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Abstract

Andrade, Pêdra Daricléa Santos; Pimentel, Edgard (Advisor).
Towards a regularity theory for fully nonlinear models.
Rio de Janeiro, 2020. 76p. Tese de doutorado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

In this thesis, we examine fully nonlinear problems in two distinct
contexts. The first part of our work focuses on fully nonlinear mean-field
games. In this context, we examine gains of regularity, the existence of
solutions, relaxation results, and particular aspects of a one-dimensional
problem. The second half of the thesis concerns a (sharp) regularity theory
for fully nonlinear equations degenerating with respect to the gradient of
the solutions. The fundamental question underlying both topics regards
the effects of ellipticity on the intrinsic properties of solutions to nonlinear
equations. To be more precise, in the case of mean-field game systems,
ellipticity seems to be magnified through the coupling structure. On the
other hand, in the degenerate setting, ellipticity collapses, giving rise to
intricate regularity phenomena. Our analysis is preceded by some context
on both topics.

Keywords
Regularity theory; Mean-field games; Degenerate elliptic equations;

Approximation methods; Existence; Viscosity.
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Resumo

Andrade, Pêdra Daricléa Santos; Pimentel, Edgard. Teoria de
regularidade para modelos completamente não-lineares.
Rio de Janeiro, 2020. 76p. Tese de Doutorado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho examinamos equações completamente não-lineares em
dois contextos distintos. A princípio, estudamos jogos de campo médio
completamente não-lineares. Aqui, examinamos ganhos de regularidade para
as soluções do problema, existência de soluções, resultados de relaxação e
aspectos particulares de um example explícito. A segunda metade da tese
dedica-se à regularidade ótima das soluções de um modelo completamente
não-linear que degenera-se com respeito ao gradiente das soluções. A
pergunta fundamental subjacente a ambos os tópicos diz respeito aos efeitos
da elipticidade sobre propriedades intrínsecas das soluções de equações
não-lineares. Mais precisamente, no caso dos jogos de campo médio, a
elipticidade parece magnificada pelos efeitos do acoplamento, enquanto no
caso dos problemas degenerados, esta quantidade colapsa em sub-regiões
do domínio, dando origem a delicados fenômenos. Nossa análise inclui um
breve contexto da inserção do trabalho.

Palavras-chave
Teoria de regularidade; Jogos de Campo Médio; Equações elípticas

degeneradas; Métodos de aproximação; Existência; Viscosidade.
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1
Introduction

This thesis comprises two classes of developments. It includes results
on fully nonlinear mean-field games as well as on the regularity theory for
degenerate fully nonlinear equations. We present our findings in two parts.

The first part of the thesis investigates fully nonlinear mean-field games
(MFG, for short) in close connection with a minimization problem. The latter
is driven by a Hessian-dependent Lagrangian. We consider the system

F (D2u) = m1/(p−1) in B1

(Fij(D2u)m)xixj = 0 in B1,
(1.1)

where F is a fully nonlinear (λ,Λ)-elliptic operator and p ≥ 2. In (1.1), Fij(M)
stands for the derivative of F (M) with respect to the entry mij of the matrix
M = (mij)di,j=1. We refer to (1.1) as mean-field game for the system has an
adjoint structure. That is to say that the second equation is the formal adjoint
of the linearization of the first. In this system, the unknown is a pair (u,m) in
a suitable functional space.

The MFG system in (1.1) is obtained as the first compact variation of

I[u] :=
ˆ
B1

[
F (D2u)

]p
dx,

where I is defined over an appropriate class of functions. Therefore, we can
understand the system in (1.1) as the Euler-Lagrange equation associated with
the minimization problem.

ˆ
B1

[
F (D2u)

]p
dx −→ min . (1.2)

Mean-field game theory is a mathematical framework that aims at
examining situations of strategic interaction involving a very large numbers of
players. Unfolding at the intersection of analysis of partial differential equations
and stochastic methods, this class of problems have attracted the attention of
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Chapter 1. Introduction 12

several researchers working on various topics with spillovers on a number of
areas; see for instance [67], [68], [25], [59], [33], [34].

Our first result concerns gains of regularity for the solutions to (1.1) in
Sobolev spaces. More precisely, we have the following result. Let u ∈ C(B1) be
a viscosity solution of

F (D2u) = µ
1

p− 1 in B1,

where F = F (M) is uniformly elliptic and convex with respect to M ,
µ ∈ L1(B1) is an arbitrary non-negative function and p−1 ≥ d. It follows that
u ∈ W 2,p−1

loc (B1), with appropriate estimates. See [22], [49] and [23, Chapter
7]. We also refer the reader to [72], where the convexity assumption on the
operator is slightly weakened. However, if we consider a solution (u, µ) to
(1.1), gains of regularity are produced. Our first result reads as follows:

Theorem 1 (Improved regularity in Sobolev spaces) Let (u, µ) be a

weak solution to (1.1) and F as above. Then, u ∈ W 2, d(p−1)
d−1

loc (B1). In addition,
there exists C > 0 such that

‖u‖
W

2, d(p−1)
d−1 (B1/2)

≤ C
(
‖u‖L∞(B1) + ‖µ‖

1
p−1
L1(B1)

)
.

As a consequence, u ∈ C1,α
loc (B1) for every

α ∈
(

0, 1− d− 1
p− 1

)
.

In particular, the MFG coupling yields improved regularity also in Hölder
spaces. Our second result concerns the existence of minimizers for (1.2). Then,
a further argument yields the existence of solutions to the associated MFG
system. It is the content of the next theorem.

Theorem 2 (Existence of solutions) Suppose Assumption 2 and
Assumption 3, to be detailed later, are in force. Then, there exists a minimizer
u∗ ∈ W 2,p(B1) ∩ W 1,p

g (B1) for (1.2) in the space W 2,p(B1) ∩ W 1,p
g (B1). In

addition, such a minimizer yields a solution (u∗,m∗) to the fully nonlinear
mean-field game system (1.1).

A further layer of analysis regards the case of non-convex operators F .
This is done by applying relaxation arguments to produce information on the
minimum of the associated energy. To this end, we consider the relaxed problem

Ī[u] :=
ˆ
B1

[
ΓF (D2u)

]p
dx −→ min (1.3)
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Chapter 1. Introduction 13

where ΓF is the convex envelope of F .

Theorem 3 (A relaxation result) Suppose Assumption 3, to be detailed
later, is in force. Then there exists (un)n∈N ⊂ W 2,p(B1) ∩W 1,p

g (B1) such that

I[un] −→ Ī[u∗]

and
un ⇀ u∗ in W 2,p(B1) ∩W 1,p

g (B1)

as n→∞, where u∗ ∈ W 2,p(B1) ∩W 1,p
g (B1) is the minimizer of (1.3).

We close the first part of this thesis with a one-dimensional toy-model
unveiling distinctive properties of the problem (1.1)-(3.2). We have the
following:

Theorem 4 (Explicit solutions) Let F : (0, 1)→ R be given by

F (z) := (1 + zp)
1
p , (1.4)

where p ≥ 2 is a fixed integer. Then

1. A solution (u,m) to the associated mean-field game system is given by

u(x) = A ((p− 1)x − B)2+ 1
p−1

p(2p − 1) + Cx + D

and
m(x) =

(
1 +

[
A ((p − 1)x − B)

1
p−1
]p) 1

p

,

where A, B, C, and D are real constants.

2. A minimizing solution (u∗,m∗) comprises an affine mapping and a
uniform distribution; i.e.,

u∗(x) = A∗x + B∗

and
m∗(x) = 1,

where A∗ and B∗ are real constants.

Transitioning seamlessly from the first to the second part of this thesis
might require some further explanation. The underlying structure lacing up
both parts of this work is the notion of ellipticity, as well as its consequences
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Chapter 1. Introduction 14

on the associated diffusion processes. In the concrete case of MFG, ellipticity
seems to be magnified as an effect of the coupling.

The opposite scenario is a setting where the ellipticity is jeopardized.
This is the topic of the second part of our work. Here, we examine solutions to
fully degenerate nonlinear elliptic equations degenerating with respect to the
gradient, as a modulus of continuity. To be more precise, we consider equations
of the form

F (Du,D2u) = f(x) in B1. (1.5)
The source term f(x) is assumed continuous and bounded function and the
nonlinear operator F : Rd × S(d) → R is degenerate elliptic, with law of
degeneracy σ satisfying σ(0) = 0 and σ(t) > 0 for every t > 0. This means
F (~p,M) = σ(|~p|)F (M), for an operator F : S(d) → R, representing the
diffusion agent of the model and σ is a modulus of continuity, otherwise called
the law of degeneracy of the equation; precise definitions will be given later.

The emphasis here lies on the fact that along the subregion {Du = 0},
the equation provides no information on the process. Our first result in this
setting reads as follows.

We investigate minimal conditions on the degree of degeneracy σ under
which viscosity solutions are of class C1. In fact, such an improved regularity
result is achieved under the (sharp) condition that σ has a Dini continuous
inverse σ−1.

