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Abstract

Politzer Couto, Marcelo; Feijo, Bruno (Advisor). HRTFs based
3D audio spatialization. Rio de Janeiro, 2019. 40p. Dissertação
de mestrado – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Virtual Reality (VR) applications with low-latency head tracking
require high-quality spatial audio effects. However, classic VR/game sound
approaches cannot properly simulate the acoustic of the real world. Current
audio research is moving towards 3D spatial audio to have a more realistic
simulation. In 3D spatial audio, the listener has the sensation that sound
comes from a particular direction in 3D space. In other words, the listener
can localize a source based on audio and have a more coherent and immersive
experience when paired with visual simulation. In this new context, game
engines should provide sound designers with a set of 3D spatial audio
tools. The following common effects are desirable in this type of toolbox:
reverberations and reflections, which can be employed in the creation of
caverns or churches (places with lots of echoes); modulation, which can
increase the perceived variety of a recorded sound, by slightly varying its
pitch (as in the sounds of footsteps); mixing and fading volumes, which can
create dramatic moments
in storytelling and music reproduction. In this work, we propose a real-
time audio engine to spatialize sound point sources in virtual environments.
This engine is an open-source architecture that provides a basic set of audio
effects and an efficient way to mix and match them. We implement 3D
audio spatialization by leveraging recorded head-related impulse responses
(HRIRs) and we produce special sound effects with digital signal processing
(DSP) techniques. Although some powerful commercial audio SDKs for
Virtual Reality are currently available (e.g. Oculus), our audio engine
prototype may be a flexible option when adaptation, simplification, testing,
and parameter tuning are necessary.

Keywords
3D audio spatialization; Computer Graphics; Digital signal proces-

sing;
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Resumo

Politzer Couto, Marcelo; Feijo, Bruno. Espacialização sonora em
3D baseada em HRTFs. Rio de Janeiro, 2019. 40p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Aplicações de Realidade Virtual (VR) com rastreamento de movimen-
tos da cabeça precisam de efeitos de espacialização de alta qualidade. A
abordagem tradicional para RV/jogos (interpolação dos canais L+R para
construção do estereo) se mostrou insuficiente por ser incapaz de simular
a acústica do mundo real. Por isso a pesquisa na área tem migrado para
espacialização 3D do áudio. O receptor tem a sensação de que o som veio
de um local no espaço 3D. Em outras palavras, ele pode localizar o emissor
apenas pelo áudio por consequência permite a construção ambientes mais
imersivos e coerentes quando usados em conjunto de técnicas visuáis. Nesse
novo contexto, motores de jogos devem prover aos designers de áudio uma
gama de ferramentas especializadas para a espacialização de àudio 3D além
as de uso geral, que encluem: reverberações e reflexões usadas na construção
de ambientes como igrejas e cavernas (locais com ecos); modulação, para
criar variações de frequência e aliviar na repetitividade de sons recorrentes
(como os de passos e tiros); mix e fade de volumes, utilizado na criação
de momentos dramáticos na história e reprodução musical. Nesse trabalho,
nós propomos um motor de áudio de tempo real para espacialização de fon-
tes sonoras pontuais em ambientes virtuais. Vai possuir uma arquitetura
documentada e de código aberto que provê um conjunto de efeitos e a ha-
bilidade de os compor. Nós implementamos a espacialização de áudio em
3D sobre bancos de dados de respostas impulsionais da cabeça (HRIRs)
e efeitos sonoros com técnicas de processamento digital de sinais (DSP).
Apesar da existência de sistemas comerciais poderosos de áudio para VR
estejam disponíveis (e.g. Oculus), nosso protótipo pode ser uma alternativa
se a simplicidade, testabilidade e ajustes forem levados em conta.

Palavras-chave
Espacialização de áudio em 3D; Computação Gráfica; Processamento

digital de sinais;
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1
Introduction

In 2013 Oculus1 released the first version of their virtual reality (VR)
system to the consumer market. Since then other companies have joined with
their own head-mounted display (HMD) products such as the HTC Vive. It
seems that this new way of playing video games is here to stay. Developers are
"moving" quickly to adapt their game engines to this new environment.

In audio, games used to consider only the horizontal axis of objects.
A technique that was used even for 3D games. This solution, however, can
not convey realistic 3D experiences and is considered insufficient for VR
applications. Because of this limitation, game engines are moving towards full
3D audio spatialization. In it, audio is encoded with directionality in such a
way that players become able to pinpoint the source’s location when are using
headphones.

Figure 1.1 shows a hypothetical scene from a game. In this scene, source1

and source2 are sound emitters and the ear icon is a listener. We illustrate
that audio can have direct and indirect paths as indicated by the arrows in
the figure. In reflection1’s case, audio gets reflected by the wall before going
towards the listener. Some of its energy gets absorbed by the wall before going
towards the listener’s ears.

Figure 1.1: Scene with two audio sources and a listener. The listener receives
audio from source1, source2 and the reflection of source1.

To simulate a scene’s acoustics precisely, we would need to consider that
sound may get attenuated, delayed, reflected, refracted, pitch shifted, frequency
filtered, and modulated on its way from source to listener. The path needs to

1https://www.oculus.com/

https://www.oculus.com/
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Chapter 1. Introduction 12

be ray traced on the scene’s geometry to compute these effects accurately, an
intensive computation. To achieve a real time solution, we ignore most of these
effects and only implement point sources with direct rays (such as to ignore
reflection1 in Figure 1.1). Even with these simplifications, the system is still
capable of 3D spatialization as discussed in Section 1.1 (localization) and 1.2
(spatialization).

