

Rosana Medeiros Moreira

Avaliação metrológica do rendimento e consumo em aparelhos domésticos de cocção a gás

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Metrologia (Área de concentração: Metrologia para Qualidade e Inovação) da PUC-Rio.

Orientador: Prof. Elcio Cruz de Oliveira

Rosana Medeiros Moreira

Avaliação metrológica do rendimento e consumo em aparelhos domésticos de cocção a gás

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Metrologia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo:

Prof. Elcio Cruz de Oliveira Orientador Programa de Pós-Graduação em Metrologia – PUC-Rio

> **Dra. Valéria Said de Barros Pimentel** Instituto Nacional de Tecnologia – INT

Dra. Khrissy Aracélly Reis Medeiros Departamento de Engenharia Mecânica – PUC-Rio

Rio de Janeiro, 04 de dezembro de 2020

Todos os direitos reservados. A reprodução, total ou parcial, do trabalho é proibida sem autorização da universidade, da autora e do orientador.

Rosana Medeiros Moreira

Graduação em Química pela FTESM (Fundação Técnico-Educacional Souza Marquês) em 1989, Tecnologista Sênior do Ministério de Ciência, Tecnologia e Inovação e atualmente Chefe da Divisão de Engenharia e Conformidade de Produtos do Instituto Nacional de Tecnologia - INT.

Ficha Catalográfica

Moreira, Rosana Medeiros

Avaliação metrológica do rendimento e consumo em aparelhos domésticos de cocção a gás / Rosana Medeiros Moreira ; orientador: Elcio Cruz de Oliveira. – 2020.

142 f.: il. color.; 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Centro Técnico Científico, Programa de Pós-Graduação em Metrologia, 2020. Inclui bibliografia

 Metrologia - Teses. 2. Metrologia para Qualidade e Inovação - Teses. 3. Metrologia. 4. Fogões. 5. Altitude.
 Incerteza de medição. 7. Performance térmica. I. Oliveira, Elcio Cruz de. II. Pontifícia Universidade Católica do Rio de Janeiro. Centro Técnico Científico. Programa de Pós-Graduação em Metrologia. III. Título.

CDD 389.1

Agradecimentos

Primeiramente, agradeço a Deus por ter me colocado entre pessoas que de certa forma me ajudaram a alcançar tudo que construí até hoje e por me dar o privilégio de ser uma pessoa apta a cumprir com os meus objetivos.

A meu marido José Carlos Medeiros Moreira pela parceria em todos os momentos, a meu filho Écio Luiz Medeiros de Novais que me incentivaram a alcançar meus sonhos.

Ao meu orientador, Dr. Elcio Cruz de Oliveira, por aceitar a orientação e dividir sua experiência de forma relevante para a construção desse trabalho.

Aos demais membros da banca examinadora, Dra. Valéria Said de Barros Pimentel e Dra. Khrissy Aracélly Reis Medeiros, pela contribuição fundamental em suas avaliações.

A todos os professores do Programa de Pós-graduação em Metrologia para Qualidade, Inovação e Sustentabilidade (PósMQI).

Ao coordenador do curso Dr. Carlos Roberto Hall Barbosa sempre disposto a nos ajudar.

À equipe técnica e administrativa do PósMQI, Márcia Ribeiro e Paula Guimarães, pelo apoio técnico e administrativo.

Aos meus colegas da PUC-Rio pelas discussões técnicas e motivadoras ao longo destes dois anos de mestrado.

A minha bolsista Aline da Silva pela determinação na execução e coleta dos dados experimentais, buscando sempre a perfeição para alcançarmos os resultados esperados no Laboratório de Segurança e Desempenho de Equipamentos Térmicos – LATES do Instituto Nacional de Tecnologia.

Ao Instituto Nacional de Tecnologia – INT e a comissão de pós-graduação do Instituto, pelo incentivo e permissão para comparecer às aulas e desenvolver os trabalhos propostos durante o período do curso.

O presente trabalho foi realizado com o apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

Resumo

Moreira, Rosana Medeiros; Oliveira, Elcio Cruz; **Avaliação metrológica do rendimento e consumo em aparelhos domésticos de cocção a gás.** Rio de Janeiro 2020. 142p. Dissertação de Mestrado — Programa de Pós-Graduação em Metrologia. Área de concentração: Metrologia para Qualidade e Inovação, Pontifícia Universidade Católica do Rio de Janeiro.

Esta dissertação tem por objetivo avaliar metrologicamente os resultados dos ensaios de rendimento e consumo em aparelhos domésticos de cocção a gás e sua influência na classificação do Programa Brasileiro de Etiquetagem desses aparelhos. A avaliação de conformidade e como as diferentes altitudes influenciam nos ensaios, acompanhadas de suas incertezas de medição, provêm de dados históricos do início do Programa Brasileiro de Etiquetagem em fogões e aos constantes questionamentos sobre a representatividade dos resultados dos planos interlaboratoriais, o que motivou a realização do estudo. A metodologia utilizada fundamentou-se em pesquisa bibliográfica, documental e experimental, que teve por finalidade coletar dados dos ensaios de rendimento e consumo em duas cidades com diferentes altitudes, discussão da norma com detalhamento dos algoritmos e tratamento estatístico dos dados coletados, onde a abordagem proposta se baseia na avaliação da normalidade, tratamento de *outliers*, cálculo do rendimento reportado a partir da medida de posição inversamente ponderada pela medida de dispersão de cada queimador e desenvolvimento dos algoritmos do cálculo de incerteza dos ensaios de rendimento e consumo. Neste cenário, os resultados mostram que a média aritmética, atualmente usada no cálculo do rendimento dos quatro queimadores da mesa do fogão, pode ser substituída pela média ponderada por variâncias estatisticamente não compatíveis entre si. Conclui-se que a incerteza dos ensaios do rendimento e consumo não foi suficiente para colocar em risco a mudança de faixa de classificação da etiqueta de eficiência energética do produto; entretanto, se observa uma diferença entre os resultados ao nível do mar e em altitude acima do nível do mar, o que sugere estudos futuros mais detalhados sobre os algoritmos de correção da grandeza altitude.

Palavras-chave

Metrologia; Fogões; Altitude; Incerteza de Medição; Performance Térmica.

Abstract

Moreira, Rosana Medeiros; Oliveira, Elcio Cruz de (Advisor). **Metrological evaluation of performance and consumption in domestic gas cooking appliances.** Rio de Janeiro, 2020. 142p. Dissertação de Mestrado — Programa de Pós-Graduação em Metrologia. Área de concentração: Metrologia para Qualidade e Inovação, Pontifícia Universidade Católica do Rio de Janeiro.

This dissertation aims to metrologically evaluate the results of performance and consumption tests on domestic gas cooking appliances and their influence on the classification of the Brazilian Labelling Program for these appliances. The compliance assessment and how the different altitudes influence the tests accompanied by their measurement uncertainties come from historical data from the beginning of the Brazilian Labelling Program on stoves and from the constant questions about the representativeness of the results of the interlaboratorial tests, which motivated the realization of the study. The methodology used was based on bibliographic, documentary and experimental research, which aimed to collect data from income and consumption tests in two cities with different altitudes, discussion of the standard with details of the algorithms and statistical treatment of the collected data. The approach proposal is based on the evaluation of normality, treatment of outliers, calculation of the reported yield from the position measurement inversely weighted by the measure of dispersion of each burner and development of the uncertainty calculation algorithms of the performance and consumption tests. In this scenario, the results show that the arithmetic mean, currently used in the calculation of the performance of the four burners on the stove table, can be replaced by the weighted average by variances that are not statistically compatible with each other. It is concluded that the uncertainty of the efficiency and consumption tests was not enough to put at risk the change in the classification range of the energy efficiency label of the product. However, there is a difference between the results at sea level and at altitude above sea level, which suggests more detailed future studies on the altitude correction algorithms.

Keywords

Metrology; Stoves; Altitude; Measurement uncertainty; Thermal performance.

Sumário

1.2. Motivação 1.3. Objetivos: Geral e Específicos 1.4. Metodologia 1.5. Estrutura da dissertação 2. Fundamentação Teórica 2.1. Fundamentos teóricos associados à medição da eficiência e consumo dos aparelhos domésticos de cocção a gás 2.2. Regulamentação aplicável e desvios nominais de medição 2.3. Conceitos básicos sobre incerteza de medição 2.3.1. Avaliação da incerteza-padrão 2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de outliers 3.2.2.1. Teste de Grubbs 3.2.2.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis	1. Introdução	22
 1.3. Objetivos: Geral e Específicos 1.4. Metodologia 1.5. Estrutura da dissertação 2. Fundamentação Teórica 2.1. Fundamentos teóricos associados à medição da eficiência e consumo dos aparelhos domésticos de cocção a gás 2.2. Regulamentação aplicável e desvios nominais de medição 2.3. Conceitos básicos sobre incerteza de medição 2.3.1. Avaliação da incerteza-padrão 2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis 	1.1. Definição do Problema da Pesquisa	22
 1.4. Metodologia 1.5. Estrutura da dissertação 2. Fundamentação Teórica 2.1. Fundamentos teóricos associados à medição da eficiência e consumo dos aparelhos domésticos de cocção a gás 2.2. Regulamentação aplicável e desvios nominais de medição 2.3. Conceitos básicos sobre incerteza de medição 2.3.1. Avaliação da incerteza-padrão 2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis 	1.2. Motivação	24
1.5. Estrutura da dissertação 2. Fundamentação Teórica 2.1. Fundamentos teóricos associados à medição da eficiência e consumo dos aparelhos domésticos de cocção a gás 2.2. Regulamentação aplicável e desvios nominais de medição 2.3. Conceitos básicos sobre incerteza de medição 2.3.1. Avaliação da incerteza-padrão 2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis	1.3. Objetivos: Geral e Específicos	24
2. Fundamentação Teórica 2.1. Fundamentos teóricos associados à medição da eficiência e consumo dos aparelhos domésticos de cocção a gás 2.2. Regulamentação aplicável e desvios nominais de medição 2.3. Conceitos básicos sobre incerteza de medição 2.3.1. Avaliação da incerteza-padrão 2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de outliers 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis	1.4. Metodologia	25
2.1. Fundamentos teóricos associados à medição da eficiência e consumo dos aparelhos domésticos de cocção a gás 2.2. Regulamentação aplicável e desvios nominais de medição 2.3. Conceitos básicos sobre incerteza de medição 2.3.1. Avaliação da incerteza-padrão 2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis	1.5. Estrutura da dissertação	25
consumo dos aparelhos domésticos de cocção a gás 2.2. Regulamentação aplicável e desvios nominais de medição 2.3. Conceitos básicos sobre incerteza de medição 2.3.1. Avaliação da incerteza-padrão 2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis	2. Fundamentação Teórica	27
2.3. Conceitos básicos sobre incerteza de medição 2.3.1. Avaliação da incerteza-padrão 2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis	·	27
2.3.1. Avaliação da incerteza-padrão 2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis	2.2. Regulamentação aplicável e desvios nominais de medição	28
2.3.2. Avaliação da incerteza-padrão combinada 2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis	2.3. Conceitos básicos sobre incerteza de medição	30
2.3.3. Contribuição de cada um dos componentes da incerteza 2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2. Regra dos quartis	2.3.1. Avaliação da incerteza-padrão	33
2.3.4. Avaliação da incerteza expandida 3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.2.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis	2.3.2. Avaliação da incerteza-padrão combinada	33
3. Fundamentos da medição 3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis	2.3.3. Contribuição de cada um dos componentes da incerteza	33
3.1. Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis	2.3.4. Avaliação da incerteza expandida	33
referencial normativo 3.1.1. Ensaio de rendimento e seus algoritmos 3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis	3. Fundamentos da medição	35
3.1.2. Ensaio de consumo e seus algoritmos 3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis		35
3.1.3. Cálculo do índice de consumo do forno 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis	3.1.1. Ensaio de rendimento e seus algoritmos	35
 3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis 	3.1.2. Ensaio de consumo e seus algoritmos	38
experimentais de aparelhos domésticos de cocção a gás 3.2.1. Avaliação da normalidade dos dados 3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis	3.1.3. Cálculo do índice de consumo do forno	41
3.2.2. Tratamento de <i>outliers</i> 3.2.2.1. Teste de Grubbs 3.2.2.1.1. Um valor discrepante observado 3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis	,	41
3.2.2.1. Teste de Grubbs3.2.2.1.1. Um valor discrepante observado3.2.2.1.2. Dois valores discrepantes observados3.2.2.2. Regra dos quartis	3.2.1. Avaliação da normalidade dos dados	41
3.2.2.1.1. Um valor discrepante observado3.2.2.1.2. Dois valores discrepantes observados3.2.2.2. Regra dos quartis	3.2.2. Tratamento de <i>outliers</i>	43
3.2.2.1.2. Dois valores discrepantes observados 3.2.2.2. Regra dos quartis	3.2.2.1. Teste de Grubbs	43
3.2.2.2. Regra dos quartis	3.2.2.1.1. Um valor discrepante observado	44
-	3.2.2.1.2. Dois valores discrepantes observados	45
3.2.3. Medidas de posição ponderadas pelas medidas de dispersão	3.2.2.2. Regra dos quartis	46
	3.2.3. Medidas de posição ponderadas pelas medidas de dispersão	46

3.3. Detalhamento dos algoritmos no cálculo de incerteza utilizado no ensaio de rendimento	48
3.4. Detalhamento dos algoritmos no cálculo de incerteza utilizado no ensaio de consumo	51
3.5. Detalhamento do cálculo de incerteza nos ensaios de rendimento e consumo	54
3.5.1. Cálculo de incerteza média nos ensaios de rendimento e consumo	55
3.5.2. Teste de hipótese para comparação dos resultados da incerteza média nos ensaios de rendimento e consumo ao nível do mar e em altitude acima do nível do mar	55
4. Resultados e discussão	56
4.1. Medição ao nível do mar dos ensaios de rendimento e consumo dos aparelhos domésticos de cocção a gás	57
4.1.1. Tratamentos estatísticos das medições ao nível do mar	58
4.1.2. Avaliação da normalidade por teste de Shapiro-Wilk dos resultados de rendimento ao nível do mar	58
4.1.3. Avaliação da normalidade por teste de Shapiro-Wilk dos resultados do consumo ao nível do mar	59
4.1.4. Tratamento de <i>outlier</i> s dos resultados de rendimento e consumo ao nível do mar	61
4.1.5. Média ponderada dos ensaios de rendimento ao nível do mar	62
4.2. Medição em altitude acima do nível do mar dos ensaios de eficiência e consumo dos aparelhos domésticos de cocção a gás	63
4.2.1. Tratamentos estatísticos das medições obtidas acima do nível do mar	64
4.2.2. Avaliação da normalidade por teste de Shapiro-Wilk para os ensaios de rendimento acima do nível do mar	65
4.2.3. Avaliação da normalidade por teste de Shapiro-Wilk para os ensaios de consumo acima do nível do mar	66
4.2.4. Tratamento de <i>outliers</i> dos resultados de rendimento e consumo acima do nível do mar	68
4.2.5. Média ponderada dos ensaios de rendimento acima do nível do mar	70
4.3. Incerteza de medição nos ensaios de rendimento e consumo de aparelhos domésticos de cocção a gás ao nível do mar	72
4.3.1. Cálculo da incerteza de medição do rendimento nas condições padrão	72
4.3.2. Cálculo da incerteza de medição do consumo nas condições padrão	74
4.3.3. Resumo das contribuições das incertezas no ensaio nº1 ao nível do mar	75
4.4. Incerteza de medição nos ensaios de rendimento e consumo de aparelhos domésticos de cocção a gás acima do nível do mar	78

4.4.1. Cálculo da incerteza de medição do rendimento nas condições padrão acima do nível do mar	78
4.4.2. Cálculo da incerteza de medição do consumo nas condições padrão acima do nível do mar	80
4.4.3. Resumo das contribuições das incertezas no ensaio n^{o} 1 acima do nível do mar	81
4.5. Incerteza de medição nos ensaios de rendimento da mesa do fogão e consumo do forno aparelhos domésticos de cocção a gás ao nível do mar e acima do nível do mar	84
4.5.1. Teste de hipótese nas grandes médias de resultados e nas incertezas de medição nos ensaios de rendimento e consumo ao nível do mar e acima do nível do mar.	87
5. Conclusões e trabalhos futuros	88
6. Referências bibliográficas	90
Anexo A – Tabelas para testes estatísticos	93
Anexo B – Artigo	94
Apêndice A $-$ Resumo do ensaio $n^{\rm o}2$ em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar	95
Apêndice B $-$ Resumo do ensaio $n^{\rm o}3$ em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar	101
Apêndice C $-$ Resumo do ensaio $n^{o}4$ em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar	107
Apêndice D $-$ Resumo do ensaio $n^{\circ}5$ em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar	113
Apêndice E $-$ Resumo do ensaio $n^{\circ}6$ em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar	119
Apêndice F – Resumo do ensaio $n^{o}7$ em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar	125
Apêndice G – Resumo do ensaio nº8 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar	131
Apêndice H $-$ Resumo do ensaio n^09 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar	136

Lista de Figuras

Figura 1 – Modelo da Etiqueta Nacional de Conservação de Energia	30
Figura 2 – Diagrama esquemático do teste de rendimento dos queimadores da mesa	36
Figura 3 – Diagrama esquemático do teste de consumo do queimador do forno	39
Figura 4 – Resumo da marcha dos processos estatísticos	41
Figura 5 – Fluxograma dos ensaios ao nível do mar e acima do nível do mar	56
Figura 6 – Laboratório ao nível do mar	57
Figura 7 – Laboratório acima do nível do mar	64
Figura 8 – Representação gráfica das contribuições das incertezas do rendimento no ensaio nº1 ao nível do mar	76
Figura 9 – Representação gráfica das contribuições das incertezas do consumo no ensaio nº1 ao nível do mar	77
Figura 10 – Representação gráfica das contribuições das incertezas do rendimento no ensaio nº1 acima do nível do mar	83
Figura 11 – Representação gráfica das contribuições das incertezas do consumo no ensaio nº1 acima do nível do mar	84

Lista de Quadros

Quadro 1 – Resultado da Estatística "w" do rendimento ao nível do mar	59
Quadro 2 – Resultado da Estatística "w" do consumo ao nível do mar	60
Quadro 3 – Resultado da Estatística "w" do rendimento acima do nível do mar	66
Quadro 4 – Resultado da Estatística "w" do consumo acima do nível do mar	67

Lista de Tabelas

Tabela 1 – Classificação energética para fogões	29
Tabela 2 – Desvios nominais admissíveis no ensaio inicial	30
Tabela 3 – Massa de água em função da potência do queimador	38
Tabela 4 – Dados experimentais obtidos em laboratório ao nível do mar	57
Tabela 5 – Cálculos da constante "b" para o rendimento ao nível do mar Tabela 6 – Cálculos da estatística "w" para o rendimento ao nível do	58
mar	59
Tabela 7 – Cálculos da constante "b" para o consumo ao nível do mar	60
Tabela 8 – Cálculos da estatística "w" para o consumo ao nível do mar	60
Tabela 9 – Cálculos do Teste de Grubbs para os ensaios de rendimento e consumo ao nível do mar.	61
Tabela 10 – Média ponderada dos rendimentos dos queimadores ao nível do mar	62
Tabela 11 – Anova dos resultados do rendimento dos queimadores ao nível do mar	63
Tabela 12 – Dados experimentais obtidos em laboratório acima do nível do mar	64
Tabela 13 – Cálculos da constante "b" do rendimento acima do nível do mar	65
Tabela 14 – Cálculos da estatística "w" para o rendimento acima do nível do mar	66
Tabela 15 – Cálculos da constante "b" para o consumo acima do nível do mar	67
Tabela 16 – Cálculos da estatística "w" para o consumo acima do nível do mar	67
Tabela 17 – Cálculos do Teste de Grubbs para os ensaios de rendimento e consumo acima do nível do mar	68
Tabela 18 – Cálculos do Intervalo interquartílico para o ensaio de rendimento no queimador 3	69
Tabela 19 – Cálculos do Intervalo interquartílico para o ensaio de consumo	69
Tabela 20 – Média ponderada do rendimento no laboratório acima do nível do mar	70
Tabela 21 – Anova dos resultados do rendimento dos queimadores acima do nível do mar	71

Tabela 22 – Grandezas de entrada do rendimento do ensaio nº1 ao nível do mar	72
Tabela 23 – Grandezas de saída do rendimento do ensaio nº1 ao nível do mar	73
Tabela 24 – Coeficientes de sensibilidade do rendimento do ensaio nº1 ao nível do mar	73
Tabela 25 – Grandezas de entrada do consumo no ensaio nº1 ao nível do mar	74
Tabela 26 – Grandezas de saída do consumo no ensaio nº1 ao nível do mar	74
Tabela 27 – Coeficientes de sensibilidade do consumo no ensaio nº1 ao nível do mar	75
Tabela 28 – Resumo das incertezas do rendimento no ensaio nº1 ao nível do mar	75
Tabela 29 – Resumo das incertezas do consumo no ensaio nº1 ao nível do mar	77
Tabela 30 – Grandezas de entrada do rendimento no ensaio nº1 acima do nível do mar	79
Tabela 31 – Grandezas de saída do rendimento no ensaio nº1 acima do nível do mar	79
Tabela 32 – Coeficientes de sensibilidade do rendimento no ensaio nº1 acima do nível do mar	79
Tabela 33 – Grandezas de entrada do consumo no ensaio nº1 acima do nível do mar	80
Tabela 34 – Grandezas de saída do ensaio nº1 do consumo acima do nível do mar	81
Tabela 35 – Coeficientes de sensibilidade do ensaio nº1 do consumo acima do nível do mar	81
Tabela 36 – Resumo das incertezas do rendimento no Ensaio nº1 acima do nível do mar	82
Tabela 37 – Resumo das incertezas do consumo no ensaio nº1 acima do nível do mar	84
Tabela 38 – Resultados dos nove ensaios de rendimento com suas incertezas ao nível do mar	85
Tabela 39 – Resultados dos nove ensaios de rendimento com suas incertezas acima do nível do mar	85
Tabela 40 – Resultados dos nove ensaios do consumo ao nível do mar	86
Tabela 41 – Resultados dos nove ensaios do consumo acima do nível do mar	86
Tabela 42 – Constante "a" para (n=9)	93
Tabela 43 – Nível de Significância de 5 % para (n = 9)	93

Tabela 44 – Grandezas de entrada do rendimento do ensaio nº2 ao	
nível do mar	95
Tabela 45 – Grandezas de saída do rendimento do ensaio nº2 ao nível	٥٦
do mar	95
Tabela 46 – Coeficientes de sensibilidade do rendimento do ensaio nº2 ao nível do mar	95
Tabela 47 – Grandezas de entrada do consumo no ensaio nº2 ao nível	
do mar	96
Tabela 48 – Grandezas de saída do consumo no ensaio nº2 ao nível	
do mar	96
Tabela 49 – Coeficientes de sensibilidade do consumo no ensaio nº2	
ao nível do mar	96
Tabela 50 - Resumo das incertezas do rendimento e consumo no	
ensaio nº2 ao nível do mar	97
Tabela 51 – Grandezas de entrada do rendimento no ensaio nº2	
acima do nível do mar	98
Tabela 52 – Grandezas de saída do rendimento no ensaio nº2 acima	
do nível do mar	98
Tabela 53 – Coeficientes de sensibilidade do rendimento no ensaio	
nº2 acima do nível do mar	98
Tabela 54 – Grandezas de entrada do consumo no ensaio nº2 acima	
do nível do mar	99
Tabela 55 – Grandezas de saída do ensaio nº2 do consumo acima do	00
nível do mar	99
Tabela 56 – Coeficientes de sensibilidade do ensaio nº2 do consumo	00
acima do nível do mar	99
Tabela 57 – Resumo das incertezas do rendimento e do consumo no	100
Ensaio nº2 acima do nível do mar	100
Tabela 58 – Grandezas de entrada do rendimento do ensaio nº3 ao	101
nível do mar	
Tabela 59 – Grandezas de saída do rendimento do ensaio nº3 ao nível do mar	101
Tabela 60 – Coeficientes de sensibilidade do rendimento do ensaio	
nº3 ao nível do mar	101
Tabela 61 – Grandezas de entrada do consumo no ensaio nº3 ao nível	
do mar	102
Tabela 62 – Grandezas de saída do consumo no ensaio nº3 ao nível	
do mar	102
Tabela 63 – Coeficientes de sensibilidade do consumo no ensaio nº3	
ao nível do mar	102
Tabela 64 – Resumo das incertezas do rendimento e consumo no	
ensaio nº3 ao nível do mar	103
Tabela 65 – Grandezas de entrada do rendimento no ensaio nº3	
acima do nível do mar	104
Tabela 66 – Grandezas de saída do rendimento no ensaio nº3 acima	
do nível do mar	104
Tabela 67 – Coeficientes de sensibilidade do rendimento no ensaio	104
nº3 acima do nível do mar	

Tabela 68 – Grandezas de entrada do consumo no ensaio nº3 acima	105
do nível do mar	100
Tabela 69 – Grandezas de saída do ensaio nº3 do consumo acima do nível do mar	105
Tabela 70 – Coeficientes de sensibilidade do ensaio nº3 do consumo	105
acima do nível do mar	
Tabela 71 – Resumo das incertezas do rendimento e do consumo no Ensaio nº3 acima do nível do mar	106
Tabela 72 – Grandezas de entrada do rendimento do ensaio nº4 ao nível do mar	107
Tabela 73 – Grandezas de saída do rendimento do ensaio nº4 ao nível	107
do mar	
Tabela 74 – Coeficientes de sensibilidade do rendimento do ensaio nº4 ao nível do mar	107
Tabela 75 – Grandezas de entrada do consumo no ensaio nº4 ao nível	400
do mar	108
Tabela 76 – Grandezas de saída do consumo no ensaio nº4 ao nível	108
do mar	
Tabela 77 – Coeficientes de sensibilidade do consumo no ensaio nº4 ao nível do mar	108
Tabela 78 – Resumo das incertezas do rendimento e consumo no	400
ensaio nº4 ao nível do mar	109
Tabela 79 - Grandezas de entrada do rendimento no ensaio nº4	110
acima do nível do mar	
Tabela 80 – Grandezas de saída do rendimento no ensaio nº4 acima do nível do mar	110
Tabela 81 – Coeficientes de sensibilidade do rendimento no ensaio	110
nº4 acima do nível do mar	110
Tabela 82 – Grandezas de entrada do consumo no ensaio nº4 acima	111
do nível do mar	
Tabela 83 – Grandezas de saída do ensaio nº4 do consumo acima do nível do mar	111
Tabela 84 – Coeficientes de sensibilidade do ensaio nº4 do consumo	444
acima do nível do mar	111
Tabela 85 – Resumo das incertezas do rendimento e do consumo no Ensaio nº4 acima do nível do mar	112
Tabela 86 – Grandezas de entrada do rendimento do ensaio nº5 ao	113
nível do mar	113
Tabela 87 – Grandezas de saída do rendimento do ensaio nº5 ao nível do mar	113
Tabela 88 – Coeficientes de sensibilidade do rendimento do ensaio	113
nº5 ao nível do mar	113
Tabela 89 – Grandezas de entrada do consumo no ensaio nº5 ao nível	114
do mar Tabela 90 – Grandezas de saída do consumo no ensaio nº5 ao nível	
do mar	114
Tabela 91 – Coeficientes de sensibilidade do consumo no ensaio nº5	
ao nível do mar	114

Tabela 92 - Resumo das incertezas do rendimento e consumo no	115
ensaio nº5 ao nível do mar	113
Tabela 93 – Grandezas de entrada do rendimento no ensaio nº5 acima do nível do mar	116
Tabela 94 – Grandezas de saída do rendimento no ensaio nº5 acima	
do nível do mar	116
Tabela 95 - Coeficientes de sensibilidade do rendimento no ensaio	116
nº5 acima do nível do mar	110
Tabela 96 – Grandezas de entrada do consumo no ensaio nº5 acima do nível do mar	117
Tabela 97 – Grandezas de saída do ensaio nº5 do consumo acima do	447
nível do mar	117
Tabela 98 – Coeficientes de sensibilidade do ensaio nº5 do consumo	117
acima do nível do mar	
Tabela 99 – Resumo das incertezas do rendimento e do consumo no	118
Ensaio nº5 acima do nível do mar	
Tabela 100 – Grandezas de entrada do rendimento do ensaio nº6 ao nível do mar	119
Tabela 101 – Grandezas de saída do rendimento do ensaio nº6 ao	
nível do mar	119
Tabela 102 – Coeficientes de sensibilidade do rendimento do ensaio	119
nº6 ao nível do mar	119
Tabela 103 – Grandezas de entrada do consumo no ensaio nº6 ao	120
nível do mar	
Tabela 104 – Grandezas de saída do consumo no ensaio nº6 ao nível do mar	120
Tabela 105 – Coeficientes de sensibilidade do consumo no ensaio nº6	
ao nível do mar	120
Tabela 106 - Resumo das incertezas do rendimento e consumo no	121
ensaio nº6 ao nível do mar	121
Tabela 107 – Grandezas de entrada do rendimento no ensaio nº6	122
acima do nível do mar	
Tabela 108 – Grandezas de saída do rendimento no ensaio nº6 acima do nível do mar	122
Tabela 109 – Coeficientes de sensibilidade do rendimento no ensaio	400
nº6 acima do nível do mar	122
Tabela 110 – Grandezas de entrada do consumo no ensaio nº6 acima	123
do nível do mar	120
Tabela 111 – Grandezas de saída do ensaio nº6 do consumo acima	123
do nível do mar Tabela 112 – Coeficientes de sensibilidade do ensaio nº6 do consumo	
acima do nível do mar	123
Tabela 113 – Resumo das incertezas do rendimento e do consumo no	
Ensaio nº6 acima do nível do mar	124
Tabela 114 - Grandezas de entrada do rendimento do ensaio nº7 ao	125
nível do mar	123
Tabela 115 – Grandezas de saída do rendimento do ensaio nº7 ao	
nível do mar	125

l'abela 116 – Coeficientes de sensibilidade do rendimento do ensaio	125
nº7 ao nível do mar	
Tabela 117 – Grandezas de entrada do consumo no ensaio nº7 ao nível do mar	126
Tabela 118 – Grandezas de saída do consumo no ensaio nº7 ao nível	400
do mar	126
Tabela 119 – Coeficientes de sensibilidade do consumo no ensaio nº7	126
ao nível do mar	
Tabela 120 – Resumo das incertezas do rendimento e consumo no ensaio nº7 ao nível do mar	127
Tabela 121 – Grandezas de entrada do rendimento no ensaio nº7	
acima do nível do mar	128
Tabela 122 – Grandezas de saída do rendimento no ensaio nº7 acima	128
do nível do mar	120
Tabela 123 – Coeficientes de sensibilidade do rendimento no ensaio	128
nº7 acima do nível do mar	
Tabela 124 – Grandezas de entrada do consumo no ensaio nº7 acima do nível do mar	129
Tabela 125 – Grandezas de saída do ensaio nº7 do consumo acima	
do nível do mar	129
Tabela 126 – Coeficientes de sensibilidade do ensaio nº7 do consumo	129
acima do nível do mar	129
Tabela 127 – Resumo das incertezas do rendimento e do consumo no	130
Ensaio nº7 acima do nível do mar	
Tabela 128 – Grandezas de entrada do rendimento do ensaio nº8 ao nível do mar	131
Tabela 129 – Grandezas de saída do rendimento do ensaio nº8 ao	
nível do mar	131
Tabela 130 - Coeficientes de sensibilidade do rendimento do ensaio	131
nº8 ao nível do mar	131
Tabela 131 – Grandezas de entrada do consumo no ensaio nº8 ao	132
nível do mar	
Tabela 132 – Grandezas de saída do consumo no ensaio nº8 ao nível do mar	132
Tabela 133 – Coeficientes de sensibilidade do consumo no ensaio nº8	400
ao nível do mar	132
Tabela 134 - Resumo das incertezas do rendimento e consumo no	133
ensaio nº8 ao nível do mar	100
Tabela 135 – Grandezas de entrada do rendimento no ensaio nº8	134
acima do nível do mar Tabela 136 – Grandezas de saída do rendimento no ensaio nº8 acima	
do nível do mar	134
Tabela 137 – Coeficientes de sensibilidade do rendimento no ensaio	404
nº8 acima do nível do mar	134
Tabela 138 – Grandezas de entrada do consumo no ensaio nº8 acima	135
do nível do mar	100
Tabela 139 – Grandezas de saída do ensaio nº8 do consumo acima	405
do nível do mar	135

Tabela 140 – Coeficientes de sensibilidade do ensaio nº8 do consumo	135
acima do nível do mar	
Tabela 141 – Resumo das incertezas do rendimento e do consumo no Ensaio nº8 acima do nível do mar	136
Tabela 142 – Grandezas de entrada do rendimento do ensaio nº9 ao	
nível do mar	137
Tabela 143 - Grandezas de saída do rendimento do ensaio nº9 ao	137
nível do mar	137
Tabela 144 - Coeficientes de sensibilidade do rendimento do ensaio	137
nº9 ao nível do mar	137
Tabela 145 - Grandezas de entrada do consumo no ensaio nº9 ao	138
nível do mar	100
Tabela 146 – Grandezas de saída do consumo no ensaio nº9 ao nível	138
do mar	.00
Tabela 147 – Coeficientes de sensibilidade do consumo no ensaio nº9	138
ao nível do mar	
Tabela 148 – Resumo das incertezas do rendimento e consumo no	139
ensaio nº9 ao nível do mar	
Tabela 149 – Grandezas de entrada do rendimento no ensaio nº9	140
acima do nível do mar	
Tabela 150 – Grandezas de saída do rendimento no ensaio nº9 acima do nível do mar	140
Tabela 151 – Coeficientes de sensibilidade do rendimento no ensaio nº9 acima do nível do mar	140
Tabela 152 – Grandezas de entrada do consumo no ensaio nº9 acima do nível do mar	141
Tabela 153 – Grandezas de saída do ensaio nº9 do consumo acima	
do nível do mar	141
Tabela 154 – Coeficientes de sensibilidade do ensaio nº9 do consumo acima do nível do mar	141
Tabela 155 – Resumo das incertezas do rendimento e do consumo no	
Ensaio nº9 acima do nível do mar	142

Lista de Siglas e Abreviaturas

ABNT Associação Brasileira de Norma Técnicas

ANP Agência Nacional de Petróleo, Gás Natural e Biocombustíveis

CEG Antiga Companhia de Gás do Estado do Rio de Janeiro

Cgcre Coordenação Geral de Acreditação do Inmetro

COMGÁS Antiga Companhia de Gás do Estado de São Paulo

CONPET Programa Nacional da Racionalização do uso dos Derivados de

Petróleo e do Gás Natural

ENCE Etiqueta Nacional de Conservação de Energia

GLP Gás Liquefeito de Petróleo

GNV Gás Natural Veicular

GT Grupo Técnico

GUM Guide to the Expression of Uncertainty in Measurement

IEC International Electrotechnical Commission

INMETRO Instituto Nacional de Metrologia, Qualidade e Tecnologia

INT Instituto Nacional de Tecnologia

ISO International Organization for Standardization

MCTI Ministério da Ciência Tecnologia e Inovação

MIDIC Ministério da Indústria e Comércio

MME Ministério das Minas e Energia

NBR Norma Brasileira

PBE Programa Brasileiro de Etiquetagem

PNE Plano Nacional de Energia

PNEf Plano Nacional de Eficiência Energética

PósMQI Programa de Pós-Graduação em Metrologia, Qualidade e

Inovação

RAC Regulamento de Avaliação da Conformidade

RBLE Rede Brasileira de Laboratório de Ensaio

"O principal objetivo da educação é criar pessoas capazes de fazer coisas novas e não simplesmente repetir o que outras gerações fizeram"... (Jean Piaget)

1.

