

Ricardo Gomes Duarte

Avaliação da Interação Folhelho-Fluido de Perfuração para Estudos de Estabilidade de Poços

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pósgraduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil.

> Orientador: Prof. Sergio A. B. da Fontoura Co-Orientador: Eudes S. Muniz

> > Rio de Janeiro Junho de 2004

Ricardo Gomes Duarte

Avaliação da Interação Folhelho-Fluido de Perfuração para Estudos de Estabilidade de Poços

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Sergio A. B. da Fontoura Orientador Departamento de Engenharia Civil - PUC-Rio

Eudes Siqueira Muniz Co-Orientador Grupo de Tecnologia e Eng. de Petróleo – PUC-Rio

Prof. Anna Laura Lopes da Silva Nunes Universidade Federal do Rio de Janeiro – UFRJ-RJ

> Prof. Tácio Mauro Pereira de Campos Departamento de Engenharia Civil - PUC-Rio

> **Prof. Alberto S. F. Jardim Sayão** Departamento de Engenharia Civil - PUC-Rio

> > Prof. José Eugênio Leal

Coordenador Setorial Do Centro Técnico Cientifico– PUC-Rio

Rio de Janeiro, 14 de Junho de 2004

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ricardo Gomes Duarte

Graduou-se em Engenharia Civil com ênfase em estruturas e geotecnia pela Pontificia Universidade Católica do Rio de Janeiro em 2001. Exerceu diversas atividades em áreas da Engenharia Civil.

Ficha Catalográfica

Duarte, Ricardo Gomes

Avaliação da Interação Folhelho-Fluido de Perfuração para Estudos de Estabilidade de Poços; Ricardo Gomes Duarte; orientador: Sergio A. B. da Fontoura; co-orientador: Eudes S. Muniz - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2004.

v., 121 f. :il ;29.7 cm.

1. Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Incluí referências bibliográficas.

1. Engenharia Civil – Teses. 2. Folhelho. 3. Fluido de Perfuração. 4. Estabilidade de poços. 5.Difusão. 6. Propriedades Reológicas. I. Da Fontoura, Sergio Augusto Barreto. Muniz, Eudes Siqueira. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Titulo

CDD : 624

PUC-Rio - Certificação Digital Nº 0210671/CA

A meus pais, irmãos e à Gaby, pelo amor e apoio

Agradecimentos

A Deus por ter me concedido forças para a realização deste trabalho.

Ao CNPq, ao GTEP e a PUC-Rio pelo apoio financeiro, sem os quais, este trabalho não poderia ter sido realizado.

Ao CENPES-Petrobras, em especial a Dr. Rosana F. T. Lomba, à FINEP e à Agência Nacional do Petróleo (ANP) pelo financiamento.

Ao Prof. Orientador Sergio A. B. da Fontoura, pela dedicação, disponibilidade, atenção e paciência.

Ao Co–Orientador Eudes S. Muniz, pelo estímulo, apoio, amizade e aos conhecimentos transmitidos ao longo de um ano de convivência.

A meus pais e irmãos pela ajuda, a confiança e o amor dado para mim em todos os momentos da minha vida. Obrigado por vocês existirem.

À Anna Gabriela, por estar sempre ao meu lado nos momentos felizes e nos momentos difíceis da minha vida, sempre me transmitindo calma e o seu amor.

Aos pais da Gaby, por terem criado uma filha tão maravilhosa. À Anna Paula pelos momentos de descontração.

Ao meu cunhado Mike, por fazer minha irmã feliz, e tão presente em nossa família mesmo morando longe. Ao pequeno Enzo pela razão de simplesmente existir.

Aos amigos Marcelo Pucheu, Rodrigo Maia e Hélio Barcia, pelas saídas, filmes, chopes, as viagens e, simplesmente por estar.

Aos colegas do GTEP e aos meus colegas do mestrado: Ciro, Mônica, Belo, Rafael, Rabe, Ewerton, Cíntia, José Roberto, Jorge, Renato, Fernando, Saré, Ataliba e Flávio, pelas ajudas e os papos. Em especial ao Patrício pelos árduos momentos de estudos juntos até altas horas e a descontração da sua amizade. Ao pessoal do Laboratório de Geotecnia da PUC-Rio: Sr. José, Eng. William, pela sua dedicação e ajuda. E ao Amaury e Josué, pela constante ajuda, e pelos momentos de descontração.

