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Abstract

Werner Rosemberg, Andrew David; Street de Aguiar, Alexan-
dre (Advisor); Michel Valladão, Davi (Co-Advisor). A Framework
for Assessing the Impacts of Network Formulations in the
Operation of Hydrothermal Power Systems. Rio de Janeiro,
2020. 68p. Dissertação de Mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

One of the most efficient algorithms for solving hydrothermal operation
planning problems, which are large-scale multi-stage stochastic models,
is the so-called stochastic dual dynamic programming (SDDP) algorithm.
Operation planning of power systems aims to assess the value of the scarce
resources (e.g. water) to feed short-term dispatch models used in the actual
implementation of the decisions. When the planning model significantly
deviates from the reality of the implemented operation, decision policies
are said to be time-inconsistent. Recent literature has explored different
sources of inconsistency such as time-inconsistent dynamic risk measures,
inaccurate representation of the information process and simplifications in
the network planning model. This work addresses the time-inconsistency
due to simplifications in the network representation in the planning model
extending the existing literature.
The objective of this work is to propose a framework, comprised of a
methodology and an open-source computational package, for testing the op-
erative and economic impact of modeling simplifications over the network
power-flow in hydrothermal power systems. Among the myriad of formula-
tions available in the package, we focused on assessing the cost and opera-
tive performance of the following model approximations: the transportation
network-flow model (NFA), currently in use by the Brazilian system opera-
tor; the second-order cone relaxation (SOC); the semidefinite programming
relaxation (SDP); the DC power-flow approximation (DC); and the DC with
line-loss power-flow approximation (DCLL). All the previously mentioned
formulations are tested as approximations for the network model in the
planning stage, where the cost-to-go function is built. Then, we evaluate
each approximation by simulating the system’s operation using an imple-
mentation model, which minimizes the immediate cost under AC power-flow
constraints and the respective cost-to-go function. The comparison is made
for two systems, one composed of a cycle and the other approximately radial.
Keywords

Hydrothermal Economic Dispatch; Optimal Power Flow; Stochastic
Dual Dynamic Programming; Power System Operation.
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Werner Rosemberg, Andrew David; Street de Aguiar, Alexandre;
Michel Valladão, Davi. Um Framework para Avaliar os Im-
pactos das Formulações de Rede na Operação de Sistemas
de Energia Hidrotérmica. Rio de Janeiro, 2020. 68p. Disserta-
ção de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Um dos algoritmos mais eficientes para resolver problemas de planejamento
de operações hidrotérmicas, que são modelos estocásticos multiestágio de
larga escala, é o chamado algoritmo de programação dinâmica dupla esto-
cástica (SDDP). O planejamento da operação dos sistemas de energia visa
avaliar o valor dos recursos escassos (por exemplo, água) para alimentar
os modelos de despacho de curto prazo usados na implementação real das
decisões. Quando o modelo de planejamento se desvia significativamente
da realidade da operação implementada, as políticas de decisão são consi-
deradas inconsistentes no tempo. A literatura recente explorou diferentes
fontes de inconsistência, como medidas de risco dinâmico inconsistentes no
tempo, representação imprecisa do processo de informação e simplificações
no modelo de planejamento de rede. Este trabalho aborda a inconsistência
no tempo devido a simplificações na representação da rede no modelo de
planejamento que estende a literatura existente.
O objetivo deste trabalho é propor uma estrutura, composta por uma
metodologia e um pacote computacional de código aberto, para testar o
impacto operacional e econômico das simplificações da modelagem sobre
o fluxo de energia da rede em sistemas de energia hidrotérmica. Entre as
inúmeras formulações disponíveis no pacote, nos concentramos em avaliar o
custo e o desempenho operacional das seguintes aproximações de modelos:
o modelo de rede de transporte (NFA), atualmente em uso pelo operador
de sistema brasileiro; o relaxamento de cone de segunda ordem (SOC); o
relaxamento de programação semidefinida (SDP); a aproximação do fluxo
de energia de corente continua (DC); e o DC com aproximação de fluxo de
potência com perda de linha (DCLL). Todas as formulações mencionadas
anteriormente são testadas como aproximações para o modelo de rede na
fase de planejamento, onde é construída a função de custo futuro. Em
seguida, avaliamos cada aproximação simulando a operação do sistema
usando um modelo de implementação que minimiza o custo imediato sob as
restrições de fluxo de energia AC e a respectiva função de custo futuro. A
comparação é feita para dois sistemas, um composto por um ciclo e o outro
aproximadamente radial.
Palavras-chave
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1
Introduction

Assessing the value of systems’ scarce resources is a key activity of power
system operators, especially those in charge of hydrothermal power systems
[2,3]. Such assessment aims at evaluating implicit opportunity costs of relevant
systems’ resources, such as water, which can be stored and used in future
periods to prevent expensive thermal generation or load shedding. An accurate
assessment is crucial for practical purposes, as solving the true multistage
stochastic problem with all details used in short-term operational models
is deemed intractable. Therefore, such an assessment allows us to decouple
detailed short-term operational models from the long-term horizon problem yet
keeping the coherence between the decisions of the former with the objective
of the latter.

The assessment of relevant opportunity costs of systems’ resources, such
as water in hydrothermal power systems, is generally performed through long-
term operational planning studies [4]. In these studies, the future operation
of the system is simulated for many different inflow scenarios and the future
economic benefit of water storage is passed for the short-term models as a
function of the reservoir levels1. However, as planning studies comprise the
solution of the long-run problem to simulate the optimal future operation of
the system, it is inherent to planning activities the simplification of many
features of the true problem. Therefore, the actually implemented operative
policy is, in general, defined by a detailed short-term model with some
input information about the opportunity cost of the water brought from
simplified long-term operative planning studies. In this context, as future
planned operative decisions are obtained with a simplified view of the system,
the actually implemented operative decisions may differ from those planned
even if the same scenario takes place. This is the case of a time-inconsistent
policy due to modeling simplifications, i.e., when the planned decisions differ
from the actually implemented ones [6]. Such inconsistency can be understood
as a modeling risk, which in the case of a hydrothermal economic dispatch

1Needless to say, uncertainty in renewable generation, demand, fuel costs, system com-
ponents availability, among others, should also be considered in these studies to ensure an
accurate representation of critical system states and the value of the water (see [3] for a brief
discussion and [5]).
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Chapter 1. Introduction 13

problem can lead to several side effects as demonstrated in [3].
The literature on time (in)consistency is vast (we refer to [3, 6–9] and

references therein). Within the multistage stochastic programming-related
literature, two main branches can be found: time inconsistency induced by
dynamically inconsistent risk measures (we refer to [6] and references therein),
and time inconsistency due to modeling simplifications in the planning step
(see [3] and [10]). This work focuses on the latter. The time-inconsistency gap
proposed in [6] measures the expected cost difference between the planning
and implementation policies. As demonstrated in [3], statistically significant
gaps can be induced when disregarding the Kirchhoff Voltage Law (KVL) and
n-1 security criterion. In [10], statistically significant gaps are found due to
the hazard-decision simplification, where the information-revelation process of
the inflow uncertainty is simplified by a one-step-ahead anticipative model2.
The present work aims to extend the results of [3] by studying the cost and
distortions induced by different modeling simplifications of the network in
the hydrothermal economic dispatch problem. To the best of our knowledge,
the literature lacks a systematic study on the impact of network power-flow
simplification as a source of time inconsistency for hydrothermal operation
planning.

More specifically, independent system operators (ISO) of hydrothermal
power systems aim to coordinate reservoirs levels to ensure power balance
across the network at a minimum cost in the long-run. Therefore, the true
hydrothermal economic dispatch problem is a highly complex non-convex mul-
tistage stochastic optimization problem, wherein all network and technological
constraints must be accounted for. In practice, however, operation planning
studies rely on computational models based on dynamic stochastic program-
ming techniques [11]. The state-of-the-art solution method is the so-called
Stochastic Dual Dynamic Programming (SDDP) proposed in [2]. The SDDP
algorithm iteratively approximates the future cost of operation, also known
as cost-to-go function, as a piecewise linear convex function of the amount of
water stored in the reservoirs. The computational efficiency of SDDP notwiths-
tanding, the algorithm relies on strong assumptions such as convexity of the
dispatch problem defining the cost-to-go function. To attend the SDDP re-
quirements, system operators rely on modeling simplifications, e.g., using con-
vex approximations for the alternating current (AC) power flow model. For
instance, the official Brazilian model (NEWAVE – [4]) uses a transportation
network flow approximation (NFA) model that only considers the flow limits

2In this model, all decision variables of a given stage are considered as wait-and-see
decisions.

DBD
PUC-Rio - Certificação Digital Nº 1812644/CA



Chapter 1. Introduction 14

between areas and disregards the KVL. As a consequence, the operative point
achieved with such an approximation significantly differs from those imple-
mented in reality. This discrepancy between the planning and implemented
solutions induce to an implemented time-inconsistent policy as reported in [3].

The results published in [3] assume a DC power flow model as the refe-
rence model for the assessment of the time-inconsistency gap when planning
the system operation using the transportation NFA model (hereinafter, refer-
red to as NFA). However, as reported in the literature [12, 13], direct current
(DC) power flow approximation still produces significant discrepancies and the
actual operation can be better represented by an AC power-flow model of the
network. Thus, this work extends previously reported results on the impact of
network simplifications in two fronts: i) the more accurate AC power-flow mo-
del is considered as the reference model for the actually implemented decisions
in the time-inconsistency gap assessment and ii) five network modeling sim-
plifications are compared in terms of induced time-inconsistency gap, thermal
generation, and spot-price distortions.

To achieve the aforementioned goals i) and ii), reliable and flexible imple-
mentations of the SDDP algorithm allowing multiple power flow approximati-
ons are needed. Unfortunately, such a tool is not available. Therefore, an open-
source SDDP tool with this flexibility, namely, HydroPowerModels is developed
and made available [14]. This tool enables not only the assessment of the re-
sults found in this work but also allows researchers in the electrical industry to
test new ideas, leveraging state-of-the-art solution methods and mathematical
formulations for the economic dispatch problem. It combines two other open-
source packages developed in Julia Language [15], namely, PowerModels.jl,
developed by Coffrin [16,17] to solve steady-state power network optimization
problems, and SDDP.jl, developed by Oscar Dowson [18, 19] to solve multis-
tage convex stochastic optimization problems. This combination puts together
two state-of-the-art open-source packages sharing the same layer for modeling
mathematical optimization in Julia called JuMP.jl [20].