Introdução

1.1.

Definição do Problema da Pesquisa

O Brasil, seguindo exemplo de países desenvolvidos, vem realizando um grande esforço na implementação de programas de certificação e de etiquetagem de produtos, principalmente para aqueles que têm uso popular e que trazem algum risco para o usuário. Atualmente, existem inúmeros produtos com certificação compulsória, entre eles os fogões. O que faz com que os fabricantes e importadores de fogões sejam obrigados a adotarem medidas que atendam aos níveis máximos de rendimento e mínimos de consumo. Isto assegura maior garantia de qualidade a inúmeros produtos, maior segurança, exclui fabricantes que não atendem às condições mínimas de qualidade e segurança, promove uma maior competitividade, e ainda abre espaço para exportações, além evidentemente, de criar barreiras para produtos importados sem qualidade.

Os fogões a gás devem atender à Lei n. ° 10.295, de 17 de outubro de 2001, que estabelece a Política Nacional de Conservação e Uso Racional de Energia, na qual os fabricantes devem obedecer a índices de eficiência cada vez mais rígidos, conforme a Norma ABNT NBR 13723-2:1999 que discorre sobre aparelhos domésticos de cocção a gás — uso racional de energia. Esta lei visa atender aos requisitos de avaliação da conformidade contidos na Portaria Inmetro n°400/2012, a qual estabelece os requisitos de avaliação da conformidade para fogões e fornos a gás de uso doméstico.

Produtos vinculados ao uso de combustíveis tais como, recipientes de álcool de uso doméstico, botijões de gás liquefeito de petróleo (GLP) e cilindros de gás natural veicular (GNV), por apresentarem elevado grau de risco de acidentes, foram priorizados nos programas de certificação. Entretanto, os aparelhos domésticos de cocção a gás são etiquetados no âmbito do Programa Brasileiro de Etiquetagem, PBE.

O PBE é um programa de conservação de energia que, por meio de etiquetas informativas, visa a orientar o consumidor quanto à eficiência energética de alguns produtos comercializados no país. Seu objetivo é estimular a racionalização do consumo de energia pela utilização de produtos mais eficientes. A etiquetagem permite que o consumidor avalie os diversos produtos quanto ao seu rendimento energético e selecione os que lhe trazem maior economia durante sua utilização.

O programa de etiquetagem de aparelhos domésticos de cocção a gás, por meio da utilização de fogões e fornos mais eficientes, visa estimular a racionalização do consumo de gás em geral, em especial o GLP. Assim sendo, este programa está alinhado com as metas do Plano Nacional de Energia (PNE2030) e do Plano Nacional de Eficiência Energética (PNEf).

A etiquetagem de aparelhos domésticos de cocção a gás foi instituída por uma portaria interministerial em 24 de dezembro de 2007, firmada pelo Ministério da Indústria, Comércio Exterior e Serviços (MDIC), Ministério de Minas e Energia (MME), Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Ministério de Ciência e Tecnologia. E com a participação do Programa Nacional da Racionalização do uso dos Derivados de Petróleo e do Gás Natural (Conpet) e Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP).

A etiquetagem de fogões e fornos a gás é compulsória e a Etiqueta Nacional de Conservação de Energia (ENCE) fornece informações sobre potência, rendimento, consumo e volume interno do forno. A padronização destas informações possibilita uma melhor avaliação e poder de escolha do consumidor, proporcionando um processo natural de incentivo aos fabricantes para o aprimoramento tecnológico resultando em aumento de eficiência, segurança operacional e redução de custo de venda. A etiquetagem é um importante mecanismo para a competitividade industrial e pode também contribuir para o sucesso de outros objetivos voltados ao desenvolvimento econômico e social.

Para receber a ENCE, os fogões e fornos a gás necessitam ser aprovados em todos os critérios definidos e normalizados pertinentes ao Regulamento de Avaliação da Conformidade (RAC).

1.2.

Motivação

Quando o PBE de fogões e fornos a gás foi iniciado no Brasil há 20 anos, havia apenas dois laboratórios acreditados pelo NBR ISO/IEC 17025:2001 o laboratório da antiga CEG no Rio de Janeiro e o da antiga COMGÁS em São Paulo. Os resultados dos testes feitos pelos laboratórios não convergiam estatisticamente, então o Grupo Técnico (GT) de estudo do Regulamento de avaliação da conformidade se reuniu e decidiu que o problema era proveniente das correções do parâmetro altitude e que os modelos matemáticos aplicados à norma NBR 13723-2:1999 não faziam a devida correção da pressão atmosférica. Este GT decidiu então substituir o algoritmo existente na norma, pela fórmula de correção da potência nominal contida na norma NBR 13723-1:2003 sem, entretanto, um estudo acadêmico aprofundado. A norma não foi revisada e a dúvida persiste até hoje, se realmente essa correção é adequada, pois há um senso comum que os resultados não convergem se executados ao nível do mar ou em outras altitudes.

1.3.

Objetivos: Geral e Específicos

Esta dissertação tem como objetivo geral avaliar metrologicamente os resultados dos ensaios de rendimento e consumo em aparelhos domésticos de cocção a gás e sua influência na classificação do PBE desses aparelhos.

Os objetivos específicos desta dissertação são:

- Detalhar o estado da arte da medição da avaliação do rendimento e consumo em aparelhos domésticos de cocção a gás;
- Detalhar os algoritmos de ensaio de rendimento e consumo em aparelhos domésticos de cocção a gás que vem sendo reportados nas normas técnicas brasileiras;
- Avaliar se diferenças de altitude influenciam no rendimento e no consumo em aparelhos domésticos de cocção a gás;

- Avaliar se há diferenças significativas entre a metodologia atual e a proposta para o cálculo do rendimento nos ensaios em aparelhos domésticos de cocção a gás;
- Avaliar se a incerteza de medição dos ensaios pode afetar a classificação do PBE desses aparelhos; e em caso positivo, como interpretá-la.

1.4.

Metodologia

O tema da dissertação se constitui, quanto aos fins, em uma **pesquisa explicativa**, que visa, portanto, esclarecer quais fatores contribuem de forma significativa para a confiabilidade metrológica dos ensaios de rendimento e consumo em aparelhos domésticos de cocção a gás; e **aplicada**, motivada pela curiosidade intelectual de como a altitude influencia no rendimento e consumo.

No que se refere aos meios de investigação, para resolver a questão principal proposta, os meios mais adequados de pesquisa são as **pesquisas bibliográficas**, visando identificar o que há na literatura sobre o tema em estudo; **documental**, uma vez que há regulamentação sobre o tema e **experimental**, com estudos empíricos para demonstrar se a diferença de altitude influencia nos ensaios de rendimento e consumo e nas suas incertezas de medição de aparelhos domésticos de cocção a gás.

Quanto ao enfoque, essa dissertação é predominantemente quantitativa, pois se utiliza de dados e informações quantitativas obtidas nas medições dos ensaios de rendimento e consumo, na investigação dos algoritmos e na análise estatística dos dados.

1.5.

Estrutura da Dissertação

Esta dissertação estrutura-se em cinco capítulos, dentre os quais este capítulo introdutório. No capítulo 2, a fundamentação teórica associada aos aparelhos domésticos de cocção e aos métodos de análise para determinação do rendimento e consumo, a regulamentação aplicável no âmbito do Programa Brasileiro de Etiquetagem, PBE e os conceitos básicos aplicados à incerteza de medição.

No capítulo 3, os métodos utilizados para avaliar a eficiência e consumo de aparelhos domésticos de cocção a gás são apresentados. Primeiramente, é traçado um breve histórico dos métodos e, em seguida, são detalhados os ensaios de rendimento e consumo com descrição dos algoritmos contidos no referencial normativo, o método estatístico adotado na avaliação dos dados experimentais e o detalhamento dos algoritmos no cálculo de incerteza utilizado nos ensaios de rendimento e consumo.

No capítulo 4, os dados são tratados, incluindo a sistemática de comparação de resultados entre as medidas ao nível do mar e em altitude acima do nível do mar. Avalia-se como a altitude interfere nos resultados de rendimento e consumo dos aparelhos domésticos de cocção a gás e como a incerteza de medição impacta a classificação do PBE.

O capítulo 5 apresenta as conclusões do trabalho respondendo aos objetivos propostos e sugestões para trabalhos futuros.

2.

Fundamentação teórica

Este capítulo apresenta os fundamentos teóricos associados aos aparelhos domésticos de cocção a gás, aos métodos de análise para determinação do rendimento e consumo, a regulamentação aplicável no âmbito do Programa Brasileiro de Etiquetagem, PBE e os conceitos básicos associados à incerteza de medição.

2.1. Fundamentos teóricos associados à medição do rendimento e consumo dos aparelhos domésticos de cocção a gás.

O fogão, é um aparelho relativamente simples para combustão, é o eletrodoméstico que possui o maior índice de penetração em domicílios brasileiros, Mascarenhas (2005). Seu queimador é um tipo de porta de pré-mistura e multi-furos, e opera em baixa pressão (2,75 kPa), (Surange et al., 2014).

Um queimador de gás é um dispositivo para gerar uma chama para aquecer produtos usando combustíveis como gás natural ou gás liquefeito de petróleo. Alguns queimadores têm uma entrada de ar para misturar o gás combustível com o ar para fazer uma combustão completa, (Surange et al., 2014). Em altitudes mais elevadas em relação ao nível do mar, o ar tem menos oxigênio por unidade de volume, portanto, a taxa de queima do gás deve ser ajustada para manter a combustão adequada do combustível. Isso pode ser feito diminuindo o tamanho do orifício de combustível no queimador para reduzir a taxa de equivalência. Wieser et al. (1997) realizaram uma série de experimentos comparativos em diferentes altitudes, isto é, de 400 m a 3000 m e observaram que com o aumento da altitude, a taxa de queima é reduzida por causa da diminuição da pressão atmosférica. A capacidade de aquecimento no fogão também é afetada pela mudança na densidade do ar, pois devido à menor densidade, o ar tem menos capacidade de transporte de calor, pois o ar quente tem uma densidade menor que o ar frio, então, pelo fenômeno de convecção¹, o ar quente sobe e o ar mais frio desce. Amell (2007) estudou o efeito da energia em queimadores atmosféricos

-

¹Convecção: É um processo de transporte de massa caracterizado pelo movimento de um fluido devido à sua diferença de densidade, especialmente por meio de calor. A convecção térmica é descrita pela lei do resfriamento de Newton, a qual estabelece que a taxa de perda de calor de um corpo é proporcional à diferença nas temperaturas entre o corpo e seus arredores. (https://pt.wikipedia.org/wiki/Convecção).

domésticos para GLP nas localidades da Colômbia: Santa de Antioquia (555 m), Medellín (1550 m) e Alto Bogotá (2600 m). O resultado desse estudo afirmou que a eficiência de um queimador atmosférico diminui em 1,5% por 304 m de aumento de altitude.

Uma análise experimental de eficiência térmica, potência e emissões de gás liquefeito de petróleo em fogões em altitudes entre 2200 e 4200 metros no Peru são apresentados por Rojas (2017). Os estudos concluíram que potência, rendimento e combustão variam de acordo com a altitude acima do nível do mar.

Mais recentemente, Yang et al. (2017) investigaram a influência da altitude na potência, rendimento e combustão em queimadores atmosféricos domésticos para gás natural nas localidades chinesas de Lhasa (3658 m) e Chongqing (4000 m). O estudo concluiu que uma mudança na pressão de suprimento de gás combustível pode compensar a perda de energia que é produzida com aumento de altitude, que o desempenho térmico aumenta à medida que a altitude aumenta e que as emissões aumentam pela diminuição de oxigênio no ar atmosférico em uma altitude maior quando comparado ao nível do mar.

Com base nos estudos descritos, decidiu-se explorar experimentalmente como a altitude influencia no rendimento e consumo dos ensaios em fogões.

2.2.

Regulamentação aplicável e desvios nominais de medição

A Lei de eficiência energética (Lei 10.295, de 17 de outubro de 2001) estabelece que a Política Nacional de Conservação e Uso Racional de Energia visa à alocação eficiente de recursos energéticos e a preservação do meio ambiente.

Cabe ao Poder Executivo estabelecer níveis máximos de consumo específico de energia ou mínimos de eficiência energética, de máquinas e aparelhos consumidores de energia fabricados ou comercializados no país, com base em indicadores técnicos pertinentes.

Os níveis a que se referem à lei são estabelecidos com base em valores técnicos e economicamente viáveis, considerando a vida útil das máquinas e aparelhos consumidores de energia.

O Inmetro, no uso de suas atribuições como regulador do setor de eletrodomésticos a gás, estabeleceu em 2008, o regulamento específico para uso da etiqueta nacional de conservação de energia (ENCE). Este regulamento define os requisitos técnicos e operacionais impostos ao sistema brasileiro para à avaliação da conformidade para fogões e fornos a gás produzido e/ou comercializados em território brasileiro. O regulamento específico foi aprovado e instituído com a publicação da portaria conjunta nº 73, de 05 de abril de 2002. Em janeiro de 2008, o Inmetro publicou a Portaria nº 018 e revisou o Regulamento específico 008, o mesmo que vigorou até 2012. Em 01 de agosto de 2012, foi publicada a Portaria nº 400. O novo regulamento de avaliação da conformidade (RAC), contido nessa portaria, enfatiza os tipos de aparelhos cobertos pelo escopo, os índices, as faixas de classificação e no anexo, o controle metrológico necessário para assegurar a qualidade dos produtos e serviços requeridos. Este documento ainda fixa as faixas de classificação energética dos queimadores de mesa² e de forno, Tabela 1.

Tabela 1 – Classificação energética para fogões

Rendimento médio dos	Índice de Consumo	Classificação	
queimadores da mesa, η (%)	do forno, IC (%)	PBE	
η ≥ 63	IC ≤ 49	A	
$61 \leq \eta < 63$	$49 < IC \le 53$	В	
$59 \leq \eta < 61$	$53 < IC \le 57$	C	
$57 \le \eta < 59$	$57 < IC \le 60$	D	
$52 \leq \eta < 57$	$60 < IC \le 63$	Е	

Fonte: Portaria Inmetro nº 400 (2012)

Em 10 de outubro de 2013, o Inmetro publicou a portaria n° 496 na qual fixa os prazos para extinção dos antigos produtos no comércio em 01 de agosto de 2014 e determina que os desvios entre o valor declarado na planilha de especificação técnica do

² Queimadores de mesa são componentes que permitem a queima do gás e estão situados sobre a mesa do fogão doméstico.

rendimento e do consumo energético do aparelho devem estar de acordo com os limites especificados na Tabela 2.

T						
I ahela 7 🗕	I JACVINC	nominais	admissíveis	nn	Angain	ınıcıal
i abcia z		Hommais	adimosivois	110	CHISCHE	miciai

Rendimento da mesa de queimadores (η)	± 3 %
Índice de consumo do forno (IC)	± 5 %
Volume do forno (V)	± 2 %

Fonte: Portaria Inmetro n° 496 (2013)

A portaria Inmetro n°496/2013 determina que as etiquetas nacionais de conservação de energia passem a adotar os seguintes padrões, de acordo com a Figura 1:

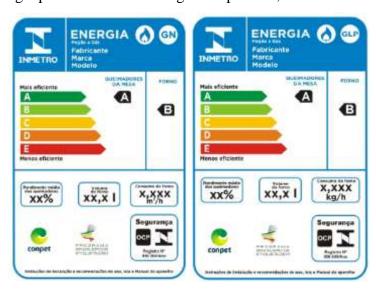


Figura 1 – Modelo da Etiqueta Nacional de Conservação de Energia. Fonte: Portaria Inmetro nº 496 (2013)

O método de ensaio aplicado no Brasil, e citado na referida portaria, relativo aos ensaios de rendimento e consumo de aparelhos domésticos de cocção a gás é a ABNT NBR 13723-2 (1999).

2.3. Conceitos básicos sobre incerteza de medição.

De acordo com o documento "Vocabulário Internacional de Metrologia: Conceitos fundamentais e gerais e termos associados (2012)", incerteza de medição é "parâmetro, associado ao resultado de uma medição, que caracteriza a dispersão dos valores que podem ser razoavelmente atribuídos ao mensurando". A avaliação da

incerteza de medição dos ensaios de rendimento e consumo propostos nesta dissertação segue o método apresentado no ISO GUM (2012).

Outro termo importante na avaliação da incerteza de medição são "fontes de incerteza", avaliado pelo ISO GUM como imperfeições que dão origem a um erro e que pode ter dois componentes, um aleatório e outro sistemático.

Para cada ensaio devemos considerar os componentes que possam comprometer a medição, afetar a incerteza de medição e com isso alterar a classificação na Etiqueta Nacional de Conservação de Energia - ENCE.

A seguir algumas definições do VIM (Inmetro, 2012):

"Grandeza – Propriedade do fenômeno de um corpo ou de uma substância, que pode ser expressa quantitativamente sob a forma de um número e de uma referência".

"Grandeza de entrada – grandeza que deve ser medida"

"Grandeza de saída – grandeza cujo valor medido é calculado utilizando-se os valores das grandezas de entrada num modelo de medição".

"Mensurando – Grandeza que se pretende medir".

"Medição – Processo de obtenção experimental dum ou mais valores que podem ser, razoavelmente, atribuídos a uma grandeza".

"Sistema de medição — Conjunto de um ou mais instrumentos de medição e frequentemente outros dispositivos, compreendendo, se necessário, reagentes e insumos, montado e adaptado para fornecer informações destinadas à obtenção dos valores medidos, dentro de intervalos especificados para grandezas de naturezas especificadas".

"Resultado de Medição – Conjunto de valores atribuídos a um mensurando, juntamente com toda informação pertinente disponível. Um resultado de medição geralmente contém "informação pertinente" sobre o conjunto de valores, alguns dos quais podem ser mais representativos do mensurando do que outros. Isto pode ser

expresso na forma de uma função densidade de probabilidade. Um resultado de medição é geralmente expresso por um único valor medido e uma incerteza de medição. Caso a incerteza de medição seja considerada desprezível para alguma finalidade, o resultado de medição pode ser expresso como um único valor medido".

"Precisão – Grau de concordância entre indicações ou valores medidos, obtidos por medições repetidas, no mesmo objeto ou em objetos similares, sob condições especificadas".

"Repetibilidade – Condição de medição num conjunto de condições, as quais incluem o mesmo procedimento de medição, os mesmos operadores, o mesmo sistema de medição, as mesmas condições de operação e o mesmo local, assim como medições repetidas no mesmo objeto ou em objetos similares durante um curto período de tempo".

"Precisão Intermediária — Condição de medição num conjunto de condições, as quais compreendem o mesmo procedimento de medição, o mesmo local e medições repetidas no mesmo objeto ou em objetos similares, ao longo dum período extenso de tempo, mas pode incluir outras condições submetidas a mudanças".

"Reprodutibilidade – Condição de medição num conjunto de condições, as quais incluem diferentes locais, diferentes operadores, diferentes sistemas de medição e medições repetidas no mesmo objeto ou em objetos similares".

"Erro - Resultado de uma medição menos o valor verdadeiro do mensurando".

"Erro sistemático – Componente do erro de medição que, em medições repetidas, permanece constante ou varia de maneira previsível".

"Erro aleatório – Componente do erro de medição que, em medições repetidas, varia de maneira imprevisível".

"Erro relativo – Erro da medição dividido por um valor verdadeiro do mensurando".

2.3.1.

Avaliação da incerteza-padrão

A incerteza Tipo A é um método de avaliação da incerteza pela análise estatística de série de observações. A incerteza Tipo B é a avaliação por outros meios que não a análise estatística de série de observações, ISO GUM (2012).

2.3.2.

Avaliação da incerteza-padrão combinada

A incerteza-padrão combinada é a raiz quadrada positiva da variância combinada, sendo o resultado da soma do quadrado das incertezas-padrão associadas a cada componente da incerteza, ponderado pelo seu respectivo coeficiente de sensibilidade, ISO GUM (2012).

2.3.3.

Contribuição de cada um dos componentes da incerteza

A contribuição de cada componente da incerteza é um balanço que corresponde às estimativas das grandezas de entrada, associadas aos coeficientes de sensibilidade, ISO GUM (2012).

2.3.4.

Avaliação da incerteza expandida

A incerteza expandida é um intervalo com o qual se espera uma extensa fração da distribuição de valores que podem ser razoavelmente atribuídos ao mensurando.

A incerteza expandida é obtida multiplicando a incerteza-padrão combinada, por um *fator de abrangência* k^3 que é escolhido com base no nível de confiança exigido.

³ Fator de abrangência: Fator numérico utilizado como um multiplicador da incerteza-padrão combinada de modo a obter uma incerteza expandida. (ISO GUM, 2012)

Para a maioria dos fins, recomenda-se que k seja igual a 2, para infinitos $graus\ de$ $liberdade^4$ para obter um intervalo com nível de confiança de $(p=95,45\ \%)$.

⁴ Graus de liberdade: número de termos em uma soma menos o número de restrições aos termos da soma (ISO GUM, 2012).

3.

Fundamentos da medição de rendimento e consumo de aparelhos domésticos de cocção a gás

Neste capítulo, apresentam-se os fundamentos da medição de rendimento e consumo nos aparelhos domésticos de cocção a gás, a norma brasileira aplicável e exigida legalmente a sua utilização, o detalhamento dos algoritmos existentes no método de ensaio proposto, os métodos estatísticos adotados na avaliação dos dados e o detalhamento dos algoritmos do cálculo de incerteza utilizados nos ensaios de rendimento e consumo.

3.1.

Detalhamento dos ensaios de rendimento e consumo conforme referencial normativo

3.1.1.

Ensaio experimental de rendimento e seus algoritmos.

Os ensaios para determinação do rendimento de um fogão doméstico foram executados de acordo com a metodologia estabelecida na Norma ABNT NBR 13723-2.

Um queimador de mesa é coberto com recipiente de 220 mm de diâmetro, contendo 3,7 kg de água e que deve ser operado por 10 minutos na sua potência nominal⁵. Tal recipiente de 220 mm é retirado e imediatamente substituído pelo recipiente específico a ser utilizado no ensaio de rendimento.

A temperatura inicial da água deve ser $20 \, ^{\circ}\text{C} \pm 1 \, ^{\circ}\text{C}$ e a temperatura da água ao tempo de extinção da chama no queimador deve ser de $90 \, ^{\circ}\text{C} \pm 1 \, ^{\circ}\text{C}$.

A medição do consumo de gás inicia-se com a colocação do recipiente padrão sobre o queimador e termina após a extinção da chama do queimador, com o recipiente padrão colocado sobre o queimador, de acordo com a Figura 2.

_

⁵ Valor da potência de um queimador como declarado pelo fabricante.

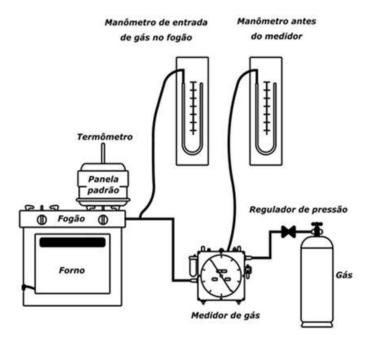


Figura 2 - Diagrama esquemático do teste de rendimento dos queimadores da mesa

No cálculo do rendimento (η), foi empregada a equação (3.1).

$$\eta = \frac{Calor \ absorvido}{Calor \ cedido} = 100 \frac{MC(T_2 - T_1)}{V_n PCS} = 0,4186 \frac{M(T_2 - T_1)}{V_n PCS}$$
(3.1)

A relação entre a quantidade de calor absorvido pela água, equação (3.2), e o calor cedido pelo gás, equação (3.3), representa a eficiência na conversão da energia química do combustível gasoso em energia térmica (calor), pelo queimador de mesa para cada potência ensaiada, com a equação (3.4).

Calor absorvido =
$$M \times C \times (T_2 - T_1)$$
 (3.2)

Onde:

M é a massa equivalente do recipiente de ensaio, de acordo com as indicações (Tabela 3);

 $\it C$ é o calor específico da água, 4,186 x $10^{\text{-3}}$ em MJ/kg °C;

 T_1 é a temperatura inicial, em graus Celsius;

 T_2 é a temperatura máxima de água após extinção da chama, em graus Celsius.

$$Calor\ cedido = V_n \times PCS \tag{3.3}$$

Onde:

PCS⁶ é o poder calorífico superior do gás de referência utilizado (butano com pureza mínima de 99% m/m), em megajoules por metro cúbito, 126,21 MJ/m³;

 V_n é o volume de gás utilizado, em metro cúbitos, corrigido nas condições de referência (101,33 kPa e 15 °C) do PCS pela equação (3.4).

$$V_n = V \times \frac{P_a + P - W}{101,33} \times \frac{288,15}{273,15 + T_g}$$
 (3.4)

Onde,

V é o volume lido, em metros cúbicos, nas condições do ensaio;

 P_a é a pressão atmosférica local, em kPa;

P é a pressão de alimentação de gás no medidor, em kPa;

 T_g é a temperatura do gás no ponto de medida, em graus Celsius;

W é a pressão de saturação do vapor da água à temperatura T_g , em kPa, calculada pela equação (3.5):

$$W = \frac{e^{(x)}}{10} \tag{3.5}$$

Sendo:

e é número de Néper;

x é calculado pela equação (3.6).

$$x = \left(21,094 - \frac{5262}{273,15 + T_g}\right) \tag{3.6}$$

⁶ Poder calorífico é a quantidade de calor produzida pela combustão completa a uma pressão constante de 101,33 kPa e os produtos da combustão sendo levados às mesmas condições, a água produzida pela combustão é considerada condensada; expresso em megajoules por metro cúbico (MJ/m²), ABNT NBR 13723-1 (2004)

Potência do queimador Diâmetro Interno do Massa de água sobre o PCS em (kW) recipiente em (mm) M_1 em (kg) Entre 1,16 e 1,64 220 3,7 Entre 1,64 e 1,98 240 4,8 Entre 1,99 e 2,36 260 1) 6,1 <u>26</u>0⁽¹⁾⁽²⁾

Tabela 3 – Massa de água (M) Eq. (3.7) em função da potência do queimador

$$M = M_1 + 0.213 \times m \tag{3.7}$$

6,1

Onde:

 M_1 é a massa de água utilizada, em kg;

Entre 2,37 e 4,20

m é a massa de alumínio, correspondente ao recipiente de ensaio e sua tampa, em kg.

3.1.2. Ensaio experimental de consumo do forno e seus algoritmos.

O queimador do forno é alimentado com gás de referência (butano a 99,9% m/m), regulado com pressão de 2,75 kPa e a temperatura ambiente deve permanecer ao longo do ensaio em 20 °C \pm 5 °C.

Com o forno vazio, a vazão do registro é ajustada, de forma que no regime permanente a elevação de temperatura, medida no centro geométrico do forno vazio, utilizando um termopar, esteja a 210 °C ± 1 °C acima da temperatura ambiente ou, se a elevação máxima de temperatura possível for menor que 210 °C, ao valor correspondente à posição máxima do termostato ou registro, com à mesma tolerância. O ajuste da temperatura deve ser feito por meio da alteração da posição do registro e/ou variando à pressão nominal do gás de referência em \pm 5%, de acordo com a Figura 3.

¹⁾ Se o recipiente com diâmetro de 260 mm não puder ser usado, o ensaio deve ser conduzido sob as condições normais de uso do aparelho, sendo utilizado o recipiente de 240 mm com massa de água M_1 correspondente, e a potência do queimador deve ser ajustada a 1,98 kW (sobre o *PCS*). ²⁾ Com um ajuste de potência do queimador para 2,36 kW (sobre o *PCS*).

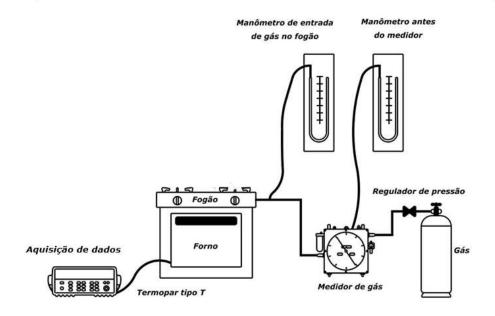


Figura 3 - Diagrama esquemático do teste de consumo do queimador do forno

Após a estabilização da temperatura, o consumo deve ser calculado pela equação (3.8).

$$P_c = 0.278 \ V_c \times PCS$$
 (3.8)

Onde:

 P_c é o consumo, em quilowatts;

0,278 é o fator de conversão do consumo nominal de MJ/h para kW, pois 1 kW equivale a 3,6 MJ/h;

PCS é o poder calorífico superior do gás de referência butano utilizado (126,21 MJ/m³);

 V_c é a vazão volumétrica, em metros cúbicos por hora, obtida nas condições de referência (101,33 kPa e 15 °C).

A vazão volumétrica corresponde à medida de um fluxo de gás de referência sob condições de referência, ou seja, assumindo que o gás é seco a 15 °C e sob uma pressão de 101,33 kPa, conforme descrito na Norma ABNT NBR 13723-1. O propósito dos algoritmos é converter a vazão volumétrica medida nas condições de ensaio para as condições de referência (101,33 kPa e 15 °C), conforme citado a ABNT NBR 13723-1.

A vazão de gás, nas condições de referência é calculada pela equação (3.9):

$$V_c = \dot{V} \times \sqrt{\frac{d_h}{d_r} \times \frac{(P_a + P)}{(101,33)} \times \frac{(101,33 + P)}{(101,33)} \times \frac{(288,15)}{(273,15 + T_g)}}$$
(3.9)

Onde:

 \dot{V} é a vazão volumétrica obtida nas condições de ensaio, em metros cúbicos por hora;

 P_a é a pressão atmosférica local, em kPa;

 T_g é a temperatura do gás no ponto de medida, em graus Celsius;

 d_h é a densidade relativa do gás de referência úmido;

 d_r é a densidade relativa do gás de referência seco relativo ao ar seco (2,0788).

Como o medidor de ensaio é de selo líquido (ou medidor de rotor semi-submerso), se faz necessário corrigir a saturação do vapor de água, isto é o valor d_h é corrigido pela equação (3.10).

$$d_h = \frac{(P_a + P - W) d_r + 0,622 \times W}{(P_a + P)}$$
(3.10)

Onde

 \textit{W}^{7} é calculado como anteriormente pelas equações (3.6) e (3.7).

 $^{^7}$ A razão entre a massa de vapor de água (M_{ν}) em relação à massa de ar seco (M_a) é $M_{\nu}/$ M_a = 0,622.

3.1.3.

Cálculo do Índice de consumo do forno (IC).

O cálculo do índice de consumo do forno (IC), para fogões e fornos a gás liquefeito de petróleo (GLP), é calculado conforme equação (3.11). É a classificação do forno na ENCE.

$$IC_{GLP} = \frac{Cm}{(0.93 + 0.035 V_F)0.0726} \times 100$$
 (3.11)

Onde

 V_F é o volume do forno em dm³;

0,0726 é o fator de conversão, onde 1 kW corresponde 0,0726 kg/h;

Cm é o consumo de manutenção do forno, onde a quantidade de gás por unidade de tempo fornecida para combustão no queimador do forno para manter, no centro geométrico do forno vazio, a elevação de temperatura de 210 °C sobre a temperatura ambiente. Essa grandeza é expressa em kg/h, para GLP (INMETRO, 2012).

 $(0.93 + 0.035 V_F)$ é o consumo, expresso em quilowatts, e calculado sobre o PCS.

3.2. Métodos estatísticos adotados na avaliação dos resultados experimentais de aparelhos domésticos de cocção a gás

Neste estudo, a metodologia proposta, conforme representada na marcha dos processos estatísticos figura 4, se baseia na avaliação da normalidade dos dados, no tratamento de *outliers* e no cálculo do rendimento médio a partir da medida de posição ponderada pela medida de dispersão de cada queimador, (Moreira R.M. e Oliveira E.C., 2019). Esta metodologia é aplicada as medições ao nível do mar (Laboratório A) e as medições acima do nível do mar (Laboratório B).

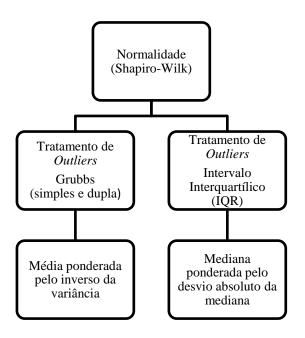


Figura 4 – Resumo da marcha dos processos estatísticos

3.2.1. Avaliação da normalidade dos dados

Existem vários testes para avaliar se os dados são bem modelados por uma distribuição normal. No entanto, o teste de Shapiro-Wilk possui a maior potência estatística dentre estes conforme (Oliveira et al., 2016; Mohd Razali et al., 2011).

Para realizar o teste de Shapiro-Wilk, deve-se:

- (i) Formular as seguintes hipóteses;
- H₀: A amostra provém de uma distribuição normal.
- H₁: A amostra não provém de uma distribuição normal.
- (ii) Estabelecer o nível de significância do teste (α), que neste estudo é considerado como 0,05;
 - (iii) Calcular a estatística do teste:
 - (iv) Ordenar as n observações da amostra: $x_{(1)}, x_{(2)}, ..., x_{(n)}$ e calcular a média \bar{x}

(v) Calcular a soma dos quadrados dos desvios (s) $\sum_{i=1}^{n} (x_i - \bar{x})^2$

(vi) Calcular a constante (b)
$$b = \sum_{i=1}^{n} a_{(n-1+1)} * (x_{(n-i+1)} - x_i)$$

(vii) Calcular a estatística
$$w_{calculado} = \frac{b^2}{s^2}$$

(vii) Tomar a decisão: Rejeitar H_0 ao nível de significância de α se $w_{calculado} < w\alpha$.

3.2.2.

Tratamento de outliers

A existência de valores que possam ser considerados dispersos ou aberrantes, ou seja, valores atípicos que apresentam um afastamento das medições são chamados de *outliers*.

