxima que pode ser transferida à carga. Além disso, notase que para pontos de operação acima do LET, para uma mesma potência S_1 que pode ser transferida para a barra 1, a tensão v_1 é maior quanto mais for capacitivo o fator de potência. Por exemplo, considerando $S_1 = 2,5$ pu e fator de potência $\phi = -30^{\circ}$, o ponto de operação acima do LET é o ponto A. Se o sistema for tornado mais capacitivo, com $\phi = -45^{\circ}$, o ponto de operação passa a ser A'. Logo, nota-se $v_{A'} > v_A$. Por outro lado, para pontos de operação abaixo do LET, para uma mesma potência S_1 que pode ser transferida para a barra 1, a tensão v_1 é menor quanto mais for capacitivo o fator de potência. Por

exemplo, considerando $S_1 = 2,5$ pu e fator de potência $\phi = -30^{\circ}$, o ponto de operação abaixo do LET é o ponto B. Se o sistema for tornado mais capacitivo, com $\phi = -45^{\circ}$, o ponto de operação passa a ser B'. Logo, nota-se $v_{B'} < v_B$. Segundo [4], normalmente só os pontos de operação acima dos pontos críticos apresentam condições de operação satisfatórias.

O LET separa as duas regiões de operação: a região superior da curva para ϕ constante, chamada de região normal de operação, onde se tem controle sobre a tensão, e a região inferior da curva para ϕ constante, chamada de região anormal de operação, onde as ações de controle de tensão baseadas em inserção se capacitores podem ter efeito oposto ao esperado.

3.3 Avaliação da estabilidade de tensão

A operação na parte inferior da curva Sv dificulta os procedimentos corretos para controle de tensão e, portanto, é necessário obter métodos capazes de avaliar se o ponto de operação de cada barra se encontra na parte inferior ou superior desta curva. Além disso, também é necessário mensurar a distância entre o ponto de operação corrente e o ponto de máximo caregamento.

O método da matriz [D'] explora essa relação entre as curvas ϕ constante no plano S_1v_1 e ϕ constante no plano θ_1v_1 para diferentes níveis de potência aparente S_1 . Assim, esse método é uma ferramenta analítica de avaliação das condições nodais com base em modelo matemático simples, mas poderoso, de uma interpretação física direta do fenômeno.

A seguir será descrita a importância do módulo do determinante da matriz [D'] para estudo da capacidade de aumento de carga do sistema elétrico. Além disso, será abordada a utilização do sinal do determinante da matriz [D'] para determinar região de operação. Índices abrangentes e significativos são deduzidos [5].

3.3.1 Método da matriz [D']

Considerando uma barra i do tipo PQ, o sistema linearizado 2.13) pode ser reescrito fazendo-se o deslocamento para baixo das equações referentes à barra i em análise e para a direita das colunas referentes às suas variáveis:

$$\begin{bmatrix} \Delta P_{k} \\ \vdots \\ \Delta P_{m} \\ \vdots \\ \Delta Q_{m} \\ \vdots \\ \Delta Q_{i} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{k}}{\partial \theta_{k}} & \cdots & \frac{\partial P_{k}}{\partial \theta_{m}} & \cdots & \frac{\partial P_{k}}{\partial u_{k}} & \cdots & \frac{\partial P_{k}}{\partial \theta_{k}} & \cdots & \frac{\partial P_{k}}{\partial \theta_{i}} & \frac{\partial P_{k}}{\partial v_{i}} \\ \vdots \\ \Delta Q_{m} \\ \vdots \\ \Delta Q_{i} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{m}}{\partial \theta_{k}} & \cdots & \frac{\partial P_{m}}{\partial \theta_{m}} & \cdots & \frac{\partial P_{m}}{\partial v_{k}} & \cdots & \frac{\partial P_{m}}{\partial u_{k}} & \cdots & \frac{\partial P_{m}}{\partial \theta_{i}} & \frac{\partial P_{m}}{\partial v_{i}} \\ \vdots \\ \Delta Q_{m} \\ \vdots \\ \Delta Q_{i} \end{bmatrix} = \begin{bmatrix} \frac{\partial Q_{k}}{\partial \theta_{k}} & \cdots & \frac{\partial Q_{m}}{\partial \theta_{m}} & \cdots & \frac{\partial Q_{k}}{\partial v_{k}} & \cdots & \frac{\partial Q_{k}}{\partial u_{k}} & \cdots & \frac{\partial Q_{k}}{\partial \theta_{i}} & \frac{\partial Q_{k}}{\partial v_{i}} \\ \vdots \\ \Delta Q_{i} \end{bmatrix} = \begin{bmatrix} \frac{\partial Q_{m}}{\partial \theta_{k}} & \cdots & \frac{\partial Q_{m}}{\partial \theta_{m}} & \cdots & \frac{\partial Q_{m}}{\partial v_{k}} & \cdots & \frac{\partial Q_{m}}{\partial u_{k}} & \cdots & \frac{\partial Q_{m}}{\partial \theta_{i}} & \frac{\partial Q_{m}}{\partial v_{i}} \\ \vdots \\ \Delta Q_{i} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{i}}{\partial \theta_{k}} & \cdots & \frac{\partial P_{i}}{\partial \theta_{m}} & \cdots & \frac{\partial P_{i}}{\partial v_{k}} & \cdots & \frac{\partial P_{i}}{\partial u_{k}} & \cdots & \frac{\partial P_{i}}{\partial \theta_{i}} & \frac{\partial P_{i}}{\partial v_{i}} \\ \vdots \\ \Delta Q_{i} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{i}}{\partial \theta_{k}} & \cdots & \frac{\partial P_{i}}{\partial \theta_{m}} & \cdots & \frac{\partial P_{i}}{\partial v_{k}} & \cdots & \frac{\partial P_{i}}{\partial u_{k}} & \cdots & \frac{\partial P_{i}}{\partial \theta_{i}} & \frac{\partial P_{i}}{\partial v_{i}} \\ \vdots \\ \Delta Q_{i} \end{bmatrix} = \begin{bmatrix} \Delta \theta_{k} \\ \vdots \\ \Delta \theta_{i} \\ \Delta V_{i} \end{bmatrix}$$

$$(3.19)$$

Se as partições da matriz Jacobiano forem identificadas pelas submatrizes A, B, C e D, então (3.19) pode ser reformulada conforme:

$$\begin{bmatrix}
\Delta \underline{P'} \\
\Delta \underline{Q'} \\
\overline{\Delta P_i} \\
\Delta Q_i
\end{bmatrix} = \begin{bmatrix}
A & B \\
\overline{C} & \overline{D}
\end{bmatrix} \begin{bmatrix}
\Delta \underline{\theta'} \\
\Delta \underline{v'} \\
\Delta \underline{a'} \\
\overline{\Delta \theta_i} \\
\Delta v_i
\end{bmatrix} (3.20)$$

onde:

- $-\Delta \underline{P'}$ é o vetor de potência ativa relativa a todas as barras do sistema, exceto a barra de tipo $V\theta$ e para a barra i; e
- $-\Delta \underline{Q'}$ é o vetor de potência reativa relativa as todas as barras do sistema, exceto barras do tipo PV, V θ e para a barra i.

Como o objetivo é entender como variações infinitesimais na carga (ou na geração) ΔP_i e ΔQ_i influenciam Δv_i e $\Delta \theta_i$ somente para a barra i de um sistema multinó, então desprezam-se as injeções de potência nas outras barras. Na prática, isso se traduz em $\Delta \underline{P'} = 0$ e $\Delta \underline{Q'} = 0$. Todas as barras com potência ativa livre e potência reativa livre são responsáveis por absorver as variações de ΔP_i , ΔQ_i e de perdas ativas e reativas. Assim:

$$\begin{bmatrix} \Delta P_i \\ \Delta Q_i \end{bmatrix} = [D - CA^{-1}B] \begin{bmatrix} \Delta \theta_i \\ \Delta v_i \end{bmatrix}$$
 (3.21)

ou simplesmente:

$$\begin{bmatrix} \Delta P_i \\ \Delta Q_i \end{bmatrix} = [D'] \begin{bmatrix} \Delta \theta_i \\ \Delta v_i \end{bmatrix} \tag{3.22}$$

Nota-se que (3.22) relaciona as grandezas ΔP_i , ΔQ_i , Δv_i e $\Delta \theta_i$ para uma barra i, que pode ser de qualquer dos tipos mencionados, conforme desejado.

3.3.2 Módulo do Determinante da Matriz [D']

Em um sistema de duas barras, o fluxo de potência que chega à barra i é igual à carga consumida. Considerando k como a barra de geração, o determinante da matriz [D'] é calculado por:

$$det[D'] = \frac{\partial P_i}{\partial \theta_i} \frac{\partial Q_i}{\partial v_i} - \frac{\partial P_i}{\partial v_i} \frac{\partial Q_i}{\partial \theta_i}$$
(3.23)

onde, de acordo com (2.5) e (2.6):

$$P_i = v_i^2 G_{ii} + v_i v_k (Gikcos\theta_{ik} + B_{ik}sen\theta_{ik})$$
(3.24)

$$Q_i = -v_i^2 B_{ii} + v_i v_k (Giksen\theta_{ik} - B_{ik}cos\theta_{ik})$$
(3.25)

Derivando (3.24) e (3.25) e substituindo em (3.23), tem-se:

$$det[D'] = -v_i v_k^2 (G_{ik}^2 + B_{ik}^2) + 2v_i^2 B_{ii} (v_k G_{ik} sen \theta_{ik} - v_k B_{ik} cos \theta_{ik})$$

$$-2v_i^2 G_{ii} (v_k G_{ik} cos \theta_{ik} + v_k B_{ik} sen \theta_{ik})$$
(3.26)

Como $Y_{ik}^2 = G_{ik}^2 + B_{ik}^2$, então, multiplicar ambos os lados de (3.26) por v_i resulta em:

$$det[D'] \cdot v_{i} = -(v_{i}v_{i}Y_{ik})^{2} + 2v_{i}^{2}B_{ii}[v_{i}v_{k}(G_{ik}sen\theta_{ik} - B_{ik}cos\theta_{ik})] -2v_{i}^{2}G_{ii}[v_{i}v_{k}(G_{ik}cos\theta_{ik} + B_{ik}sen\theta_{ik})]$$
(3.27)

Por outro lado, a potência aparente injetada na barra i é dada por $S_i = P_i + jQ_i$. Então, de (3.24) e (3.25):

$$S_{i}^{2} = Pi^{2} + Qi^{2} = v_{i}^{4}(G_{ii}^{2} + B_{ii}^{2}) + v_{i}^{2}v_{k}^{2}Y_{ik}^{2} + 2v_{i}^{2}G_{ii}v_{i}v_{k}(G_{ik}cos\theta_{ik} + B_{ik}sen\theta_{ik})$$

$$-2v_{i}^{2}B_{ii}v_{i}v_{k}(G_{ik}sen\theta_{ik} - B_{ik}cos\theta_{ik})$$

$$(3.28)$$

Se $S_{i0}^2 \equiv v_i^4 (G_{ii}^2 + B_{ii}^2)$, comparando-se (3.27) e (3.28) conclui- se que:

$$det[D'] \cdot v_i = S_{i0}^2 - S_i^2 \tag{3.29}$$

O termo S_{i0}^2 é função do elemento diagonal da matriz admitância de barras e do módulo da tensão na barra i. Aumentando gradativamente o valor da potência injetada S_i , a potência máxima injetada será alcançada quando S_i^2 for igual a S_{i0}^2 o que corresponde a $det[D'] \cdot v_i = 0$.

Em resumo, usando as informações do módulo do determinante da matriz [D'] para um sistema de duas barras:

- $-S_i^2$ é a potência injetada na barra i (no ponto de operação em análise) ao quadrado;
- $-S_{i0}^2$ é a potência aparente máxima que pode fluir para a barra i, para um certo módulo de tensão ao quadrado; e
- $det[D'] \cdot v_i$ é o indicador da distância de S^2_i a S^2_{io} .

Com essa percepção, o resultado obtido em (3.29) é importante para o estudo do carregamento da rede. Por esse motivo, o mesmo raciocínio será expandido para um sistema elétrico multinó.

De (3.20) pode-se assumir que:

$$D = \begin{bmatrix} \frac{\partial P_i}{\partial \theta_i} & \frac{\partial P_i}{\partial v_i} \\ \frac{\partial Q_i}{\partial \theta_i} & \frac{\partial Q_i}{\partial v_i} \end{bmatrix} \equiv \begin{bmatrix} x & z \\ y & u \end{bmatrix}$$
(3.30)

е

$$-CA^{-1}B \equiv \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} \tag{3.31}$$

De acordo com (3.21) e (3.22),

$$det[D'] = det[D - CA^{-1}B] = det \begin{bmatrix} x & z \\ y & u \end{bmatrix} + \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$$
(3.32)

então:

$$det[D'] = [xu - yz] + [xb_4 - yb_3] + [b_1u - b_2z] + [b_1b_4 - b_2b_3].$$
 (3.33)

O resultado obtido em (3.29) para um sistema de duas barras pode ser estendido ao sistema multinó. Multiplicando todos os termos de (3.33) por v_i :

$$det[D']v_i = det[D]v_i - \Delta det \cdot v_i$$

com $\Delta det \cdot v_i \equiv [(xb_4 - yb_3) + (b_1u - b_2) + (b_1b_4 - b_2b_3)]v_i$

Portanto, analogamente a (3.29):

$$det[D']v_i = S_{i0}^2 - S_i^2 - \Delta det \cdot v_i \tag{3.34}$$

е

$$\Delta det \cdot v_i = (det[D] - det[D'])v_i. \tag{3.35}$$

Em resumo, usando as informações do módulo do determinante da matriz [D'] para um sistema multinó:

- $-S_i^2$ é a potência injetada na barra i (no ponto de operação em análise) ao quadrado;
- $-S_{i0}^2$ seria a potência aparente máxima que pode fluir para a barra i ao quadrado, para um certo módulo de tensão constante caso o sistema fosse de duas barras;

- $-\Delta det \cdot v_i$ indica a potência injetada no restante do sistema que limita a injeção de potência na barra i ao quadrado; e
- $-\det[D']\cdot v_i$ é o indicador entre o que que está sendo injetado, ao quadrado S_i^2 e o máximo estimado ao quadrado S_{i0}^2 levando em conta todo o sistema $\Delta \det v_i$.

3.3.3 Sinal do Determinante da Matriz [D']

Os vetores gradiente de potência ativa e reativa podem ser escritos como:

$$\dot{\nabla}P = \frac{\partial P_i}{\partial \theta_i}\vec{i} + \frac{\partial P_i}{\partial v_i}\vec{j} + 0\vec{k}$$

$$\dot{\nabla}Q = \frac{\partial Q_i}{\partial \theta_i}\vec{i} + \frac{\partial Q_i}{\partial v_i}\vec{j} + 0\vec{k}$$
(3.36)

onde \vec{i} , \vec{j} e \vec{k} são vetores unitários de uma base ortonormal.

Aplicando-se a operação de produto vetorial, tem-se:

$$\dot{\nabla}P \times \dot{\nabla}Q = \left[\frac{\partial P_i}{\partial \theta_i} \frac{\partial Q_i}{\partial v_i} - \frac{\partial P_i}{\partial v_i} \frac{\partial Q_i}{\partial \theta_i}\right] \vec{k}.$$
 (3.37)

A combinação de (3.23) e (3.37) resulta em:

$$\dot{\nabla}P \times \dot{\nabla}Q = \det[D']\vec{k} = |\dot{\nabla}P||\dot{\nabla}Q|sen\beta\vec{k}$$
 (3.38)

onde β é o ângulo entre $\dot{\nabla}P$ e $\dot{\nabla}Q$. Portanto:

$$det[D']\vec{k} = |\dot{\nabla}P||\dot{\nabla}Q|sen\beta \tag{3.39}$$

onde:

$$\begin{split} \det[\mathrm{D'}] &> 0 \text{ se } sen\beta > 0, \implies 0^{\circ} < \beta < 180^{\circ} \\ \det[\mathrm{D'}] &< 0 \text{ se } sen\beta < 0, \implies 0^{\circ} > \beta > -180^{\circ} \\ \det[\mathrm{D'}] &= 0 \text{ se } sen\beta = 0, \implies \beta = \pm 180^{\circ} \text{ ou } \beta = 0^{\circ} \end{split}$$

Os dados exibidos anteriormente na Figura 6 são reapresentados na Figura 9, que destaca o comportamento dos vetores gradiente $\dot{\nabla}P$ e $\dot{\nabla}Q$ e do ângulo β formado entre eles quando $\dot{\nabla}P$ é tomado como referência. Observa-se que na região normal de operação sempre ocorre $0^{\circ} < \beta < 180^{\circ}$. Já na região anormal de operação, $0^{\circ} > \beta > -180^{\circ}$. Por outro lado, no ponto de máximo carregamento $\beta = 180^{\circ}$.

Em resumo, usando as informações do sinal do determinante da matriz [D'] para um sistema multinó:

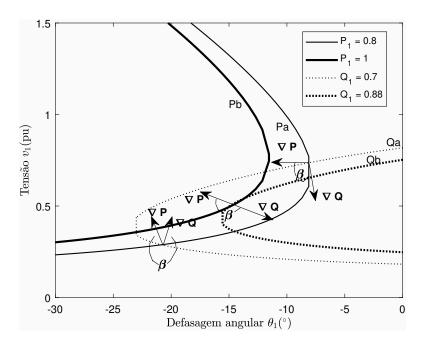


Figura 9: Localização dos vetores $\dot{\nabla}P$ e $\dot{\nabla}Q$ no Plano $V\theta$

- $-\beta$ indica a defasagem entre os vetores $\dot{\nabla}P$ e $\dot{\nabla}Q$, assim como a localização do ponto de operação na curva para ϕ constante no plano S_1v_1 ;
- $\det[D'] > 0$ caracteriza a parte superior da curva para ϕ constante no plano S_1v_1 ;
- $\det[\mathrm{D'}] < 0$ caracteriza a parte inferior da curva para ϕ constante no plano S_1v_1 ; e
- $\det[D'] = 0$ caracteriza a fronteira entre estas duas regiões, ou seja, o ponto de máximo carregamento da curva para ϕ constante no plano S_1v_1 .

3.3.4 Matriz [D'] em barras com controle de tensão

Por outro lado, um questionamento natural diz respeito à aplicação do método da matriz [D'] às barras de tensão controlada por gerador, uma vez que os resíduos de potência reativa dessas barras não estão presentes no sistema de equações da abordagem clássica do fluxo de potência. Ou seja, em (2.13) não há equação de controle para as grandezas determinadas a priori. Desse modo, simplesmente assume-se que o ângulo da barra de referência e tensões atingirão o valor especificado para elas. Porém, alguns mecanismos de controle agem justamente sobre tensões de barras de tensão controlada para garantir o desejado. Por isso, seria importante a determinação de uma equação matemática que compreendesse essas grandezas a fim de analisar a atuação dos mecanismos de controle de tensão. Esse é o assunto tratado nessa seção.

O primeiro mecanismo de controle é o gerador que controla a tensão local. Assim, se uma barra i é do tipo PV, considera-se que o gerador dessa barra fornece potência reativa suficiente para manter v_i no valor especificado. Então, em princípio, não faria sentido estudar variações infinitesimais em ΔP_i e ΔQ_i e seus efeitos sobre Δv_i . Contudo, o que ocorre é que v_i não é fixo, mas oscila em torno de um valor fixo especificado (banda morta). Para capturar o efeito de variações infinitesimais em ΔP_i e ΔQ_i na análise de estabilidade de tensão, é necessário que Δv_i seja modelado como uma grandeza variável. Para isso, deve-se:

- incluir a equação de ΔQ_i ; e
- incluir a coluna referente à variável Δv_i .

Outra barra com controle de tensão por gerador local é a barra de referência angular do sistema. Portanto, se uma barra i é do tipo $V\theta$, v_i é considerado fixo. Entretanto, isso não faz sentido, conforme já foi mencionado. Desse modo, na análise de estabilidade de tensão, Δv_i é modelado como grandeza variável. Além disso, outra barra geradora j deve ser escolhida como barra de referência angular. Para isso, deve-se:

- excluir a equação de ΔP_j ;
- excluir a coluna referente à variável $\Delta\theta_i$;
- incluir a equação de ΔP_i ;
- incluir a coluna referente à variável $\Delta \theta_i$;
- incluir a equação de ΔQ_i ; e
- incluir a coluna referente à variável Δv_i .

O segundo mecanismo de controle é o transformador que controla a tensão local. Ou seja, se uma barra m é do tipo PQV, considera-se que o $tap~a_{km}$ desse transformador varia o suficiente para manter v_m no valor especificado. Então, não faria sentido estudar variações infinitesimais em ΔP_m e ΔQ_m e seus efeitos sobre θ_m e v_m . Contudo, assim como ocorre com o controle de tensão por gerador local, o que ocorre é que v_m não é fixo, mas oscila em torno de um valor fixo especificado. De forma análoga, para capturar o efeito de variações infinitesimais em ΔP_m e ΔQ_m na análise de estabilidade de tensão, é necessário que Δv_m seja modelado como uma grandeza variável. Para isso, deve-se:

- incluir a coluna referente à variável Δv_m ; e
- excluir a coluna referente à variável Δa_{km} .

3.3.5 Matriz [D'] com múltiplas barras *swing*

O método da matriz [D'] pressupõe que variações de injeções de potência ativa e reativa na barra i são absorvidas pelas barras com potência reativa livre para variar e por uma barra swing. A fim de tornar o método mais fidedigno ao que ocorre na prática, a ideia é que algumas barras com potência ativa livre e potência reativa livre sejam responsáveis por absorver variações de ΔP_i e ΔQ_i e perdas ativas e reativas, o que equivale a existência de múltiplas barras swing, ou barras do tipo V, na rede elétrica.

Deseja-se que a condição de proporcionalidade de gerações de potência ativa das barras swing considerando a rede elétrica com perdas ativas sejam iguais às proporções de gerações de potência ativa das barras swing considerando a rede elétrica sem perdas ativas. Assim como na Seção 2.4, isso continua sendo realizado através da inclusão de equações de controle (Δg) no problema geral de fluxo de potência.

Por exemplo, suponha-se que uma rede tenha as barras 1 a n como barras textitswing, sendo 1 a barra de referência angular. Sob essa condição e partindo-se da modelagem desenvolvida na Seção 2.4, deseja-se estudar variações infinitesimais de carga (ou geração) em ΔP_i e ΔQ_i e seus efeitos sobre $\Delta \theta_i$ e Δv_i somente para a barra i de um sistema multinó.

• Barra PQ

Considerando uma barra i do tipo PQ, o sistema linearizado formado por (2.18) pode ser reescrito fazendo-se o deslocamento para baixo das equações referentes à barra i em análise e para a direita das colunas referentes às suas variáveis referentes à barra i. Portanto a matriz Jacobiano modificada é:

$$\begin{bmatrix} \frac{\partial P_{1}^{*}}{\partial \theta_{2}} & \frac{\partial P_{1}^{*}}{\partial \theta_{n}} & \frac{\partial P_{1}^{*}}{\partial \theta_{k}} & \frac{\partial P_{1}^{*}}{\partial v_{k}} & \frac{\partial P_{1}^{*}}{\partial P_{Gn}} & \frac{\partial P_{1}^{*}}{\partial \theta_{i}} & \frac{\partial P_{1}^{*}}{\partial v_{i}} \\ \vdots & \vdots \\ \frac{\partial P_{n}^{*}}{\partial \theta_{2}} & \frac{\partial P_{n}^{*}}{\partial \theta_{n}} & \frac{\partial P_{n}^{*}}{\partial \theta_{k}} & \frac{\partial P_{n}^{*}}{\partial v_{k}} & \frac{\partial P_{n}^{*}}{\partial P_{Gn}} & \frac{\partial P_{n}^{*}}{\partial \theta_{i}} & \frac{\partial P_{n}^{*}}{\partial v_{i}} \\ \frac{\partial P_{k}}{\partial \theta_{2}} & \frac{\partial P_{k}}{\partial \theta_{n}} & \frac{\partial P_{k}}{\partial \theta_{k}} & \frac{\partial P_{k}}{\partial v_{k}} & \frac{\partial P_{k}}{\partial P_{Gn}} & \frac{\partial P_{k}}{\partial \theta_{i}} & \frac{\partial P_{k}}{\partial v_{i}} \\ \vdots & \vdots \\ \frac{\partial Q_{k}}{\partial \theta_{2}} & \frac{\partial Q_{k}}{\partial \theta_{n}} & \frac{\partial Q_{k}}{\partial \theta_{k}} & \frac{\partial Q_{k}}{\partial v_{k}} & \frac{\partial Q_{k}}{\partial P_{Gn}} & \frac{\partial Q_{k}}{\partial \theta_{i}} & \frac{\partial Q_{k}}{\partial v_{i}} \\ \vdots & \vdots \\ \frac{\partial Q_{k}}{\partial \theta_{2}} & \frac{\partial Q_{k}}{\partial \theta_{n}} & \frac{\partial Q_{k}}{\partial \theta_{k}} & \frac{\partial Q_{k}}{\partial v_{k}} & \frac{\partial Q_{k}}{\partial P_{Gn}} & \frac{\partial Q_{k}}{\partial \theta_{i}} & \frac{\partial Q_{k}}{\partial v_{i}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial g_{(n-1)}}{\partial \theta_{2}} & \frac{\partial g_{(n-1)}}{\partial \theta_{n}} & \frac{\partial g_{(n-1)}}{\partial \theta_{k}} & \frac{\partial g_{(n-1)}}{\partial v_{k}} & \frac{\partial g_{(n-1)}}{\partial P_{Gn}} & \frac{\partial g_{(n-1)}}{\partial \theta_{i}} & \frac{\partial g_{(n-1)}}{\partial v_{i}} \\ \frac{\partial P_{i}}{\partial \theta_{2}} & \frac{\partial P_{i}}{\partial \theta_{n}} & \frac{\partial P_{i}}{\partial \theta_{k}} & \frac{\partial P_{i}}{\partial v_{k}} & \frac{\partial P_{i}}{\partial P_{Gn}} & \frac{\partial P_{i}}{\partial \theta_{i}} & \frac{\partial P_{i}}{\partial v_{i}} \\ \frac{\partial Q_{i}}{\partial \theta_{2}} & \frac{\partial Q_{i}}{\partial \theta_{n}} & \frac{\partial Q_{i}}{\partial \theta_{k}} & \frac{\partial Q_{i}}{\partial v_{k}} & \frac{\partial Q_{i}}{\partial P_{Gn}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial v_{i}} \\ \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial v_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial v_{i}} \\ \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{k}} & \frac{\partial Q_{i}}{\partial v_{k}} & \frac{\partial Q_{i}}{\partial P_{Gn}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial v_{i}} \\ \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial v_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial v_{i}} \\ \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial v_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial v_{i}} \\ \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{i$$

• Barras PV e PQV

Para barras dos tipos PV, as modificações do sistema linearizado de equações são análogas às descritas na Seção 3.3.4. O mesmo ocorre para barras do tipo PQV.

• Barras V

A principal diferença de um sistema com múltiplas barras swing é que essas barras alocam proporcionalmente as perdas ativas. Portanto, se uma barra i é do tipo V, o resíduo ΔP_i^* é ΔP_i acrescido da parcela que considera variações de P_{Gi} . Entretanto, quando se estudam variações infinitesimais em ΔP_i e ΔQ_i e seus efeitos sobre θ_i e v_i , deve-se evitar que perdas ativas alocadas para a barra i interfiram na análise. Assim, não faz sentido permitir que a barra i continue sendo barra swing.

Desse modo, ΔP_i^* é substituído por ΔP_i , é excluída a equação de distribuição de perdas ativas entre as barras (i-1) e i e a tensão v_i é modelada como grandeza variável.

Dessa maneira, a matriz Jacobiano modificada para estudo de estabilidade de tensão na barra n fica conforme em (3.41). Para obtê-la:

- substitui-se a equação de ΔP_i^* pela equação de ΔP_i ;
- exclui-se a equação de $\Delta g_{(i-1)}$; e
- exclui-se a coluna referente à variável ΔP_{Gi} .

$\frac{\partial P_1^*}{\partial \theta_2}$	 $rac{\partial P_1^*}{\partial heta_i}$	$\frac{\partial P_1^*}{\partial \theta_k}$		$\frac{\partial P_1^*}{\partial v_k}$	$\frac{\partial P_1^*}{\partial P_{G_1}}$	$rac{\partial P_1^*}{\partial F_{Gi}}$!	$\frac{\partial P_1^*}{\partial \theta_i}$	$\frac{\partial P_1^*}{\partial v_i}$
$\begin{array}{c} \vdots \\ \frac{\partial P_{k}^{*}}{\partial \theta_{2}} \\ \frac{\partial P_{k}}{\partial \theta_{2}} \end{array}$	 $\frac{\partial P_k^*}{\partial \theta_i}$	$\frac{\partial P_i^*}{\partial \theta_k}$ $\frac{\partial P_k}{\partial \theta_k}$		$\frac{\partial P_i^*}{\partial v_k}$ $\frac{\partial P_k}{\partial v_k}$	$\frac{\partial P_i^*}{\partial P_{G1}}$ $\frac{\partial P_k}{\partial P_{G1}}$	$\frac{\partial P^*}{\partial F_{Gi}}$!	$\frac{\frac{\partial P_i^*}{\partial \theta_i}}{\frac{\partial P_k}{\partial \theta_i}}$	$\frac{\partial P_i^*}{\partial v_i}$ $\frac{\partial P_k}{\partial v_i}$
$ \begin{array}{c} \partial Q_2 \\ \vdots \\ \frac{\partial Q_k}{\partial \theta_2} \end{array} $	 $rac{\partial Q_k}{\partial heta_i}$	$rac{\partial Q_k}{\partial \theta_k}$		$\frac{\partial Q_k}{\partial v_k}$	$\frac{\partial Q_k}{\partial P_{G1}}$	$rac{\partial Q_k}{\partial F_{Gi}}$		$\frac{\partial Q_k}{\partial \theta_i}$	$rac{\partial Q_k}{\partial v_i}$
$ \frac{\frac{\partial g_1}{\partial \theta_2}}{\frac{\partial g_{(i-1)}}{\partial \theta_2}} $	 $\frac{\partial g_1}{\partial \theta_i}$	$\frac{\frac{\partial g_1}{\partial \theta_k}}{\frac{\partial g_{(i-1)}}{\partial \theta_k}}$	$\frac{\partial q_{(i-1)}}{\partial q_{(i-1)}}$	$\frac{\partial g_1}{\partial v_k}$	$\frac{\partial g_1}{\partial P_{G1}}$ $\frac{\partial g_{(i-1)}}{\partial P_{G1}}$	$\frac{\frac{\partial g_1}{\partial F_{Gi}}}{\frac{\partial g_{Gi}}{\partial G_{Gi}}}$	 	$\frac{\partial g_1}{\partial \theta_i}$	$\frac{\partial g_1}{\partial v_i}$ $\frac{\partial q_{(i-1)}}{\partial v_i}$
$\begin{vmatrix} -\frac{\partial\theta_2}{\partial\theta_2} \\ -\frac{-\frac{\partial}{\partial P_i}}{\partial\theta_2} \end{vmatrix}$	 $\partial \theta_i$ $\frac{1}{2}\frac{\partial P_i}{\partial \theta_i}$	$-\partial heta_k$ $-\frac{\partial P_i}{\partial heta_k}$	$\overline{\partial v_k}$	$-\frac{1}{\partial P_i}$	$\frac{\partial P_{G1}}{\partial P_{G1}}$ $-\frac{\partial \bar{P_i}}{\partial P_{G_1}}$	$\overline{\frac{\partial \hat{P}_{Gi}}{\partial P_{Gi}}}$ $-\frac{1}{\partial P_{i}}$ $\overline{\frac{\partial \hat{P}_{i}}{\partial P_{Gi}}}$		$\frac{\partial \theta_i}{\partial P_i}$	$-\frac{1}{\partial v_i}$ $-\frac{1}{\partial P_i}$ $\frac{\partial P_i}{\partial v_i}$
$ \frac{\partial Q_i}{\partial \theta_2} $	 $rac{\partial Q_i}{\partial heta_i}$	$\frac{\partial Q_i}{\partial \theta_k}$		$\frac{\partial Q_i}{\partial v_k}$	$\frac{\partial Q_i}{\partial P_{G_1}}$	$\frac{\partial \mathbf{Q}_i}{\partial F_{G_i}}$	• • •	$\frac{\partial Q_i}{\partial \theta_i}$	$ \frac{\partial Q_i}{\partial v_i} \qquad \qquad$

• Barras $V\theta$

Por fim, se uma barra i é uma barra de referência angular (tipo $V\theta$), então θ_i é especificado a priori. Entretanto, não faz sentido estudar variações infinitesimais em ΔP_i e ΔQ_i e seus efeitos sobre θ_i e v_i , se θ_i é fixo. Então, outra barra geradora j deve ser escolhida como barra de referência angular. Além disso, conforme já mencionando anteriormente, deve-se evitar que perdas ativas alocadas para a barra i interfiram na análise, o que faz com que ΔP_i^* seja substituído por ΔP_i e que não haja equação de distribuição de perdas ativas envolvendo a barra i. Ainda vale lembrar que barras dos tipos $V\theta$ têm tensão v_i modelada como grandeza fixa, então é necessário torná-la variável.

Assim:

- exclui-se a coluna referente à variável $\Delta \theta_i$;
- inclui-se a coluna referente à variável $\Delta \theta_i$;
- exclui-se a equação de ΔP_i^* ;
- inclui-se a equação de ΔP_i ;
- exclui-se a equação de Δg_i ;
- exclui-se a coluna referente à variável ΔP_{Gi} .
- inclui-se a equação de ΔQ_i ; e
- inclui-se a coluna referente à variável Δv_i ;

г		A.D.	20		A.D.	20		AP.	2.0	- 00- 1
$\frac{\partial \mathcal{L}_1}{\partial \theta_2}$	•••	$\frac{\partial \Gamma_1}{\partial \theta_n}$	$\frac{\partial T_1}{\partial \theta_k}$	• • •	$\frac{\partial \Gamma_1}{\partial v_k}$	$\frac{\partial F_{G_1}}{\partial F_{G_1}}$	•••	$\frac{\partial \Gamma_1}{\partial P_{Gn}}$	$\frac{\partial 1_{1}}{\partial \theta_{1}}$	$\frac{\partial T_1}{\partial v_1}$
$rac{\partial P_n}{\partial \theta_2}$		$\frac{\partial P_n}{\partial \theta_n}$	$\frac{\partial P_n}{\partial \theta_k}$		$\frac{\partial P_n}{\partial v_k}$	$\frac{\partial P_n}{\partial F_{G1}}$		$\frac{\partial P_n}{\partial P_{Gn}}$ $\frac{\partial P_k}{\partial P_{Gn}}$	$\frac{\partial P_n}{\partial \theta_1}$	$\frac{\partial P_n}{\partial v_1}$
$rac{\partial P_k}{\partial heta_2}$		$\frac{\partial P_k}{\partial \theta_n}$	$\frac{\partial P_k}{\partial \theta_k}$		$\frac{\partial P_k}{\partial v_k}$	$\frac{\partial P_k}{\partial F_{G_1}}$		$\frac{\partial P_k}{\partial P_{Gn}}$	$\frac{\partial P_k}{\partial \theta_1}$	$\frac{\partial P_k}{\partial v_1}$
$rac{\partial Q_k}{\partial heta_2}$	•••	$\frac{\partial Q_k}{\partial \theta_n}$	$rac{\partial Q_k}{\partial heta_k}$	•••	$\frac{\partial Q_k}{\partial v_k}$	$\frac{\partial \mathbf{Q}_k}{\partial F_{G_1}}$	•••	$\frac{\partial Q_k}{\partial P_{Gn}}$	$\frac{\partial Q_k}{\partial \theta_1}$	$rac{\partial Q_k}{\partial v_1}$
$\frac{\hat{G}_{g_1}}{\hat{\delta}\theta_2}$	•••	$\frac{\partial g_1}{\partial \theta_n}$	$\frac{\partial g_1}{\partial \theta_k}$	•••	$\frac{\partial g_1}{\partial v_k}$	$\frac{\partial_{G1}}{\partial P_{G1}}$	•••	$\frac{\partial g_1}{\partial P_{Gn}}$	$\frac{\partial g_1}{\partial \theta_1}$	$\frac{\partial g_1}{\partial v_1}$
$\frac{\partial g_{(k-1)}}{\partial g_{(k-1)}}$		$\frac{\partial g_{(n-1)}}{\underline{\partial}\theta_n}_{\underline{}}$	$\frac{\partial g_{(n-1)}}{\partial \theta_k}$		$\frac{\partial g_{(n-1)}}{\partial v_k}$	$\frac{\partial g_{(i-1)}}{\partial F_{G_1}}$		$\frac{\partial g_{(n-1)}}{\partial P}$	$\frac{\partial g_{(n-1)}}{\partial g_{(n-1)}}$	$-\frac{\partial g_{(n-1)}}{\partial v_1}$
$\begin{vmatrix} \frac{\partial \beta_2}{\partial \beta_n} \frac{\partial \beta_2}{\partial \beta_2} \end{vmatrix}$		$-\frac{\partial \theta_n}{\partial P_n}\frac{\partial \theta_n}{\partial \theta_n}$	$-\frac{\partial \theta_k}{\partial P_n}$		$-\frac{\partial v_k}{\partial P_n} - \frac{\partial v_k}{\partial v_k}$	$-\frac{\partial F_{G1}}{\partial P_n}$ $-\frac{\partial F_{G1}}{\partial F_{G1}}$		$\frac{\partial P_{Gn}}{\partial P_{n}} - \frac{\partial P_{Gn}}{\partial P_{G_2}}$	$\frac{\overline{\partial \theta_1}}{\frac{\partial P_n}{\partial \theta_n}}$	$-\frac{\partial v_1}{\partial P_n}$ $-\frac{\partial v_1}{\partial v_n}$
$\frac{\partial Q_n}{\partial \theta_2}$		$\frac{\partial Q_n}{\partial \theta_n}$	$\frac{\partial Q_n}{\partial \theta_k}$		$\frac{\partial Q_n}{\partial v_k}$	$\frac{\partial Q_n}{\partial F_{G_1}}$		$\frac{\partial Q_n}{\partial P_{G_2}}$	$\frac{\partial Q_n}{\partial \theta_n}$	$\left[\frac{\partial Q_n}{\partial v_n} \right]$
•						1		2		(3.42)

Se i=1 e j=2, a matriz Jacobina modificada fica conforme (3.42):

De forma geral, se as partições da matriz Jacobiano forem identificadas pelas submatrizes A, B, C e D, então (3.19) e (3.20) podem ser reformuladas conforme:

$$\begin{bmatrix}
\Delta \underline{P'} \\
\Delta \underline{Q'} \\
\Delta \underline{Q} \\
\Delta P_i \\
\Delta Q_i
\end{bmatrix} = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix} \begin{bmatrix}
\Delta \underline{\theta'} \\
\Delta \underline{v'} \\
\Delta \underline{a'} \\
\Delta P_{G_0} \\
\Delta \overline{\theta_i} \\
\Delta v_i
\end{bmatrix}$$
(3.43)

onde:

- $-\Delta \underline{P'}$ é o vetor de potência ativa relativa a todas as barras do sistema, exceto a barra i;
- $-\Delta \underline{Q'}$ é o vetor de potência ativa relativa as todas as barras do sistema, exceto barras do tipo PV, V, V θ e para a barra i; e
- $-\Delta \underline{g}$ é o vetor de resíduos das equações de partição das perdas ativas entre as barras swing.