The objective of this work is to propose a framework, comprising a metho-
dology and an open-source computational package, for testing the operative
and economic impact of modeling simplifications over the network power-flow
in hydrothermal power systems. Among the myriad of formulations available
in the package, we focused on assessing the cost and operative performance
of the following model approximations: the transportation network-flow model
(NFA), currently in use by the Brazilian system operator [4]; the second-order
cone relaxation (SOC) [21]; the semidefinite programming relaxation (SDP)
[22,23]; the DC power-flow approximation (DC) [24], and the DC with line-loss
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Chapter 1. Introduction 15

power-flow approximation (DCLL) [25]. All the previously mentioned formu-
lations will be tested as approximations for the network model in the planning
stage, where the cost-to-go function is built. Then, we evaluate each approxi-
mation by simulating the system’s operation using an implementation model,
which minimizes the immediate cost under AC power-flow constraints [26, 27]
and the respective cost-to-go function.

The main contributions of this work are:

1. Extension of the inconsistency gap measurement methodology proposed
in [3], comparing the performance of five network formulations, namely,
transportation network-flow model relaxation, second-order cone relaxa-
tion, semidefinite programming relaxation, direct current approximation,
and direct current with line loss under a more accurate implementation
model using the AC power-flow formulation. The various approximation
models feature different aspects of the network flow as well as impose
different computational burdens. Thus, by analyzing and comparing the
results of policies that plan using these simplifications we can measure
the tradeoff between computational burden and model accuracy.

2. Results show the detrimental effect of neglecting more complete power
flow constraints and benefits are weighted against the computational
burdens of choosing more sophisticated models. The SOC planning policy
has a poor performance with high dispatch distortion when the system is
full meshed and performs well when the system is full radial, under mild
conditions, always presenting medium computational burden. The SDP
planning policy has low inconsistency for all systems, but comes with a
high computational burden. The DC planning policy performs reasonably
well (but worst than SDP) with low distortions in prices and dispatches
in all instances and with a reduced computational burden. The DCLL
planning policy has the lowest system cost, presents low inconsistency
gaps and its computational burden is not as reduced as in the DC case,
but it is still low.

3. An open-source tool for solving hydrothermal economic dispatch pro-
blems with stochastic dynamic programming, namely HydroPowerModels
[14]. Programmed as a package for the Julia language, it takes advantage
of the productivity and speed that this language has to stimulate colla-
boration and relevance. The package provides an easy-to-use framework
where the user is free to choose from a variety of network formulations
and study parameters. Moreover, it allows the construction of shared da-
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tabase of cases, helping discussions about solution methods and study
choices.

The remainder of this work is organized as follows. Chapter 2.1 presents
the theoretical background for multistage stochastic programming, hydrother-
mal economic dispatch, and SDDP algorithm. Chapter 3 explains the proposed
framework, detailing the mathematical model of a single-stage sub-problem,
the five network approximation models derived from the AC power-flow model,
discusses time inconsistency, when it happens and its consequences, and pre-
sents open-source tool developed to support studies of hydrothermal dispatch.
Chapter 4 presents case studies. Relevant conclusions are drawn in Chapter
5. The nomenclature utilized in Chapters 3 and 3.2 is presented in Appendix
A. Finally, Appendix B gives a small usage example of the HydroPowerModels
tool.
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2
Theoretical Background

The goal of a hydrothermal economic dispatch problem is to find the
optimal operation policy of an electrical system to meet demand throughout a
long-run planning horizon. For this purpose, the policy must take into account
the best use of water to ensure power balance across the network during
all periods under the uncertainty of inflows, demand, fuel costs, etc. In this
work, we will consider only the inflow uncertainty to avoid deviating from our
main focus. The hydrothermal economic dispatch is modeled as a large-scale
multistage stochastic optimization problem with recourse and generally solved
through SDDP [2,28].

2.1
Multistage Stochastic Programming

Multistage stochastic programming (MSP) is a subclass of optimization
problems with multiple stages (periods) and decisions being made conditioned
to the information revelation process of the uncertainties (nonanticipative
decision process). This class of problem is a branch of optimization under
uncertainty, where the stochastic process describing the uncertainties is well
defined and probabilities are known [11,29–31].

In SP problems [29], the realization of some random variables b(ω) influ-
ences the conditions of the problem and consequently the optimal decisions.
Uncertainty relates to the probability distributions of parameters and may be
incorporated into the problem in various manners. One framework for SP is
the Recourse Model paradigm, where problems are defined in more than one
stage. In this framework, a class of simple stochastic programs is known as a
two-stage problem with recourse. It can be formulated as follows:

1st Stage


min

x
CTx + E[Q(x, ω)]

s.t. x ∈ X

2nd Stage

Q(x, ω) =


min

y
gTy

s.t. Ay = b(ω)−Hx

y ∈ Y

 .
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Chapter 2. Theoretical Background 18

The objective of the first stage is composed of an immediate cost term
CTx and a cost-to-go function (also known as recourse function) E[Q(x, ω)].
The latter is a function of some decision variables of the first stage (also
known as here-and-now decisions), x, that fix the state of the second stage.
First stage decisions are made under uncertainty, while the decision variables
of the second stage, y, are chosen after the realization of the variable ω

and are called recourse variables (also known as wait-and-see variables). The
recourse function, E[Q(x, ω)], is general enough to encompass many relevant
risk measures [7, 8, 28].

In this work, there will be a slight abuse of notation: b(ω) will represent
either the random variable or its realization. This should be clear from the
context in which it is used.

This problem intends to find an optimal first stage decision x and an
optimal second-stage decision u for each realization of ω conditioned on x. The
two-stage problem discussed above naturally extends to a multistage problem
via recursion. A multistage stochastic program with T stages can be formulated
as follows:

min
x1∈X1

f1(x1) + E[ inf
x2∈X2(x1,ω2)

f2(x2, ω2) + E[...+ E[ inf
xT∈XT (xT −1,ωT )

fT (xT , ωT )]...]].

Assuming the problem is linear, we have:

Xt(xt−1, ω) =
{
xt ≥ 0 : Atxt = bt(ω)−Htxt−1

}
ft(xt, ω) = CT

t xt

In this framework, the scenarios, ωt ∈ Ωt, have given probability dis-
tribution and the sequence b1(ω1), ..., bT (ωT ) represents the realization of a
multivariate stochastic process, which should follow a filtration dictating the
information revelation process. In other words, the uncertain parameter is re-
vealed gradually over time as in many real-world applications.

Just like in the two-stage problem, the state variables, xt−1, are the
sufficient information from previous stages needed besides the realized value
of uncertainties to define the optimal decisions of a stage t. The mapping from
state and realization of the stochastic process to stage decisions is called a
decision rule, and the set of decision rules from all stages is called a policy.

Multistage stochastic problems are a useful tool for modeling a diverse
set of problems and discussing their aspects. However, solving a multistage sto-
chastic program and finding the optimal policy is a challenging computational
task. Exact solutions cannot be obtained in reasonable time and common ap-
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Chapter 2. Theoretical Background 19

proximations such as stochastic dynamic programming [32,33] are intractable
in the presence of high-dimensional state spaces.

Sampling-based decomposition algorithms, such as SDDP [2] and its
variants [34–36], aim to overcome the curse of dimensionality. The idea behind
it is to assume the decision rule in stage t depends only on the value of the
state at the end of stage t−1 and the realization of the uncertain parameter ωt.
This allows the multistage stochastic problem to be decomposed in dynamic
equations. Besides these assumptions, bt(ωt) should be an affine function for
SDDP to work.

The dynamic equations constitute a set of recursive functions,
{Qt}t=1,...,T , representing the dynamics of optimal costs and decisions from
stage t until the end of the horizon, T , also known as Bellman recursion.
In every stage, Qt is the optimal value of an optimization problem whose
objective function is composed of an immediate cost term, say, cTt xt, and the
next stage function Qt+1. Qt relies on the decision variables of the current
stage, xt, which plays the role of state variables of the following stage. This
function is also affected by uncertain data, ωt. Thus, to address the uncertainty
in the optimization problem of a given period defining Qt, a risk measure µ,
commonly assumed to be the expectation operator E, is used [37]. Therefore,
these functions are named cost-to-go functions, as they represent the optimal
cost from a given stage until the end of the horizon, or recourse functions,
as they can also be seen as the recourse function of the two-stage stochastic
problem defining each stage dynamic equation.

The nested formulation for the aforementioned dynamic equations is
represented by the following Bellman recursion:

Qt(xt−1, ωt) = min
xt

cTt xt + E[Qt+1(xt, ωt+1)] (2-1)

s.t. Atxt = bt(ωt)−Htxt−1 [πt(ωt)] (2-2)

xt ≥ 0, (2-3)

where for each stage t ≤ T , and QT+1(·, ·) = 0. Here, πt(ωt) represents the dual
variables of the problem that are conditioned on the uncertain data process.

In these equations, the optimal value at stage t depends on the previous
decision xt−1 and the realized scenario ωt. Furthermore, the optimal value of
a stage represents the costs of all future stages and, finally, the first stage
problem gives the optimal value of the corresponding multistage problem.

Since the Bellman recursion finds the best solution for every stage
given previous states x and uncertainties ω, it determines an optimal policy.
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Problems that can be decomposed in dynamic equations allow the separation
of cost-to-go functions by stage, reducing the number of evaluations needed to
solve them.

2.2
The SDDP solution Methodology

In multistage stochastic problems with recourse, the decision-maker faces
a complicated problem structure with random variables and multiple stages.
Due to the complexity of these problems, analytical solutions are limited, and
conventional optimization methods for deterministic problems do not work.
For a two-stage problem, the conventional solution methods for this problem
approximate the future cost function with outer approximations and use a
scenario tree to represent the stochastic process of the random parameters.

Figure 2.1: Scenario Tree and Future Cost Function of a Two-Stage Problem.

Figure 2.1 shows the basic idea behind these methods. First, a set of
values are sampled from the distributions and then used to evaluate the second
stage cost for a state value x. This evaluations are used to approximate the
future cost function. The process is repeated for a number of different state
values until a sufficient approximation is developed.

In multistage stochastic problems, we are faced with a cost-to-go func-
tion: E[Qt+1(xt, ωt+1)]. The issue is that E[Qt+1(xt, ωt+1)] also depends on a
cost-to-go E[Qt+2(xt+1, ωt+2)], and the evaluation of those functions can be
expensive.

Because of this cascade of recourse functions, the dimension size of an SP
problem is exponentially proportional to the number of stages in a multistage
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stochastic program. Hence, most of the methods used for two-stage problems
are not sufficient, and more efficient algorithms are required to overcome this
issue.

The crucial step that facilitates the solution of these problems is to cons-
truct approximations of the cost-to-go functions, recursively, going backward
in time. Thus, the optimal value of the first stage problem approximates the
optimal value of the corresponding multistage problem.

As discussed previously, for the construction of this approximation a
widely used method is dynamic programming, which evaluates the function
in a range of discrete values of the state variable for further interpolation.
However, this method becomes intractable with the growth of the state
dimension (commonly referred to as the curse of dimensionality of dynamic
programming). A solution to reduce the curse, but not alleviate it, was
proposed by [2] with the SDDP method.

