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Abstract

Cantini, Camillo Vianna; Valladão, Davi Michel (Advisor); 
Fer-nandes, Betina Dodsworth Martins Froment (Co-Advisor). 
Portfolio Selection Incorporating Macroeconomic Views 
Using Black-Litterman Model. Rio de Janeiro, 2019. 39p. 
Dissertação de mestrado – Departamento de Engenharia 
Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

Black and Litterman proposed a portfolio selection model that blends
investor’s views on asset returns with market equilibrium concepts to con-
struct optimal portfolios. However, the model efficiency relies on the perfor-
mance of investors’ views regarding tradable assets, which is challenging in
practice. Focusing on improving Black-Litterman practical application, this
work consists in providing new allocations based upon views on macroe-
conomic factors, which are largely available but not directly tradable. The
main advantage is that predictions on these factors are usually provided
by market players. A case study based on the information disclosed by
the Brazilian Central Bank is presented to test the proposed framework.
The out-of-sample risk-adjusted returns obtained incorporating the play-
ers’ macroeconomic expectations through the use of the proposed frame-
work outperformed the traditional mean-variance model as well as the local
benchmark.

Keywords
Portfolio Selection; Black-Litterman Model; Macroeconomic Views;

Finance.
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Resumo

Cantini, Camillo Vianna; Valladão, Davi Michel; Fernandes, Be-
tina Dodsworth Martins Froment. Seleção de Portfólio Incor-
porando Visões Macroeconômicas Utilizando o Modelo
Black-Litterman. Rio de Janeiro, 2019. 39p. Dissertação de Mes-
trado – Departamento de Engenharia Industrial, Pontifícia Univer-
sidade Católica do Rio de Janeiro.

Black e Litterman propuseram um modelo de seleção de portfólio que
combina a visão dos investidores acerca de ativos com conceitos de equilíbrio
de mercado para construir portfólios ótimos. Entretanto, a eficiência do
modelo depende da qualidade da visão futura acerca do retorno dos ativos,
o que é desafiador na prática. Com o objetivo de melhorar a aplicação
prática do modelo Black-Litterman, o foco desse trabalho é viabilizar novas
alocações com base em visões de fatores macroeconômicos que estão fora do
universo de alocação. A principal vantagem é que a previsão desses fatores é
amplamente fornecida por agentes de mercado. Um estudo de caso baseado
nas informações disponibilizadas pelo Banco Central do Brasil é apresentado
para validar a estrutura proposta. Os retornos obtidos fora da amostra e
ajustados ao risco incorporando a visão de fatores macroeconômicos com a
estrutura proposta superaram o modelo de média-variância tradicional e o
benchmark local.

Palavras-chave
Seleção de Portfólio; Modelo Black-Litterman; Visões Macroeconô-

micas; Finanças.
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0 - is an elements 0 vector or a matrix
σ - is the portfolio standard deviation
ss - is the sample size
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“It had long since come to my attention that
people of accomplishment rarely sat back and
let things happen to them. They went out and
happened to things.”

Leonardo da Vinci, .
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1
Introduction

Goldfarb and Iyengar [2003] define the portfolio selection process as a
problem where the investor wants to allocate his capital in order to maximize
his returns and minimize his risks. The Markowitz model (Markowitz [1952])
was the first mathematical model to achieve relevance on this subject. In
that work the investor’s return was represented by the expected return of the
portfolio and it’s risk represented by the overall portfolio variance. By solving
the risk minimization problem, given a minimum target return, the investor
would obtain his optimal allocation. Using this mean-variance framework,
every investment decision could be taken considering the assets expected
returns and covariances.

Despite presenting an intuitive framework for handling risk-return re-
lationship, the Markowitz model is avoided in practical applications. Some
authors attribute this to intrinsic estimation errors (Michaud [1989], Michaud
et al. [2013] and Idzorek [2002]). In order to address the estimation issue it
is possible to use a robust approach developed in Soyster [1973], Ben-Tal and
Nemirovski [1998], Ben-Tal and Nemirovski [1999], Ben-Tal and Nemirovski
[2000], Bertsimas and Sim [2004] and Fernandes et al. [2016] or a re-sampling
one developed in Michaud [1989] and Michaud et al. [2013] to minimize those
errors.