Theorem 5 (Differentiability of solutions) Let u ∈ C(B1) be a viscosity
solution to

F (Du,D2u) = f in B1, (1.6)
where F (~p,M) = σ(|~p|)F (M). Suppose Assumptions 1, 4, 6 and 5, to be
detailed later, hold true. Then u ∈ C1

loc(B1) and there exists a modulus of
continuity ω : R+

0 → R+
0 such that

sup
x∈Br(x0)

|Du(x) − Du(x0)| ≤ ω (r) ,

for every x0 ∈ B1/4 and 0 < r < 1/4. In addition, ω depends on d, λ,Λ, σ,
‖u‖L∞(B1) and ‖f‖L∞(B1).

The remainder of this thesis is organized as follows: the next chapter
details the main assumptions under which we work and gathers a few
preliminary results used throughout this work. The third chapter presents our
analysis of fully nonlinear mean-field games. In a fourth chapter, we examine
degenerate fully nonlinear equations and produce a regularity theory for the
viscosity solutions.
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2
Preliminary material and main assumptions

In this chapter we collect important information used in this work. Those
include elementary notions and definitions as well as preliminary results. We
start detailing our assumptions.

2.1
Main assumptions

Our findings depend on conditions imposed on the elliptic operator F ,
as well as on the data of the problem. This section puts forward an account
of our main assumptions. We start by imposing an ellipticity condition on the
operator F . In what follows, S(d) denotes the space of real symmetric matrices;
it will be identified with R

d(d+1)
2 , whenever convenient.

Assumption 1 (Uniform ellipticity) We suppose the operator F : S(d)→
R to be (λ,Λ)-uniformly elliptic. That is, there exist 0 < λ ≤ Λ such that

λ ‖N‖ ≤ F (M + N) − F (M) ≤ Λ ‖N‖ , (2.1)

for every M, N ∈ S(d) with N ≥ 0. In addition, we suppose F (0) = 0.

By taking M ≡ 0 in Assumption 1, it follows that

λ ‖N‖ ≤ F (N) ≤ Λ ‖N‖ ,

for every N ≥ 0. Therefore, uniform ellipticity implies that F satisfies a
coercivity condition over non-negative matrices. A classical example of uniform
elliptic operators are the Pucci’s extremal operators. When studying MFG
systems, we also impose a convexity condition on F .

Assumption 2 (Convexity of the operator F ) We suppose the operator
F = F (M) to be convex with respect to M .

In certain cases, we must impose further conditions on the growth regime
of the operator F . Namely, extend (2.1) to symmetric matrices N ∈ S(d). This
is the content of the next assumption.
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Assumption 3 (Growth Condition) We suppose that F satisfies

λ ‖M‖ ≤ F (M) ≤ Λ ‖M‖ ,

for every M ∈ S(d) and F (0) = 0.

Consequential on Assumption 3 is a coercivity condition for F in the entire
space S(d). To compare Assumption 1 and Assumption 3 amounts to observe
a change in the ellipticity cone of the operator. See Figure 2.1.

Figure 2.1: The (λ,Λ)-ellipticity condition, as in Assumption 1, confines the image of
the operator to the area between the lines λ‖ · ‖ and Λ‖ · ‖. However, Assumption
3 confines the image of the operator to the region between those lines within the
upper half-plane of S(d)× R.

In what follows, we produce an example of operators that satisfies the
growth condition, namely:

Example 1 Let F be a (λ,Λ)-elliptic operator and ε > 0 a parameter.
Consider Fε given by

Fε(M) := |F (M)|+ ε|M |;

it is clear that Fε satisfies the growth condition in the former assumption.

Next, we present the assumptions used the second part of this work. Namely,
in the context of degenerate fully nonlinear equations. In this case, we consider
a nonlinear operator

F (~p,M) = σ (|~p|)F (M), (2.2)
we call σ its degeneracy law and F its diffusion agent. This latter nomenclature
is justified by the ellipticity condition of F .

Assumption 4 (Law of degeneracy) We suppose that the degeneracy law
σ : [ 0,+∞) → [ 0,+∞) is a modulus of continuity such that σ(0) = 0.
Moreover, we suppose σ(1) ≥ 1.
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We recall by modulus of continuity we simply mean an increasing function
f defined over an interval of R+

0 := (0,+∞) into R+
0 such that lim

t→0
f(t) = 0.

Also, notice that the condition σ(1) ≥ 1 is a mere normalization.
Our next assumption concerns the minimal, sharp condition on the

modulus of continuity σ as to ensure the switching from Hölder-continuity
to the differentiability of the viscosity solutions to (1.6). It concerns the
Dini-continuity of σ−1. Given its importance to our main theorem in this part,
below we introduce the formal definition of Dini condition:

Definition 1 (Dini condition) A modulus of continuity ω is said to satisfy
the Dini condition if ˆ τ

0

ω(t)
t

dt < +∞, (2.3)

for some τ > 0.

We proceed with an assumption.

Assumption 5 We suppose σ : [0,+∞)→ [0,+∞) is a modulus of continuity
for which its inverse, σ−1 : σ ([0,+∞))→ [0,+∞) satisfies the Dini condition
(2.3).

The Dini condition plays an important role in mathematical analysis,
notably in harmonic analysis and its applications to the theory of PDEs. Recall
a function f : X → Y defined over a metric space (X, dX) into another metric
space (Y, dY ) is said to be Dini continuous if:

dY (f(x1), f(x2)) ≤ ωf (dX(x1, x2)) ,

for a modulus of continuity ωf satisfying the Dini condition (2.3). For the sake
of precision, it is convenient to define the modulus of continuity of f as

ωf (t) = sup
dX(x1,x2)≤t

dY (f(x1), f(x2)) .

Obviously any Hölder continuous function h is Dini continuous, as its modulus
of continuity is given by ωh(d) = Cdα and

ˆ 1

0

ωh(t)
t

dt = Cα−1,

which is finite.
There are however many important examples of Dini continuous functions

that are not Hölder continuous. The classical family of examples is given by:

φα(t) =
( 1

1− ln t

)α
, (2.4)
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for any α > 1. Further examples of Dini continuous functions can be crafted
through generalized power series. Let (γk)k∈N ∈ c0 be a sequence of positive
numbers converging to zero and (ak)k∈N ∈ `1 be sequence of positive numbers.
Define

ω(t) =
∞∑
j=1

ajt
γj .

Assume for some t? > 0 the series is convergent at t = t? and that,

∞∑
j=1

aj
τ γj

γj
<∞,

for some 0 < τ < t?. Then ω(t), defined over (0, t?) verifies the Dini condition.
For instance, ω(t) =

∞∑
j=1

j√t
2j satisfies the Dini condition. Notice that all examples

built up through this method fail to be ε–Hölder continuous for all 0 < ε < 1.
Similarly, there are a plethora of Dini moduli of continuity that verify

φα(t) = o(ω(t)) for all α > 1, where φα are the standard examples from (2.4).
For instance,

φ̃(t) :=
∞∑
n=1

an

( 1
1− ln t

)1+ 1
n

,

where an = 1
2nbn , for bn :=

´ 1
0

1
t

(
1

1−ln t

)1+ 1
n dt < +∞.

Dini condition can also be characterized in terms of the summability of
ω evaluated along geometric sequences. That is, a modulus of continuity ω

satisfies the Dini condition (2.3) if, and only if,
∞∑
n=1

ω(τ · θn) < ∞, (2.5)

for every θ ∈ (0, 1). Indeed, by elementar partition argument, there exist points
ξi ∈ [τθi, τθi−1] such that:

(1− θ)
∞∑
i=1

ω(ξi) ≤
ˆ τ

0

ω(t)
t

dt ≤ 1− θ
θ

∞∑
i=1

ω(ξi). (2.6)

We resort to the characterization in (2.5) further in our arguments.
Finally, we present our assumption concerning the source term f .

Assumption 6 (Continuity of the source term) We suppose the source
term f ∈ L∞(B1) is a continuous function.

In the next section we collect a number of definitions and auxiliary results
used throughout this thesis.
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2.2
Preliminary notions and results

We start introducing a notion used in the first part of this work. When
equipping (1.1) with boundary conditions in the sense of Sobolev, we make use
of an affine subspace of W 2,p(B1).

Definition 2 (Sobolev spaces W 2,p(B1) ∩W 1,p
g (B1)) Given g ∈ W 2,p(B1),

we say that u ∈ W 2,p(B1) ∩W 1,p
g (B1) if u ∈ W 2,p(B1) and u− g ∈ W 1,p

0 (B1).

Once this definition is available, to prescribe u = g on ∂B1 in the Sobolev sense
means to consider u ∈ W 2,p(B1)∩W 1,p

g (B1). Instead of satisfying the boundary
condition in the classical sense, we only require the difference between u and
the data to be an element of W 1,p

0 (B1). Next, on account of completeness, we
proceed by recalling the notion of viscosity solution used in this thesis.

Definition 3 (Viscosity solution) We say that u ∈ C(B1) is a viscosity
subsolution to

G(D2u,Du, u, x) = g(x) in B1 (2.7)
if, for every x0 ∈ B1 and ϕ ∈ C2(B1) such that u− ϕ has a local maximum at
x0, we have

G(D2ϕ(x0), Dϕ(x0), u(x0), x0) ≤ g(x0) in B1.