The methodology, simply posed, approximates the cost-to-go functions
by the maximum of a set of linear hyper-planes, called cuts. This extends the
cutting plane method (or Benders decomposition) from a two-stage setting to
a multistage one.

The Cutting planes procedure constructs a polyhedral outer approxima-
tion for E[Qt+1(xt, ωt+1)] (considering the expected value E as the risk mea-
sure) by alternating between two phases. At iteration k, first phase solves the
stage t problem using a current approximation and outputs a state xkt . The
other evaluates the objective of stage t + 1 at xkt and for different scenarios
ωt+1. Then, with the risk measure of those costs E[Q̃t+1(xkt , ωt+1)] and the
dual variable π̄t+1,k of the constraints where the state affects the right-hand-
side, the second phase updates the approximation with a cut tangent to this
measurement.

In practice, the method uses an auxiliary variable θt+1, with feasible
region identical to the epigraph of the approximate function. This variable is,
at the optimal, equivalent to this same function, as it is illustrated in figure
2.2.

Considering an arbitrary sub-problem SP t(xt−1, ωt) of a multistage
problem, as in equations (2-1)-(2-3), we identify the set of linear inequalities
defining the cuts (K cuts):

θt+1 ≥ ḡt+1,k + π̄Tt+1,kHt+1(−xt) for k = 1..K (2-4)
Where:

ḡt+1,k = E[Q̃t+1(xkt , ωt+1)] + π̄Tt+1,kHt+1(xkt ) (2-5)
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Figure 2.2: Feasible and opt. value θt+1

π̄t+1,k = E[πt+1(ωt+1)] (2-6)

In this setting, the sub-problem containing K cuts, SPKt (xt−1, ωt), is
given by:

Q̃Kt (xt−1, ωt) = Min
xt,θt+1

CT
t xt + θt+1 (2-7)

s.t.

Atxt = bt(ωt)−Htxt−1 [πt(ωt)] (2-8)

θt+1 ≥ ḡt+1,k + π̄Tt+1,kHt+1(−xt) for k = 1..K (2-9)

xt ≥ 0 (2-10)

SDDP uses cutting planes for each pair of stages interactively construc-
ting the outer approximation of the cost-to-go functions. The procedure is di-
vided into alternating forward and backward passes (or steps). In the forward
step, the algorithm uses the current approximation to obtain feasible trial solu-
tions for a sampled stochastic process realization; this is an exploration phase
where the algorithm samples trial points (state values) to enhance the cost-
to-go function approximation. In the backward pass, the cost-to-go function
is updated as the pointwise maximum of the current outer approximation and
an additional first-order outer approximation around each trial point sampled
in the forward step. Algorithm 1 summarizes the SDDP method.

Assuming stagewise independence, as it is done in most of the sampling-
based methods, cuts can be shared among solutions of the same stage. This
unique polyhedral outer approximation for the cost-to-go function of each
stage reduces significantly the number of evaluations needed, allowing for a
computationally tractable algorithm.
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Algorithm 1: Stochastic Dual Dynamic Programming
Result: {Qt}Tt=1
Set K ← 0
while not converged do

Initialize xK0 with ν0.
Convergence Test from [3].
/* Forward Pass */
Sample an inflow time series {ωt}Tt=1
for t = 1 to T do

Solve sub-problem for period t with (xKt−1, ωt), using QKt+1
and store xKt .

end
/* Backward Pass */
{QK+1}Tt=1 ← {QK}Tt=1
for t = T to 2 do

for ωt ∈ Ωt do
Solve sub-problem for period t with (xKt−1, ωt), using
QK+1
t+1 and store the objective value and dual vector for

the backward scenario ωt.
end
Calculate new Bender’s cut.
Update the approximation of the cost-to-go function with the
new Bender’s cut.

end
K ← K + 1

end
.

For a detailed discussion of the SDDP algorithm and its convergence
criterion, see [2, 18].
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3
Proposed framework

In this chapter, we present the complete mathematical formulation of
the hydrothermal economic dispatch sub-problem following the notation from
Appendix A. It is defined as the function Qt(νt−1, ωt) =

min:
xt

∑
i∈I

Cit pit +
∑
n∈N

Cδ
nt δnt +

∑
j∈H

Cs
jt sj+

Et+1[Qt+1(νt, ωt+1)] (3-1a)

s.t.: ∑
i∈In

pit +
∑
j∈Hn

ujt ρjt −
∑
m∈Nn

f(n,m)t − `nt+

= Dnt − δnt, ∀n ∈ N (3-1b)

νjt + ujt + sjt = νj,t−1 + Aj,t(ωt)+∑
k∈HU

j

ukt +
∑
k∈HS

j

skt, ∀j ∈ H (3-1c)

|f(n,m)t| ≤ F(n,m)t ∀(n,m) ∈ L (3-1d)

|f(m,n)t| ≤ F(n,m)t ∀(n,m) ∈ L (3-1e)

0 ≤ pit ≤ Pit ∀i ∈ I (3-1f)

0 ≤ νjt ≤ νjt ∀j ∈ H (3-1g)

0 ≤ ujt ≤ Ujt ∀j ∈ H (3-1h)

`nt ≥ 0 ∀n ∈ N (3-1i)

δnt ≥ 0 ∀n ∈ N (3-1j)

xt ∈ Xt. (3-1k)

In the above equation, xt is the stacked vector of all decision variables,
xt = [pt, ft, ut, st, νt, δt, `t]T , and Xt represents different power-flow constraints
related to the associated network formulation.

The objective function of the sub-problem (3-1a) is to minimize the sum
of immediate costs represented by the costs of active power generation and the
cost of energy supply deficit, and future costs represented by the cost-to-go
function Et+1[Qt+1(νt, ωt+1)]. Some other cost terms can be and were added to
the objective function, for instance, cost of spillage, Cs - a useful tool to avoid
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degenerate intermediary solutions and slow convergence of SDDP. Constraints
(3-1f) bound the power generation, representing the physical limitation of
generators and fuel source availability. The power flow is bounded in (3-1d)
through its absolute value. These power limits of the lines represent thermal
limits and stability limits. Constraints (3-1b) implements Kirchhoff’s Current
Law (KCL), which refers to power balance at each node. Deficit variables
guarantee feasibility in case of a lack of power availability. An important
variable in an economic dispatch problem is the marginal cost of energy at each
bus, which is determined by the optimal value of the dual variable associated
with constraint (3-1b). This value is also referred to as a shadow price, local
marginal price (LMP), or nodal price: the cost of an extra unit of energy in
a bus. The water mass balance equation is implemented in (3-1c), where the
water stored at a reservoir should equal the water previously stored plus the
incoming inflows and water discharged from upstream reservoirs, minus the
portion used to generate energy and the one spilled away. Constraints (3-1g)
and (3-1h) bound respectively the volume of water stored and the amount
of water used in generation. These limits are defined by the capacity limit
of the storage facility and the equipment installed. Finally, expression (3-1k)
represents a feasibility set used to model all network models considered in this
work. The characterization of this set to represent the different network models
is made in the following sections.

3.1
AC network power-flow constraints

Problem (3-1) implements the active power flow constraints of a system
ignoring the constraint (3-1k). More complete power-flow equations may be
drawn from the pi-section equivalent model that represents electric elements
which interfere in line energy flow. This model is shown in Figure 3.1. The
complex parameters G(n,m)t + =B(n,m)t are related to line impedance, while
Gc

(n,m)t + =Bc
(n,m)t relate to the capacitive or inductive characteristic of the

line. These parameters appear in the second Kirchhoff law constraints, defining
the relationship between busses’ voltage and line flow. The other parameters
depicted in this picture, Y s

nt and Y s
mt, relate to the shunt aspects of each bus

and define energy losses at these busses, namely `nt and `mt. Moreover, Observe
that the flow variables are always outgoing from each bus, so f(n,m)t and
f(m,n)t will have opposite signs and might have different magnitudes in the
presence of power-flow losses. The loss value in a given line (n,m) is given by
f(n,m)t + f(m,n)t. A more detailed explanation of this equivalent model may be
found in [38, Chapter 6].
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Figure 3.1: Pi-Section Model

Therefore, in order to fully represent the power flow of a realistic system,
the alternating current constraints in (3-2) must be imposed [26]: Xt ← XAC,t,
where

XAC,t =
{
pt, ft, ut, st, νt, δt, `t

∣∣∣∣ ∃ qt, vt, θt, f qt :

∠vnt = θnt ∀n ∈ N (3-2a)

θnt = 0 ∀n ∈ N0 (3-2b)∑
i∈In

qit − Y sq
nt |vnt|2 −

∑
m∈Nn

f q(n,m)t = 0 ∀n ∈ N (3-2c)

(f(n,m)t)2 + (f q(n,m)t)
2 ≤ F 2

(n,m)t ∀(n,m) ∈ L (3-2d)

(f(m,n)t)2 + (f q(m,n)t)
2 ≤ F 2

(n,m)t ∀(n,m) ∈ L (3-2e)

V nt ≤ |vnt| ≤ V nt ∀n ∈ N (3-2f)

`nt = Y s
nt|vnt|2 ∀n ∈ N (3-2g)

∆θ
(n,m)t ≤ ∠(vntv∗mt) ≤ ∆θ

(n,m)t ∀(n,m) ∈ L (3-2h)

f(n,m)t =
(
G(n,m)t +Gc

(n,m)t

)
|vnt|2+(

−G(n,m)t +B(n,m)t
)
|vnt||vmt|cos(θnt − θmt)+(

−B(n,m)t −G(n,m)t
)
|vnt||vmt|sin(θnt − θmt)

∀(n,m) ∈ L (3-2i)

f(m,n)t =
(
G(m,n)t +Gc

(m,n)t

)
|vmt|2+(

−G(m,n)t +B(m,n)t
)
|vnt||vmt|cos(θmt − θnt)+(

−B(m,n)t −G(m,n)t
)
|vnt||vmt|sin(θmt − θnt)

∀(n,m) ∈ L (3-2j)

f q(n,m)t = −
(
B(n,m)t +Bc

(n,m)t

)
|vnt|2−
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(
−G(n,m)t −B(n,m)t

)
|vnt||vmt|cos(θi − θj)+(

B(n,m)t −G(n,m)t
)
|vnt||vmt|sin(θi − θj)

∀(n,m) ∈ L (3-2k)

f q(m,n)t = −
(
B(m,n)t +Bc

(m,n)t

)
|vmt|2−(

−G(m,n)t −B(m,n)t
)
|vnt||vmt|cos(θn − θm)+(

B(m,n)t −G(m,n)t
)
|vnt||vmt|sin(θm − θn)

∀(n,m) ∈ L (3-2l)

−Qit ≤ qit ≤ Qit ∀i ∈ I
}
. (3-2m)

In this set of constraints, we use the following usual transformation of
the line parameters:

1
R(n,m)t + =X(n,m)t

= G(n,m)t + =B(n,m)t. (3-3)

Constraint (3-2b) fixes reference buses complex voltage angles to zero, as
the remaining angles will be defined accordingly. The magnitude of the complex
voltage is bounded in constraint (3-2f). The upper limit defines a circular
feasible region for each voltage, while the lower limit reshapes the region as a
ring, producing a non-convex feasible region. The branch complex power flow is
formulated in (3-2i), (3-2j), (3-2k) and (3-2l), that are dependent on the voltage
at each end and implement elements of line charging. Angle differences between
buses are bounded in (3-2h). The reason for these limits is to approximate the
transient stability constraints of power flowing in branches. These restrictions
refer to the synchronism among machines at each end of a line. The limits
depend on the equipment installed and the system configuration. Note that
problem induced by (3-2), that is when Xt ← XAC,t in (3-1), better represents
reality, but is a nonlinear and non-convex optimization problem. This issue
will have important implications for our solution approach.