Aos Professores Alberto Sayão, Franklin Antunes, Marta Velasco, Giuseppe Barbosa e Luiz Fernando Martha que ao longo de todos estes anos na PUC se demonstraram excelentes tutores e principalmente amigos. À Ana Roxo, pela constante vontade e dedicação para responder minhas dúvidas.

A todos os que me ajudaram com os ensaios: Professora Maria Isabel Pais da Silva e Walquíria da química, Michele, Suzana e Luiz Guilherme Barcik do GTEP.

Aos professores que participaram da Comissão Examinadora.

Resumo

Duarte, Ricardo Gomes; da Fontoura, Sergio Augusto B.; Muniz, Eudes Siqueira. **Avaliação da Interação Folhelho – Fluido de Perfuração para Estudos de Estabilidade de Poços.** Rio de Janeiro, 2004. 121p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

A estabilidade de poços em trechos de folhelho é muito influenciada pelo tipo de fluido de perfuração utilizado. As pressões de poro geradas durante a perfuração e a difusão destas pressões são as principais responsáveis pela estabilidade a curto prazo do poço, assim como pela eventual instabilidade a médio prazo. O efeito membrana e o conseqüente desenvolvimento de pressões osmóticas ao redor do poço desempenham um papel fundamental no balanço das forças que instabilizam a rocha.

Esta dissertação se foca no estudo experimental, utilizando uma célula de difusão, do comportamento de folhelhos expostos, após a perfuração, a fluidos de perfuração do tipo base água e salinos, pressurizados com vistas à estabilidade das paredes do poço. São avaliados os aspectos físico-químicos da interação folhelho-fluido, em especial, no tocante ao desenvolvimento de pressão osmótica e efeito membrana.

Testes de interação rocha-fluido utilizando folhelhos provenientes da Bacia de Campos e do Mar do Norte demonstraram a eficiência do equipamento em realizar ensaios com fluidos viscosos base água. O estudo das propriedades reológicas deste fluido foi realizado utilizando equipamentos especializados. Verificou-se nos ensaios que o comportamento de transmissão de pressão deste fluido é similar ao da água e que, aparentemente, o coeficiente de reflexão é mais influenciado pela porosimetria do folhelho do que pela sua mineralogia.

Palavras-chave

Folhelho. Fluido de Perfuração. Estabilidade de poços. Difusão. Propriedades Reológicas.

Abstract

Duarte, Ricardo Gomes. Da Fontoura, Sergio Augusto B. (advisor). Muniz, Eudes Siqueira (co-advisor). **Evaluation of the Shale-Drilling Fluid Interaction for Studies of Well Stability**. Rio de Janeiro, 2004. 121p. MSc Dissertation – Department of Civil Engineering, Pontificia Universidade Católica do Rio de Janeiro.

Well stability in shale sectors is very much influenced by the type of drilling fluid used. The pore pressures generated during drilling and the diffusion of these pressures are chiefly responsible for the short time stability of the well as well as the eventual instability some time after drilling. The membrane effect and the subsequent osmotic pressure developed around the well play a fundamental role in the force balance that destabilizes the rock.

This study focuses on assessing, inside the diffusion cell, the exposed shale behavior, after drilling, using water base mud brines, pressurized considering the wall stability of the well. The physical-chemical aspects of the shale-fluid interation are evaluated, in particular, in relation to osmotic pressure and membrane effects developments.

Rock-fluid interaction tests using shale samples collected from Campos Basin and North Sea, showed the efficiency of the equipment in carrying out experiments with viscous base water fluids. The study of reological properties of this fluid was made using specialized equipments. The experiments verified that the fluid pressure transmission behaviour is similar to water and, apparently, the reflection coefficient in more influenced by porosimetry of the shale than by your mineralogy.

Keywords

Shales. Drilling fluid. Well stability. Diffusion. Reological properties.