A escolha do método para tratar os *outliers* depende da compreensão se os parâmetros que definem as populações apresentam uma distribuição normal. Caso os dados apontem para uma distribuição normal, se podem usar testes paramétricos como o Teste de Dixon, de Grubbs ou o critério de Chauvenet. Caso não indiquem uma distribuição normal, se pode usar os testes não-paramétricos como o desvio absoluto mediano (MAD – *Médian absolute deviation*) ou intervalo interquartílico (IQR – *Interquartile Range*) (Oliveira et al., 2016; Mohd Razali et al., 2011).

Esta dissertação usa o Teste de Grubbs para os dados paramétricos e o IQR para os não-paramétricos.

3.2.2.1.

Teste de Grubbs

O teste de Grubbs (Grubbs, 1969) é primeiramente realizado para verificar a existência de um valor disperso em cada extremidade do conjunto. Se nesta primeira análise, um dos dois valores for considerado disperso, ele é rejeitado, retirado do conjunto e novo teste, verificando a existência de um valor disperso em cada

extremidade do conjunto, é realizado e assim sucessivamente; caso contrário, se nesta primeira análise, ambos os valores forem aceitos como não dispersos, o teste é encerrado e utilizamos o conjunto de dados remanescentes para análise. Se na segunda análise os dois resultados de uma das extremidades forem considerados como dispersos, eles devem ser rejeitados, retirados do conjunto e novo teste verificando a existência de dois valores dispersos em cada extremidade do conjunto é realizado e assim sucessivamente, até que ambos os valores sejam aceitos como não dispersos.

3.2.2.1.1.

Um valor discrepante observado

Dado um conjunto de dados x_i com i = 1, 2,..., n, dispostos em ordem crescente, à determinação, pelo teste de Grubbs, quanto ao maior valor observado ser um valor discrepante, usa o seguinte valor estatístico, conforme a equação (3.12) (Grubbs, 1969):

$$X_c = \frac{|x_i - \bar{x}|}{S} \tag{3.12}$$

Onde:

 x_i é o valor suspeito; \bar{x} é o valor médio; S é o desvio-padrão.

Na equação (3.13) encontra-se a fórmula para o cálculo do desvio-padrão.

$$S = \sqrt{\left[\sum_{i=1}^{p} (x_i - \bar{x})^2 / (n-1)\right]}$$
 (3.13)

O valor de X calculado (X_c) é comparado com um valor tabelado, em nível de significância escolhido. Um valor aberrante é detectado se X calculado > X tabelado.

3.2.2.1.2.

Dois valores discrepantes observados

Dado um conjunto de resultados x_i , para i = 1, 2,..., n, dispostos em ordem crescente, então para determinar se dois (maiores ou menores) valores são considerados como dispersos, usando o teste de Grubbs, se deve calcular as seguintes estatísticas de teste:

 Duplas altas para testar se dois maiores valores podem ser considerados como valores dispersos, calcular a relação entre as diferenças quadráticas (X), equação (3.14):

$$X_{alta} = \frac{S_{n-1,n}^2}{S_0^2} \tag{3.14}$$

Onde:

 $S_0^2 = \sum_{i=1}^n (x_i - \bar{x})^2$ é a diferença quadrática no conjunto com todos os valores;

 $S_{n-1,n}^2 = \sum_{i=1}^{n-2} (x_i - \bar{x}_{n-1,n})^2$ é a diferença quadrática no conjunto com todos os valores:

 $\bar{x}_{n-1,n} = \sum_{i=1}^{n-2} \frac{x_i}{(n-2)}$ é a média do conjunto, sem os dois maiores valores.

• Duplas baixas, para os dois menores valores, equação (3.15):

$$X_{baixa} = \frac{S_{1,2}^2}{S_0^2} \tag{3.15}$$

Onde:

 $S_0^2 = \sum_{i=1}^n (x_i - \bar{x})^2$ é a diferença quadrática no conjunto com todos os valores;

 $S_{1,2}^2 = \sum_{i=3}^n (x_i - \bar{x}_{1,2})^2$ é a diferença quadrática no conjunto sem os dois menores valores.

O valor de X calculado é comparado com um valor tabelado, a um nível de significância escolhido. Os valores são considerados aberrantes se $X_{tabelado} > X_{calculado}$.

3.2.2.2.

Regra dos Quartis

A classificação dos *outliers* pelo IQR avalia o grau de dispersão em torno da medida de centralidade. O intervalo interquartílico é calculado com base no cálculo de quartis, sendo o primeiro quartil, Q_I (inferior), calculado pela equação (3.16) o quartil intermediário (Mediana, Md), e o terceiro quartil, Q_3 (superior), calculado pela equação (3.17), a diferença entre o quartil superior e o quartil inferior determina o intervalo interquartílico (Montgomery, 2003).

$$L_s = Md + 1.5 \times (Q_3 - Q_1) \tag{3.16}$$

$$L_I = Md - 1.5 \times (Q_3 - Q_1)$$
 (3.17)

3.2.3.

Medidas de posição ponderadas pelas medidas de dispersão

• Dados com distribuição normal

Neste estudo, a estimativa da grandeza, a partir da média, é ponderada inversamente proporcional as suas respectivas variâncias, equação (3.18).

$$p_i = \frac{1}{\sigma_i^2} \tag{3.18}$$

Onde:

 p_i é o peso e deve ser relacionado à variabilidade dos dados, e quantificados por meio dos desvios-padrões.

 σ_i é o desvio-padrão.

Finalmente, a média do rendimento da Etiqueta Nacional de Conservação de energia é calculada pela média ponderada, equação (3.19).

$$\bar{x} = \frac{\sum_{i=1}^{m} x_i p_i}{\sum_{i=1}^{m} p_i}$$
 (3.19)

Onde:

i é o índice que refere-se a cada um dos valores experimentais dos quais se dispõe,

 x_i é a medida do rendimento,

 p_i é o peso.

• Dados cujo comportamento se distancia da normalidade.

A estimativa da grandeza, da Mediana (Md), é ponderada inversamente proporcional as suas respectivas medidas de dispersão, equações (3.20) e (3.21) (Miller, J.N; Miller, J.C., 2005).

$$p_i = \frac{1}{\left(\frac{MAD}{0,6745}\right)_i^2} \tag{3.20}$$

$$MAD = Mediana[|x_i - mediana(x_i)|]$$
 (3.21)

Finalmente, a Mediana (Md) do rendimento da Etiqueta Nacional de Conservação de energia é calculada pela Mediana ponderada, equação (3.22).

$$Md = \frac{\sum_{i=1}^{m} M_i p_i}{\sum_{i=1}^{m} p_i}$$
 (3.22)

3.3.

Detalhamento dos algoritmos no cálculo de incerteza utilizado no ensaio de rendimento.

Avaliação tipo A da incerteza-padrão é aplicada quando são realizadas observações independentes da grandeza de entrada, ou seja, provenientes das avaliações da precisão e exatidão do método. Sendo assim, para a grandeza de entrada (x_i) determinada a partir de n medições independentes, a média aritmética dos resultados das medições (x) é usada como estimativa da grandeza de entrada (x_i) .

A incerteza-padrão tipo A é calculada pelo desvio-padrão dos resultados de n medições dividido pela raiz de n medições.

Em geral, a precisão é representada pelo coeficiente de variação (ou desviopadrão relativo) expresso em porcentagem e definido como a razão entre o desviopadrão e a média amostral.

Na avaliação tipo B da incerteza-padrão, as seguintes variáveis, definidas em 3.1.1, são consideradas independentes e utilizadas para o cálculo do rendimento nas condições padrão pela equação (3.23 à 3.25).

$$\eta = \eta(M, T_1, T_2, PCS, V, P_a, P, T_a)$$

Pois:

$$\eta = \eta_{(M,T_2,T_1,PCS,V,P_a,P,T_g)} = 0.4186 (M_1 + 0.213 m) (T_2 - T_1) \frac{1}{PCS} \frac{1}{V_n}$$
 (3.23)

Onde:

$$V_n = V_{n(V,P_a,P,T_g)} = 2,84368 V \frac{P_a+P-W}{273,15+T_g}$$
 (3.24)

e:

$$W = W(T_g) = 0.1 \exp\left(21,094 - \frac{5262}{273,15 + T_g}\right)$$
 (3.25)

Os coeficientes de sensibilidade do rendimento (η) em relação às grandezas de entrada M, T_1 , T_2 , e PCS, dependem apenas da equação (3.23) e estão descritos conforme as equações de (3.26 a 3.29).

$$F_{\eta,M} = \frac{\partial \eta}{\partial M} = 0.4186 (T_2 - T_1) \frac{1}{PCS} \frac{1}{V_n} = \frac{\eta}{M_1 + 0.213 m}$$
 (3.26)

$$F_{\eta,T_2} = \frac{\partial \eta}{\partial T_2} = 0.4186 (M_1 + 0.213 m) \frac{1}{PCS} \frac{1}{V_n} = \frac{\eta}{(T_2 - T_1)}$$
 (3.27)

$$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1} = -0.4186 (M_1 + 0.213 m) \frac{1}{PCS} \frac{1}{V_n} = \frac{-\eta}{(T_2 - T_1)} = -F_{\eta,T_2}$$
 (3.28)

$$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS} = -0.4186 (M_1 + 0.213 m) (T_2 - T_1) \frac{1}{PCS^2} \frac{1}{V_n} = \frac{-\eta}{PCS}$$
 (3.29)

Para os coeficientes de sensibilidade em V, P_a e P, convém explicitar essas variáveis na equação (3.30).

$$\eta = \frac{0,4186}{2,84368} \left(M_1 + 0,213 \, m \right) \left(T_2 - T_1 \right) \, \frac{1}{PCS} \, \frac{1}{V} \, \frac{273,15 + T_g}{P_a + P - W} \tag{3.30}$$

Obtém-se:

$$F_{\eta,V} = \frac{\partial \eta}{\partial V} = -\frac{0.4186}{2.84368} \left(M_1 + 0.213 \, m \right) \left(T_2 - T_1 \right) \frac{1}{PCS} \frac{1}{V^2} \frac{\left(273.15 + T_g \right)}{\left(P_a + P - W_{(T_g)} \right)} = \frac{-\eta}{V} \quad (3.31)$$

$$F_{\eta_0 P_a} = \frac{\partial \eta}{\partial P_a} = -\frac{0.4186}{2.84368} \frac{(M_1 + 0.213 \, m) \, (T_2 - T_1) \, (273.15 + T_g)}{PCS \, V \, (P_a + P - W_{(T_a)})^2} = \frac{-\eta}{P_a + P - W}$$
(3.32)

$$F_{\eta,P} = \frac{\partial \eta}{\partial P} = \frac{-\eta}{P_a + P - W} = F_{\eta,Pa} \tag{3.33}$$

A obtenção do coeficiente de sensibilidade do rendimento (η) em relação a grandeza de entrada T_g é mais complexa. Para facilitar a visualização do processo, visto

que a derivação parcial considera constantes as demais variáveis, convém definir a constante A e as funções auxiliares f, g e h, abaixo, bem como explicitar W em termos de h:

•
$$A = \frac{0.4186}{2.84368} \frac{(M_1 + 0.213 \, m) \, (T_2 - T_1)}{PCS \, V}$$

•
$$f_{(T_g)} = 273,15 + T_g, \log_0 f' = \frac{df}{dT_g} = 1$$

•
$$g_{(T_g)} = P_a + P - W_{(T_g)}$$
, logo $g' = \frac{dg}{dT_g} = -\frac{dW}{dT_g} = -W'$

•
$$h_{(T_g)} = 21,094 - \frac{5262}{f_{(T_g)}}, \log h' = \frac{dh}{dT_g} = \frac{dh}{df} \frac{df}{dT_g} = \frac{5262}{f^2}$$

•
$$W_{\left(T_g\right)} = 0.1 \exp\left(h_{\left(T_g\right)}\right)$$
, logo $W' = \frac{dW}{dT_g} = \frac{dW}{dh} \frac{dh}{dT_g} = 0.1 \exp(h) h'$

$$W' = 0.1 \exp(h) \frac{5262}{f^2} = W \frac{5262}{f^2}$$

Pode-se então reescrever a equação do rendimento como $\eta_{(T_g)} = A \frac{f_{(T_g)}}{g_{(T_g)}}$.

Logo:

$$F_{\eta,T_g} = \frac{\partial \eta}{\partial T_g} = A \frac{g f' - f g'}{g^2} = A \frac{g + f W'}{g^2} = \frac{\eta}{f} + \frac{\eta}{g} W' = \frac{\eta}{f} - F_{\eta,P_a} W \frac{5262}{f^2}$$

$$F_{\eta,T_g} = \frac{\eta}{273,15+T_g} - \frac{526,2 F_{\eta,P_a}}{\left(273,15+T_g\right)^2} exp\left(21,094 - \frac{5262}{273,15+T_g}\right)$$
(3.34)

3.4.

Detalhamento dos algoritmos no cálculo de incerteza utilizado no ensaio de consumo.

A incerteza-padrão tipo A é calculada de acordo como detalhado no item 3.3.

Na avaliação tipo B da incerteza-padrão, as seguintes variáveis, são definidas conforme o item 3.1.2, e são consideradas independentes e utilizadas para o cálculo do consumo nas condições padrão, equação (3.35).

$$P_c = P_{c(\dot{V}, PCS, P, P_a, T_g)}$$

Onde:

$$P_{c} = P_{c(\dot{V},PCS,P,P_{a},T_{g})} = 0.278 \, PCS \, \dot{V} \sqrt{\frac{101,33+P}{101,33} \, \frac{P_{a}+P}{101,33} \, \frac{288,15}{273,15+T_{g}} \, \frac{d_{h(P_{a},P,T_{g})}}{d_{r}}}$$
(3.35)

Onde:

$$d_h = \frac{\left(P_a + P - W_{(T_g)}\right)d + 0,622W_{(T_g)}}{P_a + P} = d + \frac{0,622 - d}{P_a + P}W_{(T_g)}$$

$$W_{(T_g)} = 0.1 e^{\left(21,094 - \frac{5262}{273,15 + T_g}\right)}$$

Os termos da equação podem ser rearranjados da seguinte forma:

$$P_c = 0.278 \frac{\sqrt{288,15}}{101,33} PCS \dot{V} \sqrt{\frac{101,33 + P}{273,15 + T_g} \left((P_a + P) \frac{d}{d_r} - \frac{d - 0.622}{d_r} W_{(T_g)} \right)}$$

A obtenção dos coeficientes de sensibilidade do consumo (P_c) pela vazão e pelo PCS é direta e simples equações (3.36) e (3.37). Como as equações são extensas, serão

expressas em termos do próprio valor do consumo (P_c) , outras grandezas calculadas, como (d_h) e outros coeficientes de sensibilidade.

$$F_{P_c,\dot{V}} = \frac{\partial P_c}{\partial \dot{V}} = 0.278 \, PCS \sqrt{\frac{101,33+P}{101,33} \, \frac{P_a+P}{101,33} \, \frac{288,15}{273,15+T_g} \, \frac{d_{h(P_a,P,T_g)}}{d_r}} = \frac{P_c}{\dot{V}}$$
(3.36)

$$F_{P_c,PCS} = \frac{\partial P_c}{\partial PCS} = 0.278 \,\dot{V} \sqrt{\frac{101,33+P}{101,33} \frac{P_a+P}{101,33} \frac{288,15}{273,15+T_g} \frac{d_{h(P_a,P,T_g)}}{d_r}} = \frac{P_c}{PCS}$$
(3.37)

Para facilitar a visualização do processo de derivação parcial de (P_c) em P, P_a e T_g e obtenção dos demais coeficientes de sensibilidade, definimos as constantes A, B e C, bem como as funções auxiliares f, g e h, como segue:

•
$$A = 0.278 \frac{\sqrt{288,15}}{101.33} PCS \dot{V}$$

$$\bullet \quad B = \frac{d}{dr}$$

•
$$C = \frac{d-0,622}{dx}$$

•
$$f_{(T_g)} = 273,15 + T_g, \log_{T_g} = f' = \frac{df}{dT_g} = 1$$

•
$$g_{(P,T_g)} = \frac{101,33+P}{273,15+T_g} = \frac{101,33+P}{f_{(T_g)}}$$
, logo:

$$\circ g'_P = \frac{\partial g}{\partial P} = \frac{1}{f}$$

$$g'_{T_g} = \frac{\partial g}{\partial T_g} = \frac{-(101,33+P)}{f^2} = \frac{-g}{f}$$

•
$$h_{(P_a,P,T_g)} = \frac{P_{a+P}}{d_r} d_{h(P_a,P,T_g)} = B (P_a + P) - C W_{(T_g)}, \text{logo:}$$

$$h'_{Pa} = \frac{\partial h}{\partial Pa} = B$$

$$h'_P = \frac{\partial h}{\partial P} = B$$

$$\circ h'_{T_g} = \frac{\partial h}{\partial T_g} = -C W \frac{5262}{f^2}$$

Como não são dependentes dessas variáveis, temos que: $f'_P = f'_{P_a} = g'_{P_a} = 0$

Podemos então reescrever a equação de (P_c) como $P_c = A \sqrt{g_{(P,T_g)} h_{(P_a,P,T_g)}} = A \sqrt{g h}$, de forma que suas derivadas parciais serão:

$$F_{P_c,P_a} = \frac{\partial P_c}{\partial P_a} = \frac{A}{2\sqrt{g h}} (g'_{P_a} h + g h'_{P_a}) = \frac{\frac{P_c}{\sqrt{g h}}}{2\sqrt{g h}} (0 h + g B) = \frac{P_c}{2g h} g B$$

$$F_{P_c,P_a} = \frac{P_c}{2h} B = \frac{P_c}{2\frac{P_a+P}{d_r}d_h} \frac{d}{d_r} = \frac{1}{2} \frac{P_c}{P_a+P} \frac{d}{d_h}$$
 (3.38)

$$F_{P_c,P} = \frac{\partial P_c}{\partial P} = \frac{A}{2\sqrt{gh}} (g'_P h + g h'_P) = \frac{P_c}{2gh} (\frac{1}{f} h + g B) = \frac{F_{P_c,P_a}}{gB} (\frac{h}{f} + g B)$$
 (3.39)

$$F_{P_{c},P} = F_{P_{c},P_{a}} \left(\frac{h}{f g B} + 1 \right) = F_{P_{c},P_{a}} \left(\frac{\frac{P_{a} + P}{d_{r}} d_{h}}{f \frac{101,33 + P}{f} \frac{d}{d_{r}}} + 1 \right) = F_{P_{c},P_{a}} \left(\frac{P_{a} + P}{101,33 + P} \frac{d_{h}}{d} + 1 \right)$$

$$F_{P_{c},P} = \frac{\partial P_{c}}{\partial P} = \frac{1}{2} \frac{P_{c}}{101,33 + P} + F_{P_{c},P_{a}}$$

$$\frac{\partial P_{c}}{\partial T_{g}} = \frac{A}{2\sqrt{g h}} \left(g'_{T_{g}} h + g h'_{T_{g}} \right) = \frac{P_{c}}{2g h} \left(-\frac{g}{f} h - g C W \frac{5262}{f^{2}} \right)$$

$$(3.40)$$

$$\frac{\partial P_c}{\partial T_g} = \frac{F_{P_c, P_a}}{g B} (-g) \left(\frac{h}{f} + C W \frac{5262}{f^2}\right) = \frac{-F_{P_c, P_a}}{\frac{d}{d_r}} \left(\frac{\frac{P_a + P}{d_r} d_h}{273, 15 + T_g} + \frac{d - 0,622}{d_r} W \frac{5262}{\left(273, 15 + T_g\right)^2}\right)$$

$$\frac{\partial P_c}{\partial T_g} = -F_{P_c, P_a} \left(\frac{P_a + P}{273,15 + T_g} \frac{d_h}{d} + \frac{d - 0,622}{d} W \frac{5262}{\left(273,15 + T_g\right)^2} \right)$$

$$\frac{\partial P_c}{\partial T_g} \, = \, -F_{P_c,P_a} \, \frac{P_a + P}{273,15 + T_g} \, \frac{1}{d} \left(d_h \, + \, \frac{d - 0,622}{P_a + P} \, W \, \frac{5262}{273,15 + T_g} \right)$$

$$\frac{\partial P_c}{\partial T_g} = F_{P_c, P_a} \frac{P_a + P}{273, 15 + T_g} \frac{1}{d} \left(\frac{5262 (d_h - d)}{273, 15 + T_g} - d_h \right)$$

$$F_{P_c, T_g} = \frac{\partial P_c}{\partial T_g} = \frac{1}{2} \frac{P_c}{273, 15 + T_g} \left(\frac{5262}{273, 15 + T_g} \frac{d_h - d}{d_h} - 1 \right) \tag{3.41}$$

3.5. Detalhamento do cálculo de incerteza nos ensaios de rendimento e consumo.

O cálculo da incerteza-padrão combinada do rendimento e do consumo é calculado pela equação (3.42) e a incerteza expandida vai ser igual à incerteza-padrão combinada, multiplicada pelo fator de abrangência (k = 2; para infinitos (∞) graus de liberdade) para obter um intervalo com nível de confiança de (p = 95,45 %), equação (3.43).

$$u = \sqrt{[c_i \, u(x_i)^2]} \tag{3.42}$$

$$U = k.uc (3.43)$$

3.5.1.

Cálculo da incerteza média nos ensaios de rendimento e consumo.

A incerteza média do rendimento nos queimadores da mesa e do consumo do forno é calculada pelas equações (3.44 a 3.46) e utilizando a derivada da média dos queimadores.

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} \tag{3.44}$$

$$c_i = \frac{\partial \bar{x}}{\partial x_i} = \frac{1}{n} \tag{3.45}$$

$$u = \sqrt{\left(\frac{1}{n} \cdot u(x_1)\right) + \left(\frac{1}{n} \cdot u(x_2)\right) + \left(\frac{1}{n} \cdot u(x_3)\right) + \dots + \left(\frac{1}{n} \cdot u(x_n)\right)}$$
(3.46)

3.5.2.

Teste de hipótese para comparação dos resultados da incerteza média nos ensaios de rendimento e consumo ao nível do mar e em altitude acima do nível do mar.

O teste de hipótese para comparação de resultados tem por finalidade comparar estatisticamente, se a diferença entre o valor absoluto da diferença entre as medidas, $|x_1 - x_2|$, é menor ou igual à raiz quadrada da soma dos quadrados das incertezas expandidas (para um mesmo fator de abrangência), dos valores centrais (média ou Mediana), $\sqrt{U_1^2 + U_2^2}$ (ISO *Guide* 35, 2006).

$$|x_1 - x_2| \le \sqrt{{U_1}^2 + {U_2}^2} \tag{3.47}$$

4.

Resultados e discussões

Neste capítulo, apresentam-se os resultados das medições de rendimento e consumo ao nível do mar e acima do nível do mar, o tratamento dos dados e o cálculo de incerteza nos ensaios de rendimento e consumo, conforme o fluxograma (Figura 5).

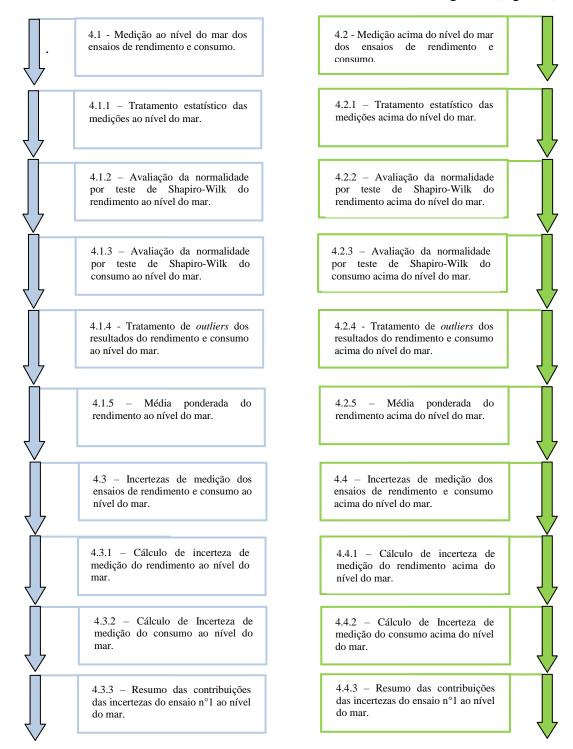


Figura 5 – Fluxograma dos ensaios ao nível do mar e acima do nível do mar

4.1. Medição ao nível do mar dos ensaios de rendimento e consumo dos aparelhos domésticos de cocção a gás.

Na medição dos ensaios de rendimento e consumo dos fogões domésticos ao nível do mar, Figura 6, foram feitas nove medições em cada queimador da mesa do fogão e nove medições no queimador do forno. Esses resultados estão disponíveis na Tabela 4.

Figura 6 – Laboratório ao nível do mar

Tabela 4 – Dados experimentais obtidos em laboratório ao nível do mar

	Laboratório A							
	Rendimento							
Queimador 1 (%)	Queimador 2 (%)	Queimador 3 (%)	Queimador 4 (%)	Forno (kg/h)				
63,9	67,7	66,7	62,0	0,117				
62,6	67,0	66,3	61,4	0,122				
64,1	67,4	66,2	62,3	0,122				
62,5	67,9	67,1	61,2	0,120				
65,5	68,4	67,2	62,6	0,119				
63,9	68,8	65,7	62,1	0,122				
62,0	68,6	66,8	61,9	0,116				
64,4	68,3	66,8	61,9	0,118				
63,6	68,0	66,4	62,2	0,119				

Os ensaios da tabela 4 foram calculados de acordo com a explicação apresentada nos itens 3.1.1 e 3.1.2 e estão conforme as especificações do referencial normativo ABNT NBR 13723-2:1999.

4.1.1. Tratamentos estatísticos das medições ao nível do mar.

Para os ensaios de rendimento e consumo, a estatística do teste foi calculada conforme o item 3.2.

4.1.2. Avaliação da normalidade por teste de Shapiro-Wilk dos resultados de rendimento ao nível do mar.

Conforme o item 3.2.1, para realizar o teste de Shapiro-Wilk, as hipóteses são formuladas: cálculo da constante "b" conforme a tabela 5, da estatística "w" de acordo com a tabela 6 e finalmente, avaliação das hipóteses no Quadro 1, utilizando os valores tabelados da constante "a" na tabela 42, a um nível de significância de 0,05 para n = 9, da tabela 43 do Anexo A.

Tabela 5 – Cálculos da constante "b	o"para o rendimento ao nível do mar

	Queimador 1						Quein	nador 3			
n-1+1	i	a(n-i+1)	x(n-i+1)	xi	b	n-1+1	i	a(n-i+1)	x(n-i+1)	xi	b
9	1	0,5888	65,5	62,0	2,0608	9	1	0,5888	67,2	65,7	0,8832
8	2	0,3244	64,4	62,5	0,6164	8	2	0,3244	67,1	66,2	0,2920
7	3	0,1976	64,1	62,6	0,2964	7	3	0,1976	66,8	66,3	0,0988
6	4	0,0947	63,9	63,6	0,0284	6	4	0,0947	66,8	66,4	0,0379
				Soma =	3,0020					Soma =	1,3118
	Queimador 2										
		Queir	nador 2					Quein	nador 4		
n-1+1	i	Queir a(n-i+1)	nador 2 x(n-i+1)	xi	b	n-1+1	i	Quein	nador 4 x(n-i+1)	xi	b
n-1+1 9	i 1			xi 67,0	b 1,0598	n-1+1 9	i 1			xi 61,2	b 0,8243
-		a(n-i+1)	x(n-i+1)					a(n-i+1)	x(n-i+1)		
9	1	a(n-i+1) 0,5888	x(n-i+1) 68,8	67,0	1,0598	9	1	a(n-i+1) 0,5888	x(n-i+1) 62,6	61,2	0,8243
9	1 2	a(n-i+1) 0,5888 0,3244	x(n-i+1) 68,8 68,6	67,0 67,4	1,0598 0,3893	9	1 2	a(n-i+1) 0,5888 0,3244	x(n-i+1) 62,6 62,3	61,2 61,4	0,8243 0,2920

Tabela 6 - Cálculos da estatística "w"para o rendimento ao nível do mar

Qι	Queimador 1 (%)		Queimador 2 (%)		Queimador 3 (%)			Queimador 4 (%)			
62,0	$\bar{x} =$	63,6	67,0	$\bar{x} =$	68,0	65,7	$\bar{x} =$	66,6	61,2	$\bar{x} =$	62,0
62,5			67,4			66,2			61,4		
62,6	$\sum_{i=1}^{n} (x_i - \overline{x})^2 =$	9,4	67,7	$\sum_{i=1}^{n} (x_i - \overline{x})^2 =$	2,7	66,3	$\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}=$	1,8	61,9	$\sum_{i=1}^{n} (x_i - \overline{x})^2 =$	1,5
63,6	<i>i</i> =1		67,9	i=1		66,4	<i>i</i> =1		61,9	i=1	
63,9			68,0			66,7			62,0		
63,9	W calculado	0,95	68,3	W calculado	0,98	66,8	W calculado	0,96	62,1	W calculado	0,95
64,1	W critico	0,83	68,4	W critico	0,83	66,8	W critico	0,83	62,2	W critico	0,83
64,4			68,6			67,1			62,3		
65,5			68,8			67,2			62,6		

W $_{\mbox{calculado}} \leq$ W $_{\mbox{crítico}} \rightarrow$ rejeita H_0 não é Normal

Quadro 1 – Resultado da estatística "w" para o rendimento ao nível do mar

Laboratório A
Queimador 1 - w _{calculado} = 0,96 > w _{critico} = 0,83 → aceita H ₀ ; possui distribuição Normal
Queimador 2 - w $_{\text{calculado}} = 0.98 > \text{w}$ $_{\text{critico}} = 0.83 \rightarrow \text{aceita H}_{0}$; possui distribuição Normal
Queimador 3 - w $_{\text{calculado}} = 0.96 > \text{w}$ $_{\text{critico}} = 0.83 \rightarrow \text{aceita H}_{0}$; possui distribuição Normal
Queimador 4 - w $_{\text{calculado}} = 0.95 > \text{w}$ $_{\text{critico}} = 0.83 \rightarrow \text{aceita H}_{0}$; possui distribuição Normal

O Quadro 1 resume a estatística do teste, nos ensaios ao nível do mar, referente aos valores de rendimento e conclui que todos os resultados apresentam distribuição normal.

4.1.3. Avaliação da normalidade por teste de Shapiro-Wilk dos resultados do consumo ao nível do mar.

Do mesmo modo que no item 4.1.2, para realizar o teste de Shapiro-Wilk, as hipóteses são formuladas: cálculo da constante "b" conforme a tabela 7, da estatística "w" de acordo com a tabela 8 e finalmente, avaliação das hipóteses no Quadro 2,

utilizando os valores tabelados da constante "a" na tabela 42, a um nível de significância de 0,05 para n = 9, da tabela 43 do Anexo A.

Tabela 7 – Cálculos da constante "b" para o consumo ao nível do mar

	Forno (kg/h)								
n-1+1	i	a(n-i+1)	x(n-i+1)	xi	b				
9	1	0,5888	0,119	0,117	0,0012				
8	2	0,3244	0,118	0,122	-0,0013				
7	3	0,1976	0,116	0,122	-0,0012				
6	4	0,0947	0,122	0,120	0,0002				
				Soma =	-0,0011				

Tabela 8 - Cálculos da estatística "w" para o consumo ao nível do mar

Forno (kg/h)								
0,116	$\bar{x} =$	0,119						
0,117								
0,118	$\sum_{i=1}^{n} (x_i - \bar{x})^2 =$	0.00004						
0,119	$\sum_{i=1}^{\infty} (c_i)^{-i}$.,						
0,119								
0,120	$W_{\mbox{calculado}}$	0,91						
0,122	$W_{critico}$	0,83						
0,122								
0,122								
W calculado ≤ V	w _{calculado} ≤ w _{crítico} → rejeita H ₀ não é Normal							

Quadro 2 – Resultado da estatística "w" para o consumo ao nível do mar

Laboratório A	
Forno - w $_{\text{calculado}} = 0.91 > \text{w}$ $_{\text{critico}} = 0.83 \rightarrow \text{aceita}$ H_{0} ; possui distribuição Normal	

O Quadro 2 resume a estatística do teste, nos ensaios ao nível do mar, referente aos valores de consumo e conclui que os resultados apresentam distribuição normal.

4.1.4.

Tratamento de *outliers* dos resultados de rendimento e consumo ao nível do mar.

Utilizando o teste de Normalidade Shapiro-Wilk, observou-se que os dados experimentais coletados possuem uma distribuição Normal nos ensaios de rendimento e consumo. Portanto, utilizou-se o teste paramétrico de Grubbs para avaliar os dados dispersos com distribuição Normal.

Tabela 9 – Cálculos do teste de Grubbs para o rendimento e consumo ao nível do mar.

	Q1 (%)	Grubbs Min/máx	Q2 (%)	Grubbs Min/máx	Q3 (%)	Grubbs Min/máx	Q4 (%)	Grubbs Min/máx	Forno (kg/h)	Grubbs Min/máx
	62,0	1,48	67,0	1,74	65,7	1,85	61,2	1,74	0,116	1,54
	62,5		67,4		66,2		61,4		0,117	
	62,6		67,7		66,3		61,9		0,118	
	63,6		67,9		66,4		61,9		0,119	
	63,9		68,0		66,7		62,0		0,120	
	63,9		68,3		66,8		62,1		0,119	
	64,1		68,4		66,8		62,2		0,122	
	64,4		68,6		67,1		62,3		0,122	
	65,5	1,74	68,8	1,36	67,2	1,31	62,6	1,49	0,122	1,14
Média	63,61		68,01		66,58		61,96		0,119	
Desvio- padrão	1,09		0,58		0,47		0,43		0,0022	
$V_{crit} =$ 2,22	1,48 < 2	,22 (aceita)	1,36 < 2	,22 (aceita)	1,31 < 2	,22 (aceita)	1,49 < 2	,22 (aceita)	1,14 < 2,	,22 (aceita)
N=9	1,74 < 2	,22 (aceita)	1,74 < 2	,22 (aceita)	1,85 < 2	,22 (aceita)	1,74 < 2	,22 (aceita)	1,54 < 2,	,22 (aceita)

Após aplicação do teste de Grubbs para os ensaios de rendimento e consumo tabela 9, observou-se que todos os conjuntos de dados dos ensaios de rendimento e consumo não apresentaram *outliers*.

4.1.5. Média ponderada dos ensaios de rendimento ao nível do mar.

O conjunto de dados dos ensaios de rendimento apresentou uma distribuição normal; sendo assim, a estimativa da grandeza, a partir da medida de posição, é ponderada inversamente proporcional as suas respectivas variâncias e finalmente, (tabela 10) à média do rendimento da Etiqueta Nacional de Conservação de Energia é calculada.