3.4 Índices de estabilidade de tensão

De acordo com os conceitos apresentados na Seção 3.3.2, a estimativa da máxima potência i aparente que poderia ser injetada na barra i, considerando todo o sistema é definida como:

$$S_{m_i} \equiv sinal(S_{i0}^2 - \Delta det \cdot v_i) \sqrt{|S_{i0}^2 - \Delta det \cdot v_i|}$$
(3.44)

A margem de potência é um indicador da distância que pode ser definido como o valor $S_{m_i} - S_i$, ou seja, a diferença de potência em MVA entre a potência que está sendo injetada na barra e a máxima potência estimada para o ponto de operação em análise. Porém, há um problema de interpretação do tamanho do índice. Afinal, a margem é considerada pequena ou grande sem levar em conta a comparação com margens de outras barras? Por exemplo, se $S_{m_i}=10$ e $S_i = 1$, então a margem é 9 vezes o que está sendo injetado. Se, por outro lado, $S_i = 99$ e $S_{m_i} = 100$, então a margem é aproximadamente 0,01 do que está sendo injetado.

Para contornar esse problema, na região superior da curva ϕ constante da Figura 10, esta margem é definida como:

$$M = \frac{S_{m_i} - S_i}{S_{m_i}} \qquad \text{em pu de } S_{m_i} \tag{3.45}$$

$$M = \frac{S_{m_i} - S_i}{S_{m_i}} 100\% \qquad \text{em percentual de } S_{m_i}$$
 (3.46)

Na região superior da curva ϕ constante da Figura 10, a margem de potência $(S_{m_i} - S_i)$ é um valor positivo e deve ser lido como a quantidade adicional de potência aparente, em MVA, que deveria ser injetada na barra i de tal modo que S_i atinja a estimativa do máximo S_{m_i} . Pode-se definir uma margem em pu ou em percentual. Esta margem será igual à unidade quando a potência injetada na barra i é nula $(S_i=0)$, e tende a zero à medida que a injeção tende ao valor máximo $(S_i = S_{m_i})$.

Na região inferior da curva ϕ constante da Figura 10, esta margem é definida como:

(3.47)

$$M = \frac{S_{m_i} - S_i}{S_i} \quad \text{em pu de } S_i$$

$$M = \frac{S_{m_i} - S_i}{S_i} 100\% \quad \text{em percentual de } S_i$$
(3.47)

Na região inferior da curva ϕ constante da Figura 10, a margem de potência é um valor negativo e deve ser lido como a quantidade excedente de potência aparente, em MVA, e que, portanto, deveria ser extraída da barra i de tal modo que S_i atinja a estimativa do máximo S_{m_i} . Pode-se definir uma margem em pu ou em percentual. Esta margem tenderá a -1 quando S_{m_i} aproximar-se de zero e tende a zero à medida que a injeção tende ao valor máximo $(S_i = S_{m_i})$.

De forma geral, esta margem pode ser definida como:

$$M = \frac{S_{m_i} - S_i}{m \acute{a} x(S_i, S_{m_i})} \quad \text{em pu de } S_i \text{ ou } S_{m_i}$$
 (3.49)

$$M = \frac{S_{m_i} - S_i}{m \acute{a} x(S_i, S_{m_i})} 100\% \quad \text{em percentual de } S_i \text{ ou } S_{m_i}$$
 (3.50)

No ponto de operação correspondente ao máximo carregamento, $S_{m_i} = S_i$ e $S_{m_i} - S_i = 0$. Portanto, não há nada a adicionar ou retirar de S_i para atingir a estimativa S_{m_i} .

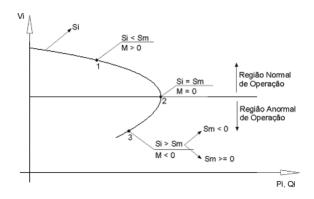


Figura 10: Regiões de operação do sistema

3.5 Resumo

O limite de estabilidade de tensão trata do máximo fluxo de potência ativa e reativa que pode chegar à barra de carga para diferentes fatores de potência na carga, tendo sido definido de forma analítica, numérica e gráfica.

Verificou-se a existência de uma carga ativa "maximum maximorum" que pode ser alimentada, mesmo com capacidade infinita de compensação reativa na barra de carga.

Apresentou-se ferramenta analítica capaz de predizer o colapso de tensão em redes complexas quantificando, exatamente, as margens de estabilidade de tensão e os limites de transferência de potência; identificando os pontos fracos de tensão do sistema e áreas susceptíveis a instabilidade.

Os índices propostos M e β indicam a margem para a máxima transmissão de potência e a região de operação na curva ϕ constante no plano SV.

4 Esgotamento de recursos

O objetivo desse capítulo é apresentar situações em que há esgotamento de recursos de geração de potência ativa ou de controle de tensão (por geração de potência reativa e por variação do *tap* de transformador). Também é abordada a influência desses eventos sobre a estabilidade de tensão.

A importância deste estudo reside no fato de eventos de esgotamentos de recursos afetarem a forma como variações infinitesimais na carga (ou na geração) de uma barra influenciam a tensão dessa mesma barra em um sistema multinó. Em outras palavras, os esgotamentos desempenham papel importante no estudo do carregamento do ponto de vista de estabilidade de tensão do sistema.

4.1 Método

Aqui são tratados três tipos de esgotamentos. O primeiro deles é a limitação de geração de potência ativa. Neste caso, assume-se ser impossível alterar a geração de potência ativa em uma barra, isto é, essa barra não participa da absorção de variações de potências nas outras barras nem das perdas. O segundo esgotamento é a limitação de geração de potência reativa. Nesse cenário, assume-se ser impossível alterar a geração de potência reativa em uma barra, isto é, considera-se a perda do controle de tensão. O último esgotamento é a limitação de variação do tap de LTC, o que equivale a assumir ser impossível alterar o tap de um LTC entre duas barras, isto é, considera-se a perda do controle de tensão. Após a simulação computacional de cada um dos três esgotamentos citados, segue-se a etapa de avaliação dos efeitos que a circunstância em questão causou sobre os índices de estabilidade de tensão do sistema.

No Capítulo 3 foi descrito o emprego do método da matriz [D'] para análise da estabilidade de tensão de um sistema elétrico. Mais especificamente, na Seção 3.3.1 discutiu-se o efeito das variações infinitesimais na carga (ou na geração) ΔP_i e ΔQ_i sobre Δv_i e $\Delta \theta_i$. Naquele ponto, destacou-se que variações de ΔP_i , ΔQ_i e perdas ativas e reativas seriam compensadas por variações de injeções de potência nas barras com potência ativa livre e barras com potência

reativa livre, pois essas potências não estão fixadas nos vetores $\Delta \underline{P'}$ e $\Delta \underline{Q'}$ de (3.20) ou (3.43).

Já nesse capítulo serão observadas situações em que há limitações da geração de potência ativa P_G , da geração de potência reativa Q_G e do $tap\ a$. Além disso, serão discutidas suas consequências para a análise de estabilidade de tensão das barras de um sistema elétrico.

As etapas dos procedimentos realizados neste capítulo serão:

- Cálculo do fluxo de potência
- Cálculo dos índices de estabilidade de tensão: M e β
- Simulação de esgotamentos de recursos
- Cálculo dos índices relativos a esgotamentos de recursos

4.2

Índices de influência sobre a estabilidade de tensão

4.2.1

Índices de influência na barra

A partir dos índices de estabilidade de tensão apresentados na Seção 3.4, será utilizado um índice de sensibilidade para traduzir os efeitos de um evento j (por exemplo, uma ação de controle, um acréscimo de carga, um esgotamento) sobre a margem de potência da barra i. Esse índice será denominado índice de influência II conforme desenvolvido em [6]:

$$II_i^j = [sinal(\beta_0)] \left(\frac{S_{m_i}^0 - S_i^0}{S_{m_i}^j - S_i^j} \right)$$
 (4.1)

onde:

 II_i^j é o índice de influência do evento j sobre a margem da barra i;

 β_0 é o valor do índice β para barra i no caso-base, ou seja, sem qualquer esgotamento;

 $S_{m_i}^0$ é a estimativa da máxima potência aparente injetada na barra i, calculada no ponto de operação no caso-base, ou seja, sem qualquer esgotamento;

 S_i^0 é a potência aparente injetada na barra i no caso-base, ou seja, sem qualquer esgotamento;

 $S_{m_i}^j$ é a estimativa da máxima potência aparente injetada na barra i, calculada no ponto de operação no caso do evento j; e

 S_i^j é a potência aparente injetada na barra i no caso do evento j.

Se II_i^j é positivo, a ocorrência do evento j foi benéfica para a margem da barra i. Se II_i^j é negativo, a ocorrência do evento j foi prejudicial para a margem da barra i, conforme ilustrado na Figura 11. Portanto, o efeito de qualquer

evento é facilmente avaliado. Por exemplo, quando o evento em questão é de esgotamento de recursos, basta comparar a margem para os dois diferentes pontos de operação: pré-esgotamento, ou caso base, e pós-esgotamento.

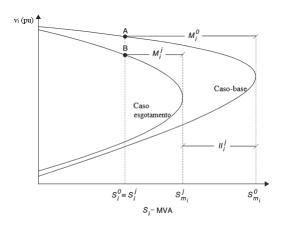


Figura 11: Curvas do caso-base e de esgotamentos com suas respectivas margens de potência e Índices de Influência

O índice de influência II_i^j indica quanto a margem de potência aparente M_i do caso-base é modificada na presença do evento j. Na ocorrência de esgotamentos, normalmente II_i^j é negativo, significando que a margem de potência aparente do caso-base foi reduzida na presença do esgotamento j. Quanto mais negativo II_i^j , mais severo é o evento j.

Conforme ilustrado na Figura 12, considerando (sinal de β_i^0)>0, ou seja, considerando que o sistema opera na região superior da curva ϕ constante no plano Sv, tem-se:

- a) Quando $II_i^j < -1$, depois do esgotamento o ponto de operação ficou localizado na parte inferior da curva ϕ constante no plano Sv. A severidade do evento é maior quanto mais negativo for o índice;
- b)Quando $II_i^j = -1$, o esgotamento extinguiu a margem de potência da barra i. Esse é o limite de criticidade para a operação normal, ou seja, o novo ponto de operação corresponde ao ponto de máxima carga ("ponta do nariz" da curva) depois do esgotamento;
- c) Quando $-1 < II_i^j < 0$, o esgotamento causa redução da margem de potência, mas a margem continua sendo positiva. Ou seja, o novo ponto de operação continua sendo localizado na parte superior da curva ϕ constante no plano Sv;
- d) Quando $II_i^j=0$, o esgotamento não tem consequência para a barra i no ponto de operação em análise.

Por outro lado, considerando (sinal de β_i^0)<0, ou seja, considerando que

o sistema opera na região inferior da curva ϕ constante no plano Sv, tem-se:

- a) Quando $II_i^j < 0$, a margem de potência da barra i foi reduzida pelo esgotamento;
- b) Quando $II_i^j=0$, o esgotamento não tem consequência para a barra i no ponto de operação em análise;
- c) Quando $0 < II_i^j < 1$, o ponto de operação depois do esgotamento ainda está localizado na parte inferior da curva ϕ constante no plano Sv. O intervalo entre 0 e 1 denota severidade do esgotamento na região de operação anormal;
- d)Quando $II_i^j = 1$, depois do esgotamento o limite crítico para a operação normal foi atingido, ou seja, o novo ponto de operação corresponde ao ponto de máxima carga ("ponta do nariz" da curva) depois do esgotamento;
- e)Quando $II_i^j > 1$, o novo ponto de operação depois do esgotamento é localizado na parte superior da curva (situação rara).

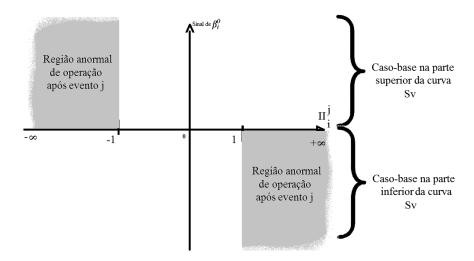


Figura 12: Regiões de operação de um sistema levando em consideração os Índices de Influência e o sinal de β

Assim, o índice de influência II_i^j permite a identificação do grau de severidade de um esgotamento j sobre a margem de potência de uma barra i qualquer do sistema conforme ilustrado na Figura 12.

4.2.2 Índices de influência no sistema

Para avaliar as consequências do esgotamento sobre o sistema, é proposto o índice IIS, que reflete a redução da margem de potência em todas as barras afetadas. Para isso, é considerado o índice de influência do esgotamento j sobre a barra i II_i^j (conforme visto na Seção 4.2.1) e um índice de importância relativa da barra i para o sistema IIR_i .

Faz sentido imaginar que quanto maior a estimativa de potência máxima que pode ser injetada em uma barra i no caso-base $S_{m_i}^0$, mais relevante é o papel dessa barra para a operação da rede elétrica. Portanto, o índice de importância relativa de uma barra considera a razão entre a estimativa de potência máxima que pode ser injetada nela e a maior estimativa de potência máxima que pode ser injetada em uma barra qualquer da rede. Esse índice é dado por:

$$IIR_i = \frac{S_{m_i}^0}{m\acute{a}x_b\{S_{m_b}^0\}}$$
 b=1..i..NB (4.2)

Assim, com o índice *IIR*, evita-se que a um esgotamento muito severo em uma barra de pouca importância para o sistema seja contabilizado da mesma forma que um esgotamento muito severo em uma barra de grande importância para o sistema elétrico. Portanto, o índice de influência do esgotamento j sobre o sistema elétrico é dado por 4.3:

$$IIS^{j} = \sum_{i} II_{i}^{j} \times IIR_{i} \tag{4.3}$$

4.3 Modelagem dos esgotamentos

A análise de esgotamento será feita considerando a possibilidade de múltiplas barras *swing* no método da matriz [D'], conforme visto na Seção 3.3.5, como é adequado em aplicações do método na prática [7].

Três tipos de esgotamentos serão explorados: limitação de potência ativa, potência reativa e tap. A ocorrência de esgotamentos de geração será aplicada a barras dos tipos PV, V e $V\theta$. Já o esgotamento de tap é estudado em barras de tensão controlada por LTC. Em todos os casos a análise é feita de acordo com a modelagem desenvolvida na Seção 3.3.5.

Os esgotamentos podem ocorrer caso algum recurso do sistema atinja seu limite ou caso um evento externo impeça variação de uma determinada grandeza. Nesse ponto de operação, é feita a avaliação da estabilidade de tensão.

4.3.1 Esgotamentos de potência ativa

• Em barra V

Se a barra b onde vai ser simulado o esgotamento é do tipo V (barra swing), então, no caso pré-esgotamento, a potência ativa P_b não é especificada a priori. Desse modo, a equação relativa a ΔP_b e a coluna referente à $\Delta \theta_b$ estão presentes no sistema linearizado do sistema elétrico. Nele consta também a

equação g de distribuição proporcional de perdas envolvendo ΔP_{Gb} e a coluna referente a ΔP_{Gb} .

Novamente aqui deseja-se estudar variações infinitesimais de carga (ou geração) em ΔP_i e ΔQ_i e seus efeitos sobre $\Delta \theta_i$ e Δv_i para a barra i de um sistema multinó quando a geração de potência ativa da barra b é fixada devido a um esgotamento de recurso. Nesse caso, a barra b perde a capacidade de aumentar ou diminuir sua geração de potência ativa para responder a variações na barra i e a perdas ativas, pois P_{Gb} está fixo. Desse modo, não faz sentido manter a variável ΔP_{Gb} nem a equação de distribuição proporcional de perdas em que ela está envolvida. Em outras palavras após o esgotamento, a barra b deixa de ser swing, o que matematicamente se resume a realizar as seguintes modificações no sistema linearizado de equações utilizado na avaliação de estabilidade de tensão:

- substituir a equação de ΔP_b^* pela a equação de ΔP_b ;
- excluir a equação de Δg_b ; e
- excluir a coluna referente à variável ΔP_{Gb} .

Vale notar que do ponto de vista matemático, não importa se b era originalmente barra *swing* e em consequência de esgotamento deixou de ser ou se, originalmente, essa barra já não fazia parte do conjunto das barras *swing*. Em ambos os casos, o sistema linearizado de equações é o mesmo. O que importa é somente o fato de que, no momento da análise de estabilidade de tensão, sua capacidade de geração de potência ativa está no limite.

• Em barra $V\theta$

Seja b a barra de referência angular. Deseja-se estudar variações infinitesimais de carga (ou geração) em ΔP_i e ΔQ_i e seus efeitos sobre $\Delta \theta_i$ e Δv_i para a barra i de um sistema multinó quando a geração de potência ativa na barra b não pode ser modificada.

Nesse caso, a barra b tem potência ativa fixa, então não faz sentido considerar ΔP_b^* , que é função de ΔP_{Gb} . Outra consequência é que a barra b perde a capacidade de absorver as perdas ativas. Por isso, outra barra geradora j deve ser escolhida como barra de referência angular. Desse modo, a referência angular do sistema deixa de ser θ_b e passa a ser θ_j . Por fim, como P_{Gb} é fixo, a equação g_b perde a razão de existência. Matematicamente isso significa que é preciso:

– substituir a equação de ΔP_b^* pela equação de ΔP_b ;

- excluir a coluna referente à variável $\Delta\theta_i$;
- incluir a coluna referente à variável $\Delta \theta_b$;
- excluir a equação de Δg_b ; e
- excluir a coluna referente à variável ΔP_{Gb} .

4.3.2

Esgotamentos de potência reativa

No caso base, as barras PV, V e V θ são barras em que a geração de potência reativa varia para manter a tensão no valor especificado. Então a potência reativa Q_b não é especificada a priori e, portanto, a equação relativa a ΔQ_b e a coluna referente a Δv_b não estão presentes no sistema linearizado do sistema elétrico.

• Em barra PV

Se a geração de potência reativa da barra b do tipo PV é impossibilitada de variar, Q_b é fixado. Sob essa condição, o objetivo é estudar variações infinitesimais de carga (ou geração) em ΔP_i e ΔQ_i e seus efeitos sobre $\Delta \theta_i$ e Δv_i para a barra i de um sistema multinó após a ocorrência do esgotamento. Aqui, como Q_b é fixo, o sistema linearizado utilizado para análise de estabilidade de tensão difere daquele no caso pré-esgotamento por:

- incluir a equação de ΔQ_b ; e
- incluir a coluna referente à variável Δv_b .

• Em barra V

De forma semelhante, se a barra b é do tipo V (barra *swing*) e é exposta a evento que impeça a variação de sua geração de potência reativa, então o sistema linearizado utilizado para estudo de estabilidade de tensão pósesgotamento difere daquele usado no pré-esgotamento por:

- inclusão da equação de ΔQ_b ; e
- inclusão da coluna referente à variável Δv_h .

Ressalta-se aqui, que a limitação de geração de potência reativa não exclui a barra do conjunto de barras *swing*, pois sua capacidade de responder a variações e perdas de potência ativa não necessariamente está comprometida.

• Em barra $V\theta$

Seja b a barra de referência angular. Deseja-se estudar variações infinitesimais de carga (ou geração) em ΔP_i e ΔQ_i e seus efeitos sobre $\Delta \theta_i$ e Δv_i para a barra i de um sistema multinó quando a geração de potência reativa da barra b encontra-se submetida a evento que impeça sua variação. De forma análoga aos casos anteriores, como Q_b é fixo, o sistema linearizado utilizado para análise de estabilidade de tensão difere daquele no caso pré-esgotamento por:

- incluir a equação de ΔQ_b ; e
- incluir a coluna referente à variável Δv_b .

Novamente, faz-se notar que a limitação de geração de potência reativa não impede que a barra seja barra de referência angular, desde que sua capacidade de responder a variações e perdas de potência ativa não esteja comprometida.

4.3.3 Esgotamentos de *tap*

O evento analisado é o esgotamento da capacidade de ajuste do tap do LTC que conecta a barra k à barra m, controlando a tensão dessa última. Sob essa condição e partindo-se da modelagem desenvolvida nas Seções 2.3.2 e 3.3.5, deseja-se estudar variações infinitesimais de carga (ou geração) em ΔP_i e ΔQ_i e seus efeitos sobre $\Delta \theta_i$ e Δv_i para a barra i de um sistema multinó.

No caso pré-esgotamento, o $tap\ a_{km}$ varia para manter v_m no valor especificado. Portanto, a_{km} é uma incógnita no sistema linearizado de equações. Entretanto, se o transformador estiver submetido a evento que impeça a variação de seu tap, então a tensão v_m deixa de ser controlada pelo LTC. Matematicamente isso significa que o sistema linearizado pós-esgotamento é obtido:

- excluindo-se a coluna referente à variável Δa_{km} ; e
- incluindo-se a coluna referente à variável Δv_m .

4.4 Exemplo ilustrativo

Nessa seção será utilizado um pequeno sistema para ilustrar as ideias discutidas ao longo desse trabalho. Nele serão exemplificados e discutidos os modelos de fluxo de potência do sistema, de avaliação de condições de estabilidade de tensão via método da matriz [D'] e, por fim, dos esgotamentos de geração ativa e de tensão (geração de potência reativa e tap).

4.4.1 Sistema elétrico

Na Figura 13 apresenta-se um sistema-teste de seis barras cujos dados são mostrados nas Tabelas 1 e 2. As barras 1, 5 e 6 são barras *swing*, sendo 1 a barra de referência angular. Esse sistema será usado para exemplificar o cálculo do fluxo de potência e a análise de estabilidade de tensão.

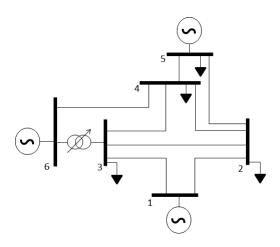


Figura 13: Sistema-teste

Tabela 1: Informações das barras

				٥		
			P_G	Q_G	P_D	Q_D
Barra	Tipo	v(pu)	(MW)	(MVar)	(MW)	(MVar)
1	$V\theta$	1,005	50	30	40	10
2	PQ	0,998	0	0	25	10
3	PQ	0,975	0	0	100	50
4	PQ	1,000	0	0	50	15
5	V	1,000	70	20	60	20
6	V	1,000	120	5	0	0

De barra	Para barra	R	X	B^{sh}
1	2	0,02	0,04	0,03
1	3	0,03	0,04	0,03
2	3	0,06	0,02	0,02
2	4	0,06	0,08	0,02
2	5	0,04	0,04	0,02
3	4	0,04	0,06	0,01
4	5	0,04	0,03	0,03
3	6	0,00	0,05	0,00
6	4	0,08	0,10	0,01
	tap	=	1,00	

Tabela 2: Informações dos ramos de transmissão

4.4.2 Fluxo de potência

Para a rede da Figura 13, foi utilizado o fluxo de potência descrito na Seção 2.4. Assim, se:

$$\begin{cases}
H_{km} = \frac{\partial P_k}{\partial \theta_m} \\
N_{km} = \frac{\partial P_k}{\partial v_m} \\
M_{km} = \frac{\partial Q_k}{\partial \theta_m} \\
L_{km} = \frac{\partial Q_k}{\partial v_m} \\
T_{km} = \frac{\partial P_k}{\partial a_{km}} \\
W_{km} = \frac{\partial Q_k}{\partial a_{km}}
\end{cases}$$
(4.4)

então, o sistema linearizado utilizado para o cálculo de fluxo de potência pelo método iterativo de Newton-Raphson (conforme descrito na Seção 2.3) é dado por:

Nesse caso:

$$\alpha_{15} = \frac{P_{G1_0}}{P_{G5_0}} = \frac{50}{70} e \alpha_{56} = \frac{P_{G5_0}}{P_{G6_0}} = \frac{70}{120}.$$

O ponto de operação do sistema está apresentado na Tabela 3.

Tabela:	3:	Ponto	de	operação	do	sistema-teste
Tabela (<i>,</i> .	1 01100	ac	operação	α	DIDUCITIO UCDUC

			1 3		
#barra	tipo	v (pu)	$\theta(^{\circ})$	P_G (MW)	Q_G (Mvar)
1	$\nabla \theta$	1,0050	0	58,48	113,28
2	PQ	0,9883	0,0018	0,00	0,00
3	PQV	0,9750	1,2695	-0,00	-0,00
4	PQ	0,9844	0,6181	-0,00	0,00
5	V	1,0000	-0,1202	81,88	72,39
6	V	1,0000	3,9459	$140,\!36$	-95,10
		a_{63}	=	1,0664	

4.4.3 Matriz [D']

A avaliação da estabilidade de tensão para as barras 1, 2, 3 e 6 é feita usando o método da matriz [D'] descrito na Seção 3.3.5. As barras 4 e 5 são do mesmo tipo das barras 2 e 6 respectivamente, portanto não serão abordadas. Assim, conforme (3.40), para a barra de carga 2 tem-se:

$$\begin{vmatrix} \Delta P_1^* \\ \Delta P_3 \\ \Delta P_4 \\ \Delta P_6^* \\ \Delta Q_3 \\ \Delta Q_4 \\ \Delta Q_4 \\ \Delta Q_2 \\ \Delta Q_2 \end{vmatrix} = \begin{vmatrix} H_{13} & H_{14} & H_{15} & H_{16} & N_{11} & T_{13} & N_{14} & -1 & 0 & 0 & H_{12} & N_{12} \\ H_{33} & H_{34} & H_{35} & H_{36} & N_{31} & T_{33} & N_{34} & 0 & 0 & 0 & H_{32} & N_{32} \\ H_{43} & H_{44} & H_{45} & H_{46} & N_{41} & T_{43} & N_{44} & 0 & 0 & 0 & H_{42} & N_{42} \\ \Delta P_5^* \\ \Delta P_6^* \\ \Delta Q_3 \\ \Delta Q_4 \\ \Delta Q_4 \\ \Delta Q_4 \\ \Delta Q_2 \\ \Delta Q_2 \end{vmatrix} = \begin{vmatrix} H_{13} & H_{14} & H_{15} & H_{16} & N_{11} & T_{13} & N_{14} & -1 & 0 & 0 & H_{12} & N_{12} \\ H_{43} & H_{44} & H_{45} & H_{46} & N_{41} & T_{43} & N_{44} & 0 & 0 & 0 & H_{42} & N_{42} \\ H_{53} & H_{54} & H_{55} & H_{56} & N_{51} & T_{53} & N_{54} & 0 & -1 & 0 & H_{52} & N_{52} \\ H_{63} & H_{64} & H_{65} & H_{66} & N_{61} & T_{63} & N_{64} & 0 & 0 & -1 & H_{62} & N_{62} \\ H_{63} & H_{64} & H_{65} & H_{66} & N_{61} & T_{63} & N_{64} & 0 & 0 & 0 & M_{32} & L_{32} \\ M_{43} & M_{44} & M_{45} & M_{46} & L_{41} & W_{43} & L_{44} & 0 & 0 & 0 & M_{42} & L_{42} \\ \Delta Q_1 \\ \Delta Q_2 \\ \Delta Q_2 \end{bmatrix} = \begin{vmatrix} \Delta \theta_3 \\ M_{23} & M_{24} & H_{25} & H_{26} & N_{21} & T_{23} & N_{24} & 0 & 0 & 0 & M_{22} & L_{22} \\ M_{23} & M_{24} & M_{25} & M_{26} & L_{21} & W_{23} & L_{24} & 0 & 0 & 0 & M_{22} & L_{22} \end{vmatrix} = \begin{vmatrix} \Delta \theta_3 \\ \Delta \theta_4 \\ \Delta \theta_5 \\ \Delta \theta_6 \\ \Delta \theta_8 \\ \Delta \theta_9 \\ \Delta \theta_9$$

Portanto, a ideia é que as barras swing 1, 5 e 6 sejam responsáveis por absorver variações de ΔP_2 e perdas ativas. Por outro lado, as variações ΔQ_2 e perdas reativas são compensadas pelas barras 1, 5 e 6, que têm geração de potência reativa livres.

Já na análise de estabilidade de tensão da barra 6, swing do tipo V:

$$\begin{bmatrix} \Delta P_1^* \\ \Delta P_2 \\ \Delta P_3 \\ \Delta P_4 \\ \Delta P_5^* \\ \Delta Q_2 \\ \Delta Q_3 \\ \Delta Q_4 \\ \Delta Q_6 \end{bmatrix} = \begin{bmatrix} H_{12} & H_{13} & H_{14} & H_{15} & N_{11} & N_{12} & T_{13} & N_{14} & -1 & 0 & H_{16} & N_{16} \\ H_{22} & H_{23} & H_{24} & H_{25} & N_{21} & N_{22} & T_{23} & N_{24} & 0 & 0 & H_{26} & N_{26} \\ H_{32} & H_{33} & H_{34} & H_{35} & N_{31} & N_{32} & T_{33} & N_{34} & 0 & 0 & H_{36} & N_{36} \\ H_{42} & H_{43} & H_{44} & H_{45} & N_{41} & N_{42} & T_{43} & N_{44} & 0 & 0 & H_{46} & N_{46} \\ H_{52} & H_{53} & H_{54} & H_{55} & N_{51} & N_{52} & T_{53} & N_{54} & 0 & -1 & H_{56} & N_{56} \\ \Delta Q_2 \\ \Delta Q_3 \\ \Delta Q_4 \\ \Delta Q_4 \\ \Delta Q_4 \\ \Delta Q_6 \end{bmatrix} = \begin{bmatrix} \Delta \theta_2 \\ H_{62} & M_{63} & M_{64} & M_{65} & L_{21} & L_{22} & W_{23} & L_{24} & 0 & 0 & H_{46} & N_{46} \\ M_{62} & M_{63} & M_{64} & M_{65} & L_{61} & L_{62} & W_{63} & L_{64} & 0 & 0 & M_{66} & L_{66} \end{bmatrix} \begin{bmatrix} \Delta \theta_2 \\ \Delta \theta_3 \\ \Delta Q_4 \\ \Delta Q_6 \\ \Delta Q_6 \end{bmatrix}$$

Nota-se que, em relação a (4.5), há substituição da equação de ΔP_6^* pela equação de ΔP_6 , exclusão da equação de Δg_5 , exclusão da coluna referente à variável ΔP_{G6} inclusão da equação de Q_6 e inclusão da coluna referente à variável v_6 . Portanto, a ideia é que as barras swing 1 e 5 sejam responsáveis por absorver variações de ΔP_6 e as perdas ativas. Por outro lado, as variações ΔQ_6 e as perdas reativas são compensadas pelas barras 1 e 5 que têm geração de potência reativa livres. Ou seja, para efeitos de análise de estabilidade de tensão na barra 6, ela não é considerada como barra swing e nem como barra de tensão controlada.

Na análise de estabilidade de tensão da barra 3, do tipo PQV:

Destaca-se que, em relação a (4.5), há exclusão da coluna referente a Δa_{63} e inclusão da coluna referente à variável Δv_3 . Portanto, a ideia é que as barras swing 1, 5 e 6 sejam responsáveis por absorver variações de ΔP_3 e as perdas ativas. Além disso, como essas barras também têm geração de potência

reativa livres, também compensam as variações ΔQ_3 e as perdas reativas.

Por fim, para análise de estabilidade de tensão da barra 1, do tipo $V\theta$, a barra 5 foi escolhida como substituta no papel de barra de referência angular. Portanto:

$$\begin{bmatrix} \Delta P_2 \\ \Delta P_3 \\ \Delta P_4 \\ \Delta P_5 \\ \Delta P_6^* \\ \Delta Q_2 \\ \Delta Q_3 \\ \Delta Q_4 \\ \Delta Q_4 \\ \Delta Q_1 \end{bmatrix} = \begin{bmatrix} H_{22} & H_{23} & H_{24} & H_{26} & N_{22} & T_{23} & N_{24} & 0 & 0 & 0 & H_{21} & N_{21} \\ H_{32} & H_{33} & H_{34} & H_{36} & N_{32} & T_{33} & N_{34} & 0 & 0 & 0 & H_{31} & N_{31} \\ H_{42} & H_{43} & H_{44} & H_{46} & N_{42} & T_{43} & N_{44} & 0 & 0 & 0 & H_{41} & N_{41} \\ H_{52} & H_{53} & H_{54} & H_{56} & N_{52} & T_{53} & N_{54} & 0 & -1 & 0 & H_{51} & N_{51} \\ H_{62} & H_{63} & H_{64} & H_{66} & N_{62} & T_{63} & N_{64} & 0 & 0 & -1 & H_{61} & N_{61} \\ \Delta Q_2 \\ \Delta Q_3 \\ \Delta Q_3 \\ \Delta Q_4 \\ \Delta Q_5 \\ \Delta P_1 \\ \Delta Q_1 \end{bmatrix} = \begin{bmatrix} \Delta \theta_2 \\ H_{22} & H_{23} & H_{24} & H_{26} & N_{22} & T_{23} & N_{24} & 0 & 0 & 0 & H_{41} & N_{41} \\ H_{66} & N_{62} & T_{63} & N_{64} & 0 & 0 & -1 & 0 & H_{51} & N_{51} \\ H_{62} & H_{63} & H_{64} & H_{66} & N_{62} & T_{63} & N_{64} & 0 & 0 & -1 & H_{61} & N_{61} \\ M_{32} & M_{33} & M_{34} & M_{36} & L_{32} & W_{23} & L_{24} & 0 & 0 & 0 & M_{21} & L_{21} \\ M_{32} & M_{33} & M_{34} & M_{36} & L_{32} & W_{33} & L_{34} & 0 & 0 & 0 & M_{31} & L_{31} \\ M_{42} & M_{43} & M_{44} & M_{46} & L_{42} & W_{43} & L_{44} & 0 & 0 & 0 & M_{41} & L_{41} \\ \Delta P_{G5} \\ \Delta P_{G1} \\ \Delta P_{G2} \\ \Delta P_{G3} \\ \Delta P_{G4} \\ \Delta P_{G4} \\ \Delta P_{G5} \\ \Delta P_{G4} \\ \Delta P_{G5} \\ \Delta P_{G6} \\ \Delta P_{G1} \\ \Delta P_{G2} \\ \Delta P_{G3} \\ \Delta P_{G4} \\ \Delta P_{G5} \\ \Delta P_{G4} \\ \Delta P_{G5} \\ \Delta P_{G6} \\ \Delta P_$$

A ideia é que as barras swing 5 e 6 sejam responsáveis por absorver variações de ΔP_1 e as perdas ativas. Além disso, como essas barras também têm geração de potência reativa livres, também compensam as oscilações ΔQ_1 e as perdas reativas. Para isso substitui-se a equação de ΔP_1^* pela equação de ΔP_1 , exclui-se a coluna referente à variável $\Delta \theta_1$, inclui-se a equação de ΔQ_1 , inclui-se a coluna referente à variável Δv_1 , exclui-se a equação de ΔQ_1 e exclui-se a coluna referente à variável Δv_1 , exclui-se a equação de ΔQ_1 e exclui-se a coluna referente à variável Δv_1 , exclui-se a equação de ΔQ_1 e exclui-se a coluna referente à variável Δv_1 , exclui-se a equação de ΔQ_1 e exclui-se a coluna referente à variável

Os índices de estabilidade de tensão para o caso-base calculados usando o método da matriz [D'] são expostos na Tabela 4:

Tabela 4: Índices de estabilidade de tensão do sistema-teste

# barra	tipo	$M_0(\mathrm{pu})$	$\beta_0(^{\circ})$
1	$V\theta$	0,9665	79,7162
2	PQ	0,9960	104,0773
3	PQV	0,9836	$90,\!4598$
4	PQ	0,9887	85,1616
5	V	0,9723	74,7729
6	V	0,8311	158,6649

De forma resumida, quando há múltiplas barras swing na rede elétrica, entende-se que essas barras sejam responsáveis por absorver variações de P da barra em análise e das perdas ativas da rede, exceto se uma dessas barras swing já estiver no seu limite de geração. Em contrapartida, as barras com geração de potência reativa livres compensam as variações da barra em análise e das perdas reativas.

4.4.4 Matriz [D'] para esgotamento de potência ativa

Por exemplo, se no sistema descrito na Seção 4.4.1 a geração de potência ativa na barra 5 atingir o limite máximo, então a barra 5 não pode ser responsável por absorver variações de ΔP_i da barra i em análise e nem das perdas ativas da rede.

Se o objetivo for entender como variações infinitesimais na carga (ou na geração) da barra 6 influenciam Δv_6 e $\Delta \theta_6$ no evento de limitação de geração de potência ativa na barra 5, então conforme explicado nas Seções 3.3.5 e 4.3.1, (4.7) passa a ser conforme (4.10).

Nota-se que o resíduo ΔP_5 tem valor necessariamente fixo em zero, já que não é possível variar P_5 . Por isso, a equação relativa a P_5 e a coluna relativa a θ_5 constam no sistema linearizado (4.10). Além disso, a equação relativa a g_1 e a coluna relativa a P_{G5} são excluídas do sistema linearizado, uma vez que P_{G5} não é livre para variar.