Conversely, we say that u ∈ C(B1) is a viscosity supersolution to (2.7) if,
x0 ∈ B1 and ϕ ∈ C2(B1) such that u− ϕ has a local minimum at x0, we have

G(D2ϕ(x0), Dϕ(x0), u(x0), x0) ≥ g(x0) in B1.

In case u is a viscosity subsolution and supersolution to (2.7), we say u is a
viscosity solutions to the equation.

For the notion of viscosity solution, and important related facts on this
topic, see [23] and[43]; for the foundations of the Lp-viscosity theory, we refer
the reader to [24].

To properly explore the connection between (1.2) and (1.1), we introduce
the definition of solution to the mean-field games system in (1.1).

Definition 4 (Solution to the MFG problem) A pair (u,m) is said to be
a weak solution to (1.1) if the following conditions are satisfied:

1. u ∈ C(B1) and m ∈ L1(B1) satisfies m ≥ 0 in B1;
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2. u is a viscosity solution to

F (D2u) = m
1
p−1 in B1;

3. m satisfies ˆ
B1

(
Fij(D2u)m

)
φxixj dx = 0,

for every φ ∈ C∞c (B1).

In general, a solution to (1.1) is a critical point for the functional (1.2).
Nevertheless, up to this point, we have not enough information to ensure that
solutions to the MFG system are indeed minimizers of the functional I[u]. To
distinguish solutions minimizing this functional, we introduce a definition.

Definition 5 (Minimizing solution) We say that (u∗,m∗) is a minimizing
solution if it solves (1.1) and satisfies

I[u∗] ≤ I[u]

for every u ∈ W 2,p(B1) ∩W 1,p
g (B1).

Part of our analysis concerns the study of relaxation methods. In this
realm, a key ingredient is the convex envelope of F . In what follows, we define
this object.

Definition 6 (Convex envelope) Let F : S(d) → R be a fully nonlinear
operator satisfying Assumption 1. The convex envelope of F is the operator
ΓF : S(d)→ R defined by

ΓF (M) := sup {G(M) |G ≤ F and G is convex} .

We are interested in gains of regularity produced by the MFG coupling
vis-a-vis the equations in (1.1) taken in isolation. To pursue this direction, we
rely on the gains of integrability for the second equation in (1.1). This equation
is also referred to as double-divergence equation.

Lemma 1 (Gains of integrability) Let m ∈ L1(B1) be a non-negative weak
solution to the second equation in (1.1). Suppose Assumption 1 is in force.
Then, m ∈ L

d
d−1
loc (B1) and there exists a (universal) constant C > 0 such that

‖m‖
L

d
d−1 (B1/2)

≤ C.
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For a proof of Lemma 1 we refer the reader to [51]. See also [20] and
the references therein. The importance of this result lies in the fact that an
integrable solution to the double-divergence equation has higher integrability,
depending explicitly on the dimension d.

Because our analysis is heavily based on the direct method in the
calculus of variations, part of our arguments are related to the weakly lower
semi-continuity of the functional I[u]. An important ingredient in the study of
this property is the Mazur Theorem. Before we state the theorem, we recall a
definition.

Definition 7 (Convex hull set) Given X ⊂ Rd, its convex hull is the
smallest convex set containing X. It is denoted by co(X). In case X is the set
of values assumed by a sequence (xn)n∈N, we have

co[(xn)n∈N] :=
{∑
n∈N

xnαn N finite, xn ∈ X ∀n, αn ≥ 0 ∀n, and
∑
n∈N

αn = 1
}
.

Lemma 2 (Mazur Theorem) Let X be a linear space and ` : X → R+ be
a norm defined on X. If (xn)n∈N ⊂ X is such that

xn ⇀ x in X,

there exists a sequence (ym)m∈N ⊂ co[(xn)n∈N] satisfying:

1. for every m ∈ N there exists M ∈ N and (αnm)Mn=1 with

αnm > 0
M∑
n=1

αnm = 1

and
ym =

M∑
n=1

αnmxn;

2. in addition, we have

` (ym − x) −→ 0 as m→∞.

For a proof of this result, we refer the reader to [80, p. 120, Theorem 2].
See also [74] and [44]. A basic result used in our argument is the Poincaré
inequality. Since we need a variant tailored for functions failing compact
support, we include it here for the sake of completeness. In the context of
functions u ∈ W 2,p(B1) ∩ W 1,p

g (B1), we make use of a Poincaré’s inequality
depending intrinsically on g. This is the content of the next lemma.
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Lemma 3 (Poincaré’s inequality) Let u ∈ W 1,p
g (B1) and Cp > 0 be the

Poincaré’s constant associated with Lp(B1). Then, for every C < Cp there
exists C1(C,Cp) > 0 and C2 ≥ 0 such that

ˆ
B1

|Du|pdx − C

ˆ
B1

|u|pdx + C2 ≥ C1

(ˆ
B1

|Du|pdx +
ˆ
B1

|u|pdx
)
.

For the proof of Lemma 3, it suffices to apply the compactly supported
version of the Poincaré’s Inequality to the function ũ := u−g. For the detailed
argument, we refer the reader to [45, Lemma 2.7, p. 22].

The remainder of this section collects elements pertaining to the analysis
of degenerate fully nonlinear equations.

Next, we introduce auxiliary results capable of ensuring compactness
of the solutions for a variant of (1.5). The next proposition is the so-called
Crandall-Ishii-Lions Lemma.

Proposition 1 (Crandall-Ishii-Lions Lemma) Let Ω ⊂ B1, u ∈ C(B1)
and ψ ∈ C2(Ω × Ω). Let G : S(d) × Rd × R × B1 → R be degenerate elliptic.
Set

w(x, y) := u(x)− u(y) for (x, y) ∈ Ω× Ω.

If the function w − ψ attains its maximum at (x̄, ȳ) ∈ Ω × Ω, then for each
ε > 0, there exist X, Y ∈ S(d) such that

G(X,Dxψ(x̄, ȳ), x̄) ≤ 0 ≤ G(Y,Dyψ(x̄, ȳ), ȳ). (2.8)

In addition, we have

−
(1
ε

+ ‖A‖
)
I ≤

 X 0
0 −Y

 ≤ A+ εA2, (2.9)

where A = D2ψ(x̄, ȳ).

For a proof of this proposition, we refer the reader to [43, Theorem 3.2].
We close this section with a lemma that plays a key role in our analysis in this
part.

Lemma 4 (Modulating `1 sequences) Given any sequence of summable
numbers (aj)j∈N ∈ `1 and ε, δ > 0, there is a sequence (cj)j∈N ∈ c0, satisfying

max
j∈N
|cj| ≤ ε−1

such that
(bj)j∈N :=

(
aj
cj

)
j∈N
∈ `1
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and
ε

(
1− δ

2

)
‖(aj)‖`1 ≤ ‖(bj)‖`1 ≤ ε (1 + δ) ‖aj‖`1 .

Proof. Let δ > 0. Starting off with the hypothesis (aj)j∈N ∈ `1, let n1 be an
integer such that

∞∑
k=n1
|ak| <

δ ‖(aj)‖`1
2 .

In what follows, let n2 > n1 be such that

∞∑
k=n2
|ak| <

δ ‖(aj)‖`1
23 ;

and, in general, let nj > nj−1 be such that

∞∑
k=nj
|ak| <

δ ‖(aj)‖`1
22j−1

for all j. Next we construct the sequence of positive numbers cj as follows:

c1 = · · · = cn2−1 = 1
ε
,

cn2 = · · · = cn3−1 = 1
2ε,

cn3 = · · · = cn4−1 = 1
22ε

,

...

cnj = · · · = cnj+1−1 = 1
2j−1ε

and so on. Thus, by the very construction, (cj)j∈N ∈ c0 and

max
j∈N
|cj| ≤ ε−1.

Next we estimate, for all j ≥ 1:

nj+1−1∑
k=nj

∣∣∣∣akck
∣∣∣∣ =

nj+1−1∑
k=nj

∣∣∣∣∣ ak
1/2j−1ε

∣∣∣∣∣
< 2j−1ε

nj+1−1∑
k=nj

|ak|

< 2j−1ε
δ ‖(aj)‖`1

22j−1

=
εδ ‖(aj)‖`1

2j .
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Hence

∞∑
k=1

∣∣∣∣akck
∣∣∣∣ ≤ n1−1∑

k=1

∣∣∣∣akck
∣∣∣∣+ ∞∑

k=n1

∣∣∣∣akck
∣∣∣∣

= ε‖aj‖`1 + εδ ‖(aj)‖`1
= ε (1 + δ) ‖aj‖`1

On the other hand, since

n1−1∑
k=1
|ak|+

∞∑
k=n1
|ak| = ‖aj‖`1

and
∞∑

k=n1
|ak| <

δ ‖(aj)‖`1
2

we have
n1−1∑
k=1
|ak| > ‖(aj)‖`1 −

δ ‖(aj)‖`1
2

Therefore, we obtain

∞∑
k=1

∣∣∣∣akck
∣∣∣∣ ≥ n1−1∑

k=1

∣∣∣∣akck
∣∣∣∣

= ε
n1−1∑
k=1
|ak|

> ε

(
‖(aj)‖`1 −

δ ‖(aj)‖`1
2

)

= ε ‖(aj)‖`1

(
1− δ

2

)
,

and the lemma is finally proven. �

Remark 1 Note, in general, one is not allowed to let δ → 0 as the sequence
(cj)j∈N depends itself upon δ.