Tabela 10 - Média ponderada dos rendimentos dos queimadores ao nível do mar

	Laboratório A						
Q1 (%)	Q2 (%)	Q3 (%)	Q4 (%)				
63,9	67,7	66,7	62,0				
62,6	67,0	66,3	61,4				
64,1	67,4	66,2	62,3				
62,5	67,9	67,1	61,2				
65,5	68,4	67,2	62,6				
63,9	68,8	65,7	62,1				
62,0	68,6	66,8	61,9				
64,4	68,3	66,8	61,9				
63,6	68,0	66,4	62,2				
Mé	dia aritmética de	cada queimador	(%)				
63,6	68,0	66,6	62,0				
Média aritmé	tica (ENCE) – Etiq Energ	ueta Nacional de co ia (%)	onservação de				
	65	5,0					
	Desvio-padrão de	e cada queimado	r				
1,09	0,58	0,47	0,43				
	Peso in	dividual					
0,8	3,0	4,5	5,3				
Média ponderada (ENCE) – Etiqueta Nacional de conservação de Energia (%)							
	64	1,9					

Anova (Fator Único)							
Grupo	Contagem	Média	Variância				
Q1		63,6	1,18				
Q2	9	68,0	0,34				
Q3	9	66,6	0,22				
Q4		62,0	0,19				
Origem da variação	SQ	GL	MQ	F	Valor-P	F-crítico	
Entre os grupos	205	3	68,2	141,3	1,55E-18	2,9	
Dentro dos grupos	15	32	0,48				
Total	220	35					

Tabela 11 – Anova dos resultados dos rendimentos dos queimadores ao nível do mar

Para este conjunto de dados, podemos inferir por meio da tabela 11 que as médias dos quatro queimadores comparados não podem ser consideradas iguais. Ou seja, há uma diferença significativa entre os conjuntos de dados (F > F-crítico), de forma que não podemos considerá-los como sendo amostras da mesma população. A Anova mostra que o uso a da média aritmética dos 4 queimadores não tem compatibilidade estatística. Assim, a média ponderada pela variância se justifica.

Considerando a faixa de especificação, de acordo com a Portaria nº 400 do Inmetro de 01 de agosto de 2012, o rendimento segundo a etiqueta nacional de conservação de energia, afixada no equipamento, é de 63 % \pm 3 % ou seja, de (61 % a 65 %). O resultado do Laboratório A está enquadrado pela a abordagem tradicional, 65 % (média aritmética) e pela abordagem proposta 65 % (média ponderada).

4.2. Medição em altitude acima do nível do mar dos ensaios de rendimento e consumo dos aparelhos domésticos de cocção a gás.

Na medição dos ensaios de rendimento e consumo dos fogões domésticos acima do nível do mar, Figura 7, foram feitas nove medições em cada queimador da mesa do fogão e nove medições no queimador do forno. Esses resultados estão disponíveis na Tabela 12.

Figura 7 – Laboratório acima do nível do mar

Tabela 12 - Dados experimentais obtidos em laboratório acima do nível do mar

	Laboratorio B								
	Rendimento								
Queimador 1 (%)	Queimador 2 (%)	Queimador 3 (%)	Queimador 4 (%)	Forno (kg/h)					
62,3	64,5	64,2	60,3	0,106					
60,6	64,6	64,2	60,0	0,100					
63,4	67,1	66,2	60,3	0,115					
62,5	67,6	66,3	60,0	0,110					
63,3	64,9	65,6	60,4	0,112					
62,9	65,8	66,4	60,3	0,114					
63,0	67,9	66,9	60,7	0,115					
63,1	67,2	66,2	60,8	0,112					
63,9	67,7	66,7	60,9	0,112					

Os ensaios da tabela 12 foram calculados de acordo com a explicação apresentada nos itens 3.1.1 e 3.1.2 e estão conforme as especificações do referencial normativo ABNT NBR 13723-2:1999.

4.2.1. Tratamentos estatísticos das medições obtidas acima do nível do mar.

Para os ensaios de rendimento e consumo, a estatística do teste foi calculada conforme o item 3.2.

4.2.2.

Avaliação da normalidade por teste de Shapiro-Wilk para os ensaios de rendimento acima do nível do mar.

Conforme o item 3.2.1, para realizar o teste de Shapiro-Wilk, as hipóteses são formuladas: cálculo da constante "b" conforme a tabela 13, da estatística "w" de acordo com a tabela 14 e finalmente, avaliação das hipóteses no Quadro 3, utilizando os valores tabelados da constante "a" na tabela 42, a um nível de significância de 0,05 para n = 9, da tabela 43 do Anexo A.

Tabela 13 – Cálculos da constante "b" para o rendimento acima do nível do mar

		Quein	nador 1			Queimador 3					
n-1+1	i	a(n-i+1)	x(n-i+1)	xi	b	n-1+1	i	a(n-i+1)	x(n-i+1)	xi	b
9	1	0,5888	63,9	60,6	1,9430	9	1	0,5888	66,9	64,2	1,5898
8	2	0,3244	63,4	62,3	0,3568	8	2	0,3244	66,7	64,2	0,8110
7	3	0,1976	63,3	62,5	0,1581	7	3	0,1976	66,4	65,6	0,1581
6	4	0,0947	63,1	62,9	0,0189	6	4	0,0947	66,3	66,2	0,0095
				Soma =	2,4769					Soma =	2,5683
		Quein	nador 2					Quein	nador 4		
n-1+1	i	Quein	nador 2	xi	b	n-1+1	i	Quein	nador 4	xi	b
n-1+1	i 1			xi 64,5	b 2,0019	n-1+1	i 1			xi 60,0	b 0,5299
		a(n-i+1)	x(n-i+1)		-			a(n-i+1)	x(n-i+1)		
9	1	a(n-i+1) 0,5888	x(n-i+1) 67,9	64,5	2,0019	9	1	a(n-i+1) 0,5888	x(n-i+1) 60,9	60,0	0,5299
9	1 2	a(n-i+1) 0,5888 0,3244	x(n-i+1) 67,9 67,7	64,5 64,6	2,0019 1,0056	9	1 2	a(n-i+1) 0,5888 0,3244	x(n-i+1) 60,9 60,8	60,0 60,0	0,5299 0,2595

Tabela 14 - Cálculos da estatística "w" para o rendimento acima do nível do mar

Qı	Queimador 1 (%)		Queimador 2 (%)		Queimador 3 (%)			Queimador 4 (%)			
60,6	$\bar{x} =$	62,8	64,5	$\bar{x} =$	66,4	64,2	$\bar{\chi} =$	65,9	60,0	$\bar{x} =$	60,4
62,3			64,6			64,2			60,0		
62,5	$\sum_{i=1}^{n} (x_i - \bar{x})^2 =$	7,1	64,9	$\sum_{i=1}^{n} (x_i - \bar{x})^2 =$	16,0	65,6	$\sum_{i=1}^{n} (x_i - \bar{x})^2 =$	8,1	60,3	$\sum_{i=1}^{n} (x_i - \bar{x})^2 =$	0,8
62,9	<i>i</i> =1		65,8	<u>i=1</u>		66,2	<u>i=1</u>		60,3	<u>i=1</u>	
63,0			67,1			66,2			60,3		
63,1	W calculado	0,86	67,2	W calculado	0,85	66,3	W calculado	0,82	60,4	W calculado	0,91
63,3	W critico	0,83	67,6	W critico	0,83	66,4	W critico	0,83	60,7	W critico	0,83
63,4			67,7			66,7			60,8		
63,9			67,9			66,9			60,9		

W $_{\mbox{\it calculado}} \leq W_{\mbox{\it crítico}} \rightarrow \mbox{rejeita} \ H_0$ não é Normal

Quadro 3 – Resultado da Estatística "w" para o rendimento acima do nível do mar

Laboratório B
Queimador 1 - w $_{\text{calculado}} = 0.86 > \text{w}$ $_{\text{critico}} = 0.83 \rightarrow \text{aceita}$ $\text{H}_{\text{0}};$ possui distribuição Normal
Queimador 2 - w $_{\mbox{calculado}} = 0.85 > \mbox{w} _{\mbox{critico}} = 0.83 \rightarrow \mbox{aceita} \ \mbox{H}_{\mbox{\scriptsize 0}};$ possui distribuição Normal
Queimador 3 - w $_{\text{calculado}} = 0.82 < w _{\text{critico}} = 0.83 \rightarrow \text{rejeita H}_{0}$; Não possui distribuição Normal
Queimador 4 - w $_{\text{calculado}} = 0.91 > \text{w}$ $_{\text{critico}} = 0.83 \rightarrow \text{aceita}$ H_{0} ; possui distribuição Normal

O Quadro 3 resume a estatística do teste, nos ensaios acima do nível do mar, referente aos valores de rendimento e conclui que somente o resultado do queimador 3 não apresenta distribuição normal. O que pode estar associado à ocorrência de valores discrepantes distantes das demais observações (*outliers*).

4.2.3.

Avaliação da normalidade por teste de Shapiro-Wilk para os ensaios de consumo acima do nível do mar.

Do mesmo modo que o item 4.2.2 para realizar o teste de Shapiro-Wilk, as hipóteses são formuladas: cálculo da constante "b" conforme a tabela 15, da estatística "w" de acordo com a tabela 16 e finalmente, avaliação das hipóteses no Quadro 4,

utilizando os valores tabelados da constante "a" na tabela 43, a um nível de significância de 0,05 para n = 9, da tabela 44 do Anexo A.

Tabela 15 - Cálculos da constante "b" para o consumo acima do nível do mar

Forno (kg/h)										
n-1+1	i	a(n-i+1)	x(n-i+1)	xi	b					
9	1	0,5888	0,115	0,100	0,0088					
8	2	0,3244	0,115	0,106	0,0029					
7	3	0,1976	0,114	0,111	0,0006					
6	4	0,0947	0,112	0,112	0,0000					
	Soma = 0,0123									

Tabela 16 - Cálculos da estatística "w" para o consumo acima do nível do mar

Forno (kg/h)								
0,100	$ar{x} =$	0,111						
0,106								
0,111	$\sum_{i=1}^{n} (x_i - \bar{x})^2 -$	0,0002						
0,112	$\sum_{i=1} (x_i - \bar{x})^2 =$	0,0002						
0,112								
0,112	$W_{\mbox{calculado}}$	0,80						
0,114	W critico	0,83						
0,115								
0,115								
W _{calculado} ≤	w _{calculado} ≤ w _{crítico} → rejeita H ₀ não é Normal							

Quadro 4 – Resultado da Estatística "w" para o consumo acima do nível do mar

Laboratório B
Forno - w $_{\text{calculado}} = 0.80 < w _{\text{critico}} = 0.83 \rightarrow \text{rejeita H}_{0};$ não possui distribuição Normal

O Quadro 4 resume a estatística do teste, nos ensaios acima do nível do mar, referente aos valores de consumo e conclui que os resultados apresentam distribuição que se distanciam da normalidade.

4.2.4.

Tratamento de *outliers* dos resultados de rendimento e consumo acima do nível do mar.

Utilizando o teste de Shapiro-Wilk, observou-se que nos ensaios de rendimento, os dados experimentais coletados possuem uma distribuição Normal para os queimadores Q1, Q2 e Q4, consequentemente o teste paramétrico de Grubbs foi utilizado para avaliar os resultados dispersos.

Porém, o queimador Q3 do ensaio de rendimento e forno no ensaio de consumo, os dados experimentais coletados possuem distribuição que se distancia da normalidade. Assim sendo, o teste não paramétrico de IQR foi utilizado para avaliar a presença de resultados dispersos.

Tabela 17 - Cálculos do Teste de Grubbs para o rendimento nos queimadores Q1, Q2 e Q4

	Q1 (%)	Grubbs mín/máx	Q1 (%)	Grubbs mín/máx	Q2 (%)	Grubbs mín/máx	Q4 (%)	Grubbs mín/máx
	60,6	2,31	-	-	64,5	1,32	60,0	1,26
	62,3		62,3	1,48	64,6		60,0	
	62,5		62,5		64,9		60,3	
	62,9		62,9		65,8		60,3	
	63,0		63,0		67,1		60,3	
	63,1		63,1		67,2		60,4	
	63,3		63,3		67,6		60,7	
	63,4		63,4		67,7		60,8	
	63,9	1,19	63,9	1,68	67,9	1,09	60,9	1,50
Média	62,78		63,05		66,37		60,41	
Desvio padrão	0,94		0,51		1,41		0,33	
$V_{crit} = 2,22$	2,31 > 2,2	2 (rejeita)	1,48 < 2,2	22 (aceita)	1,32 < 2,2	22 (aceita)	1,26 < 2,2	22 (aceita)
N = 9	1,19 < 2,2	22 (aceita)	1,68 < 2,2	22 (aceita)	1,09 < 2,2	22 (aceita)	1,50 < 2,2	22 (aceita)

Tabela 18 - Cálculo do Intervalo interquartílico para o ensaio de rendimento no queimador 3

Q3 (%)	IQR		Q3 (%)	IQI	ł	Q3 (%)	IQI	l	Q3 (%)	IQI	ł
64,2	Mediana	66,2	-	Mediana	66,3	-	Mediana	66,3	-	Mediana	66,3
64,2	Quart. 1	65,6	-	Quart. 1	66,2	-	Quart. 1	66,2	-	Quart. 1	66,2
66,2	Quart 3	66,4	66,2	Quart 3	66,6	66,2	Quart 3	66,4	66,2	Quart 3	66,3
66,3	IQR	0,8	66,3	IQR	0,4	66,3	IQR	0,2	66,3	IQR	0,1
65,6	L-Sup	67,4	65,6	L-Sup	66,8	-	L-Sup	66,6	-	L-Sup	66,4
66,4	L-Inf	65,0	66,4	L-Inf	65,8	66,4	L-Inf	66,0	66,4	L-Inf	66,1
66,9			66,9			-			-		
66,2			66,2			66,2			66,2		
66,7			66,7			66,7			-		

Tabela 19 – Cálculos do Intervalo interquartílico para o ensaio de consumo

Forno (kg/h)	IQR		Forno (kg/h)	IQR		Forno (kg/h)	IQI	IQR	
0,106	Mediana	0,112	0,106	Mediana	0,112	-	Mediana	0,112	
0,100	Quartil 1	0,110	-	Quartil 1	0,112	-	Quartil 1	0,112	
0,115	Quartil 3	0,114	0,115	Quartil 3	0,114	0,115	Quartil 3	0,115	
0,110	IQR	0,004	0,110	IQR	0,003	0,110	IQR	0,003	
0,112	L-Sup	0,118	0,112	L-Sup	0,116	0,112	L-Sup	0,116	
0,114	L-Inf	0,106	0,114	L-Inf	0,108	0,114	L-Inf	0,108	
0,115			0,115			0,115			
0,112			0,112			0,112			
0,112			0,112			0,112			

Após o tratamento de *outliers* com aplicação do teste de Grubbs no ensaio de rendimento em Q1, Q2 e Q4 (tabela 17), e IQR no ensaio de rendimento em Q3 (tabela 18) e também no ensaio de consumo (tabela 19), observou-se que os resultados remanescentes, após nova aplicação do teste de Shapiro-Wilk, passaram a ter uma distribuição normal e observou-se que todos os conjuntos de dados dos ensaios de rendimento e consumo não apresentaram *outliers*.

4.2.5. Média ponderada dos ensaios de rendimento acima do nível do mar.

O conjunto de dados dos ensaios de rendimento apresentou uma distribuição normal, sendo assim, a estimativa da grandeza, a partir da média, é ponderada inversamente proporcional as suas respectivas variâncias e finalmente, (tabela 20) a média do rendimento da Etiqueta Nacional de Conservação de energia é calculada pela média ponderada.

Tabela 20 - Média ponderada do rendimento no laboratório acima do nível do mar

·	Laborató	rio B	
Q1 (%)	Q2 (%)	Q3 (%)	Q4 (%)
62,3	64,5		60,3
	64,6		60,0
63,4	67,1	66,2	60,3
62,5	67,6	66,3	60,0
63,3	64,9		60,4
62,9	65,8	66,4	60,3
63,0	67,9		60,7
63,1	67,2	66,2	60,8
63,9	67,7		60,9
Me	édia aritmética de o	cada queimador	
63,1	66,4	66,3	60,4
Média aritmética (I	ENCE) – Etiqueta Na	cional de conserva	ção de Energia
	64,0		
D	esvio-padrão de ca	ada queimador	
0,51	1,41	0,10	0,33
	Peso indiv	idual	
3,9	0,5	99,1	9,4
Média ponderada (l	ENCE) – Etiqueta Na	acional de conserva	ıção de Energia
	65,7		

Tabela 21 - Anova do rendimento dos queimadores acima do nível do mar

	Anova (Fator Único)									
Grupo	contagem	Média	Variância							
Q1	8	63,1	0,26							
Q2	9	66,4	1,99							
Q3	4	66,3	0,0092							
Q4	9	60,4	0,11							
Origem da variação	SQ	GL	MQ	F	Valor-P	F-crítico				
Entre os grupos	191,3	3	63,7	88,9	8,55E-14	2,9				
Dentro dos grupos	18,6	26	0,72							
Total	209,9	29								

Para este conjunto de dados, podemos inferir por meio da tabela 21 que as médias dos quatro queimadores comparados não podem ser consideradas iguais. Ou seja, há uma diferença significativa entre os conjuntos de dados (F > F-crítico), de forma que não podemos considerá-los como sendo amostras da mesma população. A Anova mostra que o uso a da média aritmética dos 4 queimadores não têm compatibilidade estatística. Assim, a média ponderada pela variância se justifica.

Considerando a faixa de especificação, de acordo com a Portaria nº 400 do Inmetro de 01 de agosto de 2012, o rendimento segundo a etiqueta nacional de conservação de energia, afixada no equipamento, é de 63 % \pm 3 % ou seja, de (61 % a 65 %). Portanto, o resultado do Laboratório B está enquadrado pela a abordagem tradicional, 64 % (média aritmética) e não está enquadrado pela abordagem proposta 66 % (média ponderada).

4.3. Incerteza de medição nos ensaios de rendimento e consumo de aparelhos domésticos de cocção a gás ao nível do mar.

O experimento utilizado neste estudo apresenta o resultado de nove ensaios ao nível do mar. Porém apenas o ensaio o nº1 será descrito neste capítulo, os demais estão disponíveis no apêndice deste trabalho.

4.3.1.
Cálculo da incerteza de medição do rendimento ao nível do mar nas condições padrão.

A avaliação da incerteza de medição referente à precisão intermediária do método de rendimento foi calculada a partir do desvio-padrão dos nove ensaios realizados em cada queimador, repetidos segundo as mesmas condições, portanto estamos perante uma incerteza do Tipo A, cuja incerteza-padrão experimental da média é dada por $u_i = \frac{s}{\sqrt{n}}$.

Nas tabelas 22 a 24 estão, respectivamente, as grandezas de entrada, as grandezas saída e os coeficientes de sensibilidade, das avaliações de incertezas tipo B, que são fornecidas pelos certificados de calibração.

Tabela 22 – Grandezas de entrada do rendimento do ensaio nº1 ao nível do mar

C 1		TT • 1 1			
Grandezas	Q1	Q2	Q3	Q4	Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02403	0,01786	0,01816	0,02465	m^3
T_g	23,0	22,4	21,6	21,8	°C
T_{I}	19,4	19,9	20,2	20,0	°C
T_2	90,6	91,5	92,1	91,4	°C
M	6,334	4,975	4,975	6,320	kg
P_a	101,5	101,5	101,4	101,4	kPa
P	2,77	2,74	2,75	2,78	kPa

Tabela 23 – Grandezas de saída do rendimento do ensaio nº1 ao nível do mar

	Grandezas	Q1	Q2	Q3	Q4	unidades
W	$0.1 \exp\left(21,094 - \frac{5262}{273,15 + T_g}\right)$	2,78262	2,68403	2,55742	2,58856	kPa
V_n	$2,84368 V \frac{P_a + P - W}{273,15 + T_g}$	0,02342	0,01745	0,01780	0,02414	m^3
η	0,4186 $(M_1 + 0.213 m) (T_2 - T_1) \frac{1}{PCS} \frac{1}{V_n}$	63,9	67,7	66,7	62,0	%

Tabela 24 – Coeficientes de sensibilidade do rendimento do ensaio nº1 ao nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M} = \frac{\eta}{M_1 + 0.213 m}$	10,0863	13,6101	13,4002	9,8102	kg ⁻¹
$F_{\eta,T_2} = \frac{\partial \eta}{\partial T_2} = \frac{\eta}{(T_2 - T_1)}$	0,8973	0,9457	0,9272	0,8684	(°C)-1
$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1} = \frac{-\eta}{(T_2 - T_1)}$	-0,8973	-0,9457	-0,9272	-0,8684	(°C)-1
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS} = \frac{-\eta}{PCS}$	-0,5062	-0,5365	-0,5282	-0,4913	m³/MJ
$F_{\eta,V} = \frac{\partial \eta}{\partial V} = \frac{-\eta}{V}$	-2658,6	-3791,2	-3671,0	-2515,2	$(m^3)^{-1}$
$F_{\eta_b P_a} = \frac{\partial \eta}{\partial P_a} = \frac{-\eta}{P_a + P - W}$	-0,6295	-0,6667	-0,6562	-0,6103	(kPa) ⁻¹
$F_{\eta,P} = \frac{\partial \eta}{\partial P} = \frac{-\eta}{P_a + P - W}$	-0,6295	-0,6667	-0,6562	-0,6103	(kPa) ⁻¹
$F_{\eta,T_g} = \frac{\partial \eta}{\partial T_g} = \frac{\eta}{273,15 + T_g}$	0,3208	0,3369	0,3278	0,3057	kW/°C
$-\frac{526,2 F_{\eta,P_a}}{\left(273,15+T_g\right)^2} exp\left(21,094-\frac{1}{2}\right)$	$\frac{5262}{273,15+T_g}$				

4.3.2. Cálculo da incerteza de medição do consumo ao nível do mar nas condições padrão.

A avaliação da incerteza de medição referente à precisão intermediária do método de consumo foi calculada conforme descrito no item 3.3, a partir do desvio-padrão dos nove ensaios realizados, repetidos segundo as mesmas condições, portanto estamos perante uma incerteza do Tipo A, cuja incerteza-padrão experimental da média é dada por $u_i = \frac{s}{\sqrt{n}}$.

Nas tabelas 25 a 27 estão, respectivamente, as grandezas de entrada, as grandezas saída e os coeficientes de sensibilidade, das avaliações de incertezas tipo B, que são fornecidas pelos certificados de calibração.

Tabela 25 – Grandezas de entrada do consumo do ensaio nº1 ao nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m ³
\dot{V}	0,045720	m ³ /h
T_g	22,4	°C
d_r	2,0788	
d	2,0788	
P_a	101,350	kPa
P	2,780	kPa

Tabela 26 – Grandezas de saída do consumo do ensaio nº1 ao nível do mar

	Grandezas	Resultados	unidades
W	$0.1 e^{\left(21,094 - \frac{5262}{273,15 + T_g}\right)}$	2,69035	kPa
d_h	$d + \frac{0,622 - d}{P_a + P} W_{(T_g)}$	2,0410	
P_c	$0,278 \ PCS \ \dot{V} \sqrt{\frac{101,33+P}{101,33}} \ \frac{P_a+P}{101,33} \ \frac{288,15}{273,15+T_g} \ \frac{d_h}{d_r}$	1,613	kW
С	$P_c \times 0.0726$	0,117	kg/h

Tabela 27 – Coeficientes de sensibilidade do consumo do ensaio nº1 ao nível do mar

Coeficientes	Resultados	Unidades
$F_{P_c,PCS} = \frac{\partial P_c}{\partial PCS} = \frac{P_c}{PCS}$	0,0128	kW/MJ.m³
$F_{P_c,\dot{V}} = \frac{\partial P_c}{\partial \dot{V}} = \frac{P_c}{\dot{V}}$	35,2721	kWh/m³
$F_{P_c,T_g} = \frac{\partial P_c}{\partial T_g} = \frac{1}{2} \frac{P_c}{273,15 + T_g} \left(\frac{5262}{273,15 + T_g} \frac{d_h - d}{d_h} - 1 \right)$	-0,0036	kW/ºC
$F_{P_c,P_a} = \frac{\partial P_c}{\partial P_a} = \frac{1}{2} \frac{P_c}{P_a + P} \frac{d}{d_h}$	0,0079	kW/kPa
$F_{P_c,P} = \frac{\partial P_c}{\partial P} = \frac{1}{2} \frac{P_c}{101,33 + P} + F_{P_c,P_a}$	0,0156	kW/kPa

4.3.3. Resumo das contribuições das incertezas no ensaio nº1 ao nível do mar.

O resumo das contribuições das incertezas do rendimento e consumo no ensaio nº1 ao nível do mar está descrito nas tabelas 28 e 29 com as representações gráficas e contribuições relativas de cada fonte de incerteza-padrão do rendimento e consumo representados nas figuras 8 e 9.

Tabela 28 – Resumo das incertezas do rendimento no Ensaio nº1 ao nível do mar

Fontes de				Incerteza-	Coeficiente de	Componente
Incerteza	Queimador	or Tipo		padrão	sensibilidade (c _i)	Quadrático
incerteza				$[\mathbf{u}(\mathbf{x}_i)]$		$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{x} \mathbf{i})^2]$
	Q_1			0,362263120	1,000000000	0,131234568
Precisão	\mathbb{Q}_2	A	PI	0,193967669	1,000000000	0,037623457
intermediária	Q_3			0,157918560	1,000000000	0,024938272
	Q ₄			0,14444444	1,000000000	0,020864198
Incerteza do	\mathbf{Q}_1	B-T		0,194014604	0,320817104	0,003874216
termômetro -	\mathbf{Q}_2	B-T	$T_{ m g}$	0,194014604	0,336901238	0,004272421
$T_{ m g}$	Q_3	B-T		0,194014604	0,327822019	0,004045247
Б	Q ₄	B-T		0,194014604	0,305760661	0,003519104
Incerteza do	Q_1	B-T		0,054006172	-0,897281355	0,002348249
termômetro -	\mathbb{Q}_2	B-T	T_1	0,054006172	-0,945674815	0,002608377
T_1	Q_3	B-T		0,054006172	-0,927200637	0,002507461
	Q ₄	B-T		0,054006172	-0,868352629	0,002199273
Incerteza do	\mathbf{Q}_1	B-T		0,054006172	0,897281355	0,002348249
termômetro -	\mathbb{Q}_2	B-T	3-T T ₂	0,054006172	0,945674815	0,002608377
T_2	Q_3	B-T	- 2	0,054006172	0,927200637	0,002507461
	Q ₄	В-Т		0,054006172	0,868352629	0,002199273

	\mathbf{Q}_1	B-R	М	0,00305505	10,08626973	0,000949506
Incerteza da	\mathbf{Q}_2	B-R	171	0,00305505	13,61011391	0,001728862
balança - M	\mathbf{Q}_3	B-R		0,00305505	13,40014589	0,00167593
	Q_4	B-R		0,00305505	9,810186349	0,000898238
	\mathbf{Q}_1	B-T		0,034560334	-0,629501232	0,000473314
Incerteza do	\mathbb{Q}_2	B-T	P _a	0,034560334	-0,666729089	0,000530951
barômetro - Pa	\mathbf{Q}_3	B-T	- a	0,034560334	-0,65620662	0,000514324
	Q_4	B-T		0,034560334	-0,610291376	0,000444867
	\mathbf{Q}_1	B-T		0,002041541	-0,629501232	1,65162E-06
Incerteza do	\mathbb{Q}_2	В-Т	P	0,002041541	-0,666729089	1,85274E-06
manômetro - P	Q_3	B-T		0,002041541	-0,65620662	1,79472E-06
	Q ₄	B-T		0,002041541	-0,610291376	1,55235E-06
Incerteza do	\mathbf{Q}_1	B-T		0,000105326	-2658,611422	0,078411585
medidor de gás	\mathbf{Q}_2	B-T	v	7,94645E-05	-3791,171149	0,090759604
- V	Q_3	B-T		8,07118E-05	-3671,020143	0,087790620
	Q ₄	B-T		0,000107943	-2515,228305	0,073712415
RENDIMENTO		k	%	uc	K*uc	U %
U rendimento =	\mathbf{Q}_1	2	63,9	0,468659086	0,937318172	0,9
	\mathbf{Q}_2		67,7	0,374344631	0,748689261	0,7
U rendimento =	\mathbf{Q}_3	2	66,7	0,352109515	0,704219031	0,7
	Q ₄	7	62,0	0,322240467	0,644480933	0,6

incerteza-padrão [u (xi)]

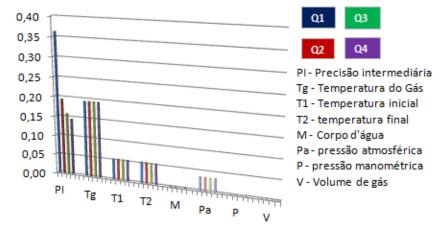


Figura 8 – Representação gráfica das contribuições das incertezas do rendimento no ensaio nº1

Pela análise da figura 8, podemos verificar que a incerteza em condições de precisão intermediária e a incerteza da temperatura do gás são dominantes, enquanto que as incertezas dos outros componentes são praticamente insignificantes.

Na precisão intermediária, temos o desvio-padrão das nove medições no ensaio do rendimento, esse desvio-padrão elevado fez com que a incerteza fosse a maior, o que

demonstra que o erro aleatório das medições nos ensaios de rendimento é significativo, isto pode ocorrer devido a imperfeições no sistema de medição ou, limitações do operador. Ocorre também, que devido a particularidades contidas no ensaio de rendimento, os queimadores Q1 e Q4 necessitam de ajuste manual para determinação do ensaio, o que contribui com o aumento do desvio-padrão, enquanto os queimadores Q2 e Q3 não necessitam de ajuste, sendo suas incertezas individuais mais próximas.

Quanto à temperatura do gás, o fator determinante no aumento da incerteza é o instrumento, que possui uma resolução analógica de 0,5 °C. Verificou-se que a troca de instrumento para uma resolução analógica de 0,1 °C não iria influenciar na melhoria da incerteza, pois conforme descrito na portaria n° 400 do Inmetro de 01/08/2012 o arredondamento para o ensaio de rendimento é de 1 %.

A título de referência, o rendimento dos queimadores, tabela 28, e suas respectivas incertezas, estão conforme e dentro das tolerâncias admitidas na portaria Inmetro nº400 de 01/08/2012, ou seja, \pm 3 % do rendimento aplicado na etiqueta de eficiência energética do aparelho.

Tabela 29 – Resumo das incertezas do consumo no Ensaio nº1 ao nível do mar							
Fontes de Incerteza	Forno	Tipo		Incerteza- padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $u_i^2 = [c_i u (xi)^2]$	
P. intermediária		A	PI	0,000747424	1,000000000	5,58642E-07	
termômetro - T _g	-	B-T	Tg	0,194014604	-0,003623568	4,94244E-07	
barômetro - p _a	-	B-T	Pa	0,034560334	0,00788648	7,42886E-08	
manômetro - p	-	B-T	P	0,020414335	0,01563161	1,01831E-07	
medidor de gás	-	B-T	V	0,000197653	35,27206839	4,86036E-05	
CONSUI	CONSUMO			uc	uc	k*uc	
U consumo =	-	2		0,007059232	0,014118464	0,0010	

Incerteza-padrão [u (xi)]

Figura 9 - Representação gráfica das contribuições das incertezas do consumo no ensaio nº1

Pela análise da figura 9, podemos verificar que a incerteza da temperatura do gás é a dominante. Na temperatura do gás o determinante no aumento da incerteza é o instrumento, que possui uma resolução analógica de 0,5 °C. Como a incerteza do consumo já é muito pequena, não recomenda-se a troca do instrumento.

4.4.

Incerteza de medição nos ensaios de rendimento e consumo de aparelhos domésticos de cocção a gás acima do nível do mar.

O experimento utilizado neste estudo apresenta o resultado de nove ensaios acima do nível do mar. Porém apenas o ensaio o nº1 será descrito neste capítulo, os demais estão disponíveis no apêndice deste trabalho.

4.4.1

Cálculo da incerteza de medição do rendimento nas condições padrão acima do nível do mar.

A avaliação da incerteza de medição referente à precisão intermediária do método de rendimento foi calculada conforme descrito no item 3.4, a partir do desvio-padrão agrupado dos nove ensaios realizados em cada queimador, repetidos segundo as mesmas condições, portanto estamos perante a uma contribuição e incerteza do Tipo A, cuja incerteza-padrão experimental da média é dada por $u_i = \frac{s}{\sqrt{n}}$.

Nas tabelas 30 a 32 estão, respectivamente, as grandezas de entrada, as grandezas saída e os coeficientes de sensibilidade, das avaliações de incertezas tipo B, que são fornecidas pelos certificados de calibração.

Tabela 30 – Grandezas de entrada do rendimento no ensaio nº1 acima do nível do mar

Grandezas		Unidades			
	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02744	0,02066	0,02112	0,02868	m^3
T_g	23,2	21,3	24,1	24,6	°C
T_I	19,7	20,6	19,8	19,5	°C
T_2	90,0	91,9	91,1	90,8	°C
M	6,320	4,975	4,975	6,320	kg
P_a	91,0	91,1	90,9	90,8	kPa
P	2,79	2,83	2,82	2,79	kPa

Tabela 31 – Grandezas de saída do rendimento no ensaio nº1 acima do nível do mar

	Grandezas	Q1	Q2	Q3	Q4	unidades
W	$0.1 \exp\left(21,094 - \frac{5262}{273,15 + T_g}\right)$	2,81619	2,51132	2,97173	3,06140	kPa
V_n	$2,84368 V \frac{P_a + P - W}{273,15 + T_g}$	0,02395	0,01824	0,01834	0,02480	m^3
η	$0,4186 (M_1 + 0,213 m) (T_2 - T_1) \frac{1}{PCS} \frac{1}{V_n}$	62,3	64,5	64,2	60,3	%

Tabela 32 – Coeficientes de sensibilidade do rendimento no ensaio nº1 acima do nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M} = \frac{\eta}{M_1 + 0.213 m}$	9,8584	12,9646	12,8974	9,5367	kg^{-1}
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2} = \frac{\eta}{(T_2 - T_1)}$	0,8751	0,9046	0,8999	0,8453	(°C) ⁻¹
$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1} = \frac{-\eta}{(T_2 - T_1)}$	-0,8751	-0,9046	-0,8999	-0,8453	(°C)-1
$F_{\eta_{\nu}PCS} = \frac{\partial \eta}{\partial PCS} = \frac{-\eta}{PCS}$	-0,4937	-0,5110	-0,5084	-0,4776	${\rm m^3/MJ}$
$F_{\eta,V} = \frac{\partial \eta}{\partial V} = \frac{-\eta}{V}$	-2.270,6	-3.121,9	-3.038,1	-2.101,5	$(m^3)^{-1}$
$F_{\eta_b P_a} = \frac{\partial \eta}{\partial P_a} = \frac{-\eta}{P_a + P - W}$	-0,6849	-0,7055	-0,7071	-0,6658	(kPa) ⁻¹
$F_{\eta,P} = \frac{\partial \eta}{\partial P} = \frac{-\eta}{P_a + P - W}$	-0,6849	-0,7055	-0,7071	-0,6658	(kPa) ⁻¹

$$\begin{split} F_{\eta,T_g} &= \frac{\partial \eta}{\partial T_g} = \frac{\eta}{273,15 + T_g} \\ &- \frac{526,2 \, F_{\eta,P_a}}{\left(273,15 + T_g\right)^2} \, exp\left(21,094 \, - \, \frac{5262}{273,15 + T_g}\right) \end{split}$$

4.4.2 Cálculo da incerteza de medição do consumo nas condições padrão acima do nível do mar.

A avaliação da incerteza de medição referente à precisão intermediária do método de consumo foi calculada a partir do desvio-padrão agrupado dos nove ensaios realizados, repetidos segundo as mesmas condições, portanto estamos perante uma incerteza do Tipo A, cuja incerteza-padrão experimental da média é dada por $u_i = \frac{s}{\sqrt{n}}$.