$\left[\Delta P_1^*\right]$	H_{12}	H_{13}	H_{14}	H_{15}	N_{12}	T_{13}	N_{14}	-1	þ	H_{16}	N_{16}	$\left[\Delta \theta_2 \right]$	
ΔP_2	H_{22}	H_{23}	H_{24}	H_{25}	N_{22}	T_{23}	N_{24}	0	þ	H_{26}	N_{26}	$\Delta \theta_3$	
ΔP_3	H_{32}	H_{33}	H_{34}	H_{35}	N_{32}	T_{33}	N_{34}	0	þ	H_{36}	N_{36}	$\mid \Delta \theta_4 \mid$	
ΔP_4	H_{42}	H_{43}	H_{44}	H_{45}	N_{42}	T_{43}	N_{44}	0	þ	H_{46}	N_{46}	$\Delta \theta_5$	
ΔP_5	H_{52}	H_{53}	H_{54}	H_{55}	N_{52}	T_{53}	N_{54}	0	-1	H_{56}	N_{56}	Δv_2	
$\Delta Q_2 =$	M_{22}	M_{23}	M_{24}	M_{25}	L_{22}	W_{23}	L_{24}	0	þ	M_{26}	L_{26}	Δa_{63}	
ΔQ_3	M_{32}	M_{33}	M_{34}	M_{35}	L_{32}	W_{33}	L_{34}	0	þ	M_{36}	L_{36}	Δv_4	
ΔQ_4	M_{42}	M_{43}	M_{44}	M_{45}	L_{42}	W_{43}	L_{44}	0	þ	M_{46}	L_{46}	ΔP_{G1}	
Δg_1	0	0	0	0	0	0	0	-1	α_{15}	0	0	ΔP_{G5}	
ΔP_6	H_{62}	H_{63}	H_{64}	H_{65}	N_{62}	T_{63}	N_{64}	0	þ	H_{66}	N_{66}	$\Delta \theta_6$	
ΔQ_6	M_{62}	M_{63}	M_{64}	M_{65}	L_{62}	W_{63}	L_{64}	0	þ	M_{66}	L_{66}	$\left[\begin{array}{c} \Delta v_6 \end{array}\right]$	
- -	_										_	(4.10)	

Portanto, ΔP_2 , ΔP_3 , ΔP_4 , ΔP_5 , ΔQ_2 , ΔQ_3 e ΔQ_4 são nulos, o que equivale a dizer que não há variação nessas injeções de potência. Assim, admite-se que todas as barras com potência ativa livre e potência reativa livre sejam responsáveis por absorver variações de perdas ativas e reativas respectivamente.

Adicionalmente, teria-se $\Delta P_1^* = \Delta P_{G1} - \Delta P_1 = 0$ ou $\Delta P_{G1} = \Delta P_1$, o que significa que variações nas injeções de potência na barra 1 são acompanhadas por P_{G1} . Ou, em outas palavras, a barra 1 seria do tipo *swing*.

4.4.5 Matriz [D'] para esgotamento de potência reativa

Por exemplo, se no sistema descrito na Seção 4.4.1 a geração de potência reativa na barra 5 atingir um limite, ΔQ_5 deve ser fixado e não pode contribuir para absorver as variações ΔQ_i e das perdas reativas. Porém a barra 5 ainda pode ser responsável por absorver variações de ΔP_i da barra i em análise e perdas ativas da rede.

Se o objetivo for entender como variações infinitesimais na carga (ou na geração) da barra 6 influenciam Δv_6 e $\Delta \theta_6$ no evento de limitação de geração de potência reativa na barra 5, então conforme explicado nas Seções 3.3.5 e 4.3.2, (4.7) passa a ser conforme (4.11).

Nota-se que o resíduo ΔQ_5 tem valor necessariamente fixo em zero, já que não é possível variar Q_5 . Por isso, a equação relativa a Q_5 e a coluna relativa a v_5 (destacadas em negrito) constam no sistema linearizado (4.11). Portanto, ΔP_2 , ΔP_3 , ΔP_4 , ΔQ_2 , ΔQ_3 , ΔQ_4 e ΔQ_5 são todos nulos, isto é, não há variação nessas injeções de potência. A ideia é que todas as barras com potência ativa livre e potência reativa livre sejam responsáveis por absorver variações de perdas ativas e reativas respectivamente.

4.4.6 Matriz [D'] para esgotamento de *tap*

Por exemplo, considere-se que o *tap* do LTC que controla a tensão na barra 3 no sistema descrito na Seção 4.4.1 atinja um limite. Se o objetivo for entender como variações infinitesimais na carga (ou na geração) da barra

6 influenciam Δv_6 e $\Delta \theta_6$ neste evento, então conforme explicado nas Seções 3.3.5 e 4.3.3, (4.7) passa a ser:

$$\begin{bmatrix} \Delta P_1^* \\ \Delta P_2 \\ \Delta P_3 \\ \Delta P_4 \\ \Delta P_5^* \\ \Delta Q_2 \\ = \begin{bmatrix} H_{12} & H_{13} & H_{14} & H_{15} & N_{12} & \mathbf{N_{13}} & N_{14} & -1 & 0 & H_{16} & N_{16} \\ H_{22} & H_{23} & H_{24} & H_{25} & N_{22} & \mathbf{N_{23}} & N_{24} & 0 & 0 & H_{26} & N_{26} \\ H_{32} & H_{33} & H_{34} & H_{35} & N_{32} & \mathbf{N_{33}} & N_{34} & 0 & 0 & H_{36} & N_{36} \\ \Delta P_4 \\ \Delta P_5^* \\ \Delta Q_2 \\ = \begin{bmatrix} H_{12} & H_{13} & H_{14} & H_{45} & N_{42} & \mathbf{N_{43}} & N_{44} & 0 & 0 & H_{46} & N_{46} \\ H_{42} & H_{43} & H_{44} & H_{45} & N_{42} & \mathbf{N_{43}} & N_{44} & 0 & 0 & H_{46} & N_{46} \\ H_{52} & H_{53} & H_{54} & H_{55} & N_{52} & \mathbf{N_{53}} & N_{54} & 0 & -1 & H_{56} & N_{56} \\ \Delta Q_2 \\ \Delta Q_2 \\ = \begin{bmatrix} M_{22} & M_{23} & M_{24} & M_{25} & L_{22} & \mathbf{L_{23}} & L_{24} & 0 & 0 & M_{26} & L_{26} \\ M_{32} & M_{33} & M_{34} & M_{35} & L_{32} & \mathbf{L_{33}} & L_{34} & 0 & 0 & M_{36} & L_{36} \\ M_{42} & M_{43} & M_{44} & M_{45} & L_{42} & \mathbf{L_{43}} & L_{44} & 0 & 0 & M_{46} & L_{46} \\ \Delta Q_1 \\ \Delta P_G \\ \Delta P_G \\ \Delta Q_6 \end{bmatrix} \begin{bmatrix} \Delta \theta_2 \\ \Delta \theta_3 \\ M_{62} & H_{63} & H_{64} & H_{65} & N_{62} & \mathbf{N_{63}} & N_{64} & 0 & 0 & M_{46} & L_{46} \\ M_{62} & M_{63} & M_{64} & M_{65} & L_{62} & \mathbf{L_{63}} & L_{64} & 0 & 0 & M_{66} & L_{66} \end{bmatrix} \begin{bmatrix} \Delta \theta_2 \\ \Delta \theta_3 \\ \Delta \theta_4 \\ \Delta \theta_5 \\ \Delta \theta_5 \\ \Delta \theta_6 \\ \Delta \theta_6 \\ \Delta \theta_6 \\ \Delta \theta_6 \end{bmatrix}$$

Nota-se que a coluna relativa a a_{63} foi substituída pela coluna relativa a v_3 (destacada em negrito) no sistema linearizado (4.12). Isso ocorre porque não é possível variar a_{63} , que está sob esgotamento. Portanto, ΔP_2 , ΔP_3 , ΔP_4 , ΔQ_2 , ΔQ_3 e ΔQ_4 são todos nulos, isto é, não há variação nessas injeções de potência. Mais uma vez todas as barras com potência ativa livre e potência reativa livre são responsáveis por absorver variações de perdas ativas e reativas respectivamente.

4.4.7 Resultados

Na Seção 4.2.1, foi utilizado o índice de influência para traduzir os efeitos de um esgotamento de recurso sobre a margem de cada barra i, conforme (4.1). O índices de influência são apresentados na Tabela 5^1 e, em cada linha da tabela, são destacados os índices de influência do evento mais danoso para a barra em questão do ponto de vista de estabilidade de tensão. Pode-se observar que o esgotamento Q5 é o que causa maior impacto sobre uma determinada barra, neste caso, a barra 6. Em outras palavras, pode se dizer que a barra 6 é que sofre maior impacto de um determinado esgotamento, neste caso, o esgotamento Q5. Ambas as afirmações podem ser constatadas verificando que II_6^{Q5} (índice de influência do esgotamento Q5 sobre a barra 6) tem o maior módulo dentre todos os II da Tabela 5.

 $^{^1\}mathrm{II}$ menores que 0,5% em módulo são omitidos na Tabela.

tio e marces de influencia do esgotamento sobre o sistema 115										
Barra				II (%)				S_m		
Darra	Q1	Q5	Q6	t3	P1	P5	P6	\mathcal{O}_m		
1			-0,51	-0,88		-1,00	-1,01	31,35		
2								67,29		
3					-0,72	-1,04	-0,57	68,02		
4								46,31		
5			-1,72					20,52		
6		-12,33		9,72	-5,53	-2,44		10,04		
IIS(%)	-0.12	-2,02	-1.15	0.92	-1.68	-2,34	-1,10			

Tabela 5: Índices de influência II para cada barra em cada cenário de esgotamento e índices de influência do esgotamento sobre o sistema IIS

Nota-se que para o esgotamento em uma barra b, o índice de influência desse evento sobre própria barra b é nulo. Isso ocorre porque nos casos préesgotamento e pós-esgotamento a matriz [D'] é a mesma. No caso-base, ao analisar-se a estabilidade de tensão da barra b, as equações reativas a P_b e Q_b fazem parte do sistema linear. Logo, após o esgotamento j, a inclusão da equação referente ao recurso esgotado não provoca alteração, ou seja, $M_b^i = M_b^j$.

Em segundo lugar, na Tabela 5, constam as informações das estimativas das máximas potências injetadas em cada barra (S_m) no ponto de operação em análise. Observa-se que a barra 6 tem S_{m_6} relativamente baixo quando comparada com a barra 3, com $S_{m_3} \approx 7S_{m_6}$.

Por último, na Tabela 5 também é apresentado o índice IIS, explicado na Seção 4.2.2. Esse índice avalia as consequências do esgotamento sobre o sistema, considerando importância relativa de cada barra do sistema.

Como a barra 6 tem S_{m_6} relativamente baixo, o resultado do esgotamento Q5 sobre o sistema é menor do que o resultado do esgotamento de geração de potência ativa P5. Isso porque esse último evento afeta a barra 3, que é uma barra com S_{m_3} aproximadamente sete vezes maior que S_{m_6} . Então, o esgotamento P5 é o que impacta mais negativamente o sistema ($IIS^{P5} = -2,34\%$).

Os índices de influência II² para cada barra em cada cenário de esgotamento podem ser observados na Figura 14 enquanto os índices de influência sobre o sistema podem visualizados na Figura 15.

 $^{^2\}mathrm{II}$ menores que 0,5% em módulos são omitidos.

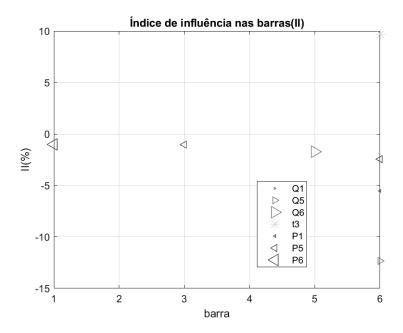


Figura 14: Índice de influência sobre cada barra

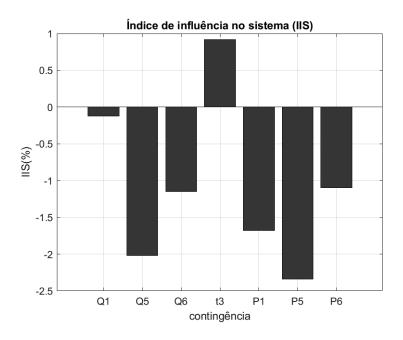


Figura 15: Índice de influência de cada esgotamento sobre o sistema

4.5 Rede de exemplo: CEPEL-34

Na Figura 16 é mostrado o diagrama unifilar de um sistema desenvolvido no CEPEL, baseado em um equivalente do sistema S/SE brasileiro. Ele tem 34 barras, 42 linhas, 12 transformadores e 5 geradores. Os níveis de tensão

na transmissão são 750, 500 e 345 kV, e todos os geradores trabalham com 20 kV. O corredor de 750 kV tem compensação série / paralelo, e a barra 26 representa o equivalente de um sistema de grande porte.

Aqui, as barras 1,31,32,33 e 34 são consideradas como barras *swing*, sendo 34 a barra de referência angular. O ponto de operação do sistema (tensão v, defasagem angular θ , potência ativa gerada P_G e potência reativa gerada Q_G) e os índices de estabilidade de tensão para o caso-base, calculados usando o método da matriz [D'], estão explicitados na Tabela 6:

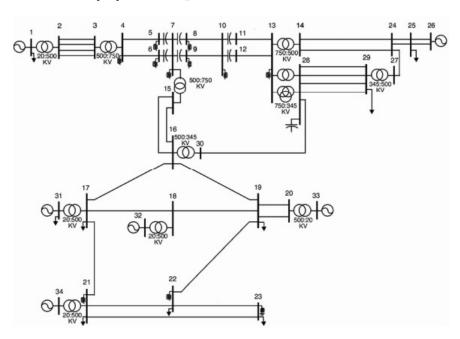


Figura 16: Diagrama unifilar da rede CEPEL-34

4.5.1 Determinação das tensões e gerações mais influentes sobre a margem de potência de certa barra da rede

Na Seção 4.2.1, foi utilizado o índice de influência para traduzir os efeitos de um esgotamento na margem de cada barra i, conforme (4.1). Na Tabela 7 são listados os índices de influência dos esgotamentos Q1, Q31, Q32, Q33, Q34, P1, P31, P32, P33 e P34 sobre cada barra do sistema de 34 barras. Para melhor visualização, II de módulos menores que 0,5% são omitidos.

Além disso, em cada linha da tabela, são destacados os índices de influência do evento mais danoso para a barra em questão do ponto de vista de estabilidade de tensão. Por exemplo, nota-se que o pior evento para a barra 29 é o esgotamento da capacidade de geração de potência reativa da barra 1. Por outro lado, nenhum dos esgotamentos analisados influencia a estabilidade de tensão na barra 5.

Tabela 6: Ponto de operação e índices de estabilidade de tensão do sistema CEPEL-34 barras da Figura 16 no caso-base

#barra	tipo	v (pu)	$\theta(^{\circ})$	P_G (MW)	Q_G (MVar)	M_0 (pu)	$\beta_0(^\circ)$
1	V	1,0300	4,1108	33,0042	11,3189	-3,9883	-8,2459
2	PQ	1,0118	-2,3268	0	0		
3	PQ	1,0105	-2,5521	0	0		
4	PQ	0,9514	-5,7850	0	0	1,0000	$152,\!3970$
5	PQ	0,9159	-25,9965	0	0	1,0000	-179,71722
6	PQ	0,9156	-25,9247	0	0	1,0000	-179,71241
7	PQ	0,9321	-17,7814	0	0	1,0000	172,2844
8	PQ	0,9865	-4,3467	0	0	1,0000	-178,71062
9	PQ	0,9871	-4,3508	0	0	1,0000	-178,72803
10	PQ	0,9067	-31,8724	0	0	1,0000	$176,\!5331$
11	PQ	0,9213	-14,7393	0	0		
12	PQ	0,9217	-14,7384	0	0		
13	PQ	0,8824	-49,5400	0	0	1,0000	178,2071
14	PQ	0,9660	-55,5054	0	0		
15	PQ	0,8762	-12,7131	0	0		
16	PQ	0,8790	-12,3138	0	0		
17	PQ	0,9988	9,7031	0	0	0,9997	78,3917
18	PQ	1,0373	9,9157	0	0		
19	PQ	1,0497	5,3022	0	0	0,8844	102,0663
20	PQ	1,0522	5,6919	0	0		
21	PQ	1,0744	$13,\!4825$	0	0	0,9999	44,6701
22	PQ	1,0754	9,2998	0	0	0,9998	91,4454
23	PQ	1,0665	$5,\!3529$	0	0	0,8566	$111,\!2067$
24	PQ	1,0372	-63,1734	0	0		
25	PQ	1,0934	-65,4652	0	0	0,2690	$178,\!3923$
26	PV	1,1000	-64,6750	38,7900	13,6946	-1,7768	-130,33743
27	PQ	0,9906	-63,1638	0	0		
28	PQ	0,8691	-58,6522	0	0		
29	PQ	0,8785	-63,7493	0	0	0,0487	$178,\!1545$
30	PQ	0,9288	-16,5758	0	0		
31	V	1,0070	18,0065	13,2017	-1,4227	0,3977	8,5515
32	V	1,0580	16,5952	12,0015	4,1257	0,7264	52,9796
33	V	1,0590	12,5998	12,0015	4,7792	0,6235	43,0317
34	$V\theta$	1,0490	$22,\!3000$	14,4419	3,9050	0,4942	35,4243

Por último, vale ressaltar que as barras 2, 3, 11, 12, 14, 15,16, 18, 20, 24, 27, 28 e 30 não tem avaliação de estabilidade de tensão por serem barras de passagem.

4.5.2 Ordenação dos esgotamentos de controle de tensão e de geração de potência ativa por severidade

Na Tabela 8 reapresentam-se em ordem crescente os índices IIS, conforme explicado na Seção 4.2.2 e exibido na Tabela 7. Esse índice avalia as consequências do esgotamento sobre o sistema, levando em conta a importância relativa

IIS(%)

Tabela 7: Índices de estabilidade de tensão do Sistema de 34 barras II(%) Barra Q1 Q31 Q32 Q33 P31 P32 P33 Q34 Ρ1 -74,79 -21,42 -37,68 -7,09 5,42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0,01 -0,05 -54957,10 -0,02 -0,03 -0,01 -0,0 17 18 19 4,45 -456,89 -6,60 -19,06 -4,03 -15,86 -1,69 -1,45 -7,74 20 477489,12-0,02 -0,03 21 22 -227030,55 -0,01 -0,01 -0,02 -0,02 23 0,58 -839,77 -1,36 -4,01 -5,84 -5,86 -0,33 -0,24 -0,14 -8,92 24 -39,56 -29,35 25 -2161,70 -110,97 -64,45 -28,01 11,41 5,18 1,80 13,90 27 28 3,25 -4495,15 -116,04 -53,26 -79,00 -39,54 -51,79 21,22 9,36 29 33,49 30 31 89,47 -1647,56 -2089,83 -1400,83 316,04 -4,43 0,54 32 9,32 29,44 -1278,76 -211,71 -28,65 -13,40 33 26,56 49,53 -1156,43 -819,80 -101,30 5,45 1,98 -12,96 34 17,73 -1201,96 -108,51 -607,66 10,69 -5,50 -3,22 -1,51

dada à barra em esgotamento.

-595422,1

-293,3

-1240,1

Assim, observa-se que o pior evento do ponto de vista de estabilidade de tensão para o sistema CEPEL-34 é a perda de capacidade de geração de potência reativa na barra 31.

-459,9

-256,5

-12,7

5,3

1,9

0,3

-3,5

Tabela 8: Índice de influência de cada esgotamento sobre o sistema

Esgotamento	IIS(%)	Esgotamento	IIS(%)
Q1	-1240,1	P1	-12,7
Q31	-595422,1	P31	5,3
Q32	-293,3	P32	1,9
Q33	-459,9	P33	0,3
Q34	-256,5	P34	-3,5

4.6 Resumo

Para um dado ponto de operação de um sistema elétrico há índices de estabilidade de tensão M (margem de potência) e β associados. Contudo, M e β variam se houver esgotamento de algum dos recursos do sistema, o que pode ser mensurado pelo índice de influência do esgotamento sobre cada barra – II. Esse índice relaciona a margem de potência da barra nos casos pré-esgotamento e pós-esgotamento. Além disso, é apresentado o índice de influência do esgotamento sobre o sistema –IIS–, que determina como o sistema é afetado por cada esgotamento.

Com II foi possível determinar os esgotamentos mais influentes sobre a margem de potência de qualquer barra da rede, seja ele de perda de controle de tensão ou de máxima potência ativa gerada. Já com IIS foi possível ordenar os esgotamentos de tensão e de geração de potência ativa por severidade, considerando os efeitos sobre todo o sistema.

5 Ações de controle preventivas

5.1 Introdução

Na Seção 4.5.1, percebeu-se que as barras possuem margem de estabilidade de tensão diferentes umas das outras. Portanto, é possível eleger uma barra crítica, ou seja, uma barra que tem margem de potência mais baixa que as demais barras do sistema. Além disso, conforme exemplificado na Seção 4.5.2, a margem de potência das barras pode se tornar ainda menor em função da ocorrência de limitações. Nesses casos, o evento do esgotamento leva a índices de influência negativos.

A importância desse capítulo consiste na indicação de que grandeza deve ser alterada para que a melhora da estabilidade de tensão seja mais significativa. Nesse caso, parte-se do princípio de que a atuação deva ocorrer sobre a grandeza cujo esgotamento mais influencia a barra em análise. Ou seja, comparando-se o caso-base com o caso pós-esgotamento, são sugeridas ações de controle preventivas que melhorem as condições de estabilidade de tensão de uma dada barra do sistema.

Dessa forma a margem de potência do caso pós-controle seria maior do que se as ações não fossem tomadas, ou em outras palavras, maiores que as margens de potência do caso-base.

As etapas dos procedimentos realizados neste capítulo serão:

- Cálculo do fluxo de potência
- Cálculo dos índices de estabilidade de tensão: M e β
- Simulação de esgotamentos de recursos
- Cálculo dos índices relativos a esgotamentos de recursos: II
- Cálculo das ações de controle preventivas
- Execução das ações de controle preventivas (atuando sobre a tensão ou sobre a geração de potência ativa)
- Análise do efeito das ações de controle preventivas

5.2 Ações de controle preventivas de potência reativa

Se um esgotamento de geração de potência reativa em uma barra b influencia a barra i, então seria possível manipular Q_{Gb} para promover melhoras em M_i (margem de potência da barra i). Adicionalmente, espera-se que quanto maior for II_i^{Qb} (índice de influência do esgotamento de geração de potência reativa da barra b sobre a margem da barra i), maior será o efeito da variação de Q_{Gb} sobre M_i . Desse modo, uma ação de controle preventiva baseada nos efeitos do esgotamento de geração de potência reativa sobre uma barra i qualquer, deveria mudar o ponto de operação do sistema de tal modo que a margem M_i varie. Contudo, a ação de controle não pode usar diretamente Q_{Gb} (pois essa grandeza não é explicitada no algoritmo de fluxo de potência). Assim, altera-se o módulo de tensão v_b na mesma barra.

5.2.1 Barras de carga

Considerando o sistema elétrico CEPEL-34 apresentado na Seção 4.5, serão descritas ações de controle preventivas baseadas nos efeitos de esgotamentos que afetem a barra 29, pois essa barra é a barra de carga que apresenta a menor margem de potência no caso-base: M = 4,87%. Pela Tabela 7, sabe-se que o esgotamento que mais afeta os índices de estabilidade de tensão da barra 29 é a de potência reativa gerada na barra 1 (Q_{G1}) , com $II_{29}^{Q1} = -4495,15\%$.

Assim, as ações de controle preventivas para incrementar a margem da barra 29 envolvem mudar o ponto de operação do sistema de tal modo que Q_{G1} sofra uma pequena variação em torno do ponto de operação do caso-base. Contudo, a ação de controle não pode usar diretamente Q_{G1} . Assim, altera-se o módulo de tensão v_1 .

As ações de controle preventivas implementadas são descritas na Tabela 9, onde notam-se as variações de tensão na barra 1 e suas consequências sobre a estabilidade de tensão da barra 29. A ação de controle preventiva identificada como "0" corresponde ao sistema sem ação de controle preventiva (casobase). Além disso, nas ações de controle preventivas em que não há solução convergente para o problema de fluxo de potência, os índices de estabilidade são indicados como "-".

Na Figura 17, é possível ver o efeito da ação de controle preventiva sobre a margem da barra $29 - M_{29}$. Para isso, o eixo vertical esquerdo representa o valor da margem de potência da barra 29, enquanto no eixo horizontal são listadas diferentes v_1 , sendo cada uma delas associada a uma ação de controle preventiva ou ao caso-base. Nota-se que à medida que v_1 aumenta,

Tabela 9: Ações de controle preventivas sobre v_1 implementadas para incrementar a margem da barra 29

Ação	v_1	Q_{G1}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	0,830	-	-	-
2	0,870	-	-	-
3	0,910	-	-	-
4	0,950	-	-	-
5	0,990	-	-	-
6	1,029	-	-	-
0	1,030	11,32	4,87	178,15
8	1,031	10,74	7,89	176,64
9	1,070	6,80	32,68	$162,\!27$
10	1,110	5,96	40,68	$155,\!36$
11	1,150	5,92	45,39	150,32
12	1,190	$6,\!35$	48,80	146,29
13	1,230	7,12	51,48	142,92

a margem M_{29} aumenta também. Análise semelhante pode ser feita com β_{29} , cujos valores são representados no eixo vertical direito. Nota-se que à medida que v_1 aumenta, β_{29} é reduzido.

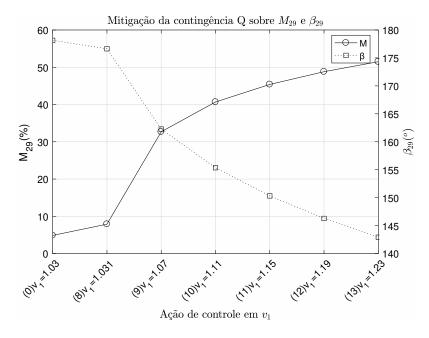


Figura 17: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

Em outras palavras, pode-se dizer que o objetivo das ações de controle preventivas, que era distanciar a margem da barra 29 do ponto crítico, foi alcançado. Ou seja, as margens da barra 29 são maiores nos casos pós-controle – em que houve ação de controle preventiva correspondente ao aumento de v_1 – do que naquele sem ação de controle preventiva, o caso-base.

De acordo com a Tabela 10 (II_{29} disponíveis na Tabela 7 e reproduzidos na Tabela 10), sabe-se que os esgotamentos de potência reativa gerada nas barras 31, 32, 33 e 34 (Q_{G31} , Q_{G23} , Q_{G33} e Q_{G34}) também afetam negativamente a estabilidade de tensão da barra 29, pois os índices de influência desses esgotamentos são negativos. Assim, devem-se analisar as variações de tensão nas barras 31, 32, 33 e 34 e suas consequências sobre a estabilidade de tensão da barra 29.

Tabela 10: Índices de influência em ordem decrescente conforme dados da Tabela 7

Tabe											
	II_{29}		II_1		II_{31}		II_{32}		II_{33}		II_{34}
Q1	-4495,15	Q31	-74,79	Q33	-2089,83	Q33	-1278,76	Q32	-1156,43	Q31	-1201,96
Q31	-116,04	Q33	-37,68	Q32	$-1647,\!56$	Q34	-211,71	Q34	-819,80	Q33	-607,66
Q33	-79,00	Q32	-21,42	Q34	-1400,83	P1	-28,65	P1	-101,30	Q32	-108,51
Q32	-53,26	Q34	-7,09	P34	-4,43	P34	-13,40	P34	-12,96	P31	-5,50
P1	-51,79	P31	0,00	P32	0,00	Q32	0,00	Q33	0,00	P32	-3,22
Q34	-39,54	P32	0,00	P33	0,00	P32	0,00	P33	0,00	P33	-1,51
P33	$3,\!25$	P33	0,00	Q31	0,00	P33	0,00	P32	1,98	Q34	0,00
P32	9,36	Q1	0,00	P31	0,00	P31	0,54	P31	$5,\!45$	P34	0,00
P31	21,22	P1	0,00	Q1	89,47	Q1	9,32	Q1	$26,\!56$	P1	10,69
P34	33,49	P34	5,42	P1	316,04	Q31	29,44	Q31	49,53	Q1	17,73

Na Tabela 11 é possível observar que à medida que a tensão de cada uma das barras em questão aumenta, a margem M_{29} aumenta também. Também pode-se verificar essa tendência na Figura 18.

Tabela 11: Ações de controle preventivas implementadas sobre $v_{31},\,v_{33},\,v_{32},\,$ e v_{34} para incrementar a margem da barra 29

. O. I.	i mere								
Ação	v_{31}	Q_{G31}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$	Ação	v_{32}	Q_{G32}	$M_{29}(\%)$	β ₂₉ (°)
1	0,807	-	-	_	1	0,858	-	-	-
2	0,847	-	-	-	2	0,898	-	-	-
3	0,887	-	-	-	3	0,938	-	-	-
4	0,927	-	-	-	4	0,978	-	-	-
5	0,967	-	-	-	5	1,018	-	-	-
6	1,006	-1,41	3,63	178,75	6	1,057	4,10	2,60	178,57
0	1,007	-1,42	4,87	178,15	0	1,058	4,13	4,87	178,15
8	1,008	-1,42	6,32	177,71	8	1,059	4,16	6,04	177,81
9	1,047	-0,19	19,93	171,22	9	1,098	6,14	17,51	172,27
10	1,087	1,54	25,99	167,73	10	1,138	8,55	$23,\!57$	169,24
11	1,127	3,51	29,89	165,06	11	1,178	11,18	27,26	166,89
12	1,167	5,67	$32,\!25$	162,81	12	1,218	14,02	30,07	164,93
13	1,207	8,02	35,01	160,86	13	1,258	17,05	31,66	163,19
Ação	v_{33}	Q_{G33}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$	Ação	v_{34}	Q_{G34}	$M_{29}(\%)$	β ₂₉ (°)
		• 000	20 ()	1- 20 ()		01	0.001	20 ()	1- 20 ()
1	0,859	-	-	-	1	0,849	-	-	-
1 2		-	-	-			-	-	-
	0,859	- - -		- - -	1	0,849	- - -		
2	0,859 0,899	- - -			1 2	0,849 0,889			- - -
2 3	0,859 0,899 0,939	- - - -			1 2 3	0,849 0,889 0,929	- - - -		- - - -
2 3 4	0,859 0,899 0,939 0,979	- - - - - 4,77	1,88	178,65	1 2 3 4	0,849 0,889 0,929 0,969	- - - - - 3,88	- - - - - - 3,66	- - - - - 178,41
2 3 4 5	0,859 0,899 0,939 0,979 1,019	- - - -	- - - -	- - - -	1 2 3 4 5	0,849 0,889 0,929 0,969 1,009	- - - -	- - - -	- - - -
2 3 4 5 6	0,859 0,899 0,939 0,979 1,019 1,058	- - - - 4,77	- - - - - 1,88	- - - - 178,65	1 2 3 4 5 6	0,849 0,889 0,929 0,969 1,009 1,048	- - - - 3,88	- - - - - 3,66	- - - - 178,41
2 3 4 5 6 0	0,859 0,899 0,939 0,979 1,019 1,058 1,059	- - - 4,77 4,78	1,88 4,87	- - - 178,65 178,15	1 2 3 4 5 6 0	0,849 0,889 0,929 0,969 1,009 1,048 1,049	- - - - 3,88 3,90	3,66 4,87	- - - - 178,41 178,15
2 3 4 5 6 0 8	0,859 0,899 0,939 0,979 1,019 1,058 1,059 1,060	4,77 4,78 4,80	1,88 4,87 6,20	178,65 178,15 177,76	1 2 3 4 5 6 0 8	0,849 0,889 0,929 0,969 1,009 1,048 1,049 1,050	- - - 3,88 3,90 3,93	3,66 4,87 5,68	178,41 178,15 177,93
2 3 4 5 6 0 8 9	0,859 0,899 0,939 0,979 1,019 1,058 1,059 1,060 1,099	4,77 4,78 4,80 6,50	1,88 4,87 6,20 18,95	178,65 178,15 177,76 171,67	1 2 3 4 5 6 0 8 9	0,849 0,889 0,929 0,969 1,009 1,048 1,049 1,050 1,089	3,88 3,90 3,93 5,20	3,66 4,87 5,68 15,57	178,41 178,15 177,93 173,72
2 3 4 5 6 0 8 9	0,859 0,899 0,939 0,979 1,019 1,058 1,059 1,060 1,099 1,139	4,77 4,78 4,80 6,50 8,68	1,88 4,87 6,20 18,95 24,98	178,65 178,15 177,76 171,67 168,38	1 2 3 4 5 6 0 8 9 10	0,849 0,889 0,929 0,969 1,009 1,048 1,049 1,050 1,089 1,129	3,88 3,90 3,93 5,20 6,73	3,66 4,87 5,68 15,57 19,87	178,41 178,15 177,93 173,72 171,30
2 3 4 5 6 0 8 9 10	0,859 0,899 0,939 0,979 1,019 1,058 1,059 1,060 1,099 1,139 1,179	4,77 4,78 4,80 6,50 8,68 11,08	1,88 4,87 6,20 18,95 24,98 28,79	178,65 178,15 177,76 171,67 168,38 165,84	1 2 3 4 5 6 0 8 9 10 11	0,849 0,889 0,929 0,969 1,009 1,048 1,049 1,050 1,089 1,129 1,169	3,88 3,90 3,93 5,20 6,73 8,41	3,66 4,87 5,68 15,57 19,87 23,43	178,41 178,15 177,93 173,72 171,30 169,44

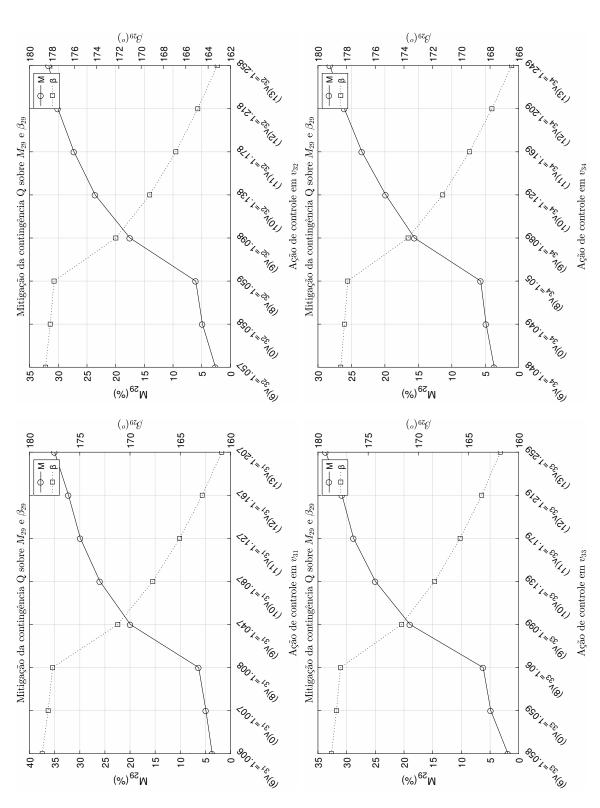


Figura 18: Ações de controle preventivas implementadas sobre v_{31} , v_{32} , v_{33} , e v_{34} para incrementar a margem da barra 29

Vale comparar as ações de número 8 nas Tabelas 9 e 11, pois nelas há aumento de 0,001 pu nas tensões especificadas das barras 1, 31, 32, 33 e 34 em relação ao sistema elétrico sem ação de controle preventiva (ou ação de número 0). Apesar do incremento da tensão especificada aplicado em cada barra ser o mesmo, os índices de estabilidade de tensão melhoraram mais para a barra 1 do que para a barra 34, por exemplo. De forma geral, nota-se que os índices de estabilidade de tensão melhoram mais para barras cujo índice de influência do esgotamento de geração de potência reativa sobre a barra 29 é mais significativo. Ou seja, M_{29} é maior quando há incremento de 0,001 pu em v_{31} . De forma análoga, M_{29} é maior quando há incremento de 0,001 pu em v_{31} do que quando há incremento de 0,001 pu em v_{32} , do que quando há incremento de 0,001 pu em v_{33} . E os efeitos do incremento de v_{33} prevalecem sobre v_{32} , que por sua vez traz resultados melhores que o aumento de v_{34} .

Esse comportamento pode ser verificado também na Figura 19, na qual são apresentadas as margens de potência da barra 29 em função do II das barras *swing* quando há incremento de 0,001 pu nessas barras.

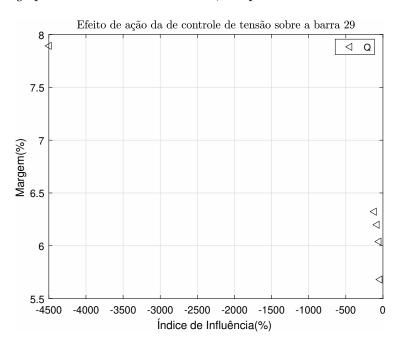


Figura 19: Margem de potência da barra 29 em função do II das barras swing quando há incremento de 0,001 pu na tensão dessas barras

Tais resultados corroboram a existência de uma relação entre os índices de influência sobre a barra 29 e a margem de potência dessa barra. Ou, em outras palavras, quanto mais significativa a influência da limitação de geração de potência reativa de uma barra b sobre a barra $29 - II_{29}^{Qb}$, maior é o efeito da variação de v_b sobre M_{29} .

5.2.2 Barras de geração

Considerando o sistema elétrico CEPEL-34 apresentado na Seção 4.5, serão descritas ações de controle preventivas para atenuar efeitos de esgotamentos que afetem a barra 1, pois essa barra de geração apresenta a menor margem de potência no caso-base: M = -398, 83%. Pela Tabela 10, sabe-se que o esgotamento que mais afeta a estabilidade de tensão da barra 1 é o de potência reativa gerada na barra 31 (Q_{G31}) , com $II_1^{Q31} = -74,79\%$. Assim como foi feito no caso da barra 29 (Seção 5.2.1), o natural seria que as ações de controle preventivas para incrementar a margem da barra 1 envolvessem mudar o ponto de operação do sistema de tal modo que Q_{G31} sofresse uma pequena variação em torno do ponto de operação do caso-base. Contudo, a ação de controle preventiva não poderia usar diretamente Q_{G31} . Assim, alterar-se-ia o módulo de tensão v_{31} . De fato isso será feito, porém a barra 1 é uma barra de geração. Então, além de todas as ações de controle preventivas utilizadas para incremento da margem de potência da barra 29 (barra de carga) ainda resta a alternativa de alterar a tensão na própria barra em análise, ou seja, nesse caso, alterar-se o módulo de tensão v_1 . Essa será a primeira estratégia de controle explorada.

As ações de controle preventivas implementadas são descritas na Tabela 12, onde notam-se as variações de tensão na barra 1 e suas consequências sobre a estabilidade de tensão da barra 1. A ação de controle preventiva identificada como "0" corresponde ao sistema sem ação de controle preventiva (casobase). Além disso, nas ações de controle preventivas em que não há solução convergente para o problema de fluxo de potência, os índices de estabilidade são indicados como "-".

Na Figura 20, é possível ver o efeito da ação de controle preventivas sobre a margem da barra $1-M_1$. Para isso, o eixo vertical esquerdo representa o valor da margem de potência da barra 1 enquanto no eixo horizontal são listadas diferentes v_1 , sendo cada uma delas associada a uma ação de controle ou ao caso-base. Nota-se que à medida que v_1 aumenta, a margem M_1 aumenta também. Análise semelhante pode ser feita com β_1 , cujos valores são representados no eixo vertical direito. Nota-se que à medida que v_1 aumenta, β_1 se afasta do valor crítico de 0°.