Sumário

1 Introdução	19
1.1. Motivação	19
1.2. Objetivo	21
1.2.1. Objetivo Geral	21
1.2.2. Objetivos Específicos	21
1.3. Escopo	22

2 Revisão Bibliográfica	23
2.1. Introdução	23
2.2. Mecanismos de Transporte	24
2.3. Mecanismos de Instabilidade de Poços	29
2.4. Fluidos de Perfuração	31
2.5. Classificação dos Fluidos a Base Água	35

3 Descrição do Equipamento e da Metodologia de Ensaios	38
3.1. Introdução	38
3.2. Equipamentos e Acessórios Utilizados	38
3.2.1. Sistema de Aquisição de Dados	45
3.3. Metodologia de Ensaios	47
3.3.1. Preparação do Sistema	47
3.3.2. Etapa de Montagem do Ensaio	50
3.3.3. Etapa de Saturação do Corpo de Prova	53
3.3.4. Etapa de Consolidação do Corpo de Prova	55
3.3.5. Etapa de Difusão de Pressão do Corpo de Prova	56
3.3.6. Etapa de Difusão de Íons do Corpo de Prova	58
3.3.6.1. Colocação e Reposição de Fluido na Interface Tipo Pistão	59
3.4. Conclusão	61

4 Propriedades Reológicas do Fluido de Perfuração Utilizado	62
4.1. Introdução	62
4.2. Classificação dos Fluidos Viscosos	62
4.3. Preparação dos Fluidos Utilizados nesta Dissertação	64
4.4. Metodologia de Ensaio e Análise das Propriedades Reológicas dos	;
Fluidos	66
4.5. Ensaios Realizados e Análise dos Resultados	72
4.6. Conclusões	77

5 Ensaios Realizados e Análise dos Resultados	78
5.1. Introdução	78
5.2. Caracterização dos Folhelhos Ensaiados	78
5.2.1. Análise Granulométrica e Índices Físicos	79
5.2.2. Composição e Distribuição Mineralógica	81
5.2.3. Capacidade de Troca Catiônica e Superfície Específica	83
5.2.4. Descrição do Espaço Vazio dos Folhelhos	84
5.2.5. Descrição do Espaço Vazio do Celofane	87
5.3. Ensaios em Corpos de Prova Sintéticos na Célula de Difusão	88
5.3.1. Preparação para os Ensaios com Corpos de Prova Sintéticos	88
5.3.2. Fase de Saturação e Consolidação	90
5.3.3. Fase de Difusão de Pressão	91
5.4. Ensaios em Folhelhos na Célula de Difusão	96
5.4.1. Ensaio Preliminar	97
5.4.2. Fase de Saturação e Consolidação	100
5.4.3. Fase de Difusão de Pressão	101
5.4.4. Fase de Difusão de Íons	106
5.4.5. Análises Após o Ensaio	112
5.5. Conclusões	114

6 Conclusões e Sugestões para Trabalhos Futuros	116
6.1. Conclusões e Sugestões para Trabalhos Futuros	116

7 Referências Bibliográficas

Lista de figuras

Figura 2. 1 - Fluxo osmótico de água através de uma membrana semi-	
permeável perfeita (Hawkes & McLellan, 2000)	25
Figura 2. 2 – Mecanismos de transporte de água através de uma	
membrana semi-permeável perfeita sob condições de campo (Hawkes	&
McLellan, 2000)	26
Figura 2.3 – Termohigrômetro utilizado para medir atividade química e	
temperatura (Muniz, 2003)	26
Figura 2. 4 – Mecanismo de impermeabilização promovido na interface	
óleo-fluido dos poros (modificado de Dusseault & Gray, 1992).	27
Figura 2. 5 – Típicas ocorrências de instabilidade de poços durante a	
perfuração (www.dpr.csiro.au/research/dwe.html)	30
Figura 2. 6 – Problemas de instabilidade normalmente observados	
durante a perfuração de camadas de folhelhos (modificado de Hawkes	&
McLellan, 2000)	30
Figura 2. 7 – Efeito da tensão de inchamento no folhelho (resultando er	n
expansão) durante a perfuração (Hawkes & McLellan, 2000)	31
Figura 2. 8 – Fluido de perfuração carreando os cascalhos para a	
superfície.	32