Black and Litterman [1992] indicate that the Markowitz model is also
avoided because it’s outcomes many times are hard-to-explain corner solutions,
and also because investor’s perceptions play no role in it. To address these
issues Black and Litterman [1992] propose a simple approach that enables
investors to combine their beliefs regarding securities’ performance with market
equilibrium allocation.

The Black-Litterman framework (Black and Litterman [1992], Satchell
and Scowcroft [2000], Walters [2011] and Cheung [2009]) enables investors
to blend their subjective views on securities returns with market equilibrium
returns using a simple formula to achieve optimal balanced portfolios. We
see extensions of the model in the literature, and we highlight: Fusai and
Meucci [2003] which removes the τ parameter from the model, Meucci [2006]
whose work continues the previous extension, Idzorek [2002] that proposes the

DBD
PUC-Rio - Certificação Digital Nº 1621706/CA



Chapter 1. Introduction 15

use of an intuitive investor confidence parameter C instead of the covariance
matrix for the views Ω and Krishnan and Mains [2005] which develop the
prior returns estimation including factors other than the market risk premium.
But the Black-Litterman model, praised for its simplicity, is often criticized
for two issues: (i) being insensitive to historical data; and (ii) lacking of an
organized framework for setting the investors’ views. Both Zhou [2009], who
proposes mixing the historical returns with the Black-Litterman returns, and
Michaud et al. [2013], who criticizes the model for reaching a previously wanted
portfolio and proposes his alternative model for handling estimation errors,
address (i). Fernandes et al. [2018] who proposed a mixed use of historical
returns and fundamentalist data to set securities views, and Cheung [2013]
who proposed views based on linear factors which explain securities returns,
are good empirical applications that address (ii).

1.1
Contributions

We propose a further extension of the Black-Litterman model, motivated
by the same idea of the factor-based approach presented by Cheung [2013].
The model proposed by Cheung [2013] has the drawback of associating views
to factors only after establishing a linear factor model for the returns.

The proposed Macrofactor Black-Litterman model (MBL) does not re-
quire a return modelling step, avoids the use of Black-Litterman parameters
τ and δ1, and enables the use of views on non-tradable factors (which may
be easier to obtain) to update tradable securities expected returns and covari-
ance matrix, relying on their relationship with tradable securities (measured
by their correlations) to improve the results. In the proposed model an investor
does not have to be concerned about modelling returns, and is able to blend
his views on macroeconomic factors to obtain an updated allocation, which is
an advantage when compared to the approach presented in Cheung [2013].

With the MBL model our objective is to present an alternative framework
for investors to incorporate expectations on macroeconomic factors to their
portfolio allocation. We summarize the main contributions of this thesis as
follows:

1. This novel framework allows views on factors to be incorporated even
when there is no explicit linear factor model linking the factors to the
securities returns. Among these factors, we highlight those related to

1τ is the constant of proportionality between assets returns covariance matrix and assets
expected returns covariance matrix and δ is the risk aversion parameter defined in the
CAPM.
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macroeconomics, which have many predictors available on the market-
place.

2. We develop a framework for setting views based on the public data of
macroeconomic indicators available on the Brazilian Central Bank (BCB)
database. This framework based on historical information does not make
use of market or equilibrium information for the priori returns and avoids
parameters τ and δ.

3. Our proposed MBL model was tested in a case study based on Brazilian
financial data provided by BCB to set the views. The results show that
the MBL model generates greater out-of-sample risk-adjusted returns
compared to some chosen benchmarks.

1.2
Organization

This thesis is organized as follows. In Chapter 2 we show a brief review
of the Black-Litterman model, starting with the modelling of the returns, then
how views are incorporated and finally the optimization framework.

In Chapter 3 we describe our proposed model. In Chapter 4 we present
a case study using Brazilian financial market data where views are set with
BCB information. The conclusion are finally presented in Chapter 5.

1.3
Assumptions and Notation

Throughout this thesis, we use bold-faced capital letters to indicate ma-
trices (Σ,Ω, ...), bold-faced lowercase letters to indicate vectors (µ,π, ...) and
ordinary letters for scalars numbers (τ, n, ...). Vectors and matrices dimensions
are shown in brackets ([n × 1], [n × n], ...). The symbols ˆ and ˜ are used to
denote estimates and random variables respectively. The subscript t is used to
denote that the variable is on time step t. We use the Black-Litterman nota-
tion as presented in Satchell and Scowcroft [2000], Cheung [2009] and Walters
[2011].