3.2
Network power-flow modeling simplifications

The AC-OPF model is a non-convex non-linear problem (NLP), not sui-
table for the classical SDDP algorithm. Thus, in many applications, convex
approximations and relaxations are used to meet the SDDP convexity hy-
pothesis. At the same time, other reasons have led to the development of
general approximations and relaxations, converting the non-trivial NLP into
tractable convex or linear problems [39]. Such reasons range from the lack of
global-optimality guarantees for local solutions to the need for fast solution
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methods in time-sensitive applications. In general, the proposed formulations
are simplifications of the full AC model, and each one of them focuses on some
particularities of the original problem. As a result, it is relevant to understand
the tradeoff between each approximation quality and model tractability.

The models with relaxations of the nonlinear power flow constraints,
when solved to optimality, provide lower bounds to the original problem
because their feasible sets include all the solutions of the original problem.
Convex relaxations are especially useful because their solutions are globally
optimal for the relaxed problem, and the cuts generated by these relaxations
are valid outer approximations for the real problem. Although there exist
many convex relaxations for the optimal power flow problem, we focus on the
most relevant ones. One simple linear relaxation used in the Brazilian official
dispatch tools (see [4]) is the transportation NFA model. NFA implements
power flow limits for each line but ignores buses power voltage. Consequently,
constraints in (3-2) are not considered, and only the real part of the power flow
equations are modeled. Moreover, in this lossless model, all the energy that is
injected from an arbitrary bus n into a line (n,m), outputs at the receiving
bus m. In other words, we make Xt ← XNFA,t in (3-1) where:

XNFA,t =
{
pt, ft, ut, st, νt, δt, `t

∣∣∣∣ f(n,m)t = −f(m,n)t ∀(n,m) ∈ L
}
, (3-4a)

In the attempt to provide better relaxations, researchers have used an
equivalent model for (3-2) ([21,22,40]). This equivalent formulation, presented
in (3-5), uses an auxiliary variable wnm to represent the product of the voltage
from buses n and m, i.e., wnmt = vntvmt. Therefore, an equivalent description
of the AC power-flow model is as follows:

XAC,t =
{
pt, ft, ut, st, νt, δt, `t

∣∣∣∣ ∃ qt, vt,Wt, f
q
t :

wnmt = vntvmt ∀(n,m) ∈ L (3-5a)

Wt � 0 (3-5b)

|wnmt|2 ≤ wnntwmmt ∀(n,m) ∈ L (3-5c)

V 2
nt ≤ wnnt ≤ V

2
nt ∀n ∈ N (3-5d)

(f(n,m)t)2 + (f q(n,m)t)
2 ≤ F 2

(n,m)t ∀(n,m) ∈ L (3-5e)

∆θ
(n,m)t ≤ ∠(wnmt) ≤ ∆θ

(n,m)t ∀(n,m) ∈ L (3-5f)∑
i∈In

qit − Y sq
nt wnnt −

∑
m∈Nn

f q(n,m)t = 0 ∀n ∈ N (3-5g)

`nt = Y s
ntwnnt ∀n ∈ N (3-5h)
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f(n,m)t =
(
G(n,m)t +Gc

(n,m)t

)
wnnt+(

−G(n,m)t +B(n,m)t
)

w<nmt+(
−B(n,m)t −G(n,m)t

)
w=nmt ∀(n,m) ∈ L (3-5i)

f(m,n)t =
(
G(m,n)t +Gc

(m,n)t

)
wmmt+(

−G(m,n)t +B(m,n)t
)

w<mnt(
−B(m,n)t −G(n,m)t

)
w=mnt ∀(n,m) ∈ L (3-5j)

f q(n,m)t = −
(
B(n,m)t +Bc

(n,m)t

)
wnnt−(

−G(n,m)t −B(n,m)t
)

w<nmt+(
B(n,m)t −G(n,m)t

)
w=nmt ∀(n,m) ∈ L (3-5k)

f q(m,n)t = −
(
B(m,n)t +Bc

(m,n)t

)
wmmt−(

−G(m,n)t −B(m,n)t
)

w<mnt+(
B(m,n)t −G(m,n)t

)
w=mnt ∀(n,m) ∈ L (3-5l)

−Qit ≤ qit ≤ Qit ∀i ∈ I
}
. (3-5m)

Where w<nmt represents the real part of the wnmt variable, and, w=nmt, the
imaginary part.

One of these convex relaxations is the semidefinite programming relaxa-
tion (SDP) that deals with the non-convex constraint (3-5a), composed of the
bilinear product of the voltage variables, by using the fact that it defines a po-
sitive semidefinite matrix with rank 1: wnmt = vntvmt ↔Wt � 0∧rank(Wt) =
1. Proposed in [22], the relaxation comes from removing the rank 1 restriction
resulting in (3-5b).

XSDP,t =
{
pt, ft, ut, st, νt, δt, `t

∣∣∣∣ ∃ qt,Wt, f
q
t :

Wt � 0 (3-6a)

|wnmt|2 ≤ wnntwmmt ∀(n,m) ∈ L (3-6b)

(3-5d)− (3-5m)
}
. (3-6c)

Another relaxation is the Second-Order Cone relaxation (SOC), a non-
linear convex relaxation that is tighter than the linear versions, i.e., its feasible
region is strictly contained inside them. Proposed in [21], this formulation
relaxes (3-5b), and so even further (3-5a), by neglecting the phases of the
voltages and saving only their branch-wise difference and magnitudes. The
result is the following inequality: |wnmt|2 ≤ |vnt|2|vmt|2 = wnntwmmt. The
resulting problem may be specified as a second-order cone formulation, shown
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in (3-7).
XSOC,t =

{
pt, ft, ut, st, νt, δt, `t

∣∣∣∣∃ qt,Wt, f
q
t :

|wnmt|2 ≤ wnntwmmt ∀(n,m) ∈ L (3-7a)

(3-5d)− (3-5m)
}
. (3-7b)

In this regard, the feasible region of the AC formulation, shown in (3-5),
is contained within the feasible region of the SDP relaxation (3-6), which is
contained in the SOC set (3-7) [12,41]. To demonstrate this inclusion order, we
have first reformulated the AC power flow set, XAC,t, defined in (3-2), as (3-5).
In the latter, we considered two additional loose constraints, namely, (3-5c)
and (3-5b), which are always attended in the presence of (3-5a). Then, we
defined the set XSDP,t by dropping expression (3-5a), and defined the set XSOC,t
by subsequently dropping expression (3-5b). Notice that, since SDP defines a
tighter relaxation than SOC and NFA, it provides a better bound to the original
problem. These and other convex relaxations (see [40]) provide alternatives to
approximately solve the original problem in the planning stage. However, they
may give optimistic estimates of the operation and deficit costs. Thus, assessing
the bias produced by these simplifications is of foremost importance.

Instead of relaxing, it is possible to approximate some of the nonlinear
power flow constraints. The linear DC approximation (DC) [24] is a linear
formulation, which partially represents power voltages. To achieve such formu-
lation some assumptions are made: voltage magnitudes are sufficiently close to
the nominal value one, angle differences are close to zero, and line power los-
ses are negligible. When applied to (3-2i) and (3-2k), these assumptions make
f qij = f qji = 0 and fij = −fji = −bij(∠(Vi) − ∠(Vj)). Within these conditions,
the model boils down to a set of linear constraints and active and reactive
power are decoupled. In this context, since the reactive power does not restrict
the feasible set and does not affect the objective function of (3-1), reactive
power variables can be dropped. Therefore, the only left parameter from the
pi-equivalent model is a modifeied B(n,m)t defined in (3-9). The DC power-flow
set XDC,t can be defined as follows:

XDC,t =
{
pt, ft, ut, st, νt, δt, `t

∣∣∣∣∃ θt :

f(n,m)t = −
(
B(n,m)t

)
(θnt − θmt) ∀(n,m) ∈ L (3-8a)

f(m,n)t = −
(
B(n,m)t

)
(θmt − θnt) ∀(n,m) ∈ L (3-8b)

`nt = 0 ∀n ∈ N
}
, (3-8c)
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where we define
B(n,m)t = 1

X(n,m)t
, (3-9)

which is a usual notation used in the literature.
Thus, the DC optimal power-flow model is derived by making Xt ← XDC,t

in (3-1). Still, it is important to notice that, while this model approximates the
feasible region of the AC power flow, it might not include the entire feasible
region. Hence, the global optimum of the AC optimal power flow problem can
be lost. It is worth mentioning that this approximation provides neither an
optimistic view of the problem (like the convex relaxations) nor a pessimistic
one. Empirically, it is a useful model when trying to estimate the operating
costs of well balanced systems complying with the aforementioned assumptions
that give rise to this model.

In order to better approximate the power flow equations, some extensions
to the DC formulation were developed to approximate line losses [42]. One
approximation is the quadratic DC line loss approximation, hereinafter referred
to as DCLL. This approximation can be constructed by first adding an
equivalent constraint to (3-8b): f(n,m)t + f(m,n)t = 0. This constraint, which
defines power-flow loss to be equal to zero, is then changed to comprise
positive losses. To do that, the equality is replaced with an inequality, i.e.,
f(n,m)t + f(m,n)t ≥ line losses1. Since power-flow losses can be defined as
proportional to the quadratic value of the current on a line, and current is
not available in this formulation, the idea behind this approximation is to
use the power-flow as a proxy for the current. The resulting formulation is as
follows:

XDCLL,t =
{
pt, ft, ut, st, νt, δt, `t

∣∣∣∣∃ θt :

f(n,m)t = −
(
B(n,m)t

)
(θnt − θmt) ∀(n,m) ∈ L (3-10a)

`nt = 0 ∀n ∈ N (3-10b)

f(n,m)t + f(m,n)t ≥
G(n,m)t

G2
(n,m)t +B2

(n,m)t
f 2

(n,m)t ∀(n,m) ∈ L
}
, (3-10c)

A better explanation of the quadratic approximation of the line loss for
1This modeling choice creates the possibility of free disposal of energy, as the losses are

not equal to the flow difference, but only smaller than or equal to. However, in general, the
least-cost dispatch found by deterministic single-period models without ramp constraints
are such that losses are minimized. In the literature, some approaches are proposed to
avoid this issue. This and other aspects of the DCLL approximation are discussed in [43].
However, it is beyond the scope of this work to explore these variants. Notwithstanding, it is
relevant to mention that this is a network approximation that may be infeasible as all other
approximations studied in this work. The quality of different policies based on the studied
approximations will be tested in the implementation step based on the accurate AC power
flow model.
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the DCLL approximation can be found in [42].
The PowerModels.jl package, a framework for steady-state power

network optimization, comprises all these and other mathematical program-
ming formulations of the OPF problem. Since PowerModels.jl uses JuMP.jl
to build these formulations, they can be passed to a variety of solvers and
inherit all the features of this mathematical language. PowerModel.jl allows
the user to easily choose an approximation or relaxation, solve it, and con-
sequently discuss and compare the impacts of using different relaxations and
approximations in the economic dispatch problem.