In the next chapter we detail the analysis of fully nonlinear mean-field
games systems.
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3
Fully nonlinear mean-field games

In this chapter we present our findings concerning fully nonlinear MFG
systems. For ease of presentation, we recall our system of interest in the sequel.
We study F (D2u) = m1/(p−1) in B1

(Fij(D2u)m)xixj = 0 in B1,
(3.1)

We begin by formally relating (3.1) with the problem
ˆ
B1

[
F (D2u)

]p
dx −→ min . (3.2)

The natural connection between these structures follows from the first compact
variation of the functional in (3.2). Typically, we aim at characterizing the
critical points of this mapping in terms of (3.1). This is the content of the next
proposition.

Proposition 2 (Euler-Lagrange equation) The system in (3.1) is the
Euler-Lagrange equation associated with (3.2).

Proof. We open the proof by noticing the functional I[u] is well defined in
W 2,p(B1) ∩W 1,p

g (B1). Indeed, from Assumption 3, we infer that
∣∣∣∣∣
ˆ
B1

[
F (D2u)

]p
dx
∣∣∣∣∣ ≤
ˆ
B1

∣∣∣F (D2u)
∣∣∣p dx ≤ CΛp

∥∥∥D2u
∥∥∥p
Lp(B1)

.

Therefore, if we confine the minimization problem to functions in W 2,p(B1),
the functional is well defined.

To formally derive its Euler-Lagrange equation, we consider its first
compact variation. Let ϕ ∈ C∞0 (B1) and define i : [0, 1]→ R as

i(ε) :=
ˆ
B1

[
F (D2u∗ + εD2ϕ)

]p
dx,

where u∗ ∈ W 2,p(B1) is a minimizer for I[u]; then ε = 0 in minimum point for
the real function i. Hence

i
′(ε)|ε=0 = 0.
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We compute

d

dε
i(ε) = d

dε

ˆ
B1

[
F (D2u+ εD2ϕ)

]p
dx

=
ˆ
B1

∂

∂ε

[
F (D2u+ εD2ϕ)

]p
dx

= p

ˆ
B1

[
F (D2u+ εD2ϕ)

]p−1
· Fij(D2u+ εD2ϕ) ·Dxixjϕ dx.

By evaluating i′(ε) at ε = 0, we recover
ˆ
B1

[
F (D2u)

]p−1
· Fij(D2u) ·Dxixjϕ dx = 0;

integrating by parts twice, we getˆ
B1

([
F (D2u)

]p−1
· Fij(D2u)

)
xixj

ϕ dx = 0, (3.3)

for every ϕ ∈ C∞0 (B1). Consequential on (3.3) is the fact that
([
F (D2u)

]p−1
· Fij(D2u)

)
xixj

= 0 in B1.

By setting m := [F (D2u)]p−1, we recover the fully nonlinear MFG in (3.1). �

Although we have chosen to present our results in the context of the
toy-model (3.1), our techniques account for more general formulations, i.e.,
including lower order terms. The prototypical gradient-dependence we could
include is of the form

H(p, x) ∼ A(x)
(
1 + |p|2

) q
2 + V (x), (3.4)

where A ∈ L∞(B1) and V is a merely bounded and measurable potential.

3.1
Some context on MFG systems

The equations comprising (3.1) are a fully nonlinear PDE and an elliptic
equation in the double-divergence form. Interesting on their very own merits
and leading to foundational developments in the profession, those equations
have been largely studied in the course of the last fifty years. Clearly, to put
together a meaningful list of references on their regard is out of the scope of
this thesis. Therefore, we refrain from mentioning any further work than the
monographs [20] and [23].

The fully nonlinear equation in (3.1) can be regarded as the
Hamilton-Jacobi associated with an (stochastic) optimal control problem.
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Of particular interest is the nonlinear dependence on the Hessian of the
value function. Notice also the introduction of the associated density in the
underlying cost functional, through the mapping z 7→ z

1
p−1 . Finally, it is

worthy noticing that the choice for this dependence is two-fold. First, it
appears naturally in the variational derivation of (3.1). Moreover, it describes
a cost functional that penalizes crowds.

The second equation in (3.1) is a Fokker-Planck whose coefficients depend
on the value function u. In fact, it describes the distribution associated with
the stochastic process with infinitesimal generator

Fij(D2u) ∂2

∂xi∂xj
.

This description is useful in framing the fully nonlinear model (3.1) into the
context of the toy-models appearing in the MFG literature.

The mean-field games theory was introduced in [67, 68, 69] as a
mathematical framework to model scenarios of strategic interactions involving
a (very) large number of players. Its mathematical formulation is completely
described by the so-called master equation. Under additional assumptions,
on the independence of the underlying stochastic process, models simplify
substantially. Here, the work-horse of the theory is the coupling of a
Hamilton-Jacobi and a Fokker-Planck equation. In this context, several authors
advanced the topic in a variety of directions. The existence (and uniqueness)
of solutions – both in the elliptic and parabolic settings – is the object of
[9, 26, 28, 29, 30, 27, 57, 58, 56, 39, 40, 35, 71], whereas numerical developments
are reported in [1, 5, 3, 4], among others. Applications of MFG theory to life
and social sciences can be found, for instance in [2, 62, 53]. Finally, the analysis
of the master equation has been advanced in [12, 71, 31, 13, 32, 38, 54]. See
also the monographs [25, 11, 59].

Since MFG theory embeds in the context of (stochastic) optimal control
problems, it is relevant to make sure that the formulation in (3.1) is in line
with this framework. In this regard, we notice that Bellman operators are
typically Lipschitz-continuous, but fail to be C1-regular. Nevertheless, to make
sense of the second equation in (3.1), the Lipschitz regularity implied by the
(λ,Λ)-uniform ellipticity is enough.

A distinctive feature associated with mean-field games systems concerns
gains of regularity for the solutions, vis-a-vis the same equations taken isolated.
We investigate the occurrence of a similar phenomenon in the case of (3.1). In
fact, we prove that a solution (u,m) is such that D2u has better integrability
than in the case where u solves F (D2u) = µ with µ ∈ L1(B1) taken arbitrarily.
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For values of p ≥ 2 in a suitable range, this result yields a counterpart in Hölder
spaces.

Although substantial advances have been produced by the profession,
fully nonlinear formulations are yet to be addressed in the literature. In fact,
in [52] the authors put forward a well-posedness analysis based on monotonicity
properties and the Minty-Browder machinery; see [50, Chapter 5]. Under
certain regularity assumptions on F , together with monotonicity conditions,
they claim that solutions to (3.1) would be available; see [52, Section 7.1].

Our findings advance the MFG theory by establishing the existence of
weak solutions to (3.1) with no regularity assumptions on F . Indeed, we work
under ellipticity and ellipticity-like conditions on the operator governing the
MFG system. This is the content of Theorem 2.

Since the analysis of (3.1) interweaves with properties of (3.2), we proceed
with some context on the latter. An important aspect concerning the functional
in (3.2) is its dependence on the Hessian of the argument function u. The most
elementary example is the case F (M) := Tr(M), which leads to the functional
governing the equilibrium of thin plates

I∆[u] :=
ˆ
B1

∣∣∣Tr(D2u)
∣∣∣2 dx; (3.5)

the Euler-Lagrange equation associated with this functional is the plate
equation

∆∆u = 0 in B1,

also known as biharmonic operator.
Functionals of the form (3.5) are relevant in the context of conformally

invariant energies. In fact, (3.5) is conformally invariant in dimension four.
This fact suggests the development of a regularity program for biharmonic
mappings in line with the theory available in the harmonic setting. In [37] the
authors develop this theory for biharmonic mappings from (domains in) Rd

into m-dimensional spheres Sm. See also [36].
More general classes of Hessian-dependent functionals can be found in

various contexts. First, they represent an important strategy in by-passing
the lack of convexity in minimization problems. Consider, for example, the
non-convex functional

J [u] :=
ˆ
B1

(
|Du|2 − 1

)2
dx. (3.6)

An alternative to regularize J is to consider

Jε[u] :=
ˆ
B1

(
|Du|2 − 1

)2
+ ε2|D2u|2dx; (3.7)

DBD
PUC-Rio - Certificação Digital Nº 1621750/CA



Chapter 3. Fully nonlinear mean-field games 29

since Jε is convex with respect to the terms of higher order, it is possible to
investigate the existence of a minimizer uε. Ideally, information on (3.6) would
be recovered through (3.7), by taking the singular limit ε→ 0. In some cases,
such a limit entails further complexities; these are known as microstructures.
We mention that Jε is referred to as Aviles-Giga functional; see [8] and [7]; see
also [63].

Functionals depending on the Hessian of a given function also appear in
the context of energy-driven pattern formation and nonlinear elasticity, in the
study of the mechanics of solids. One example regards the study of wrinkles
appearing in a twisted ribbon [64]. In this setting, the energy functional
depends on the thickness h of the ribbon, which is regarded as a parameter,
as in ˆ

B1

|M(u, v)|2 + h2|B(u, v)|2dx,

where M and B are symmetric tensors accounting for the stretching and
bending energies of the system, respectively. Although M depends on u and v
only through lower order terms, B depends on v through its Hessian, namely

B(u, v) ∼ ‖D2u‖ + C.