Em outras palavras, pode-se dizer que o objetivo das ações de controle preventivas, que era elevar a margem da barra 1 para valores positivos, foi alcançado. Assim, as margens da barra 1, no caso, são maiores nos casos pós-controle – em que houve ação de controle preventiva correspondente ao aumento de v_1 – do que naquele sem ação de controle, o caso-base.

Tabela 12: Ações de controle preventivas sobre v_1 implementadas para incrementar a margem da barra 1

Ação	v_1	Q_{G1}	$M_1(\%)$	$\beta_1(^{\circ})$
1	0,830	-	-	-
2	0,870	-	-	-
3	0,910	-	-	-
4	0,950	-	-	-
5	0,990	-	-	-
6	1,029	-	-	-
0	1,030	11,32	-398,83	-8,25
8	1,031	10,74	-320,38	-14,25
9	1,070	6,80	-44,36	-68,56
10	1,110	5,96	-9,44	-76,69
11	1,150	5,92	5,70	87,48
12	1,190	$6,\!35$	14,44	89,78
13	1,230	7,12	20,46	89,41

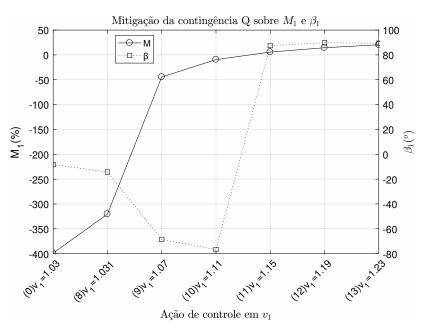


Figura 20: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β da barra 1

De acordo com a Tabela 10, sabe-se que os esgotamentos de potência reativa gerada nas barras 31, 32, 33 e 34 (Q_{G31} , Q_{G32} , Q_{G33} e Q_{G34}) afetam negativamente a estabilidade de tensão da barra 1, pois os índices de influência desses esgotamentos são negativos. Assim, devem-se analisar as variações de tensão nas barras 31, 32, 33 e 34 e suas consequências sobre a estabilidade de tensão da barra 1.

Na Tabela 13, é possível observar que à medida que a tensão de cada uma das barras em questão aumenta, a margem M_1 aumenta também. Também

pode-se verificar essa tendência na Figura 21.

Tabela 13: Ações de controle preventivas implementadas sobre v_{31} , v_{33} , v_{32} , e v_{34} para incrementar a margem da barra 1

v_{34} para	increr	nentar	a marge		arr	a 1				
Ação	v_{31}	Q_{G31}	$M_1(\%)$	$\beta_1(^{\circ})$		Ação	v_{32}	Q_{G32}	$M_1(\%)$	$\beta_1(^{\circ})$
1	0,807	-	-	-		1	0,858	-	-	-
2	0,847	-	-	-		2	0,898	-	-	-
3	0,887	-	-	-		3	0,938	-	-	-
4	0,927	-	-	-		4	0,978	-	-	-
5	0,967	-	-	-		5	1,018	-	-	-
6	1,006	-1,41	-452,06	-6,05		6	1,057	4,10	-433,89	-6,69
0	1,007	-1,42	-398,83	-8,25		0	1,058	4,13	-398,83	-8,25
8	1,008	-1,42	-370,24	-9,94		8	1,059	4,16	-375,94	-9,56
9	1,047	-0,19	-207,34	-39,07		9	1,098	6,14	-222,25	-34,09
10	1,087	$1,\!54$	-163,86	-54,42		10	1,138	8,55	-182,08	-48,07
11	1,127	$3,\!51$	-123,77	-63,93		11	1,178	11,18	-153,18	-57,59
12	1,167	$5,\!67$	-59,79	-70,00		12	1,218	14,02	$-120,\!26$	-64,26
13	1,207	8,02	-44,12	-73,77		13	1,258	17,05	-63,99	-69,02
Ação	v_{33}	Q_{G33}	$M_1(\%)$	$\beta_1(^{\circ})$	-	Ação	v_{34}	Q_{G34}	$M_1(\%)$	$\beta_1(^{\circ})$
1	0,859	-	-	-	-	1	0,849	-	-	-
2	0,899	-	-	-		2	0,889	-	-	-
3	0,939	-	-	-		3	0,929	-	-	-
4	0,979	-	-	-		4	0,969	-	-	-
5	1,019	-	-	-		5	1,009	-	-	-
6	1,058	4,77	-442,12	-6,39		6	1,048	3,88	-419,22	-7,28
0	1,059	4,78	-398,83	-8,25		0	1,049	3,90	-398,83	-8,25
8	1,060	4,80	-372,72	-9,77		8	1,050	3,93	-383,26	-9,12
9	1,099	$6,\!50$	-213,52	-36,94		9	1,089	$5,\!20$	-248,27	-27,90
10	1,139	8,68	-171,58	-51,79		10	1,129	6,73	-212,14	-40,29
11	1,179	11,08	-138,04	-61,40		11	1,169	8,41	-189,96	-49,82
12	1,219	13,68	-70,96	$-67,\!84$		12	1,209	10,23	-172,82	-57,31
13	1,259	16,47	-50,84	-72,07		13	1,249	12,18	-157,79	-63,21

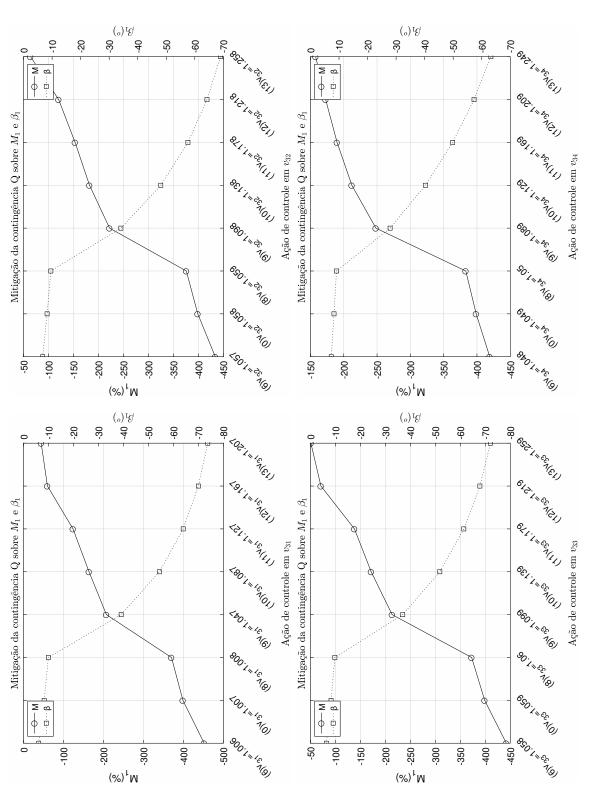


Figura 21: Ações de controle preventivas implementadas sobre $v_{31}, v_{33}, v_{32}, e v_{34}$ para incrementar a margem da barra 1

Vale comparar as ações de número 8 nas Tabelas 12 e 13, pois nelas há aumento de 0,001 pu nas tensões especificadas das barras 1, 31, 32, 33 e 34 em relação ao sistema elétrico sem ação de controle (ou ação de número 0).

Primeiramente, observa-se que M_1 é maior quando há incremento de 0,001 pu em v_1 do que quando há incremento de 0,001 pu em qualquer outra barra de geração. Isso significa que, para uma barra de geração, alterar a tensão na própria barra em análise, ou seja, nesse caso, alterar-se o módulo de tensão v_1 , é a ação de controle preventiva que traz melhor resultado nos índices de estabilidade de tensão.

Em segundo lugar, na Tabela 13 nota-se que os índices de estabilidade de tensão melhoram mais para barras cujo índice de influência do esgotamento de geração de potência reativa sobre a barra 1 é mais significativo. Ou seja, M_1 é maior quando há incremento de 0,001 pu em v_{31} do que quando há incremento de 0,001 pu em v_{32} . De forma análoga, M_1 é maior quando há incremento de 0,001 pu em v_{32} do que quando há incremento de 0,001 pu em v_{34} . Tais resultados corroboram a existência de uma relação entre os índices de influência sobre a barra 1 e a margem de potência dessa barra. Ou, em outras palavras, quanto mais significativa a influência da limitação de geração de potência reativa de uma barra b sobre a barra $1 - II_1^{Qb}$, maior é o efeito da variação de v_b sobre M_1 .

A exceção à tendência de verificada ocorre para os casos em que há esgotamento de geração de potência reativa na própria barra 1. Nesse caso, II_1^{Q1} é nulo, mas ação de controle preventiva baseada no evento correspondente é a que apresenta melhores resultados de estabilidade de tensão. Portanto, aqui observa-se uma limitação de aplicação do método proposto. Entretanto, nos demais casos, o II é útil para indicar as melhores intervenções no sistema.

Esse comportamento pode ser verificado também na Figura 22, na qual são apresentados as margens de potência da barra 1 em função do II das barras swing quando há incremento de 0,001 pu nessas barras.

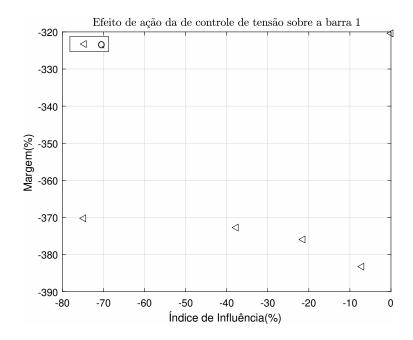


Figura 22: Margem de potência da barra 1 em função do II da própria barra 1 e das barras *swing* quando há incremento de 0,001 pu na tensão dessas barras

5.3 Ações de controle preventivas de potência ativa

Ações de controle preventivas baseadas em geração de potência ativa tem uma particularidade, pois esse tipo de ação de controle deve manter a potência total gerada no sistema elétrico. Então, não é possível modificar parâmetros apenas em uma barra. Assim, cada ação de controle preventiva é na verdade um conjunto de intervenções coordenadas.

5.3.1 Barras de carga

Se um esgotamento de geração de potência ativa em uma barra b influencia as condições de estabilidade de tensão da barra i, então seria possível se manipular P_{Gb} para promover melhoras em M_i (margem de potência da barra i). Adicionalmente, espera-se que, quanto maior for II_i^{Pb} (índice de influência do esgotamento de geração de potência ativa na barra b sobre a margem da barra i), maior será o efeito da variação de P_{Gb} sobre M_i . Desse modo, uma ação de controle preventiva baseada nos efeitos do esgotamento de geração de potência ativa sobre uma barra i qualquer, deveria mudar o ponto de operação do sistema de tal modo que a margem M_i varie.

Considerando o sistema elétrico CEPEL-34 apresentado na Seção 4.5, serão descritas ações de controle preventiva baseadas nos efeitos de esgotamentos que afetem a barra 29, pois essa é a barra de carga que apresenta a menor margem de potência no caso-base: M=4,87%. Pela Tabela 10, sabe-se

que o esgotamento de potência ativa que mais afeta a estabilidade de tensão da barra 29 é o de potência gerada na barra 1 (P_{G1}) , com $II_{29}^{P1} = -51,79\%$.

Assim, as ações de controle preventivas da barra 29 envolvem mudar o ponto de operação do sistema de tal modo que P_{G1} sofra uma pequena variação em torno do ponto de operação do caso-base. Contudo, para que a geração de potência ativa total do sistema não se altere, outras barras devem compensar as variações de P_{G1} . Neste caso, sabe-se que II_{29}^{P1} tem sinal oposto a II_{29}^{P31} , II_{29}^{P32} , II_{29}^{P33} e II_{29}^{P34} . Portanto, as gerações de potência ativa nas barras 31, 32, 33 e 34 compensarão as variações de P_{G1} .

De forma geral, a alocação das variações de potência ativa é feita em barras agrupadas em dois conjuntos: Ω_E e Ω_R . No conjunto Ω_E , formado por N_e elementos, estão todas as barras e, de tal modo que II_i^{Pe} tenha o mesmo sinal que o índice de influência do esgotamento de geração de potência ativa mais significativo para a barra i. Ou seja, Ω_E é composto pela barra cujo esgotamento é mais significativo e todas aquelas cujo esgotamento da capacidade de geração leva a índices de influência com o mesmo sinal. Já em Ω_R há N_r elementos e estão contidas as barras cujas esgotamentos relacionados à potência ativa resultam em índices de influência com sinal oposto às do grupo Ω_E .

Em outras palavras, Ω_E é o conjunto formado por todas as barras e, de tal modo que II_i^{Pe} tenha o mesmo sinal que o índice de influência do esgotamento de geração de potência ativa mais significativo para a barra i. E Ω_R é o conjunto formado por todas as demais barras geradoras r.

Após essa separação entre barras cujos esgotamentos de geração de potência ativa geram índices de influência positivos e negativos, é possível realizar a alocação das variações de potência ativa. Assim, se as gerações ativas das barras do conjunto Ω_E são incrementadas, as do conjunto Ω_R são decrementadas e vice-versa. Por último, se todos os elementos de Ω_E ou de Ω_R tem índices de influência nulos, a variação de geração de potência ativa proposta é compartilhada igualmente entre os elementos.

As ações de controle preventivas propostas são descritas na Tabela 14, onde notam-se as variações da potência ativa gerada nas barras 1, 31, 32, 33 e 34. Essas variações são calculadas mantendo a proporcionalidade entre essas variações e seus respectivos índices de influência, conforme (5.1):

$$\Delta P_{Ga} = \frac{II_i^{Pa}}{\sum_e II_i^{Pe}} \times \sum_e \Delta P_{Ge} \quad \text{se } II_i^{Pe} \neq 0 \quad a, e \in \Omega_E$$

$$\Delta P_{Ga} = \frac{1}{N_e} \times \sum_e \Delta P_{Ge} \quad \text{se } II_i^{Pe} = 0 \quad a, e \in \Omega_E$$

$$\Delta P_{Gb} = \frac{II_i^{Pb}}{\sum_e II_i^{Pr}} \times \sum_e \Delta P_{Gr} \quad \text{se } II_i^{Pr} \neq 0 \quad a, r \in \Omega_R$$

$$\Delta P_{Gb} = \frac{1}{N_r} \times \sum_e \Delta P_{Gr} \quad \text{se } II_i^{Pr} = 0 \quad a, r \in \Omega_R$$

$$(5.1)$$

Considere-se o caso i=29 para o sistema CEPEL-34. Como o esgotamento de geração de potência ativa mais significativo para a barra 29 é P1 e $II_{29}^{P1} < 0$, então o conjunto Ω_E é formado por todas as barras e de tal modo que $II_i^{Pe} < 0$ e $\Omega_E = \{1\}$. Neste caso, i=29, $II_i^{Pr} \geq 0$ e $\Omega_R = \{31, 32, 33, 34\}$. Nota-se então que, a medida que P_{G1} é elevada, P_{G31} , P_{G32} , P_{G33} e P_{G34} são reduzidas de tal forma que o total de incrementos e decrementos de geração de potência ativo seja nulo.

Tabela 14: Ações de controle preventivas implementadas sobre P_{G1} , P_{G31} , P_{G33} , P_{G32} , P_{G33} e P_{G34} para incrementar a margem da barra 29

<u> </u>	10-1 L						
Ação	P_1	P_{31}	P_{32}	P_{33}	P_{34}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	2300	1635	1339	1248	1941	-	-
2	2500	1572	1311	1239	1842	=	-
3	2700	1509	1283	1229	1742	=	-
4	2900	1446	1256	1219	1643	-	-
5	3100	1383	1228	1210	1543	-	-
6	3295	1322	1201	1200	1446	3,07	$178,\!51$
0	3300	1320	1200	1200	1444	$4,\!87$	178,15
8	3305	1318	1199	1200	1442	5,90	$177,\!86$
9	3500	1257	1172	1190	1345	$16,\!53$	$173,\!34$
10	3700	1194	1144	1181	1245	19,72	$171,\!58$
11	3900	1131	1117	1171	1146	21,38	170,94
12	4100	1068	1089	1161	1046	21,12	$171,\!21$
13	4300	1005	1061	1152	947	17,94	$172,\!55$

Adicionalmente, na Tabela 14, a ação de controle preventiva identificada como "0" corresponde ao sistema sem ação de controle. Por último, nas ações de controle preventivas em que não há solução convergente para o problema de fluxo de potência, os índices de estabilidade são indicados como "-".

Na Figura 23, é possível ver o efeito da ação de controle preventiva sobre a margem da barra 29 – M_{29} . Para isso, o eixo vertical esquerdo representa a margem de potência da barra 29 enquanto no eixo horizontal são listadas diferentes P_{G1} , sendo cada uma delas associada a uma ação de controle preventiva ou ao caso-base, sem ação de controle. Nota-se que à medida que P_{G1} aumenta, a margem M_{29} aumenta também. Análise semelhante pode ser feita com β_{29} , cujos valores são representados no eixo vertical direito. Nota-se que, na proximidade do ponto de operação do caso-base à medida que P_{G1}

aumenta, β_{29} é reduzido. Isso não ocorre para as ações de controle preventivas 12 e 13, indicando que os II têm validade somente perto do ponto de operação em que são calculados.

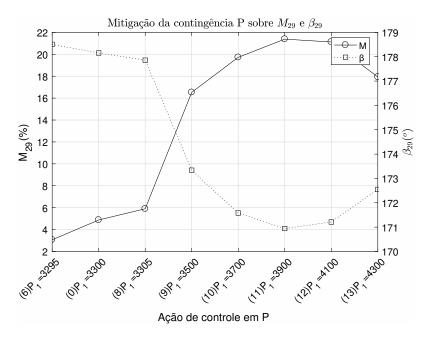


Figura 23: Efeito das ações de controle preventivas sobre a margem de potência M_{29} e sobre o ângulo β_{29}

Em outras palavras, pode-se dizer que o objetivo das ações de controle preventivas, que era afastar a barra 29 do ponto crítico, foi alcançado. Ou seja, as margens da barra 29 são maiores nos casos pós-controle – em que houve ação de controle preventiva com elevação de P_{G1} – do que naquele sem ação de controle, o caso-base.

5.3.2 Barras de geração

Em uma barra de carga, como a barra 29, não há geração local de potência. Entretanto, agora deseja-se investigar os efeitos das ações de controle preventivas baseadas em geração de potência ativa sobre barras geradoras. Aqui, vale lembrar que a barra 26 não é considerada barra geradora por ser, na verdade, o equivalente de um sistema elétrico adjacente.

Tome-se como exemplo a barra 1. Pela Tabela 10, sabe-se que o esgotamento de potência ativa que mais afeta a estabilidade de tensão da barra 1 é o de potência gerada na barra 34 (P34). As ações de controle preventivas da barra 34 envolvem mudar o ponto de operação do sistema de tal modo que P_{G34} sofra uma pequena variação em torno do ponto de operação do casobase. Contudo, para que a geração de potência ativa total do sistema não se

altere, outras barras devem compensar as variações de P_{G34} implementadas pelas ações de controle preventivas.

Neste caso, sabe-se que II_1^{P34} é positivo, enquanto II_1^{P1} , II_1^{P31} , II_1^{P32} e II_1^{P33} são nulos. Como não há esgotamentos atrelados a II negativos, os geradores com II nulos terão suas potência ativas alteradas. Portanto, as gerações de potência ativa nas barras 1, 31, 32 e 33 compensarão as variações de P_{G34} implementadas. Mais adiante, ainda nesta seção e na Seção 5.5.5, gerações em que os esgotamentos relacionados têm II nulos serão mantidas constantes.

As ações de controle preventivas implementadas são descritas na Tabela 15, onde notam-se as variações da potências ativas geradas. Conforme (5.1), tem-se: $\Omega_E = \{34\}$ e $\Omega_R = \{1,31,32,33\}$, e assim, P_{G1} , P_{G31} , P_{G32} e P_{G33} variam na mesma direção, que é oposta à variação de P_{G34} . A ação de controle identificada como "0" corresponde ao sistema sem ação de controle. Além disso, nas ações de controle preventivas em que não há solução convergente para o problema de fluxo de potência, os índices de estabilidade são indicados como "-". Nota-se que, na proximidade do caso-base, à medida que P_{G1} aumenta, a margem M_1 aumenta e β_1 é reduzido.

Tabela 15: Ações de controle preventivas implementadas sobre P_{G1} , P_{G31} , P_{G33} , P_{G32} , e P_{G34} para incrementar a margem da barra 1

Ação	P_1	P_{31}	P_{32}	P_{33}	P_{34}	$M_1(\%)$	$\beta_1(^{\circ})$
1	3050	1070	950	950	2444	-	-
2	3100	1120	1000	1000	2244	-	-
3	3150	1170	1050	1050	2044	-	_
4	3200	1220	1100	1100	1844	-	_
5	3250	1270	1150	1150	1644	-	_
6	3299	1319	1199	1199	1449	-406,96	-7,84
0	3300	1320	1200	1200	1444	-398,83	-8,25
8	3301	1321	1201	1201	1439	-391,61	-8,64
9	3350	1370	1250	1250	1244	-293,28	-18,41
10	3400	1420	1300	1300	1044	-262,93	-24,87
11	3450	1470	1350	1350	844	-246,80	-29,84
12	3500	1520	1400	1400	644	-237,30	-33,72
13	3550	1570	1450	1450	444	-232,08	-36,63

Na Figura 24 nota-se o efeito da ação de controle preventiva sobre a margem da barra $1-M_1$. Observa-se que à medida que P_{G1} aumenta, a margem M_1 aumenta também e que à medida que P_{G1} aumenta, β_1 é reduzido.

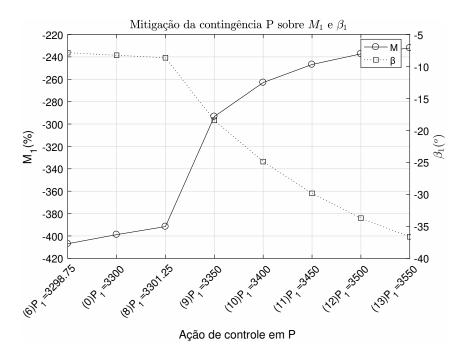


Figura 24: Ações de controle preventivas implementadas sobre P_{G1} , P_{G31} , P_{G33} , P_{G32} , e P_{G34} para incrementar a margem da barra 1

O procedimento para cálculo e implementação de ação de controle preventiva de potência ativa para barras de geração foi realizado com todas as demais barras geradoras da rede. As ações de controle implementadas são descritas na Tabela 16, onde notam-se as variações da potências ativas geradas.

Para o incremento da margem da barra 31, $II_{31}^{P1} > 0$ e $II_{31}^{P34} < 0$. Pela Tabela 10 e por (5.1), tem-se P_{G1} aumentando enquanto P_{G34} é reduzido. Notase que como II_{31}^{P1} e II_{31}^{P34} têm sinais opostos e $II_{31}^{P33} = II_{31}^{P32} = 0$, as geração de potência ativa das barras 32 e 33 são mantidas constantes enquanto as das barras 1 e 34 se compensam mutuamente. Já para o incremento da margem da barra 32, P_{G1} , P_{G33} e P_{G34} variam na mesma direção, que é oposta à variação de P_{G31} . Pelo mesmo motivo, para a barra 33, P_{G31} e P_{G32} decrescem enquanto P_{G1} e P_{G34} aumentam. Do mesmo modo, para a barra 34, P_{G1} cresce enquanto P_{G31} , P_{G32} e P_{G33} decrescem.

Na Figura 25, notando-se o comportamento da barra 31 na proximidade do ponto de operação do caso-base, repara-se que à medida que P_{G1} aumenta, a margem M_{31} diminui ao mesmo tempo que β_{31} adquire valores negativos. Fato semelhante ocorre com a barra 34, pois M_{34} e β_{34} são reduzidos quando P_{G1} aumenta. Por outro lado, no comportamento da barra 32, na proximidade do ponto de operação do caso-base, repara-se que à medida que P_{G1} aumenta, a margem M_{32} e o ângulo β_{32} aumentam também. Fato semelhante ocorre com a barra 33, pois M_{33} e β_{33} são elevados quando P_{G1} aumenta.

Pode-se dizer que o objetivo das ações de controle preventivas, que era

afastar as barras de geração do ponto crítico, foi alcançado. Assim, é possível escolher ações de controle preventivas de tal modo que as margens das barras de geração no caso-base são maiores nos casos com ação de controle do que naquele sem ação de controle.

Entretanto, não foi possível fazer com que M_1 e β_1 adquirissem valores positivos (Tabela 15 e Figura 24)

PUC-Rio - Certificação Digital Nº 1612966/CA

33 e 3	$\beta_{32}(^{\circ})$	ı	ı	1	1	1	47,86	52,98	56,17	69,35	71,27	72,62	73,90	75,34	$\beta_{34}(^{\circ})$	60,64	57,95	55,97	53,93	51,08	37,87	35,42	31,55	1	1	1	1	1
as 31, 32,	$M_{32}(\%)$	ı	1	ı	ı	ı	71,20	72,64	73,53	77,45	77,84	77,92	77,85	77,65	$M_{34}(\%)$	55,61	56,46	56,82	56,85	56,35	50,75	49,42	47,09	ı	ı	ı	ı	ı
as barr	P_{34}	1125	1189	1253	1317	1380	1442	1444	1446	1508	1571	1635	1699	1763	P_{34}	1444	1444	1444	1444	1444	1444	1444	1444	1444	1444	1444	1444	1444
rgem d	P_{33}	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	P_{33}	1347	1318	1288	1259	1229	1201	1200	1199	1171	1141	1112	1082	1053
ır a ma	P_{32}	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	P_{32}	1515	1452	1389	1326	1263	1202	1200	1198	1137	1074	1011	948	885
ementa	P_{31}	2320	2120	1920	1720	1520	1325	1320	1315	1120	920	720	520	320	P_{31}	1858	1750	1643	1535	1428	1323	1320	1317	1212	1105	266	890	782
ra incr	P_1	2619	2755	2891	3027	3164	3297	3300	3303	3436	3573	3709	3845	3981	P_1	2300	2500	2700	2900	3100	3295	3300	3305	3500	3700	3900	4100	4300
e P_G pa	Ação	<u></u>	2	3	4	ಬ	9	0	∞	6	10	11	12	13	Ação	T	2	က	4	ರ	9	0	∞	6	10	11	12	13
das sob	$\overline{eta_{31}(^\circ)}$	58,25	57,00	56,67	56,21	54,26	17,82	8,55	-4,25	ı	ı	ı	ı	ı	3(0)	ı	ı	ı	ı	ı	23,19	43,03	52,71	73,03	74,37	75,36	76,48	78,14
್ಷ	ω	5		\mathcal{U}	$\vec{\mathbf{c}}$	LJ	-		1						β_{33}						$\tilde{\varsigma}$	43	55	73	7	2	7	1
implementa	$M_{31}(\%)$ β	73,32 5	73,36	72,87 5	72,11 5	70,72	52,27	39,77	-119,63 -	1	ı	ı	ı	ı	$M_{33}(\%)$ β_3	ı	ı	ı	I	ı	51,62 25	62,35 43		76,01 73				
intivas implementadas sobre P_G para incrementar a margem das barras 31	P_{34} $M_{31}(\%)$ β	73,32			_			1444 39,77	•	1244 -	1044 -	844 -	644 -	444 -		1331 -	1353 -	1376 -	1399 -	1421 -								
	P_{33} P_{34} $M_{31}(\%)$ β	2444 73,32	73,36	72,87	1844 72,11	1644 70,72	$52,\!27$	1444	1439 -119,63 -	_		1200 844 -	1200 644 -	1200 444 -	$M_{33}(\%)$		1200 1353 -	_	1200 1399 -	_	1443 51,62	62,35	66,27	76,01	76,83	77,12	77,18	76,97
		1200 2444 73,32	2244 73,36	2044 72,87	1844 72,11	1644 70,72	1449 52,27	1444	1439 -119,63 -	_					$P_{34} M_{33}(\%)$	1200 1		_	1200 1	_	1200 1443 51,62	1444 62,35	1445 66,27	1467 76,01	1489 76,83	1512 77,12	1535 77,18	1200 1557 76,97
	P_{33}	1200 1200 2444 73,32	1200 2244 73,36	1200 2044 72,87	1200 1844 72,11	1200 1644 70,72	1200 1200 1449 52,27	1200 1444	1200 1439 -119,63	1200 1	1200 1	1200	1200	1200	P_{33} P_{34} $M_{33}(\%)$	1467 1200 1	1200 1	1200 1	1200 1	1200 1	1200 1443 51,62	1200 1200 1444 62,35	1199 1200 1445 66,27	. 1200 1467 76,01	1200 1489 76,83	1200 1512 77,12	1200 1535 77,18	1200 1557 76,97
Fabela 16: Ações de controle preventivas implementa	P_{32} P_{33}	1200 1200 2444 73,32	$1200 1200 2244 \qquad 73,36$	$1200 1200 2044 \qquad 72.87$	$1200 1200 1844 \qquad 72,11$	1200 1200 1644 70,72	1200 1200 1449 52,27	1200 1200 1444	1200 1200 1439 -119,63	1200 1200 1	1200 1200 1	1200 1200	1200 1200	1200 1200	P_{32} P_{33} P_{34} $M_{33}(\%)$	1467 1200 1	1413 1200 1	1360 1200 1	1613 1307 1200 1	1467 1253 1200 1	1201 1200 1443 51,62	1320 1200 1200 1444 62,35	1199 1200 1445 66,27	1147 1200 1467 76,01	7 1093 1200 1489 76,83	1040 1200 1512 77,12	987 1200 1535 77,18	933 1200 1557 76,97

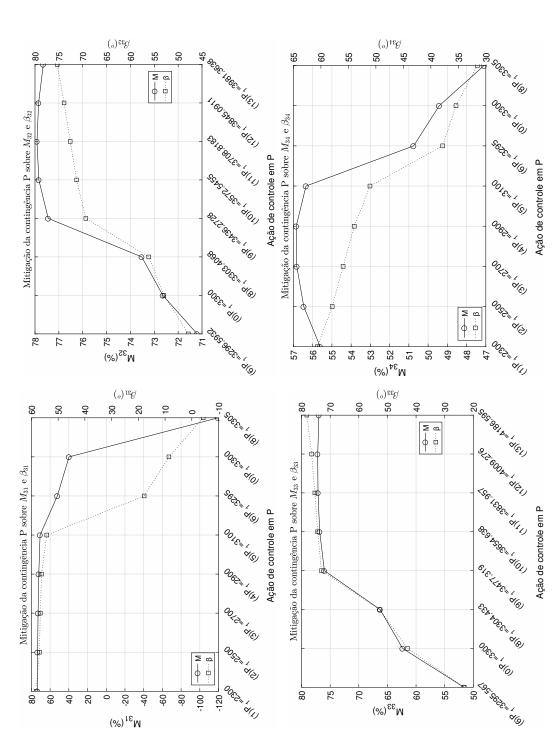


Figura 25: Ações de controle preventivas implementadas sobre P_G para incrementar a margem das barras 31, 32, 33 e 34

5.4 Ações de controle preventivas combinadas: potência ativa e reativa

Estratégias de ações de controle preventivas usando somente controle de tensão na barra 1 cumpriram o objetivo de elevar a margem de potência da barra 1 a valores positivos. Já estratégias de ações de controle preventivas usando controle de geração de potência ativa não alcançaram tal objetivo na barra 1. A próxima etapa investiga a combinação de ambas as estratégias de ações de controle preventivas.

Por exemplo, da Tabela 12, sabe-se que para ações de controle preventivas baseadas em geração de potência reativa, quando a tensão v_1 =1,15 pu, temse $M_1 = 5,7\%$. Por outro, da Tabela 15 sabe-se que para ações de controle preventivas baseadas em geração de potência ativa, quando $P_{G1} = 3400MW$, $P_{G31} = 1420MW$, $P_{G32} = 1300MW$, $P_{G33} = 1300MW$ e $P_{G34} = 1044MW$ (ação de controle preventiva 10), $M_1 = -262,9332\%$. Na Figura 26, observa-se o efeito de fazer a tensão v_1 =1,15 pu e variar P_{G1} , P_{G31} , P_{G33} , P_{G32} , e P_{G34} conforme apresentado na Seção 5.3.2. Destaca-se o ponto A indicado na Figura 26, pois nele o módulo de tensão é v_1 =1,15 pu e as gerações de potência ativa são conforme as da ação de controle preventiva 10 da Tabela 15, o que leva a margem $M_1 = 5,726\%$.

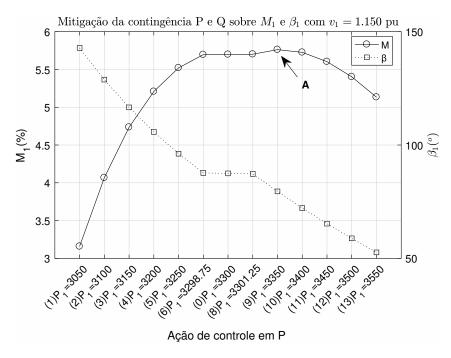


Figura 26: Ações de controle preventivas implementadas sobre v_1 , P_{G1} , P_{G31} , P_{G33} , P_{G32} , e P_{G34} para incrementar a margem da barra 1

Repara-se que na estratégia de ações de controle preventivas conjuntas, a margem da barra 1 tornou-se positiva, conforme desejado. Além disso, também aumentou ligeiramente mais do que quando cada uma das estratégias de

controle foi aplicada separadamente. Apesar disso, esse aumento foi muito pequeno.

5.5 Sistema Sul-Sudeste

Na Figura 27 é mostrado o diagrama unifilar de um sistema com 65 barras, que abrange a região Sul, com a rede de 230kV estendida de Areia até Blumenau, conectando também a Curitiba, e a rede de 500kV da região Sudeste do Brasil, formando um sistema interligado [8]. Este sistema, aqui referido como TB-65, tem a barra 29 (Governador Bento Munhoz) como barra de referência angular e está dividido em dois subsistemas denominados de subsistema Sul (S) e subsistema Sudeste (SE). A interligação elétrica entre esses dois subsistemas é feita por dois circuitos de 500kV, que conectam a subestação de Bateias no Sul à subestação de Campinas no Sudeste, tendo entre esses dois pontos a subestação de Ibiúna (barra 3). Esta pertence eletricamente a área Sudeste, porém funciona como um ponto de controle, possuindo um compensador síncrono a ela conectado.

Apesar de CEPEL-34, apresentado na Seção4.5, e TB-65 serem ambos representações da região Sul/Sudeste, o sistema TB-65 é mais fidedigno à realidade. Por exemplo, nele os LTC estão explicitamente incluídos na rede assim como o compensador síncrono na barra 3. Além disso, há indicação geográfica de cada barra (ou subestação).

O objetivo é observar a manifestação do fenômeno de estabilidade de tensão especialmente quando uma ou mais barras do sistema estão perto do máximo carregamento ou na região anormal de operação da curva Sv com fatror de potência constante. Então, o ponto de operação apresentado em [8] é utilizado para realizar cálculo do fluxo de potência continuado parametrizado, elevando a carga na barra 11, subestação Campinas 345 kV, através do software Anarede. Entretanto, conforme já explicado na Seção 2.4, há interesse em estudar o sistema à luz de um modelo de fluxo de carga que contemple a existência de diversas barras swing.

Para isso, o ponto de operação resultante do Anarede serve de entrada para o algoritmo de fluxo de potência apresentado na Seção 2.4. Assim, os aumentos de carga e as perdas ativas são compensados pelo aumento de geração nas barras swing – que são as barras 1, 2, 17, 18, 19, 20, 26, 29, 30, 31, 43, 44, 45 e 46. Esse procedimento origina o ponto de operação cujas informações constam na Tabela 17.

Logicamente, como a barra 11 teve sua carga aumentada até o limite máximo, espera-se que essa barra esteja perto do limite de estabilidade de

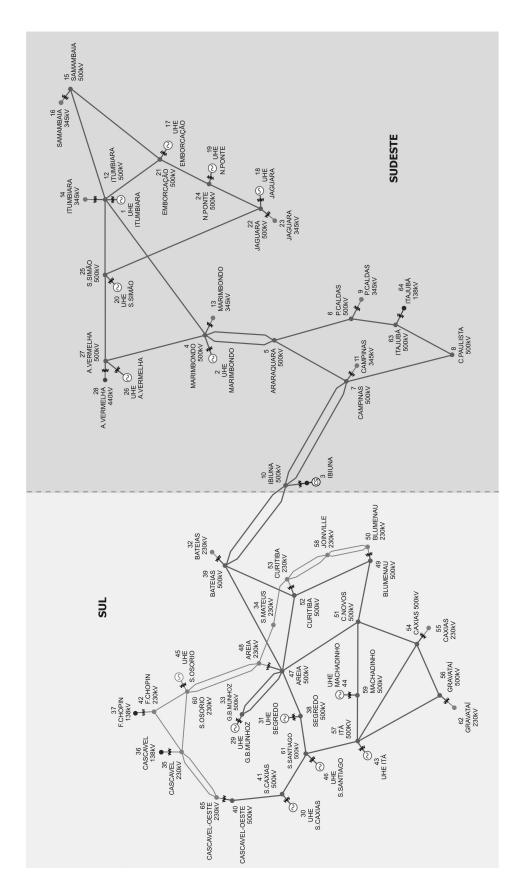


Figura 27: Diagrama unificada da rede S/SE de 65 barras (TB-65)

tensão. De fato, a margem de potência da barra 11 é de apenas 3,39%, apesar de positiva. Além disso, duas barras encontram-se na região anormal de operação: a barra 2– subestação de Marimbondo no Sudeste– e a barra 29, subestação de Governador Bento Munhoz no Sul. A geração de Marimbondo é de 9 MW e Governador Bento Munhoz é a maior do sistema, com 16 MW. Portanto, as barras 2 e 29 são as barras críticas de geração. Além disso, a barra 11 tem a margem de potência positiva mais baixa do sistema elétrico, ou seja, é a barra de carga crítica.

Esses índices sugerem que provavelmente os geradores das barras 2 e 29 entregam potência à barra 11 e que a carga dessa barra não pode mais aumentar porque o caminho entre as barras de geração e a barra de carga estão "congestionados" [9]. Para verificar tal fato, observa-se a Figura 28¹. Nela é exibido o fluxo de carga calculado pelo software Anarede em parte do TB-65 usando o método parametrizado de fluxo de potência continuado². Nota-se que a barra 11 é alimentada pela barra 7 e o gerador da barra 29 entrega potência à barra 47. Todo o fluxo de potência que circula entre as barras 47 e 7, tem sentido de 47 para 11. Isso indica que, em última instância, aumentos de carga da barra 11 são alimentados através desse caminho. Portanto, se o caminho está obstruído, a carga da barra 11 não pode mais ser elevada porque o gerador da barra 29 não pode mais entregar potência à carga da barra crítica.