Figura 3. 1 – Esquema da célula de difusão desenvolvida (Muniz, 2003	\$)39
Figura 3. 2 – Aplicador de pressão GDS de 2 MPa	40
Figura 3. 3 – Aplicador de pressão GDS de 32 MPa	40
Figura 3. 4 – Transdutores de pressão de 21 MPa	41
Figura 3. 5 – Bomba "Waters"	41
Figura 3. 6 – Válvula de alívio "Swagelok"	42
Figura 3. 7 – Nova interface tipo pistão – esquema ao lado	43
Figura 3. 8 – "Caps" superiores e inferior para corpos de prova de 38,1	
mm	44
Figura 3. 9 – "Caps" de topo e da base de 50,8 mm	44

	45
Figura 3. 11 – Fonte de energia	46
Figura 3. 12 – Painel frontal do programa (controles)	46
Figura 3. 13 – Painel frontal do programa (gráfico geral)	47
Figura 3. 14 – Circuito de aplicação de pressão no topo (Modificado de	
Muniz, 2003)	49
Figura 3. 15 – Circuito de pressão confinante e axial (Muniz, 2003)	49
Figura 3. 16 – Etapa de montagem do ensaio	52

Figura 3. 10 – Condicionador de sinais do sistema de aquisição de dados

65
66
67
έm
69
70
70
71
71
72
73
74
74
75

Figura 5. 1 - Curvas de distribuição diferencial dos poros (Rabe & daFontoura, 2002)85Figura 5. 2 - Distribuição acumulativa dos diâmetros dos poros (Rabe & daFontoura, 2002)85

Figura 5. 3– Corpo de Prova sintético instalado entre os "caps" de topo e de base 89 Figura 5. 4 – Filtro prensa 89 Figura 5.5 - Fase de saturação do corpo de prova sintético A 90 Figura 5. 6 – Variação das pressões na fase de difusão de pressão para água deionizada no corpo de prova sintético B 92 Figura 5.7 - Variação das pressões na fase de difusão de pressão para o filtrado do fluido real de perfuração no corpo de prova sintético B 93 Figura 5.8 - Variação das pressões na fase de difusão de pressão para o fluido real no corpo de prova sintético B 93 Figura 5.9 - Transmissão de pressão com interface tipo bellofram para o fluido real no corpo de prova sintético A 94 Figura 5. 10 - Variação das pressões com água pura e em seguida com o fluido real no corpo de prova sintético C 95 Figura 5. 11 – Fase de saturação do CP12 (folhelho B) 97 Figura 5. 12 – Fase de difusão de pressão e íons do CP12 (folhelho B) 98 Figura 5. 13 - Detalhe do CP12 (folhelho B) mostrando as fissuras existentes 98 Figura 5. 14 - Corpo de prova de 38,1 mm – CP14 (folhelho B) 99 Figura 5. 15 – Fase de saturação do CP14 (folhelho B) 100 Figura 5. 16 - Variação das pressões com água pura e fluido de perfuração na fase de difusão de pressão do CP39 (folhelho B-S) 101 Figura 5. 17 - Variação das pressões com água pura e fluido de perfuração na fase de difusão de pressão do CP15N (folhelho da 102 Noruega) Figura 5. 18 - Variação das pressões com água pura e fluido de perfuração na fase de difusão de pressão do CP14 (folhelho B) 102 Figura 5. 19– Variação das pressões na fase de difusão de pressão do CP39 (folhelho B-S) utilizando fluido real 105 Figura 5. 20- Variação das pressões na fase de difusão de pressão do CP15N (folhelho da Noruega) utilizando fluido real 106 Figura 5. 21- Variação das pressões na fase de difusão de pressão do CP14 (folhelho B) utilizando fluido real 106 Figura 5. 22 – Fase de difusão de íons do CP39 (folhelho B-S) 107

Figura 5. 23 – Fase de difusão de íons do CP15N (folhelho da Noruega)107Figura 5. 24 – Fase de difusão de íons do CP14 (folhelho B)108Figura 5. 25 – Fase de difusão de íons do CP15 (folhelho B)110Figura 5. 26 – Crescimento de pressão na base para o CP14 e CP15110(folhelhos B)110Figura 5. 27 - Cromatógrafo de íons DX 120 da marca Dionex ligado ao113