For application purposes, we assume the portfolio investment decision is
made before knowing the values taken by uncertain parameters. For instance,
let m̂t be the vector of expected returns of the securities on the investment
universe between step time t and t + 1; it shall be based on the information
available up to time t.

We consider a daily allocation based on one-period step in a rolling
horizon scheme. Let wt be the allocation vector made at the beginning of
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Chapter 1. Introduction 17

day t. Considering m̂t (which is a one-step ahead forecast) for maximizing the
portfolio return wT

t m̂t. Afterwards, we test this allocation in an out of sample
one-step-ahead analysis. Let rt be the realized return on time step t.The time
frame diagram is presented in Figure 1.1.

Figure 1.1: Time frame diagram
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2
The Black-Litterman model

The model, which was first published by Black and Litterman [1992],
focuses on helping investors input their views on asset returns to their
allocations using the framework of mixed estimation proposed by Theil and
Goldberger [1961] to be blended with prior returns estimates based on market
return assumptions. This process is analogous to a Bayesian update1.

Black and Litterman [1992] did not describe a formulation of the model
in their work, but gave instead a rationale and the mathematical intuition
beneath it. He and Litterman [2002] provide further detail on the model and
present a simple and intuitive working example to show the logic of the results
obtained.

Satchell and Scowcroft [2000] explain the model and derive a full formu-
lation to it based on the available information. However, they did not consider
the prior returns to be distributions and found a little different final formula-
tion for the model. Firooyze and Blamont [2003] presented the full formulation
and discussed the intuition of the parameter τ . This parameter was removed
in the extension proposed by Fusai and Meucci [2003] and later developed by
Meucci [2006] where he presents his alternate copula-opinion pooling approach.
Idzorek [2002] presented another extension of the original model which sug-
gested the use of a confidence parameter C to mix the prior and the posterior
estimates, and thus avoiding the use of the views covariance matrix Ω.

Full reviews of the model and some of its extensions are presented in
the works of Walters [2011] and Cheung [2009]. Zhou [2009] proposed mixing
historical data with the posterior returns to improve his estimates; Fernandes
et al. [2018] presented an investment strategy for the Brazilian stock index
setting views based on past returns and price-earnings ratio; and Cheung
[2013] presented a mix of the Black-Litterman model with multi-factor return
modelling enabling a factor instead of security view to be incorporated.

1The model could also be derived from the Bayesian perspective.
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Chapter 2. The Black-Litterman model 19

2.1
Modelling the securities returns

Suppose there are n securities in the universe with a random return vector
given by r̃[n×1]. Considering the returns follow a normal distribution, r̃[n×1] has
the distribution:

r̃ ∼ N(µ,Σ) (2-1)
where µ[n×1] is the vector of means and Σ[n×n] is the covariance matrix.
Consider one shall not have µ[n×1] nor Σ[n×n], and use the estimates π̂[n×1]

(which covariance matrix is Σ̂π[n×n]) and Σ̂[n×n] instead. As an estimate, µ[n×1]

has the following distribution:

µ ∼ N(π̂, Σ̂π) (2-2)
Therefore, we have the following distribution for r̃[n×1]:

r̃ ∼ N(π̂, Σ̂ + Σ̂π) (2-3)

2.2
Incorporating investors views

Assuming an investor has k views regarding market securities based on
his private perception, let ỹ[k×1] be the vector of investors updated view on
returns estimates, which can be expressed as a linear combination of the returns
r̃[n×1]

P r̃ = ỹ + ε̃ (2-4)
where P [k×n] is the views structure matrix and ε̃[k×1] is the vector of view
estimation errors. Suppose investors have q̂[k×1] as their best estimation of
ỹ[k×1] subject to unbiased and normally distributed errors, then

ε̃ ∼ N(0,Ω) (2-5)
where 0[k×1] is a vector of zeros and Ω[k×k] is the variance matrix of view
estimation errors. One can combine this new information on r̃[n×1], and using
Theil’s mixed estimation obtain the posterior return estimates mean vector
m̂[n×1] is given by

m̂ =
[
Σ̂π

−1 + P TΩ−1P
]−1 [

Σ̂π
−1
π̂ + P TΩ−1q̂

]
(2-6)

and posterior return estimates covariance matrix V̂ [n×n] is given by

V̂ =
[
Σ̂π

−1 + P TΩ−1P
]−1

(2-7)
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Chapter 2. The Black-Litterman model 20