Análise semelhante pode ser feita com o gerador da barra 2. A exceção é o trecho entre as barras 7 e 8, em que o fluxo de potência tem sentido Campinas, Cachoeira Paulista. Isso ocorre provavelmente porque Cachoeira Paulista é uma barra de carga, portanto parte da potência que chega à barra 7 se destina a alimentá-la. Por isso a margem de potência da barra 8 também é baixa, 5,43%.

Após conhecimento do ponto de operação de sistema e de suas características de estabilidade de tensão, deseja-se estudar a influência de esgotamentos de recursos sobre as barras críticas do sistema.

Como o objetivo posteriormente é sugerir ações de controle preventivas que melhorem os índices de estabilidade de tensão, então, só as barras com margens negativas ou muito baixas serão averiguadas. Essas barras são: a barra de carga 11, que tem margem de potência baixa; e as barras de geração 2 e 29, que estão na região anormal de operação. Portanto, os efeitos das limitações de geração de potência ativa, reativa e de tap de LTC sobre elas serão investigados.

Na Tabela 18, são listados os índices de influência dos esgotamentos Q1,

 $^{^1 \}mathrm{Nomenclatura}$ das barras de acordo com Tabela 38

²As divergências encontradas entre os fluxos de potência deste ponto de operação e aqueles em que o sistema tem múltiplas barras *slack* são menores que 10% e, portanto, não compromete a analogia.

Tabela 17: Ponto de operação e índices de estabilidade de tensão do sistema TB-65, da Figura 27 no caso-base

TB-	65, da Figura 27 n	no caso	o-base					
	BARRA	tipo	v(pu)	$\theta(^{\circ})$	$P_G(pu)$	$Q_G(pu)$	$M_0(\%)$	$\beta_0(^{\circ})$
1	Itumbiara	V	1,0000	-13,3116	7,9987	-2,3740	51,46	72,7697
2	Marimbondo	V	1,0100	-18,1037	8,9985	1,3225	-486,63	-136,4594
3	Ibiúna	PV	1,0000	-46,6557	0	5,0925	-	-
4	Marimbondo	$_{\rm PQ}$	0,9998	-24,5709	-0	-0	=	=
5	Araraquara	$_{\rm PQ}$	0,9394	-37,9277	-0	0	_	_
6	Poços de Caldas	$_{\rm PQ}$	0,8811	-51,7215	-0	0	_	_
7	Campinas	$_{\rm PQ}$	0,8858	-50,7819	-0	-0		-
8	Cachoeira Paulista	PQ	0,8411	-65,6981	0	0	05,43	176,1296
9	Poços de Caldas	PQ	0,8715	-53,6045	0	0	72,07	166,0403
10	Ibiúna	PQ	0,9515	-46,6557	-0	0	89,11	170,5015
11	Campinas	PQ	0,7093	-71,9944	0	0	03,39	177,3729
12	Itumbiara Marimbondo	PQ	1,0269	-17,7791	-0	-0	04.20	- 74 4109
$\frac{13}{14}$	Itumbiara	PQ PQ	0,9937	-25,5904	0	0	94,39 83,53	74,4192
15	Samambaia	PQ	1,0221 $1,0002$	-19,9110 -25,6658	-0	0	05,55	75,7679
16	Samambaia	PQ	0,9830	-28,4296	0	0	46,47	101,5323
17	Emborcação	V	1,0000	-8,5184	6,9988	-1,8720	62,91	66,1288
18	Jaguara	V	1,0200	-8,5556	2,4996	-0,7727	79,70	75,6649
19	Nova Ponte	V	1,0100	-8,5579	3,4994	-1,3215	79,17	73,9692
20	São Simão	v	1,0100	-15,5826	1,9997	-2,0013	87,37	67,3679
$\frac{20}{21}$	Emborcação	\overrightarrow{PQ}	1,0298	-13,8090	-0	-0	-	-
22	Jaguara	\overrightarrow{PQ}	1,0501	-13,2539	-0	ő	_	_
23	Jaguara	\overrightarrow{PQ}	1,0422	-14,4639	-0	-0	88,96	85,5104
$^{-3}$	Nova Ponte	\overrightarrow{PQ}	1,0375	-12,2662	-0	0	-	-
25	São Simão	\overline{PQ}	1,0383	-17,1233	-0	0	-	-
26	Água Vermelha	V	1,0200	-14,7351	7,9987	0,5969	61,48	39,6244
27	Água Vermelha	$_{\rm PQ}$	1,0172	-19,2674	-0	-0	- , -	_
28	Água Vermelha	$_{\mathrm{PQ}}$	0,9907	-24,9280	0	0	67,84	84,6011
29	Gov. Bento Munhoz	$\nabla \hat{\theta}$	1,0300	0	16,4899	5,6571	-70,60	-87,5638
30	Salto Caxias	V	1,0300	9,5987	11,4981	1,3827	66,08	59,1364
31	Salto Segredo	V	1,0300	2,5693	11,9980	1,2324	71,83	58,1892
32	Bateias	PQV	0,9980	-36,4894	0	0	69,80	$167,\!5069$
33	Gov. Bento.Munhoz	PQ	1,0086	-10,4891	-0	-0	=	-
34	São Mateus	PQ	0,9834	-24,7575	-0	0	98,79	112,7896
35	Cascavel	PQ	1,0002	-0,1509	-0	0	_	-
36	Cascavel	PQ	0,9871	-3,1328	0	-0	91,97	95,3690
37	Foz do Chopin	$_{\rm PQ}$	1,0152	0,6052	0	-0	91,32	94,7541
38	Segredo	$_{\rm PQ}$	1,0248	-4,2855	-0	0	-	-
39	Bateias	$_{\rm PQ}$	0,9445	-33,7371	-0	0	-	-
40	Cascavel do Oeste	PQ	1,0395	1,9397	0	-0	-	-
41	Salto Caxias	PQ	1,0472	3,2060	-0	-0	=	=
42	Foz do Chopin	$_{V}^{PQ}$	1,0282	3,8886	-0 e 0000	0 1579	- - 60 02	04 2012
$\frac{43}{44}$	Itá Machadinha	V	1,0400	-8,4532	6,9988	-0,1578	69,23	94,2913
$44 \\ 45$	Machadinho Salto Osório	V V	1,0300 $1,0300$	-9,0294	5,9990 $6,9988$	-0.0887 1.5241	72,24	87,3214
46	Salto Santiago	V	1,0300	11,3787 $6,0887$	9,4984	1,3241 $1,4241$	66,09 77,80	60,3730 $65,0295$
47	Areia	PQ	1,0062	-11,0636	-0	1,4241	- 1,00	-
48	Areia	\overline{PQV}	0,9990	-11,4686	-0	0	95,86	112,1382
49	Blumenau	PQ	0,9638	-34,8713	-0	0		,
50	Blumenau	PQV	0,9980	-37,7038	0	0	53,85	166,2589
51	Campos Novos	PQ	1,0314	-18,5766	-0	0	-	,
52	Curitiba	\overline{PQ}	0,9392	-32,7532	-0	0	100,00	169,6752
53	Curitiba	$_{\mathrm{PQ}}$	0,9964	-35,6953	0	0	65,50	166,6712
54	Caxias	PQ	1,0210	-26,0371	-0	0	-	-
55	Caxias	PQV	0,9990	-28,5850	0	0	75,56	138,4725
56	Gravataí	$_{\mathrm{PQ}}$	0,9971	-28,7703	-0	0	-	-
57	Itá	PQ	1,0466	-14,1306	-0	0	-	=
58	Joinville	PQ	0,9996	-37,7426	0	-0	96,66	153,0269
59	Machadinho	PQ	1,0388	$-15,\!6797$	-0	0	-	-
60	Salto Osório	PQ	1,0350	4,8218	-0	-0	-	-
61	Salto Santiago	$_{\rm PQ}$	1,0420	-1,7935	-0	0	-	_
62	Gravataí	PQV	0,9980	-31,6073	0	0	54,39	144,9255
63	Itajubá	$_{\rm PQ}$	0,8494	-61,8847	-0	0	-	
64	Itajubá	PQ	0,8351	-66,4287	0	0	55,28	171,4074
65	Cascavel	PQV	0,9990	-0,3508	0	0	90,39	93,1423

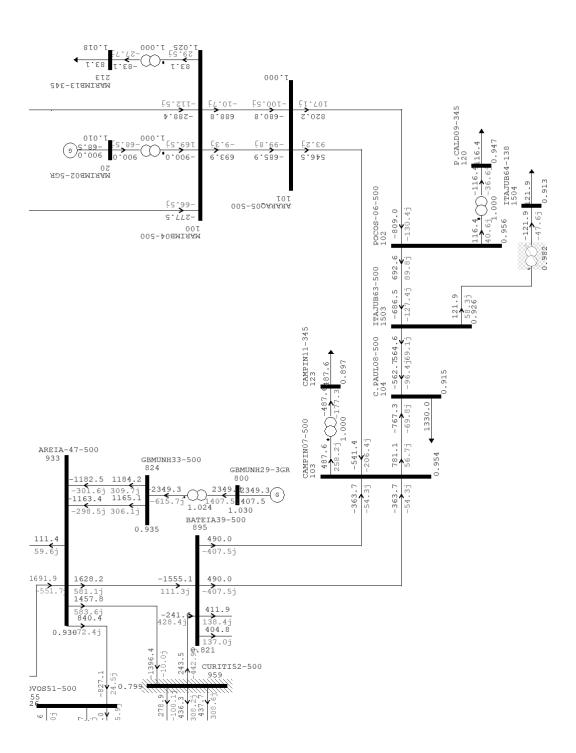


Figura 28: Estado da rede após execução de algoritmo de fluxo de potência continuado parametrizado pelo Anarede

Q2, Q3, Q17, Q18, Q19, Q20, Q26, Q29, Q30, Q31, Q43, Q44, Q45, Q46, t32, t48, t50, t55, t62, t65, P1, P2, P17, P18, P19, P20, P26, P29, P30, P31, P43, P44, P45 e P46 sobre as barras 11, 2 e 29 do sistema TB-65 em ordem crescente.

Assim, observa-se que o evento mais significativo do ponto de vista de estabilidade de tensão para a barra 11 é a perda de capacidade de geração de potência reativa na barra 3, pois II_{11}^{Q3} tem o maior módulo dentre todos os índices de influência da barra 11. Para a barra 2, por sua vez, o esgotamento que mais afeta a margem de potência é o que limita a capacidade de geração de potência reativa na barra 29, pois tem o maior módulo dentre todos os índices de influência da barra 2.

Pelo mesmos motivos apresentados na Seção 4.4.7, se há esgotamento de recurso que limita geração de potência ou *tap* de LTC de uma barra b, então o índice de influência desse esgotamento sobre a própria barra b é nulo.

5.5.1 Ações de controle preventivas de potência reativa em barras de carga

Na Figura 29, é possível ver o efeito da ação de controle baseada em Q_{G3} sobre a margem da barra 11. Para isso, o eixo vertical esquerdo representa o valor da margem de potência da barra 11, enquanto no eixo horizontal constam os valores de v_3 associados às ações de controle preventivas 8 a 11 e ao caso-base (ação de controle 0). Nota-se que com aumento de 0,001 pu em v_3 , ação de controle 8, a margem M_{11} torna-se aproximadamente o dobro. Análise semelhante pode ser feita com β_{11} , cujos valores são representados no eixo vertical direito. Perto do ponto de operação do caso-base, é possível reparar que com aumento de v_3 , β_{11} é reduzido. Portando, novamente salienta-se que o emprego do II é válido para a proximidade do ponto em que ele é calculado.

Esse comportamento é detalhado na Tabela 19. Contudo, poucas das ações de controle baseadas em Q_{G3} apresentaram solução convergente, o que compromete a inferência de uma tendência sobre os efeitos da estratégia.

Entretanto, de acordo com a Tabela 18, sabe-se que os esgotamentos relativos potência reativa gerada nas barras 1, 2, 17, 18, 19, 20, 26, 29, 30, 31, 43, 44, 45 e 46 também afetam a estabilidade de tensão na barra 11. Portanto, é válido observar os efeitos das ações de controle preventivas implementadas sobre essas barras e assim salientar os benefícios propiciados por ações de controle preventivas baseadas em geração de potência reativa. Essas ações de controle preventivas e seus impactos são descritos nas Tabelas 20 e 21, onde notam-se, por exemplo, as variações de módulo de tensão na barra 2 e suas

Tabela 18: Índices de influência dos esgotamentos sobre as barras 2, 11 e 29 em ordem cres<u>cente</u>

scente					
	II_{11}		II_2		II_{29}
Q3	-5146,34	Q26	-41,79	Q31	-426,33
Q2	-567,95	Q43	$-38,\!51$	Q43	-421,76
Q29	-145,48	Q44	-32,7	Q44	-379,99
Q43	-48,17	Q31	-31,21	Q26	-218,57
Q44	-43,08	Q1	-24,01	Q46	-183,28
Q31	-42,4	t50	-6,58	Q1	$-163,\!51$
Q26	-36,95	Q20	-5,80	Q30	-157,20
Q1	-22,66	Q46	-5,68	t50	$-148,\!27$
P1	$-22,\!51$	P1	-5,62	Q20	-87,18
t50	-10,89	Q30	-3,93	t32	-62,46
Q46	-10,4	Q17	-2,63	Q17	-45,84
P2	-8,77	t32	-1,12	t62	-13,06
Q30	-7,54	Q19	-0,62	Q19	-5,17
Q20	-6,02	Q18	-0.35	Q45	-3,57
Q17	-2,85	t62	-0,32	t55	-3,52
t32	-1,97	t55	-0,1	Q18	-2,78
Q19	-0,67	t65	-0,03	t65	-1,53
t62	-0,59	Q45	-0,02	Q29	0
Q18	-0,38	Q2	0	P29	0
Q45	-0,26	P2	0	P46	42,84
t55	-0,18	P17	0	t48	$44,\!53$
t65	-0,05	P18	0	P45	59,14
t48	$0,\!36$	P19	0	P44	$64,\!67$
P46	1,73	P20	0	P43	70,47
P17	2,79	P26	0	P31	81,04
P45	3,50	P30	0	P30	88,23
P44	$4,\!27$	P31	0	P26	88,41
P43	5,5	P43	0	P20	$88,\!45$
P18	8,48	P44	0	P19	88,49
P29	9,84	P45	0	P18	$88,\!55$
P19	10,21	P46	0	P17	88,69
P31	10,33	t48	$0,\!15$	P2	89,65
P20	12,4	P29	8,31	Q3	166,68
P26	13,6	Q3	113,12	Q2	172,17
P30	17,86	Q29	117,58	P1	276,21

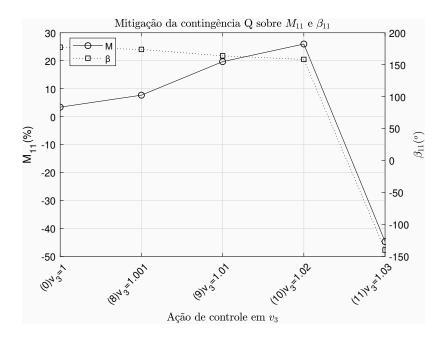


Figura 29: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

Tabela 19: Ações de controle preventivas implementadas sobre v_3 para incrementar a margem da barra 11

Ação	v_3	Q_{G3}	$M_{11}(\%)$	β ₁₁ (°)
1	0,950	-	=	-
2	0,960	-	=.	-
3	0,970	-	=.	-
4	0,980	-	-	-
5	0,990	-	-	-
6	0,999	-	-	_
0	1,000	5,09	3,39	$177,\!37$
8	1,001	4,66	7,68	173,96
9	1,010	3,45	19,67	163,87
10	1,020	2,85	25,98	158,30
11	1,030	10,68	-44,70	-140,01
12	1,040	-	_	- -
13	1,050	-	-	-

consequências sobre a estabilidade de tensão da barra 11. A ação de controle identificada como "0" corresponde ao sistema sem ação de controle (casobase). Além disso, nas ações de controle preventivas em que não há solução convergente para o problema de fluxo de potência, os índices de estabilidade são indicados como "-".

No eixo vertical da Figura 30 são apresentadas as margens de potência da barra 11 quando há aumento de 0,001 pu em cada uma das tensões controladas localmente por potência reativa de geradores ou compensadores, ou seja,

Tabela 20: Ações de controle preventivas implementadas sobre $v_1,\,v_2,\,v_{17},\,v_{18},\,v_{19}$ e v_{20} para incrementar a margem da barra 11

e $v_{20}\mathrm{ps}$	ara me	remei	пага ш	argem	ua	Darra	11			
Ação	v_1	Q_{G1}	$M_{11}(\%)$	β ₁₁ (°)		Ação	v_2	Q_{G2}	$M_{11}(\%)$	β ₁₁ (°)
1	0,950	-	-	-		1	0,960	-	-	-
2	0,960	-	-	-		2	0,970	-	-	-
3	0,970	-	-	-		3	0,980	-	-	-
4	0,980	-	-	-		4	0,990	-	-	-
5	0,990	-	-	-		5	1,000	-	-	-
6	0,999	-2,40	2,33	178,21		6	1,009	-	-	-
0	1,000	-2,37	3,39	177,37		0	1,010	1,32	3,39	177,37
8	1,001	-2,34	4,17	176,76		8	1,011	$1,\!24$	5,83	175,44
9	1,010	-2,01	8,12	173,59		9	1,020	1,11	14,13	$168,\!56$
10	1,020	-1,61	10,69	171,47		10	1,030	1,19	18,70	$164,\!58$
11	1,030	-1,20	12,62	$169,\!85$		11	1,040	1,34	21,92	161,70
12	1,040	-0,78	14,20	$168,\!51$		12	1,050	1,53	24,46	159,38
13	1,050	-0,34	$15,\!55$	$167,\!35$		13	1,060	1,75	$26,\!57$	157,43
Ação	v_{17}	Q_{G17}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$		Ação	v_{18}	Q_{G18}	$M_{11}(\%)$	β ₁₁ (°)
1	0,950	-	-	-	_	1	0,970	-	-	-
2	0,960	-	-	-		2	0,980	-	-	-
3	0,970	-	-	-		3	0,990	-	-	-
4	0,980	-	-	-		4	1,000	-1,12	1,01	179,23
5	0,990	-	-	-		5	1,010	-0,95	2,53	178,05
6	0,999	-1,90	3,10	177,60		6	1,019	-0,79	3,32	177,43
0	1,000	-1,87	3,39	177,37		0	1,020	-0,77	3,39	177,37
8	1,001	-1,84	3,66	177,16		8	1,021	-0,75	3,47	177,32
9	1,010	-1,54	5,45	175,74		9	1,030	-0,59	4,06	176,85
10	1,020	-1,20	$6,\!85$	174,62		10	1,040	-0,41	4,62	176,41
11	1,030	-0,85	7,96	173,72		11	1,050	-0,22	5,11	176,02
12	1,040	-0,49	8,90	172,95		12	1,060	-0,03	$5,\!55$	$175,\!66$
13	1,050	-0,13	9,73	172,27	_	13	1,070	0,16	5,95	175,34
Ação	v_{19}	Q_{G19}	$M_{11}(\%)$	β ₁₁ (°)	_	Ação	v_{20}	Q_{G20}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$
1	0,960	-	-	-			0,960	-	-	-
2	0,970	-	-	-			0,970	-	-	-
3	0,980	-	-	-			0,980	-	-	-
4	0,990	-	-	-			0,990	-	-	-
5	1,000	-1,60	1,67	178,72			1,000	-	-	-
6	1,009	-1,35	$3,\!27$	177,47			1,009	-2,04	2,92	177,74
0	1,010	-1,32	3,39	177,37			1,010	-2,00	3,39	$177,\!37$
8	1,011	-1,29	3,52	177,28			1,011	-1,97	3,80	177,05
9	1,020	-1,04	$4,\!45$	176,54		9	1,020	-1,64	$6,\!27$	175,08
10	1,030	-0,75	$5,\!27$	$175,\!89$			1,030	-1,26	8,07	$173,\!63$
11	1,040	-0,45	5,97	$175,\!33$			1,040	-0,88	9,47	$172,\!48$
12	1,050	-0.15	$6,\!58$	$174,\!84$		12	1,050	-0,48	10,63	$171,\!52$
13	1,060	0,16	7,12	174,40	_	13	1,060	-0,08	11,65	170,67

Tabela 21: Ações de controle preventivas implementadas sobre $v_{26},\ v_{29},\ v_{30},\ v_{31},\ v_{43},\ v_{44},\ v_{45}$ e v_{46} para incrementar a margem da barra 11

v_{43}, v_{43}	u_4, v_{45}		oara inci	rementa	ar	a mar	gem d	a barı	ra 11	
Ação	v_{26}	Q_{G26}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$		Ação	v_{29}	Q_{G29}	$M_{11}(\%)$	β ₁₁ (°)
1	0,970	-	-	-		1	0,980	-	-	-
2	0,980	-	-	-		2	0,990	-	-	-
3	0,990	-	-	-		3	1,000	-	-	-
4	1,000	-	-	-		4	1,010	-	-	-
5	1,010	-	-	-		5	1,020	-	-	-
6	1,019	0,58	1,98	178,47		6	1,029	-	_	_
0	1,020	0,60	3,39	177,37		0	1,030	5,66	3,39	177,37
8	1,021	0,62	4,33	176,63		8	1,031	5,65	4,95	176,14
9	1,030	0,92	8,81	173,03		9	1,040	5,78	11,26	171,08
10	1,040	1,28	11,65	170,67		10	1,050	6,04	15,00	168,02
11	1,050	1,66	13,76	168,89		11	1,060	6,35	17,72	165,78
12	1,060	2,06	15,47	167,41		12	1,070	6,69	19,91	163,97
13	1,070	2,47	16,93	166,14		13	1,080	7,05	21,76	162,44
Ação	v_{30}	Q_{G30}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$		Ação	v_{31}	Q_{G31}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$
$\frac{11940}{1}$	0,980	& G30 -	-	P11()		1	0,980	& G31	-	P11()
2	0,990	_	_	_		2	0,990	_	_	_
3	1,000	_	_	_		3	1,000	_	_	_
4	1,010					4	1,010			
5	1,020	_	_	_		5	1,020	_	_	_
6		1,35	2.04	- 1 <i>77 7</i> 2		6		1,21	1,75	179.65
	1,029		2,94	177,73			1,029			178,65
0	1,030	1,38	3,39	177,37		0	1,030	1,23	3,39	177,37
8	1,031	1,41	3,78	177,07		8	1,031	1,26	4,42	176,56
9	1,040	1,71	6,19	175,16		9	1,040	1,62	9,21	172,74
10	1,050	2,04	7,95	173,76		10	1,050	2,06	12,22	170,29
11	1,060	2,39	9,32	172,65		11	1,060	2,54	14,46	168,46
12	1,070	2,74	10,47	171,72		12	1,070	3,03	16,27	166,96
13	1,080	3,11	11,47	170,90		13	1,080	3,54	17,82	165,67
Ação	<i>v</i> ₄₃	Q_{G43}	$M_{11}(\%)$	β ₁₁ (°)		Ação	v_{44}	Q_{G44}	$M_{11}(\%)$	β ₁₁ (°)
1	0,990	-	-	-		1	0,980	-	-	-
2	1,000	-	-	-		2	0,990	-	-	-
3	1,010	-	-	-		3	1,000	-	-	-
4	1,020	-	-	-		4	1,010	-	-	-
5	1,030	-	-	-		5	1,020	-	-	-
6	1,039	-0,17	$2,\!27$	178,25		6	1,029	-0,10	2,38	178,16
0	1,040	-0,16	3,39	177,37		0	1,030	-0,09	3,39	177,37
8	1,041	-0,14	4,20	176,74		8	1,031	-0.07	4,14	176,78
9	1,050	0,03	8,25	$173,\!51$		9	1,040	0,10	7,99	173,72
10	1,060	$0,\!25$	10,87	171,39		10	1,050	0,31	10,53	171,67
11	1,070	0,49	12,83	169,79		11	1,060	$0,\!54$	12,43	170,12
12	1,080	0,75	14,43	168,48		12	1,070	0,79	13,99	168,84
13	1,090	1,02	15,79	167,35		13	1,080	1,04	15,32	167,74
Ação	v_{45}	Q_{G45}	$M_{11}(\%)$	β ₁₁ (°)		Ação	v_{46}	Q_{G46}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$
1	0,980	-	-	-	-	1	0,980	-	-	-
2	0,990	-	-	-		2	0,990	-	-	-
3	1,000	-	-	-		3	1,000	-	-	-
4	1,010	-	-	-		4	1,010	-	-	-
5	1,020	_	_	_		5	1,020	_	_	_
6	1,029	1,50	3,10	177,60		6	1,029	1,38	2,76	177,87
0	1,030	1,52	3,39	177,37		0	1,030	1,42	3,39	177,37
8	1,031	1,55	3,66	177,16		8	1,031	1,46	3,91	176,96
9	1,040	1,75	5,45	175,75		9	1,040	1,85	6,89	174,60
10	1,040	1,98	6,83	174,65		10	1,040	2,29	8,97	172,93
11	1,060	2,22	7,94	173,76		11	1,060	2,29 $2,74$	10,57	172,93 $171,64$
12		2,22 $2,46$				12				
13	1,070	2,40 $2,71$	8,87 $9,69$	173,01 $172,35$		13	1,070	3,21	11,89 13,04	170,56 $169,62$
1.0	1,080	۷,11	9,09	114,50		19	1,080	3,69	10,04	109,02

quando se aplica a ação 8 em cada barra de tensão controlada por gerador ou compensador local. Já no eixo horizontal estão os índices de influência de todos os esgotamentos relativos a geração de potência reativa possíveis.

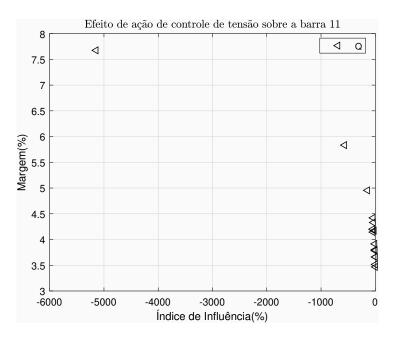


Figura 30: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

Existe uma tendência de que quanto mais negativo o índice de influência de um esgotamento, melhor o efeito de aumentar 0,001 pu a tensão da barra onde o esgotamento ocorreria. Também constata-se que a maior parte dos esgotamentos relativos à geração de potência reativa tem índice de influência menor que 1000, com exceção de um esgotamento com II mais negativo que -5000. De acordo com a Tabela 18, esse esgotamento é a limitação de geração de potência reativa em Ibiúna, Q3. Assim, do ponto de vista de estabilidade de tensão da barra 11, no Sudeste, a limitação de potência reativa mais severa ocorre em Ibiúna, a interligação com o Sul.

5.5.2 Ações de controle preventivas de potência reativa em barras de geração

O resultado de ações de controle preventivas baseadas em geração de potência reativa sobre barras geradoras também devem ser investigados. Por esse motivo, serão avaliadas as barras de geração críticas, aquelas que se encontram na região anormal de operação, as barras 2 e 29.

• Barra 2

Na Figura 31, é possível ver o efeito da ação de controle baseada em Q_{G2} sobre a margem da barra 2. Para isso, o eixo vertical esquerdo representa o valor da margem de potência da barra 2, enquanto no eixo horizontal são listados valores de v_2 associados ao caso-base e aos casos pós-controle. Nota-se que com aumento de 0,01 pu em v_2 , a margem M_2 passa a ser positiva. Ou seja, a operação da barra 2 é deslocada para a região normal. Análise semelhante pode ser feita com β_2 , cujos valores são representados no eixo vertical direito. Nota-se que com aumento de v_2 , β_2 aumenta.

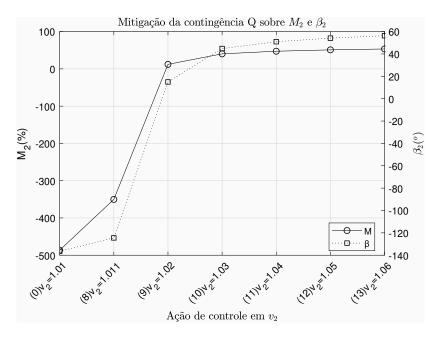


Figura 31: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

As ações de controle preventivas implementadas são descritas na Tabela 22, onde são descritas as variações de tensão na barra 2 e suas consequências sobre a estabilidade de tensão da barra 2. Para os casos pós-controle em que não há solução convergente para o problema de fluxo de potência, os índices de estabilidade são indicados como "-".

De acordo com a Tabela 18, sabe-se que os esgotamentos de potência reativa gerada nas demais barras *swing* e no compensador síncrono afetam a estabilidade de tensão da barra 2, pois os índices de influência desses esgotamentos são negativos. Assim, devem-se analisar as variações de tensão nas barras citadas e suas consequências.

Nas Tabelas 23 e 24, é possível observar que à medida que a tensão de cada uma das barras em questão aumenta, a margem M_2 aumenta também.

Tabela 22: Ações de controle preventivas implementadas sobre v_2 para incrementar a margem da barra 2

da barr	.a 2			
Ação	v_2	Q_{G2}	$M_2(\%)$	$\beta_2(^{\circ})$
1	0,960	-	-	-
2	0,970	-	-	-
3	0,980	-	-	-
4	0,990	-	-	-
5	1,000	-	-	-
6	1,009	-	-	-
0	1,010	1,32	-486,63	-136,46
8	1,011	1,24	-350,24	-124,53
9	1,020	1,11	12,13	14,98
10	1,030	1,19	40,34	44,86
11	1,040	1,34	$47,\!37$	50,97
12	1,050	1,53	51,02	54,16
13	1,060	1,75	53,40	56,32

Além disso, nota-se que a geração de potência reativa da barra em que a ação de controle preventiva atua aumenta conforme a tensão especificada é elevada. Ou seja, o controle de tensão é fortemente sustentado pela geração local de potência reativa. Conclui-se que o aumento da geração de potência reativa em uma barra do sistema incrementa a margem de potência da barra 2, constatação já amplamente utilizada em ações clássicas de controle de tensão. Contudo, três casos têm comportamento diferente: a inserção de potência reativa nas barras 2, 3 e 29. Essas são justamente as únicas três barras cuja limitação de geração de potência reativa resulta em índices de influência não negativo sobre a barra 2. Isso significa que o aumento da injeção de potência reativa nessas barras na verdade reduz a margem de potência na barra 2. Mesmo assim, a elevação da tensão nessas 3 barras melhoram os índices de estabilidade. Portanto, com esse índice, é possível propor as ações de controle corretas para retirar o sistema dessa situação e evitar o colapso de tensão.

Na eixo vertical da Figura 32 são apresentadas as margens de potência da barra 2 quando há aumento de 0,001 pu em cada uma das tensões controladas localmente por potência reativa de geradores. No eixo horizontal constam os índices de influência relacionados ao esgotamento de capacidade de controle de tensão via geração de potência reativa.

Quando o índice de influência é negativo, a tendência é que quanto mais negativo o índice de influência de um esgotamento, melhor o efeito de aumentar 0,001 pu a tensão da barra onde o esgotamento ocorreria. Observa-se que aqui o que pode ser destacado é apenas uma tendência na relação entre II e os efeitos observados na margem de potência, o que se justifica pelas não-linearidades envolvidas. Também constata-se que a maior parte dos esgotamentos relativos

Tabela 23: Ações de controle preventivas implementadas sobre $v_1,\,v_3,\,v_{17},\,v_{18},\,v_{19}$ e v_{20} para incrementar a margem da barra 2

e_{020} pa	v ₂₀ para incrementar a margem da barra 2									
Ação	v_1	Q_{G1}	$M_2(\%)$	$\beta_2(^{\circ})$		Ação	v_3	Q_{G3}	$M_2(\%)$	$\beta_2(^{\circ})$
1	0,950	-	-	-		1	0,950	-	-	-
2	0,960	-	-	-		2	0,960	-	-	-
3	0,970	-	-	-		3	0,970	-	-	-
4	0,980	-	-	-		4	0,980	-	-	-
5	0,990	-	-	-		5	0,990	-	-	-
6	0,999	-2,40	-591,09	-144,08		6	0,999	-	-	-
0	1,000	-2,37	-486,63	-136,46		0	1,000	5,09	$-486,\!63$	-136,46
8	1,001	-2,34	-433,41	-132,13		8	1,001	4,66	-282,05	-116,60
9	1,010	-2,01	-266,48	-114,00		9	1,010	3,45	39,21	42,19
10	1,020	-1,61	-174,80	-90,64		10	1,020	2,85	$48,\!36$	49,79
11	1,030	-1,20	-27,37	-35,31		11	1,030	10,68	$60,\!36$	$57,\!66$
12	1,040	-0.78	9,01	11,22		12	1,040	-	-	-
13	1,050	-0.34	22,97	28,02		13	1,050	-	-	-
Ação	v_{17}	Q_{G17}	$M_2(\%)$	$\beta_2(^{\circ})$		Ação	v_{18}	Q_{G18}	$M_2(\%)$	$\beta_2(^{\circ})$
1	0,950	-	-	-	-	1	0,970	-	-	_
2	0,960	-	-	-		2	0,980	-	-	-
3	0,970	-	-	-		3	0,990	-	-	-
4	0,980	-	-	-		4	1,000	-1,12	-867,89	-158,69
5	0,990	-	-	-		5	1,010	-0,95	-566,67	-142,41
6	0,999	-1,90	-510,71	-138,32		6	1,019	-0,79	-492,53	-136,92
0	1,000	-1,87	-486,63	-136,46		0	1,020	-0,77	-486,63	-136,46
8	1,001	-1,84	-466,84	-134,89		8	1,021	-0,75	-481,03	-136,02
9	1,010	-1,54	-367,19	-126,17		9	1,030	-0,59	$-440,\!36$	-132,70
10	1,020	-1,20	-310,77	-120,13		10	1,040	-0,41	-408,01	-129,92
11	1,030	-0.85	-271,83	-114,82		11	1,050	-0,22	-383,04	-127,65
12	1,040	-0,49	-240,34	-109,20		12	1,060	-0,03	-362,68	-125,70
13	1,050	-0,13	-212,13	-102,53		13	1,070	$0,\!16$	$-345,\!42$	-123,95
Ação	v_{19}	Q_{G19}	$M_2(\%)$	$\beta_2(^{\circ})$		Ação	v_{20}	Q_{G20}	$M_2(\%)$	$\beta_2(^{\circ})$
1	0,960	-	-	-		1	0,960	-	-	-
2	0,970	-	-	-		2	0,970	-	-	-
3	0,980	-	-	-		3	0,980	-	-	-
4	0,990	-	-	-		4	0,990	-	-	-
5	1,000	-1,60	-692,45	-150,37		5	1,000	-	-	-
6	1,009	-1,35	-496,73	-137,25		6	1,009	-2,04	-526,75	-139,52
0	1,010	-1,32	-486,63	-136,46		0	1,010	-2,00	-486,63	-136,46
8	1,011	-1,29	$-477,\!37$	-135,73		8	1,011	-1,97	-457,18	-134,10
9	1,020	-1,04	$-417,\!37$	-130,75		9	1,020	-1,64	-332,47	-122,60
10	1,030	-0,75	$-375,\!32$	-126,94		10	1,030	-1,26	-267,81	-114,18
11	1,040	-0,45	-344,88	-123,92		11	1,040	-0,88	-220,96	-104,85
12	1,050	-0,15	-320,78	-121,28		12	1,050	-0,48	-177,05	-91,48
13	1,060	0,16	-300,64	-118,84		13	1,060	-0,08	-83,56	-69,65