Lista de tabelas

Tabela 2. 1 - Componentes dos fluidos com base água (Machado &
Oliveira, 1986) 34
Tabela 2. 2 - Fluidos base água – vantagens e desvantagens37
Tabela 4. 1 - Medidas de deflexão realizada no viscosímetro Fann 35A,
para os fluidos ensaiados 73
Tabela 4. 2 - Parâmetros reológicos do fluido real e do fluido real salino 75
Tabela 5. 1 - Resultado dos ensaios de granulometria (Rabe, 2003)79
Tabela 5. 2 - Dados iniciais e finais dos corpos de prova80
Tabela 5. 3 - Composição mineralógica dos folhelhos (Rabe, 2003)81
Tabela 5. 4 - Análises químicas dos constituintes dos folhelhos (Rabe,
2003) 82
Tabela 5. 5 - Análise semi-quantitativa dos minerais presentes nos
folhelhos (Rabe, 2003) 82
Tabela 5. 6 - Capacidade de troca catiônica dos folhelhos (Rabe, 2003) 83
Tabela 5. 7 - Superfície específica dos folhelhos ensaiados (Rabe, 2003)
84
Tabela 5. 8 - Valores de parâmetro B para cada CPS (corpo de prova
sintético) 91
Tabela 5. 9 – Parâmetro B para o folhelho CP12 (folhelho B)97
Tabela 5. 10 – Valores do parâmetro B para cada corpo de prova 100
Tabela 5. 11 - Valores de permeabilidade obtidos para cada corpo de
prova 105
Tabela 5. 12 – Parâmetros utilizados na análise numérica 111
Tabela 5. 13 - Valores dos parâmetros de difusão e permeabilidade
obtidos 111
Tabela 5. 14 – Coeficiente de reflexão e pressão osmótica obtido para os
folhelhos 112
Tabela 5. 15 – Análise química do fluido retirado do reservatório inferior
114

Lista de símbolos

- a₁ Atividade química da água na região de menor concentração
- a2 Atividade química da água na região de maior concentração
- A_f Atividade química do fluido dos poros do folhelho
- A_{fp} Atividade do fluido de perfuração
- /bbl por barril
- b Coeficiente linear
- B Parâmetro de poropressão de Skempton
- C Concentração
- D_{50} Diâmetro dos poros correspondente a 50 % do volume total intrudido
- De Coeficiente de difusão efetivo
- D_m Coeficiente de difusão molecular
- e Índice de vazios
- E Módulo de elasticidade
- G Densidade dos grãos
- H Altura do corpo de prova
- K Permeabilidade
- K_c Índice de consistência
- K_m Constante da mola
- Ib/bbl Libra por barril
- n_c Índice de comportamento
- N Velocidade de rotação
- P_c Pressão de capilaridade
- PM_{s} Peso molecular do soluto
- $\mathsf{PM}_{\mathsf{w}} \quad \text{Peso molecular do solvente}$
- r₁ Raio do cilindro interno
- r₂ Raio do cilindro externo
- r_p Raio do poro
- R Constante universal dos gases
- S Grau de saturação
- SD Desvio padrão
- T Temperatura
- w Umidade natural
- W Peso do corpo de prova
- V Volume do corpo de prova
- Vp Volume total de mercúrio injetado
- V_w Volume parcial molar da água
- α Coeficiente de reflexão ou eficiência de membrana

- α_L Dispersividade longitudinal
- α_T Dispersividade transversal
- Porosidade
- γ Taxa de cisalhamento
- γ_{Hg} Tensão superficial de um fluido intrudido de mercúrio
- γ_s Tensão superficial entre as fases molhantes e não molhantes
- γ_T Peso específico total
- γ_w Peso específico da água
- μ Viscosidade dinâmica absoluta
- μ_a Viscosidade aparente
- θ Deflexão
- θ_c Ângulo de contato
- τ Tensão cisalhante
- τ_t Coeficiente de tortuosidade
- τ_0 Limite de escoamento real
- v Coeficiente de Poisson
- ρ Coeficiente de retardamento
- ρs Massa específica seca do solo
- ΔP Incremento de pressão
- ΔPosm Pressão osmótica
- ∆u Variação de poropressão
- Δv Diferença de velocidade entre duas camadas de fluido adjacentes
- Δy Distância entre estas duas camadas
- $\Delta \sigma_{\text{conf}} \quad \text{Variação de pressão confinante}$
- $\Delta\sigma_{\text{axial}}$ Variação de pressão axial
- Π Pressão osmótica teórica