Nas tabelas 33 a 35, estão às grandezas de entrada, saída e os coeficientes de sensibilidade, avaliações de incertezas tipo B, que são fornecidas pelos certificados de calibração.

Tabela 33 – Grandezas de entrada do consumo no ensaio nº1 acima do nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,04415	m ³ /h
T_{g}	24,9	$^{\circ}\mathrm{C}$
d_r	2,0788	
d	2,0788	
P_a	90,748	kPa
<i>P</i>	2,633	kPa

Tabela 34 – Grandezas de saída do consumo no ensaio nº1 acima do nível do mar

	Grandezas	Resultados	unidades
W	$0.1 e^{\left(21,094 - \frac{5262}{273,15 + T_g}\right)}$	3,1163	kPa
d_h	$d + \frac{0,622 - d}{P_a + P} W_{(T_g)}$	2,0302	
P_c	$0,278 \ PCS \ \dot{V} \sqrt{\frac{101,33+P}{101,33}} \ \frac{P_a+P}{101,33} \ \frac{288,15}{273,15+T_g} \ \frac{d_h}{d_r}$	1,464	kW
С	$P_c \times 0.0726$	0,106	kg/h

Tabela 35 – Coeficientes de sensibilidade do ensaio nº1 do consumo acima do nível do mar

Coeficientes	Resultados	Unidades
$F_{P_c,PCS} = \frac{\partial P_c}{\partial PCS} = \frac{P_c}{PCS}$	0,0116	kW/MJ.m³
$F_{P_c,\dot{V}} = \frac{\partial P_c}{\partial \dot{V}} = \frac{P_c}{\dot{V}}$	33,1509	kWh/m³
$F_{P_c,T_g} = \frac{\partial P_c}{\partial T_g} = \frac{1}{2} \frac{P_c}{273,15 + T_g} \left(\frac{5262}{273,15 + T_g} \frac{d_h - d}{d_h} - 1 \right)$	-0,0035	kW/ºC
$F_{P_c,P_a} = \frac{\partial P_c}{\partial P_a} = \frac{1}{2} \frac{P_c}{P_a + P} \frac{d}{d_h}$	0,0080	kW/kPa
$F_{P_c,P} = \frac{\partial P_c}{\partial P} = \frac{1}{2} \frac{P_c}{101,33 + P} + F_{P_c,P_a}$	0,0151	kW/kPa

4.4.3 Resumo das contribuições das incertezas no ensaio nº1 acima do nível do mar.

O resumo das contribuições das incertezas do rendimento e consumo no ensaio nº1 acima do nível do mar está descrito nas tabelas 36 e 37 com as representações gráficas e contribuições relativas de cada fonte de incerteza-padrão do rendimento e consumo representados nas figuras 10 e 11.

Tabela 36 – Resumo das incertezas do rendimento no Ensaio nº1 acima do nível do mar

Fontes de				Incerteza-	Coeficiente de	Componente
Incerteza	Queimadores	Tipo		padrão	sensibilidade (c _i)	Quadrático u _i ² = [c _i u
THECT TEZU				$[\mathbf{u}(\mathbf{x}_i)]$		$(xi)^2$]
	\mathbf{Q}_1	A		0,179284291	1,000000000	0,032142857
Precisão	\mathbf{Q}_2	A	PI	0,470814896	1,000000000	0,221666667
intermediária	\mathbf{Q}_3	A	1	0,047871355	1,000000000	0,002291667
	Q ₄	A		0,108582335	1,000000000	0,011790123
Incerteza do	\mathbf{Q}_1	В-Т		0,194014604	0,325801775	0,003995542
termômetro -	\mathbb{Q}_2	В-Т	$T_{\rm g}$	0,194014604	0,326581797	0,004014697
$T_{\rm g}$	Q ₃	B-T	- g	0,194014604	0,340992943	0,004376829
- g	Q ₄	В-Т		0,194014604	0,323399711	0,003936843
Incerteza do	\mathbf{Q}_1	В-Т	T ₁	0,054006172	-0,875070766	0,002233434
termômetro -	Q_2	В-Т	1	0,054006172	-0,904609328	0,002386761
T ₁	Q_3	В-Т		0,054006172	-0,899920938	0,002362085
-1	Q ₄	B-T		0,054006172	-0,845328584	0,002084193
Incerteza do	Q ₁	В-Т		0,054006172	0,875070766	0,002233434
termômetro -	\mathbf{Q}_2	В-Т	T_2	0,054006172	0,904609328	0,002386761
T ₂	Q_3	B-T	12	0,054006172	0,899920938	0,002362085
12	Q ₄	B-T		0,054006172	0,845328584	0,002084193
	\mathbf{Q}_1	B-R		0,003055050	9,858392178	0,000907087
Incerteza da	\mathbb{Q}_2	B-R	М	0,003055050	12,96455178	0,001568743
balança - M	Q ₃	B-R		0,003055050	12,89735938	0,001552524
	Q ₄	B-R		0,003055050	9,536697475	0,000848854
	\mathbf{Q}_1	В-Т		0,034560334	-0,684867824	0,000560234
Incerteza do	\mathbf{Q}_2	B-T	Pa	0,034560334	-0,705530264	0,000594548
barômetro - Pa	Q_3	B-T	· · · a	0,034560334	-0,707058796	0,000597127
	Q_4	B-T		0,034560334	-0,665777721	0,000529437
	\mathbf{Q}_1	В-Т		0,002041541	-0,684867824	1,95492E-06
Incerteza do	\mathbf{Q}_2	В-Т	P	0,002041541	-0,705530264	2,07466E-06
manômetro - P	Q ₃	В-Т	1	0,002041541	-0,707058796	2,08366E-06
	Q_4	B-T		0,002041541	-0,665777721	1,84746E-06
Incerteza do	\mathbf{Q}_1	B-T		0,000119745	-2270,591785	0,073924822
medidor de	\mathbf{Q}_2	B-T	V	9,11529E-05	-3121,90925	0,080980756
gás - V	\mathbf{Q}_3	В-Т	1	9,30818E-05	-3038,085365	0,079970358
gas - v	Q ₄	В-Т		0,000125002	-2101,531661	0,069008903
RENDIMENTO		k		u _c	uc	k*uc
	Q_1	2	62,3	0,340586796	0,681173592	0,7
U rendimento	\mathbb{Q}_2	2	64,5	0,560000900	1,120001800	1,1
O ICHAIIICHIO	Q ₃	2	64,2	0,305801830	0,611603661	0,6
	Q_4	2	60,3	0,300473614	0,600947229	0,6

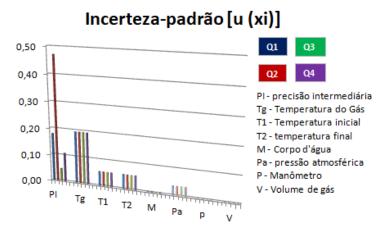
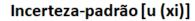


Figura 10 – Representação gráfica das contribuições das incertezas do rendimento no ensaio nº1 acima do nível do mar


Pela análise da figura 10, podemos verificar que a incerteza da precisão intermediária e a incerteza da temperatura do gás são dominantes, enquanto que as incertezas dos outros componentes são praticamente insignificantes.

Na precisão intermediária, temos o desvio-padrão das nove medições no ensaio do rendimento, esse desvio-padrão elevado fez com que a incerteza fosse a maior, o que demonstra que o erro aleatório das medições nos ensaios de rendimento é significativo, isto pode ocorrer devido a imperfeições no sistema de medição ou, limitações do operador. Ocorre também, que devido a particularidades contidas no ensaio de rendimento, os queimadores Q1 e Q4 necessitam de ajuste manual para determinação do ensaio, enquanto os queimadores Q2 e Q3 não necessitam de ajuste, sendo que suas incertezas individuais deveriam ser mais próximas, porém devido à quantidade de *outliers* no ensaio do queimador Q3, a confiabilidade metrológica pode ter ficado comprometida.

Quanto à temperatura do gás, o fator determinante no aumento da incerteza é o instrumento, que possui uma resolução analógica de 0,5 °C. Verificou-se que a troca de instrumento para uma resolução analógica de 0,1 °C não iria influenciar na melhoria da incerteza, pois conforme descrito na portaria n° 400 do Inmetro de 01/08/2012 o arredondamento para o ensaio de rendimento é de 1 %.

Portanto a título de referência, o rendimento dos queimadores (tabela 36) e suas respectivas incertezas estão conforme e dentro das tolerâncias admitidas na portaria Inmetro nº400 de $01/08/2012 \pm 3$ % do rendimento nominal aplicado na etiqueta de eficiência energética do aparelho.

Fontes de Incerteza	Forno	Tip o		Incerteza- padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $u_i^2 = [c_i u (xi)^2]$
precisão intermediária		A	PI	0,000617213	1,000000000	3,80952E-07
termômetro - $T_{\rm g}$	-	В-Т	Tg	0,194014604	-0,003489633	4,58383E-07
barômetro - p _a	-	В-Т	Pa	0,034560334	0,008025534	7,69314E-08
manômetro - p	-	В-Т	P	0,002041433	0,015066564	9,46017E-10
medidor de gás	-	В-Т	V	0,000190939	33,1589123	4,00858E-05
CONSUMO		k		uc	k*uc	U (kW)
U consumo =	-	2		0,006401922	0,012803845	0,0009

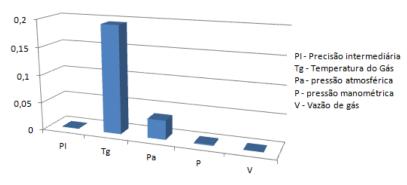


Figura 11 – Representação gráfica das contribuições das incertezas do consumo no ensaio nº1 acima do nível do mar

Pela análise da figura 11, podemos verificar que a incerteza da temperatura do gás é a dominante. Na temperatura do gás o determinante no aumento da incerteza é o instrumento, que possui uma resolução analógica de 0,5 °C.

4.5. Incerteza média do rendimento nos queimadores da mesa e do consumo do forno ao nível do mar e acima do nível do mar.

Calculou-se a incerteza média do rendimento dos queimadores da mesa e do consumo do forno (Tabelas 38 a 41), e com raciocínio análogo a incerteza da grande média do experimento, conforme as equações 3.44 a 3.46.

Tabela 38 – Resultados do rendimento com suas incertezas médias ao nível do mar (%)

Laboratório A										
Q1 ± U	Q2 ± U	Q3 ± U	Q4 ± U	Média ± U	Incerteza média					
$63,9\pm0,9$	$67,7\pm0,8$	$66,7\pm0,7$	$62,0\pm0,6$	$65,1 \pm 0,4$						
$62,6\pm0,9$	$67,0\pm0,7$	$66,3 \pm 0,7$	$61,\!4\pm0,\!6$	$64,3 \pm 0,4$						
$64,1 \pm 0,9$	$67,4 \pm 0,7$	$66,2\pm0,7$	$62,3\pm0,6$	$65,0 \pm 0,4$						
$62,5\pm0,9$	$67,9\pm0,8$	$67,1 \pm 0,7$	$61,2\pm0,6$	$64,7 \pm 0,4$						
$65,5\pm0,9$	$68,4\pm0,8$	$67,2\pm0,7$	$62,6\pm0,7$	$65,9 \pm 0,4$	65 ± 0.1					
$63,9\pm0,9$	$68,8 \pm 0,8$	$65,7\pm0,7$	$62,1 \pm 0,6$	$65,1 \pm 0,4$						
$62,0\pm0,9$	$68,6 \pm 0,8$	$66,8 \pm 0,7$	$61,9 \pm 0,6$	64.8 ± 0.4						
$64,4\pm0,9$	$68,3 \pm 0,8$	$66,8 \pm 0,7$	$61,9 \pm 0,6$	$65,4 \pm 0,4$						
$63,6 \pm 0,9$	$68,0 \pm 0,8$	$66,4 \pm 0,7$	$62,2 \pm 0,6$	$65,1 \pm 0,4$						

Tabela 39 - Resultados do rendimento com suas incertezas médias acima do nível do mar (%)

Q1 ± U	Q2 ± U	Q3 ± U	Q4 ± U	Média ± U	Incerteza média
$62,3\pm0,7$	64,5 ± 1,1	$64,2 \pm 0,6$	$60,3 \pm 0,6$	$62,8 \pm 0,4$	
$60,6 \pm 0,7$	64,6 ± 1,1	64,2 ± 0,6	$60,0 \pm 0,6$	$62,4 \pm 0,4$	
$63,4 \pm 0,7$	67,1 ± 1,1	66,2 ± 0,6	$60,3 \pm 0,6$	$64,3 \pm 0,4$	
$62,5\pm0,7$	67,6 ± 1,1	66,3 ± 0,6	$60,0 \pm 0,6$	64,1 ± 0,4	
$63,3 \pm 0,7$	64,9 ± 1,1	65,6 ± 0,6	$60,4 \pm 0,6$	$63,6 \pm 0,4$	$64 \pm 0,1$
$62,9 \pm 0,7$	65,8 ± 1,1	66,4 ± 0,6	$60,3 \pm 0,6$	$63,9 \pm 0,4$	
$63,0 \pm 0,7$	67,9 ± 1,1	66,9 ± 0,6	60,7 ± 0,6	$64,6 \pm 0,4$	
$63,1 \pm 0,7$	67,2 ± 1,1	$66,2 \pm 0,6$	60.8 ± 0.6	$64,3 \pm 0,4$	
$63,9 \pm 0,7$	67,7 ± 1,1	$66,7 \pm 0,6$	$60,9 \pm 0,6$	64.8 ± 0.4	
					•

Tabela 40 - Resultados do consumo e suas incertezas ao nível do mar

Tabela 41 - Resultados do consumo e suas incertezas acima do nível do mar

Labora	tório A	Labora	tório B
Forno (kg/h)	± U (kg/h)	Forno (kg/h)	± U (kg/h)
0,117	0,001	0,106	0,001
0,122	0,001	0,100	0,001
0,122	0,001	0,115	0,001
0,120	0,001	0,111	0,001
0,119	0,001	0,112	0,001
0,122	0,001	0,114	0,001
0,116	0,001	0,115	0,001
0,118	0,001	0,112	0,001
0,119	0,001	0,112	0,001
0,119	0,0003	0,111	0,0003

Como mostrado nas tabelas 38 e 39, podemos verificar que a incerteza do rendimento da mesa do fogão em cada um dos nove ensaios, ao nível do mar ou em altitude acima do nível do mar é 0,4 %. Em ambas as condições a incerteza não foi suficiente para mudar a faixa de classificação da etiqueta de eficiência energética do produto que varia conforme a tabela 1, e como mostrado nas tabelas 40 e 41, também verificamos que a incerteza do consumo forno em cada um dos nove ensaios, ao nível do mar ou em altitude acima do nível do mar é 0,0003 kg/h. Em ambas as condições, a incerteza não foi suficiente para mudar a faixa de classificação da etiqueta de eficiência energética do produto que varia conforme a tabela 1.

4.5.1.

Teste de hipótese nas grandes médias de resultados e nas incertezas de medição nos ensaios de rendimento e consumo ao nível do mar e acima do nível do mar.

A partir da grande média dos nove ensaios, a incerteza do experimento foi calculada.

	Rendimento Médio		Consumo Médio	
	Mesa (%)	± U (%)	Forno (kg/h)	± U (kg/h)
Ao nível do mar (x_l)	65	0,1	0,119	0,0003
Acima do nível do mar (x_2)	64	0,1	0,111	0,0003
Teste de Hipótese $ x_1 - x_2 \le \sqrt{U_1^2 + U_2^2}$	1,0 ≤	5 0,1	0,008 ≤ 0	0,0002

Como retrata o teste de hipótese, calculado a partir da equação (3.47), as médias não são compatíveis. Assim sendo, como os ensaios foram aplicados na mesma amostra, aplicando as mesmas condições de ensaio, com o mesmo analista e utilizando os mesmos instrumentos, a única variável que historicamente deixa dúvidas é a altitude. Portanto, pode-se inferir que os algoritmos para correção da altitude podem ser os responsáveis pela falta de compatibilidade e que a eficiência dos queimadores da mesa experimentalmente diminui com a altitude e o desempenho do queimador do forno aumenta com a altitude, desse modo e por ser um estudo científico, trabalhos futuros podem ser feitos a fim de aprofundar a discussão.

5.

Conclusões e trabalhos futuros

Alinhado com os objetivos descritos na seção introdutória deste trabalho, este capítulo concentra-se nas suas conclusões e encaminha recomendações para desdobramentos futuros da pesquisa desenvolvida.

O presente trabalho avaliou metrologicamente os resultados dos ensaios de rendimento e consumo em aparelhos domésticos de cocção a gás e sua influência na classificação do PBE desses aparelhos, de acordo com o que foi esboçado no objetivo geral da dissertação.

Conforme foi proposto nos objetivos específicos, o trabalho faz as seguintes considerações:

O primeiro objetivo específico, sobre o estado da arte da medição da avaliação do rendimento e consumo em aparelhos domésticos de cocção a gás, foi identificada, conforme citado na fundamentação teórica, a relevância do tema para a indústria de fogões a gás. O presente trabalho contribuiu para a literatura atual com um estudo experimental da performance térmica de fogões e fornos a gás completamente voltado as normais vigentes no país e fundamentando conceitos metrológicos com as normas ABNT utilizadas pela indústria.

Com relação ao segundo objetivo específico, descrito no capítulo 3 foi possível demonstrar como os algoritmos dos ensaios de rendimento e consumo em aparelhos domésticos de cocção a gás vem sendo reportados nas normas técnicas. Esta dissertação recomenda que as Normas ABNT NBR 13723 Partes 1 e 2 avaliem a pertinência de incluir em seus anexos a descrição do algoritmo de conversão de unidades de kW para kg/h, citado na Portaria Inmetro nº 400 de 01/08/2012.

No terceiro objetivo específico, sobre as diferenças de altitude e como influenciam no rendimento e no consumo em aparelhos domésticos de cocção a gás. Concluiu-se que existe uma diferença estatística entre os resultados ao nível do mar e em altitude acima do nível do mar, mas não foi possível afirmar que a altitude foi o determinante, experimentalmente, a eficiência dos queimadores da mesa diminui com a altitude e o desempenho do queimador do forno aumenta com a altitude.

O quarto objetivo específico comparou a metodologia atual e a proposta para o cálculo do rendimento e consumo nos ensaios de aparelhos domésticos de cocção a gás. Este trabalho sugere que a portaria do Inmetro nº400 de 01/08/2012, que rege o Programa Brasileiro de Etiquetagem – PBE em fogões aplique o teste de Shapiro-Wilk para avaliar o comportamento dos dados, trate os *outliers* e calcule o rendimento médio a partir da medida de posição inversamente ponderada pela medida de dispersão de cada queimador.

Com relação ao quinto objetivo específico, fica evidenciado que a contribuição da incerteza da precisão intermediária no ensaio de rendimento e a da temperatura do gás no rendimento e consumo são dominantes. Os resultados revelam que a incerteza de medição dos ensaios não afeta a classificação do PBE desses aparelhos.

Para trabalhos futuros de desdobramento da pesquisa e aprofundamento dos resultados, propõe-se que o Inmetro estruture um grupo técnico para estudar essas diferenças de resultados em fogões utilizando queimadores mais robustos com potência de aproximadamente 70 kW, como exemplo os aquecedores de passagem, que são acompanhados pelo PBE e seu consumo pode chegar a 5 kg/h contra os atuais 0,122 kg/h médio dos fogões domésticos.

Realizar este experimento em pelo menos mais de um laboratório ao nível do mar, a fim de se avaliar empiricamente o efeito da altitude e sua adequada correção nas grandezas rendimento e consumo.

6.

Referências Bibliográficas

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 13723-**1 Aparelhos domésticos de cocção a gás – Parte 1 – Desempenho e Segurança. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 13723-2** Aparelhos domésticos de cocção a gás – Parte 2 – Uso Racional de Energia. Rio de Janeiro, 1999.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR ISO/IEC 17025** Requisitos gerais para a competência de laboratórios de ensaio e calibração. Rio de Janeiro, 2001.

AMELL A. A. influence of altitude on the height of blue cone in a premixed flame, **Applied Thermal Engineering** v.27, p. 408–412, 2007.

BRASIL. Lei Nº 10.295, de 17 de outubro de 2001. Dispõe a Política Nacional de Conservação e Uso Racional de Energia e visa à alocação eficiente de recursos energéticos e a preservação do meio ambiente. **Diário oficial da República Federativa do Brasil**, Brasília, DF, 18 out. 2001. Disponível em: https://legislacao.presidencia.gov.br/atos/?tipo=LEI&numero=10295&ano=2001&ato=b1bkXUU5kMNpWTb56>.

CHAROENLERDCHANYA A.; RATTANADECHO P.; KEANGIN P. Experimental and numerical investigations of heat transfer and thermal efficiency of an infrared gas stove, **IOP Conference Series: Materials Science and Engineering,** v.297, 2018.

DE OLIVEIRA E.C., ORLANDO A.F., FERREIRA, A.L.S., Chaves C.E.O. Comparison of different approaches for detection and tratment of outliers in meter proving factors determination. **Flow Measurement and Instrumentation**, v.48, p. 29-35, 2016.

EISEMAN, J.H.,; SMITH F.A.; MERRITT C.J. The effect of altitude on the limits of safe operation of gas appliances. EUA: Bureau of standarts journal of research, 1933.

EPE - Empresa de Pesquisa Energética. Plano Nacional de Energia 2030. Rio de Janeiro: EPE, 2008. Disponível em:

https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Plano-Nacional-de-Energia-PNE-2030.

GRUBBS, F. E. PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS IN SAMPLES. **Technometrics**, v. 11, n. 1, p. 1-&, 1969.

INSTITUTO NACIONAL DE METROLOGIA, QUALIDADE E TECNOLOGIA, **Guia para a expressão de incerteza de medição** – GUM 2012. Duque de Caxias, RJ: INMETRO/CICMA/SEPIN, 2012, 141 p. Disponível em:

http://www.inmetro.gov.br/inovacao/publicacoes/gum_final.pdf.

	Guide 35 : Reference materials – General and statistical principles for Switzerland, 2006.
de Avaliação uso doméstic abr. 2002. Se	aria nº 073 de 05 de abril de 2002. Instituí, no âmbito do Sistema Brasileiro da Conformidade, a etiquetagem compulsória de fogões e fornos a gás, de co Diário oficial da República Federativa do Brasil , Brasília, DF, 10 ção 1, p. 88-89. Disponível em: .inmetro.gov.br/legislacao/rtac/pdf/RTAC000761.pdf>.
Avaliação da Federativa	aria nº 283 de 19 de julho de 2007. Aprovar a revisão do Regulamento de Conformidade para Fogões e Fornos a Gás. Diário oficial da República do Brasil , Brasília, DF, 23 jul. 2007. Seção 1, p. 82. Disponível em: inmetro.gov.br/legislacao/rtac/pdf/RTAC001169.pdf>.
metrológico, Conformidad Brasil , Brasí	taria nº 018 de 15 de janeiro de 2008. Aprova o regulamento técnico anexo à presente portaria, Aprova o Regulamento de Avaliação da le de Fogões e Fornos a Gás. Diário oficial da República Federativa do lia, DF, 18 jan. 2008. Seção 1, p. 114. Disponível em: .inmetro.gov.br/legislacao/rtac/pdf/RTAC001263.pdf>.
metrológico, da Conformi República F	taria nº 400 de 01 de agosto de 2012. Aprova o regulamento técnico anexo à presente portaria, Aprovar a revisão dos Requisitos de Avaliação dade para Fogões e Fornos a Gás de Uso Doméstico. Diário oficial da ederativa do Brasil , Brasília, DF, 03 ago. 2012. Seção 1, p. 77. Disponível www.inmetro.gov.br/legislacao/rtac/pdf/RTAC001883.pdf>.
Complement República F	aria nº 496 de 10 de outubro de 2013. Determinar que o Art. 8° da Portaria ar n° 430/2011 passará a vigorar com a seguinte redação. Diário oficial da ederativa do Brasil , Brasília, DF, 10 out. 2013. Seção 1, p. 73. Disponível www.inmetro.gov.br/legislacao/rtac/pdf/RTAC002035.pdf>
Regulamenta Federativa d	ia Interministerial nº 363 de 24 de dezembro de 2007. Aprovar a ção Específica de Fogões e Fornos a Gás. Diário oficial da República lo Brasil , Brasília, DF, 26 dez. 2007. Disponível em: .inmetro.gov.br/consumidor/produtosPBE/regulamentos/Portaria363_2007.
Sister	ma internacional de unidades: SI. Duque de Caxias, RJ, 2012.
	abulário Internacional de Metrologia – Conceitos fundamentais e gerais e iados (VIM). Portaria N° 232, de 08 maio de 2012.
	NHAS H. R. O Setor de Eletrodomésticos de Linha Branca: Um e a Relação do Varejo – Indústria. Fundação Getúlio Vargas (2005).
MME – Mini Disponível er http://www.ia+Energ%C	istério das Minas e Energia. Plano Nacional de Eficiência Energética, 2011.

MOREIRA R.M., OLIVEIRA E.C., Proposition of a new approach for calculating the efficiency of domestic gas cooking appliance, 2019. **ISBN: 978-65-990471-0-7.**

MILLER, J. N.; MILLER, J. C. Statistics and chemometrics for analytical chemistry. New York; 2005.

ROJAS F. J., JIMENEZ F. O., RAMOS B. G., RENZO A. Análisis Experimental Analysis of Thermal Performance, Power and Emissions of Liquid Petroleum Gas Stoves at Altitudes between 2200 and 4200 meters. **Technological Information**, v. 28, n. 4, p. 179-190, 2017.

ROZALI N. M., WAH Y. B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. **Journal of Statistical Modeling and Analytics**, v. 2, 1 jan. 2011.

SURANGE J., PATIL N., RAJPUT A., Performance Analysis of Burners used in LPG Cooking Stove-A Review, **International Journal of Innovative Research in Science**, Engineering and Technology, ISSN (online) v. 3, p. 2319-8753, 2014.

WIESER D.; JAUCH P.; WILLI U.; The influence of high altitude on fire detector test fires, **Fire Safety Journal**, v. 29, p. 195–204, 1997.

YANG Z.; XIAOMEI H.; SHINI P.; LIN L. Comparative study on the combustion characteristics of an atmospheric induction stove in the plateau and plain regions of China. **Applied Thermal Engineering**, v.111, p. 301-307, 2017.

Anexos

Anexo A

Tabela 42 - Constante "a"

	rabeia 42 – Constante a									
	n = 9									
i	2	3	4	5	6	7	8	n = 9	10	
1	0,7071	0,7071	0,6872	0,6646	0,6431	0,6233	0,6062	0,5888	0,5739	
2			0,1677	0,2413	0,2806	0,3031	0,3164	0,3244	0,3291	
3					0,0875	0,1401	0,1743	0,1976	0,2141	
4							0,0561	0,0947	0,1224	
5									0,0399	

< http://www.portalaction.com.br/inferencia/64-teste-de-Shapiro-Wilk >

Tabela 43 – Nível de Significância de 5 % para (n = 9)

n	0,010	0,020	0,050	0,100	0,500	0,900	0,950	0,980	0,990
3	0,753	0,756	0,767	0,789	0,959	0,998	0,999	1,000	1,000
4	0,687	0,707	0,748	0,792	0,935	0,987	0,992	0,996	0,997
5	0,686	0,715	0,762	0,806	0,927	0,979	0,986	0,991	0,993
6	0,713	0,743	0,788	0,826	0,927	0,974	0,981	0,986	0,989
7	0,730	0,760	0,803	0,838	0,928	0,972	0,979	0,985	0,988
8	0,749	0,778	0,818	0,851	0,932	0,972	0,978	0,984	0,987
9	0,764	0,791	0,829	0,859	0,935	0,972	0,978	0,984	0,986
10	0,781	0,806	0,842	0,869	0,938	0,972	0,978	0,983	0,986

< http://www.portalaction.com.br/inferencia/64-teste-de-Shapiro-Wilk >

Anexo B

METROLOGICAL EVALUATION OF EFFICIENCY AND CONSUMPTION OF DOMESTIC GAS COOKING APPLIANCES

Rosana Medeiros Moreira a, b; Elcio Cruz de Oliveira b, c, c,

"National Institute of Technology, Venezuela Avenue, 82, Centro, 20081-312 - Rio de Janeiro, RJ, Brazil. Phone:

+55 21 2123-1146. E-mail: rosana.moreira@int.gov.br .

^bPos graduate Metrology Programme, Rio de Janeiro Catholic University, Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro – RJ, Brazil

Technology Management and Automation, PETROBRAS TRANSPORTE S.A., Rio de Janeiro – RJ, Brazil

* Address corresponding to Elcio Cruz de Oliveira, PETROBRAS TRANSPORTE S.A., São Bento Street, 29, Centro, 20090-010 Rio de Janeiro - RJ, Brazil. Phone: + 55 21 32119223. E-mail: elciooliveira@transpetro.com.br

Abstract

This study metrologically evaluates the results of performance and consumption tests on domestic gas cooking appliances and their influence on the classification of the Brazilian Labeling Program. The inclusion of the evaluation and how the different altitudes influence the tests and their measurement uncertainties comes from historical data from the beginning of the Brazilian Labeling Program on stoves and from constant questions about the representativeness of the results in interlaboratory programs. Data from income and consumption tests were collected in two cities with different altitudes, and a new calculation methodology based on current statistical tools is proposed. The results show that the arithmetic average, currently used in the calculation of the performance of the four burners on the stove table, justifies being replaced by the weighted average, as shown by the differences in the output quantities at sea level and above sea level. The uncertainty of the performance and consumption tests was not enough to change the classification range of the product's energy efficiency label. It is concluded that statistically a difference is observed between the results at sea level and at altitude above sea level. Because the tests were applied in a condition of intermediate precision and the only variable that historically leaves the doubt is the altitude.

Keywords: Metrology; Stoves; Altitude; Measurement uncertainty; Thermal efficiency.

http://www.metrologia2019.org.br/anais/?search=Rosana+Medeiros+Moreira

Apêndices

Apêndice A – Resumo do ensaio nº2 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar.