For a detailed derivation on 2-6 and 2-7 see Walters [2011] or Cheung
[2009]. Alternatively m̂ and V̂ can be written as a Bayesian correction of π
and Σ respectively:

m̂ = π + τΣP T [(τPΣP T ) + Ω]−1[q − Pπ] (2-8)

V̂ = Σ + [(τΣ)−1 + P TΩ−1P ]−1 (2-9)

2.3
Further assumptions and optimization framework

For π̂[n×1] , the original Black-Litterman model assumes the validity of
CAPM, where the expected returns for each asset π̂i in equilibrium is

π̂i = rf + β̂i(µm − rf ),∀i = 1, ..., n (2-10)

β̂i = Cov(ri, rmkt)
σ2
mkt

(2-11)

where rmkt [t×1] is market return over a time interval, given by the market-
weighted return of the securities2, thus rmkt = rTwmkt, where wmkt [n×1] is
determined by the market value of N securities and σ2

mkt is the variance of the
market return. As for the covariance matrix we have Σ̂ = Cov(r, rT ), then we
can set π̂[n×1] to:

π̂ = rf1 + δΣ̂wmkt (2-12)
where δ is a positive constant known as the risk aversion parameter and 1[n×1]

is a matrix of elements one. For a more detailed explanation, see Satchell and
Scowcroft [2000] and Walters [2011].

The model also assumes that Σ̂π [n×1] and Σ̂[n×1] are proportional,
therefore:

Σ̂π = τΣ̂ (2-13)
where τ is a scalar representing investor uncertainty about mean estimation.
The original model presented in Black and Litterman [1992] did not present
any methodology for the estimation of τ . Still, if we set τ = 1/ss where ss
the sample size, τ would be the maximum likelihood estimator, and if we set
τ = 1/(ss−n), where n is the number of securities considered, τ would be the
best quadratic unbiased estimator.

Given the complexity related to the estimations of Ω[k×k], for simplicity
reasons it is often assumed that the same τ is related to the uncertainty

2The market weights wmkt are determined by the market values of the securities on the
investment universe.
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Chapter 2. The Black-Litterman model 21

regarding view estimation errors, and that each view estimation error is
unrelated, resulting in a diagonal Ω[k×k] matrix as:

Ω = diag(P Σ̂πP
T ) = diag(P τΣ̂P T ) = τdiag(P Σ̂P T ) (2-14)

Other possibility for setting Ω as presented in Walters [2011] is using the
variances of the views estimation.

Figure 2.1 shows the framework of Black-Litterman.

Figure 2.1: The Black-Litterman optimization framework

In the following section it will be presented the novel framework for the
Black-Litterman model proposed in this work.
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3
The Proposed MBL Model

3.1
The Value of Macroeconomic Predictions

Trying to predict the future is an intrinsic desire for financial market
investors, improving the overall returns based on predictions is a two step pro-
cedure: 1) Achieving good predictions and; 2) Being able to invest accordingly.

Related to the first step, it is credited to Niels Bohr the quote: "It is
difficult to predict, especially the future." and indeed it gets more difficult to
predict correctly the more specific the prediction is, and the further in time it is.
A bunch of bold sell-side analyst may even try to predict specific stock prices,
but it is more likely for players to venture to predict broader macroeconomic
indicators, as the complexity and number of variables related to them tend
to be significantly smaller. We can point out as examples, surveys conduced
by central banks, studies performed by consulting companies and even semi-
annual prospects from World Bank. It is important for investors to have many
sources of information because it tends to improve the quality of predictions
they use which widens investment opportunities to more sectors.

Related to the second step, our goal with the Macrofactor Black-
Litterman model (MBL) is to provide a simple yet effective framework, that
will enable investors to use the macroeconomic factors predictions at hand
to update parameters of any set of securities they feel comfortable working
with. And by simple framework we mean one that avoids the use of complex
econometric multi-factor models.

3.2
Incorporating Macroeconomic Views

We propose a MBL model where investors views on factors affect securi-
ties’ expected returns and covariance matrix, due to its intrinsic relation with
such securities (their correlations), even when those factors are not explicit
linked to the securities by any factor model.