Tabela 24: Ações de controle preventivas implementadas sobre $v_{26},\ v_{29},\ v_{30},\ v_{31},\ v_{43},\ v_{44},\ v_{45}$ e v_{46} para incrementar a margem da barra 2

v_{43}, v_{44}	v_{45}	$e v_{46}$ p	oara inc	<u>rementa</u> r	a mar	gem a	a bari	a z	
Ação	v_{26}	Q_{G26}	$M_2(\%)$	$\beta_2(^{\circ})$	Ação	v_{29}	Q_{G29}	$M_2(\%)$	$\beta_2(^{\circ})$
1	0,970	_	-	_	1	0,980	_	-	-
2	0,980	-	_	_	2	0,990	-	-	-
3	0,990	_	-	_	3	1,000	-	-	_
4	1,000	_	_	_	4	1,010	_	_	_
5	1,010	_	_	_	5	1,020	_	_	_
6	1,019	0,58	-638,68	-147,17	6	1,029	_	_	_
0	1,020	0,60	-486,63	-136,46	0	1,030	5,66	-486,63	-136,46
8	1,021	0,62	-423,95	-131,33	8	1,031	5,65	-391,01	-128,63
9	1,030	0,92	-243,32	-109,86	9	1,040	5,78	-153,58	-80,01
10	1,040	1,28	-84,63	-69,78	10	1,050	6,04	15,80	16,94
11	1,050		1,56		11		6,35		
12		1,66		1,93		1,060		33,04	33,73
	1,060	2,06	22,36	27,35	12	1,070	6,69	39,69	39,19
13	1,070	2,47	30,93	36,62	13	1,080	7,05	43,39	41,97
Ação	v_{30}	Q_{G30}	$M_2(\%)$	$\beta_2(^{\circ})$	Ação	<i>v</i> ₃₁	Q_{G31}	$M_2(\%)$	$\beta_2(^{\circ})$
1	0,980	-	-	-	1	0,980	-	-	-
2	0,990	-	-	-	2	0,990	-	-	-
3	1,000	-	-	-	3	1,000	-	-	-
4	1,010	-	-	-	4	1,010	-	-	-
5	1,020	-	-	-	5	1,020	-	-	-
6	1,029	$1,\!35$	-524,68	-139,30	6	1,029	1,21	$-677,\!84$	-149,33
0	1,030	1,38	-486,63	-136,46	0	1,030	1,23	-486,63	-136,46
8	1,031	1,41	-458,34	-134,26	8	1,031	1,26	-418,95	-131,04
9	1,040	1,71	-336,68	-123,43	9	1,040	1,62	-232,40	-107,50
10	1,050	2,04	-273,62	-115,45	10	1,050	2,06	-50,42	-52,00
11	1,060	2,39	-228,76	-106,63	11	1,060	2,54	9,32	10,06
12	1,070	2,74	-188,63	-94,28	12	1,070	3,03	25,98	27,42
13	1,080	3,11	-140,25	-74,99	13	1,080	3,54	33,44	34,27
Ação	v_{43}	Q_{G43}	$M_2(\%)$	$\beta_2(^{\circ})$	Ação	v_{44}	Q_{G44}	$M_2(\%)$	$\beta_2(^{\circ})$
11300									
			-	P2()					ρ ₂ ()
1	0,990	-	-	-	1	0,980	-	-	β2() - -
1 2	0,990 1,000			- -	1 2	0,980 0,990			β ₂ () - -
1 2 3	0,990 1,000 1,010			- - -	1 2 3	0,980 0,990 1,000			β ₂ ()
1 2 3 4	0,990 1,000 1,010 1,020			- - - -	1 2 3 4	0,980 0,990 1,000 1,010			β2() - - -
1 2 3 4 5	0,990 1,000 1,010 1,020 1,030	- - - -	- - - -	- - - -	1 2 3 4 5	0,980 0,990 1,000 1,010 1,020	- - - -	- - - -	- - - -
1 2 3 4 5 6	0,990 1,000 1,010 1,020 1,030 1,039	- - - - -0,17	- - - - -598,39	- - - - -144,42	1 2 3 4 5 6	0,980 0,990 1,000 1,010 1,020 1,029	- - - -0,10	- - - - -584,28	- - - -143,48
1 2 3 4 5 6	0,990 1,000 1,010 1,020 1,030 1,039 1,040	-0,17 -0,16	- - - - -598,39 -486,63	-144,42 -136,46	1 2 3 4 5 6 0	0,980 0,990 1,000 1,010 1,020 1,029 1,030	- - - -0,10 -0,09	- - - -584,28 -486,63	-143,48 -136,46
1 2 3 4 5 6 0 8	0,990 1,000 1,010 1,020 1,030 1,039 1,040 1,041	-0,17 -0,16 -0,14	- - - -598,39 -486,63 -431,77	- - - -144,42 -136,46 -132,11	1 2 3 4 5 6 0 8	0,980 0,990 1,000 1,010 1,020 1,029 1,030 1,031	- - - -0,10 -0,09 -0,07	- - - -584,28 -486,63 -435,27	-143,48 -136,46 -132,40
1 2 3 4 5 6 0 8 9	0,990 1,000 1,010 1,020 1,030 1,039 1,040 1,041 1,050	-0,17 -0,16 -0,14 0,03	- - -598,39 -486,63 -431,77 -263,69	-144,42 -136,46 -132,11 -113,81	1 2 3 4 5 6 0 8	0,980 0,990 1,000 1,010 1,020 1,029 1,030 1,031 1,040	-0,10 -0,09 -0,07 0,10	- - -584,28 -486,63 -435,27 -272,11	-143,48 -136,46 -132,40 -115,21
1 2 3 4 5 6 0 8 9	0,990 1,000 1,010 1,020 1,030 1,039 1,040 1,041 1,050 1,060	-0,17 -0,16 -0,14 0,03 0,25	- - - -598,39 -486,63 -431,77 -263,69 -171,87	-144,42 -136,46 -132,11 -113,81 -87,62	1 2 3 4 5 6 0 8 9	0,980 0,990 1,000 1,010 1,020 1,029 1,030 1,031 1,040 1,050	-0,10 -0,09 -0,07 0,10 0,31	-584,28 -486,63 -435,27 -272,11 -186,22	-143,48 -136,46 -132,40 -115,21 -93,32
1 2 3 4 5 6 0 8 9 10	0,990 1,000 1,010 1,020 1,030 1,039 1,040 1,041 1,050 1,060 1,070		- - -598,39 -486,63 -431,77 -263,69 -171,87 -26,33	-144,42 -136,46 -132,11 -113,81 -87,62 -30,00	1 2 3 4 5 6 0 8 9 10	0,980 0,990 1,000 1,010 1,020 1,029 1,030 1,031 1,040 1,050 1,060	- - -0,10 -0,09 -0,07 0,10 0,31 0,54	- -584,28 -486,63 -435,27 -272,11 -186,22 -40,89	-143,48 -136,46 -132,40 -115,21 -93,32 -44,47
1 2 3 4 5 6 0 8 9 10 11 12	0,990 1,000 1,010 1,020 1,030 1,039 1,040 1,041 1,050 1,060 1,070 1,080	-0,17 -0,16 -0,14 0,03 0,25 0,49 0,75	- -598,39 -486,63 -431,77 -263,69 -171,87 -26,33 8,99	-144,42 -136,46 -132,11 -113,81 -87,62 -30,00 9,64	1 2 3 4 5 6 0 8 9 10 11	0,980 0,990 1,000 1,010 1,020 1,029 1,030 1,031 1,040 1,050 1,060 1,070	- -0,10 -0,09 -0,07 0,10 0,31 0,54 0,79	- -584,28 -486,63 -435,27 -272,11 -186,22 -40,89 1,77	-143,48 -136,46 -132,40 -115,21 -93,32 -44,47 1,88
1 2 3 4 5 6 0 8 9 10	0,990 1,000 1,010 1,020 1,030 1,039 1,040 1,041 1,050 1,060 1,070		- -598,39 -486,63 -431,77 -263,69 -171,87 -26,33 8,99 22,78	-144,42 -136,46 -132,11 -113,81 -87,62 -30,00 9,64 24,15	1 2 3 4 5 6 0 8 9 10	0,980 0,990 1,000 1,010 1,020 1,029 1,030 1,031 1,040 1,050 1,060		- -584,28 -486,63 -435,27 -272,11 -186,22 -40,89 1,77 18,96	-143,48 -136,46 -132,40 -115,21 -93,32 -44,47 1,88 20,28
1 2 3 4 5 6 0 8 9 10 11 12	0,990 1,000 1,010 1,020 1,030 1,039 1,040 1,041 1,050 1,060 1,070 1,080	-0,17 -0,16 -0,14 0,03 0,25 0,49 0,75	- -598,39 -486,63 -431,77 -263,69 -171,87 -26,33 8,99	-144,42 -136,46 -132,11 -113,81 -87,62 -30,00 9,64	1 2 3 4 5 6 0 8 9 10 11	0,980 0,990 1,000 1,010 1,020 1,029 1,030 1,031 1,040 1,050 1,060 1,070		- -584,28 -486,63 -435,27 -272,11 -186,22 -40,89 1,77	-143,48 -136,46 -132,40 -115,21 -93,32 -44,47 1,88
1 2 3 4 5 6 0 8 9 10 11 12 13	0,990 1,000 1,010 1,020 1,030 1,039 1,040 1,041 1,050 1,060 1,070 1,080 1,090		- -598,39 -486,63 -431,77 -263,69 -171,87 -26,33 8,99 22,78	-144,42 -136,46 -132,11 -113,81 -87,62 -30,00 9,64 24,15	1 2 3 4 5 6 0 8 9 10 11 12 13	0,980 0,990 1,000 1,010 1,020 1,029 1,030 1,031 1,040 1,050 1,060 1,070 1,080	- -0,10 -0,09 -0,07 0,10 0,31 0,54 0,79	- -584,28 -486,63 -435,27 -272,11 -186,22 -40,89 1,77 18,96	-143,48 -136,46 -132,40 -115,21 -93,32 -44,47 1,88 20,28
1 2 3 4 5 6 0 8 9 10 11 12 13	$\begin{matrix} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \end{matrix}$		- -598,39 -486,63 -431,77 -263,69 -171,87 -26,33 8,99 22,78	-144,42 -136,46 -132,11 -113,81 -87,62 -30,00 9,64 24,15	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \end{array}$		- -584,28 -486,63 -435,27 -272,11 -186,22 -40,89 1,77 18,96	-143,48 -136,46 -132,40 -115,21 -93,32 -44,47 1,88 20,28
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação	$\begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \hline v_{45} \\ 0,980 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -0,17\\ -0,16\\ -0,14\\ 0,03\\ 0,25\\ 0,49\\ 0,75\\ 1,02\\ \hline \\ Q_{G45}\\ -\\ \end{array}$	- -598,39 -486,63 -431,77 -263,69 -171,87 -26,33 8,99 22,78	-144,42 -136,46 -132,11 -113,81 -87,62 -30,00 9,64 24,15	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline v_{46} \\ 0,980 \\ 0,990 \\ \end{array}$		- -584,28 -486,63 -435,27 -272,11 -186,22 -40,89 1,77 18,96	-143,48 -136,46 -132,40 -115,21 -93,32 -44,47 1,88 20,28
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação	$ \begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \hline $	$\begin{array}{c} -\\ -\\ -\\ -\\ -0.17\\ -0.16\\ -0.14\\ 0.03\\ 0.25\\ 0.49\\ 0.75\\ 1.02\\ \hline \\ Q_{G45}\\ -\\ -\\ \end{array}$	- -598,39 -486,63 -431,77 -263,69 -171,87 -26,33 8,99 22,78	-144,42 -136,46 -132,11 -113,81 -87,62 -30,00 9,64 24,15	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline \\ v_{46} \\ 0,980 \\ \end{array}$		- -584,28 -486,63 -435,27 -272,11 -186,22 -40,89 1,77 18,96	-143,48 -136,46 -132,40 -115,21 -93,32 -44,47 1,88 20,28
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4	$\begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \hline v_{45} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -0.17\\ -0.16\\ -0.14\\ 0.03\\ 0.25\\ 0.49\\ 0.75\\ 1.02\\ \hline \\ Q_{G45}\\ \hline \\ -\\ -\\ -\\ \end{array}$	- -598,39 -486,63 -431,77 -263,69 -171,87 -26,33 8,99 22,78	-144,42 -136,46 -132,11 -113,81 -87,62 -30,00 9,64 24,15	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline \\ v_{46} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ \end{array}$		- -584,28 -486,63 -435,27 -272,11 -186,22 -40,89 1,77 18,96	-143,48 -136,46 -132,40 -115,21 -93,32 -44,47 1,88 20,28
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 5	$\begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \hline v_{45} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -0,17\\ -0,16\\ -0,14\\ 0,03\\ 0,25\\ 0,49\\ 0,75\\ 1,02\\ \hline \\ Q_{G45}\\ \hline \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$	$-598,39$ $-486,63$ $-431,77$ $-263,69$ $-171,87$ $-26,33$ $8,99$ $22,78$ $M_2(\%)$	$\begin{array}{c} -144,42 \\ -136,46 \\ -132,11 \\ -113,81 \\ -87,62 \\ -30,00 \\ 9,64 \\ 24,15 \\ \hline \beta_2(°) \\ \hline \end{array}$	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline v_{46} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ 0,10\\ -\\ 0,09\\ -\\ 0,07\\ 0,10\\ 0,31\\ 0,54\\ 0,79\\ 1,04\\ \hline \\ Q_{G46}\\ \hline \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -584,28\\ -486,63\\ -435,27\\ -272,11\\ -186,22\\ -40,89\\ 1,77\\ 18,96\\ \hline M_2(\%) \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$	$-143,48$ $-136,46$ $-132,40$ $-115,21$ $-93,32$ $-44,47$ $1,88$ $20,28$ $\beta_2(^{\circ})$
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6	$\begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \hline v_{45} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -0,17\\ -0,16\\ -0,14\\ 0,03\\ 0,25\\ 0,49\\ 0,75\\ 1,02\\ \hline \\ Q_{G45}\\ \hline \\ -\\ -\\ -\\ 1,50\\ \end{array}$	-598,39 -486,63 -431,77 -263,69 -171,87 -26,33 8,99 22,78 $M_2(\%)$	$-144,42$ $-136,46$ $-132,11$ $-113,81$ $-87,62$ $-30,00$ $9,64$ $24,15$ $\beta_2(°)$	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 6	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline \\ v_{46} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ 0,10\\ -\\ 0,09\\ -\\ 0,07\\ 0,10\\ 0,31\\ 0,54\\ 0,79\\ 1,04\\ \hline \\ Q_{G46}\\ \hline \\ -\\ -\\ -\\ 1,38\\ \end{array}$		$-143,48$ $-136,46$ $-132,40$ $-115,21$ $-93,32$ $-44,47$ $1,88$ $20,28$ $\beta_2(°)$ $ -140,58$
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 0	$ \begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \hline $	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -0,17\\ -0,16\\ -0,14\\ 0,03\\ 0,25\\ 0,49\\ 0,75\\ 1,02\\ \hline \\ Q_{G45}\\ -\\ -\\ -\\ -\\ 1,50\\ 1,52\\ \end{array}$	$-598,39$ $-486,63$ $-431,77$ $-263,69$ $-171,87$ $-26,33$ $8,99$ $22,78$ $M_2(\%)$ $ -510,67$ $-486,63$	$-144,42$ $-136,46$ $-132,11$ $-113,81$ $-87,62$ $-30,00$ $9,64$ $24,15$ $\beta_2(°)$ $-138,27$ $-136,46$	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 0	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline \\ v_{46} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ 1,030 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ 0.09 \\ -\\ -\\ 0.07 \\ 0.10 \\ 0.31 \\ 0.54 \\ 0.79 \\ 1.04 \\ \hline \\ Q_{G46} \\ \hline \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ 1.38 \\ 1.42 \\ \end{array}$	- $ -$	$-143,48$ $-136,46$ $-132,40$ $-115,21$ $-93,32$ $-44,47$ $1,88$ $20,28$ $\beta_2(°)$ $ -140,58$ $-136,46$
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 8 8	$\begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ 1,030 \\ 1,031 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -0,17\\ -0,16\\ -0,14\\ 0,03\\ 0,25\\ 0,49\\ 0,75\\ 1,02\\ \hline \\ Q_{G45}\\ -\\ -\\ -\\ -\\ -\\ 1,50\\ 1,52\\ 1,55\\ \end{array}$	$-598,39$ $-486,63$ $-431,77$ $-263,69$ $-171,87$ $-26,33$ $8,99$ $22,78$ $M_2(\%)$ $ -510,67$ $-486,63$ $-466,89$	$-144,42$ $-136,46$ $-132,11$ $-113,81$ $-87,62$ $-30,00$ $9,64$ $24,15$ $\beta_2(°)$ $-138,27$ $-136,46$ $-134,93$	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 8 8	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,029 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline \\ v_{46} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ 1,030 \\ 1,031 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	- $ -$	$-143,48$ $-136,46$ $-132,40$ $-115,21$ $-93,32$ $-44,47$ $1,88$ $20,28$ $\beta_2(°)$ $ -140,58$ $-136,46$ $-133,56$
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 8 9 9	$\begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	- $ -$	$\begin{array}{c} -144,42 \\ -136,46 \\ -132,11 \\ -113,81 \\ -87,62 \\ -30,00 \\ 9,64 \\ 24,15 \\ \hline \beta_2(°) \\ \hline \\ -138,27 \\ -136,46 \\ -134,93 \\ -126,52 \\ \end{array}$	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 8 9 9	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,029 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline \\ v_{46} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ 0.79\\ 0.10\\ 0.54\\ 0.79\\ 1.04\\ \hline \\ Q_{G46}\\ \hline \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ 1.38\\ 1.42\\ 1.46\\ 1.85\\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	$-143,48$ $-136,46$ $-132,40$ $-115,21$ $-93,32$ $-44,47$ $1,88$ $20,28$ $\beta_2(°)$ $-140,58$ $-136,46$ $-133,56$ $-120,44$
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 8 9 10 10	$\begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \hline v_{45} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	$-598,39$ $-486,63$ $-431,77$ $-263,69$ $-171,87$ $-26,33$ $8,99$ $22,78$ $M_2(\%)$ $ -510,67$ $-486,63$ $-466,89$ $-367,81$ $-312,11$	$\begin{array}{c} -144,42\\ -136,46\\ -132,11\\ -113,81\\ -87,62\\ -30,00\\ 9,64\\ 24,15\\ \hline \beta_2(°)\\ \hline \\ -138,27\\ -136,46\\ -134,93\\ -126,52\\ -120,69\\ \end{array}$	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 8 9 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline \\ v_{46} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ 0,10\\ -\\ 0,09\\ -\\ 0,07\\ 0,10\\ 0,31\\ 0,54\\ 0,79\\ 1,04\\ \hline \\ Q_{G46}\\ \hline \\ -\\ -\\ -\\ -\\ -\\ 1,38\\ 1,42\\ 1,46\\ 1,85\\ 2,29\\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	$-143,48$ $-136,46$ $-132,40$ $-115,21$ $-93,32$ $-44,47$ $1,88$ $20,28$ $\beta_2(°)$ $-140,58$ $-136,46$ $-133,56$ $-120,44$ $-109,25$
1 2 3 4 5 6 0 8 9 10 11 2 3 4 5 6 0 8 9 10 11 11 12 11 11 12 11 11 12 11 11 11 11	$\begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \hline \\ v_{45} \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,029 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	$-598,39$ $-486,63$ $-431,77$ $-263,69$ $-171,87$ $-26,33$ $8,99$ $22,78$ $M_2(\%)$ $ -510,67$ $-486,63$ $-466,89$ $-367,81$ $-312,11$ $-274,00$	$-144,42$ $-136,46$ $-132,11$ $-113,81$ $-87,62$ $-30,00$ $9,64$ $24,15$ $\beta_2(°)$ $-138,27$ $-136,46$ $-134,93$ $-126,52$ $-120,69$ $-115,51$	1 2 3 4 5 6 0 8 8 9 10 11 2 3 4 5 6 0 8 8 9 10 11 11	0,980 0,990 1,000 1,010 1,029 1,030 1,031 1,040 1,050 1,060 0,980 0,990 1,000 1,010 1,020 1,029 1,031 1,040 1,050 1,050 1,060		$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	$-143,48$ $-136,46$ $-132,40$ $-115,21$ $-93,32$ $-44,47$ $1,88$ $20,28$ $\beta_2(°)$ $-140,58$ $-136,46$ $-133,56$ $-120,44$ $-109,25$ $-92,81$
1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 8 9 10 10	$\begin{array}{c} 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,039 \\ 1,040 \\ 1,041 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ 1,090 \\ \hline v_{45} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	$-598,39$ $-486,63$ $-431,77$ $-263,69$ $-171,87$ $-26,33$ $8,99$ $22,78$ $M_2(\%)$ $ -510,67$ $-486,63$ $-466,89$ $-367,81$ $-312,11$	$\begin{array}{c} -144,42\\ -136,46\\ -132,11\\ -113,81\\ -87,62\\ -30,00\\ 9,64\\ 24,15\\ \hline \beta_2(°)\\ \hline \\ -138,27\\ -136,46\\ -134,93\\ -126,52\\ -120,69\\ \end{array}$	1 2 3 4 5 6 0 8 9 10 11 12 13 Ação 1 2 3 4 5 6 0 8 9 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	$\begin{array}{c} 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ 1,060 \\ 1,070 \\ 1,080 \\ \hline \\ v_{46} \\ 0,980 \\ 0,990 \\ 1,000 \\ 1,010 \\ 1,020 \\ 1,020 \\ 1,030 \\ 1,031 \\ 1,040 \\ 1,050 \\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ 0,10\\ -\\ 0,09\\ -\\ 0,07\\ 0,10\\ 0,31\\ 0,54\\ 0,79\\ 1,04\\ \hline \\ Q_{G46}\\ \hline \\ -\\ -\\ -\\ -\\ -\\ 1,38\\ 1,42\\ 1,46\\ 1,85\\ 2,29\\ \end{array}$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	$-143,48$ $-136,46$ $-132,40$ $-115,21$ $-93,32$ $-44,47$ $1,88$ $20,28$ $\beta_2(°)$ $-140,58$ $-136,46$ $-133,56$ $-120,44$ $-109,25$

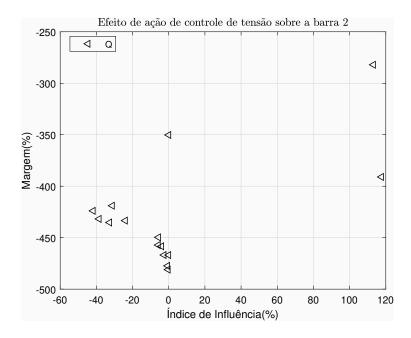


Figura 32: Relação entre o índice de influência e o efeito da ação de controle

à geração de potência reativa tem índice de influência negativo, com exceção de dois casos. De acordo com a Tabela 18, esses casos dizem respeito à limitação de geração de potência reativa em Ibiúna, Q3, e em Governador Bento Munhoz, Q29. Ou seja, do ponto de vista de estabilidade de tensão da barra 2, no Sudeste, a limitação de potência reativa mais influente ocorre em Governador Bento Munhoz, a interligação com o Sul. Por outro lado, os índices de influência positivos estão relacionados às barras cujo aumento de injeção de potência reativa leva à redução da margem de potência da barra 2.

A exceção à tendência de verificada ocorre para o caso em que há esgotamento na própria barra 2. Nesse caso, $II_2^{Q^2}$ é nulo, mas ação de controle baseada no evento correspondente apresenta bons resultados de estabilidade de tensão. Portanto, aqui observa-se uma limitação de aplicação do método proposto. Entretanto, nos demais casos, o II é útil para indicar as melhores intervenções no sistema.

• Barra 29

Na Figura 33, é possível ver o efeito da ação de controle baseada em Q_{G29} sobre a margem da barra 29. Para isso, o eixo vertical esquerdo representa o valor da margem de potência da barra 29, enquanto no eixo horizontal são listados valores de v_{29} associados a diferentes ações de controle preventivas e ao caso-base. Nota-se que com aumento de 0,001 pu em v_{29} , a margem M_{29} torna-se positiva. Análise semelhante pode ser feita com β_{29} , cujos valores são representados no eixo vertical direito. À medida que a tensão v_{29} aumenta, β_{29}

afasta-se do valor crítico.

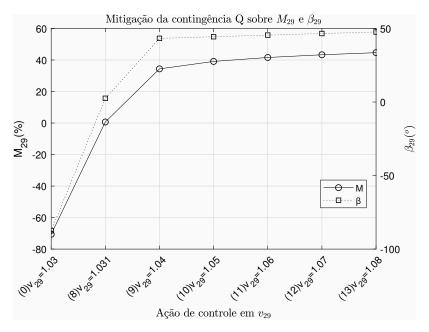


Figura 33: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

As ações de controle preventivas implementadas são descritas na Tabela 25, onde relacionam-se as variações de tensão na barra 29 e suas consequências sobre a estabilidade de tensão da barra 29. Para os casos pós-controle em que não há solução convergente para o problema de fluxo de potência, os índices de estabilidade são indicados como "-".

Tabela 25: Ações de controle preventivas implementadas sobre v_{29} para incrementar a margem da barra 29

Ação	v_{29}	Q_{G29}	$M_{29}(\%)$	β ₂₉ (°)
1	0,980	-	-	-
2	0,990	-	=	-
3	1,000	-	-	-
4	1,010	-	-	-
5	1,020	-	-	-
6	1,029	-	-	-
0	1,030	$5,\!66$	-70,60	-87,56
8	1,031	$5,\!65$	0,66	$2,\!54$
9	1,040	5,78	$34,\!37$	43,31
10	1,050	6,04	39,11	44,40
11	1,060	$6,\!35$	41,60	$45,\!51$
12	1,070	6,69	$43,\!32$	$46,\!58$
13	1,080	7,05	$44,\!65$	47,61

De acordo com a Tabela 18, sabe-se que os esgotamentos de potência reativa gerada nas demais barras swing e no compensador síncrono afetam

a estabilidade de tensão da barra 29, pois os índices de influência desses esgotamentos são negativos. Assim, devem-se analisar as variações de tensão nas barras citadas e suas consequências sobre a estabilidade de tensão da barra 29.

Nas Tabelas 26 e 27, é possível observar que à medida que a tensão de cada uma das barras em questão aumenta, a margem M_{29} aumenta também. Além disso, assim como verificado na barra 2, de forma geral, o aumento da geração de potência reativa em uma barra do sistema incrementa a margem de potência da barra 29. Contudo, dois casos têm comportamento diferente: as barras 2 e 3. Novamente verifica-se que essas são as únicas duas barras cuja limitação de geração de potência reativa resulta em índices de influência não negativo sobre a barra 29. Isso significa que o aumento da injeção de potência reativa nessas barras na verdade reduz a margem de potência na barra 29.

Na Figura 34 são apresentadas as margens de potência da barra 29 – M_{29} – quando há aumento de 0,001 pu em cada uma das tensões controladas localmente por potência reativa de geradores.

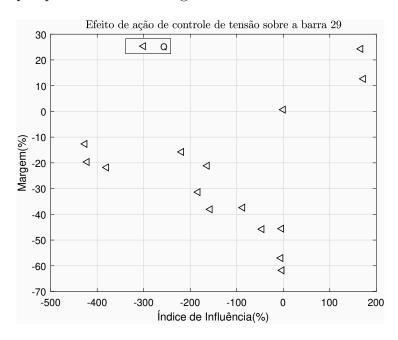


Figura 34: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

Quando o índice de influência é negativo, a tendência é que quanto mais negativo o índice de influência de um esgotamento, melhor o efeito de aumentar 0,001 pu a tensão da barra onde o esgotamento ocorreria. Também se constata que a maior parte dos esgotamentos relativos à geração de potência reativa tem índice de influência negativo, com exceção de dois casos. De acordo com a Tabela 18, esses casos dizem respeito à limitação de geração de potência

reativa em Ibiúna, Q3, e em Marimbondo, Q2. Entretanto, do ponto de vista de estabilidade de tensão da barra 29, a limitação de potência reativa mais severa ocorre em Santo Segredo (barra 31), no Sul. Por outro lado, os índices de influência positivos estão relacionados as barras cujo aumento de injeção de potência reativa leva à redução da margem de potência da barra 29.

Tabela 26: Ações de controle preventivas implementadas sobre v_1 , v_2 , v_3 , v_{17} ,

			rementar					uas so	ore v_1, v_2	v_1, v_3, v_{17}
Ação	v_1	Q_{G1}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$		Ação	v_2	Q_{G2}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	0,950	-	-			1	0,960	-	-	
2	0,960	-	-	-		2	0,970	-	-	-
3	0,970	_	_	_		3	0,980	-	-	-
4	0,980	-	-	-		4	0,990	-	-	-
5	0,990	-	-	-		5	1,000	-	-	-
6	0,999	-2,40	-208,38	$-75,\!51$		6	1,009	-	-	-
0	1,000	-2,37	-70,60	-87,56		0	1,010	1,32	-70,60	-87,56
8	1,001	-2,34	-21,13	-71,23		8	1,011	$1,\!24$	12,63	$31,\!27$
9	1,010	-2,01	25,92	39,92		9	1,020	1,11	36,00	39,92
10	1,020	-1,61	31,95	$40,\!24$		10	1,030	1,19	39,08	$39,\!59$
11	1,030	-1,20	$34,\!55$	40,01		11	1,040	$1,\!34$	40,60	$39,\!51$
12	1,040	-0,78	36,10	39,82		12	1,050	$1,\!53$	41,60	$39,\!52$
13	1,050	-0.34	37,19	39,67		13	1,060	1,75	$42,\!36$	39,57
Ação	v_3	Q_{G3}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$		Ação	v_{17}	Q_{G17}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	0,950	-	-	-		1	0,950	-	-	-
2	0,960	-	-	-		2	0,960	-	-	-
3	0,970	-	-	-		3	0,970	-	-	-
4	0,980	-	-	-		4	0,980	-	-	-
5	0,990	-	-	-		5	0,990	-	-	-
6	0,999	-	-	-		6	0,999	-1,90	$-142,\!41$	-86,93
0	1,000	5,09	-70,60	-87,56		0	1,000	-1,87	-70,60	$-87,\!56$
8	1,001	4,66	24,29	39,97		8	1,001	-1,84	-45,76	-85,81
9	1,010	$3,\!45$	39,68	40,81		9	1,010	-1,54	8,19	23,91
10	1,020	2,85	42,33	$41,\!41$		10	1,020	-1,20	20,34	38,04
11	1,030	10,68	41,04	33,22		11	1,030	-0.85	$25,\!37$	39,84
12	1,040	-	-	-		12	1,040	-0,49	28,26	$40,\!25$
13	1,050	-	-	-		13	1,050	-0,13	30,18	40,32
Ação	v_{18}	Q_{G18}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$	•	Ação	v_{19}	Q_{G19}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	0,970	-	-	-		1	0,960	-	-	-
2	0,980	-	-	-		2	0,970	-	-	-
3	0,990	-	-	-		3	0,980	-	-	-
4	1,000	-1,12	$-340,\!25$	-30,96		4	0,990	-	-	-
5	1,010	-0.95	-192,46	-79,85		5	1,000	-1,60	-262,93	-55,62
6	1,019	-0,79	-84,96	-87,62		6	1,009	-1,35	-115,30	-87,57
0	1,020	-0,77	-70,60	-87,56		0	1,010	-1,32	-70,60	-87,56
8	1,021	-0,75	-61,76	-87,34		8	1,011	-1,29	-57,00	-87,09
9	1,030	-0,59	-25,43	-76,39		9	1,020	-1,04	-12,30	-51,26
10	1,040	-0,41	-7,72	-33,64		10	1,030	-0,75	5,63	18,03
11	1,050	-0,22	2,91	10,18		11	1,040	-0,45	13,93	32,83
12	1,060	-0,03	9,44	26,26		12	1,050	-0,15	18,69	37,02
13	1,070	0,16	13,78	32,60		13	1,060	0,16	21,82	38,69

Tabela 27: Ações de controle preventivas implementadas sobre $v_{20}, v_{26}, v_{30}, v_{31}, v_{43}, v_{44}, v_{45},$ e v_{46} para incrementar a margem da barra 29

v_{43}, v_{44}	$u_4, v_{45},$	$e v_{46}$]	para inci	rementa	ır a	a mai	rgem d	la bar	ra 29	
Ação	v_{20}	Q_{G20}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$		Ação	v_{26}	Q_{G26}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	0,960	-	-	-	_	1	0,970	-	_	-
2	0,970	_	_	_		2	0,980	_	_	_
3	0,980	_	_	_		3	0,990	_	_	_
4	0,990	_	_	_		4	1,000	_	_	_
5	1,000	_	_	_		5	1,010	_	_	_
6	1,009	-2,04	-160,44	-85,50		6	1,019	0,58	-235,60	-66,17
0	1,010	-2,00	-70,60	-87,56		0	1,020	0,60	-70,60	-87,56
8	1,011	-1,97	-37,40	-83,68		8	1,021	0,62	-15,76	-61,06
9	1,020	-1,64	16,53	35,39		9	1,030	0,92	28,00	40,21
10	1,020	-1,26	25,76	39,86		10	1,040	1,28	33,35	40,21 $40,16$
11	1,040	-0,88	29,60	40,24		11		1,66	35,68	
12						12	1,050			39,91
	1,050	-0,48	31,83	40,20			1,060	2,06	37,09	39,73
13	1,060	-0,08	33,33	40,08	_	13	1,070	2,47	38,08	39,61
Ação	v_{30}	Q_{G30}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$	_	Ação	v_{31}	Q_{G31}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	0,980	-	-	-		1	0,980	-	-	-
2	0,990	-	-	-		2	0,990	-	-	-
3	1,000	-	-	-		3	1,000	-	-	-
4	1,010	-	-	-		4	1,010	-	-	-
5	1,020	-	-	-		5	1,020	-	-	-
6	1,029	$1,\!35$	-158,73	-85,83		6	1,029	1,21	-256,23	-58,77
0	1,030	1,38	-70,60	-87,56		0	1,030	1,23	-70,60	$-87,\!56$
8	1,031	1,41	-38,06	-83,87		8	1,031	1,26	-12,64	-52,71
9	1,040	1,71	16,46	36,38		9	1,040	1,62	29,84	42,19
10	1,050	2,04	26,10	41,58		10	1,050	2,06	35,27	42,79
11	1,060	2,39	30,20	42,37		11	1,060	2,54	37,81	43,21
12	1,070	2,74	32,63	42,66		12	1,070	3,03	39,43	43,65
13	1,080	3,11	34,30	42,86		13	1,080	3,54	40,61	44,10
Ação	v_{43}	Q_{G43}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$	_	Ação	v_{44}	Q_{G44}	$M_{29}(\%)$	β ₂₉ (°)
1	0,990	♥ G45 -	-	P 29 ()	-	1	0,980	₹ G44 -	-	P 29 ()
2	1,000		_	_		2	0,990	_	_	_
3	1,010					3	1,000			
4	1,020					4	1,010			
5	1,020	-	-	-		5		-	-	-
	,	0.17	212.26	74.40			1,020	0.10	204.61	77.09
6	1,039	-0,17	-213,36	-74,40		6	1,029	-0,10	-204,61	-77,02
0	1,040	-0,16	-70,60	-87,56		0	1,030	-0,09	-70,60	-87,56
8	1,041	-0,14	-19,66	-69,10		8	1,031	-0,07	-21,78	-72,27
9	1,050	0,03	27,25	41,92		9	1,040	0,10	26,31	41,66
10	1,060	$0,\!25$	33,46	42,81		10	1,050	0,31	32,78	42,68
11	1,070	0,49	$36,\!27$	43,17		11	1,060	$0,\!54$	$35,\!68$	43,01
12	1,080	0,75	38,02	43,52		12	1,070	0,79	37,49	43,32
13	1,090	1,02	39,29	43,88		13	1,080	1,04	38,78	43,63
Ação	v_{45}	Q_{G45}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$		Ação	v_{46}	Q_{G46}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	0,980	-	-	-		1	0,980	-	-	-
2	0,990	-	-	-		2	0,990	-	-	-
3	1,000	-	-	-		3	1,000	-	-	-
4	1,010	-	-	-		4	1,010	-	-	-
5	1,020	_	_	_		5	1,020	_	_	_
6	1,029	1,50	-142,70	-87,00		6	1,029	1,38	-174,68	-83,74
0	1,030	1,52	-70,60	-87,56		0	1,030	1,42	-70,60	-87,56
8	1,031	1,55	-45,56	-85,74		8	1,031	1,46	-31,38	-80,92
9	1,040	1,75	8,82	25,84		9	1,040	1,40	21,25	39,73
10	1,040	1,78	21,09	39,72		10	1,040	2,29	29,31	42,21
11	1,060	2,22	26,23	41,70		11	1,060		32,80	42,21 $42,64$
12								2,74		
	1,070	2,46	29,23	42,33		12	1,070	3,21	34,90	42,88
13	1,080	2,71	31,26	42,62	_	13	1,080	3,69	36,38	43,10

A exceção à tendência de verificada ocorre para o caso em que há esgotamento na própria barra 29. Nesse caso, II_{29}^{Q29} é nulo, mas ação de controle baseada no evento correspondente é a que apresenta melhores resultados de estabilidade de tensão. Portanto, aqui observa-se uma limitação de aplicação do método proposto. Entretanto, nos demais casos, o II é útil para indicar as melhores intervenções no sistema.

5.5.3 Ações de controle preventivas de *tap* de LTC em barras de carga

Conforme já mencionado, ações de controle preventivas também podem ser baseadas em eventos em que há esgotamento da capacidade de controle de tensão via tap de LTC.

Por exemplo, para a barra 11, o esgotamento desse tipo mais severo do ponto de vista de estabilidade de tensão é o esgotamento t50, que impede controle de tensão da barra 50. Ações de controle preventivas baseadas nesse evento são apresentadas na Tabela 28. Notam-se, por exemplo, as variações de módulo de tensão e suas consequências sobre a estabilidade de tensão da barra 11. Entretanto, para t32, t62, t55 os índices de estabilidade de tensão são constantes. Pode-se fazer a leitura de que os II desses esgotamentos são tão próximos de zero que as ações de controle preventivas baseadas neles não chegam a alterar os índices de estabilidade de tensão, o que reforça a interpretação do índice de influências.

Além disso, também são exibidas outras ações de controle preventivas baseadas na perda de controle de tensão dos demais LTC da rede, porém menos graves. Em ordem de severidade, essas ações de controle preventivas são baseadas em t32, t62, t55, t65 e t48 conforme II da Tabela 18.

Na Figura 35, é possível ver o efeito da ação de controle baseada no tap t_{50} sobre a margem da barra 11. Para isso, o eixo vertical esquerdo representa o valor da margem de potência da barra 11, enquanto no eixo horizontal são listados valores de v_{50} associados. Nota-se que a margem M_{11} e o ângulo β_{11} , representado no eixo vertical direito, se afastam dos valores críticos a medida que a tensão v_{50} aumenta.

Na Figura 36 são apresentadas as margens de potência da barra 11– M_{11} – quando há aumento de 0,001 pu em cada uma das tensões controladas localmente por LTC. Novamente percebe-se a tendência de obter melhores índices de estabilidade de tensão quando se atua sobre barras relacionadas aos índices de influência mais elevados.