3.3
Assessing the time inconsistency gap

Simplifying the OPF network formulation is still a necessary step to achi-
eve a tractable formulation for the hydrothermal dispatch problem compatible
with efficient solution methods such as SDDP. Planning agents use simplified
models to find the best reservoir levels in medium- and long-term horizons
by computing the cost-to-go functions. For implementing operating decisions,
however, ISOs seek feasible dispatches complying with all the details of the
network. This is done by coupling the simplified view of the future opera-
tion of the system, implicitly considered in the cost-to-go function, with OPF
models with more realistic descriptions of the real network. Unfortunately, in
practice, the simplifications considered in the network model to evaluate cost-
to-go functions are significantly optimistic in comparison to the representation
needed to ensure feasibility. This optimistic bias leads to the implementation
of expensive (sub-optimal) time-inconsistent policies [3].

More specifically, in the case of Brazil and Chile, for instance, ISOs
converge the SDDP algorithm using the transportation NFA model for the
network and couple the second-stage cost-to-go function into a more detailed
model with a more accurate representation of the system. Then, in the next
period, the state is updated with the actual reservoir levels and the same
process is repeated. This rolling-horizon operating scheme produces a hybrid
time-inconsistent policy in which implemented decisions deviate from those
obtained in the planning stage embedded in the cost-to-go function. Hence,
this hybrid and inconsistent implemented policy delivers decisions that are
not optimal, either for the planning problem or for the true optimal policy
fully based on the detailed model. Additionally, this sub-optimal policy has
detrimental effects on the operation of the system. As reported in [3,10], high
operating costs as well as highly volatile thermal generation and distorted spot
prices are observed.
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To evaluate the performance of the time-inconsistent policies induced by
the five approximations for the AC power-flow model presented in Chapter
3, we follow the framework proposed in [3]. According to the previously
described decision process, two different models for the network are used, one
for the planning stage (used to obtain the recourse function) and another for
implementing decisions. The difference between the planning model and the
implementation model in this work is concentrated in Xt. The set used in the
planning phase is denoted as X plan

t , while the one used in the implementation
step is denoted as X imp

t . However, the only result of the planning stage that
is actually used in the implementation phase of period t is the second-stage
cost-to-go function, Qplant+1 .

The process that simulates M scenarios (complete temporal
paths), {x(plan,imp)

t,s }T,Mt=1,s=1, of the implemented inconsistent policy
P
(
{Qplant }Tt=1, {X

imp
t }Tt=1, {ωt,s}

T,M
t=1,s=1

)
is summarised in Algorithm 2.

Algorithm 2: Simulation of the rolling horizon process
Result: {x(plan,imp)

t,s }T,Mt=1,s=1
for s = 1 to M do

Set initial conditions to x(plan,imp)
0,s with ν0

Sample inflow time series {ωt,s}Tt=1
t← 1
while t ≤ T do

Converge SDDP with initial condition νt−1,s of x(plan,imp)
t−1,s ,

Xt ← X plan
t , and store Qplant+1

Solve sub-problem for period t with (x(plan,imp)
t−1,s , ωt,s), using

Qplant+1 and X imp
t , and store x(plan,imp)

t,s .
Update P with x(plan,imp)

t,s and initial conditions for the next
stage, νt,s.
t← t+ 1

end
end

Thus, we can estimate the expected cost of a policy using set X plan
t in the

planning phase and set X imp
t in the implementation model by means of the

following expression:

C̄(plan,imp) = 1
M

M∑
s=1

T∑
t=1

(∑
i∈I

Cit p
(plan,imp)
its +

∑
n∈N

Cδ
nt δ

(plan,imp)
nts +

∑
j∈H

Cs
jt s

(plan,imp)
jts

)
.

(3-11)
Recall that xt = [pt, ft, ut, st, νt, δt, `t]T and in (3-11) we identify the compo-
nents of x(plan,imp)

t,s with the same superscript, (plan, imp).
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Notwithstanding, the procedure summarised in Algorithm 2 is very time
consuming and imposes a significant computational burden through the series
of planning and implementation steps in this rolling-horizon fashion. To avoid
that while simulating inconsistent policies, we use the Fast Algorithm also
proposed in [3]. This algorithm alternates the network representations in the
forward and backward passes of a single SDDP run. While the backward pass
improves the cost-to-go functions that would be obtained in the planning
phases (with Xt ← X plan

t ), the forward pass emulates the implementation
process and samples new states considering the more detailed implementation
model (with Xt ← X imp

t ). The result of this fast algorithm is a set of cost-to-
go functions well approximated on the relevant points that would be visited
in the implementation phase. Therefore, a final out-of-sample simulation
to obtain a representative sample of decisions, {x(plan,imp)

t,s }T,Mt=1,s=1, of policy
P
(
{Qplant }Tt=1, {X

imp
t }Tt=1, {ωt,s}

T,M
t=1,s=1

)
can be carried out using the cost-to-go

functions of this fast algorithm.
It is important to mention that the aforementioned fast algorithm is a

modified version of the SDDP algorithm that can not rely on the standard
stopping criterion based on upper and lower bound convergence [2]. This
is because the lower bound is obtained with a different, in general, relaxed
model of the system in comparison to the model used in the upper bound
assessment. Therefore, in [3], a new stopping criterion, based on the lower
bound and upper-bound moment stabilization is proposed. In this algorithm,
an evaluation process is carried out for specific iterations, namely, K, which are
specified by the user. For instance, in [3,5] and [10], K = {1000, 1100, 1200, ...}.
The fast algorithm proposed in [3] is summarised in this work as Algorithm
3. To ease the notation, the Kth approximation of the cost-to-go function is
denoted as {Qplan,Kt }Tt=1. We also denote Kprev = max{k ∈ K | k < K} to refer
to the iteration wherein the previous evaluation process was performed.

Algorithms 2 and 3 are general algorithms to simulate a po-
licy based on different network models, X plan

t for the planning phase
and X imp

t for implementation step, while expression (3-11) provi-
des an estimation of the cost of this policy. To quantify the time-
inconsistency gap however, we compare the cost of the inconsistent policy,
P
(
{Qplant }Tt=1, {X

imp
t }Tt=1, {ωt,s}

T,M
t=1,s=1

)
, with the cost of the respective refe-

rence planning policy2, P
(
{Qplant }Tt=1, {X

plan
t }Tt=1, {ωt,s}

T,M
t=1,s=1

)
. Hence, the

2It is worth emphasizing that the results of planning policies might be infeasible in
practice. Therefore, the planning policies relying on strong simplification assumptions are
only useful for allowing ISOs and planners to estimate the opportunity cost of the water
(or other scarce resources) and for comparison purposes. In this sense, one should not
use planning results in practical studies for regulatory or investment assessments. The
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Algorithm 3: Approximating rolling horizon process with a fast
algorithm

Result: {x(plan,imp)
t,s }T,Mt=1,s=1

K ← 0, converged← False, P ← ∅
while not converged do

Initialize xK0 with ν0.
/* Evaluation step and Convergence Test */
if K ∈ K then

Initialize xeval,K0 with ν0.
Sample M inflow time series {ωevalt,s }Tt=1
for t = 1 to T and s = 1 to M do

Solve sub-problem for period t with (xeval,Kt−1 , ω
(eval)
t,s ), using

Qplan,Kt+1 and X imp
t , and store xeval,Kt,s .

end
Calculate C̄(plan,imp)

K defined in (3-11) with xeval,Kt,s .
if K > min{K} then

if LBK

LBKprev ≤ 1.01 & T-test(C̄(plan,imp)
K ,C̄(plan,imp)

Kprev ) then
converged = True

end
end

end
/* Forward Pass */
Sample an inflow time series {ωt}Tt=1
for t = 1 to T do

Solve sub-problem for period t with (xKt−1, ωt), using Q
plan,K
t+1

and X imp
t , and store xKt .

end
/* Backward Pass */
{Qplan,K+1}Tt=1 ← {Qplan,K}Tt=1
for t = T to 2 do

for ωt ∈ Ωt do
Solve sub-problem for period t with (xKt−1, ωt), using
Qplan,K+1
t+1 and X plan

t

end
, and store the objective value and dual vector for the
backward scenario ωt.

end
Calculate new Bender’s cut.
Update the approximation of the cost-to-go function with the
new Bender’s cut.

end
LBK ← objective value of the first stage problem.
K ← K + 1
/* Final Simulation Step */
Sample M inflow time series {ωt,s}Tt=1
for t = 1 to T and s = 1 to M do

Solve sub-problem for period t with (x(plan,imp)
t−1 , ωt,s), using

Qplan,Kt+1 and X imp
t , and update P with x(plan,imp)

t,s .
end
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time-inconsistency gap measures the hidden cost of neglecting constraints of
the implementation problem in the planning phase. It can be seen as the
operator’s regret with respect to its planning expectations. More importantly,
it allows ISOs to detect and quantify the impact of the inconsistencies induced
by a given simplification without the need of simulating the full, and possibly
currently intractable, policy based on the more complex network model. The
time-inconsistency gap proposed in [3] is adapted to the notation of this work
as follows:

GAP = C̄(plan,imp) − C̄(plan,plan) (3-12)

3.4
Open-source Julia package: HydroPowerModels.jl

Solving a hydrothermal dispatch problem depends on the complex and
not always easily available SDDP algorithm. A number of programs implemen-
ting SDDP are in-use around the world, ranging from unpublished implemen-
tations in academic institutions to professional software such as the product
developed by PSR, a software and consulting company, also called SDDP3

[44]. However, until recently, there was no fast, reliable, and open-source im-
plementation of the SDDP algorithm. Without such a tool, researchers and
practitioners have not had a common ground for the discussion and analysis
of different hydrothermal dispatch formulations and their solutions.