Let us split the n securities within the views’ universe in s tradable
securities and f factors, such as n = s+ f . The returns of our views’ universe
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Chapter 3. The Proposed MBL Model 23

ỹt [n×1] are:

ỹt =
r̃s,t
r̃f,t

 (3-1)

Considering separate views for tradable securities and non-tradable fac-
tors1, we could sort the model inputs: Σ̂t [n×n], π̂t [n×1], P t [k×n], q̂t [k×1] and
Ωt [k×k] in tradable and non-tradable components such as:

Σ̂t =
 Σ̂s,t Σ̂sf,t

Σ̂fs,t Σ̂f,t

 (3-2)

π̂t =
π̂s,t
π̂f,t

 (3-3)

P t =
P s,t 0

0 P f,t

 (3-4)

q̂t =
q̂s,t
q̂f,t

 (3-5)

Ωt =
Ωs,t 0

0 Ωf,t

 (3-6)

where k is the total number of views and k = ks + kf .
The Black-Litterman model outputs mean vector m̂t [n×1] and covariance

matrix V̂ t [n×n] would also be sorted:

m̂t =
m̂s,t

m̂f,t

 (3-7)

V̂ t =
 V̂ s,t V̂ sf,t

V̂ fs,t V̂ f,t

 (3-8)

and in possession of m̂s,t and V̂ s,t, which are the parameters affected by
investors views, we could obtain the tradable assets allocation wt using the
following optimizatiom problem:

max
wt

wT
t m̂s,t

s.t. 1
2w

T
t V̂ s,twt ≤ σ2

wT
t 1 = 1
wi,t ≥ 0 ∀i = 1, ..., s

(3-9)

where σ2 is the target variance for the portfolio.
Through the use of m̂s,t and V̂ s,t, opposed to π̂s,t and Σ̂s,t, we ensure

that wt is a product of investors’ views. The conceptual workflow would be:

1. Choose the tradable securities and obtain prior parameters;
1The model also allows the use of combined security/factor views, but it is more practical

for investors to set separate views.
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Chapter 3. The Proposed MBL Model 24

2. Select the macroeconomic factors related to tradable securities;

3. Set views regarding the macroeconomic factors returns (may include
views on securities returns);

4. Set further model parameters and obtain posterior tradable assets pa-
rameter;

5. Define allocation; and

6. Compare results to chosen benchmarks.

3.3
Assessing Performance Using Historical Data

We use the historical average for both factors and the tradable securities
to estimate their prior expected returns, following the work of Zhou [2009],
which enables us to avoid the use of δ, τ and the heuristic for estimate Ω.
These are the three issues most criticized on Black-Litterman literature (see
Fusai and Meucci [2003], Walters [2011] and Michaud et al. [2013]). By doing
so, its easier to estimate prior returns or macroeconomic factors, which many
times can not be marked to market, and thus create a more robust model that
avoids the use of these parameters.

It is important to estimate the appropriate length for the rolling window
estimation, weighting the tradeoff between using a bigger sample to reduce
the estimation error and avoiding using older data as the distribution changes
over time. We achieve the proper windows for expected returns and covariance
matrix estimation through successive out-of-sample evaluations using different
combinations of expected returns estimation length lr and covariance matrix
estimation length lc. We understand that using different windows is important
as the effect of estimation errors in covariances might be greater than the
estimation errors on expected values (see Chopra and Ziemba [2013]). Figure
3.1 presents a conceptual flowchart used to optimize estimation windows
lengths.

3.4
Guided Example

Let us consider an example where we have two tradable securities: (i)
an Oil & Gas stocks index e (ii) S&P 500 index; and also one macroeconomic
factor: Brent oil price, which our market reference is the future price one month
forward.
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Figure 3.1: Flowchart for backtesting and optimizing estimation windows
lengths

We would use historical data to estimate the priori expected returns array
π̂ and covariance matrix Σ̂. We could use a sample size of ss = 30 months
and use the maximum likelihood estimator to estimate Σ̂π (Σ̂π = 1

ss
Σ̂). The

array of prior expected returns π̂ and the prior covariance matrix Σ̂2 in this
example would be:

π̂ =


3%
−1%
2%

 (3-10)

Σ̂ =


10−3 0, 8−3 6−3

0, 8−3 6, 4−3 2, 8−3

6−3 2, 8−3 14, 4−3

 (3-11)

Considering one only absolute view that Brent returns will be 6%. As we
have 3 securities this view would be represented as:

2Asset 1 is the Oil & Gas stocks index, 2 is the S&P 500 index and 3 Brent.