De forma geral, quanto mais negativo o índice de influência de um esgotamento, melhor o efeito de aumentar 0,001 pu a tensão da barra onde

Tabela 28: Ações de controle preventivas implementadas sobre v_{32} , v_{48} , v_{50} , v_{57} , v_{62} e v_{67} para incrementar a margem da barra 11

v_{55}, v_{62}	$e v_{65} p$	oara inc	crementai		em da b	arra 11	_		
Ação	v_{50}	t_{50}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$	Ação	v_{32}	t_{32}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$
1	0,948	-	-	-	1	0,948	0,995	3,39	177,37
2	0,958	-	-	-	2	0,958	0,995	3,39	177,37
3	0,968	-	-	-	3	0,968	0,995	3,39	177,37
4	0,978	-	-	-	4	0,978	0,995	3,39	177,37
5	0,988	0,930	$0,\!86$	179,33	5	0,988	0,995	3,39	177,37
6	0,997	0,932	$3,\!24$	177,49	6	0,997	0,995	3,39	177,37
0	0,998	0,932	3,39	177,37	0	0,998	0,995	3,39	177,37
8	0,999	0,932	$3,\!53$	177,26	8	0,999	0,995	3,39	177,37
9	1,008	0,934	$4,\!54$	176,47	9	1,008	0,995	3,39	$177,\!37$
10	1,018	0,935	$5,\!35$	175,83	10	1,018	0,995	3,39	$177,\!37$
11	1,028	0,936	5,95	$175,\!35$	11	1,028	0,995	3,39	177,37
12	1,038	0,936	6,42	174,98	12	1,038	0,995	3,39	177,37
13	1,048	0,937	6,78	174,69	13	1,048	0,995	3,39	177,37
Ação	v_{62}	t_{62}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$	_Ação	v_{55}	t_{55}	$M_{11}(\%)$	β ₁₁ (°)
1	0,948	0,963	3,39	177,37	1	0,949	1,070	3,39	177,37
2	0,958	0,963	$3,\!39$	$177,\!37$	2	0,959	1,059	3,39	177,37
3	0,968	0,963	3,39	$177,\!37$	3	0,969	1,048	3,39	$177,\!37$
4	0,978	0,963	3,39	177,37	4	0,979	1,038	3,39	177,37
5	0,988	0,963	3,39	177,37	5	0,989	1,027	3,39	177,37
6	0,997	0,963	3,39	177,37	6	0,998	1,018	3,39	177,37
0	0,998	0,963	3,39	$177,\!37$	0	0,999	1,017	3,39	$177,\!37$
8	0,999	0,963	3,39	$177,\!37$	8	1,000	1,016	3,39	177,37
9	1,008	0,963	3,39	$177,\!37$	9	1,009	1,007	3,39	$177,\!37$
10	1,018	0,963	3,39	177,37	10	1,019	0,997	3,39	$177,\!37$
11	1,028	0,963	3,39	177,37	11	1,029	0,987	3,39	177,37
12	1,038	0,963	3,39	177,37	12	1,039	0,978	3,39	177,37
13	1,048	0,963	3,39	177,37	13	1,049	0,968	3,39	177,37
Ação	v_{65}	t_{65}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$	Ação	v_{48}	t_{48}	$M_{11}(\%)$	$\beta_{11}(^{\circ})$
1	0,949	0,979	2,22	178,29	1	0,949	1,022	2,80	177,84
2	0,959	0,979	$2,\!56$	178,02	2	0,959	1,023	3,13	177,58
3	0,969	0,979	2,84	177,81	3	0,969	1,023	3,33	177,42
4	0,979	0,979	3,06	177,63	4	0,979	1,024	3,44	177,33
5	0,989	0,979	$3,\!25$	177,49	5	0,989	1,025	$3,\!46$	177,32
6	0,998	0,979	$3,\!38$	177,38	6	0,998	1,026	3,40	177,36
0	0,999	0,979	3,39	$177,\!37$	0	0,999	1,026	3,39	177,37
8	1,000	0,979	3,41	$177,\!36$	8	1,000	1,026	3,38	177,38
9	1,009	0,979	3,51	$177,\!28$	9	1,009	1,027	3,23	177,50
10	1,019	0,979	3,60	177,21	10	1,019	1,028	2,95	177,72
11	1,029	0,979	3,66	177,16	11	1,029	1,028	2,51	178,06
12	1,039	0,979	3,71	177,13	12	1,039	1,029	1,78	178,63
13	1,049	0,979	3,72	177,12	13	1,049	-	-	-

o esgotamento ocorreria. Além disso, os índices de influência relacionados à limitação de tap de LTC são cerca de 100 vezes menores que os índices de influência relacionados a limitação de geração de potência reativa. Isso auxilia na comparação das Figuras 30 e 36. Nelas observa-se que ações que modificam a tensão controlada por geração de potência reativa têm efeito mais significativo na margem de potência, mesmo quando há aumento de apenas 0,001 pu na

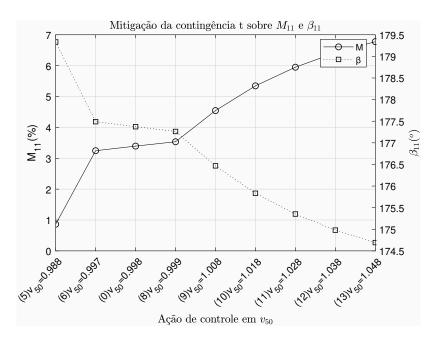


Figura 35: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

Figura 36: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

tensão controlada.

5.5.4 Ações de controle preventivas de *tap* de LTC em barras de geração

A implementação de ações de controle preventivas baseadas em eventos em que há esgotamento da capacidade de controle de tensão por LTC também

será explorada nas barras de geração que estão operando na região anormal da curva Sv.

• Barra 2

Por exemplo, para a barra 2, o esgotamento desse tipo mais severo do ponto de vista de estabilidade de tensão é o esgotamento t50, que impede controle de tensão da barra 50. Ações de controle preventivas baseadas nesse evento são apresentadas na Tabela 29.

Além disso, também são exibidas outras ações de controle preventivas baseadas na perda de controle de tensão dos demais LTC da rede, porém menos graves. Em ordem de severidade, essas ações de controle preventivas são baseadas em t32, t62, t55, t65 e t48 de acordo com os II da Tabela 18.

Na Figura 37, é possível ver o efeito da ação de controle baseada em t_{50} sobre a margem da barra 2. Para isso, o eixo vertical esquerdo representa o valor da margem de potência da barra 2, enquanto no eixo horizontal são listadas valores de v_{50} associados. Já β_2 é representado no eixo vertical direito. Nota-se que com aumento de v_{50} , β_2 distancia-se de -180° . Entretanto, tanto M_2 quanto β_2 continuam negativos.

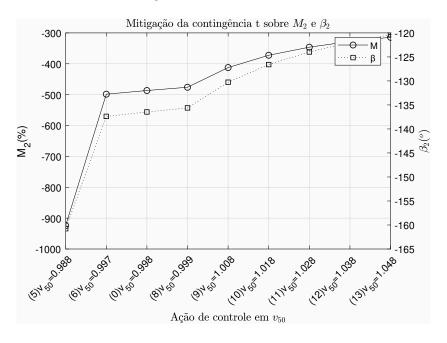


Figura 37: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

Na Figura 38 são apresentadas as margens de potência da barra $2-M_2$ quando há aumento de 0,001 pu em cada uma das tensões controladas localmente por LTC. Novamente percebe-se a tendência de obter melhores

Tabela 29: Ações de controle preventivas implementadas sobre v_{31} , v_{33} , v_{32} , e v_{34} para incrementar a margem da barra 2

v_{34} para	a increi	mentar	a marge	<u>em da ba</u> r	rra 2				
Ação	v_{50}	t_{50}	$M_2(\%)$	$\beta_2(^{\circ})$	Ação	v_{32}	t_{32}	$M_2(\%)$	$\beta_2(^{\circ})$
1	0,948	-	-	_	1	0,948	0,995	-486,64	-136,46
2	0,958	-	-	-	2	0,958	0,995	-486,62	-136,46
3	0,968	-	-	-	3	0,968	0,995	-486,60	-136,46
4	0,978	-	-	-	4	0,978	0,995	-486,59	-136,46
5	0,988	0,930	-923,94	-160,77	5	0,988	0,995	-486,62	-136,46
6	0,997	0,932	$-498,\!46$	-137,38	6	0,997	0,995	-486,63	-136,46
0	0,998	0,932	-486,63	$-136,\!46$	0	0,998	0,995	-486,63	-136,46
8	0,999	0,932	-476,03	$-135,\!62$	8	0,999	0,995	-486,62	-136,46
9	1,008	0,934	-412,28	$-130,\!27$	9	1,008	0,995	-486,60	-136,46
10	1,018	0,935	-372,36	$-126,\!59$	10	1,018	0,995	-486,59	-136,46
11	1,028	0,936	-346,23	-123,97	11	1,028	0,995	-486,62	-136,46
12	1,038	0,936	-327,70	-121,96	12	1,038	0,995	-486,64	-136,46
13	1,048	0,937	-314,18	-120,37	13	1,048	0,995	$-486,\!56$	-136,45
Ação	v_{62}	t_{62}	$M_2(\%)$	$\beta_2(^{\circ})$	Ação	v_{55}	t_{55}	$M_2(\%)$	$\beta_2(^{\circ})$
1	0,948	0,963	-486,62	-136,46	1	0,949	1,070	-486,54	-136,45
2	0,958	0,963	$-486,\!55$	$-136,\!45$	2	0,959	1,059	-486,64	-136,46
3	0,968	0,963	$-486,\!65$	-136,46	3	0,969	1,048	-486,60	-136,46
4	0,978	0,963	-486,64	$-136,\!46$	4	0,979	1,038	-486,65	-136,46
5	0,988	0,963	-486,64	$-136,\!46$	5	0,989	1,027	-486,64	-136,46
6	0,997	0,963	$-486,\!63$	-136,46	6	0,998	1,018	-486,63	-136,46
0	0,998	0,963	-486,63	-136,46	0	0,999	1,017	-486,63	-136,46
8	0,999	0,963	$-486,\!62$	-136,46	8	1,000	1,016	-486,63	-136,46
9	1,008	0,963	-486,63	-136,46	9	1,009	1,007	-486,64	-136,46
10	1,018	0,963	$-486,\!64$	-136,46	10	1,019	0,997	-486,53	-136,45
11	1,028	0,963	$-486,\!65$	-136,46	11	1,029	0,987	-486,62	-136,46
12	1,038	0,963	$-486,\!60$	-136,46	12	1,039	0,978	$-486,\!65$	-136,46
13	1,048	0,963	-486,64	-136,46	13	1,049	0,968	-486,61	-136,46
Ação	v_{65}	t_{65}	$M_2(\%)$	$\beta_2(^{\circ})$	Ação	v_{48}	t_{48}	$M_2(\%)$	$\beta_2(^\circ)$
1	0,949	0,979	-605,32	-145,02	1	0,949	1,022	-538,17	-140,54
2	0,959	0,979	-562,91	-142,12	2	0,959	1,023	-508,29	$-138,\!29$
3	0,969	0,979	-534,46	-140,08	3	0,969	1,023	-491,33	-136,95
4	0,979	0,979	-513,83	$-138,\!54$	4	0,979	1,024	-482,88	$-136,\!25$
5	0,989	0,979	-498,31	$-137,\!36$	5	0,989	1,025	-481,43	-136,10
6	0,998	0,979	-487,67	$-136,\!54$	6	0,998	1,026	-485,79	-136,40
0	0,999	0,979	-486,63	-136,46	0	0,999	1,026	-486,63	-136,46
8	1,000	0,979	$-485,\!62$	-136,38	8	1,000	1,026	$-487,\!55$	-136,53
9	1,009	0,979	-477,68	-135,76	9	1,009	1,027	-499,74	-137,42
10	1,019	0,979	-471,14	$-135,\!25$	10	1,019	1,028	-523,99	-139,18
11	1,029	0,979	$-466,\!51$	-134,88	11	1,029	1,028	-569,03	-142,34
12	1,039	0,979	-463,78	-134,67	12	1,039	1,029	-672,90	-148,90
13	1,049	0,979	-462,69	-134,59	13	1,049	-	-	

índices de estabilidade de tensão quando se atua sobre barras relacionadas aos índices de influência mais elevados.

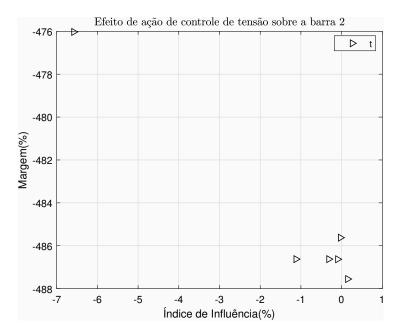


Figura 38: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

Conforme já mencionado, os índices de influência relacionados a limitação de tap de LTC são cerca de 100 vezes menores que os índices de influência relacionados à limitação de geração de potência reativa. Isso auxilia na comparação das Figuras 32 e 38. Nelas observa-se que ações que modificam a tensão controlada por LTC têm efeito mais limitado sobre a margem de potência. Em todos os casos, para a barra 2, não é possível nem mesmo elevar M_2 e β_2 a níveis positivos com as ações de controle preventivas propostas.

• Barra 29

Para a barra 29, o evento desse tipo mais severo do ponto de vista de estabilidade de tensão também é o esgotamento t50, que impede controle de tensão da barra 50. Ações de controle baseadas nesse evento são apresentadas na Tabela 28.

Na Figura 39, é possível ver o efeito da ação de controle baseada em t_{50} sobre a margem da barra 29 - M_{29} . Para isso, o eixo vertical esquerdo representa o valor da margem de potência da barra 29, enquanto no eixo horizontal são listadas valores de v_{50} associados ao caso-base. Já β_{29} é representado no eixo vertical direito. Nota-se que com aumento de v_{50} , β_{29} distancia-se de -180° .

Tabela 30: Ações de controle preventivas implementadas sobre $v_{31},\,v_{33},\,v_{32},\,$ e v_{34} para incrementar a margem da barra 29

v_{34} para	incre	nentar	a marger	n da ba	rr	a 29				
Ação	v_{50}	t_{50}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$		Ação	v_{32}	t_{32}	$M_{29}(\%)$	β ₂₉ (°)
1	0,948	-	-	_	-	1	0,948	0,995	-70,62	-87,56
2	0,958	-	-	-		2	0,958	0,995	-70,59	-87,56
3	0,968	-	-	_		3	0,968	0,995	$-70,\!54$	-87,56
4	0,978	-	-	-		4	0,978	0,995	-70,53	-87,56
5	0,988	0,930	-361,24	-26,36		5	0,988	0,995	-70,58	-87,56
6	0,997	0,932	-119,90	-87,53		6	0,997	0,995	-70,60	-87,56
0	0,998	0,932	-70,60	-87,56		0	0,998	0,995	-70,60	-87,56
8	0,999	0,932	-55,70	-87,00		8	0,999	0,995	-70,59	-87,56
9	1,008	0,934	-11,04	-46,46		9	1,008	0,995	-70,55	-87,56
10	1,018	0,935	4,82	15,45		10	1,018	0,995	-70,53	-87,56
11	1,028	0,936	11,62	28,89		11	1,028	0,995	-70,57	-87,56
12	1,038	0,936	15,13	$32,\!80$		12	1,038	0,995	-70,62	-87,56
13	1,048	0,937	17,12	34,21		13	1,048	0,995	-70,47	-87,56
Ação	v_{62}	t_{62}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$	_	Ação	v_{55}	t_{55}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	0,948	0,963	-70,58	-87,56		1	0,949	1,070	-70,44	-87,56
2	0,958	0,963	-70,45	-87,56		2	0,959	1,059	-70,61	-87,56
3	0,968	0,963	-70,63	-87,56		3	0,969	1,048	$-70,\!54$	-87,56
4	0,978	0,963	-70,61	-87,56		4	0,979	1,038	-70,63	-87,56
5	0,988	0,963	-70,61	-87,56		5	0,989	1,027	-70,62	-87,56
6	0,997	0,963	-70,60	-87,56		6	0,998	1,018	-70,60	-87,56
0	0,998	0,963	-70,60	-87,56		0	0,999	1,017	-70,60	-87,56
8	0,999	0,963	-70,59	-87,56		8	1,000	1,016	-70,60	-87,56
9	1,008	0,963	-70,59	-87,56		9	1,009	1,007	-70,62	-87,56
10	1,018	0,963	-70,61	-87,56		10	1,019	0,997	-70,42	-87,56
11	1,028	0,963	-70,63	-87,56		11	1,029	0,987	-70,57	-87,56
12	1,038	0,963	-70,55	-87,56		12	1,039	0,978	-70,63	-87,56
13	1,048	0,963	-70,62	-87,56		13	1,049	0,968	-70,56	-87,56
Ação	v_{65}	t_{65}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$		Ação	v_{48}	t_{48}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	0,949	0,979	-217,45	-72,74		1	0,949	1,022	$-167,\!48$	-84,14
2	0,959	0,979	-190,35	-80,47		2	0,959	1,023	-134,00	-86,93
3	0,969	0,979	-168,05	-84,61		3	0,969	1,023	-74,74	-87,39
4	0,979	0,979	-146,83	-86,72		4	0,979	1,024	-61,80	-87,20
5	0,989	0,979	-120,69	-87,55		5	0,989	1,025	-61,01	-87,23
6	0,998	0,979	-72,59	-87,59		6	0,998	1,026	-68,92	-87,53
0	0,999	0,979	-70,60	-87,56		0	0,999	1,026	-70,60	-87,56
8	1,000	0,979	-68,78	-87,53		8	1,000	1,026	-72,53	-87,60
9	1,009	0,979	-57,17	-87,09		9	1,009	1,027	-126,07	-87,59
10	1,019	0,979	-49,67	-86,39		10	1,019	1,028	$-159,\!80$	-85,92
11	1,029	0,979	-44,99	-85,65		11	1,029	1,028	$-196,\!28$	-79,62
12	1,039	0,979	-42,39	-85,11		12	1,039	1,029	$-255,\!56$	$-59,\!54$
13	1,049	0,979	-41,32	-84,85	_	13	1,049	-	-	

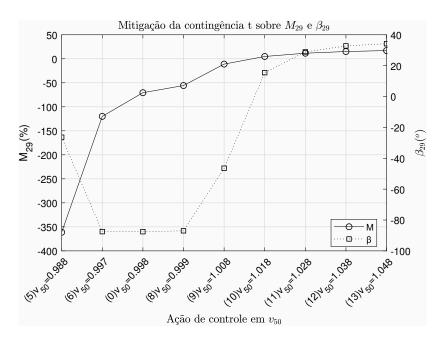


Figura 39: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

Na Figura 40 são apresentadas as margens de potência da barra 29 – M_{29} – quando há aumento de 0,001 pu em cada uma das tensões controladas localmente por LTC. Novamente percebe-se a tendência de obter melhores índices de estabilidade de tensão quando atua-se sobre barras relacionadas aos índices de influência mais elevados.

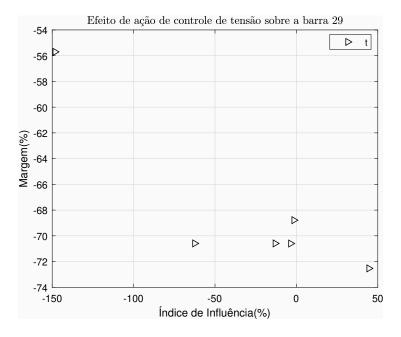


Figura 40: Efeito das ações de controle preventivas sobre a margem de potência e sobre o ângulo β

Conforme já mencionado, os índices de influência relacionados a limitação de tap de LTC são cerca de 100 vezes menores que os índices de influência relacionados à limitação de geração de potência reativa. Isso auxilia na comparação das Figuras 34 e 40. Nelas observa-se que ações que modificam a tensão controlada por LTC têm efeito mais limitado sobre a margem de potência. A exceção está no caso do LTC que controla a tensão da barra 50, onde tem-se t50 com mesma ordem de grandeza do principal esgotamento relacionado a potência reativa, conforme observa-se na Tabela 18. A ação de controle sobre v_{50} foi a única ação de controle preventiva que tornou M_{29} e β_{29} positivos, como observa-se na Tabela 30.

5.5.5 Ações de controle preventivas de potência ativa em barras de carga

Conforme exposto na Seção 5.3, ações de controle preventivas baseadas em geração de potência ativa tem uma particularidade, pois esse tipo de ação de controle preventiva deve manter a potência total gerada no sistema elétrico. Então, não é possível modificar parâmetros apenas em uma barra. Portanto, cada ação de controle é na verdade um conjunto de intervenções coordenadas.

De acordo com a Tabela 18, para a barra 11, a ocorrência P1 é o pior esgotamento de geração de potência ativa. Além disso, tanto P1 quanto P2 têm índices de influência com sinal oposto aos dos demais esgotamentos de geração de potência ativa. Assim, de acordo com (5.1), as ações de controle preventivas para aumentar margem de potência da barra 11 envolvem mudar o ponto de operação do sistema de tal modo que P_{G1} e P_{G2} sofram pequena variação em torno do ponto de operação do caso-base. Contudo, para que a geração de potência ativa total do sistema não se altere, outras barras devem compensar as variações de P_{G1} e P_{G2} . Portanto, as gerações de potência ativa nas demais barras slack compensarão as variações de P_{G1} e P_{G2} .

As ações de controle preventivas propostas são descritas na Tabela 31, onde notam-se as variações da potência ativa gerada nas barras *slack*. Essas variações são calculadas mantendo a proporcionalidade entre essas variações e seus respectivos índices de influência, conforme (5.1).

Na Figura 41, é possível ver o efeito da ação de controle sobre a margem da barra 11. Para isso, o eixo vertical esquerdo representa a margem de potência da barra 11 enquanto no eixo horizontal são listadas diferentes P_{G1} , sendo cada uma delas associada a uma ação de controle ou ao caso-base, sem ação de controle. Nota-se que, nas proximidades do ponto de operação do caso-base (ações de controle preventivas 4 a 8), à medida que P_{G1} aumenta, a margem M_{11} diminui. Análise semelhante pode ser feita com β_{11} , cujos valores são

Tabela 31: Ações de controle preventivas implementadas sobre P_{G1} , P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} , P_{G45} , e P_{G46} para incrementar a margem da barra 11

ementa					-				
A	ção	P_{G1}	P_{G2}	P_{G17}	P_{G18}	P_{G19}	P_{G20}	P_{G26}	$\overline{P_{G29}}$
	1	620	830	707	271	375	231	834	1674
	2	656	844	706	267	370	225	827	1669
	3	692	858	704	263	365	219	820	1664
	4	728	872	703	258	360	212	814	1659
	5	764	886	701	254	355	206	807	1654
	6	799	900	700	250	350	200	800	1649
	0	800	900	700	250	350	200	800	1649
	8	801	900	700	250	350	200	800	1649
	9	836	914	699	246	345	194	793	1644
	10	872	928	697	242	340	188	786	1639
	11	908	942	696	237	335	181	780	1635
	12	944	956	694	233	330	175	773	1630
	13	980	970	693	229	325	169	766	1625
Ação	P_G	,,, F	G31	P_{α}	D	D	D	1/1 (07.)	Q (0)
_	- G	30 1	G31	1 G43	P_{G44}	P_{G45}	P_{G46}	$M_{11}(\%)$	β ₁₁ (°)
1	119		$\frac{G31}{226}$	$\frac{P_{G43}}{714}$	611	$\frac{1}{709}$	$\frac{1}{954}$	$\frac{M_{11}(70)}{3,77}$	$\frac{\rho_{11}(\cdot)}{176,80}$
		94 1							
1	119	94 1: 86 1:	226	714	611	709	954	3,77	176,80
1 2	119 118	94 1: 86 1: 77 1:	226 221	714 711	611 608	709 707	954 953	3,77 6,24	176,80 174,79
1 2 3	119 118 117	94 1: 86 1: 77 1: 68 1:	226 221 215	714 711 708	611 608 606	709 707 705	954 953 953	3,77 6,24 7,18	176,80 174,79 174,09
1 2 3 4	119 118 117 110	94 1: 86 1: 77 1: 68 1: 59 1:	226 221 215 210	714 711 708 705	611 608 606 604	709 707 705 703	954 953 953 952	3,77 6,24 7,18 7,22	176,80 174,79 174,09 174,14
1 2 3 4 5	119 118 117 110 118	94 1: 86 1: 77 1: 68 1: 59 1:	226 221 215 210 205	714 711 708 705 703	611 608 606 604 602	709 707 705 703 702	954 953 953 952 951	3,77 6,24 7,18 7,22 6,31	176,80 174,79 174,09 174,14 174,98
1 2 3 4 5 6 0 8	119 118 117 119 118	94 1: 86 1: 77 1: 68 1: 59 1: 50 1:	226 221 215 210 205 200	714 711 708 705 703 700	611 608 606 604 602 600	709 707 705 703 702 700	954 953 953 952 951 950	3,77 6,24 7,18 7,22 6,31 3,53	176,80 174,79 174,09 174,14 174,98 177,26
1 2 3 4 5 6 0	119 118 117 110 118 118	94 1: 86 1: 77 1: 68 1: 59 1: 50 1: 50 1:	226 221 215 210 205 200 200	714 711 708 705 703 700 700	611 608 606 604 602 600	709 707 705 703 702 700 700	954 953 953 952 951 950 950	3,77 6,24 7,18 7,22 6,31 3,53 3,39	176,80 174,79 174,09 174,14 174,98 177,26 177,37
1 2 3 4 5 6 0 8	119 118 117 110 118 118 118	94 1: 886 1: 777 1: 668 1: 559 1: 550 1: 550 1: 441 1:	226 221 215 210 205 200 200 200	714 711 708 705 703 700 700 700	611 608 606 604 602 600 600	709 707 705 703 702 700 700 700	954 953 953 952 951 950 950	3,77 6,24 7,18 7,22 6,31 3,53 3,39	176,80 174,79 174,09 174,14 174,98 177,26 177,37
1 2 3 4 5 6 0 8 9 10	119 114 117 119 119 119 119	94 1: 886 1: 77 1: 68 1: 59 1: 50 1: 50 1: 41 1: 32 1:	226 221 215 210 205 200 200 200 195	714 711 708 705 703 700 700 700 697	611 608 606 604 602 600 600 598	709 707 705 703 702 700 700 700 698	954 953 953 952 951 950 950 949	3,77 6,24 7,18 7,22 6,31 3,53 3,39	176,80 174,79 174,09 174,14 174,98 177,26 177,37
1 2 3 4 5 6 0 8 9	119 118 117 110 118 119 119 114 114	94 1: 86 1: 77 1: 68 1: 59 1: 50 1: 50 1: 41 1: 32 1: 23 1:	226 221 215 210 205 200 200 200 195 190	714 711 708 705 703 700 700 700 697 695	611 608 606 604 602 600 600 598 596	709 707 705 703 702 700 700 700 698 697	954 953 953 952 951 950 950 949 948	3,77 6,24 7,18 7,22 6,31 3,53 3,39	176,80 174,79 174,09 174,14 174,98 177,26 177,37
1 2 3 4 5 6 0 8 9 10	119 118 117 110 119 119 119 119 111	94 1: 886 1: 77 1: 68 1: 559 1: 550 1: 550 1: 41 1: 23 1: 14 1:	226 221 215 210 205 200 200 200 195 190	714 711 708 705 703 700 700 700 697 695 692	611 608 606 604 602 600 600 598 596 594	709 707 705 703 702 700 700 700 698 697 695	954 953 953 952 951 950 950 949 948 947	3,77 6,24 7,18 7,22 6,31 3,53 3,39	176 174 174 174 174 177

representados no eixo vertical direito. Nota-se que, à medida que P_{G1} aumenta, β_{11} é elevado. Isso não ocorre até a ação de controle 3, indicando que os II têm vallidade somente perto do ponto de operação em que são calculados.

Em outras palavras, pode-se dizer que o objetivo das ações de controle preventivas, que era afastar a barra 11 do ponto crítico, foi alcançado. Ou seja, as margens da barra 11 são maiores nos casos pós-controle – em que houve ação de controle preventiva com elevação de P_{G1} – do que naquele sem ação de controle, o caso-base. Entretanto, a partir da ação 4, verifica-se deterioração dos índices das ações 3, 2 e 1. Aqui deve-se lembrar que o problema é não linear e que os II são calculados no caso-base.

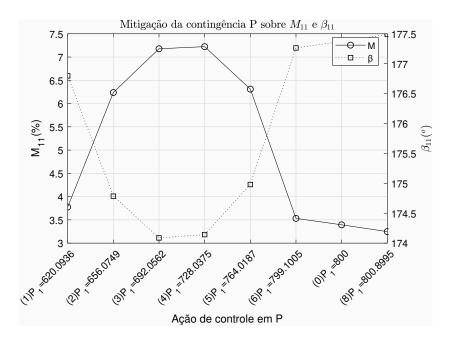


Figura 41: Efeito das ações de controle preventivas sobre a margem de potência M_{11} e sobre o ângulo β_{11}

5.5.6 Ações de controle preventivas de potência ativa em barras de geração

• Barra 2

De acordo com a Tabela 18, para a barra 2, P29 identifica o esgotamento de geração de potência ativa mais influente, pois está atrelado ao II de maior módulo. Assim, as ações de controle preventivas da barra 2 envolvem mudar o ponto de operação do sistema, de acordo com (5.1), de tal modo que P_{G29} sofra pequena variação em torno do ponto de operação do caso-base. Contudo, para que a geração de potência ativa total do sistema não se altere, outras barras devem compensar as variações de P_{G29} . Neste caso, sabe-se que II_2^{P29} tem sinal oposto a II_2^{P1} . Portanto, a geração de potência ativa na barra 1 compensará as variações de P_{G29} . Além disso, sabe-se que os índices de influência relativos a limitação de geração de potência ativa das demais barras swing sobre a barra 2 são nulos. Consequentemente, não há necessidade de alterar a geração de potência ativa das demais barras swing.

As ações de controle preventivas propostas são ilustradas na Figura 32 e descritas na Tabela 32, onde notam-se as variações da potência ativa gerada nas barras *slack*. Essas variações são calculadas mantendo a proporcionalidade entre essas variações e seus respectivos índices de influência, conforme (5.1).

Nota-se que apenas as ações de controle preventivas e 6 e 8 apresentam solução convergente de fluxo de potência e que, mesmo nesses casos, os índices

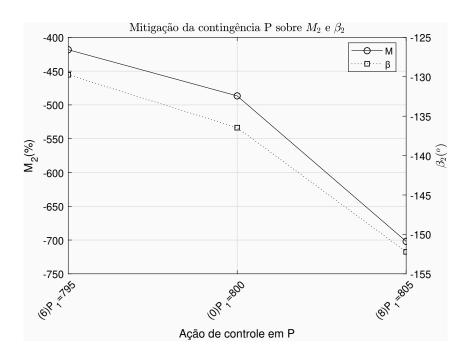


Figura 42: Ações de controle preventivas implementadas sobre P_{G1} , P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} , P_{G45} , e P_{G46} para incrementar a margem da barra 2

 M_2 e β_2 continuam negativos.

Tabela 32: Ações de controle preventivas implementadas sobre P_{G1} , P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} , P_{G45} , e P_{G46} para incrementar a margem da barra 2

			i Darra 2			- D		
Açã		P_{G1} P_{G}						P_{G29}
1		00 90		250	350	200	800	2649
2		0 90		250	350	200	800	2449
3		00 90		250	350	200	800	2249
4	4	00 90	00 700	250	350	200	800	2049
5	6	00 90	00 700	250	350	200	800	1849
6	7	95 90	00 700	250	350	200	800	1654
0	8	00 90	00 700	250	350	200	800	1649
8	8	05 - 90	00 700	250	350	200	800	1644
9	10	000 90	00 700	250	350	200	800	1449
10) 12	200 90	00 700	250	350	200	800	1249
11	L 14	00 90	00 700	250	350	200	800	1049
12	2 16	5 00 90	00 700	250	350	200	800	849
13	3 18	800 90	00 700	250	350	200	800	649
Ação	P_{G30}	P_{G31}	P_{G43}	P_{G44}	P_{G45}	P_{G46}	$M_2(\%)$	$\beta_2(^{\circ})$
1	1150	1200	700	600	700	950	-	-
2	1150	1200	700	600	700	950	-	-
3	1150	1200	700	600	700	950	-	-
4	1150	1200	700	600	700	950	-	-
5	1150	1200	700	600	700	950	-	-
6	1150	1200	700	600	700	950	-418,32	-129,74
0	1150	1200	700	600	700	950	-486,63	-136,40
8	1150	1200	700	600	700	950	-701,97	-152,21
9	1150	1200	700	600	700	950	-	-
10	1150	1200	700	600	700	950	-	-
11	1150	1200	700	600	700	950	-	-
12	1150	1200	700	600	700	950	_	-
14								

• Barra 29

De acordo com a Tabela 18, para a barra 29, P1 é o esgotamento de geração de potência ativa mais significativo. Assim, as ações de controle preventivas da barra 29 envolvem mudar o ponto de operação do sistema, de acordo com (5.1), de tal modo que P_{G1} sofra pequena variação em torno do ponto de operação do caso-base. Contudo, para que a geração de potência ativa total do sistema não se altere, outras barras devem compensar as variações de P_{G1} . Neste caso, sabe-se que II_{29}^{P1} tem sinal positivo, assim como quase todas as demais barras slack. A exceção é a própria barra 29, com $II_{29}^{P29} = 0$. Portanto, a geração de potência ativa na barra 29 compensará as variações de P_{G1} e da demais barras swing.

As ações de controle preventivas propostas são ilustradas na Figura 33 e descritas na Tabela 33, onde notam-se as variações da potência ativa gerada nas barras *slack*. Adicionalmente, a ação de controle identificada como "0" corresponde ao sistema sem ação de controle. Por último, nas ações de controle preventivas em que não há solução convergente para o problema de fluxo de potência, os índices de estabilidade são indicados como "-".

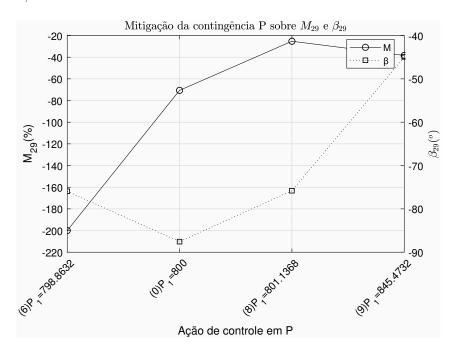


Figura 43: Ações de controle preventivas implementadas sobre P_{G1} , P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} , P_{G45} , e P_{G46} para incrementar a margem da barra 29

Nota-se que apenas as ações de controle preventivas e 6, 8 e 9 apresentam solução convergente de fluxo de potência e que, mesmo nesses casos, os índices M_{29} e β_{29} continuam negativos.

Comparando-se índices de influência do esgotamento P1 sobre as margens da subestação Campinas 345kV e sobre as usinas Marimbondo e Gov. Bento Munhoz (barras 11, 2 e 29 respectivamente), observa-se que não há relação entre o sinal do índice de influência e o sentido de variação da geração de potência ativa da barra 1 que faz a margem da subestação ou usina em questão aumentar. Entende-se que isso ocorre porque ações de controle preventivas em P interferem em gerações de múltiplas barras simultaneamente. Portanto, não há como inferir os efeitos da ação de controle preventiva baseando-se no II de apenas uma dessas barras.

Apesar de ações de controle preventivas baseadas em geração de potência ativa serem benéficas para as margens de potência das barras críticas de geração, essa ações isoladamente não são suficientes para colocar as barras

Tabela 33: Ações de controle preventivas implementadas sobre P_{G1} , P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} , P_{G45} , e P_{G46} para incrementar a margem da barra 29

		a marge	TIII GG K						
	Ação	P_{G1}	P_{G2}	P_{G17}	P_{G18}	P_{G19}	P_{G20}	P_{G26}	P_{G29}
	1	573	826	627	177	277	127	727	2649
	2	618	841	642	192	292	142	742	2449
	3	664	856	656	206	306	156	756	2249
	4	709	870	671	221	321	171	771	2049
	5	755	885	685	235	335	185	785	1849
	6	799	900	700	250	350	200	800	1654
	0	800	900	700	250	350	200	800	1649
	8	801	900	700	250	350	200	800	1644
	9	845	915	715	265	365	215	815	1449
	10	891	930	729	279	379	229	829	1249
	11	936	944	744	294	394	244	844	1049
	12	982	959	758	308	408	258	858	849
	13	1027		773	323	423	273	873	649
A	ção	P_{G30}	P_{G31}	P_{G43}	P_{G44}	P_{G45}	P_{G46}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
	1		1133	642	547	651	915	-	-
		1077	1133 1147	642 654		651 661	915 922	-	-
	2	1077 1092	1133	642	547			- - -	- - -
	2 3	1077 1092 1106	$1133 \\ 1147$	642 654	547 557	661	922	- - -	- - -
	2 3 4	1077 1092 1106 1121	1133 1147 1160	642 654 665	547 557 568	661 671	922 929	- - - -	- - - -
	2 3 4 5	1077 1092 1106 1121 1135	1133 1147 1160 1173	642 654 665 677 688 700	547 557 568 579	661 671 681	922 929 936 943 950	- - - - -200,01	- - - - -75,94
	2 3 4 5 6	1077 1092 1106 1121 1135 1150	1133 1147 1160 1173 1187	642 654 665 677 688	547 557 568 579 589	661 671 681 690	922 929 936 943	- - - - -200,01 -70,60	- - - - -75,94 -87,56
	2 3 4 5 6 0 8	1077 1092 1106 1121 1135 1150 1150	1133 1147 1160 1173 1187 1200	642 654 665 677 688 700	547 557 568 579 589 600	661 671 681 690 700	922 929 936 943 950	-70,60 -25,27	-87,56 -75,81
	2 3 4 5 6 0 8	1077 1092 1106 1121 1135 1150 1150	1133 1147 1160 1173 1187 1200 1200	642 654 665 677 688 700 700	547 557 568 579 589 600 600	661 671 681 690 700	922 929 936 943 950 950	-70,60	-87,56
	2 3 4 5 6 0 8 9	1077 1092 1106 1121 1135 1150 1150 1150 1165	1133 1147 1160 1173 1187 1200 1200	642 654 665 677 688 700 700	547 557 568 579 589 600 600	661 671 681 690 700 700	922 929 936 943 950 950	-70,60 -25,27	-87,56 -75,81
	2 3 4 5 6 0 8 9	1077 1092 1106 1121 1135 1150 1150 1165 1179	1133 1147 1160 1173 1187 1200 1200 1200 1213	642 654 665 677 688 700 700 712	547 557 568 579 589 600 600 611	661 671 681 690 700 700 700 710	922 929 936 943 950 950 950	-70,60 -25,27	-87,56 -75,81
	2 3 4 5 6 0 8 9 10	1077 1092 1106 1121 1135 1150 1150 1165 1179 1194	1133 1147 1160 1173 1187 1200 1200 1213 1227	642 654 665 677 688 700 700 712 723	547 557 568 579 589 600 600 611 621	661 671 681 690 700 700 710 719	922 929 936 943 950 950 950 957 964	-70,60 -25,27	-87,56 -75,81
	2 3 4 5 6 0 8 9 10 11 12	1077 1092 1106 1121 1135 1150 1150 1165 1179 1194 1208	1133 1147 1160 1173 1187 1200 1200 1200 1213 1227 1240	642 654 665 677 688 700 700 712 723 735	547 557 568 579 589 600 600 611 621 632	661 671 681 690 700 700 710 719 729	922 929 936 943 950 950 957 964 971	-70,60 -25,27	-87,56 -75,81

2 e 29 na região normal de operação. Por isso, sugere-se ações de controle preventivas combinadas baseadas em potência ativa e reativa.

5.5.7 Ações combinadas: potência ativa e reativa

Estratégias de ações de controle preventivas baseadas em geração de potência reativa cumpriram o objetivo de elevar a margem de potência das barras críticas de geração a valores positivos. Já estratégias de ações de controle preventivas usando controle de geração de potência ativa não alcançaram tal objetivo. A próxima etapa investiga a combinação de ambas as estratégias de ações de controle preventivas.

• Barra 2

Por exemplo, da Tabela 22, sabe-se que para ações de controle preventivas baseadas em geração de potência reativa, quando a tensão $v_2=1,011$ pu, tem-se $M_2=-350,24\%$. Já quando a tensão $v_2=1,020$ pu, tem-se $M_2=12,13\%$. Na Tabela 34, observa-se o efeito de escolher-se um nível intermediário de tensão $v_2=1,017$ pu e, simultaneamente, variar a geração de potência ativa das barras swing conforme apresentado na Seção 5.3.2. Como a ação de controle identificada como 0 corresponde a situação em que as gerações de potências ativas coincidem com as do caso-base, então, na verdade, observa-se o efeito unicamente da elevação de tensão da barra 2. Nesse caso, o índice M_2 estabelece-se em -36,93%. Já no cenário em que aplicam-se concomitantemente a ação de controle preventiva que eleva $v_2=1,017$ pu e a ação de controle preventiva de potência ativa 6, a margem passa a ser de -34,06%. Esse resultado é maior que dois cenários anteriores: aquele em que altera-se somente v_2 , levando a $M_2=-36,93\%$, e aquele em que altera-se somente as gerações de potência ativa com $M_2=-418,32\%$, conforme ação 6 da Tabela 32.