The case of interest is the limit h→ 0. A further instance where higher order
functionals appear in the context of solid mechanics concerns the formation
of blister patterns in thin films on compliant substrates [10]. As before, the
functional depends on lower order terms and a small (convex) perturbation
driven by the Hessian of the minimizers.

In this literature, it is relevant to obtain matching upper and lower
bounds for the functional. It means that both upper and lower bounds scale
accordingly with respect to small parameters. In the case of [64], for instance,
the small parameter is the thickness of the ribbon, h. For recent developments
in this literature we refer the reader to [79], [41], [42] and the references therein.

When examining (3.2), our focus is two-fold. Firstly, we work under the
convexity of F and prove the existence of a minimizer, Then we notice that
such critical point is indeed a weak (distributional) solution for the associated
Euler-Lagrange equation. This fact produces the existence of solutions to (3.1).

Our second approach to (3.2) drops the convexity of the operator. Here,
a relaxation argument meets an ellipticity pass-through mechanism for the
convex envelope of F . This mechanism closely relates to coercivity. As a
consequence, we are able to characterize the minimum of the energy governed
by the fully nonlinear operator.

To complete the analysis, we study a class of unidimensional problems
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admitting explicit solutions. Our endeavours here are inspired by the analysis
in [55]. With this respect, we unveil interesting aspects of the problem. For
example, we notice that minimizing solutions pair affine functions with uniform
distributions, regardless of the growth regime of the functional; see Theorem
9.

3.2
Gains of regularity through MFG couplings

In this section we explore the gains of regularity yielded by the coupling
(3.1). This analysis is motivated by findings in the literature of mean-field
games regarding the smoothness of solutions to MFG systems. In that context,
the work-horse of the theory is the coupling of a Hamilton-Jacobi with a
Fokker-Planck equation.

When taken in isolation, those equations are solvable in the weak sense in
regularity classes strictly below those required by classical solutions. However,
in the presence of a suitable MFG coupling, smooth solutions are available.
Motivated by the toy-models studied in the literature, in what follows we
investigate gains of regularity for the solutions to fully nonlinear mean-field
games. We focus on estimates in Sobolev spaces.

Now, let u ∈ C(B1) be a viscosity solution of

F (D2u) = µ
1

p− 1 in B1,

where F satisfies Assumption 1-Assumption 2, µ ∈ L1(B1) is a non-negative
function and p− 1 ≥ d. In this context, it is known that u ∈ W 2,p−1

loc (B1), with
appropriate estimates. We refer to reader [21], [22] and [72]. However if (u,m)
solves (3.1), this result can be improved. Next we detail the proof of Theorem
1, restated here as a courtesy to the reader.

Theorem 6 (Restatement of Theorem 1) Let (u, µ) be a weak solution to

(3.1). Suppose Assumptions 1 and 2 are in force. Then, u ∈ W 2, d(p−1)
d−1

loc (B1). In
addition, there exists a universal constant C > 0 such that

‖u‖
W

2, d(p−1)
d−1 (B1/2)

≤ C
(
‖u‖L∞(B1) + ‖µ‖

1
p−1
L1(B1)

)
.

Proof. The result follows by combining standard arguments inW 2,p-regularity
theory with Lemma 1. Indeed, under Assumption 1-Assumption 2, it remains
to verify that the right-hand side of the first equation in (3.1) is uniformly
bounded in L

d(p−1)
d−1 (B1).
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Because of Lemma 1, we have µ ∈ L
d
d−1 (B1). Therefore, there exists

C > 0 such that ˆ
B1

∣∣∣µ 1
p−1
∣∣∣ d(p−1)
d−1 dx ≤ C

and the result follows. �

The conclusion of Theorem 6 is that the MFG structure in (3.1) entails
improved regularity levels for u in Sobolev spaces; see Figure 3.1.

Figure 3.1: Gains of regularity. When equipped with a non-negative right-hand
side µ ∈ L1(B1), the equation F = µ1/(p−1) has solutions in W 2,q

loc (B1), for
d − ε < q ≤ p − 1. Nevertheless, if we consider a pair (u, µ), solutions to (3.1),
the regularity of the solutions to F = µ1/(p−1) improves; in that case, the range for
d− ε < q < d(p− 1)/(d− 1) increases by a dimension-dependent factor.

A straightforward consequence of this fact concerns regularity in Hölder
spaces. It is put forward in the next corollary.

Corollary 1 (Improved regularity in Hölder spaces) Let (u, µ) be a
weak solution to (3.1) and suppose Assumption 1-Assumption 2 are in force.
Suppose further that p− 1 > d. Then, u ∈ C1,α∗

loc (B1), for

α∗ := 1 − d − 1
p − 1 .

In addition, there exists C > 0 such that

‖u‖C1,α∗ (B1/2) ≤ C
(
‖u‖L∞(B1) + ‖µ‖

1
p−1
L1(B1)

)
.

Proof. The proof is immediate and follows from standard Sobolev Embedding
Theorems. �
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Remark 2 It is clear that the results in this section hold in the context
of an operator F = F (M,x) with variable coefficients, provided it satisfies
an oscillation estimate with respect to its fixed-coefficients counterpart. For
instance, we can consider the oscillation measure introduced in [22]. Namely,
the function β0 : B1 → R given by

β0(x) := sup
M ∈S(d)

|F (M,x)− F (M, 0)|
1 + ‖M‖ .

Appropriate smallness-regimes imposed on β0 would unlock similar
developments for variable coefficients operators. We refer the reader to [23]. In
addition, the convexity assumption on F might be weakened. Indeed, we only
require a limiting profile with C1,1-estimates to be available; such a limiting
configuration can be given by the fixed-coefficients counterpart of F (M,x) or
its recession operator. See [72] and [75].

Remark 3 (Non-monotone couplings) We notice the gains of regularity
discussed here would be available also under the non-monotone coupling term
z 7→ −z

1
p−1 , instead of the monotone one in (3.1).

In the next section we make use of variational techniques to investigate
the existence of solutions to (3.1).

3.3
Existence of solutions

Here we investigate the existence of minimizers to (3.2) as well as
the existence of solutions to (3.1). We work both under Assumption 1 and
Assumption 3. In the context of the former, we prove the existence of
minimizers for (3.2) in the class of convex functions A defined as

A :=
{
u ∈ W 2,p(B1) ∩W 1,p

g (B1), u convex
}
,

where g ∈ W 2,p(B1) is convex. When working under Assumption 3 we establish
the existence of a minimizer for (3.2) in W 2,p(B1) ∩W 1,p

g (B1). In addition, we
prove that such a minimizer is a solution to the associated Euler-Lagrange
equation, which leads to the existence of a solution to (3.1).

Proposition 3 (Existence of minimizers in A) Suppose Assumptions 1
and 2 are in force. Then, there exists u∗ ∈ A such that

I[u∗] ≤ I[u] for every u ∈ A.
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The proof of Proposition 3 relies on the weak lower semicontinuity of the
functional I in the class A. This is the content of the next proposition.

Proposition 4 Suppose Assumptions 1 and 2 hold true. Let (un)n∈N ∈ A be
such that

D2un ⇀ D2u∞ in Lp(B1,Rd2).

Then,
lim inf
n→∞

I[un] ≥ I[u∞].

Proof. We start by establishing the strong lower-semicontinuity of
the functional I. Then, we resort to Lemma 2 to obtain the weak
lower-semicontinuity.

Step 1 - Because (un)n∈N ⊂ A, we have D2un(x) ≥ 0 almost everywhere in
B1. Therefore, Assumption 1 yields

F (D2un(x)) ≥ λ‖D2un(x)‖ ≥ 0, a.e.x ∈ B1. (3.8)

Now, suppose D2un → D2u∞ strongly in Lp(B1); through a subsequence, if
necessary. We infer that D2un → D2u∞ almost everywhere in B1. Hence,
Fatou’s Lemma builds upon the (Lipschitz) continuity of F to imply

ˆ
B1

[
F (D2u∞(x)

]p
dx ≤ lim inf

n→∞

ˆ
B1

[
F (D2un(x)

]p
dx.

Step 2 - To prove the weak lower-semicontinuity we make use of Lemma 2.
Notice that

0 ≤ lim inf
n→∞

I[un] < ∞.

For every ε > 0, there exists nε ∈ N such that for n > nε, we have

I[un] ≤ lim inf
n→∞

I[un] + ε. (3.9)

For ε > 0 fixed, Lemma 2 ensures the existence of (D2vm)m∈N ⊂ co(D2un)n∈N
such that D2vm → D2u∞ in Lp(B1). Moreover, for every m ∈ N, one can find
M > nε and points αm := (αnεm , . . . , αMm ) in the (M − nε + 1)-dimensional
simplex such that

D2vm =
M∑
i=nε

αimD
2ui. (3.10)

The convexity of [F ( · )]p combined with the strong lower-semicontinuity and
(3.9) leads to

I[u∞] ≤ I[vm] ≤
M∑
i=nε

αimI[ui] ≤ lim inf
n→∞

I[un] + ε.
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Since ε > 0 was taken arbitrarily, the proof is complete. �

Once the weak lower-semicontinuity of the functional I has been
established, we prove the existence of a minimizer to (3.2) in the class A.
Proof of Proposition 3. We start by setting

m := inf
u∈A

I[u].