DBD
PUC-Rio - Certificação Digital Nº 1621706/CA



Chapter 3. The Proposed MBL Model 26

[
0 0 1

] 
µOG

µSP

µB

 = 6% (3-12)

Where µOG is Oil & Gas stocks index expected return, µSP is S&P 500
index expected return and µB is Brent expected return.

Considering this view, the P 1×3 and q̂1×1 matrix are
[
0 0 1

]
and [6%],

these matrix line count is the number of views, and P column count is the
number of securities.

Using the heuristic proposed by Black e Litterman on their model to set
the views covariance matrix Ω as in equation 2-14 we have:

Ω = diag(τPΣP T )

= 1
30

[
0 0 1

] 
10× 10−3 0, 8× 10−3 6× 10−3

0, 8× 10−3 6, 4× 10−3 2, 8× 10−3

6× 10−3 2, 8× 10−3 14, 4× 10−3




0
0
1



= 1
30

[
6× 10−3 2, 8× 10−3 14, 4× 10−3

] 
0
0
1


= 1

3014, 4× 10−3 = 4, 32× 10−3

(3-13)

Having π̂, Σ̂, P , Σ̂π, q̂ e Ω, we can use equations 2-8 and 2-9 to obtain
m̂, which is the posterior expected returns array and V̂ , which is the posterior
covariance matrix.
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m̂ = π + τΣP T [(τPΣP T ) + Ω]−1[q − Pπ]

π =


3%
−1%
2%



τΣP T = 1
30


10× 10−3 0, 8× 10−3 6× 10−3

0, 8× 10−3 6, 4× 10−3 2, 8× 10−3

6× 10−3 2, 8× 10−3 14, 4× 10−3




0
0
1



=


2× 10−4

0, 93× 10−4

4, 8× 10−4



[(τPΣP T ) + Ω]−1 =


[
0 0 1

] 
2× 10−4

0, 93× 10−4

4, 8× 10−4

+ 4, 32× 10−3


−1

= [4, 8× 10−3]−1 = 208, 3

[q − Pπ] =

6%−
[
0 0 1

] 
3%
−1%
2%


 = [6%− 2%] = 4%

m̂ =


3%
−1%
2%

+


2× 10−4

0, 93× 10−4

4, 8× 10−4

× 208, 3× 4%

=


3%
−1%
2%

+


0, 17%
0, 08%
0, 4%

 =


3, 17%
−0, 92%

2, 4%



(3-14)
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V̂ = Σ + [(τΣ)−1 + P TΩ−1P ]−1

Σ =


10× 10−3 0, 8× 10−3 6× 10−3

0, 8× 10−3 6, 4× 10−3 2, 8× 10−3

6× 10−3 2, 8× 10−3 14, 4× 10−3



(τΣ)−1 =


4012 251, 2 −1720

251, 2× 10−3 5139 −1104
1720 −1104 3015



P TΩ−1P =


0
0
1

 [4, 32× 10−3]−1
[
0 0 1

]
=


0 0 0
0 0 0
0 0 231, 5



[(τΣ)−1 + P TΩ−1P ]−1 =


4012 251, 2 −1720

251, 2× 10−3 5139 −1104
1720 −1104 3246


−1

=


0, 33× 10−3 0, 023× 10−3 0, 18× 10−3

0, 023× 10−3 0, 21× 10−3 0, 084× 10−3

0, 18× 10−3 0, 084× 10−3 0, 432× 10−3



V̂ =


10, 33× 10−3 0, 823× 10−3 6, 18× 10−3

0, 823× 10−3 6, 61× 10−3 2, 884× 10−3

6, 18× 10−3 2, 884× 10−3 14, 832× 10−3



(3-15)

With m̂ and V̂ we obtain the reduced matrix m̂s removing the lines
associated to macrofactor returns from m̂, and V̂ s removing the lines and
columns associated to macrofactor returns from V̂ .

We can then define our allocation with m̂s and V̂ s.

m̂s =
 3, 17%
−0, 92%



V̂ s =
10, 33× 10−3 0, 823× 10−3

0, 823× 10−3 6, 61× 10−3


(3-16)

DBD
PUC-Rio - Certificação Digital Nº 1621706/CA



4
Case Study

We analyze the performance of the MBL model considering a daily
investment strategy that sets the views with data collected from BCB1. The
study is performed with daily data from March 2010 to October 20182.