Tabela 44 – Grandezas de entrada do rendimento do ensaio nº2 ao nível do mar

Grandezas		- Unidades			
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m ³
V	0,02455	0,01774	0,01822	0,02503	m^3
T_g	22,4	20,7	22,7	23,0	°C
T_{I}	20,3	19,9	20,0	20,1	°C
T_2	91,7	90,8	91,4	91,4	°C
M	6,334	4,977	4,975	6,320	kg
P_a	101,4	101,4	101,4	101,4	kPa
P	2,72	2,81	2,75	2,76	kPa

Tabela 45 – Grandezas de saída do rendimento do ensaio nº2 ao nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,6840	2,4213	2,7329	2,7826	kPa
V_n	0,02396	0,01747	0,01776	0,02437	m³
η	62,6	67,0	66,3	61,4	%

Tabela 46 – Coeficientes de sensibilidade do rendimento do ensaio nº2 ao nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta_{\nu}M} = \frac{\partial \eta}{\partial M}$	9,8853	13,4593	13,3357	9,7074	kg ⁻¹
$F_{\eta,T_2} = \frac{\partial \eta}{\partial T_2}$	0,8769	0,9448	0,9292	0,8605	(°C)-1
$F_{\eta_1 T_1} = rac{\partial \eta}{\partial T_1}$	-0,8769	-0,9448	-0,9292	-0,8605	(°C)-1
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,4961	-0,53076	-0,52567	-0,48610	m^3/MJ
$F_{\eta,V} = \frac{\partial \eta}{\partial V}$	-2.550,5	-3.776,1	-3.641,3	-2.451,1	$(m^3)^{-1}$
$F_{\eta_{a}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6173	-0,6581	-0,6542	-0,6052	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6173	-0,6581	-0,6542	-0,6052	(kPa) ⁻¹
$F_{\eta_v T_g} = \frac{\partial \eta}{\partial T_g}$	0,3117	0,3251	0,3317	0,3082	kW/°C

Tabela 47 – Grandezas de entrada do consumo do ensaio nº2 ao nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,047640	m^3/h
T_g	22,4	°C
d_r	2,0788	
d	2,0788	
P_a	101,451	kPa
P	2,780	kPa

Tabela 48 – Grandezas de saída do consumo do ensaio nº2 ao nível do mar

Grandezas	Resultados	Unidades
W	2,69035	kPa
d_h	2,041	
P_c	1,681	kW
C	0,122	kg/h

Tabela 49 - Coeficientes de sensibilidade do consumo do ensaio nº2 ao nível do mar

Coeficientes	Resultados	Unidades
$F_{P_c,PCS}$	0,013321	kW/MJ.m³
$F_{P_{\mathcal{C}},\dot{\mathcal{V}}}$	35,289588	kWh/m³
F_{P_c,T_g}	-0,00378	kW/ºC
F_{P_C,P_a}	0,0082	kW/kPa
$F_{P_C,P}$	0,0163	kW/kPa

Tabela 50 - Resumo das incertezas do rendimento e consumo do Ensaio nº2 ao nível do mar

abela 30 – INESC	illio das illo	I	3 40 10		Coeficiente de	Commonanto Ovodrático
Fontes de Incerteza	Queimadores	Tipo		Incerteza-padrão [u (x _i)]	sensibilidade (c _i)	Componente Quadrático $u_i^2 = [c_i u (xi)^2]$
	Q_1	A		0,362263120	1,000000000	0,131234568
Precisão	Q_2	A	704	0,193967669	1,000000000	0,037623457
intermediária	Q_3	A	PI	0,157918560	1,000000000	0,024938272
	Q_4	A		0,14444444	1,000000000	0,020864198
	Q_1	B-T		0,194014604	0,311659642	0,00365620
Incerteza do	Q_2	B-T		0,194014604	0,32506966	0,003977606
termômetro - T _g	Q_3	B-T	$T_{\rm g}$	0,194014604	0,33173354	0,004142358
	Q_4	B-T		0,194014604	0,308194091	0,003575341
	Q_1	B-T		0,054006172	-0,876940701	0,00224299
Incerteza do	Q_2	B-T		0,054006172	-0,944811078	0,002603615
termômetro - T ₁	Q_3	B-T	T_1	0,054006172	-0,9292015	0,002518295
	Q ₄	B-T		0,054006172	-0,860461734	0,002159484
	Q_1	B-T		0,054006172	0,876940701	0,00224299
Incerteza do	Q_2	B-T		0,054006172	0,944811078	0,002603615
termômetro - T ₂	Q_3	B-T	T_2	0,054006172	0,9292015	0,002518295
	Q ₄	B-T		0,054006172	0,860461734	0,002159484
	Q_1	B-R		0,00305505	9,885311972	0,000912048
Incerteza da	Q_2	B-R		0,00305505	13,45933402	0,001690768
balança - M	Q ₃	B-R	M	0,00305505	13,33567579	0,001659842
· · · · · 3··	Q ₄	B-R		· · · · · · · · · · · · · · · · · · ·		,
	Q ₁	B-T		0,00305505 0,034560334	9,707424314	0,000879518
Incerteza do	Q_2	B-T			-0,617271846	0,000455102
barômetro - Pa	Q ₃	B-T	Pa	0,034560334	-0,658099859	0,000517296
a	Q ₄	B-T		0,034560334	-0,654179694	0,000511152
	Q ₁	B-T		0,034560334	-0,605173659	0,000437437
Incerteza do	Q_2	B-T		0,002041541	-0,617271846	1,58807E-06
manômetro - P	Q ₂	B-T	P	0,002041541	-0,658099859	1,80509E-06
manometro 1	Q ₃	B-T		0,002041541	-0,654179694	1,78365E-06
	Q ₁	B-T		0,002041541	-0,605173659	1,52643E-06
Incerteza do medidor	Q_1 Q_2	B-T		0,00010752	-2550,450755	0,075199613
de gás - V	Q ₂	B-T	V	7,89659E-05	-3776,048785	0,088910725
ue gas - v	Q_3 Q_4	B-T		8,09615E-05	-3641,327501	0,086911338
RENDIMEN'		Rend	k	0,000109548 uc	-2451,095552	0,072098448
RENDIMEN	. ,		2		uc	k*uc
	Q_1 Q_2	62,6	2	0,464698933	0,929397866	0,9
U rendimento =		67,0	2	0,371387784	0,742775568	0,7
O rendimento =	Q_3 Q_4	66,3	2	0,351000477	0,702000955	0,7
	Q ₄	61,4		0,319648926 nédia dos queimadores	0,639297851	0,6
		Tilice	riteza da i	•	C6	, , , , , , , , , , , , , , , , , , ,
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} \ (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000747424	1,000000000	0,000000559
Incerteza do termômetro - Tg	-	В-Т	Tg	0,194014604	-0,003776682	5,36895E-07
Incerteza do barômetro - p _a	-	В-Т	Pa	0,034560334	0,008213614	8,05795E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,016287985	1,10562E-09
Incerteza do medidor de gás	-	В-Т	V	0,000205866	35,28948554	5,27791E-05
	onsumo (kg/h) =			0,007345496	0,014690993	0,0011

Tabela 51 – Grandezas de entrada do rendimento do ensaio nº2 acima do nível do mar

Grandezas		Medições	efetuadas		- Unidades
Granuezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02831	0,02089	0,02112	0,02892	m^3
T_g	23,2	23,0	23,8	24,9	°C
T_I	19,8	20,5	20,7	21,1	°C
T_2	91,2	91,9	92,2	92,5	°C
M	6,320	4,975	4,975	6,320	kg
P_a	91,0	91,0	91,0	90,8	kPa
<i>P</i>	2,75	2,74	2,84	2,75	kPa

Tabela 52 – Grandezas de saída do rendimento do ensaio nº2 acima do nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,81619	2,78262	2,91906	3,11634	kPa
V_n	0,02470	0,01825	0,01839	0,02495	m^3
η	60,6	64,6	64,2	60,0	%

Tabela 53 – Coeficientes de sensibilidade do rendimento do ensaio nº2 acima do nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	9,5865	12,9794	12,8959	9,4903	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8486	0,9044	0,8973	0,8400	(°C) ⁻¹
$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8486	-0,9044	-0,8973	-0,8400	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,4800	-0,5116	-0,5083	-0,4752	m³/MJ
$F_{\eta_{\nu}V} = \frac{\partial \eta}{\partial V}$	-2.140,1	-3.091,1	-3.037,8	-2.074,0	$(m^3)^{-1}$
$F_{\eta_{a}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6663	-0,7099	-0,7056	-0,6632	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6663	-0,7099	-0,7056	-0,6632	(kPa) ⁻¹
$F_{\eta_t T_g} = \frac{\partial \eta}{\partial T_g}$	0,3169	0,3366	0,3390	0,3237	kW/°C

Tabela 54 – Grand<u>ezas de entrada do consumo do ensaio nº2 acima</u> do nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,041310	m^3/h
T_g	22,5	°C
d_r	2,0788	
d	2,0788	
P_a	90,949	kPa
P	2,819	kPa

Tabela 55 – Grandezas de saída do consumo do ensaio nº2 acima do nível do mar

Grandezas	Resultados	Unidades
\overline{W}	2,70025	kPa
d_h	2,0368	
P_c	1,381	kW
C	0,100	kg/h

Tabela 56 – Coeficientes de sensibilidade do consumo do ensaio nº2 acima do nível do mar

Resultados	Unidades
0,0109	kW/MJ.m³
33,4387	kWh/m³
-0,0032	kW/ºC
0,0075	kW/kPa
0,0141	kW/kPa
	0,0109 33,4387 -0,0032 0,0075

Tabela 57 – Resumo das incertezas do rendimento e consumo no Ensaio nº2 acima do nível do mar

mar						
Fontes de Incerteza	Queimadores	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $u_i^2 = [c_i u (xi)^2]$
	Q_1	A		0,179284291	1,000000000	0,032142857
Precisão	Q_2	A		0,470814896		,
intermediária	Q ₃	A	PI		1,000000000	0,221666667
	Q_4	A		0,047871355	1,000000000	0,002291667
	Q_1	B-T		0,108582335	1,000000000	0,011790123
Incerteza do	Q_1	B-T		0,194014604	0,316865279	0,003779359
termômetro - T _g	Q_2 Q_3	B-T	T_{g}	0,194014604	0,336560086	0,004263773
termometro - 1 _g	-	B-T		0,194014604	0,338970436	0,004325064
	Q_4 Q_1	B-T		0,194014604	0,32366651	0,003943341
Turantana da		B-T		0,054006172	-0,848551897	0,002100118
Incerteza do	Q_2	B-T	T_1	0,054006172	-0,904378244	0,002385542
termômetro - T ₁	Q ₃			0,054006172	-0,897305315	0,002348374
	Q_4	B-T		0,054006172	-0,840039067	0,002058191
	Q ₁	B-T		0,054006172	0,848551897	0,002100118
Incerteza do	Q_2	B-T	T_2	0,054006172	0,904378244	0,002385542
termômetro - T ₂	Q ₃	B-T		0,054006172	0,897305315	0,002348374
	Q_4	B-T		0,054006172	0,840039067	0,002058191
	Q_1	B-R		0,00305505	9,586488207	0,00085774
Incerteza da	Q_2	B-R	M	0,00305505	12,97941841	0,001572343
balança - M	Q ₃	B-R		0,00305505	12,89594573	0,001552184
	Q ₄	B-R		0,00305505	9,490314771	0,000840617
	Q_1	B-T		0,034560334	-0,666271459	0,000530223
Incerteza do	Q_2	B-T	Pa	0,034560334	-0,709921555	0,000601972
barômetro - Pa	Q_3	B-T	¹ a	0,034560334	-0,70563862	0,000594731
	Q_4	B-T		0,034560334	-0,663235225	0,000525401
	Q_1	B-T		0,002041541	-0,666271459	1,8502E-06
Incerteza do	Q_2	B-T	P	0,002041541	-0,709921555	2,10057E-06
manômetro - P	Q ₃	B-T	r	0,002041541	-0,70563862	2,0753E-06
	Q ₄	B-T		0,002041541	-0,663235225	1,83338E-06
	Q_1	B-T		0,000123433	-2140,113227	0,069780291
Incerteza do medidor	Q_2	B-T	* 7	9,21171E-05	-3091,077386	0,081077452
de gás - V	Q ₃	B-T	V	9,30818E-05	-3037,752367	0,079952828
	Q ₄	B-T		0,00012602	-2073,955372	0,068309151
RENDIMEN	TO (%)	Rend	k	uc	uc	k*uc
	Qı	60,6	2	0,33360539	0,667210779	0,7
	Q_2	64,6	2	0,560317223	1,120634446	1,1
U rendimento =	Q_3	64,2	2	0,305639161	0,611278323	0,6
	Q_4	60,0	2	0,299210377	0,598420754	0,6
			rteza da i	média dos queimadores	3,2,2,1,20,0	0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000617213	1,000000000	3,80952E-07
Incerteza do termômetro - T _g	-	В-Т	Tg	0,194014604	-0,00319249	3,83644E-07
Incerteza do barômetro - pa	-	В-Т	Pa	0,034560334	0,007517498	6,74998E-08
Incerteza do manômetro - p	-	B-T	Р	0,002041433	0,014149106	8,34312E-10
Incerteza do medidor de gás	-	В-Т	V	0,000178802	33,43865244	3,57472E-05
U co	onsumo (kg/h) =			0,006048152	0,012096304	0,0009

Apêndice B – Resumo do ensaio nº3 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar.

Tabela 58 – Grandezas de entrada do rendimento do ensaio nº3 ao nível do mar

Grandezas		- Unidades			
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02403	0,01795	0,01817	0,02452	m^3
T_g	22,7	22,7	21,0	22,1	°C
T_I	19,6	19,6	20,1	19,6	°C
T_2	91,1	91,1	91,8	90,8	°C
M	6,334	4,977	4,977	6,320	kg
P_a	101,400	101,500	101,500	101,400	kPa
P	2,780	2,770	2,820	2,740	kPa

Tabela 59 – Grandezas de saída do rendimento do ensaio nº3 ao nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,73293	2,73293	2,46596	2,63591	kPa
V_n	0,02343	0,01752	0,01789	0,02397	m^3
η	64,1	67,4	66,2	62,3	%

Tabela 60 – Coeficientes de sensibilidade do rendimento do ensaio nº3 ao nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta_{v}M} = \frac{\partial \eta}{\partial M}$	10,1206	13,5366	13,2916	9,8512	kg ⁻¹
$F_{\eta,T_2} = \frac{\partial \eta}{\partial T_2}$	0,8966	0,9423	0,9226	0,8744	(°C) ⁻¹
$F_{\eta_1 T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8966	-0,9423	-0,9226	-0,8744	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,5079	-0,5338	-0,5241	-0,4933	m³/MJ
$F_{\eta,V} = \frac{\partial \eta}{\partial V}$	-2.667,7	-3.753,3	-3.640,7	-2.539,1	$(m^3)^{-1}$
$F_{\eta_{a}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6319	-0,6635	-0,6495	-0,6134	(kPa) ⁻¹
$F_{\eta,P} = \frac{\partial \eta}{\partial P}$	-0,6319	-0,6635	-0,6495	-0,6134	(kPa) ⁻¹
$F_{\eta,T_g} = \frac{\partial \eta}{\partial T_g}$	0,3205	0,3367	0,3223	0,3085	kW/°C

Tabela 61 – Grandezas de entrada do consumo do ensaio nº3 ao nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,047520	m^3/h
T_{g}	22,7	°C
d_r	2,0788	
d	2,0788	
P_a	101,350	kPa
P	2,770	kPa

Tabela 62 – Grandezas de saída do consumo do ensaio nº3 ao nível do mar

Grandezas	Resultados	Unidades
\overline{W}	2,73935	kPa
d_h	2,040	
P_c	1,675	kW
C	0,122	kg/h

Tabela 63 – Coeficientes de sensibilidade do consumo do ensaio nº3 ao nível do mar

Coeficientes	Resultados	Unidades
$F_{P_c,PCS}$	0,0133	kW/MJ.m³
$F_{P_{\mathcal{C}},\dot{\mathcal{V}}}$	35,2449	kWh/m³
F_{P_c,T_g}	-0,0038	kW/ºC
F_{P_c,P_a}	0,0082	kW/kPa
$F_{P_C,P}$	0,0162	kW/kPa

Tabela 64 – Resumo das incertezas do rendimento e do consumo no Ensaio nº3 ao nível do mar

mar						
Fontes de Incerteza	Queimadores	Tipo		Incerteza-padrão	Coeficiente de	Componente Quadrático
				[u (x _i)]	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{x}\mathbf{i})^2]$
	Q ₁	A		0,362263120	1,000000000	0,131234568
Precisão	Q_2	A	PI	0,193967669	1,000000000	0,037623457
intermediária	Q ₃	A		0,157918560	1,000000000	0,024938272
	Q ₄	A		0,14444444	1,000000000	0,020864198
	Q_1	B-T		0,194014604	0,320496828	0,003866485
Incerteza do	Q_2	B-T	T_{g}	0,194014604	0,336738522	0,004268295
termômetro - T _g	Q_3	B-T	, i	0,194014604	0,322294191	0,003909973
	Q ₄	B-T		0,194014604	0,308464083	0,003581608
	Q_1	B-T		0,054006172	-0,896557272	0,00234446
Incerteza do	Q_2	B-T	T_1	0,054006172	-0,942262306	0,002589587
termômetro - T ₁	Q_3	B-T		0,054006172	-0,922624539	0,002482772
	Q_4	B-T		0,054006172	-0,874429251	0,002230161
	Q_1	B-T		0,054006172	0,896557272	0,00234446
Incerteza do	Q_2	B-T	T_2	0,054006172	0,942262306	0,002589587
termômetro - T ₂	Q_3	B-T		0,054006172	0,922624539	0,002482772
	Q_4	B-T		0,054006172	0,874429251	0,002230161
	Q_1	B-R		0,00305505	10,1205944	0,00095598
Incerteza da	Q_2	B-R	M	0,00305505	13,53661943	0,001710241
balança - M	Q ₃	B-R	-112	0,00305505	13,29157714	0,001648883
	Q ₄	B-R		0,00305505	9,851164974	0,000905758
	Q_1	B-T		0,034560334	-0,6318945	0,000476919
Incerteza do	Q_2	B-T	Pa	0,034560334	-0,663518808	0,000525851
barômetro - Pa	Q ₃	B-T	¹ a	0,034560334	-0,649480196	0,000503834
	Q_4	B-T		0,034560334	-0,613368049	0,000449364
	Q_1	B-T		0,002041541	-0,6318945	1,6642E-06
Incerteza do	Q_2	B-T	P	0,002041541	-0,663518808	1,83494E-06
manômetro - P	Q_3	B-T	1	0,002041541	-0,649480196	1,75812E-06
	Q_4	B-T		0,002041541	-0,613368049	1,56805E-06
	Q_1	B-T		0,000105326	-2667,658966	0,07894618
Incerteza do medidor	Q_2	B-T	V	7,98385E-05	-3753,301109	0,089794943
de gás - V	Q_3	B-T	·	8,07535E-05	-3640,736348	0,086437190
	Q ₄	B-T		0,000107394	-2539,125719	0,074357777
RENDIMENT	ГО (%)	Rend	k	uc	uc	k*uc
	Q_1	64,1	2	0,469223525	0,938447051	0,9
	Q_2	67,4	2	0,372966211	0,745932421	0,7
U rendimento =	Q_3	66,2	2	0,349864908	0,699729816	0,7
	Q_4	62,3	2	0,323451067	0,646902134	0,6
		Ince	rteza da ı	nédia dos queimadores		0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000747424	1,000000000	5,58642E-07
Incerteza do termômetro - Tg	-	В-Т	Tg	0,194014604	-0,003775589	5,36585E-07
Incerteza do barômetro - Pa	-	В-Т	Pa	0,034560334	0,008193909	8,01933E-08
Incerteza do manômetro - P	-	В-Т	P	0,002041433	0,016238289	1,09888E-09
Incerteza do medidor de gás	-	В-Т	V	0,000205353	35,24494732	5,23837E-05
U co	onsumo (kg/h) =			0,007318483	0,014636966	0,0011

Tabela 65 – Grandezas de entrada do rendimento do ensaio nº3 acima do nível do mar

Grandezas		- Unidades			
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02687	0,02036	0,02074	0,02885	m^3
T_{g}	22,1	25,0	25,0	25,0	°C
T_{I}	19,9	21,0	20,8	20,5	°C
T_2	91,3	92,4	92,5	92,0	°C
M	6,320	4,975	4,975	6,320	kg
P_a	91,100	90,800	90,700	90,700	kPa
P	2,800	2,710	2,790	2,770	kPa

Tabela 66 – Grandezas de saída do rendimento do ensaio nº3 acima do nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,63591	3,13485	3,13485	3,13485	kPa
V_n	0,02362	0,01755	0,01787	0,02486	m^3
η	63,4	67,1	66,2	60,3	%

Tabela 67 – Coeficientes de sensibilidade do rendimento do ensaio nº3 acima do nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	10,0263	13,4936	13,3050	9,5403	kg ⁻¹
$F_{\eta_0 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8875	0,9402	0,9232	0,8433	(°C) ⁻¹
$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8875	-0,9402	-0,9232	-0,8433	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,5021	-0,5319	-0,5245	-0,4777	m^3/MJ
$F_{\eta_{\nu}V} = \frac{\partial \eta}{\partial V}$	-2.358,3	-3.297,2	-3.191,5	-2.089,9	$(m^3)^{-1}$
$F_{\eta_{c}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6943	-0,7428	-0,7326	-0,6675	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6943	-0,7428	-0,7326	-0,6675	(kPa) ⁻¹
$F_{\eta_0 T_g} = \frac{\partial \eta}{\partial T_g}$	0,3251	0,3630	0,3580	0,3261	kW/°C

Tabela 68 – Grand<u>ezas de entrada do consumo do ensaio nº3 acima</u> do nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m ³
\dot{V}	0,047680	m^3/h
T_g	26,2	°C
d_r	2,0788	
d	2,0788	
P_a	90,687	kPa
P	2,799	kPa

Tabela 69 – Grandezas de saída do consumo do ensaio nº3 acima do nível do mar

Grandezas	Resultados	Unidades
W	3,36862	kPa
d_h	2,0263	
P_c	1,578	kW
C	0,115	kg/h

Tabela 70 – Coeficientes de sensibilidade do consumo do ensaio nº3 acima do nível do mar

Coeficientes	Resultados	Unidades
$F_{P_{C},PCS}$	0,0125	kW/MJ.m³
$F_{P_C,\dot{V}}$	33,0911	kWh/m³
F_{P_c,T_g}	-0,0038	kW/ºC
F_{P_c,P_a}	0,0087	kW/kPa
$F_{P_C,P}$	0,0162	kW/kPa

Tabela 71 – Resumo das incertezas do rendimento e do consumo no Ensaio nº3 acima do nível do mar

Fontes de Incerteza	Queimadores	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático u _i ² = [c _i u (xi) ²]
	Q_1	A		0,179284291	1,000000000	0,032142857
Precisão	Q_2	A	PI	0,470814896	1,000000000	0,221666667
intermediária	Q_3	A	11	0,047871355	1,000000000	0,002291667
	Q ₄	A		0,108582335	1,000000000	0,011790123
	Q_1	B-T		0,194014604	0,325094049	0,003978202
Incerteza do	Q_2	B-T	T	0,194014604	0,362995541	0,004959883
termômetro - T _g	Q ₃	B-T	$T_{\rm g}$	0,194014604	0,357951245	0,004822993
	Q ₄	B-T		0,194014604	0,326084644	0,004002483
	Q_1	B-T		0,054006172	-0,887485146	0,002297254
Incerteza do	Q_2	B-T		0,054006172	-0,94020544	0,002578293
termômetro - T ₁	Q_3	B-T	T ₁	0,054006172	-0,923183218	0,002485779
	Q ₄	B-T		0,054006172	-0,843278388	0,002074095
	Q_1	B-T		0,054006172	0,887485146	0,002297254
Incerteza do	$\overline{\mathrm{Q}_2}$	B-T		0,054006172	0,94020544	0,002578293
termômetro - T ₂	Q ₃	B-T	T ₂	0,054006172	0,923183218	0,002378293
	Q ₄	B-T		0,054006172	0,843278388	0,002483779
	Q ₁	B-R		.,		
Incerteza da	Q_2	B-R		0,00305505	10,02633535	0,000938256
balança - M	$\frac{Q_2}{Q_3}$	B-R	M	0,00305505	13,49360169	0,001699388
ouldright 141	Q ₄	B-R		0,00305505	13,30497221	0,001652208
	Q ₁	B-T		0,00305505	9,540253916	0,000849487
Incerteza do		B-T		0,034560334	-0,69431956	0,000575804
	$\frac{Q_2}{Q_2}$		Pa	0,034560334	-0,742800054	0,000659022
barômetro - P _a	Q_3	B-T		0,034560334	-0,732578438	0,000641009
	Q ₄	B-T		0,034560334	-0,667452291	0,000532104
	Q_1	B-T		0,002041541	-0,69431956	2,00926E-06
Incerteza do	Q ₂	B-T	P	0,002041541	-0,742800054	2,29964E-06
manômetro - P	Q ₃	B-T		0,002041541	-0,732578438	2,23679E-06
	Q ₄	B-T		0,002041541	-0,667452291	1,85676E-06
	Q_1	B-T		0,000117330	-2358,259747	0,076560247
Incerteza do medidor	Q_2	B-T	V	8,98962E-05	-3297,184107	0,087855437
de gás - V	Q_3	B-T		9,14882E-05	-3191,525398	0,085256409
	Q ₄	B-T		0,000125723	-2089,927374	0,069038743
RENDIMENT	ГО (%)	Rend	k	uc	uc	k*uc
	Q_1	63,4	2	0,344661984	0,689323967	0,7
	Q_2	67,1	2	0,567449806	1,134899613	1,1
U rendimento =	Q_3	66,2	2	0,315655004	0,631310008	0,6
	Q_4	60,3	2	0,300604371	0,601208743	0,6
		Ince	erteza da i	média dos queimadores		0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000617213	1,000000000	3,80952E-07
Incerteza do termômetro - T _g	-	В-Т	Tg	0,194014604	-0,003835091	5,53631E-07
barômetro - p _a Incerteza do	-	B-T	Pa	0,034560334	0,008657217	8,95184E-08
manômetro - p Incerteza do medidor	-	B-T	P	0,002041433	0,016233315	1,09821E-09
de gás		В-Т	V	0,000206038	33,091088	4,64853E-05
U co	onsumo (kg/h) =			0,006892783	0,013785565	0,0010

Apêndice C – Resumo do ensaio nº4 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar.

Tabela 72 – Grandezas de entrada do rendimento do ensaio nº4 ao nível do mar

Crondoros		Tiuido dos			
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02439	0,01768	0,01798	0,02509	m^3
T_g	21,0	21,6	21,8	22,7	°C
T_{I}	19,6	20,1	20,2	19,6	°C
T_2	90,9	91,5	91,8	91,0	°C
M	6,334	4,975	4,977	6,320	kg
P_a	101,400	101,500	101,400	101,400	kPa
P	2,760	2,770	2,760	2,720	kPa

Tabela 73 – Grandezas de saída do rendimento do ensaio nº4 ao nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,46596	2,55742	2,58856	2,73293	kPa
V_n	0,02398	0,01735	0,01761	0,02445	m^3
η	62,5	67,9	67,1	61,2	%

Tabela 74 – Coeficientes de sensibilidade do rendimento do ensaio nº4 ao nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	9,8622	13,6495	13,4872	9,6852	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8761	0,9511	0,9375	0,8573	(°C) ⁻¹
$F_{\eta_i T_1} = \frac{\partial \eta_i}{\partial T_1}$	-0,8761	-0,9511	-0,9375	-0,8573	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,4949	-0,5380	-0,5319	-0,4850	m³/MJ
$F_{\eta,V} = \frac{\partial \eta}{\partial V}$	-2.561,2	-3.840,9	-3.733,4	-2.439,6	$(m^3)^{-1}$
$F_{\eta_{\nu}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6143	-0,6676	-0,6609	-0,6037	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6143	-0,6676	-0,6609	-0,6037	(kPa) ⁻¹
$F_{\eta_0 T_g} = \frac{\partial \eta}{\partial T_g}$	0,3045	0,3338	0,3311	0,3061	kW/°C

Tabela 75 – Grandezas de entrada do consumo do ensaio nº4 ao nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,046860	m^3/h
T_g	21,6	°C
d_r	2,0788	
d	2,0788	
P_a	101,552	kPa
P	2,770	kPa

Tabela 76 – Grandezas de saída do consumo do ensaio nº4 ao nível do mar

Variáveis	Resultados	Unidades
\overline{W}	2,56191	kPa
d_h	2,043	
P_c	1,657	kW
C	0,120	kg/h

Tabela 77 – Coeficientes de sensibilidade do consumo do ensaio nº4 ao nível do mar

Coeficientes	Resultados	Unidades
$F_{P_{C},PCS}$	0,0131	kW/MJ.m³
$F_{P_{\mathcal{C}},\dot{\mathcal{V}}}$	35,3676	kWh/m³
F_{P_c,T_g}	-0,0037	kW/ºC
F_{P_c,P_a}	0,0081	kW/kPa
$F_{P_C,P}$	0,0160	kW/kPa

Tabela 78 – Resumo das incertezas do rendimento e do consumo no Ensaio nº4 ao nível do mar

Fontes de Incerteza	Queimadores	Tipo		Incerteza-padrão	Coeficiente de	Componente Quadrático
	_			[u (x _i)]	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{x} \mathbf{i})^2]$
	Q_1	A		0,362263120	1,000000000	0,131234568
Precisão	Q_2	A	PI	0,193967669	1,000000000	0,037623457
intermediária	Q_3	A		0,157918560	1,000000000	0,024938272
	Q ₄	A		0,14444444	1,000000000	0,020864198
	Q_1	B-T		0,194014604	0,304484793	0,003489796
Incerteza do	Q_2	B-T	$T_{\rm g}$	0,194014604	0,333800094	0,004194129
termômetro - T _g	Q_3	B-T	5	0,194014604	0,331057519	0,004125492
	Q_4	B-T		0,194014604	0,306089349	0,003526674
	Q_1	B-T		0,054006172	-0,876115382	0,00223877
Incerteza do	Q_2	B-T	T_1	0,054006172	-0,951068138	0,002638214
termômetro - T_1	Q_3	B-T	-1	0,054006172	-0,937511141	0,002563537
	Q ₄	B-T		0,054006172	-0,857288705	0,002143586
	Q_1	B-T		0,054006172	0,876115382	0,00223877
Incerteza do	Q_2	B-T	T_2	0,054006172	0,951068138	0,002638214
termômetro - T ₂	Q_3	B-T	- 2	0,054006172	0,937511141	0,002563537
	Q_4	B-T		0,054006172	0,857288705	0,002143586
	Q ₁	B-R		0,00305505	9,862176629	0,000907784
Incerteza da	Q_2	B-R	М	0,00305505	13,64950051	0,001738883
balança - M	Q_3	B-R	.,,	0,00305505	13,48720066	0,001697776
	Q_4	B-R		0,00305505	9,685192018	0,000875494
	Q_1	B-T		0,034560334	-0,614264406	0,000450678
Incerteza do	Q_2	B-T	D	0,034560334	-0,667628948	0,000532385
barômetro - Pa	Q ₃	B-T	Pa	0,034560334	-0,660872779	0,000521665
	Q ₄	B-T		0,034560334	-0,603729984	0,000435353
	Q_1	B-T		0,002041541	-0,614264406	1,57263E-06
Incerteza do	Q_2	B-T	P	0,002041541	-0,667628948	1,85775E-06
manômetro - P	Q_3	B-T	1	0,002041541	-0,660872779	1,82034E-06
	Q_4	B-T		0,002041541	-0,603729984	1,51915E-06
	Q_1	B-T		0,000106845	-2561,173709	0,074883544
Incerteza do medidor	Q_2	B-T	V	7,87167E-05	-3840,852094	0,09140894
de gás - V	Q_3	B-T	'	7,99632E-05	-3733,35916	0,089121074
	Q_4	B-T		0,000109801	-2439,63386	0,071756678
RENDIMEN'	ГО (%)	Rend	k	uc	uc	k*uc
	Q_1	62,5	2	0,464161052	0,928322104	0,9
	Q_2	67,9	2	0,375201385	0,750402771	0,8
U rendimento =	Q ₃	67,1	2	0,35430661	0,708613221	0,7
	Q ₄	61,2	2	0,318978193	0,637956387	0,6
		Ince	erteza da i	nédia dos queimadores		0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária Incerteza do	-	A	PI	0,000747424	1,00000000	5,58642E-07
termômetro - T _g Incerteza do	-	В-Т	Tg	0,194014604	-0,00368985	5,12491E-07
barômetro - pa	-	B-T	Pa	0,034560334	0,00808241	7,80257E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,016042662	1,07256E-09
Incerteza do medidor de gás	-	В-Т	V	0,000202529	35,3675755	5,13081E-05
U co	onsumo (kg/h) =			0,007242815	0,01448563	0,0011

Tabela 79 – Grandezas de entrada do rendimento do ensaio nº4 acima do nível do mar

Crandagas	Grandezas — Medições efetuadas				
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,0273	0,01986	0,02053	0,02872	m^3
T_g	23,5	23,0	24,3	24,1	°C
T_I	19,9	19,9	20,5	19,5	°C
T_2	90,9	91,1	92,1	90,9	°C
M	6,320	4,975	4,975	6,320	kg
P_a	91,100	91,100	91,000	91,000	kPa
<i>P</i>	2,740	2,820	2,760	2,750	kPa

Tabela 80 – Grandezas de saída do rendimento do ensaio nº4 acima do nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
\overline{W}	2,86721	2,78262	3,00731	2,97173	kPa
V_n	0,02381	0,01738	0,01781	0,02494	m^3
η	62,5	67,6	66,3	60,0	%

Tabela 81 – Coeficientes de sensibilidade do rendimento do ensaio nº4 acima do nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	9,8912	13,5874	13,3322	9,4946	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8805	0,9494	0,9264	0,8404	(°C) ⁻¹
$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8805	-0,9494	-0,9264	-0,8404	(°C) ⁻¹
$F_{\eta_{\nu}PCS} = \frac{\partial \eta}{\partial PCS}$	-0,4953	-0,5356	-0,5255	-0,4754	$\rm m^3/MJ$
$F_{\eta_{v}V} = \frac{\partial \eta}{\partial V}$	-2.289,8	-3.403,7	-3.230,8	-2.089,3	$(m^3)^{-1}$
$F_{\eta,P_a} = \frac{\partial \eta}{\partial P_a}$	-0,6872	-0,7417	-0,7309	-0,6610	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6872	-0,7417	-0,7309	-0,6610	(kPa) ⁻¹
$F_{\eta_i T_g} = \frac{\partial \eta}{\partial T_g}$	0,3285	0,3521	0,3537	0,3189	kW/°C

Tabela 82 – Grand<u>ezas de entrada do consumo do ensaio nº4 acima</u> do nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,046080	m^3/h
T_g	24,3	$^{\circ}\mathrm{C}$
d_r	2,0788	
d	2,0788	
P_a	90,879	kPa
P	2,770	kPa

Tabela 83 – Grandezas de saída do consumo do ensaio nº4 acima do nível do mar

Grandezas	Resultados	Unidades
W	3,00982	kPa
d_h	2,0320	
P_c	1,533	kW
C	0,111	kg/h

Tabela 84 – Coeficientes de sensibilidade do consumo do ensaio nº4 acima do nível do mar

Coeficientes	Resultados	Unidades
$F_{P_{C},PCS}$	0,0121	kW/MJ.m³
$F_{P_C,\dot{V}}$	33,2677	kWh/m³
F_{P_c,T_g}	-0,0036	kW/°C
F_{P_c,P_a}	0,0084	kW/kPa
$F_{P_C,P}$	0,0157	kW/kPa

Tabela 85 – Resumo das incertezas do rendimento e do consumo no Ensaio nº4 acima do nível do mar

				Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	Queimadores	Tipo		[u (x _i)]	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{x} \mathbf{i})^2]$
	Q_1	A		0,179284291	1,000000000	0,032142857
Precisão	Q_2	A	PI	0,470814896	1,000000000	0,221666667
intermediária	Q ₃	A	PI	0,047871355	1,000000000	0,002291667
	Q ₄	A		0,108582335	1,000000000	0,011790123
	Q_1	B-T		0,194014604	0,328537096	0,004062914
Incerteza do	Q_2	B-T	т	0,194014604	0,352081194	0,004666105
termômetro - T_g	Q_3	B-T	$T_{\rm g}$	0,194014604	0,353704854	0,004709241
	Q ₄	B-T		0,194014604	0,3188536	0,003826939
	Q_1	B-T		0,054006172	-0,880458627	0,002261022
Incerteza do	Q_2	B-T	T_1	0,054006172	-0,94940323	0,002628986
termômetro - T_1	Q_3	B-T	11	0,054006172	-0,926361064	0,002502922
	Q ₄	B-T		0,054006172	-0,840415939	0,002060039
	Q_1	B-T		0,054006172	0,880458627	0,002261022
Incerteza do	Q_2	B-T	T ₂	0,054006172	0,94940323	0,002628986
termômetro - T ₂	Q_3	B-T	12	0,054006172	0,926361064	0,002502922
	Q_4	B-T		0,054006172	0,840415939	0,002060039
	Q_1	B-R		0,003055050	9,891228249	0,00091314
Incerteza da	Q_2	B-R	M	0,003055050	13,58743918	0,001723106
balança - M	Q_3	B-R	141	0,003055050	13,33215119	0,001658965
	Q_4	B-R		0,003055050	9,494572481	0,000841371
	Q_1	B-T		0,034560334	-0,687156711	0,000563985
Incerteza do	Q_2	B-T	D	0,034560334	-0,74171002	0,000657089
barômetro - Pa	Q_3	B-T	Pa	0,034560334	-0,730859371	0,000638004
	Q ₄	B-T		0,034560334	-0,661013894	0,000521888
	Q_1	B-T		0,002041541	-0,687156711	1,96801E-06
Incerteza do	Q_2	B-T	P	0,002041541	-0,74171002	2,2929E-06
manômetro - P	Q_3	B-T	1	0,002041541	-0,730859371	2,2263E-06
	Q_4	B-T		0,002041541	-0,661013894	1,82112E-06
	Q_1	B-T		0,000119151	-2289,837455	0,074440332
Incerteza do medidor	Q_2	B-T	v	8,78037E-05	-3403,701407	0,089315797
de gás - V	Q_3	B-T	` `	9,06082E-05	-3230,757533	0,085692709
	Q_4	B-T		0,000125172	-2089,334891	0,068395527
RENDIMEN'	ГО (%)	Rend	k	uc	uc	k*uc
	Q_1	62,5	2	0,341536586	0,683073171	0,7
	Q_2	67,6	2	0,568585111	1,137170221	1,1
U rendimento =	Q_3	66,3	2	0,316225643	0,632451285	0,6
	Q ₄	60,0	2	0,299161739	0,598323478	0,6
		Ince	erteza da 1	média dos queimadores		0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000617213	1,000000000	3,80952E-07
Incerteza do termômetro - T _g Incerteza do	-	B-T	Tg	0,194014604	-0,003627022	4,95187E-07
barômetro - p _a	-	B-T	Pa	0,034560334	0,00837328	8,37427E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,015736276	1,03199E-09
Incerteza do medidor de gás	-	В-Т	V	0,000199193	33,26770633	4,39129E-05
U co	onsumo (kg/h) =			0,006698794	0,013397587	0,0010

Apêndice D – Resumo do ensaio nº5 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar.