Clearly, m > 0, since g is not trivial. On the other hand, m ≤ I[g] < +∞.
Hence, 0 < m < ∞. Let (un)n∈N ⊂ A be a minimizing sequence. There exists
N ∈ N such that

I[un] ≤ m + 1 for every n > N.

Therefore,

‖D2un‖Lp(B1) ≤
1
λp

ˆ
B1

[
F (D2un)

]p
dx ≤ C(m,λ, p), (3.11)

for every n > N . As a result, we infer that (D2un)n∈N is uniformly bounded in
Lp(B1). Because of Lemma 3, we conclude that (un)n∈N is uniformly bounded
in W 2,p(B1)∩W 1,p

g (B1). Therefore, there exists u∞ ∈ A such that un ⇀ u∞ in
W 2,p(B1) ∩W 1,p

g (B1).
Proposition 4 implies that

I[u∞] ≤ lim inf
n→∞

I[un] = m;

we set u∗ ≡ u∞ and the proof is complete. �

Remark 4 If we replace Assumption 1 with Assumption 3 the conclusion of
the Proposition 3 changes. In fact, under Assumption 3, the inequality in (3.8)
holds true for every u ∈ W 2,p(B1)∩W 1,p

g (B1). As a result, we obtain that I is
weakly lower semicontinuous overW 2,p(B1)∩W 1,p

g (B1). Moreover, Assumption
3 yields (3.11) for every minimizing sequence (un)n∈N ⊂ W 2,p(B1)∩W 1,p

g (B1).
The conclusion is that under Assumption 2 and Assumption 3, there

exists u∗ ∈ W 2,p(B1) ∩W 1,p
g (B1) such that

I[u∗] ≤ I[u] for every u ∈ W 2,p(B1) ∩W 1,p
g (B1).

That is, problem (3.2) admits a minimizer in W 2,p(B1) ∩W 1,p
g (B1).

In the sequel, the discussion in Remark 4 builds upon standard methods
in calculus of variations to produce information on the Euler-Lagrange equation
(3.1). Ultimately, it leads to the existence of solutions to (3.1). As before, we
restate Theorem 2 in what follows.
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Theorem 7 (Restatement of Theorem 2) Suppose Assumptions 2 and 3
hold true. Then, there exists a minimizer u∗ ∈ W 2,p(B1)∩W 1,p

g (B1) for (3.2) in
the space W 2,p(B1)∩W 1,p

g (B1). In addition, such a minimizer yields a solution
(u∗,m∗), solutions to the fully nonlinear mean-field game system (3.1).

Proof. We start by noticing that, because F is L-Lipschitz-continuous in S(d)
and F (0) = 0, we infer that

|F (M)|p ≤ Lp |M |p

and
|Fij(M)| ≤ L,

uniformly in M . By combining Proposition 3 with Remark 4, we infer the
existence of a minimizer u∗ for (3.2) in the Sobolev spaceW 2,p(B1)∩W 1,p

g (B1).
Therefore, for every φ ∈ C∞0 (B1), we have
ˆ
B1

Fij(D2u∗)F (D2u∗)p−1φxixjdx ≤
ˆ
B1

∣∣∣Fij(D2u∗)
∣∣∣ ∣∣∣F (D2u∗)

∣∣∣p−1 ∣∣∣φxixj ∣∣∣dx
≤ C

(
1 + ‖D2u∗‖pLp(B1)

)
, (3.12)

where C = C(λ,Λ, d, p). Since u∗ ∈ W 2,p(B1) ∩W 1,p
g (B1), the weak form of

the Euler-Lagrange equation associated with (3.2) is well-defined for every
φ ∈ C∞c (B1).

By setting m∗ := F (D2u∗), we notice that u∗ is a viscosity solution to
the first equation in (3.1). In addition, Assumption 3 implies that m∗ ≥ 0.
Finally, m∗ is clearly integrable, since

ˆ
B1

m∗ dx ≤ C(p, d,Λ) +
ˆ
B1

∥∥∥D2u∗(x)
∥∥∥p dx ≤ C(p, d,Λ, g).

The function m∗ satisfies the second equation in (3.1) by construction.
Since F (D2u) ∈ Lp−1

loc (B1), we get that m ∈ L1
loc(B1). From the growth

condition satisfied by F , we have m ≥ 0. Therefore, the proof is complete. �

Remark 5 (Uniqueness of solutions) The uniqueness of solutions follows
from strict convexity of the operator F . We expect that a condition in line
with the Lasry-Lions monotonicity argument would also lead to uniqueness.

Remark 6 (Logarithmic nonlinearities) Under appropriate convexity
assumptions on F , it is reasonable to expect that minor modifications of our
arguments would account for a problem of the form

Ĩ[u] :=
ˆ
B1

eF (D2u) dx −→ min . (3.13)
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In fact, if F = F (M) is convex, the function eF (M) is also convex. Also, we
notice that under Assumption 3

λ‖M‖ ≤ eλ‖M‖ ≤ eF (M).

The interest in (3.13) is mostly motivated by its Euler-Lagrange equation. It
gives rise to the following MFG system:F (D2u) = lnm in B1

(Fij(D2u)m)xixj = 0 in B1.
(3.14)

The problem in (3.14) is known as MFG with logarithmic nonlinearities
and plays an important role in the mean-field games literature, see [56].

Remark 7 (Lower order terms) We notice that Proposition 3 and
Theorem 7 can be adapted to include more general operators, namely,
depending on lower-order terms. Suppose

F : S(d)× Rd × R×B1 −→ R

is such that, for every M ∈ S(d), ξ ∈ Rd, r ∈ R and x ∈ B1, we have

λ‖M‖+ α‖ξ‖+ β|r| ≤ F (M, ξ, r, x) ≤ Λ‖M‖+ A‖ξ‖+B|r|,

for some 0 < λ ≤ Λ, 0 < α ≤ A and 0 < β ≤ B. Here, the Euler-Lagrange
equation produces the more general MFG systemF (D2u,Du, u, x) = m1/(p−1) in B1

(Fijm)xixj + (Fijm)xi + Fijm = 0 in B1.

As mentioned in the introduction, we also believe our methods and
techniques would extend to operator of the form

F (M) + H(p),

provided H satisfies (3.4). For the sake of presentation, we refrain from
pursuing explicitly those computations. It is clear that (3.4) builds upon
our previous computations to produce the required coercivity and weak-lower
semicontinuity, with eventual conditions on the exponent q. We finish this
remark by observing that different choices of q would lead to equations
involving different operators.

In the sequel we investigate the minimizers of (3.2) in the cases where
the operator F fails to be convex.
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3.4
Analysis in the non-convex setting

In what follows we consider the case of functionals driven by non-convex
operators F . As it is well known, one cannot ensure the existence of minimizers
in this context. Nonetheless, information about

min
u∈W 2,p(B1)∩W 1,p

g (B1)
I[u]

still can be obtained through the so-called relaxation methods, that is, by the
study of the relaxed problem

Ī[u] :=
ˆ
B1

[
ΓF (D2u)

]p
dx −→ min (3.15)

Here, we develop this approach and combine it with the discussion in Section
3.3. We start with a proposition.

Proposition 5 (Coercivity of the convex envelope) Suppose F satisfies
Assumption 3. Then, ΓF satisfies a coercivity condition of the form

λ‖M‖ ≤ ΓF (M),

for every M ∈ S(d).

Proof. The result follows from the convexity of the norm. Since ΓF (M) is the
supremum taken among all the convex functions G : S(d) → R evaluated at
M , we must have

λ‖M‖ ≤ sup {G(M) |G ≤ F and G is convex} .

�

Now we are in position to produce a proof of Theorem 3. We restate and prove
this result in the sequel.

Theorem 8 (Restatement of Theorem 3) Suppose Assumption 3 is in
force. Then, there exists (un)n∈N ⊂ W 2,p(B1) ∩W 1,p

g (B1) such that

I[un] −→ Ī[u∗]

and
un ⇀ u∗ in W 2,p(B1),
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as n→∞, where u∗ ∈ W 2,p(B1) ∩W 1,p
g (B1) is the minimizer of

Ī[u] :=
ˆ
B1

[
ΓF (D2u)

]p
dx.

Proof. We start by showing that the convex envelope of F inherits the growth
regime imposed by Assumption 3. In fact, Proposition 5 yields the required
lower bounds. To obtain the upper bound, notice that ΓF (M) is below F ;
hence

ΓF (M) ≤ Λ‖M‖,

for every M ∈ S(d). Therefore, ΓF is a convex mapping satisfying Assumption
3 and falls within the scope of Proposition 3. We conclude that (3.15) has a
minimizer u∗. That is, there exists u∗ ∈ W 2,p(B1) ∩W 1,p

g (B1) such that

Ī[u∗] ≤ Ī[u],

for every u ∈ W 2,p(B1) ∩ W 1,p
g (B1). Finally, we evoke standard relaxation

results and the proof is complete. �

The contribution of Theorem 8 is to provide information on problem (3.2)
in the absence of convexity. Although it might fail to have a minimizer, we
characterize its infimum in terms of the convex envelope of F . In addition, the
element u∗ ∈ W 2,p(B1) ∩W 1,p

g (B1) that produces the infimum of the relaxed
problem is the weak limit of a sequence for which the original functional is
defined.