The main contribution of this dissertation is to propose a digital signal
processing Virtual Machine to help the implementation of audio spatialization
in virtual environments, as presented in Chapter 4 (design and implementa-
tion). We propose a virtual machine dedicated to the execution of digital signal
processing (DSP) instructions, which are the primitives of the above-mentioned
effects. The proposed design allows users to compose complex operations in
terms of simpler ones. By the end of Chapter 4, we give an example: a se-
quence of DSP instructions to implement the spatialization of sound sources
such as source1 and source2 presented in Figure 1.1.

In Chapter 2 (state of the art), we present some foundational articles on
the theory of 3D audio spatialization. Most of the theory is well established
but used sparsely in this field. Also we show some recent articles in the area.
Interesting development occurred since 2013, when this subject became a trend.
Later, in this Chapter, we give an overview of what is being used in practice,
that is: in game engines.

In Chapter 3 (theoretical background), we justify our design choices over
the theory of various subjects. Section 3.1 (signals and systems) shows that the
idea is to model audio as signal and the localization as a system. After that, we
introduce different audio representations in section 3.2 (audio in a nutshell).
We try to map it to signals and systems on a intuitive level. After that we cover
how to leverage an already existing computer graphics coordinate system to
represent the position of audio sources in section 3.4 (affine spaces). Finally,
in section 3.5 (spatialization) we show how these pieces fit together to achieve
the spatialization effect.

1.1
Localization

Localization is the human ability to infer a sound source location based
on how it is perceived differently by each ear, characteristics of the sound
itself and a supplementary mental model of how known sounds behave, even
though two ears are not enough for a perfect triangulation. Lord Rayleigh (1)
released an article on the subject, which eventually became the duplex theory
of localization. This theory states that we use inter-aural level differences (ILD)

DBD
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Chapter 1. Introduction 13

and inter-aural time differences (ITD) to infer objects positions.

1.1.1
Inter-aural level differences - ILD

When a sound is played off center of the head, one of the ears is in shadow,
because the head is in the way. This causes a perceptible difference as shown
in the Figure (1.2). This effect is more preeminent for higher frequencies, as
lower frequencies refract around the head and dampen this effect.

Figure 1.2: HRIR(90,0,1) that shows the ILD difference between left and right
ear. HRIR is the impulse response that relates the source location and the ear
location. In this case the source is 90 degrees (horizontal angle) and 0 degree
(vertical angle) in relation to the head.

1.1.2
Inter-aural time differences - ITD

A second effect is based on the time it takes for the sound to travel
around the head. The speed of sound is slow enough that the brain can detect
the phase difference between each ear, as shown in the Figure (1.3), when the
frequency increases the wavelength shortens. This happens until it gets shorter
than the size of our heads. At this point, we can no longer infer direction, as
described by Hartmann et al (2).

DBD
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Chapter 1. Introduction 14

Figure 1.3: HRIR(90,0,1) that shows the ITD difference between left and right
ear. The source and the head are in the same position described in the previous
Figure.

1.2
Spatialization, HRIR and HRTF

In a process called audio spatialization, we use digital signal processing
(DSP) to encode localization queues into a regular audio source. When played
with headphones, this altered audio will be perceived as having a physical
location. This is the basis of what is known as a 3D audio system.

The localization can be tough of as a function with spherical coordinates
(θ, φ, ρ) as input and localization queues as output. The inputs are: θ for the
horizontal angle, φ for vertical and ρ for the radius. Figure 1.3 shows a stereo
recording for (90, 0, 1). The blue signal is the left ear and the green signal is
the right ear.

This function is usually constructed from measurements. Gardner et al
(3) show how they did this for a KEMAR dummy head. In short, the process
is as follows: 1) Place a microphone in each ear of the dummy (at the origin of
Figure 1.4). 2) Create a stereo recording, a channel for each ear, of the noise
coming from a speaker positioned at θ, φ, ρ (one recording for each position,
indicated by red dots in Figure 1.4). This group of recording is called the head
related impulse response (HRIR). The KEMAR database consist of a list of
’.wav’ files with these recordings and their references to the values of θ, φ and
ρ. The value of ρ is fixed.

We convert this HRIR function into its frequency domain representation.
When this happens its name changes to head related transfer function (HRTF).
We do this as an optimization to compute the convolution operation faster.
This transformation is done only once as a preprocessing step.

In short, HRTF is how a particular head behaves to incoming sound
(multiple angles), in the frequency domain.

DBD
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Chapter 1. Introduction 15

Figure 1.4: Head Related Impulse Response recording. A dummy head at the
center and speakers at the red dots.

DBD
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2
Related work

Most of the concepts used in audio localization are well known results
from different fields of science, and spatialization arises from their use in
conjunction. For example, the fourier transform is attributed to Fourier himself
in his article "Théorie analytique de la chaleur" published in French in the year
of 1822 and later translated to English by Alexander Freeman in 1878. The
subject of audio localization is at least as old as 1907, when Lord Rayleigh
published his studies in the article "On our perception of sound direction" (1).
Books on digital signal processing, such as "Theory and application of digital
signal processing", are at least as old as 1975 (4).

We can find initial references to sound rendering in Takala & Hahn
(5) and some other local work by Maffra (6). However, there are recent
developments in the area. Commercial use of 3D audio systems brought focus
back into this field, with interesting advancements. Raghuvanshi et al (7)
brought accurate modeling of reverberations, delays and attenuation based on
wave simulations on scene geometry. Schissler et al (8) proposed a solution for
area and volumetric sound sources (as opposed to punctual) by using spherical
harmonics. Brungart et al (9) measured the latency effects on the accuracy
of human localization for jet fighters missile detection systems. Gardner et al
(3) compiled HRIR recordings of a KEMAR dummy and made them publicly
available.