Tabela 86 – Grandezas de entrada do rendimento do ensaio nº5 ao nível do mar

Crondoros	Grandezas Medições efetuadas					
Grandezas	Q1	Q2	Q3	Q4	- Unidades	
PCS	126,21	126,21	126,21	126,21	MJ/m^3	
V	0,02357	0,01773	0,01812	0,02459	m^3	
T_g	23,8	22,1	24,6	23,7	°C	
T_I	20,0	19,6	19,8	19,6	°C	
T_2	91,3	91,4	91,2	91,0	°C	
M	6,334	4,975	4,977	6,320	kg	
P_a	101,500	101,400	101,600	101,600	kPa	
P	2,760	2,720	2,770	2,760	kPa	

Tabela 87 – Grandezas de saída do rendimento do ensaio nº5 ao nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,91906	2,63591	3,06140	2,90168	kPa
V_n	0,02287	0,01733	0,01753	0,02390	m³
η	65,5	68,4	67,2	62,6	%

Tabela 88 – Coeficientes de sensibilidade do rendimento do ensaio nº5 ao nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	10,3383	13,7413	13,5073	9,9086	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,9184	0,9521	0,9415	0,8771	(°C) ⁻¹
$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1}$	-0,9184	-0,9521	-0,9415	-0,8771	(°C) ⁻¹
$F_{\eta_{\nu}PCS} = \frac{\partial \eta}{\partial PCS}$	-0,5188	-0,5417	-0,5326	-0,4962	m³/MJ
$F_{\eta_{\nu}V} = \frac{\partial \eta}{\partial V}$	-2.778,2	-3.855,8	-3.710,0	-2.546,7	$(m^3)^{-1}$
$F_{\eta_{\nu}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6462	-0,6736	-0,6636	-0,6172	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6462	-0,6736	-0,6636	-0,6172	(kPa) ⁻¹
$F_{\eta_i T_g} = \frac{\partial \eta}{\partial T_g}$	0,3331	0,3387	0,3464	0,3179	kW/°C

Tabela 89 – Grandezas de entrada do consumo do ensaio nº5 ao nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,046420	m^3/h
T_g	21,3	°C
d_r	2,0788	
d	2,0788	
P_a	101,350	kPa
P	2,780	kPa

Tabela 90 – Grandezas de saída do consumo do ensaio nº5 ao nível do mar

Variáveis	Resultados	Unidades
\overline{W}	2,51468	kPa
d_h	2,044	
P_c	1,641	kW
C	0,119	kg/h

Tabela 91 – Coeficientes de sensibilidade do consumo do ensaio nº5 ao nível do mar

Coeficientes	Resultados	Unidades
$F_{P_C,PCS}$	0,0130	kW/MJ.m³
$F_{P_{C},\dot{V}}$	35,3603	kWh/m³
F_{P_c,T_g}	-0,0036	kW/ºC
F_{P_c,P_a}	0,0080	kW/kPa
$F_{P_C,P}$	0,0159	kW/kPa

Tabela 92 – Resumo das incertezas do rendimento e do consumo no Ensaio nº5 ao nível do mar

				Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	Queimadores	Tipo		$[\mathbf{u}(\mathbf{x_i})]$	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
	Q_1	A		0,362263120	1,000000000	0,131234568
Precisão	Q_2	A		0,193967669	1,000000000	0,037623457
intermediária	Q_3	A	PI	0,157918560	1,000000000	0,024938272
	Q ₄	A		0,14444444	1,000000000	0,020864198
	Q_1	B-T		0,194014604	0,333074599	0,004175917
Incerteza do	Q_2	B-T	_	0,194014604	0,338726714	0,004318846
termômetro - T _g	Q_3	B-T	T_{g}	0.194014604	0,346353136	0,004515513
	Q ₄	B-T		0,194014604	0,317902008	0,00380413
	Q_1	B-T		0,054006172	-0,918414087	0.002460163
Incerteza do	Q_2	B-T		0,054006172	-0,952133825	0,00264413
termômetro - T ₁	Q_3	B-T	T_1	0,054006172	-0,941535205	0,002585592
	Q ₄	B-T	В-Т	0,054006172	-0,877060646	0,002243603
	Q_1	B-T		0,054006172	0,918414087	0,002460163
Incerteza do	Q_2	B-T		0,054006172	0,952133825	0,00264413
termômetro - T ₂	Q_3	B-T	T_2	0,054006172	0,941535205	0,002585592
	Q_4	B-T		0,054006172	0,877060646	0,002243603
	Q_1	B-R		0,00305505	10,33832087	0,000997555
Incerteza da	Q_2	B-R		0,00305505	13,74134847	0,001762363
balança - M	Q_3	B-R	M	0.00305505	13,5072561	0,001702829
	Q_4	B-R		0,00305505	9,908564888	0,000916343
	Q_1	B-T		0,034560334	-0,646164534	0,000498703
Incerteza do	Q_2	B-T		0,034560334	-0,673634773	0,000542007
barômetro - Pa	Q ₃	B-T	Pa	0,034560334	-0,663572595	0,000525936
u	Q ₄	B-T		0,034560334	-0,617220267	0,000455026
	Q ₁	B-T		0,002041541	-0,646164534	,
Incerteza do	Q_2	B-T			, , , , , , , , , , , , , , , , , , ,	1,74021E-06
manômetro - P	Q ₃	B-T	P	0,002041541	-0,673634773	1,89132E-06
	Q ₄	B-T		0,002041541	-0,663572595	1,83524E-06
	Q ₁	B-T		0,002041541	-0,617220267	1,5878E-06
Incerteza do medidor	Q_2	B-T		0,000103386	-2778,231837	0,082501439
de gás - V	Q ₃	B-T	V	7,89243E-05	-3855,79293	0,09260818
de gas	Q ₃	B-T		8,05455E-05	-3710,022827	0,089296657
RENDIMENT		Rend	k	0,000107689	-2546,650268	0,075211373
RENDIMEN	Q ₁		2	uc	uc	k*uc
	Q_1 Q_2	65,5	2	0,473635143	0,947270285	0,9
U rendimento =	Q_2 Q_3	68,4	2	0,377021225	0,75404245	0,8
o rendimento =		67,2	2	0,355179145	0,71035829	0,7
	Q ₄	62,6 Ince		0,325176667 média dos queimadores	0,650353333	0,7
		IIICE	icza ua i	Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	forno	Tipo		[u (x _i)]	sensibilidade (c _i)	Componente Quadratico $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000747424	1,00000000	0,00000056
Incerteza do termômetro - T _g	-	B-T	Tg	0,194014604	-0,003644416	4,99948E-07
Incerteza do barômetro - p _a	-	В-Т	Pa	0,034560334	0,008017291	7,67735E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,015900414	1,05363E-09
Incerteza do medidor de gás	-	В-Т	V	0,000200647	35,3602736	5,03381E-05
U co	onsumo (kg/h) =			0,007174573	0,014349145	0,0010

Tabela 93 – Grandezas de entrada do rendimento do ensaio nº5 acima do nível do mar

Grandezas		- Unidades			
Granuezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02749	0,02086	0,02093	0,02891	m^3
T_g	25,0	24,3	25,0	25,0	°C
T_I	19,8	20,1	19,9	19,9	°C
T_2	91,4	91,1	91,6	91,7	°C
M	6,320	4,975	4,975	6,320	kg
P_a	90,800	90,800	90,700	90,800	kPa
P	2,720	2,730	2,770	2,720	kPa

Tabela 94 – Grandezas de saída do rendimento do ensaio nº5 acima do nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	3,13485	3,00731	3,13485	3,13485	kPa
V_n	0,02370	0,01805	0,01803	0,02492	m^3
η	63,3	64,9	65,6	60,4	%

Tabela 95 – Coeficientes de sensibilidade do rendimento do ensaio nº5 acima do nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	10,0207	13,0443	13,1871	9,5551	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8845	0,9140	0,9150	0,8411	(°C) ⁻¹
$F_{\eta_i T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8845	-0,9140	-0,9150	-0,8411	(°C) ⁻¹
$F_{\eta_{\nu}PCS} = \frac{\partial \eta}{\partial PCS}$	-0,5018	-0,5142	-0,5198	-0,4785	m³/MJ
$F_{\eta_{\nu}V} = \frac{\partial \eta}{\partial V}$	-2.303,8	-3.111,0	-3.134,5	-2.088,8	$(m^3)^{-1}$
$F_{\eta_i P_a} = \frac{\partial \eta}{\partial P_a}$	-0,7007	-0,7169	-0,7262	-0,6681	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,7007	-0,7169	-0,7262	-0,6681	(kPa) ⁻¹
$F_{\eta,T_g} = \frac{\partial \eta}{\partial T_g}$	0,3424	0,3464	0,3548	0,3265	kW/°C

Tabela 96 – Grand<u>ezas de entrada do consumo do ensaio nº5 acima</u> do nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,046010	m^3/h
T_g	21,8	°C
d_r	2,0788	
d	2,0788	
P_a	91,281	kPa
P	2,780	kPa

Tabela 97 – Grandezas de saída do consumo do ensaio nº5 acima do nível do mar

Grandezas	Resultados	Unidades
\overline{W}	2,59358	kPa
d_h	2,0386	
P_c	1,543	kW
C	0,112	kg/h

Tabela 98 – Coeficientes de sensibilidade do consumo do ensaio nº5 acima do nível do mar

Coeficientes	Resultados	Unidades
$F_{P_{C},PCS}$	0,0122	kW/MJ.m³
$F_{P_C,\dot{V}}$	33,5371	kWh/m³
F_{P_c,T_g}	-0,0035	kW/°C
F_{P_c,P_a}	0,0084	kW/kPa
$F_{P_C,P}$	0,0158	kW/kPa

Tabela 99 – Resumo das incertezas do rendimento e do consumo no Ensaio nº5 acima do nível do mar

				Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	Queimadores	Tipo		[u (x _i)]	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{x} \mathbf{i})^2]$
	Q_1	A		0,179284291	1,000000000	0,032142857
Precisão	Q_2	A	DI	0,470814896	1,000000000	0,221666667
intermediária	Q ₃	A	PI	0,047871355	1,000000000	0,002291667
	Q ₄	A		0,108582335	1,000000000	0,011790123
	Q_1	B-T		0,194014604	0,342433962	0,0044139
Incerteza do	Q_2	B-T		0,194014604	0,346394237	0,004516585
termômetro - T _g	Q_3	B-T	T_{g}	0,194014604	0,354810168	0,004738719
	Q ₄	B-T		0,194014604	0,326523844	0,004013272
	Q_1	B-T		0,054006172	-0,884507938	0.002281867
Incerteza do	Q_2	B-T		0,054006172	-0,914022725	0,002436693
termômetro - T ₁	Q_3	B-T	T_1	0,054006172	-0,915005208	0,002441934
	Q ₄	B-T		0,054006172	-0,841062719	0,002063211
	Q_1	B-T		0,054006172	0,884507938	0,002281867
Incerteza do	Q_2	B-T		0,054006172	0,914022725	0,002436693
termômetro - T ₂	Q_3	B-T	T ₂	0,054006172	0,915005208	0,002441934
	Q_4	B-T		0,054006172	0,841062719	0,002063211
	Q_1	B-R		0,00305505	10,02069119	0,0009372
Incerteza da	Q_2	B-R		0,00305505	13,04434442	0,001588113
balança - M	Q_3	B-R	M	0,00305505	13,18711024	0,001623066
	Q_4	B-R		0,00305505	9,555111272	0.000852135
	Q_1	B-T		0.034560334	-0,700676675	0,000586396
Incerteza do	Q_2	B-T	Pa	0,034560334	-0,716898881	0,000613863
barômetro - Pa	Q ₃	B-T		0,034560334	-0,726249654	0,000629981
	Q ₄	B-T		0,034560334	-0,668121935	0,000533172
	Q_1	B-T		0,002041541	-0,700676675	2,04622E-06
Incerteza do	Q_2	B-T		0,002041541	-0,716898881	2,14206E-06
manômetro - P	Q ₃	B-T	P	0,002041541	-0,726249654	2,19831E-06
	Q_4	B-T		0,002041541	-0,668121935	1,86049E-06
	Q_1	B-T		0.000119956	-2303,774767	0,076370845
Incerteza do medidor	Q_2	B-T		9,19913E-05	-3111,007359	0,08190219
de gás - V	Q ₃	B-T	V	9,22848E-05	-3134,53767	0,083677261
	Q_4	B-T		0,000125978	-2088,837884	0,069246373
RENDIMEN'		Rend	k	uc	uc	k*uc
	Q ₁	63,3	2	0,344988373	0,689976746	0,7
	Q_2	64,9	2	0,561393753	1,122787505	1,1
U rendimento =	Q ₃	65,6	2	0,312804668	0,625609336	0,6
	Q ₄	60,4	2	0,300937465	0,623609336	0,6
				média dos queimadores	0,00107423	0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \ \mathbf{u} \ (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000617213	1,000000000	3,80952E-07
Incerteza do termômetro - T _g	-	В-Т	Tg	0,194014604	-0,003534792	4,70323E-07
Incerteza do barômetro - p _a	-	В-Т	Pa	0,034560334	0,008363976	8,35567E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,015774618	1,03702E-09
Incerteza do medidor de gás	-	В-Т	V	0,000198893	33,53714315	4,4493E-05
U co	onsumo (kg/h) =			0,006740098	0,013480195	0,0010

Apêndice E – Resumo do ensaio nº6 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar..

Tabela 100 – Grandezas de entrada do rendimento do ensaio nº6 ao nível do mar

Grandezas		- Unidades			
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02402	0,01773	0,01860	0,02479	m^3
T_g	22,1	24,6	24,3	22,7	°C
T_I	19,5	20,0	20,1	19,9	°C
T_2	90,9	91,5	91,8	91,5	°C
M	6,334	4,975	4,977	6,320	kg
P_a	101,400	101,600	101,600	101,400	kPa
P	2,720	2,730	2,760	2,720	kPa

Tabela 101 – Grandezas de saída do rendimento do ensaio nº6 ao nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,63591	3,06140	3,00731	2,73293	kPa
V_n	0,02348	0,01715	0,01802	0,02416	m^3
η	63,9	68,8	65,7	62,1	%

Tabela 102 – Coeficientes de sensibilidade do rendimento do ensaio nº6 ao nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	10,0865	13,8292	13,1949	9,8299	kg ⁻¹
$F_{\eta,T_2} = \frac{\partial \eta}{\partial T_2}$	0,8948	0,9622	0,9159	0,8677	(°C)-1
$F_{\eta_{0}T_{1}} = \frac{\partial \eta_{0}}{\partial T_{1}}$	-0,8948	-0,9622	-0,9159	-0,8677	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,5062	-0,5451	-0,5203	-0,4922	$\rm m^3/MJ$
$F_{\eta_{\nu}V} = \frac{\partial \eta}{\partial V}$	-2.659,8	-3.880,4	-3.530,7	-2.506,0	$(m^3)^{-1}$
$F_{\eta_{\nu}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6295	-0,6794	-0,6479	-0,6127	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6295	-0,6794	-0,6479	-0,6127	(kPa) ⁻¹
$F_{\eta_0 T_g} = \frac{\partial \eta}{\partial T_g}$	0,3166	0,3545	0,3367	0,3107	kW/°C

Tabela 103 – Grandezas de entrada do consumo do ensaio nº6 ao nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,047470	m^3/h
T_g	21,8	°C
d_r	2,0788	
d	2,0788	
P_a	101,552	kPa
P	2,721	kPa

Tabela 104 – Grandezas de saída do consumo do ensaio nº6 ao nível do mar

Variáveis	Resultados	Unidades
\overline{W}	2,59358	kPa
d_h	2,043	
P_c	1,677	kW
C	0,122	kg/h

Tabela 105 – Coeficientes de sensibilidade do consumo do ensaio nº6 ao nível do mar

Coeficientes	Resultados	Unidades
$F_{P_c,PCS}$	0,0133	kW/MJ.m³
$F_{P_{\mathcal{C}},\dot{\mathcal{V}}}$	35,3348	kWh/m³
F_{P_c,T_g}	-0,0037	kW/ºC
F_{P_c,P_a}	0,0082	kW/kPa
$F_{P_C,P}$	0,0162	kW/kPa

Tabela 106 – Resumo das incertezas do rendimento e do consumo no Ensaio nº6 ao nível do mar

				Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	Queimadores	Tipo		[u (x _i)]	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
	Q_1	A		0,362263120	1,000000000	0,131234568
Precisão	Q_2	A		0,193967669	1,000000000	0,037623457
intermediária	Q ₃	A	PI			
	Q ₄	A		0,157918560	1,000000000	0,024938272
	Q ₁	B-T		0,144444444	1,000000000	0,020864198
Incerteza do	Q_1	B-T		0,194014604	0,31655117	0,00377187
termômetro - T _g		B-T	T_{g}	0,194014604	0,354513745	0,004730804
termonicuo - 1 _g	Q_3 Q_4	B-T		0,194014604	0,336668787	0,004266528
	Q ₄	B-T		0,194014604	0,310661305	0,003632814
Incerteza do		B-T		0,054006172	-0,894785011	0,002335201
	Q ₂	В-Т	T_1	0,054006172	-0,96223904	0,002700553
termômetro - T ₁	Q ₃			0,054006172	-0,915914806	0,002446791
	Q ₄	B-T		0,054006172	-0,867663316	0,002195782
	Q ₁	B-T		0,054006172	0,894785011	0,002335201
Incerteza do	Q_2	B-T	T_2	0,054006172	0,96223904	0,002700553
termômetro - T ₂	Q_3	B-T		0,054006172	0,915914806	0,002446791
	Q ₄	B-T		0,054006172	0,867663316	0,002195782
	Q_1	B-R		0,00305505	10,08646192	0,000949543
Incerteza da	Q_2	B-R	M	0,00305505	13,82916409	0,001784961
balança - M	Q_3	B-R		0,00305505	13,19491492	0,001624987
	Q_4	B-R		0,00305505	9,829856559	0,000901843
	Q_1	B-T		0,034560334	-0,629533682	0,000473362
Incerteza do	Q_2	B-T	ъ	0,034560334	-0,679382239	0,000551295
barômetro - Pa	Q_3	B-T	. P _a	0,034560334	-0,647946227	0,000501457
	Q ₄	B-T		0,034560334	-0,612747702	0,000448455
	Q_1	B-T		0,002041541	-0,629533682	1,65179E-06
Incerteza do	Q_2	B-T	P	0,002041541	-0,679382239	1,92373E-06
manômetro - P	Q_3	B-T	r	0,002041541	-0,647946227	1,74982E-06
	Q_4	B-T		0,002041541	-0,612747702	1,56488E-06
	Q ₁	B-T		0,000105284	-2659,768935	0,078417026
Incerteza do medidor	Q_2	B-T	.,,	7,89243E-05	-3880,433805	0,093795607
de gás - V	Q_3	B-T	V	8,25437E-05	-3530,703848	0,084935792
	Q_4	B-T		0,000108534	-2506,038461	0,073978502
RENDIMEN	ГО (%)	Rend	k	uc	uc	k*uc
	Q_1	63,9	2	0,468527931	0,937055862	0.9
	Q_2	68,8	2	0,37932724	0,758654479	0,8
U rendimento =	Q ₃	65,7	2	0,348083853	0,696167706	0,7
	Q ₄	62,1	2	0,322829586	0,645659171	0,6
		,	erteza da 1	nédia dos queimadores	0,0 10007171	0,4
Fontos de Transfer	forms			Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	forno	Tipo		[u (x _i)]	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000747424	1,00000000	5,58642E-07
Incerteza do termômetro - T _g	-	В-Т	Tg	0,194014604	-0,00374284	5,27316E-07
Incerteza do barômetro - pa	-	В-Т	Pa	0,034560334	0,00818572	8,00331E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,016245918	1,09991E-09
Incerteza do medidor de gás	-	В-Т	V	0,000205139	35,3348079	5,25415E-05
U co	onsumo (kg/h) =			0,007328614	0,014657227	0,0011

Tabela 107 – Grandezas de entrada do rendimento do ensaio nº6 acima do nível do mar

Grandezas		- Unidades			
Granuezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02715	0,02035	0,02024	0,02842	m^3
T_g	23,2	22,7	23,8	23,8	°C
T_I	19,4	19,7	19,4	19,7	°C
T_2	90,8	91,0	90,5	91,1	°C
M	6,320	4,975	4,975	6,320	kg
P_a	91,400	91,400	91,400	91,400	kPa
P	2,730	2,770	2,720	2,740	kPa

Tabela 108 – Grandezas de saída do rendimento do ensaio nº6 acima do nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,81619	2,73293	2,91906	2,91906	kPa
V_n	0,02379	0,01789	0,01768	0,02483	m^3
η	62,9	65,8	66,4	60,3	%

Tabela 109 – Coeficientes de sensibilidade do rendimento do ensaio nº6 acima do nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	9,9545	13,2220	13,3403	9,5386	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8811	0,9226	0,9334	0,8443	(°C) ⁻¹
$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8811	-0,9226	-0,9334	-0,8443	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,4985	-0,5212	-0,5259	-0,4776	$\rm m^3/MJ$
$F_{\eta_{\nu}V} = \frac{\partial \eta}{\partial V}$	-2.317,2	-3.232,4	-3.279,0	-2.121,2	$(m^3)^{-1}$
$F_{\eta,P_a} = \frac{\partial \eta}{\partial P_a}$	-0,6890	-0,7194	-0,7277	-0,6609	(kPa) ⁻¹
$F_{\eta,P} = \frac{\partial \eta}{\partial P}$	-0,6890	-0,7194	-0,7277	-0,6609	(kPa) ⁻¹
$F_{\eta,T_g} = \frac{\partial \eta}{\partial T_g}$	0,3285	0,3405	0,3503	0,3181	kW/°C

Tabela 110 – Gran<u>dezas de entrada do consumo do ensaio nº6 aci</u>ma do nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m ³
\dot{V}	0,047090	m^3/h
T_g	25,5	°C
d_r	2,0788	
d	2,0788	
P_a	91,221	kPa
P	2,721	kPa

Tabela 111 – Grandezas de saída do consumo do ensaio nº6 acima do nível do mar

Grandezas	Resultados	Unidades
\overline{W}	3,22201	kPa
d_h	2,0288	
P_c	1,564	kW
C	0,114	kg/h

Tabela 112 – Coeficientes de sensibilidade do consumo do ensaio nº6 acima do nível do mar

Coeficientes	Resultados	Unidades
$F_{P_C,PCS}$	0,0124	kW/MJ.m³
$F_{P_c,\dot{V}}$	33,2219	kWh/m³
F_{P_c,T_g}	-0,0038	kW/ºC
F_{P_c,P_a}	0,0085	kW/kPa
$F_{P_C,P}$	0,0160	kW/kPa

Tabela 113 – Resumo das incertezas do rendimento e do consumo no Ensaio nº6 acima do nível do mar

				Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	Queimadores	Tipo		[u (x _i)]	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} \ (\mathbf{xi})^2]$
	Q_1	A		0,179284291	1,000000000	0,032142857
Precisão	Q_2	A	DI	0,470814896	1,000000000	0,221666667
intermediária	Q ₃	A	PI	0,047871355	1,000000000	0,002291667
	Q ₄	A		0,108582335	1,000000000	0,011790123
	Q_1	B-T		0,194014604	0,32854277	0,004063055
Incerteza do	Q_2	B-T		0,194014604	0,340536116	0,00436511
termômetro - T _g	Q_3	B-T	$T_{\rm g}$	0,194014604	0,350259261	0,004617938
	Q ₄	B-T		0,194014604	0,318125862	0,00380949
	Q_1	B-T		0,054006172	-0,881124685	0.002264444
Incerteza do	Q_2	B-T	- m	0,054006172	-0,922570638	0,002482482
termômetro - T ₁	Q_3	B-T	T_1	0,054006172	-0,933443957	0,002541343
	Q ₄	B-T		0,054006172	-0,844312944	0,002079188
	Q_1	B-T		0,054006172	0,881124685	0,002264444
Incerteza do	Q_2	B-T		0,054006172	0,922570638	0,002482482
termômetro - T ₂	Q_3	B-T	T ₂	0,054006172	0,933443957	0,002541343
	Q_4	B-T		0,054006172	0,844312944	0,002079188
	Q_1	B-R		0,00305505	9,954478247	0.000924855
Incerteza da	Q_2	B-R		0,00305505	13,22196713	0,001631657
balança - M	Q_3	B-R	М	0,00305505	13,34027444	0.001660987
	Q_4	B-R		0,00305505	9,538598768	0,000849192
	Q_1	B-T		0.034560334	-0,688968067	0,000566962
Incerteza do	Q_2	B-T		0,034560334	-0,719394084	0,000618144
barômetro - Pa	Q ₃	B-T	Pa	0,034560334	-0,727710283	0,000632518
	Q ₄	B-T		0,034560334	-0,660856389	0,000521639
	Q_1	B-T		0,002041541	-0,688968067	1,9784E-06
Incerteza do	Q_2	B-T		0,002041541	-0,719394084	2,157E-06
manômetro - P	Q ₃	B-T	P	0,002041541	-0,727710283	2,20716E-06
	Q_4	B-T		0,002041541	-0,660856389	1,82025E-06
	Q_1	B-T		0.000118516	-2317,211879	0,075419919
Incerteza do medidor	Q_2	B-T		8,98543E-05	-3232,397369	0,084358147
de gás - V	Q ₃	B-T	V	8,93937E-05	-3279,044729	0,085922840
	Q_4	B-T		0,000123899	-2121,180303	0,069070259
RENDIMEN		Rend	k	uc	-2121,180303 uc	k*uc
	Q ₁	62,9	2	0,342999292	0,685998585	0,7
	Q_2	65,8	2	0,563566185	1,12713237	1,1
U rendimento =	Q ₃	66,4	2	0,316560962	0,633121925	0,6
	Q ₄	60,3	2	0,300334644	0,600669288	0,6
				média dos queimadores	0,000007200	0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000617213	1,000000000	3,80952E-07
Incerteza do termômetro - Tg	-	В-Т	Tg	0,194014604	-0,003756242	5,311E-07
Incerteza do barômetro - p _a	-	В-Т	Pa	0,034560334	0,008531584	8,69391E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,016049149	1,07343E-09
Incerteza do medidor de gás	-	В-Т	V	0,000203513	33,22192423	4,57125E-05
U co	onsumo (kg/h) =			0,00683466	0,013669319	0,0010

Apêndice F – Resumo do ensaio nº7 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar.

Tabela 114 – Grandezas de entrada do rendimento do ensaio nº7 ao nível do mar

Grandezas		Medições	efetuadas		- Unidades
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02478	0,01774	0,01823	0,02476	m^3
T_g	21,0	23,8	23,8	22,7	°C
T_I	19,6	19,3	19,9	19,6	°C
T_2	91,5	90,8	91,5	90,9	°C
M	6,334	4,975	4,977	6,320	kg
P_a	101,400	101,500	101,500	101,400	kPa
P	2,750	2,720	2,780	2,740	kPa

Tabela 115 – Grandezas de saída do rendimento do ensaio nº7 ao nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
\overline{W}	2,46596	2,91906	2,91906	2,73293	kPa
V_n	0,02436	0,01721	0,01770	0,02413	m^3
η	62,0	68,6	66,8	61,9	%

Tabela 116 – Coeficientes de sensibilidade do rendimento do ensaio nº7 ao nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	9,7896	13,7798	13,4203	9,7986	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8624	0,9588	0,9329	0,8685	(°C) ⁻¹
$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8624	-0,9588	-0,9329	-0,8685	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,4913	-0,5432	-0,5292	-0,4907	m³/MJ
$F_{\eta_{\nu}V} = \frac{\partial \eta}{\partial V}$	-2.502,3	-3.864,4	-3.663,9	-2.501,1	$(m^3)^{-1}$
$F_{\eta_{\nu}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6098	-0,6767	-0,6590	-0,6107	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6098	-0,6767	-0,6590	-0,6107	(kPa) ⁻¹
$F_{\eta_v T_g} = \frac{\partial \eta}{\partial T_g}$	0,3023	0,3487	0,3397	0,3097	kW/°C

Tabela 117 – G<u>randezas de entrada do consumo do ensaio nº7</u> ao nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,045070	m^3/h
T_g	21,8	$^{\circ}\mathrm{C}$
d_r	2,0788	
d	2,0788	
P_a	101,350	kPa
P	2,731	kPa

Tabela 118 – Grandezas de saída do consumo do ensaio nº7 ao nível do mar

Variáveis	Resultados	Unidades
W	2,59358	kPa
d_h	2,042	
P_c	1,591	kW
C	0,116	kg/h

Tabela 119 – Coeficientes de sensibilidade do consumo do ensaio nº7 ao nível do mar

Coeficientes	Resultados	Unidades
$F_{P_{C},PCS}$	0,0126	kW/MJ.m³
$F_{P_{\mathcal{C}},\dot{\mathcal{V}}}$	35,3034	kWh/m³
F_{P_c,T_g}	-0,0036	kW/ºC
F_{P_c,P_a}	0,0078	kW/kPa
$F_{P_C,P}$	0,0154	kW/kPa

Tabela 120 – Resumo das incertezas do rendimento e do consumo no Ensaio ${\rm n^07}$ ao do nível do mar

- · · · ·	0 1 1			Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	Queimadores	Tipo		$[\mathbf{u}(\mathbf{x}_i)]$	sensibilidade (c_i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
	Q_1	A		0,362263120	1,000000000	0,131234568
Precisão	Q_2	A	PI	0,193967669	1,000000000	0,037623457
intermediária	Q_3	A	••	0,157918560	1,000000000	0,024938272
	Q ₄	A		0,14444444	1,000000000	0,020864198
	Q_1	B-T		0,194014604	0,302253331	0,003438833
Incerteza do	Q_2	B-T	T_{g}	0,194014604	0,348745345	0,004578104
termômetro - T_g	Q_3	B-T	*g	0,194014604	0,339713528	0,004344047
	Q ₄	B-T		0,194014604	0,309653602	0,003609285
	Q_1	B-T		0,054006172	-0,862411446	0,002169281
Incerteza do	Q_2	B-T	T_1	0,054006172	-0,958806529	0,002681321
termômetro - T_1	Q_3	B-T	-1	0,054006172	-0,932857550	0,002538151
	Q ₄	B-T		0,054006172	-0,868543273	0,002200238
	Q_1	B-T		0,054006172	0,862411446	0,002169281
Incerteza do	Q_2	В-Т	T ₂	0,054006172	0,958806529	0,002681321
termômetro - T_2	Q_3	B-T	12	0,054006172	0,93285755	0,002538151
	Q_4	B-T		0,054006172	0,868543273	0,002200238
	Q_1	B-R		0,00305505	9,789608932	0,000894473
Incerteza da	Q_2	B-R	M	0,00305505	13,77983252	0,001772249
balança - M	Q_3	B-R	141	0,00305505	13,42025328	0,001680963
	Q_4	B-R		0,00305505	9,798597363	0,000896117
	Q_1	B-T		0,034560334	-0,609804501	0,000444158
Incerteza do	Q_2	B-T	D	0,034560334	-0,676742620	0,000547020
barômetro - Pa	Q_3	B-T	Pa	0,034560334	-0,658957952	0,000518646
	Q ₄	B-T		0,034560334	-0,610678683	0,000445432
	Q_1	B-T		0,002041541	-0,609804501	1,54988E-06
Incerteza do	Q_2	B-T	P	0,002041541	-0,676742620	1,90881E-06
manômetro - P	Q_3	B-T	1	0,002041541	-0,658957952	1,80981E-06
	Q_4	B-T		0,002041541	-0,610678683	1,55433E-06
	Q_1	B-T		0,000108492	-2502,315697	0,073701482
Incerteza do medidor	Q_2	B-T	V	7,89659E-05	-3864,411883	0,093120602
de gás - V	Q_3	B-T	·	8,10031E-05	-3663,883741	0,088081892
	Q_4	B-T		0,000108407	-2501,095934	0,073515047
RENDIMENT	ГО (%)	Rend	k	uc	uc	k*uc
	Q_1	62,0	2	0,462659297	0,925318594	0,9
	Q_2	68,6	2	0,378161317	0,756322634	0,8
U rendimento =	Q_3	66,8	2	0,353046643	0,706093285	0,7
	Q ₄	61,9	2	0,322074695	0,64414939	0,6
		Ince	rteza da 1	nédia dos queimadores		0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000747424	1,00000000	5,58642E-07
Incerteza do termômetro - T _g	-	В-Т	Tg	0,194014604	-0,00355205	4,74927E-07
Incerteza do barômetro - pa	-	В-Т	Pa	0,034560334	0,007779531	7,22874E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,015424678	9,91523E-10
Incerteza do medidor de gás	-	В-Т	V	0,000194873	35,30338024	4,73299E-05
U co	onsumo (kg/h) =			0,006959655	0,01391931	0,0010

Tabela 121 – Grandezas de entrada do rendimento do ensaio nº7 acima do nível do mar

Cuandagas	Grandezas Medições efetuadas					
Grandezas	Q1	Q2	Q3	Q4	Unidades	
PCS	126,21	126,21	126,21	126,21	MJ/m^3	
V	0,0272	0,01989	0,02045	0,02841	m^3	
T_g	24,8	24,1	25,0	25,0	°C	
T_{I}	21,0	19,8	19,3	19,7	°C	
T_2	92,0	91,1	91,1	91,0	°C	
M	6,320	4,975	4,975	6,320	kg	
P_a	91,300	91,300	91,200	91,200	kPa	
<i>P</i>	2,740	2,730	2,720	2,760	kPa	