4.1
The Views

The views are constructed with the median of the top 5 predictors
estimates for:

1. The Brazilian monthly inflation rate prediction (BIR);

2. The Real to US Dollar exchange rate, obtained from end of the month
prediction (BRLUS) and;

3. The target Brazilian interest rate (Selic).

We convert the end of the month daily exchange rate into returns by
calculating the uniform daily returns that would take the present exchange
rate into the end of the month prediction. With these information we set P t

and q̂t. The variances of the predictions are used to set Ωt.

4.2
The Securities

Table 4.1 shows the securities available for investment, Table 4.2 presents
their correlations and Figure 4.1 presents their cumulative return during the
full sample period.

As presented in chapter 2, in the absence of market weights for the
securities or macroeconomic factors, we use historical averages (instead of using
CAPM to estimate the value of π̂t).

The windows lengths chosen for mean (π̂t) and covariance (Σ̂t) estima-
tion were 60 and 90 business days respectively, as discussed before, different

1Brazilian Central Bank holds a system called Market Expectations System to gather
data from market players.

2The starting of the period was chosen given the BCB system data availability.
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Table 4.1: List of available investment securities
Security Ticker
US Dollar BRLUS

Brazilian stock index IBOV
Interbank deposit rate CDI

Brazilian inflation-linked bonds with constant duration of 3 years iDkA I3
Brazilian fixed income bonds with constant duration of 3 years iDkA P3

Table 4.2: Securities correlation (full sample period)
CDI BRLUS IBOV iDkA I3 iDkA P3

CDI 1.000 -0.009 0.001 0.040 0.030
BRLUS -0.009 1.000 -0.340 -0.232 -0.330
IBOV 0.001 -0.340 1.000 0.256 0.313

iDkA I3 0.040 -0.232 0.257 1.000 0.831
iDkA P3 0.030 -0.330 0.313 0.831 1.000

windows are important as the estimation errors on means and covariances are
different. As discussed, we estimate Σ̂π, t as 1

90 Σ̂t.

4.3
The Results

Once with Σ̂t, π̂t, Σ̂π, t, P t, q̂t and Ωt, we could use 2-8 and 2-9 to obtain
m̂t and V̂ t and then, with m̂s,t and V̂ s,t, run the optimizer. The optimization
given by 3-9 is carried out setting σ2 to 0.052

250 . By doing so, we set a 5% target
for annualized standard deviation considering 250 business days in a year.
This value represents a common benchmark for Brazilian hedge funds3. The
constraint wi,t ≥ 0 was used to avoid short selling or further leverage.

We consider six portfolios as described below:

1. Mean-variance optimization using historical data (MVO);

2. MBL model considering BCB views on BRLUS, BIR and Selic (MBL
BCB);

3. MBL model considering perfect t+1 views4 on BRLUS, BIR and Selic
(MBL PV), used to evaluate the effect of perfect views on the returns;

4. MBL model considering perfect t+1 views on BIR and Selic (MBL PV
-BRLUS), used to evaluate the effect of perfect views on macroeconomic

3It is roughly the standard deviation of a portfolio consisting of 20% IBOV and 80%
CDI

4Perfect t+1 views means we set the views at day D predicting the return of the security
as the t+1 return of the security, for all the time interval.
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Figure 4.1: Securities cumulative returns (March 2010 to October 2018)

factors on the returns as BRLUS is also a security available for invest-
ment;

5. MBL model considering BCB views on BIR and Selic (MBL PV -
BRLUS), used to compare the effects of BCB views only on macroe-
conomic factors;

6. Invested in interbank deposit rate (CDI).

Table 4.3 and Figure 4.2 shows the out-of-sample results for the opti-
mized portfolios, its annualized returns, annualized volatility5 and maximum
drawdown, from July 2010 to October 2018.

Table 4.3: Out-of-sample portfolios returns, volatility and drawdown
Portfolio Ticker Ann. Ret. Ann. σ Drawdown
1. MVO MVO 14.70% 6.99% 6.24%

2. MBL using BCB views on BRLUS, BIR and Selic MBL BCB 17.02% 6.92% 6.11%
3. MBL using t+1 perfect views on BRLUS, BIR and Selic MBL PV 40.41% 6.71% 6.21%

4. MBL using t+1 perfect views on BIR and Selic MBL PV -BRLUS 16.33% 6.86% 5.72%
5. MBL using only BCB views on BIR and Selic MBL BCB -BRLUS 16.54% 6.86% 5.34%

6. Interbank deposit rate CDI 10.31% 0.14% 0.02%

The higher cumulative returns for MBL PV reflect the use of the perfect
view for the BRLUS, which is a security included in the investment universe.
Although its results are not useful to validate the MBL model, we present
the results to show the impact of a perfect security view on the out-of-sample
cumulative portfolio returns.