2.1
In game engines

At the time of writing this dissertation, game engines are still catching up
to the recent VR requirements. Established engines are mostly incorporating
dedicated audio systems to provide this functionality, more on this below.

2.1.1
Unity

According to Unity documentation 1, this game engine provides a built-in
panning effect (not 3D audio) and a HRTF demo.

1https://docs.unity3d.com/2019.1/Documentation/Manual/AudioSpatializerSDK.html
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Chapter 2. Related work 17

In Unity, the HRTF demo uses the KEMAR (3) data set, has a log
attenuation and a simple reverb. It states, however, limitations like artifacts
due to the partial spatialization algorithm implemented. The authors of Unity
documentation advise users to look for an external plugin for production
system.

The Void2 is an application based on "hyper reality", which is a kind
of virtual reality with tactile elements. They achieve high level of realism by
using physical props for the tactile part. They use a mixture of Unity’s native
audio, a no longer available plugin called 3dception (bought by facebook) and
pre-rendered audio as their stack. Their senior audio engineer goes into the
details in a VRDC2016 3 presentation.

An interesting piece of technology that The Void used is a chest piece to
enhance the sound of explosions and other low frequency effects 4.

2.1.2
Unreal 4

Epic announced a new Audio system for the unreal engine 4 at GDC2017
5 in wich Unreal’s engineers implemented a real-time pipeline for audio and a
variety of effects.

According to Unreal documentation 6, the march/2018 release of Unreal
4 added the Oculus Audio room modeling reverb with volumetric parameters
and ambisonics source playback. In this version, they also added support for
Resonance Audio (2.1.4) as a plugin.

2.1.3
Godot

In its current version (3.0), Godot implemented audio buses 7 , but from
their list of effects there is no 3D audio support.

2.1.4
Resonance Audio - Google

Resonance Audio 8 is a dedicated 3D Audio spatialization engine
by Google. It implements its audio spatialization via ambisonics, a more

2https://www.thevoid.com/
3https://www.youtube.com/watch?v=nBrouOFtX_0
4https://subpac.com/
5https://www.youtube.com/watch?v=ErejaBCicds
6https://www.unrealengine.com/en-US/blog/unreal-engine-4-19-released
7https://docs.godotengine.org/en/3.0/tutorials/audio/audio_buses.html
8https://resonance-audio.github.io/resonance-audio/

https://www.thevoid.com/
https://www.youtube.com/watch?v=nBrouOFtX_0
https://resonance-audio.github.io/resonance-audio/
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Chapter 2. Related work 18

lightweight but less precise spatialization algorithm, possibly focused on the
mobile market where the CPUs are less powerful than a proper desktop.

2.1.5
Oculus Audio - Facebook

Oculus Audio 9 provides a robust toolbox for 3D audio, with the following
features: HRTFs based spatialization, head tracking, volumetric sources, near-
field, environmental modeling with a shoebox model, ambisonics, attenuation
and reflections.

2.1.6
Project Triton

Microsoft Research is getting very interesting results by using pre-
computed wave simulations (a 7D function: listener’s x,y,z source’s x,y,z and
t), as reported by Raghuvanshi and Snyder (7). They propose an encoding
of impulse responses that removes two of the seven dimensions, making it
possible to handle large scenes. They also propose a sound rendering method
that generates artifact-free audio even for fast motion and sudden changes in
reverberance. This system has been used commercially in a game called Gears
of War 4 10. See their GDC2017 talk on the Project Triton (precomputed
environmental wave acoustics)11.

9https://developer.oculus.com/documentation/audiosdk/latest/concepts/
audiosdk-features/

10https://gearsofwar.com/en-us/games/gears-of-war-4
11https://www.youtube.com/watch?v=qCUEGvIgco8

https://developer.oculus.com/documentation/audiosdk/latest/concepts/audiosdk-features/
https://developer.oculus.com/documentation/audiosdk/latest/concepts/audiosdk-features/
https://gearsofwar.com/en-us/games/gears-of-war-4
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3
Theoretical background

We start with a review of signals and systems (section 3.1). We present
time and frequency domains, continuous and discrete time, linear time in-
variant - LTI systems and their properties (Section 3.1.2). Also, we present
the discrete fourier transform - DFT (Section 3.1.4), fast fourier transform -
FFT (Section 3.1.5) and the fast convolution - overlap-add. The basic building
blocks of audio spatialization are also presented.

After presenting the above-mentioned basic concepts, we introduce audio
3.2 representations and their signals and systems equivalents. Finally, we
discuss how to connect the audio system to other systems of a a game engine.
This includes coordinate systems transformations into listener’s space 3.4, and
HRTF triangulation and lookup (Section 3.3.1).

3.1
Signals and systems

We would like to start by saying that this is only a short introduction on
the subject of signals and systems with a focus on the spatialization aspects. A
complete view of it requires studying long books such as (Oppenheim’s signals
and systems (10)) and although encouraged, does not fit this space. There is
also a set of video lectures by in MIT’s open courseware 1 that may help in
the understanding.

3.1.1
Signals

Signals are streams of data, functions of one or multiple variables such
as time. From our example we have the following signals:

– Ps is a continous, constant signal.

– Pd(x, y, z, t) is a continous, multi variable signal.

– x(t) is a continous, single variable signal.

– x[n] is a discrete, single variable signal.
1https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/video-

lectures/

DBD
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Chapter 3. Theoretical background 20

Besides those, we have a few special ones. One particularly interesting is
the dirac’s delta or impulse, it has the special property of being the convolution
identity (more on this later). It is defined as:

Figure 3.1: Dirac’s Delta

δ[n] =

0, n 6= 0

1, n = 0

3.1.2
Linear Time-Invariant, (LTI)

Systems are functions of signals, or second order functions. They take
signals in, transform them and give signals out. They can have different
classifications depending on the guarantees they provide. We will focus on
the LTI category, the one our spatialization database belongs.