Tabela 122 – Grandezas de saída do rendimento do ensaio nº7 acima do nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	3,09793	2,97173	3,13485	3,13485	kPa
V_n	0,02361	0,01733	0,01771	0,02461	m^3
η	63,0	67,9	66,9	60,7	%

Tabela 123 – Coeficientes de sensibilidade do rendimento do ensaio nº7 acima do nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	9,9745	13,6483	13,4485	9,6088	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8879	0,9523	0,9318	0,8517	(°C) ⁻¹
$F_{\eta_1 T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8879	-0,9523	-0,9318	-0,8517	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,4995	-0,5380	-0,5301	-0,4812	$\rm m^3/MJ$
$F_{\mathbf{n}_{\mathbf{v}}V} = \frac{\partial \mathbf{n}}{\partial V}$	-2.317,6	-3.413,8	-3.271,7	-2.137,5	$(m^3)^{-1}$
$F_{\eta_{a}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6932	-0,7457	-0,7370	-0,6686	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6932	-0,7457	-0,7370	-0,6686	(kPa) ⁻¹
$F_{\eta_i T_g} = \frac{\partial \eta}{\partial T_g}$	0,3389	0,3604	0,3612	0,3278	kW/°C

Tabela 124 – Gran<u>dezas de entrada do consumo do ensaio nº7 aci</u>ma do nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,047600	m^3/h
T_g	25,5	°C
d_r	2,0788	
d	2,0788	
P_a	91,261	kPa
P	2,760	kPa

Tabela 125 – Grandezas de saída do consumo do ensaio nº7 acima do nível do mar

Grandezas	Resultados	Unidades
\overline{W}	3,22201	kPa
d_h	2,0289	
P_c	1,582	kW
C	0,115	kg/h

Tabela 126 – Coeficientes de sensibilidade do consumo do ensaio nº7 acima do nível do mar

Coeficientes	Resultados	Unidades
$F_{P_C,PCS}$	0,0125	kW/MJ.m³
$F_{P_{\mathcal{C}},\dot{\mathcal{V}}}$	33,2425	kWh/m³
F_{P_c,T_g}	-0,0038	kW/ºC
F_{P_c,P_a}	0,0086	kW/kPa
$F_{P_C,P}$	0,0162	kW/kPa

Tabela 127 – Resumo das incertezas do rendimento e do consumo no Ensaio nº7 acima do nível do mar

				Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	Queimadores	Tipo		[u (x _i)]	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{x} \mathbf{i})^2]$
	Q_1	A		0,179284291	1,000000000	0,032142857
Precisão	Q_2	A	PI	0,470814896	1,000000000	0,221666667
intermediária	Q ₃	A	PI	0,047871355	1,000000000	0,002291667
	Q ₄	A		0,108582335	1,000000000	0,011790123
	Q_1	B-T		0,194014604	0,338859546	0,004322234
Incerteza do	Q_2	B-T	т	0,194014604	0,360396509	0,004889112
termômetro - T_g	Q_3	B-T	$T_{\rm g}$	0,194014604	0,361160954	0,004909875
	Q ₄	B-T		0,194014604	0,327754158	0,004043573
	Q_1	B-T		0,054006172	-0,887867992	0,002299236
Incerteza do	Q_2	B-T	т.	0,054006172	-0,952318995	0,002645158
termômetro - T_1	Q_3	B-T	T_1	0,054006172	-0,931840188	0,002532618
	Q ₄	B-T		0,054006172	-0,851718735	0,002115822
	Q_1	B-T		0,054006172	0,887867992	0,002299236
Incerteza do	Q_2	B-T	T ₂	0,054006172	0,952318995	0,002645158
termômetro - T ₂	Q_3	B-T	12	0,054006172	0,931840188	0,002532618
	Q_4	B-T		0,054006172	0,851718735	0,002115822
	Q_1	B-R		0,003055050	9,974466364	0,000928573
Incerteza da	Q_2	B-R	M	0,003055050	13,64831042	0,00173858
balança - M	Q_3	B-R	141	0,003055050	13,44846744	0,001688039
	Q_4	B-R		0,003055050	9,608788891	0,000861736
	Q_1	B-T		0,034560334	-0,693173426	0,000573905
Incerteza do	Q_2	B-T	p	0,034560334	-0,745680145	0,000664142
barômetro - Pa	Q_3	B-T	P _a	0,034560334	-0,736972109	0,000648721
	Q ₄	B-T		0,034560334	-0,668620354	0,000533968
	Q_1	B-T		0,002041541	-0,693173426	2,00263E-06
Incerteza do	Q_2	B-T	P	0,002041541	-0,745680145	2,31751E-06
manômetro - P	Q_3	B-T	•	0,002041541	-0,736972109	2,2637E-06
	Q_4	B-T		0,002041541	-0,668620354	1,86327E-06
	Q_1	B-T		0,000118728	-2317,596596	0,075714852
Incerteza do medidor	Q_2	B-T	v	8,79291E-05	-3413,79308	0,090103172
de gás - V	Q ₃	B-T		9,02731E-05	-3271,69318	0,087229174
	Q ₄	B-T		0,000123857	-2137,54121	0,07009185
RENDIMEN'	ΓΟ (%)	Rend	k	uc	uc	k*uc
	Q_1	63,0	2	0,343922805	0,687845611	0,7
	Q_2	67,9	2	0,56952112	1,139042241	1,1
U rendimento =	Q_3	66,9	2	0,319115927	0,638231853	0,6
	Q ₄	60,7	2	0,302580168	0,605160335	0,6
		Ince	erteza da i	média dos queimadores		0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000617213	1,000000000	3,80952E-07
Incerteza do termômetro - T _g Incerteza do	-	В-Т	Tg	0,194014604	-0,003798281	5,43054E-07
barômetro - pa	-	B-T	Pa	0,034560334	0,008621886	8,87893E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,016222718	1,09678E-09
Incerteza do medidor de gás	-	В-Т	V	0,000205695	33,24246222	4,67558E-05
U co	onsumo (kg/h) =			0,00691156	0,01382312	0,0010

Apêndice G – Resumo do ensaio nº8 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar.

Tabela 128 – Grandezas de entrada do rendimento do ensaio nº8 ao nível do mar

Grandezas		Tinida das			
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02376	0,01775	0,01798	0,02487	m^3
T_g	21,8	23,2	22,1	23,2	°C
T_I	19,5	20,2	19,5	20,2	°C
T_2	90,9	91,7	90,7	91,7	°C
M	6,334	4,975	4,977	6,320	kg
P_a	101,500	101,500	101,500	101,500	kPa
P	2,720	2,780	2,780	2,730	kPa

Tabela 129 – Grandezas de saída do rendimento do ensaio nº8 ao nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,58856	2,81619	2,63591	2,81619	kPa
V_n	0,02328	0,01728	0,01760	0,02420	m^3
η	64,4	68,3	66,8	61,9	%

Tabela 130 – Coeficientes de sensibilidade do rendimento do ensaio nº8 ao nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	10,1717	13,7222	13,4159	9,7985	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,9023	0,9548	0,9378	0,8661	(°C)-1
$F_{\eta,T_1} \; = \; rac{\partial \eta}{\partial T_1}$	-0,9023	-0,9548	-0,9378	-0,8661	(°C) ⁻¹
$F_{\eta_{\nu}PCS} = \frac{\partial \eta}{\partial PCS}$	-0,5105	-0,5409	-0,5290	-0,4907	$\rm m^3/MJ$
$F_{\eta_{\rm b}V} = \frac{\partial \eta}{\partial V}$	-2.711,6	-3.846,1	-3.713,6	-2.490,0	$(m^3)^{-1}$
$F_{\eta_{\nu}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6339	-0,6728	-0,6569	-0,6106	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta_{\nu}}{\partial P}$	-0,6339	-0,6728	-0,6569	-0,6106	(kPa) ⁻¹
$F_{\eta_i T_g} = \frac{\partial \eta}{\partial T_g}$	0,3177	0,3439	0,3307	0,3120	kW/°C

Tabela 131 – G<u>randezas de entrada do consumo do ensaio nº8</u> ao nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,046280	m^3/h
T_g	23,8	$^{\circ}\mathrm{C}$
d_r	2,0788	
d	2,0788	
P_a	101,552	kPa
P	2,751	kPa

Tabela 132 – Grandezas de saída do consumo do ensaio nº8 ao nível do mar

Variáveis	Resultados	Unidades
\overline{W}	2,92376	kPa
d_h	2,038	
P_c	1,628	kW
C	0,118	kg/h

Tabela 133 – Coeficientes de sensibilidade do consumo do ensaio nº8 ao nível do mar

Coeficientes	Resultados	Unidades
$F_{P_{C},PCS}$	0,0129	kW/MJ.m³
$F_{P_C,\dot{V}}$	35,1864	kWh/m³
F_{P_c,T_g}	-0,0037	kW/°C
F_{P_c,P_a}	0,0080	kW/kPa
$F_{P_C,P}$	0,0158	kW/kPa

Tabela 134 – Resumo das incertezas do rendimento e do consumo no Ensaio nº8 ao do nível do mar

				Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	Queimadores	Tipo		$[\mathbf{u}(\mathbf{x}_i)]$	sensibilidade (c _i)	$\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{x} \mathbf{i})^2]$
	Q_1	A		0,362263120	1,000000000	0,131234568
Precisão	Q_2	A	PI	0,193967669	1,000000000	0,037623457
intermediária	Q ₃	A	••	0,157918560	1,000000000	0,024938272
	Q ₄	A		0,14444444	1,000000000	0,020864198
	Q ₁	B-T		0,194014604	0,317691577	0,003799096
Incerteza do	Q_2	B-T	T_{g}	0,194014604	0,343891323	0,00445155
termômetro - T_g	Q_3	B-T	*g	0,194014604	0,330672483	0,004115901
	Q ₄	B-T		0,194014604	0,311998519	0,003664156
	Q_1	B-T		0,054006172	-0,902347122	0,002374838
Incerteza do	Q_2	B-T	T_1	0,054006172	-0,954795034	0,002658931
termômetro - T_1	Q_3	B-T	-1	0,054006172	-0,937793952	0,002565084
	Q ₄	B-T		0,054006172	-0,86610548	0,002187905
	Q_1	B-T		0,054006172	0,902347122	0,002374838
Incerteza do	Q_2	В-Т	T ₂	0,054006172	0,954795034	0,002658931
termômetro - T_2	Q_3	B-T	12	0,054006172	0,937793952	0,002565084
	Q_4	B-T		0,054006172	0,866105475	0,002187905
	Q_1	B-R		0,003055050	10,17170579	0,00096566
Incerteza da	Q_2	B-R	M	0,003055050	13,72217989	0,00175745
balança - M	Q_3	B-R	141	0,003055050	13,41589901	0,001679873
	Q_4	B-R		0,003055050	9,7985034	0,0008961
	Q_1	B-T	Γ	0,034560334	-0,633933619	0,000480002
Incerteza do	Q_2	B-T	D	0,034560334	-0,672829472	0,000540712
barômetro - Pa	Q_3	B-T	P _a	0,034560334	-0,656909148	0,000515426
	Q ₄	B-T		0,034560334	-0,610632206	0,000445364
	Q_1	B-T		0,002041541	-0,633933619	1,67496E-06
Incerteza do	Q_2	B-T	P	0,002041541	-0,672829472	1,8868E-06
manômetro - P	Q_3	B-T	1	0,002041541	-0,656909148	1,79857E-06
	Q_4	B-T		0,002041541	-0,610632206	1,55409E-06
	Q_1	B-T		0,000104187	-2711,598673	0,079814046
Incerteza do medidor	Q_2	B-T	V	7,90074E-05	-3846,075772	0,092336078
de gás - V	Q ₃	B-T	·	7,99632E-05	-3713,622324	0,088181267
	Q_4	B-T		0,000108872	-2490,00971	0,073490632
RENDIME	NTO	Rend	k	uc	uc	k*uc
	Q_1	64,4	2	0,470153937	0,940307874	0,9
	Q_2	68,3	2	0,376867345	0,753734691	0,8
U rendimento =	Q_3	66,8	2	0,352934422	0,705868844	0,7
	Q ₄	61,9	2	0,322083548	0,644167097	0,6
		Ince	rteza da ı	nédia dos queimadores		0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \ \mathbf{u} \ (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000747424	1,00000000	5,58642E-07
Incerteza do termômetro - T _g	-	В-Т	Tg	0,194014604	-0,003715069	5,19521E-07
Incerteza do barômetro - pa	-	В-Т	Pa	0,034560334	0,007962643	7,57304E-08
Incerteza do manômetro - p	-	B-T	P	0,002041433	0,015785517	1,03846E-09
Incerteza do medidor de gás	-	В-Т	V	0,000200048	35,18636739	4,95471E-05
U co	onsumo (kg/h) =			0,007120533	0,014241066	0,0010

Tabela 135 – Grandezas de entrada do rendimento do ensaio nº8 acima do nível do mar

Grandezas		Timida das			
Grandezas	Q1	Q2	Q3	Q4	Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,0269	0,01986	0,02023	0,02806	m^3
T_g	22,1	21,8	22,4	23,2	°C
T_I	19,8	19,8	19,4	19,5	°C
T_2	91,2	91,2	90,9	90,8	°C
M	6,320	4,975	4,975	6,320	kg
P_a	91,400	91,400	91,500	91,400	kPa
P	2,760	2,740	2,780	2,760	kPa

Tabela 136 – Grandezas de saída do rendimento do ensaio nº8 acima do nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,63591	2,58856	2,68403	2,81619	kPa
V_n	0,02371	0,01753	0,01783	0,02459	m^3
η	63,1	67,2	66,2	60,8	%

Tabela 137 – Coeficientes de sensibilidade do rendimento do ensaio nº8 acima do nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	9,9867	13,5090	13,3011	9,6150	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8840	0,9413	0,9255	0,8523	(°C)-1
$F_{\eta,T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8840	-0,9413	-0,9255	-0,8523	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,5001	-0,5325	-0,5243	-0,4815	m³/MJ
$F_{\eta_{\nu}V} = \frac{\partial \eta}{\partial V}$	-2.346,3	-3.384,1	-3.271,0	-2.165,6	$(m^3)^{-1}$
$F_{\eta,P_a} = \frac{\partial \eta}{\partial P_a}$	-0,6896	-0,7341	-0,7224	-0,6653	(kPa) ⁻¹
$F_{\eta,P} = \frac{\partial \eta}{\partial P}$	-0,6896	-0,7341	-0,7224	-0,6653	(kPa) ⁻¹
$F_{\mathbf{n}_{l}T_{g}} = \frac{\partial \mathbf{n}}{\partial T_{g}}$	0,3235	0,3428	0,3407	0,3173	kW/°C

Tabela 138 – Gran<u>dezas de entrada do consumo do ensaio nº8 aci</u>ma do nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,046520	m^3/h
T_g	24,9	°C
d_r	2,0788	
d	2,0788	
P_a	91,191	kPa
P	2,790	kPa

Tabela 139 – Grandezas de saída do consumo do ensaio nº8 acima do nível do mar

Grandezas	Resultados	Unidades
W	3,11505	kPa
d_h	2,0305	
P_c	1,548	kW
C	0,112	kg/h

Tabela 140 – Coeficientes de sensibilidade do consumo do ensaio nº8 acima do nível do mar

Coeficientes	Resultados	Unidades
$F_{P_C,PCS}$	0,0123	kW/MJ.m³
$F_{P_C,\dot{V}}$	33,2854	kWh/m³
F_{P_c,T_g}	-0,0037	kW/ºC
F_{P_c,P_a}	0,0084	kW/kPa
$F_{P_C,P}$	0,0159	kW/kPa

Tabela 141 – Resumo das incertezas do rendimento e do consumo no Ensaio nº8 acima do nível do mar

				Incerteza-padrão	Coeficiente de	Componente Quadrático u _i ²
Fontes de Incerteza	Queimadores	Tipo		[u (x _i)]	sensibilidade (c _i)	$= [c_i \mathbf{u} (\mathbf{x} \mathbf{i})^2]$
	Q_1	A		0,179284291	1,000000000	0,032142857
Precisão	Q_2	A		0,470814896	1,000000000	0,221666667
intermediária	Q_3	A	PI	0,047871355	1,000000000	0,002291667
	Q ₄	A		0,108582335	1,000000000	0.011790123
	Q_1	B-T		0,194014604	0,323496406	0,003939198
Incerteza do	Q_2	B-T	_	0,194014604	0,342798511	0,004423303
termômetro - T _g	Q_3	B-T	T_{g}	0,194014604	0,340707176	0,004369497
	Q ₄	B-T		0,194014604	0,317301604	0.003789775
	Q_1	B-T		0,054006172	-0,883977045	0,002279128
Incerteza do	Q_2	B-T	_	0,054006172	-0,941279838	0,002584189
termômetro - T ₁	Q_3	B-T	T_1	0,054006172	-0,925493766	0,002498238
	Q ₄	B-T		0,054006172	-0,852269363	0,002118559
	Q_1	B-T		0,054006172	0,883977045	0,002279128
Incerteza do	Q_2	B-T		0,054006172	0,941279838	0,002584189
termômetro - T ₂	Q ₃	B-T	T_2	0,054006172	0,925493766	0,002498238
	Q_4	B-T		0,054006172	0,852269363	0,002118559
	Q ₁	B-R		0.003055050	9,986702691	0,000930853
Incerteza da	Q_2	B-R		0,003055050	13,5090212	0,001703274
balança - M	Q_3	B-R	М	0,003055050	13,30106618	0,001703274
,	Q_4	B-R		0,003055050	9,615000888	0,001031238
	Q ₁	B-T	. P _a	0,034560334	-0,6896104	0,00056802
Incerteza do	Q_2	B-T		0,034560334	-0,734094219	0,00050802
barômetro - Pa	Q ₃	B-T		0,034560334	-0,722442342	0,000623393
a a a a a a a a a a a a a a a a a a a	Q ₄	B-T				
	Q ₁	B-T		0,034560334	-0,665253643	0,000528604
Incerteza do	Q_2	B-T		0,002041541	-0,6896104	1,98209E-06
manômetro - P	Q ₂	B-T	P	0,002041541	-0,734094219	2,24605E-06
manomou o	Q_4	B-T		0,002041541	-0,722442342	2,17532E-06
	Q ₁	B-T		0,002041541	-0,665253643	1,84455E-06
Incerteza do medidor	Q_2	B-T		0,000117457	-2346,318253	0,075951055
de gás - V	Q ₂	B-T	V	8,78037E-05	-3384,057425	0,088287825
de gas	Q ₃	B-T		8,93518E-05	-3271,023442	0,085422916
RENDIMEN'		Rend	k	0,000122372	-2165,602481	0,070230358
KENDIMEN	Q ₁		2	uc	uc	k*uc
	Q_1	63,1	2	0,343645487	0,687290974	0,7
U rendimento =	Q_2 Q_3	67,2	2	0,567358227	1,134716455	1,1
o rendimento =		66,2	2	0,315210029	0,630420057	0,6
	Q ₄	60,8		0,302391588 média dos queimadores	0,604783176	0,6
		I	licza ua i	Incerteza-padrão	Coeficiente de	Componente Quadrático
Fontes de Incerteza	forno	Tipo		[u (x _i)]	sensibilidade (c _i)	Componente Quadratico $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000617213	1,000000000	3,80952E-07
Incerteza do termômetro - T _g	-	В-Т	Tg	0,194014604	-0,0036883	5,12061E-07
Incerteza do barômetro - pa	-	B-T	Pa	0,034560334	0,00843394	8,49605E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,015869773	1,04957E-09
Incerteza do medidor de gás	-	В-Т	V	0,000201075	33,285423	4,47944E-05
U co	onsumo (kg/h) =			0,006765603	0,013531206	0,0010

Apêndice H – Resumo do ensaio nº9 em rendimento e consumo e suas incertezas ao nível do mar e acima do nível do mar.

Tabela 142 – Grandezas de entrada do rendimento do ensaio nº9 ao nível do mar

Grandezas		- Unidades			
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02422	0,01797	0,01823	0,02478	m^3
T_g	23,2	24,3	23,2	23,7	°C
T_I	19,6	19,8	19,6	19,5	°C
T_2	90,9	91,6	91,1	90,9	°C
M	6,334	4,975	4,977	6,320	kg
P_a	101,500	101,700	101,700	101,500	kPa
P	2,730	2,710	2,740	2,750	kPa

Tabela 143 – Grandezas de saída do rendimento do ensaio nº9 ao nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,81619	3,00731	2,81619	2,90168	kPa
V_n	0,02357	0,01742	0,01778	0,02406	m^3
η	63,6	68,0	66,4	62,2	%

Tabela 144 – Coeficientes de sensibilidade do rendimento do ensaio nº9 ao nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta,M} = \frac{\partial \eta}{\partial M}$	10,0333	13,6698	13,3398	9,8433	kg ⁻¹
$F_{\eta_1 T_2} = \frac{\partial \eta}{\partial T_2}$	0,8913	0,9472	0,9286	0,8713	(°C) ⁻¹
$F_{\eta_1 T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8913	-0,9472	-0,9286	-0,8713	(°C) ⁻¹
$F_{\eta_{\nu}PCS} = \frac{\partial \eta}{\partial PCS}$	-0,5035	-0,5388	-0,5260	-0,4929	$\rm m^3/MJ$
$F_{\eta_{\nu}V} = \frac{\partial \eta}{\partial V}$	-2.623,9	-3.784,5	-3.641,9	-2.510,5	$(m^3)^{-1}$
$F_{\eta_{\nu}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,6267	-0,6707	-0,6533	-0,6138	(kPa) ⁻¹
$F_{\eta_{\nu}P} = \frac{\partial \eta}{\partial P}$	-0,6267	-0,6707	-0,6533	-0,6138	(kPa) ⁻¹
$F_{\eta_i T_g} = \frac{\partial \eta}{\partial T_g}$	0,3202	0,3486	0,3343	0,3159	kW/°C

Tabela 145 – Grandezas de entrada do consumo do ensaio nº9 ao nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,046360	m^3/h
T_g	21,3	°C
d_r	2,0788	
d	2,0788	
P_a	101,350	kPa
P	2,751	kPa

Tabela 146 – Grandezas de saída do consumo do ensaio nº9 ao nível do mar

Variáveis	Resultados	Unidades
\overline{W}	2,51468	kPa
d_h	2,044	
P_c	1,639	kW
C	0,119	kg/h

Tabela 147 – Coeficientes de sensibilidade do consumo do ensaio nº9 ao nível do mar

Coeficientes	Resultados	Unidades
$F_{P_C,PCS}$	0,0130	kW/MJ.m³
$F_{P_C,\dot{V}}$	35,3503	kWh/m³
F_{P_c,T_g}	-0,0036	kW/°C
F_{P_c,P_a}	0,0080	kW/kPa
$F_{P_C,P}$	0,0159	kW/kPa

Tabela 148 – Resumo das incertezas do rendimento e do consumo no Ensaio ${\rm n^09}$ ao do nível do mar

Fontes de Incerteza	Queimadores	Tipo		Incerteza-padrão	Coeficiente de	Componente Quadrático ui ²
				[u (x _i)]	sensibilidade (c _i)	$= [\mathbf{c_i} \mathbf{u} (\mathbf{x} \mathbf{i})^2]$
	Q_1	A		0,362263120	1,000000000	0,131234568
Precisão	Q_2	A	PI	0,193967669	1,000000000	0,037623457
intermediária	Q ₃	A		0,157918560	1,000000000	0,024938272
	Q ₄	A		0,14444444	1,000000000	0,020864198
	Q_1	B-T		0,194014604	0,320183279	0,003858923
Incerteza do	Q_2	B-T	$T_{\rm g}$	0,194014604	0,34858648	0,004573934
termômetro - T _g	Q_3	B-T	5	0,194014604	0,334269971	0,004205945
	Q_4	B-T		0,194014604	0,315922208	0,003756896
	Q_1	B-T		0,054006172	-0,891319507	0,002317147
Incerteza do	Q_2	B-T	T_1	0,054006172	-0,947177111	0,002616671
termômetro - T_1	Q_3	B-T	-1	0,054006172	-0,928564528	0,002514844
	Q ₄	B-T		0,054006172	-0,871280439	0,002214128
	Q_1	B-T		0,054006172	0,891319507	0,002317147
Incerteza do	Q_2	B-T	T_2	0,054006172	0,947177111	0,002616671
termômetro - T ₂	Q_3	B-T	- 2	0,054006172	0,928564528	0,002514844
	Q_4	B-T		0,054006172	0,871280439	0,002214128
	Q_1	B-R		0,003055050	10,03332505	0,000939564
Incerteza da	Q_2	B-R	М	0,003055050	13,66981238	0,001744062
balança - M	Q_3	B-R		0,003055050	13,33983599	0,001660878
	Q_4	B-R		0,003055050	9,843263185	0,000904305
	Q_1	В-Т	P _a	0,034560334	-0,626651122	0,000469037
Incerteza do	Q_2	B-T		0,034560334	-0,670665819	0,00053724
barômetro - Pa	Q ₃	B-T		0,034560334	-0,653315011	0,000509802
	Q ₄	B-T		0,034560334	-0,613818015	0,000450023
	Q_1	B-T		0,002041541	-0,626651122	1,6367E-06
Incerteza do	Q_2	B-T	P	0,002041541	-0,670665819	1,87469E-06
manômetro - P	Q_3	B-T	•	0,002041541	-0,653315011	1,77894E-06
	Q_4	B-T		0,002041541	-0,613818015	1,57035E-06
	Q_1	B-T		0,000106128	-2623,909201	0,077545008
Incerteza do medidor	Q_2	B-T	V	0,000079922	-3784,49174	0,091483817
de gás - V	Q_3	B-T	Ť	0,000081003	-3641,928894	0,087029440
	Q_4	B-T		0,000108492	-2510,469061	0,074182551
RENDIMEN'	ГО (%)	Rend	k	uc	uc	k*uc
	Q_1	63,6	2	0,467635577	0,935271153	0,9
	Q_2	68,0	2	0,37576286	0,751525721	0,8
U rendimento =	Q_3	66,4	2	0,351248918	0,702497835	0,7
	Q_4	62,2	2	0,32340037	0,646800741	0,6
		Ince	rteza da i	média dos queimadores		0,4
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} (\mathbf{xi})^2]$
Incerteza da precisão intermediária Incerteza do	-	A	PI	0,000747424	1,000000000	5,58642E-07
termômetro - T _g Incerteza do	-	B-T	Tg	0,194014604	-0,003638925	4,98443E-07
barômetro - pa	-	B-T	Pa	0,034560334	0,008006947	7,65755E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,015879862	1,05091E-09
Incerteza do medidor de gás	-	В-Т	V	0,00020039	35,35034012	5,01812E-05
U co	onsumo (kg/h) =			0,00716351	0,014327021	0,0010

Tabela 149 – Grandezas de entrada do rendimento do ensaio nº9 acima do nível do mar

Grandezas		Medições	efetuadas		- Unidades
Grandezas	Q1	Q2	Q3	Q4	- Unidades
PCS	126,21	126,21	126,21	126,21	MJ/m^3
V	0,02675	0,01999	0,02029	0,02815	m^3
T_g	24,0	23,8	24,1	24,3	°C
T_{I}	19,4	19,7	20,1	19,8	°C
T_2	90,6	91,3	91,7	91,1	°C
M	6,320	4,975	4,975	6,320	kg
P_a	91,400	91,400	91,500	91,400	kPa
P	2,740	2,740	2,780	2,750	kPa

Tabela 150 – Grandezas de saída do rendimento do ensaio nº9 acima do nível do mar

Grandezas	Q1	Q2	Q3	Q4	unidades
W	2,95408	2,91906	2,97173	3,00731	kPa
V_n	0,02334	0,01746	0,01772	0,02453	m^3
η	63,9	67,7	66,7	60,9	%

Tabela 151 – Coeficientes de sensibilidade do rendimento do ensaio nº9 acima do nível do mar

Coeficientes	Q1	Q2	Q3	Q4	Unid.
$F_{\eta_{\nu}M} = \frac{\partial \eta}{\partial M}$	10,1164	13,5991	13,3988	9,6411	kg ⁻¹
$F_{\eta,T_2} = \frac{\partial \eta}{\partial T_2}$	0,8980	0,9449	0,9310	0,8546	(°C) ⁻¹
$F_{\eta_1 T_1} = \frac{\partial \eta}{\partial T_1}$	-0,8980	-0,9449	-0,9310	-0,8546	(°C) ⁻¹
$F_{\eta,PCS} = \frac{\partial \eta}{\partial PCS}$	-0,5066	-0,5361	-0,5282	-0,4828	m^3/MJ
$F_{\eta,V} = \frac{\partial \eta}{\partial V}$	-2.390,1	-3.384,5	-3.285,3	-2.164,5	$(m^3)^{-1}$
$F_{\eta_{a}P_{a}} = \frac{\partial \eta}{\partial P_{a}}$	-0,7012	-0,7417	-0,7300	-0,6685	(kPa) ⁻¹
$F_{\eta,P} = \frac{\partial \eta}{\partial P}$	-0,7012	-0,7417	-0,7300	-0,6685	(kPa) ⁻¹
$F_{\eta,T_g} = \frac{\partial \eta}{\partial T_g}$	0,3386	0,3570	0,3535	0,3244	kW/°C

Tabela 152 – Gran<u>dezas de entrada do consumo do ensaio nº9 aci</u>ma do nível do mar

Grandezas	Medições	unidades
PCS	126,21	MJ/m^3
\dot{V}	0,046200	m^3/h
T_g	24,1	°C
d_r	2,0788	
d	2,0788	
P_a	91,191	kPa
P	2,770	kPa

Tabela 153 – Grandezas de saída do consumo do ensaio nº9 acima do nível do mar

Grandezas	Resultados	Unidades
W	2,97527	kPa
d_h	2,0327	
P_c	1,540	kW
C	0,112	kg/h

Tabela 154 – Coeficientes de sensibilidade do consumo do ensaio nº9 acima do nível do mar

Coeficientes	Resultados	Unidades	
$F_{P_C,PCS}$	0,0122	kW/MJ.m³	
$F_{P_C,\dot{V}}$	33,3396	kWh/m³	
F_{P_c,T_g}	-0,0036	kW/°C	
F_{P_c,P_a}	0,0084	kW/kPa	
$F_{P_C,P}$	0,0158	kW/kPa	

Tabela 155 – Resumo das incertezas do rendimento e do consumo no Ensaio nº9 acima do nível do mar

				Incerteza-padrão	Coeficiente de	Componente Quadrático u _i ²
Fontes de Incerteza	Queimadores	Tipo		[u (x _i)]	sensibilidade (c _i)	$= [c_i \mathbf{u} (\mathbf{x} \mathbf{i})^2]$
Precisão intermediária	Q_1	A		0,179284291	1,000000000	0,032142857
	Q_2	A	PI	0,470814896	1,000000000	0,221666667
	Q_3	A		0,047871355	1,000000000	0,002291667
	Q ₄	A		0,108582335	1,000000000	0.011790123
	Q_1	B-T	$T_{ m g}$	0,194014604	0,33859728	0,004315546
Incerteza do termômetro - T _g	Q_2	B-T		0,194014604	0,35702701	0,004798119
	Q_3	B-T		0,194014604	0,353452007	0,00470251
	Q ₄	B-T		0,194014604	0,324416105	0,003961628
	Q_1	B-T		0,054006172	-0,897972247	0.002351866
Incerteza do	Q_2	B-T	T_1	0,054006172	-0,944910628	0,002604164
termômetro - T ₁	Q_3	B-T		0,054006172	-0,930988816	0,002527992
	Q ₄	B-T		0,054006172	-0,854579559	0,00213006
	Q_1	B-T		0,054006172	0,897972247	0,002351866
Incerteza do	Q_2	B-T		0,054006172	0,944910628	0,002604164
termômetro - T ₂	Q ₃	B-T	T_2	0,054006172	0,930988816	0,002527992
	Q_4	B-T		0,054006172	0,854579559	0,00213006
	Q ₁	B-R		0,003055050	10,1163962	0,000955187
Incerteza da	Q_2	B-R		0,003055050	13,59911577	0,001726069
balança - M	Q_3	B-R	M	0,003055050	13,39875361	0,001720009
	Q_4	B-R		0,003055050	9,641063697	0.000867534
	Q ₁	B-T		0,034560334	-0,701156745	0,0005872
Incerteza do	Q_2	B-T	Pa	0,034560334	-0,7416674	0,000657013
barômetro - P _a	Q ₃	B-T		0,034560334	-0,730041198	0,000636576
	Q ₄	B-T				
	Q ₁	B-T		0,034560334	-0,66852892	0,000533822
Incerteza do	Q_2	B-T		0,002041541	-0,701156745	2,04902E-06
manômetro - P	Q ₂	B-T	P	0,002041541	-0,7416674	2,29263E-06
	Q_4	B-T		0,002041541	-0,730041198	2,22132E-06
	Q ₁	B-T		0,002041541	-0,66852892	1,86276E-06
Incerteza do medidor	Q_1	B-T		0,000116822	-2390,116783	0,077963031
de gás - V	Q ₂	B-T	V	8,83475E-05	-3384,472284	0,089406685
de gas - v	Q_3	B-T		8,96030E-05	-3285,303066	0,086655556
RENDIME		Rend	k	0,000122754	-2164,530109	0,070599069
KENDIME			2	uc	uc	k*uc
	Q_1 Q_2	63,9	2	0,347375306	0,694750611	0,7
II man dimenta —		67,7	2	0,568739987	1,137479974	1,1
U rendimento =	Q ₃	66,7	2	0,317836589	0,635673177	0,6
	Q ₄	60,9		0,303338357	0,606676715	0,6
Ince		rteza da média dos queimadores		G C : 1	- /	
Fontes de Incerteza	forno	Tipo		Incerteza-padrão [u (x _i)]	Coeficiente de sensibilidade (c _i)	Componente Quadrático $\mathbf{u_i}^2 = [\mathbf{c_i} \mathbf{u} \ (\mathbf{xi})^2]$
Incerteza da precisão intermediária	-	A	PI	0,000617213	1,000000000	3,80952E-07
Incerteza do termômetro - T _g	-	В-Т	Tg	0,194014604	-0,003631444	4,96395E-07
Incerteza do barômetro - p _a	-	В-Т	Pa	0,034560334	0,008382444	8,39261E-08
Incerteza do manômetro - p	-	В-Т	P	0,002041433	0,015780573	1,03781E-09
Incerteza do medidor de gás	-	В-Т	V	0,000199706	33,33961709	4,43306E-05
U consumo (kg/h) =		0,006729998	0,013459995	0,0010		