Os dados da Tabela 34 são exibidos na Figura 44, onde notam-se os efeitos da aplicação concomitante de ações de controle preventivas baseadas em geração de potência ativa e na elevação de v_2 a 1,017 pu. Destaca-se o ponto relacionando à ação de controle preventiva 4, pois nele a margem de potência $M_2 = 15,96\%$ é positiva. Ou seja, a articulação de dois tipos diferentes de ação de controle preventiva foi responsável por levar a barra 2 para a região normal de operação evitando que os recursos de geração de potência ativa e reativa fossem requisitados ao extremo.

Nota-se que ações de controle preventivas que reduzem a geração P_{G1} inicialmente melhoram os índices de estabilidade de tensão, conforme observado nas ações 6, 5 e 4. Porém, quando há grande variação nas gerações de potência ativa, M_2 e β_2 pioram, conforme observado nas ações de controle preventivas 2 e 1. Isso ocorre porque os pontos de operação pós-controle nesses casos estão distantes do ponto de operação do caso base, onde os índices de

Tabela 34: Ações de controle preventivas implementadas sobre P_{G1} , P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} , P_{G45} , P_{G46} e v_2 para incrementar a margem da barra 2

Açã	ão	P_{G1}	P_{G2}	P_{G17}	P_{G18}	P_{G19}	P_{G20}	P_{G26}	P_{G29}
1		550	900	700	250	350	200	800	1899
2		600	900	700	250	350	200	800	1849
3		650	900	700	250	350	200	800	1799
4		700	900	700	250	350	200	800	1749
5		750	900	700	250	350	200	800	1699
6		799	900	700	250	350	200	800	1651
0		800	900	700	250	350	200	800	1649
8		801	900	700	250	350	200	800	1648
9		850	900	700	250	350	200	800	1599
1()	900	900	700	250	350	200	800	1549
11	1	950	900	700	250	350	200	800	1499
12	2	1000	900	700	250	350	200	800	1449
13	3	1050	900	700	250	350	200	800	1399
Ação	P_{C}	30	P_{G31}	P_{G43}	P_{G44}	P_{G45}	P_{G46}	$M_2(\%)$	$\beta_2(^{\circ})$
1	11		1200	700	600	700	950	-	-
2	11	50	1200	700	600	700	950	-279,71	-49,03
3	11	50	1200	700	600	700	950	-5,84	-67,44
4	11	50	1200	700	600	700	950	15,96	44,43
5	11	50	1200	700	600	700	950	$11,\!56$	21,49
6	11	50	1200	700	600	700	950	-34,06	-43,0
0	11	50	1200	700	600	700	950	-36,93	-45,5
8	11	50	1200	700	600	700	950	-40,04	-47,99
9	11	50	1200	700	600	700	950	-276,56	-117,1
10	11	50	1200	700	600	700	950	-	-
11	11	50	1200	700	600	700	950	-	-
12	11	50	1200	700	600	700	950	-	-
13	11	50	1200	700	600	700	950	_	_

influência foram calculados. Ou seja, houve variação de geração sem que fosse feita nova linearização das equações de fluxo de potência do sistema e sem que novos índices de influência fossem calculados.

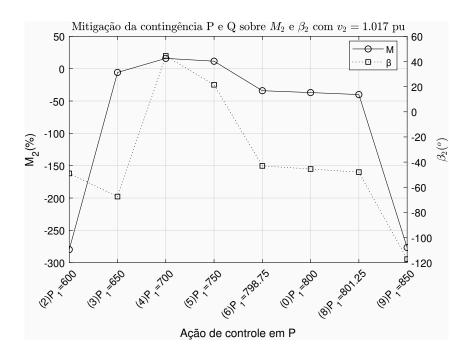


Figura 44: Ações de controle preventivas implementadas sobre P_{G1} , P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} , P_{G45} , P_{G46} e v_2 para incrementar a margem da barra 2

• Barra 29

Por exemplo, da Tabela 25, sabe-se que para ações de controle preventivas baseadas em geração de potência reativa, quando a tensão $v_{29}=1,030$ pu, tem-se $M_{29}=-70,60\%$. Na Tabela 35, observa-se o efeito de escolher-se um nível de tensão $v_2=1,031$ pu e, simultaneamente, variar a geração de potência ativa das barras swing conforme apresentado na Seção 5.3.2. Como a ação de controle identificada como 0 corresponde a situação em que as gerações de potências ativas coincidem com as do caso-base, então, na verdade, observa-se o efeito unicamente da elevação de tensão da barra 29. Nesse caso, os índices M_{29} e β_{29} são os mesmos da ação 8 da Tabela 25. Já no cenário em que aplicam-se concomitantemente a ação de controle que eleva $v_{29}=1,031$ pu e a ação de controle de potência ativa 8, a margem passa a ser de 2,88%. Esse resultado é maior que dois cenários anteriores: aquele em que altera-se somente v_{29} , levando a $M_{29}=0,66\%$ e aquele em que altera-se somente as gerações de potência ativa com $M_{29}=-25,27\%$, conforme ação 8 da Tabela 33.

Os dados da Tabela 35 são exibidos na Figura 45, onde notam-se os efeitos da aplicação concomitante de ações de controle preventivas baseadas em geração de potência ativa e na elevação de v_{29} a 1,031 pu. Destaca-se o ponto relacionando à ação de controle preventiva 9, pois nele a margem de potência $M_2 = 21,39\%$ é positiva. Ou seja, a articulação de dois tipos diferentes de ação de controle preventiva foi responsável por levar a barra 2 para a região normal de operação evitando que os recursos de geração de potência ativa e reativa

Tabela 35: Ações de controle preventivas implementadas sobre P_{G1} , P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} , P_{G45} , P_{G46} e v_{29} para incrementar a margem da barra 29

ementar		argen	n da 1	oarra 2	9				
Aç	ão .	$\overline{P_{G1}}$	P_{G2}	P_{G17}	P_{G18}	P_{G19}	P_{G20}	P_{G26}	$\overline{P_{G29}}$
1		743	882	682	232	332	182	782	1899
2	2	755	885	685	235	335	185	785	1849
3	3	766	889	689	239	339	189	789	1799
4	1	777	893	693	243	343	193	793	1749
5	ó	789	896	696	246	346	196	796	1699
6	\vec{j}	800	900	700	250	350	200	800	1651
()	800	900	700	250	350	200	800	1649
8	3	800	900	700	250	350	200	800	1648
S)	811	904	704	254	354	204	804	1599
1	0	823	907	707	257	357	207	807	1549
1	1	834	911	711	261	361	211	811	1499
1	2	845	915	715	265	365	215	815	1449
1	3	857	918	718	268	368	218	818	1399
Ação	P_{G3}	$_{80}$ F	G31	P_{G43}	P_{G44}	P_{G45}	P_{G46}	$M_{29}(\%)$	$\beta_{29}(^{\circ})$
1	113	2 1	183	685	587	688	941	-	-
2	113	5 1	187	688	589	690	943	-	-
3	113	9 1	190	691	592	693	945	-	-
4	114	3 1	193	694	595	695	946	-	-
5	114	6 1	197	697	597	698	948	-	-
6	115	0 1	200	700	600	700	950	-1,94	-8,15
0	115	0 1	200	700	600	700	950	0,66	$2,\!54$
8	115	0 1	200	700	600	700	950	2,88	$10,\!25$
9	115	4 1	203	703	603	702	952	$21,\!39$	30,38
10	115	7 1	207	706	605	705	954	20,21	23,63
11	116	1 1	210	709	608	707	955	13,10	13,62
12	116	5 1	213	712	611	710	957	-13,39	-13,71
13	116	8 1	217	715	613	712	959	-	-

fossem requisitados ao extremo.

Novamente, nota-se que ações de controle preventivas que reduzem a geração P_{G1} inicialmente melhoram os índices de estabilidade de tensão, conforme observado nas ações 8 a 11. Porém, quando há grande variação nas gerações de potência ativa, M_{29} e β_{29} pioram, conforme observado na ação de controle preventiva 12. Conforme já mencionado, isso ocorre porque os pontos de operação pós-controle nesses casos estão distantes do ponto de operação do caso base, onde os índices de influência foram calculados.

5.6 Resumo

As ações de controle preventivas propostas e implementadas ao longo deste capítulo são intervenções sobre as tensões especificadas ou sobre o

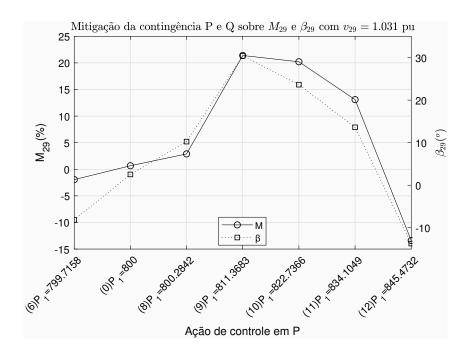


Figura 45: Ações de controle preventivas implementadas sobre P_{G1} , P_{G2} , P_{G17} , P_{G18} , P_{G19} , P_{G20} , P_{G26} , P_{G29} , P_{G30} , P_{G31} , P_{G43} , P_{G44} , P_{G45} , e P_{G46} para incrementar a margem da barra 29

despacho de potência ativa de um sistema elétrico. Essas ações de controle têm por objetivo melhorar as condições de estabilidade de tensão de uma dada barra do sistema, fazendo com que a margem de potência seja maior do que se as ações de controle preventivas não fossem tomadas. Três estratégias de ações de controle são empregadas para esse fim.

Há ações de controle preventivas baseadas na influência de esgotamentos de geração de potência reativa, critério que serve para identificar a tensão que deve ser alterada. Primeiramente, nota-se tendência de que o efeito benéfico da ação de controle preventiva é maior se a tensão modificada for da barra cuja limitação de geração de potência reativa influencia mais a margem de potência da barra crítica de carga (aquela cuja margem de potência é menor e, portanto, deve ser elevada). Já para a barra crítica de geração (aquela cuja margem de potência é menor e, portanto, deve ser elevada), o efeito benéfico da ação de controle preventiva tende a ser máximo se a tensão modificada for a tensão da própria barra crítica de geração, caso em que o índice de influência é nulo. Também é possível elevar a margem de potência de estabilidade de tensão da barra de geração crítica alterando-se a tensão de outra barras. Nesse caso, embora o efeito seja menos significativo, ele é maior se a tensão modificada for da barra cuja limitação de geração de potência reativa influenciar mais a margem de potência da barra crítica de geração. Isso indica que ações de controle preventivas baseadas em esgotamentos de II nulo apresentam melhores resultados de estabilidade de tensão que aquelas baseadas em esgotamento de

II-não nulo. Portanto, aqui observa-se uma limitação de aplicação do método proposto. Entretanto, nos demais casos, o II é útil para indicar as melhores intervenções no sistema.

Ainda há ações de controle preventivas baseadas na análise da influência de esgotamentos de geração de potência ativa. Nesse caso, observa-se que o redespacho de geração de potência ativa pode melhorar as condições de estabilidade de tensão da rede. As ações baseiam-se nos índices de influência da limitação de geração de potência ativa sobre uma barra crítica (de carga ou de geração). Assim, gerações cujo esgotamento leva a índices de influência negativos tem variação em sentido oposto a gerações cujo esgotamento leva a índices de influência positivos. Isso garante a manutenção da geração de potência ativa total do sistema. Como resultado, nota-se que a variação de geração de potência ativa feita de forma coordenada em diversas barras também é capaz de melhorar as condições de estabilidade de tensão.

Por último, há ações de controle preventivas combinadas, que consistem em aplicar ações de controle preventivas de potência ativa e reativa conjuntamente. Nesse caso, é possível elevar as margens de potência a valores maiores do que quando cada uma das ações de controle preventivas é aplicada isoladamente. Assim, pode-se dizer que, as ações de controle preventivas alcançaram o objetivo de melhorar as condições de estabilidade de tensão das barras críticas do sistema, conforme exemplificado no sistema CEPEL-34.

De forma geral, nota-se que o aumento de tensão faz com que os índices M e β sejam elevados. Em princípio, isso induziria à tentativa de realizar grandes incrementos de tensão. Entretanto, vale lembrar que os índices de influência foram calculados para o ponto de operação do caso-base, portanto servem para calcular ações de controle preventivas nesse ponto de operação e suas proximidades. Em pontos de operação mais distantes seria necessário linearizar o sistema de equações de fluxo de potência e recalcular os II.

Um sistema real de grande porte, TB-65, é empregado para averiguar a adequação das ações de controle preventivas desenvolvidas. Nele são aplicadas as ações controle preventivas baseadas em controle de potência ativa, em potência reativa e em ambas. Novamente verifica-se que as ações de controle preventivas alcançaram o objetivo de melhorar as condições de estabilidade de tensão das barras críticas do sistema. Além disso, também são implementadas ações de controle preventivas baseadas na análise da influência de esgotamentos de controle de tensão via tap de LTC. Nesse caso, observa-se que a elevação do tap tem baixa influência nas condições de estabilidade de tensão da rede, apesar de também acrescentar consequências ligeiramente benéficas.

6 Conclusões

O ponto de operação de um sistema pode ser obtido através do algoritmo de fluxo de potência. As condições de estabilidade de tensão são avaliadas nesse ponto de operação. Para que a modelagem se assemelhasse à realidade, múltiplas barras swing foram consideradas.

As condições de estabilidade de tensão foram avaliadas no caso-base e sob influência de esgotamentos de recursos.

Três tipos de esgotamentos foram abordados: o esgotamento da capacidade de geração de potência ativa e reativa e a impossibilidade de variação de tap de LTC, ou seja, a incapacidade de redespacho de potência ativa e a perda do controle de tensão.

A fim de verificar o efeito de esgotamentos sobre a estabilidade de tensão, foi utilizado inicialmente o sistema de testes CEPEL-34. No ponto de operação considerado, foram identificadas barras de carga e de geração operando próximo do ponto crítico da "curva do nariz", e na parte inferior dessa curva. Determinaram-se os esgotamentos de tensão e de geração mais influentes sobre a margem de potência dessas barras de carga e de geração.

Na barra de carga foi constatado que o índice de influência relativo aos esgotamentos geralmente é negativo, o que revelou que a situação pósesgotamento levou a um cenário de estabilidade de tensão pior do que aquele verificado no sistema pré-esgotamento. Por outro lado, para as barras de geração, o esgotamento da capacidade de geração de potência também acarretou em índices de influência negativos, exceto quando se considerou o esgotamento na própria barra em análise. Quando se avaliou a exaustão da capacidade de geração no local em que o esgotamento ocorreu, o índice de influência foi nulo. Esse detalhe deve-se às premissas de cálculo dos índices de estabilidade de tensão em barras de tensão controlada, ou seja, era um resultado esperado com base na teoria.

Percebeu-se que o efeito de cada esgotamento sobre a margem de potência poderia ser usado para determinar as intervenções eficazes para incrementar essas margens. Essas intervenções são ações de controle preventivas que têm por objetivo melhorar os índices de estabilidade de tensão, o que equivale a afastar o ponto de operação do ponto de máximo da "curva do nariz" ou evitar

que a barra permaneça operando na região anormal de operação.

As ações de controle preventivas podem ser baseadas em controle de potência reativa, de potência ativa, de tap de LTC ou na combinação delas, isto é, alteração do perfil de tensão e redespacho de potência ativa.

Após a aplicação de uma ação de controle, esperava-se obter índices de estabilidade de tensão positivos e maiores que do caso-base. De fato, melhoras significativas foram alcançadas quando empregaram-se ações de controle preventivas baseadas em geração de potência reativa no sistema CEPEL-34. Além disso, revelou-se tendência de relação decrescente entre os índices de influência e o efeito da intervenção proposta. Ou seja, quanto mais negativo o índice de influência alusivo a um determinado esgotamento, maior foi a margem de potência resultante da atuação sobre a barra relacionada a esse esgotamento. Esse comportamento foi observado tanto na análise de estabilidade de tensão da barra de carga quanto nas barras de geração. Entretanto, para barras de geração, há uma peculiaridade: quando se avalia a exaustão da capacidade de geração no local em que o esgotamento ocorre, o índice de influência é nulo (como já explicado), porém a ação de controle correspondente resultou em maior incremento de margem de potência.

Ações de controle preventivas baseadas em geração da potência ativa, por outro lado, resultaram em pouca melhora nos índices de estabilidade de tensão. Para a barra de geração, por exemplo, há casos em que os índices de estabilidade de tensão permanecem negativos apesar de apresentarem melhora. Isso motivou a implementação de ações de controle preventivas combinadas, baseadas em geração de potência ativa e reativa simultaneamente. Assim, alterou-se tanto a tensão especificada da barra de geração quanto o despacho de potência ativa da rede. Dessa forma, alcançou-se ponto de operação na região normal de operação e distante do ponto de máximo, conforme desejado.

Verificou-se a validade do método proposto em sistema originalmente real e de grande porte, o sistema TB-65, equivalente das regiões Sul e Sudeste. De forma geral, ações de controle preventivas baseadas na geração de potência reativa foram capazes de incrementar significativamente os índices de estabilidade. Também notou-se tendência de correlação negativa entre o índice de influência e o efeito provocado sobre a margem de tensão quando a ação de controle correspondente foi implementada. A principal diferença foi a existência de alguns índices de influência positivos. Ou seja, quando houve esgotamento da capacidade de geração de potência reativa em uma barra, a condição de estabilidade de tensão melhorou para outras. Nesses casos a variação da tensão especificada para uma barra e a variação da potência reativa gerada nela se dão em sentidos opostos.

No sistema TB-65 foram implementadas ações de controle preventivas baseadas em controle de tap, levando a incrementos de margem de potência. Apesar disso, os incrementos são menores que aqueles gerados por ações de controle preventivas baseadas em geração de potência reativa. Isso pode ser explicado pela comparação entre os índices de influência dos esgotamentos relacionados à geração de potência reativa e ao tap. Os índices relativos a essa última sendo centenas de vezes menores que os do primeiro. Portanto, o índice de influência ajuda na seleção do tipo de ação mais eficaz do ponto de vista de estabilidade de tensão.

Ações de controle preventivas baseadas em geração de potência ativa levaram a resultados semelhantes tanto no sistema TB-65 quanto no sistema CEPEL-34. Isto é, pouca melhoria foi observada, o que incentivou o uso de ações de controle preventivas baseadas simultaneamente na geração de potência ativa e reativa. Nesse caso foi possível retirar barras geradoras da região anormal de operação sem ter que provocar grandes variações na tensão especificada. Em todos os casos, foi possível identificar ações de controle preventivas capazes de elevar os índices de estabilidade de tensão, conforme desejado.

6.1 Trabalhos futuros

Este trabalho mostrou que há índices que apontam a estratégia a ser utilizada para elevar a margem de potência das barras da rede, melhorando as condições de estabilidade de tensão.

No futuro podem ser empregadas técnicas tanto para automatização da busca da estratégia empregada quanto para redução de complexidade computacional do método, de tal forma que seja possível sua aplicação na operação em tempo real.

Além disso, também seria recomendável o emprego da técnica desenvolvida em outros sistemas elétricos.

Referências bibliográficas

- [1] MONTICELLI, J. A. Fluxo de Carga em Redes de Energia Elétrica. Edgar Blucher Ltda, São Paulo, 1983.
- [2] TONG, S.; KLEINBERG, M.; MIU, K.. A distributed slack bus model and its impact on distribution system application techniques. IEEE International Symposium on Circuits and Systems, Japão, 5:4743-4746, 2005.
- [3] CASTRO, M. R. V.. Modelagem do controle de tensão por geradores e de múltiplas barras swing na avaliação das condições de estabilidade de tensão. Dissertação de mestrado, PUC-Rio, Rio de Janeiro, 2007.
- [4] KUNDUR,P.. Power system stability and control. McGraw-Hill, California, 1994.
- [5] PRADA, R.B.; PALOMINO, E.G.C.; DOS SANTOS, J.O.R.; BIANCO. A.; PILOTO, L.A.S. . Voltage stability assessment for real-time operation. IEEE Proc.-Gener. Transm. Distrib, 149(2):175–181, 2002.
- [6] DE MOURA,R.D.; PRADA, R.B. . Contingency screening and ranking method for voltage stability assessment. IEEE Proc.-Gener. Transm. Distrib, 152(6):891–898, 2005.
- [7] PRADA, R. B.; DOS SANTOS, J.O.R.; POMA, C. E. P.. Relatório final
 projeto 02/061/2008 entre a PUC Rio e o CEPEL. Relatório técnico, CEPEL e PUC-Rio, Rio de Janeiro, 2010.
- [8] ALVES, W. F. . Proposição de sistemas-teste para análise computacional de sistemas de potência. Dissertação de mestrado, UFF, Niterói, 2007.
- [9] VEGA, J.L.L.. Avaliação e reforço das condições de estabilidade de tensão em barras de tensão controlada por geradores e compensadores síncronos. Tese de doutorado, PUC-Rio, Rio de Janeiro, 2009.

PUC-Rio - Certificação Digital Nº 1612966/CA

[10] FILHO, J. A. P. . Representação e avaliação do desempenho de dispositivos de controle no problema de fluxo de potência. Tese de doutorado, UFRJ, Rio de Janeiro, 2005.

A Apêndice A

Tabela 36: Informações das barras do sistema CEPEL-34

Tabela 90. Informações das barras do sistema CEI EE 94								
				P_G	Q_G	P_D	Q_D	B
Barra	Tipo	v(pu)	$\theta(^{\circ})$	(MW)	(MVar)	(MW)	(MVar)	(pu)
1	PV	1,030	0,0	3300	1128,0	8,00	0,0	0,0
2	PQ	1,012	0,0	0	0,0	0,00	0,0	0,0
3	PQ	1,011	0,0	0	0,0	0,00	0,0	0,0
4	PQ	0,952	0,0	0	0,0	0,00	0,0	-6,6
5	PQ	0,916	0,0	0	0,0	0,00	0,0	-1,5
6	PQ	0,915	0,0	0	0,0	0,00	0,0	-1,5
7	PQV	0,932	0,0	0	0,0	0,00	0,0	-3,3
8	PQ	0,987	0,0	0	0,0	0,00	0,0	-3,3
9	PQ	0,987	0,0	0	0,0	0,00	0,0	-3,3
10	PQ	0,907	0,0	0	0,0	0,00	0,0	-6,6
11	PQ	0,922	0,0	0	0,0	0,00	0,0	0,0
12	PQ	0,922	0,0	0	0,0	0,00	0,0	0,0
13	PQV	0,883	0,0	0	0,0	0,00	0,0	-3,3
14	PQ	0,966	0,0	0	0,0	0,00	0,0	0,0
15	PQ	0,953	0,0	0	0,0	0,00	0,0	0,0
16	PQ	0,879	0,0	0	0,0	0,00	0,0	0,0
17	PQ	0,9999	0,0	0	0,0	4,44	0,0	0,0
18	PQ	1,037	0,0	0	0,0	0,00	0,0	0,0
19	PQ	1,050	0,0	0	0,0	1461,00	-339,0	0,0
20	PQ	1,052	0,0	0	0,0	0,00	0,0	0,0
21	PQ	1,074	0,0	0	0,0	2,83	0,0	-3,0
22	PQ	1,075	0,0	0	0,0	2,36	0,0	-2,0
23	PQ	1,067	0,0	0	0,0	$678,\!30$	120,8	-3,0
24	PQ	1,037	0,0	0	0,0	0,00	0,0	0,0
25	PQ	1,093	0,0	0	0,0	6150,00	-2400,0	0,0
26	PV	1,100	0,0	3879	1363,0	0,00	0,0	0,0
27	PQ	0,991	0,0	0	0,0	0,00	0,0	0,0
28	PQ	0,951	0,0	0	0,0	0,00	0,0	0,0
29	PQ	0,879	0,0	0	0,0	3425,00	561,4	0,0
30	\overline{PQ}	0,929	0,0	0	0,0	0,00	0,0	0,0
31	\overline{PV}	1,007	0,0	1320	-143,0	1,71	0,0	0,0
32	PV	1,058	0,0	1200	411,9	0,00	0,0	0,0
33	PV	1,059	0,0	1200	477,1	0,00	0,0	0,0
34	$V\theta$	1,049	22,3	1444	390,1	0,00	0,0	0,0
-								

Tabela 37: Informações das linhas do sistema CEPEL-34

	D 1		D (04)	37 (04)	Deh (NATA
De barra	Para barra	tap	R(%)	X(%)	$B^{sh}(MVar)$
2	1	1,0140	0,0000	0,3500	
2	3		0,0052	0,0500	11,033
2	3		0,0051	0,0500	10,870
2	3		0,0050	0,0500	10,688
2	3		0,0050	0,0500	10,538
3	4	1,0500	0,0000	$0,\!1569$	
4	5		0,0760	1,8400	927,800
4	6		0,0760	1,8500	$929{,}100$
5	7		0,0000	-0,7490	
6	7		0,0000	-0,7490	
7	8		0,0000	-0,7780	
7	9		0,0000	-0,7780	
8	10		0,0640	1,5300	760,000
9	10		0,0630	1,5300	755,700
10	11		0,0000	-0,9150	
10	12		0,0000	-0,9150	
11	13		0,0720	1,7500	877,500
12	13		0,0720	1,7500	873,000
14	13	1,0400	0,0000	0,3457	
14	24		0,0826	1,0400	32,000
14	24		0,0826	1,0400	32,000
15	7	X	0,0000	0,3467	
15	16		0,0100	0,0500	1,135
15	16		0,0100	0,0500	1,135
16	17		0,1540	1,9400	236,970
17	18		0,0560	0,6970	85,746
17	31	0,9681	0,0165	11,3620	
18	19		0,0624	0,7848	96,592
18	32	1,0130	0,0000	1,0500	
19	16		0,1910	2,4140	294,920
19	22		0,1620	2,0480	250,170
20	19		0,0100	0,1260	15,428
20	19		0,0100	0,1300	15,160
20	33	1,0340	0,0000	1,0800	
21	17		$0,\!1720$	2,1700	265,160

De barra	Para barra	tap	R(%)	X(%)	$B^{sh}(MVar)$
21	34	1,0570	0,0165	11,3620	
22	21		0,1020	1,2680	155,240
22	23		0,2250	3,0330	381,460
23	21		0,2820	3,8520	493,700
24	25		0,0284	0,3520	10,830
24	25		0,0284	0,3520	10,830
24	27		0,0223	0,2800	14,462
25	26		0,0070	0,0880	2,707
25	26		0,0070	0,0880	2,707
27	29	0,9933	0,0000	0,7200	
28	13	X	0,0000	0,8990	
28	13	X	0,0000	0,8990	
28	29		0,0812	0,8000	7,560
28	29		0,0812	0,8000	7,560
28	29		0,0812	0,8000	7,560
28	29		0,0812	0,8000	7,560
28	30		1,6000	9,0000	300,000
30	16	1,0660	0,0000	0,8990	

Tabela 39: Informações das linhas do sistema TB-65

De barra	Para barra	tap	R(%)	X(%)	$B^{sh}(MVar)$
4	2	1,000	0,0000	1,2640	0,0000
4	5		$0,\!1720$	2,7200	231,4000
4	5		0,1710	2,7000	230,2000
4	12		0,2090	2,9350	254,6000
4	13	1,000	0,0000	2,3570	0,0000
4	27		$0,\!1530$	2,4000	203,8000
5	6		$0,\!1560$	2,4600	208,5000
5	7		$0,\!1520$	2,3900	202,6000
6	9	1,000	0,0000	2,4030	0,0000
6	63		0,1100	1,9100	161,8500
7	11	1,000	0,0000	2,4190	0,0000
8	7		$0,\!1960$	3,1000	264,9000
8	63		0,0500	0,8200	69,3600
10	3	1,000	0,0000	0,9530	0,0000
10	7		$0,\!1050$	1,6190	136,3500

			F (P)	**/~/\	Deb (3.533
De barra	Para barra	tap	R(%)	X(%)	$B^{sh}(MVar)$
10	7		0,1050	1,6190	136,3500
12	1	1,000	0,0000	1,0000	0,0000
12	14	1,000	0,0000	1,7200	0,0000
12	14	1,000	0,0000	1,7200	0,0000
12	25		0,1470	2,3200	196,6000
15	12		0,2800	3,9900	$355,\!3600$
15	21		0,2700	3,8700	344,0300
16	15	1,000	0,0000	1,1130	0,0000
16	15	1,000	0,0000	1,0000	0,0000
21	12		$0,\!1250$	1,9370	149,9600
21	17	1,000	0,0000	1,3567	0,0000
21	24		0,0820	1,2560	98,9900
22	18	1,000	0,0000	3,5100	0,0000
22	23	1,000	0,0000	2,1600	0,0000
22	23	1,000	0,0000	2,1600	0,0000
22	24		0,1000	1,5190	119,6700
22	25		0,2800	4,8400	$419,\!5000$
24	19	1,000	0,0000	1,9367	0,0000
25	20	1,000	0,0000	1,4100	0,0000
25	27		0,0931	1,3758	112,3000
27	26	1,000	0,0000	1,0250	0,0000
28	27	1,000	0,0000	1,4200	0,0000
32	39	1,074 *	0,0320	1,1460	0,0000
32	39	1,074 *	0,0300	1,1651	0,0000
33	29	1,024	0,0000	1,1200	0,0000
33	47		0,0100	0,1240	15,2040
33	47		0,0100	$0,\!1260$	15,4280
34	48		2,4440	12,6520	21,7060
35	36	1,000	0,0000	6,6400	0,0000
35	36	1,000	0,0000	6,2900	0,0000
35	42		1,1300	6,9900	12,6170
35	60		1,2200	7,6900	13,8100
35	65		0,2200	1,0900	1,8601
35	65		0,1700	1,0300	2,0537
38	31	1,000	0,0000	1,0500	0,0000
38	47		0,0520	0,6540	80,4930
38	61		0,0560	0,6970	85,7460
39	10		0,3080	3,9580	444,8400

De barra	Para barra	tap	R(%)	X(%)	$B^{sh}(MVar)$
39	10		0,3080	3,9580	444,8400
40	41		0,0500	0,7300	78,0600
41	30	1,024	0,0000	1,0200	0,0000
42	37	1,000	0,0000	6,3600	0,0000
42	60	,	0,1500	0,8900	1,6317
47	39		0,2000	2,5500	312,7200
47	51		0,1620	2,0480	250,1700
47	52		0,2000	2,6900	336,4000
48	47	1,005 *	0,0310	1,2070	0,0000
48	60		3,0450	15,7380	27,1230
48	60		3,0410	15,7180	27,0890
49	51		0,2556	2,9224	360,4000
49	52		0,1270	1,6030	195,8900
50	49	1,041 *	0,0310	1,1500	0,0000
50	49	1,041 *	0,0320	1,1630	0,0000
50	49	1,041 *	0,0000	1,2770	0,0000
50	58		1,2710	6,5620	11,3050
50	58		1,2830	6,5640	11,5220
51	54		0,1877	2,3467	287,2400
52	39		0,0500	0,4400	47,5800
53	34		2,2100	11,4750	19,6870
53	52	1,100	0,0320	1,1630	0,0000
53	52	1,100	0,0310	1,1660	0,0000
53	58		1,8920	9,7760	16,8450
53	58		1,8950	9,7040	17,0290
54	56		0,0733	0,9164	112,1700
55	54	0,9841*	0,0200	1,2110	0,0000
55	54	0,9841*	0,0200	1,2330	0,0000
56	57		0,2820	3,8520	493,7000
57	43	1,000	0,0123	1,5383	0,0000
57	54		0,1643	3,0339	354,8800
57	59		0,0730	0,9200	112,2600
57	61		0,1720	2,1700	265,1600
59	44	1,000	0,0000	2,0655	0,0000
59	51		0,0470	0,5900	71,8180
60	45	1,025	0,0243	1,7022	0,0000
61	41		0,0760	1,1710	124,5800
61	46	1,024	0,0113	1,5150	0,0000

De barra	Para barra	tap	R(%)	X(%)	$B^{sh}(MVar)$
62	56	1,022 *	0,0300	1,2190	0,0000
62	56	1,022 *	0,0390	1,1380	0,0000
62	56	1,022 *	0,0360	1,2170	0,0000
63	64	0,9824	0,0000	$5,\!2000$	0,0000
65	40	0,9761*	0,0000	1,2700	0,0000

Tabela 38: Informações das barras do sistema TB-65

	Tabela 38: II	niorm	ıaçoes	aas	parras	do sis	tema .	LB-05	
Barra	Nome	Tipo	v(pu)	θ(°)	P_G (MW)	Q_G (MVar)	P_D (MW)	Q_D (MVar)	B (pu)
1	ITUMBI01-4GR	PV	1,000	-13,29	0,00	0,00	800	-236,46	0
2	MARIMB02-5GR	PV	1,010	-18,08	,	0,00	900	135,93	0
3	IBIUNA03-3CS	PV	1,000	-46,70		0,00	0	517,34	0
4	MARIMB04-500	PQ	0,999	-24,55	0,00	0,00	0	0	0
5	ARARAQ05-500	\overline{PQ}	0,938	-37,94	,	0,00	0	0	0
6	POCOS-06-500	\overline{PQ}	0,879	-51,77	0,00	0,00	0	0	0
7	CAMPIN07-500	PQ	0,884	-50,84	0,00	0,00	0	0	0
8	C,PAUL08-500	PQ	0,839	-65,81	1200,00	150,00	0	0	0
9	P,CALD09-345	PQ	0,870	-53,67	105,00	33,00	0	0	0
10	IBIUNA10-500	PQ	0,951	-46,70	200,00	38,00	0	0	0
11	CAMPIN11-345	PQ	0,707	-72,15	939,81	341,75	0	0	0
12	ITUMBI12A500	PQ	1,027	-17,76	,	0,00	0	0	0
13	MARIMB13-345	PQ	0,993	-25,57	75,00	25,00	0	0	0
14	ITUMBI14A345	PQ	1,022	-19,89		48,00	0	0	0
15	SAMAMB15-500	PQ	1,000	-25,64	,	0,00	0	0	0
16	SAMAMB16-345	PQ	0,983	-28,41	900,00	300,00	0	0	0
17	EMBORC17-3GR	PV	1,000	-8,49		0,00	700	-186,89	0
18	JAGUAR18-3GR	PV	1,020	-8,53	,	0,00	250	-77,19	0
19 20	N,PONT19-3GR S,SIMA20-3GR	PV PV	1,010	-8,53	,	0,00	350	-132,01	0
20	EMBORC21-500	PQ	1,010 1,030	-15,56 $-13,78$,	0,00 0,00	200	-199,67 0	0
22	JAGUAR22-500	PQ	1,050 $1,050$	-13,78		0,00	0	0	0
23	JAGUAR23-345	PQ	1,042	-14,44		74,00	0	0	0
24	NPONTE24-500	PQ	1,037	-12,24	,	0,00	0	0	0
25	SSIMAO25-500	PQ	1,038	-17,10		0,00	0	0	0
26	A,VERM26-4GR	PV	1,020	-14,71	0,00	0,00	800	60,86	0
27	AVERME27A500	PQ	1,017	-19,24	,	0,00	0	0	0
28	AVERME28-440	PQ	0,991	-24,91	700,00	150,00	0	0	0
29	GBMUNH29-3GR	$\nabla \theta$	1,030	0,00	0,00	0,00	1649,27	568,79	0
30	SCAXIA30-4GR	PV	1,030	9,60	0,00	0,00	1150	141,43	0
31	SSEGRE31-4GR	PV	1,030	2,57	,	0,00	1200	$125,\!42$	0
32	BATEIA32-230	PQV	0,998	-36,53	,	191,00	0	0	0
33	GBMUNH33-500	PQ	1,008	-10,49		0,00	0	0	0
34	S,MATE34-230	$_{\rm PQ}$	0,983	-24,77	13,40	4,20	0	0	0
35	CASCAV35-230	PQ	1,001	-0,15	0,00	0,00	0	0	0
36	CASCAV36-138	PQ	0,988	-3,13	,	36,00	0	0	0
$\frac{37}{38}$	FCHOPI37-138	PQ PQ	1,015	0,60 -4,29		18,00 0,00	0	0	0
39	SEGRED38-500 BATEIA39-500	PQ	1,025 $0,944$	-4,29	,	0,00	0	0	0
40	CASCAV40O500	PQ	1,039	1,94		0,00	0	0	0
41	SCAXIA41-500	PQ	1,047	3,21	0,00	0,00	0	0	0
42	FCHOPI42-230	PQ	1,028	3,89		0,00	0	0	0
43	ITA-43-3GR	PV	1,040	-8,46		0,00	700	-14,03	0
44	MACHAD44-2GR	PV	1,030	-9,04	0,00	0,00	600	-7,36	0
45	SOSOR145-4GR	PV	1,030	11,38	0,00	0,00	700	151,53	0
46	SSANTI46-3GR	PV	1,030	6,09	0,00	0,00	950	143,87	0
47	AREIA-47-500	PQ	1,006	-11,07	0,00	0,00	0	0	0
48	AREIA-48-230	PQV	0,999	-11,47	237,00	59,00	0	0	0
49	BLUMEN49-500	PQ	0,963	-34,91	0,00	0,00	0	0	0
50	BLUMEN50-230	PQV	0,998	-37,75	1149,00	53,06	0	0	0
51	CNOVOS51-500	PQ	1,031	-18,59		0,00	0	0	0
52	CURITI52-500	PQ	0,938	-32,78	0,00	0,00	0	0	1
53 54	CAVIAS54 500	PQ	0,996 $1,021$	-35,73		469,10	0	0	0
54	CAXIAS54-500	PQ	,	-26,05	0,00	0,00	0	0	0
55 56	CAXIAS55-230 GRAVAT56-500	PQV PQ	0,999 0,997	-28,60 -28,79		56,24 0,00	0	0	0
57	ITA-57-500	PQ	1,046	-14,14	0,00	0,00	0	0	0
58	JOINVI58E230	PQ	1,000	-37,79		2,00	0	0	0
59	MACHAD59-500	PQ	1,038	-15,69		0,00	0	0	0
60	SOSORI60-230	PQ	1,035	4,82	0,00	0,00	0	0	0
61	SSANTI61-500	\overrightarrow{PQ}	1,042	-1,79		0,00	0	0	0
62	GRAVAT62-230	PQV	0,998	-31,63		425,00	0	0	0
63	ITAJUB63-500	PQ	0,847	-61,98	0,00	0,00	0	0	0
64	ITAJUB64-138	PQ	0,833	-66,55	110,00	43,00	0	0	0
65	CASCAV65-230	PQV	0,999	-0,35	403,00	123,00	0	0	0