As for notation, we will represent a system as a function application on
a signal, like so: y[t] = S(x[t]), (x and y are signals, S is a system). We will
also go into two ways of how to apply a system to a signal (convolution in time
and in frequency) along with a small proof of why it is like so. Starting with
the properties of a LTI system:

3.1.2.1
Linearity

It is said that a system is linear if it has the following properties:

– Additivity: the transformation of a sum is the sum of the transformations:

S(x0[t] + x1[t]) = S(x0[t]) + S(x1[t])

– Homogeneity: or the propagation of constants:

S(ax[t]) = aS(x[t])

3.1.2.2
Time invariant

Time invariance means that a system doesn’t care about time origin. In
other words, if we apply the system now or in the future, the only difference

DBD
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Chapter 3. Theoretical background 21

is a shift in time α, formally:
y[t] = S(x[t])

y[t− α] = S(x[t− α])

3.1.3
Convolution

Convolution is the transformation of the signal x[n] by the system h[n].
Defined as:

y[n] =
∞∑

k=−∞
x[k]h[n− k]

And has the "star" representation:

y[n] = x[n] ∗ h[n]

You might have noticed that we have represented h in a similar way to a
signal. That is no accident, In the following sub section we will show that LTI
systems can be represented as a delayed impulse decomposition of one.

3.1.3.1
Delayed impulse signal decomposition

Consider the signal x[n] defined as:

x[n] =



1.5, n = −2

1.0, n = −1

0.5, n = 0

1.0, n = 1

1.5, n = 2

0, otherwise

We will transform the case by case definition into a continous one by
taking a shifted x[n] using the δ function. For n = −2 only we will have:

DBD
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Chapter 3. Theoretical background 22

x0[n] = 1.5, n = −2
x0[n] = 1.5 · δ[n+ 2]
x0[n] = x[−2] · δ[n+ 2]

If we apply this procedure to each branching case we will have:

x0[n] = 1.5, n = −2
x1[n] = 1.0, n = −1
x2[n] = 0.5, n = +0
x3[n] = 1.0, n = +1
x4[n] = 1.5, n = +2

→

→

→

→

→

x0[n] = x[−2] · δ[n+ 2]
x1[n] = x[−1] · δ[n+ 1]
x2[n] = x[+0] · δ[n+ 0]
x3[n] = x[+1] · δ[n− 1]
x4[n] = x[+2] · δ[n− 2]

Due to the linearity of LTI systems we can reconstruct x[n] by summing
all the parts:

x[n] = x0[n] + x1[n] + x2[n] + x3[n] + x4[n]

And now expanded back:

x[n] = x[−2] · δ[n+ 2]
+ x[−1] · δ[n+ 1]
+ x[+0] · δ[n+ 0]
+ x[+1] · δ[n− 1]
+ x[+2] · δ[n− 2]

Rewriting as a sum:

x[n] =
2∑

k=−2
x[k]δ[n− k]

Generalizing:
x[n] =

∞∑
k=−∞

x[k]δ[n− k]

If we apply a system S to both sides of the equality:
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S(x[n]) = S(
∞∑

k=−∞
x[k]δ[n− k])

And due to linearity, x[k] can be extracted:

S(x[n]) =
∞∑

k=−∞
x[k]S(δ[n− k])

Expanding S(x[n]) and applying S(δ[n − k]), we obtain y[n] and the
system’s impulse response S(δ[n− k]) or h[n]. We then arrive at the definition
of convolution.

In conclusion:
Convolution is defined as:

y[n] =
∞∑

k=−∞
x[k]h[n− k]

Commonly represented as:

y[n] = x[n] ∗ h[n]

– Every LTI system has an equivalent signal representation defined by its
delayed impulse decomposition.

– Convolution is the operation that transforms a signal by a systems in
this form.

– δ is the identity function for this operation.

– Convolution is a linear, commutative operation.

– Let Nx be the length of x and Nh be the length of h. The result of their
convolution has length: Nx +Nh − 1

3.1.4
Discrete Fourier transform - DFT

We will talk about a second type of signal decomposition, the discrete-
time fourier transform. It is an expansion of a periodic function x[n] in terms
of an infinite sum of complex exponentials (or sines and cosines 2).

For a periodic function x[n] repeating every N samples, the series has
the form:

Analysis equation:

ak = 1
N

N−1∑
n=0

x[n]e−ikΩ0n

2Euler’s formula: ein = cos(n) + isin(n)
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Synthesis equation:

x[n] =
N−1∑
k=0

ake
ikΩ0n

It is defined as the sum:

x2π[ω] =
∞∑

n=−∞
x[n]e−iωn

And has the following properties:

– it has an inverse transformation such that:

x[n] = DFT−1{DFT{x[n]}} (3-1)

– convolution becomes a component wise multiplication:

x[n] ∗ h[n] = DFT−1{DFT{x[n]} ·DFT{h[n]}} (3-2)

– has a fast implementation in O(nlog(n)) called Fast Fourier Transform
(FFT).

3.1.5
Fast Fourier Transform - FFT

Fast fourier transform is a O(nlog(n)) DFT algorithm (11). We imple-
mented two variants: Gentleman-Sande and Cooley-Tukey. Both restricted to
n being power of 2.

3.1.6
Fast Convolution

We use DFT convolution property (3-2) and FFT to implement fast
convolution. This method has a complexity of O(nlog(n)) as opposed to the
direct O(n2) approach. This becomes advantageous for values of n larger than
around 30.