5Assuming 250 business days on the Brazilian calendar year.
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Figure 4.2: Out-of-sample portfolios returns, volatility and drawdown

All portfolios surpass the 5% target for annualized standard deviation,
which is expected given that results are out-of-sample and the covariances
estimates change over time. As covariances in V̂ t are greater than covariances
in Σ̂t due to the model correction, the MVO portfolio which is the only one
that uses Σ̂t in its risk constraint has a higher standard deviation.

The use of perfect views on BIR and Selic6 (MBL PV -BRLUS) increases
the return and lowers the risk, compared to MVO even though there are not
any known factor model that relates the securities’ returns to such factors.
The use of BIR and Selic views from BCB (MBL BCB -BRLUS) provides very
similar returns, and using BRLUS views (MBL BCB) further increase the
overall outcome. Figure 4.3 presents the cumulative returns for all portfolios,
except MBL PV, compared to the CDI benchmark.

Figure 4.3: Cumulative returns of studied strategies

One can see that portfolios MVO, MBL PV -BRLUS and MBL BCB
-BRLUS have a very similar profile and that portfolio MBL BCB, with BCB
views on BRLUS, outperforms other portfolios on downfalls, since the BCB

6The two macroeconomic factors considered in this study.
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view on BRLUS seems to be effective to avoid more downfalls. The proposed
MBL model seems to enhance the regular MVO using either good views on
the factors, as the returns using perfect views outperforms, or using the BCB
public views7.

Figure 4.4 and Figure 4.5 present the dynamic asset allocation and
cumulative returns for portfolios MVO and MBL BCB respectively.

Figure 4.4: Allocations and cumulative return for Portfolio MVO

Figure 4.5: Allocations and cumulative return for Portfolio MBL BCB

One can see that the MBL is more dynamic, since not only the views
on returns but also the views’ variances may change suddenly, and both
information are relevant. For instance the change on BRLUS view variance
in May 2017 (presented in Figure 4.6) made it possible to the MBL BCB
portfolio to avoid the downfall suffered by other portfolios as seen on Figure
4.3.

7RHS means the right hand side axis

DBD
PUC-Rio - Certificação Digital Nº 1621706/CA



Chapter 4. Case Study 34

Figure 4.6: BRLUS view risk May 2017
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5
Conclusions

Our contributions are: (i) the Macrofactor Black-Litterman model, which
enables the investors to enhance their investments using views on macroeco-
nomic factors that, despite not being explicit linked to securities through a
full linear model, affect somehow securities returns in a simple and intuitive
way; (ii) a framework for setting views on returns based on information dis-
closed by BCB; and (iii) a case study to test the contributions (i) and (ii).
Using our model we were also able to eliminate the parameters τ and δ of the
original Black-Litterman model, which are many times criticized, by relying
on historical information and variances of the securities.

Within the case study presented, focused on investment in Brazilian
assets, we blended BCB views on one tradable security and two macroeconomic
factors using historical data. The optimized portfolios outperformed the MVO
portfolio with historical data on every studied scenario, implying that the
use of the proposed model setting views using both the BCB database or good
estimates have good outcomes for the tested example. As we used two synthetic
securities with constant duration (iDkA I3 and iDkA P3), which in practice
might be built using derivatives, we limited the use of leverage in our example.

5.1
Future Works

As noticed in section 4.3, using the MBL model presents a more dynamic
allocation, and that is a reason why we understand that, for more realistic
results, an extension of this thesis would be to consider transaction costs.

We use only the next time step prediction for the macroeconomic factors,
in a future work one could mix the multiple views for different time horizons
to try to obtain the effect of more subtle and future change on the predictions.

In a broader application it is possible to also consider a larger number of
macroeconomic factors and securities, for instance, indexes related to different
sectors and segments on the Brazilian Stock Exchange that are more sensitive
to the macroeconomic factors predicted on the BCB survey. An alternative
would be searching data on the American market for daily, weekly or monthly
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predictions (for example the New York Federal Reserve Bank’s Survey of
Market Participants1) and related securities.

1See https://www.newyorkfed.org/markets/survey_market_participants for more infor-
mation
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