3.5
Explicit solutions in the unidimensional setting

In this section we work out in detail an explicit example in dimension
d = 1. This concrete model allows us to produce explicit solutions with very
simple structure and perform some analysis of the various features involved in
the problem. Our analysis is motivated by [55].

Here, we consider the open interval (0, 1) and especialize F = F (z) to be
given by

F (z) := (1 + zp)
1
p , (3.16)

where p ≥ 2 is a fixed integer. Then we have

F ′′(z) = (1 − p)z2p−2(1 + zp)
1−2p
p + (p − 1)zp−1(1 + zp)

1−p
p ;

therefore, F ′′(z) might be negative depending on the values of z and p. In that
case, F fails to be convex with respect to z. In addition, if p ∈ 2N + 1 is an
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odd number, the operator also lacks differentiability.
Under (3.16), the functional in (3.2) becomes

I[u] =
ˆ 1

0
1 + upxx(x)dx,

whereas (3.1) comprises

(1 + upxx(x))
1
p = m

1
p−1 (3.17)

and  up−1
xx (x)m(x)

(1 + upxx(x))
p−1
p


xx

= 0. (3.18)

As a consequence, it follows that

(
up−1
xx

)
xx

= 0.

Thus, we discover

u(x) = A ((p− 1)x − B)2+ 1
p−1

p(2p − 1) + Cx + D (3.19)

where A, B, C and D are constants. Using (3.17) we find

m(x) =
(

1 +
[
A ((p − 1)x − B)

1
p−1
]p) 1

p

, (3.20)

Now we turn our attention to the minimization problem driven by I[u].
We infer from (3.19) that

I[u] = 1 +
A
(
[(p − 1) − B]

p
p−1 − (−B)

p
p−1
)

p

Our goal is to characterize A and B in order to minimize I[u]. By resorting to
the first order conditions, we find that such constants must be chosen in order
to satisfy both

(
A2(−AB)

1
p−1
)p
−
(
A2(A(−B + p− 1))

1
p−1
)p

= 0

and

A2p−1
[
Bp

(
(−AB)

1
p−1
)p

+ p(−B + p− 1)
(
(A(−B + p− 1))

1
p−1
)]p

= 0.

To ensure that both constraints derived from the first order conditions are
met, we must have A ≡ 0. Therefore, a solution to (3.17)-(3.18) minimizes the
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associated functional I[u] if it takes the form

u(x) := Cx + D and m(x) ≡ 1.

Among the solutions to the mean-field games system, those minimizing
the functional comprise an affine mapping u and a uniform distribution
m. A remarkable aspect of this toy-model is that minimizing solutions are
independent of the power p ≥ 2.

In the presence of a boundary condition u(0) = g(0) and u(1) = g(1), we
have

D := g(0) and C := g(1) − g(0).

The previous findings are summarized in Theorem 4. We restate it in what
follows:

Theorem 9 (Restatement of Theorem 4) Let F be given as in (3.16).
Then

1. A solution (u,m) to the associated mean-field games system is given by

u(x) = A ((p− 1)x − B)2+ 1
p−1

p(2p − 1) + Cx + D

and
m(x) =

(
1 +

[
A ((p − 1)x − B)

1
p−1
]p) 1

p

,

where A, B, C, and D are real constants.

2. A minimizing solution (u∗,m∗) comprises an affine mapping and a
uniform distribution; i.e.,

u∗(x) = A∗x + B∗

and
m∗(x) = 1,

where A∗ and B∗ are real constants.

Remark 8 In [52], the authors study the well-posedness of mean-field games
systems through monotonicity methods. As a remark, they mention the case of
fully nonlinear MFG; see [52, Section 7.1]. In that paper the authors suppose
the operators to be convex and of class C∞ with respect to the Hessian of
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the solutions. Therefore, their analysis does not include the class of examples
addressed in the present section. In fact, the operator

F (z) := (1 + zp)
1
p

fails to be convex for odd values of p ∈ 2N + 1. In addition, z 7→ F (z) is not
smooth. This fact reinforces the importance of explicit examples, such as the
one in (3.17)-(3.18), accompanying results stated in more general settings.
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4
Degenerate Fully Nonlinear Equations

In this chapter we examine the (sharp) regularity for the solutions to
degenerate nonlinear elliptic equations of the form

F (Du,D2u) = f(x) in B1. (4.1)

Here the source term f(x) is continuous and bounded function and the
nonlinear operator F : Rd × S(d) → R is degenerate elliptic, with law of
degeneracy σ, for which its inverse σ−1 satisfies the Dini condition. This means
F (~p,M) = σ(|~p|)F (M), where F : S(d)→ R, representing the diffusion agent
of the model is uniformly elliptic operator and σ is a modulus of continuity,
otherwise called the law of degeneracy of the equation. Our main regularity
result states that solutions to (4.1) are locally C1-regular, with the appropriate
estimates.

The rationale of our arguments finds itself under the scope of the set of
methods usually referred to as geometric tangential analysis; see, for example,
[76], [73] and [77]. In a nutshell, this class of techniques aims at relating a
given problem of interest with an auxiliary, more developed one; ultimately,
the geometric structure relating both allows us to transmit information from
the latter to the former. This approach is very much inspired by trailblazing
ideas developed in [22]. See also [23].

In the concrete case of our work, we explore the connection between (4.1)
and the homogeneous, uniformly elliptic, problems driven by F . That is,

F (D2u) = 0 in B1. (4.2)

Of particular interest, is the fact that solutions to (4.2) are known to be
C1,α-regular, for some α ∈ (0, 1) universal, though unknown. This is the content
of the Krylov-Safonov theory [65], [66]. We proceed with some context on the
topic.

4.1
Some context on degenerate fully nonlinear equations

The model in (4.1) accounts for a nonlinear diffusion whose ellipticity
collapses as the gradient of the solution vanishes. The degeneracy behavior is
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encoded by the modulus of continuity σ. Our analysis accommodates important
examples, accounting for distinct degeneracy-profiles, as the assumptions under
which we work are flexible. For example, we mention the log-Lipschitz modulus
of continuity, given by

σlog-Lip(t) := t
(

ln
(1
t

)
+ 1

)
,

and its α-variant
σα-log-Lip(t) := t

(
ln
(1
t

)
+ 1

)−α
,

for α > 0.
Diffusion processes whose ellipticity is affected by a gradient-dependent

term are of fundamental relevance in analysis of partial differential equations.
A paramount example – in the variational setting – is the p-Poisson equation

div (a(Du)) = f in B1,

where a(~v) ∼ |~v|p−2 ~v. The prototype of the theory is the classical p-Laplacian,
which appears in connection with the optimization problem of the p-Dirichlet
integral and accounts for a variety of important models in life and social
sciences. As regards the regularity of the solutions to p-Poisson equation, these
are known to be C1,α-regular, for some α ∈ (0, 1); see, for instance, [48]. For a
detailed account of this class of equations, we refer the reader to [70] and the
references therein.

A robust nonlinear potential theory for treating variational problems with
gradient degeneracy has been developed as an offspring of the pioneering work
of De Giorgi [47] and since then it has been a rich and powerful line of research.
In this article, though, we are interested in a non-variational counterpart of
the theory, to whom Krylov–Safonov work [66] plays the role of De Giorgi’s.

Heuristically, the law of degeneracy σ impairs the diffusibility attributes
of the model. The stronger the degeneracy law is, the less efficiently the model
diffuses, which in turn affects the smoothing properties of the system. That is,
using the natural order for laws of degeneracy:

σ1 ≺ σ2 provided σ1(t) = o (σ2(t)) ,

one should expect that if σ1 ≺ σ2 then the class of solutions of equations with
σ2 law of degeneracy should be quantitatively smoother than the corresponding
class for σ1. A universal regularity theory for solutions of such equations
is the mathematical manifestation of the diffusibility impairment caused by
degeneracy.
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Indeed, a classical result obtained independently by Trundiger [78] and
Caffarelli [22] asserts that if σ ∼ 1, that is, if the equation is non-degenerate,
otherwise termed uniformly elliptic, then solutions are locally of class C1,α. If no
condition whatsoever is imposed upon the law of degeneracy σ, then solutions
may fail to be differentiable; in this case the best one can expect is local Hölder
continuity, see [61]. The goal of this part of the thesis is to examine minimal
conditions upon σ as to assure solutions retain C1–differentiability properties.
As it happens in many branches of mathematical analysis, C1 estimate is indeed
conceptually more difficult as it often represents a critical borderline regularity.

The heuristic discussion above conveys that such a condition should
somehow prevent σ(~p) from approaching 0 too abruptly. Our main result in
this part captures this insight in a clear and concise format.