3.1.6.1
Sectioned Convolution & overlap-add - OLA

Convolution is defined for whole signals, or one period for the periodic
ones. However in practice, to achieve spatialization, we need convolution to
work on blocks smaller than that, in the ballpark of milliseconds.

To do this we use a variant of fast convolution called sectioned convolu-
tion. This method, described in Rabiner et al chapter 2.25 (4), is capable of
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convolving a signal with small slices of another. We can use this to apply the
HRTF to small parts of our input signal at a time and with this keep a low
audio latency.

In the overlap-add method we take Na samples from a[n] into a buffer
of size Na +Nb paded with zeros. Do the same for b, that is, take Nb samples
from b[n] into a buffer of size Na +Nb also padded with zeros. Then we do an
FFT on both buffers, multiply them by each other and do an inverse FFT of
the result. This produces a full buffer with the convolution of a and b. Due to
the fact that the convolution produces Na+Nb−1 samples, we will have a full
buffer to pass forward.

3.2
Audio in a nutshell

In this section we give a brief description of audio in its various forms
in a attempt to ground the theory of signals and systems from Section 3.1.
Our main focus are steps 4 and 5, where we are operating directly in. Where
the digital signal processing happen and where audio buffers are pushed to the
sound card.

1. Sound is a periodic variation in pressure. Defined
as a field P (x, y, z, t) = Ps+ Pd(x, y, z, t), where:

– Ps: is the static pressure (due to medium)

– Pd(x, y, z, t): dynamic part (due to emiters)

2. With a microphone positioned at x′, y′, z′, its
electrical output is be x(t), the recording of
Pd(x′, y′, z′, t).

– x(t) is scaled down into a [−1, 1] range.

3. By aplying a Analog to Digital Converter we
digitize the signal:

– For a small dt = 1/f , we record x(dt) and
keep it as a sequence.
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4. In this form we can easily apply mathematical
functions to transform it, as an example:

– y[n] = max(0, x[n]).

5. Every few milliseconds the OS will ask for audio
data via a callback, in those we give it the samples
we computed. With it, the audio hardware passes
the samples through a Digital to Analog Converter
to construct new analog signal and finally gives it
to the headphones to be played.

3.3
Head related transfer function - HRTF

As discussed in the introduction, HRTF is a function from θ, φ, ρ
to spatialization queues. A system (as in signals and systems) that can be
convolved with an arbitrary signal to encode spatialization queues in it.

The KEMAR database provides this function as discrete θ, φ, ρ from
the in ear microphone recordings (HRIR). To use this in practice, we will
compute the HRTF by converting it into the frequency domain (apply the
Fourier Transform) as a pre-processing stage.

During run-time we need to solve an interpolation problem. Since this
function is only defined for a discrete set of angles we need some scheme for
computing the HRTF of intermediate angles not obtainable directly from the
samples, that is, how to solve this function for arbitrary angles.Moreover, we
have to find a way to do queries quickly, in order to honor our real time promise.

3.3.1
Triangulation

We solve both of the above-mentioned problems by interpolating the
triangulation of the sample points. If we assume that the HRTF is linear for
small angles, we can linearly interpolate the vertices for arbitrary coordinates.
What we do in practice is to do a weighted linear interpolation of the 3 closest
recordings with their barycentric coordinates as weights. For lookups that are
close to an exact angle the result is also close to the actual recording.

As for queries, they can be accelerated if we store the triangles adjacency
and cache the coordinate lookups (as shown below).
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The KEMAR recording has a fixed ρ. Because of that we will only use
θ, φ as coordinates for a 2D triangle mesh. We will store triangles along with
links to their neighbors. In Figure 3.2, triangle (1,3,5) has links to (1,2,3),
(3,4,5) and (1,5,6).

Figure 3.2: Triangle (1,3,5) and its neighbors

With this structure we can do better than a linear search on the triangles.
Figure 3.3 shows a search starting in the blue triangle and ending in the green
triangle. This difference adds up for a larger mesh. Another accelerator method
is to cache triangle lookups per object. With this, when an object does its next
lookup it will be the same triangle most of the time. When it isn’t, it will likely
still be close by. This should bring the lookup cost further down, close to O(1)
for objects moving slowly.

Figure 3.3: Mesh traversal
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Due to time constraints, the demo implemented a linear search on the
triangles. The algorithms described here were discussed during the preliminary
design, but they were left for a future improvement of the system.

3.4
Affine Spaces

The HRTF function is defined in relation to the head, that is, the head
is stationary at the origin and sound sources are played around it. For our
engine to spatialize correctly we need a way to to change the coordinate
system of sound sources match this scenario so that we can do the HRTF
lookup correctly. This is a known problem with a known solution in the field of
computer graphics. This is the problem of implementing a camera. There they
use a coordinate system for the camera called eye space in which the camera
is always at the center pointing forward and all objects are transformed into
this space before the drawing is done. In the end the camera is at the center
and objects positions relative to it. This exactly what we need. In other words
we put our "ears" together with our "eyes".

A common technique to implement this is to use the properties of affine
spaces in 4x4 matrices (to also encode 3d positions). In Figure 3.4 we show
the commonly used coordinate spaces in graphics as rectangles: object, world,
eye and clip. Edges represent transitions between them and are encoded as the
4x4 matrices mentioned above. As an example when vertices in object space
are multiplied by the model matrix they transition to world space. This is a
change of basis in linear algebra terms.

Figure 3.4 shows arrows pointing backwards. They represent the inverse
of a matrix (transitions vertices in the opposite direction).

The solution is to transform sources to world space with their model
matrices and then to eye space by transforming the result by the listener’s
view matrix.