One of the contributions of this work is an open-source tool, called
HydroPowerModels.jl, that can be this common ground. HydroPowerModels.jl
can be used to assess the impact of modeling choices during the planning of
a hydrothermal power system. These choices include the usage of different
network formulations, the consideration of different risk measures, and the
planning horizons for uncertain future costs. Addressing these issues provides
the research community and the energy industry with a powerful tool for the
efficient design of hydrothermal power systems.

To develop a tool that can be used by both researchers and industry pro-
fessionals, we take advantage of the Julia language [15] and two main packages:
PowerModels.jl [16], which implements power flow models for electrical dis-
patch, SDDP.jl [18], which implements the stochastic dual dynamic program-
ming algorithm. Both PowerModels.jl and SDDP.jl handle their respective

inconsistent policy, derived as a more realistic chained planning-and-implementation process
(as per Algorithm 2 or approximation schemes such as Algorithm 3) offers more accurate
estimates for future decisions than the related planning policy.

3Note that the “SDDP” acronym is used to denote a software product, the original
algorithm of [2], and a more general class of algorithms inspired by the original SDDP
algorithm.

https://github.com/andrewrosemberg/HydroPowerModels.jl
https://github.com/lanl-ansi/PowerModels.jl
https://github.com/lanl-ansi/PowerModels.jl
https://github.com/odow/SDDP.jl
https://github.com/lanl-ansi/PowerModels.jl
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optimization models through JuMP.jl [20], a Julia package for mathematical
optimization. JuMP.jl makes it simple to write optimization problems and
solve them with numerous solvers. HydroPowerModels.jl takes advantage from
the fact that PowerModels.jl and SDDP.jl were not only developed in Julia,
but also deeply rely on JuMP.jl to build and solve mathematical optimization
problems. SDDP.jl is used to specify the hydro storage dynamics and stochas-
tics of inflows, renewables and loads. PowerModels.jl is used to provide multiple
network dispatch formulations as a starting point for the HydroPowerModels.jl
formulation that couples the electrical constraints with hydro constraints and
uncertainty.

HydroPowerModels.jl uses the PowerModels.jl and SDDP.jl packages to
implement and solve different hydrothermal dispatch formulations. It provides
an interface to easily solve and simulate hydrothermal dispatch models and
allows the creation of a collection of hydrothermal problems described in
input files for the package (following the PowerModels.jl standard), thereby
helping the discussion of methodology and the resulting policies for specific
case instances.

In contrast to the previously available commercial software for hydrother-
mal dispatch models, the proposed package is part of an academic open-source
effort. This helps to promote the continuous improvement of models and solu-
tion algorithms for the research community.

Other academic implementations of SDDP have been developed and may
be applied to the hydrothermal dispatch problem. However, the advances of
the Julia Language and JuMP.jl are a much more adequate framework than
those of MATLAB [45] or Python [46, 47], with better memory management
and better execution time. Moreover, a free and open-source tool can be of
great help for the research community alternatively to commercial solvers as
[48] and the renowned version from PSR Inc.

More implementations of SDDP are also available in Julia [49] [50], but
SDDP.jl [18] has proven an easy to learn, efficient version of SDDP that is
flexible enough for the purposes of the HydroPowerModels.jl package.

HydroPowerModels.jl is composed of different and useful functionalities,
from compact case sharing to dispatch solution results visualizations. A work-
flow of simple usage of the package helps to give a basic overview:

– Load case data from input files describing: Power network data; Reservoir
facilities details and water network data; Inflow scenarios.

– Set case parameters: Power network formulation; Number of stages;
Number of hours in Stage and optimizer to solve the sub-problems.

https://github.com/JuliaOpt/JuMP.jl
https://www.psr-inc.com/softwares-en/
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– Build the multistage, hydrothermal steady-state power network optimi-
zation problem.

– Run SDDP method to approximate the cost-to-go functions.

– Simulate the policy.

A code example is presented in Appendix B to help clarify the usage of
the package. Although, for a more extensive tutorial of the package, detailed
documentation is made available in https://andrewrosemberg.github.io/
HydroPowerModels.jl/latest/.

In the next chapter, we will simulate and assess the inconsistency cost
for some case studies using the HydroPowerModels.jl we just presented.

https://andrewrosemberg.github.io/HydroPowerModels.jl/latest/
https://andrewrosemberg.github.io/HydroPowerModels.jl/latest/
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4
Case Studies

In this chapter, the quality of the five approximations for the network
constraints under study are compared. The time inconsistency gap, (3-12), and
other relevant operative indexes such as reservoir levels, thermal generation,
and spot prices are studied to provide a more in-depth understanding of the
differences among them.

The inconsistent policies will be denoted according to the pair of network
models used in the planning and implementation phases, respectively. In this
work, all policies are evaluated under the same basis, with the most accurate
network formulation in the implementation model, namely, the AC power-flow
model (3-2). Thus, for instance, the policy that uses in the planning phase
the transportation NFA model is named NFA-AC inconsistent policy. Fol-
lowing this idea, in this work we compare the following policies: NFA-AC
inconsistent policy; SOC-AC inconsistent policy, SDP-AC inconsis-
tent policy, DC-AC inconsistent policy, and DCLL-AC inconsistent
policy. Finally, to estimate the time-inconsistency gap, we will also assess
the cost for the planning policies, namely, the NFA planning policy, SOC
planning policy, the SDP planning policy, the DC planning policy, and
the DCLL planning policy, each of which relying solely on their respective
relaxations.

4.0.1
Simple 3 Bus Case

As a case study, we use the three-bus system from [3] to illustrate the
effects of the underlying policies. Figure 4.1 shows the system network of this
case. Inflow scenarios are generated in the same manner as in [3]. The planning
horizon is 48 periods and the number of hours at each stage is 730 (one month).
We denote this case as "3-Bus Case".

In this system, there are two thermal generators and a hydro plant.
Generators G1 and G2 have, respectively, maximum capacity of 100 MWh
and 50 MWh, and costs $20/MWh and $100/MWh. The hydroelectric unit
has no cost, maximum dispatch (U) of 80 MWh, maximum volume (ν) of 150
MWh and 50 MWh of initial volume (ν0). The production factor ρ is 1 (MWh/
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Figure 4.1: Network Grid graph

(m3)) and there is no spillage cost (Cs). Consider a single constant demand
(D) at bus 3 to be equal 100 MW, lower and upper voltage limits (V and V )
to be the same at all buses and equal to 0.9 p.u. and 1.1 p.u. respectively, and
cost of deficit (Cδ) to be equal $1000/MWh. As in the original case, we set
reactances (X) of transmission lines L1, L2, and L3 to be equal to 1 p.u., 0.5
p.u. and 1 p.u., respectively, assuming nominal values of 100 MVA and 138 kV.
Resistances (R) are set to 0.065 p.u., 0.025 p.u., and 0.042 p.u., respectively.
The absolute angle limit (∆θ and ∆θ) for each line is 1.0472 (rad). Maximum
power flows (F ) are considered as 100 MW, 65 MW, and 25 MW for lines 1
to 3, respectively.

Table 4.1 shows the following information: column 1 depicts the names
of the inconsistent policies as per their models (planning and implementation);
column 2 presents the cost of the related planning policy; column 3 presents
the inconsistent implemented policy; columns 4 and 5 present the time-
inconsistency GAP in both absolute and relative units, respectively; column
6 provides the P-value for T-test for difference of means applied to the GAP
(with null hypothesis that the GAP = 0); and finally, column 7 shows the
computing times of Algorithm 3 disregarding the final simulation step time.

Policy
(plan,imp)

Planning
(106$)

Implementation
(106$)

GAP
(106$)

GAP
(%)

P-value Time
(min.)

NFA-AC 43.2317 54.7234 11.4917 26.4 < 10−6 51.4
SOC-AC 45.0477 54.9197 9.87199 21.7 < 10−6 93.8
SDP-AC 45.4524 48.2853 2.83291 6.1 < 10−6 130.9
DC-AC 43.3940 48.8891 5.49508 12.5 < 10−6 54.9

DCLL-AC 45.4158 48.0700 2.6500 5.68 < 10−6 32.18

Table 4.1: 3-Bus Case: Summary of results for planning and implementation
policies.
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The first important remark from table 4.1 is that the GAP increases with
the simplification (relaxation) level. This indicates that the more optimistic one
is in the planning phase, the higher will be the regret, i.e., the deviation of the
implementation cost with regard to the planning one. Note that as DC-based
policies are not relaxations of neither the SOC nor the SDP based policies.
For that end, the relaxations are the following: NFA is a relaxation of all the
others, SOC is a relaxation of the SDP, and DC is a relaxation of the DCLL.

In this table, we also see that the NFA-AC inconsistent policy, having
the simplest planning model, also features the lowest computational burden,
except for the DCLL, which is the main reason why the NFA simplification
is widely adopted in practical studies [4]. This simplification induces high
operative costs in the implementation phase when a AC power flow is used
to simulate the policy.

The SOC-AC inconsistent policy uses a nonlinear convex relaxation
representing losses but features the second-highest GAP. Despite convex, this
formulation is hard to solve and exhibits the second higher computational
burden. Additionally, in this specific 3-Bus case, where the system is composed
of a single cycle, the SOC relaxation is not tight and exhibits the lowest
performance in the implementation phase. This happens because the SOC
relaxation loses precision exactly on the presence of cycles1. Finally, it is
relevant to note that the SOC-AC policy performs worse than the NFA-
AC policy in the implementation phase, despite having a higher cost at the
planning phase. This can be explained by the examination of the cost-to-
go function produced by these two relaxations of the AC power flow model.
Note that despite the difference between the cost-to-go functions produced
by the NFA and SOC models (see Figure 4.2), which is due to the cost of
losses not represented in the NFA model, the derivative of them are quite
close to each other (see Figure 4.3). It is relevant to highlight that the NFA
model provides slightly lower derivatives than the SOC, which produces slightly
higher opportunity costs (water values) for the implementation model. This
explains the lower cost of the NFA-AC policy in comparison to the SOC-AC in
the implementation phase. It also suggests that the SOC approximation might
exhibit very poor performances in the presence of meshed grids.

The SDP-AC inconsistent policy has the tightest convex relaxation
and the second-lowest GAP and cost in the implementation phase. It is relevant
to highlight that the implementation cost of this policy is not higher than
0.5% of the policy featuring the lowest implementation cost (DCLL-AC). This

1It is well-known that under mild conditions, this relaxation is tight for radial systems,
which is not the case of this 3-Bus system [51].
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benefit comes with the cost of the highest computational burden. As will be
further shown, this model proves to be the most coherent and consistent in
terms of operating results.

The DC-AC inconsistent policy performs better than the SOC-AC
and worse than the SDP in terms of expected implementation cost. It is
relevant to note that the DC-AC policy is a competitive policy as it produces
an implementation cost less than 2% higher than the DCLL-AC policy, the
cheapest one. Although it does not model transmission losses, as per Figure
4.3, it is capable of capturing the relevant operative constraints imposed by
KVL constraints and passing opportunity costs to the implementation model
similar to those passed by the SDP model, but under a lower computational
burden. Therefore, this model is competitive and can be seen as an alternative
to the nonlinear SOC and SDP formulations in the presence of meshed systems
with low loss levels.

The DCLL-AC inconsistent policy results indicate the best perfor-
mance in terms of implementation cost, GAP, and computing times. It puts
together the DC model capability of approximating KVL constraints and a
reasonable description of the transmission losses. These results demonstrate a
quadratic approximation can perform better than the nonlinear SDP relaxa-
tion. Additionally, the DCLL quadratic formulation allows solving the problem
much faster than the highly computationally intensive SDP formulation, the-
reby representing an interesting alternative for the SDP approximation in the
presence of meshed grids with non-negligible losses.

To further analyze these results, the expected storage is depicted in
Figure 4.4 and the expected spot prices in Figure 4.5 for all analyzed policies.
This analysis is done in the light of what we observe in the cost-to-go functions
in Figure 4.2 and its first derivatives in Figure 4.3. The solid lines in Figures
4.2 and 4.3 are the output of running the normal SDDP algorithm using the
simplified model in both forward and backward step, and the dotted lines
are the output of the Fast Algorithm where the detailed modeled is used to
choose the trial values. In Figure 4.4, notice that the NFA planning policy
is aggressive in the use of the water and has its reservoir drained when storage
is not needed (within this modeling representation). In the first stage, the
amount of water used from the reservoir is the difference between the dispatch
capacity and the inflow. Its inconsistent counterpart, NFA-AC inconsistent
policy, has the same simplified view of the future, as seen in 4.2 and 4.3, that
ignores the KVL and would also like to dispatch all of its capacity. However,
in the implementation phase, it is constrained by the electric constraint when
operating the system. Thus, the remaining unused water from the inflow is
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Figure 4.2: Stage one approximated cost-to-go functions for the different
planning formulations.

Figure 4.3: Stage one first derivative of the approximated cost-to-go functions.

stored, explaining why the reservoir level rises.
In 4.2 and 4.3, we also observe that the DC planning policy and

the SDP planning policy are aware of the operative difficulties of future
stages caused by electric constraints and, consequently, save the water as
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shown in 4.4. The DCLL planning policy is even more pessimistic and
stores more energy for future stages. Similarly to the NFA-AC inconsistent
policy, the SOC planning policy although representing some nonlinearities
of the AC model such as transmission losses, also drains its reservoir in
both planning and implementation phases. It is noticeable however that the
discrepancy between the planning and implementation levels is significantly
reduced in comparison to the NFA-based policies. As previously explained, in
the presence of cycles, this formulation fails to represent the KVL constraints
and therefore generates optimistic and infeasible dispatches that need to be
compensated with expensive thermal dispatches in the implementation phase.
As a consequence, both NFA-AC and SOC-AC policies exhibit highly volatile
and distorted spot-price profiles with high peaks and valleys as depicted in
Figure 4.5.

In summary, SOC planning policy, DC planning policy, DCLL
planning policy, and SDP planning policy see an incrementally more
accurate approximation of the AC electric constraints in future stages, thus
saving water for the adverse future, as shown in Figure 4.4. Yet, the inconsistent
implementation versions of these policies save less water since their AC reality
is relatively harder than the simplified view provided by the approximations.
Moreover, as we see in Figure 4.5, the marginal cost profiles, and thereby the
dispatches, are still different in the implementation phase in comparison to
the planning phase. This happens even for SDP-based policies, wherein the
storage management is nearly the same on average as shown in Figure 4.4.

According to Figure 4.5, significant structural differences are found in the
average dispatch between the respective planning and implementation policies.
This stems from the fact that additional and expensive dispatches are needed
to compensate the optimistic view of the approximations in critical states
(low reservoir levels). In the same Figure 4.5, the NFA planning policy
presents the lowest prices, as expected for an infeasible relaxed problem,
which uses water resources as if no electrical constraints exist. The SOC
planning policy has the second-lowest price given that it does not provide
accurate representations of the network in the presence of cycles. In the sequel,
the DC planning policy, SDP planning policy, and DCLL planning
policy still provide a simplified version of the true network, albeit their
representation are capable of considerably reducing the spot-price spikes. This
better behaved spot-price profiles stems from the better representation of
the electrical constraints, which although more expensive in the planning
phase, allows the system to achieve better states in the implementation phase.
Furthermore, the more inconsistent is the policy, the higher are the spot-price
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Figure 4.4: Expected Reservoir levels with time inconsistency due to simplifi-
cations in transmission-line modeling.

spikes. This can be seen by comparing the SDP-AC inconsistent policy,
the SOC-AC inconsistent policy, and the NFA-AC inconsistent policy
which, in this order, incrementally relax the electric constraints in the planning
stage. Notice that the SOC planning policy and the SOC-AC inconsistent
policy differ here since the electrical operation provided by the planning policy
is infeasible even though it has found an implementable storage management
schedule in the average. In this case, the risk of infeasible states is high and
when the quantiles are analysed, significant differences are found.

4.0.2
5 Bus Case: Brazil With a Reduced Equivalent Network Grid and Reser-
voirs

In order to further analyse the impacts of time inconsistency due to
network formulations we now use a reduced model equivalent to the Brazilian
national grid and reservoir system. This case is based on [1, 3, 52].

In this model, the water reservoirs have been aggregated into four
separate storage units located in different subsystems. These subsystems are
called Southeast (SE), South (S), Northeast (NE), and North (N) subsystems
and are represented as nodes in our equivalent model.
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Figure 4.5: Expected Spot Price with time inconsistency due to simplifications
in transmission-line modeling.

We use 25 inflow scenarios derived from monthly historical data for 25
years between 1931 and 2013 in Brazil, each having equal probability. The
planning horizon and length of scenarios spans 84 months (7 years).

Besides this hydro-generation capacity, there are 95 thermal generators
distributed across the system. Moreover, the subsystems are interconnected by
multiple branches which were aggregated into five interfaces and a transship-
ment node (called "Imperatriz"). The layout of the grid is presented in Figure
4.6.

Table 4.2 shows the following information: column 1 depicts the names
of the inconsistent policies as per their models (planning and implementation);
column 2 presents the cost of the related planning policy; column 3 presents
the inconsistent implemented policy; columns 4 and 5 present the time-
inconsistency GAP in both absolute and relative units, respectively; column
6 provides the P-value for T-test for difference of means applied to the GAP
(with null hypothesis that the GAP = 0); and finally, column 7 shows the
computing times of Algorithm 3 disregarding the final simulation step time.

The first important remark from 4.2 is that the NFA-AC inconsistent
policy, having the simplest planning model, features the lowest computational
burden for this case. It is clear that, as the system grows and its optimal power
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Figure 4.6: Brazilian Energy Subsystems Schematics. Source: [1]

Policy
(plan,imp)

Planning
(106$)

Implementation
(106$)

GAP
(106$)

GAP
(%)

P-value Time
(min.)

NFA-AC 11, 685.0 83, 311.4 71, 626.4 870.952 < 10−6 189.052
SOC-AC 46, 463.3 46, 383.3 −80.04 −0.17 0.999 477.415
SDP-AC 46, 427.0 46, 374.0 −52.98 −0.091 0.984 930.256
DC-AC 45, 221.1 46, 545.1 1, 324.02 3.0 < 10−6 328.282

DCLL-AC 46, 281.5 46, 338.5 56.98 0.23 0.0142 468.194

Table 4.2: Brazil: Inconsistent and Planning Policy Cost Comparison (106$).

flow solution becomes more complex, no other simplification is able to compete
with the NFA relaxation in terms of computational cost. This simplification
induces high operative costs in the implementation phase when a AC power
flow is used to simulate the policy and the NFA-AC inconsistent policy
has an even worst result than in the small 3-bus case.

In this table, we also see that the convex relaxations (SOC and SDP)
produce optimal policies and result in GAPs with mean indistinguishable
from zero (as shown by the P-value from the t-test). These relaxations are
tight for radial systems [51] and systems where cycles don’t impact much on
the dispatch, such as this Brazilian reduced system. Once again, the SDP-
AC inconsistent policy presents the highest computational burden and, the
SOC-AC inconsistent policy with almost half the computational effort to
train the policy, the second highest.
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The DC-AC inconsistent policy performs better than the NFA-AC
and worse than the convex relaxations (SOC and SDP) in terms of GAP and
expected implementation cost. It is relevant to note that the DC-AC policy
is a competitive policy as it produces an implementation cost less than 1%
higher than the DCLL-AC policy, the cheapest one, and a GAP of only 3%.
Having significantly less solving effort than the convex relaxation policies, this
simplification provides an acceptable choice for practical applications.

The DCLL-AC inconsistent policy results indicate the best perfor-
mance in terms of implementation cost. This policy presents the 3rd lowest
GAP and computing time. It puts together the DC model capability of ap-
proximating KVL constraints and a reasonable description of the transmission
losses. These results demonstrate a quadratic approximation can have close
performance to the nonlinear SDP relaxation even in more radial systems. Ad-
ditionally, the DCLL quadratic formulation allows solving the problem much
faster than the highly computationally intensive SDP formulation and slightly
faster than the SOC formulation.

To further analyze these results, the expected storage is depicted in
Figure 4.7, the expected thermal generation in Figure 4.8 and the expected
spot prices in Figure 4.9 for all analyzed policies. In Figure 4.7, we see the
NFA planning policy is capable of maintaining the highest reservoir volume
even though it uses more water, but, when the electric constraints are imposed
in NFA-AC inconsistent policy, this simplified planning results in lower
levels than the other policies. The consequence is a state that incrementally
forces higher thermal dispatches as we can see in Figure 4.8 and, thus, higher
nodal prices shown in Figure 4.9.

In the same figures, we can see that the other simplifications have
very similar dispatches between each other, both in the planning simulations
and in the implementation ones. These formulations present sufficiently good
electric constraints approximations, and sufficiently good power flow loss
approximations for the low loss system without significant cycles in this case.
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Figure 4.7: Brazil: Expected Reservoir levels with time inconsistency due to
simplifications in transmission-line modeling.

Figure 4.8: Brazil: Expected Thermal Generation with time inconsistency due
to simplifications in transmission-line modeling.
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Figure 4.9: Brazil: Expected Spot Price with time inconsistency due to simpli-
fications in transmission-line modeling.
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5
Conclusion

In this work, we estimate and analyze the cost and impact of network sim-
plifications in hydrothermal operation planning problems. The methodology
proposed in [3] is used to evaluate the sub-optimality gap induced by time-
inconsistent policies adopting network simplifications in the planning step. We
extend its results by analyzing the policy planning in five different network
formulations such as the NFA, the SOC and the SDP relaxations and the DC
approximation. The policies optimized with this simplified network formulati-
ons are evaluated in the more constrained and realistic AC network model. To
facilitate reproducibility, we have developed and made available an open-source
tool called HydroPowerModels.jl.