Figure 3.4: Commonly used spaces in computer graphics

3.5
Spatialization

We implement spatialization by convolving the HRIR with each sound
we want to play. The process is as follows. Firstly, select the recording that
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best matches (θ, φ, ρ), as explained in 3.3.1 (triangulation). Then, transform
the data to the listener’s space, as explained in section 3.4 (affine spaces). After
that, bring x[t] into the frequency domain by applying DFT to it. Then, do an
element wise multiplication in the frequency domain between x[t] andHRTF [t]
for each ear (L+R). Finally, bring them both back to the time domain with a
DFT−1 for each. This produces a stereo signal that can be send directly to the
headphones. For multiple sound sources, we do this process separately for each
source, summing all (L) channels and all (R) channels before sending them to
the headphones.

Below are the equations for the xl[n] (left) and xr[n] (right) ears:

x[n] ∗ h[n] = DFT−1{DFT{x[n]} ·DFT{h[n]}}
HRTFl[n], HRTFr[n] = HRTFdatabase(θ, φ, ρ)[n]

xl[n] = DFT−1{DFT{x[n]} ·HRTFl[n]}
xr[n] = DFT−1{DFT{x[n]} ·HRTFr[n]}

Figure 3.5 presents a graph representation of the above-mentioned pro-
cess. The reader should notice that HRTF generates two pairs of signals in
the complex plane (a pair for the right channel and another one for the left
channel). In this case, each channel has a real part (HRTFr) and an imaginary
one (HRTFl). We indicate this output with the symbol C2.

Figure 3.5: Spatialization effect implemented as the fast convolution between
x[t] with HRTF.

The elements in the Figure 3.5 are:

– (x,y,z) - Object position in listener’s space.
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– x[t] - audio to be spatialized.

– HRTF - HTRFdatabase function lookup. It yields HRTFl and HRTFr.

– DFT - discrete fourier transform (implemented with FFT).

– × - element wise multiplication between array elements.

– DFT−1 - inverse DFT (implemented with FFT).

As a note, we did a small simplification here to ease the algorithm’s
understanding. Check 3.1.6.1 (Sectioned convolution) for the complete story.

3.5.1
DAG - Directed Acyclic Graph

In the present work, we use graphs to design any process for 3D audio
spatialization. See the graph in Figure 3.5. In the spatialization of Figure 3.5,
each node represents a DSP operation and each one of its edges represents a
flow of data. Incoming edges are arguments and outgoing edges are its results.
A node must have its inputs ready before it is able to execute, that is: an
edge can also be though of as a dependency between nodes. Also, this graph
must be acyclic, i.e.: no operation can depend on the result of itself, directly
or indirectly.

This graph is a well-known category of graph called a Directed Acyclic
Graph (DAG). All DAGs have a property called topological ordering that
states the following: there exist a configuration of nodes such that if we put
all of them into a line, edges will point to the right of itself. This operation is
called topological sorting and can be accomplished in O(m+n) complexity as
described in chapter 3.6 of Tardos et al. (12). The graph G is defined below
with its graphical representation in Figure 3.6. And after sorting we get the
list of vertices L = (a, b, c, d), or visually in Figure 3.7.

G = {V = {a, b, c, d}, E = {a→ b, a→ c, b→ c, c→ d}}

Figure 3.6: Example of a DAG

Figure 3.7: Example of a topologi-
cally sorted DAG. Nodes in order are:
(a,b,c,d)
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4
Design and Implementation - The Virtual Machine

In this chapter, we put the theory from Chapter 3 into practice and
discuss a possible implementation of a real-time audio spatialization engine.
Also, we propose a digital signal processing Virtual Machine (called DSP-VM)
to help the implementation of audio spatialization in virtual environments.
In the first section (4.1), we explore the system properties and show how
they guide our proposed solution. After that, in section 4.2, we go into the
data structures and algorithms of our proposed solution. Finally, in Section
4.3, we describe the implementation we arrived at (using the C programming
language).

4.1
Properties

For a successful design, we must at least implement the graph of DSP
operations (Figure 3.5) presented in section 3.5 (spatialization). Ideally, our
model should be able to support effects, audio synthesis, and mixing as
discussed before.

In practical terms, this graph is a Directed Acyclic Graph (DAG) as
discussed in Section 3.5.1. In this approach, we split our design into two parts,
one responsible for defining the chain of DSP operations and another as an
executor of those operations. The executor receives a list of topologically
ordered operations specified by the first part and executes them in the
controlled real-time environment.

A second point deserving our attention is the data that flows between
nodes. Audio hardware processes multiple audio samples at a time. This
hardware stores the samples in a circular queue before sending them to the
speakers. A common configuration is a buffer with a capacity of 2*periods
so that every time the audio hardware consumes period from it, a system
interrupt calls the application to fill in period more. This is usually done
via a callback registered with the OS’s audio API (Linux case described in
ALSA asynchronous playback 1). Dimensioning these buffers is a balancing

1https://alsa.opensrc.org/Asynchronous_Playback_(Howto)#The_Callback_
Notification

https://alsa.opensrc.org/Asynchronous_Playback_(Howto)#The_Callback_Notification
https://alsa.opensrc.org/Asynchronous_Playback_(Howto)#The_Callback_Notification
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act. Large buffers will increase efficiency due to smaller interrupt overhead and
better CPU cache locality. On the other hand, small buffers are required for
low latencies and better application responsiveness. There is also an additional
restriction for the FFT algorithm. It requires buffers to be a powers of 2, as
discussed before in subsection 3.1.5 (FFT).

Brungart et al. (9) measured the effects of latency in the human ability
to localize virtual objects and observed no perceivable detriments for latencies
of up to 70ms. With this we can compute a buffer size that meets all criteria
and we arrived at 1024 frames as derived below:

For a sample rate of 48kHz and a full buffer, with 2 ∗ period samples we
get an upper bound of:

samples = latency ∗ frequency

samples = (0.070/2) ∗ 48000

samples = 1680

The chosen value is then the power of two immediately below 1680, 1024.
Which gives our system a best case latency of about 42ms.

4.2
Design

Our design, up to this point, is a loop over an array of DSP instructions
executed in sequence. They operate on buffers with 1024 samples each and
as the last step feeds a final buffer to audio hardware. This means we will
have quite a few of those buffers going around carrying data from one node
to the next. An option would be dynamically allocate them and pass their
pointers around. But, even with correct ownership by reference counting, this
does not satisfies our real time considerations as we will discuss in the 4.4. We
will sidestep this issue by preallocating a block of memory capable of storing
a large number of buffers, a technique known as a pool allocator.

This pretty much describes a register based virtual machine, in our case,
only capable of executing specialized DSP operations. It receives a program
with instructions, sources, listeners, and effects, and produces a buffer ready
to be queued by the audio hardware.

4.3
implementation

We implemented the DSP-VM (section 4.3.1) described in the previous
section and a demo application (section 4.3.2) that uses it to spatialize white
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noise.

4.3.1
DSP-VM

The implementation was done in the C programming language starting
from a DSP library from scratch. The library implements important functions
that the VM will use as primitives (including the FFT algorithms). A different
module used this library to implement the VM instructions (some are one-
to-one mappings and some are complex operations, such as the HRTF). A
simplified list of the available operations is shown in listing 4.1.

1 read_wav ( f l o a t o [ ] , i n t s o u r c e i d ) ;
2 add ( f l o a t o [ ] , f l o a t x [ ] , f l o a t y [ ] ) ;
3 f f t ( f l o a t xr [ ] , f l o a t x i [ ] ) ;
4 i f f t ( f l o a t xr [ ] , f l o a t x i [ ] ) ;
5 h r t f ( f l o a t h [ 2 ] [ 2 ] , i n t s o u r c e i d ) ;
6 mul ( f l o a t o [ ] , f l o a t x [ ] , f l o a t y [ ] ) ;
7 mulk ( f l o a t o [ ] , f l o a t x [ ] , f l o a t k ) ;

Listing 4.1: Pseudo code of implemented DSP operations

The next step is to define the virtual machine instructions. We implement
them as a union of structs (listing 4.2). This is a simple way to implement
polymorphism in C. All instructions inherit the "any" instruction by defining
it as their first member. In this approach, all instructions can be cast safely to
any instruction during execution.

1 union t_snd_inst {
2 s t r u c t t_snd_inst_any {
3 uint16_t op ;
4 } as_any ;
5
6 s t r u c t t_snd_inst_clear {
7 t_snd_inst_any _;
8 uint16_t x ;
9 } a s _ c l e a r ;

10
11 s t r u c t t_snd_inst_add {
12 t_snd_inst_any _;
13 uint16_t o , x , y ;
14 } as_add ;
15
16 s t r u c t t_snd_inst_hrtf {
17 t_snd_inst_any _;
18 uint16_t src , xr [ 2 ] , x i [ 2 ] ;
19 } as_hrt f ;
20 . . .
21 } ;

Listing 4.2: Instruction set ("clear", "add" and "hrtf" examples)

Each instruction encodes its own parameters. For example, the "clear"
instruction encodes which register to clear. In the case of add, it encodes both
of its inputs and its output.

A pseudo code program that implements spatialization is presented in
listing 4.3. In it, the encode prefix is used to fill in one of the structs defined
above. It does not execute the instruction.

1 s p a t i a l i z e ( program ∗p , uint16_t i t ) {
2 // r e g i s t e r s
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3 uint16_t x [ 2 ] = { 0 , 1 } ;
4 uint16_t y l [ 2 ] = {2 ,3} ,
5 yr [ 2 ] = { 4 , 5 } ;
6 uint16_t h [ 2 ] [ 2 ] = { { 6 , 7 } , { 8 , 9 } } ;
7
8 encode_read_wav ( p , x [ 0 ] , i t ) ;
9 encode_clear ( x [ 1 ] ) ;

10
11 e n c o d e _ f f t ( p , x [ 0 ] , x [ 1 ] ) ;
12 encode_hrtf ( p , h , i t ) ;
13
14 encode_mul ( p , y l [ 0 ] , x [ 0 ] , h [ 0 ] [ 0 ] ) ; // y l = x ∗ h r t f _ l e f t ( r e a l part )
15 encode_mul ( p , y l [ 1 ] , x [ 1 ] , h [ 0 ] [ 1 ] ) ; // y l = x ∗ h r t f _ l e f t ( imag part )
16 encode_mul ( p , yr [ 0 ] , x [ 0 ] , h [ 1 ] [ 0 ] ) ; // yr = x ∗ h r t f _ r i g h t ( r e a l part )
17 encode_mul ( p , yr [ 1 ] , x [ 1 ] , h [ 1 ] [ 1 ] ) ; // yr = x ∗ h r t f _ r i g h t ( imag part )
18
19 e n c o d e _ i f f t ( p , yr [ 0 ] , yr [ 1 ] ) ;
20 e n c o d e _ i f f t ( p , y l [ 0 ] , y l [ 1 ] ) ;
21 }

Listing 4.3: Pseudo code of the spatialization operation

An advantage of this design is that all instructions fit in the size of
a t_snd_inst. We use this property to avoid the allocation of instruction
individually. With this, we also avoid the need for an array of pointers to
instructions and do directly an array of them.

A disadvantage is that every instruction occupies the size of the largest
of them. Therefore, care must be taken to avoid enlarging the instructions too
much.