Through case studies, our results show that time inconsistency may result
in unpredictable behavior, extending the findings in [3]. We see the dangerous
consequences of ignoring the electrical constraints as it is done in the Network
Flow Approximation Model, such as high price spikes hidden from the planning
scope. This adds hidden costs that accumulate over time, causing the actual
cumulative costs incurred during operation to increasingly deviate from the
costs expected during the planning phase.

Moreover, we found that using an approximation of the energy flow
constraint during the planning stage (as done in the DC approximation and the
SDP and SOC relaxations) may significantly reduce the inconsistency impacts.

In light of the results from the case studies, we may conclude the
following:

– The NFA approximation presents on average the lowest computational
burden, but performs poorly in all tested systems and exposes the system
operator to high possibility of regrets due to time-inconsistency gaps,
high costs in the actual implemented dispatches, and highly volatile spot-
price profiles.

– The SOC provides poor approximations and performances in the pre-
sence of cycles (meshed grid), due to its inability to approximate KVL
constraints. In this case, the DC and DCLL provide better approxima-
tions and performances than the SOC formulation. In radial systems
however, SOC is tight to the AC model and thereby performs better
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than the DC model, which disregards losses. Its computational burden
is higher than linear formulations but significantly lower than the SDP
relaxation.

– The SDP planning policy has low inconsistency in both meshed and
radial cases and consequently low distortions in both prices and thermal
generation dispatches. But this benefit comes with a high computational
burden.

– The DC planning policy is a standard and fair approach, performing
reasonably well (small gap and low distortions in prices and dispatches)
in all instances and with a reduced computational burden.

– The DCLL planning policy has the best performance in terms of imple-
mentation cost. It consistently presents small inconsistency gaps with
low distortions in prices and dispatches. The computational burden is
not as reduced as in the DC case, but it is still low. The DCLL-AC
inconsistent policy results indicate the best performance in terms of
implementation cost. This policy presents the 3rd lowest GAP and com-
puting time. It puts together the DC model capability of approximating
KVL constraints and a reasonable description of the transmission los-
ses. These results demonstrate a quadratic approximation can have close
performance to the nonlinear SDP relaxation in meshed or even in more
radial systems. Additionally, the DCLL quadratic formulation allows sol-
ving the problem much faster than the highly computationally intensive
SDP formulation and slightly faster than the SOC formulation.

Those results show the detrimental effect of neglecting more complete
power flow constraints and motivate further research and developments in the
incorporation of detailed electric constraints in planning models.

The DCLL approximation seems a good alternative for the harder to
solve convex relaxation and can bring significant benefits to operation planning
in comparison to the widely used NFA model adopted by operators [4]. It is
in our view that solution methods should be invested to reduce even further
the computational burden of this quadratic approximation. Moreover, further
studies should be done to see how well its assumptions hold for other systems.

Besides the findings of this study, we have delivered a flexible tool to
assess those and other kinds of impacts of planning decisions in a hydrothermal
economic dispatch problem. The open-source HydroPowerModels package
creates a framework for complex analysis that is easy to use and to further
develop. By integrating other high quality and popular packages it ensures
continual upgrade and motivates discussions about this and other similar
applications and packages integration.
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A
Nomenclature

The symbols used in Chapters 3 and 3.2 are defined in this section.

Sets and Indices

N Set of bus indices n or m.

N0 Set containing single reference bus index n or m.

Nn Set of busses connected to bus n.

L Set of directed transmission lines/branches, pairs of buses (n,m).

I, In Set of thermoelectric units i and subset of units at bus n,
respectively.

H,Hn Set of hydroelectric units j and subset of units at bus n, respec-
tively.

HU
j ,HS

j Set of upstream hydroelectric units k out-flowing and spilling to
the hydroelectric unit j, respectively.

Constants

Pit, Qit Real and reactive power bound, respectively, at generator i and
period t.

Cit Linear cost at generator i and period t.

V nt, V nt Upper and lower magnitude voltage limits, respectively, at bus
n and period t.

Dnt Real power demand (load) at bus n and period t.

Y s
nt, Y

sq
nt Shunt real and imaginary admittance at bus n and period t,

respectively.

Cδ
nt Deficit linear cost at bus n and period t.
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Gc
(n,m)t Real part of pi-section parameters at branch (n,m) and period

t.

Bc
(n,m)t Imaginary part of pi-section parameters at branch (n,m) and

period t.

F(n,m)t Apparent power limit at branch (n,m) and period t.

R(n,m)t Resistance at branch (n,m) and period t.

X(n,m)t Reactance at branch (n,m) and period t.

∆θ

(n,m)t Voltage angle difference upper bound at branch (n,m) and
period t.

∆θ
(n,m)t Voltage angle difference lower bound at branch (n,m) and period

t.

νjt Volume limit at hydroelectric units j period t.

νjt−1 Initial volume at hydroelectric units j period t.

Ajt Possible inflows at hydroelectric units j period t.

Ujt Outflow limit at hydroelectric units j period t.

ρjt Production factor at hydroelectric units j period t.

Cs
jt Spillage linear cost at hydroelectric units j period t.

Operators and Special Numbers

= Imaginary unit.

∠(·) Angle of the polar representation of a complex number.

(·)∗ Complex conjugate.

| · | Absolute value.
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Decision Variables

pit, qit Real and reactive power dispatch, respectively, at generator i and
period t.

vnt Complex voltage at bus n and period t.

θnt Phase angle at bus n and period t.

δnt Real power deficit at bus n and period t.

`
(sh)
nt Shunt loss at bus n and period t.

f(n,m)t Real power flow at branch (n,m) and period t.

f q(n,m)t Reactive power flow at branch (n,m) and period t.

ujt Outflow at hydroelectric units j period t.

νjt Volume at hydroelectric units j period t.

sjt Spillage at hydroelectric units j period t.
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B
Usage of HydroPowerModels

The usage of HydroPowerModels.jl follow the paradigms of the Julia
language and the structure of the dependent packages.

In order to access the available functionalities, first import HydroPower-
Models.jl and an adequate solver:

� �
u s i n g H y d r o P o w e r M o d e l s
u s i n g G L P K� �

Load a case by passing the folder containing the input files
(PowerModels.json, hydro.json, and inflows.csv):

� �
d a t a = H y d r o P o w e r M o d e l s . p a r s e _ f o l d e r (

" c a s e 3 _ f o l d e r p a t h " )� �
Use create_param to create a set of problem parameters. For example,

a 12-stage problem using the DC approximation can be specified as follows:

� �
p a r a m s = c r e a t e _ p a r a m (

s t a g e s = 1 2 ,
s t a g e _ h o u r s = 1 6 8 .0 ,
m o d e l _ c o n s t r u c t o r _ g r i d = D C P P o w e r M o d e l ,
o p t i m i z e r = w i t h _ o p t i m i z e r ( G L P K . O p t i m i z e r ) )� �

Then, build the Model and execute the SDDP train method:

� �
m = h y d r o t h e r m a l o p e r a t i o n ( d a t a , p a r a m s ) ;

H y d r o P o w e r M o d e l s . t r a i n ( m )� �
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Finally, simulate the performance of the policy with 1000 Monte Carlo
scenarios:

� �
# S i m u l a t e 1 0 0 0 i n s t a n c e s
r e s u l t s = H y d r o P o w e r M o d e l s . s i m u l a t e ( m , 1 0 0 0 ) ;� �

� �
D i c t { A n y , A n y } w i t h 5 e n t r i e s :

" s i m u l a t i o n s " = > D i c t [ D i c t { A n y , A n y } ( P a i r { A n y , . . .
" d a t a " = > D i c t { A n y , A n y } [ D i c t { A n y , A n y } ( . . .
" p a r a m s " = > D i c t { A n y , A n y } ( P a i r { A n y , A n y } ( . . .
" m a c h i n e " = > D i c t ( " c p u " = > " I n t e l ( R ) X e o n ( R ) . . .
" s o l v e _ t i m e " = > 2 0 5 . 3 1 2 4 7� �
B.1
Case Study

For a case study, consider a the hydrothermal dispatch of a realistic
system with the following specifications:

– Number of buses: 166

– Number of loads: 286

– Number of generators: 145

– Number of branches: 235

In order for a qualitative view of the system, the package disposes a graph
illustration plot:

� �
p l o t _ g r i d ( d a t a , n o d e _ l a b e l = f a l s e )� �

Figure B.1 shows the installed power available in the network (grouped by
bus) using a logarithmic scale. The red nodes represent the thermal generators,
the blue represent the hydro generators. For comparison purposes, orange
nodes have been added that are equivalent to average real power demands.

As we can see from the plot of the grid B.1, this appears to be a
well balanced case, with similar installed hydro and thermal power capacity
and with a reasonable average demand. In addition, it is a well distributed
network, without any evident critical sections susceptible to impacting power
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Figure B.1: Network Grid graph

flow problems. Those facts are indications of a significant hydro-generation
optimal dispatch without large complications.

For this study, a 52 stage horizon planning and simulation have been
executed using the following case parameters:

– Number of stages: 52

– Number of hours in stage: 168

– Network Formulation: Transportation model relaxation

B.2
Results

The simulate command returns a detailed dictionary of the exe-
cution. In order to plot those results returned by the simulate func-
tion, you may choose from a variety of methods, including the function
plot_aggregate_results(). This function receives the dictionary results and
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generates the most common aggregated variable plots, which best summarize
simulations of a hydrothermal dispatch:

� �
p l o t _ a g g r e g a t e d _ r e s u l t s ( r e s u l t s )� �

Figures 2 to B.9 show the output from the above command. As mentio-
ned, the plots are of aggregated quantities, but the methods used to aggregate
were chosen in order to help analysis. For example: the final nodal price is an
average of nodal prices weighted by the contribution of local loads to the total
demand; reservoir volume was grouped weighted by the amount of energy that
could be produced by the stored water (as was the inflow of water).

As expected the optimal dispatch of the simulations uses more hydro-
generators, however it needs thermal-generators to met all demands without
deficit. On this hydro-dominated system, the uncertain inflow is a driving
factor of optimal dispatch. As we can see in Figure B.9, the inflow has a strong
seasonality component, resulting the significant seasonality trait observable in
the variables of the policy simulations. 2-B.3, B.5-B.8.

Similar studies are possible for any case and formulation chosen, helping
to analyze existing realistic cases and assess impacts of future system changes.

Measuring the impacts of possible simplifications is a needed step in
discussing hydrothermal economic dispatch. HydroPowerModels.jl intends to
provide a common ground for discussions and analysis and a easy to use tool
for research and applications.
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Figure B.2: Thermal Generation

Figure B.3: Load Weighted Average Nodal Price
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Figure B.4: Deficit

Figure B.5: Hydro Generation
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Figure B.6: Reservoir Outflow

Figure B.7: Reservoir Spillage
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Figure B.8: Volume Reservoir

Figure B.9: Inflow
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