A program is an array of instructions, constants and registers (listing 4.4).
The program defines the sequence of DSP instructions to execute. Registers
hold intermediate values passed between instructions and constants store the
twiddle factors and the HRTF table. In this way, data can be shared between
programs.

1 s t r u c t Source {
2 vec3 pos ;
3 WAV wav ;
4 } ;
5 s t r u c t t_snd_prog {
6 I n s t r u c t i o n s i n s t s [ ] ;
7 Source s o u r c e s [ ] ;
8
9 f l o a t c o n s t a n t s [ ] ;

10 f l o a t r e g s [ ] ;
11 } ;

Listing 4.4: Pseudo code of the DSP-VM Program definition

4.3.2
Demonstration

To ensure that our design was useful in practice, we implemented a demo
application to show the spatialization in action. This demo spatializes a white
noise according to the mouse’s position. The movement of the mouse is linked
to θ and φ and changes the HRTF accordingly (indicated by the light gray
triangle in figure 4.1). A second view of the application Figure 4.2 shows the
intermediate buffers used in the computation of the spatialization.
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Figure 4.1: Interactive application with HRTF mouse selection (the light gray
triangle selects the position of the sound source)

Figure 4.2: Interactive application with HRTF mouse selection (Buffer view).
The various audio signals correspond to the output of each node of the
spatialization pipeline (e.g. HRTF generates two pairs of signals in the complex
plane - a total of 4 signals)

4.4
Real time considerations

We have timing restrictions based on the OS audio callback function.
Failure to feed it in proper time will cause audio glitches and, depending on the
situation, may damage audio equipments. To make sure we stay within time,
we avoid operations with variable time. This includes operations like dynamic
memory allocation, acquiring and releasing locks, algorithms with amortized
cost and functions that take an unknown amount of time to execute. Ideally we
should also operate on memory sequentially to avoid stalls. The design decision
of separating the DSP-VM program "compilation" from execution helps in
achieving these points (because these restrictions are only required by the
execution part of the virtual machine, and it is unrestricted otherwise). A good
read on the subject is the unpublished C++ guideline for the implementation
of latency preserving libraries 2.

2https://docs.google.com/viewer?a=v&pid=forums&srcid=
MTE5NTAwNjk0ODI0NDg0MTc0MjkBMTcwMDg5NzU5MzEwMzQ5ODQ4NzABNVhhNWtXMExCd0FKATAuMQFpc29jcHAub3JnAXYy&
authuser=0

https://docs.google.com/viewer?a=v&pid=forums&srcid=MTE5NTAwNjk0ODI0NDg0MTc0MjkBMTcwMDg5NzU5MzEwMzQ5ODQ4NzABNVhhNWtXMExCd0FKATAuMQFpc29jcHAub3JnAXYy&authuser=0
https://docs.google.com/viewer?a=v&pid=forums&srcid=MTE5NTAwNjk0ODI0NDg0MTc0MjkBMTcwMDg5NzU5MzEwMzQ5ODQ4NzABNVhhNWtXMExCd0FKATAuMQFpc29jcHAub3JnAXYy&authuser=0
https://docs.google.com/viewer?a=v&pid=forums&srcid=MTE5NTAwNjk0ODI0NDg0MTc0MjkBMTcwMDg5NzU5MzEwMzQ5ODQ4NzABNVhhNWtXMExCd0FKATAuMQFpc29jcHAub3JnAXYy&authuser=0
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Those are guidelines and sometimes impossible to follow strictly. As an
example, we break the amortized cost rule for triangle lookup. Common sense
is also advised.

4.5
Results

The demo works and demonstrates the spatialization effect correctly and
in real time. It took on average 70us for a single audio source to execute
the complete spatialization pipeline on the prototype implementation (average
time measurement over 1024 samples). Extrapolating this result to our latency
window of 40ms, we can compute about 500 individual audio sources on a single
CPU core.
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5
Conclusion

We have successfully implemented the virtual machine described along
the dissertation. It is capable of audio spatialization in real time and meets
the real-time requirements we have discussed. We made sure that it has a
reasonable design by implementing the demo along with it and showed that it
can be used in practice.

Flat profile:
% cumulative self self total

time seconds seconds calls us/call us/call name
48.34 0.28 0.28 2744 102.18 102.18 t_math_fft_rn
18.99 0.39 0.11 2744 40.14 142.32 t_math_ffti_rn
15.54 0.48 0.09 t_math_fft_nr
10.36 0.54 0.06 t_snd_hrtf_op
3.45 0.56 0.02 2744 7.30 7.30 t_snd_ola_ch.constprop.17
3.45 0.58 0.02 t_snd_mul_c2i_c1i_op

5.1
Future Works

The virtual machine was conceptually divided into two pieces (a compiler
part and an execution part), but little attention was given to the first one.
There is a vast body of literature in the subject of compilers, register allocation,
code optimization and etc. An optimizing compiler might leverage the fact
that various DSP operations could be rearranged and may show faster ways
to achieve the same results.

The subject of audio culling was also not explored. It presents unique
challenges when compared to graphics, due to the audio’s larger ability to
refract. Because of that, techniques such as depth buffer would not work as it
does for graphics. However, global illumination techniques may work.

In the demo, we implemented a linear search over the HRTF triangles. We
would like to implement the algorithm described in section 3.3.1 and measure
its impact on the spatialization’s time.

The speed of spatialization is heavily dependent on the floating point
speed of the platform. An interesting avenue for future works is to re-implement
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the DSP operations in such a way that we can leverage the single instruction
multiple data (SIMD) CPU operations and make time comparisons for both.
A third point of comparison would be to implement the DSP library as fixed
point operations and also measure the impact.
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