In particular, if σ−1 behaves as a Hölder continuous function near
the origin, then solutions are in fact locally C1,γ, for some 0 < γ < 1.
This accounts for non-linear elliptic PDEs with power–like degeneracy laws,
σ(|~p|) = O

(
|~p|M

)
, as ~p → 0, for some M > 0, and thus Theorem 5 extends

the results from [60], see also [6].
We conclude the introduction by describing, at large, the strategy

followed for proving Theorem 5. Given a point x0 ∈ B1/4, we want to attain the
existence of a tangent hyperplane Hx0 = `−1

x0 (0) and a modulus of continuity
ω such that

sup
x∈Bγ(x0)

|u(x)− `x0(x)| ≤ γω(γ),

for all 0 < γ ≤ 1/4. This is achieved by means of a geometric recursive
construction. Given a family of laws of degeneracy Σ, define the functional
space Ξε,λ,Λ,Σ to be the set of all continuous functions u ∈ C(B1) such that
‖u‖∞ ≤ 1 and ∣∣∣F (Du,D2u)

∣∣∣ < ε

in the viscosity sense, for an operator F (~p,M) = σ(~p)F (M), with F

(λ,Λ)-elliptic and σ ∈ Σ. Then for some positive β > 0 there exists a modulus
of continuity τ such that

Ξε,λ,Λ,Σ

∣∣∣∣
B1/2

⊂ Nτ(ε)
(
C1,β(B1/2)

)
(4.3)

where Ξε,λ,Λ,Σ

∣∣∣∣
B1/2

simply represents the restriction of functions in Ξε,λ,Λ,Σ to

B1/2 and Nτ(ε)
(
C1,β(B1/2)

)
is the τ(ε)—neighborhood of C1,β(B1/2) within

L∞(B1/2).
Here comes the first main technical difficulty of the proof. To attain

such a pivotal result, one must require a sort of “non-collapsing" property
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upon the family of laws of degeneracy. Otherwise, if one does not prevent a
sequence of laws of degeneracy σj to converge to a function σ∞ which vanishes
identically on a non-trivial interval [0, δ], δ > 0, then any function whose
Lipschitz norm is less than δ would belong to the limit set of solutions and
(4.3) could not hold true. The concept of non-collapsing moduli of continuity
and the approximation scheme will be introduced later.

Once such a result is available, the idea is to iterate it, using supporting
hyperplanes of C1,β(B1/2) functions that are close enough to a scaled version
of the preceding element of the sequence. To put forward such strategy,
though, one has to tackle two intrinsic difficulties. The first one is that u
subtracted an affine function solves a family of equations parametrized by a
non-compact set of parameters, for which one nonetheless has to extract some
compactness property. This is attained by classical PDE methods, inherent of
the viscosity theory. The second, and most challenging difficulty is that these
corresponding PDEs are now ruled by a new family of degeneracy laws, which
could be collapsing. The main novelty here is a new algorithm for choosing the
normalization in each step, based on a sort of “shoring-up” technique, which
effectively prevents collapsing of the resulting degeneracy laws.

When it comes to (4.1), the work-horse of the theory has been the model
degeneracy σ(t) = tθ, where θ > −1. It leads to equations of the form

|Du|θF (D2u) = f in B1. (4.4)

For this choice of σ, the resulting equation can be regarded as a nonvariational
counterpart of the p-Poisson model. The general theory of (4.4) has
known a number of important developments, covering comparison principles,
well-posedness for the Dirichlet problem and maximum principles, including
an Aleksandroff-Bakelman-Pucci estimate; see [14], [15], [16], [17], [18], [46].

As regards the regularity of the solutions to (4.4), it was first examined
in [60], [19] and [6]. In brief, if u ∈ C(B1) is a viscosity solution to (4.4), then
we have u ∈ C1,α

loc (B1), with the appropriate estimates. Of particular interest
is the optimal regularity discovered in the presence of convex operators F ; in
this case, solutions are C1, 1

1+θ -regular.
In [61] a new perspective on diffusion processes degenerating through

a gradient-dependent term is launched. Instead of prescribing the manner in
which ellipticity collapses as the gradient of the solutions vanishes, the authors
propose the analysis of an equation holding only at the points where the gradient
is large. Put differently: instead of prescribing a problem that might degenerate
in some subregion of the domain, the model in [61] concerns a diffusion process
taking place only where |Du| ≥ γ, for some γ > 0. They prove that solutions
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to this class of diffusions are locally Hölder-continuous.
The notion of an equation holding only in a subregion where the gradient

of the solutions is above certain quantity bears an intrinsic connection with
obstacle and free boundary problems.

Figure 4.1: By prescribing (4.1) in Br1 , we examine an equation that holds, in fact,
in the regions where |Du| 6= 0. In the subregions where the gradient vanishes, there is
no PDE available. As a consequence, information on the solutions of the problem are
not retrieved through usual structures (e.g., degenerate or uniform ellipticity). Away
from the interfaces separating both subregions, solutions are known to be regular.
The challenge in establishing local regularity results, say, in Br2 , amounts to ensure
that at a point x∗ ∈ Br2 ∩ ∂{Du = 0} it is possible to center a smaller ball within
which solutions are regular enough.

In fact, if u is a viscosity solution to (4.1), at the points where its gradient
vanishes, the equation falls short in providing information on the diffusion
process. An interesting analysis has to do with the interface separating
the regions {Du = 0} and {Du 6= 0}. Away from this interface, either
solutions are locally constant (and therefore locally smooth) or they satisfy a
uniformly elliptic equation with bounded left-hand side. Therefore, away from
the interface a soundly-based regularity theory – such as the Krylov-Safonov
Theorem – is available. The critical aspect of the analysis is to understand
the behavior of viscosity solutions across ∂{Du = 0}. Even more important, is
the analysis of how the regime-switching across the interface resonates in the
regularity theory available for (4.1). See Figure 4.1.

Our findings address those questions. Indeed, in the presence of a
degeneracy rate given by a modulus of continuity, solutions cross the interface
with a C1-geometry. The proof of this fact unfolds along three main results.
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First, we establish compactness for a variant of (4.1). Then, an approximation
result relates solutions to this perturbed equation with F = 0. Once this
connection is available, an scaling argument builds upon the Dini-continuity
of σ−1 unlocking an oscillation estimate and ultimately leading to the result
– and explicitly characterizing the modulus of continuity of Du. In the sequel
we establish compactness for a variant of (4.1).

4.2
Compactness for perturbed PDEs

In this section we produce preliminary levels of compactness for the
solutions to a variant of (4.1), by proving that bounded solutions to a
family of equations, that are parametrized by vectors of Rd, are uniformly
locally Hölder-continuous. This will be attained by means of classical viscosity
methods. Part of our arguments involve an scaling argument. As a result, scaled
functions satisfy a different equation, i.e.:

F (Du+ ξ,D2u) = f in B1 (4.5)
where ξ ∈ Rd is arbitrary and F (~p,M) = σ(|~p|)F (M). The first genuinely
challenging instance of our analysis is to produce estimates for the solutions
to (4.5) not depending on ξ.

Theorem 10 (Hölder-continuity) Let u ∈ C(B1) be a normalized viscosity
solution to (4.5). Suppose Assumptions 1, 4 and 6 are in force. Then, u is
locally Hölder-continuous in B1. In addition, there exists C > 0, not depending
on ξ ∈ Rd, such that

sup
x,y ∈ B1/2

x6=y

|u(x) − u(y)|
|x − y|β

≤ C,

for some β ∈ (0, 1), universal though unknown.

Proof. As commented, the proof follows standard methods in viscosity theory.
We will carry all details for completeness.

Let ω : R → R be defined as ω(t) := t − 1
2t

2. For some 0 < r � 1 fixed
and a constant C0 > 0 to be determined further in the proof, we prove the
existence of L1, L2 > 0 such that

L := sup
x,y∈Br

(u(x) − u(y)− L1ω(|x− y|)− L2(|x − x0|2 + |y − x0|2)) ≤ 0,

for every x0 ∈ Br/2. As it is usual when resorting to this class of arguments, we
reason through a contradiction argument. That is to say the following: suppose
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for every L1 > 0 and L2 > 0, there is x0 ∈ Br/2 for which L > 0. In what
follows, we split the proof in several steps.

Step 1 - Consider ψ, φ : Br ×Br → R, defined by

ψ(x, y) := L1ω(|x− y|) + L2(|x− x0|2 + |y − x0|2)

and
φ(x, y) := u(x)− u(y)− ψ(x, y).

Let (x̄, ȳ) ∈ Br ×Br be a maximum point for φ. Thus

φ(x̄, ȳ) = L > 0.

We therefore conclude

ψ(x̄, ȳ) < u(x̄) − u(ȳ) ≤ oscB1 u ≤ 2.

It follows that

L1ω(|x̄ − ȳ|) + L2(|x̄ − x0|2 + |ȳ − x0|2) ≤ 2.

As usual, at this point we choose L2 as to ensure that x̄ and ȳ are interior
points. In fact, if

L2 :=
(

4
√

2
r

)2

we get
|x̄ − x0| ≤

r

4 and |ȳ − x0| ≤
r

4 ,

hence concluding x̄, ȳ ∈ Br. Finally, it is straightforward to notice that x̄ 6= ȳ;
otherwise, we would have L ≤ 0 trivially.

Step 2 - At this point, we resort to the Crandall-Ishii-Lions Lemma, stated
in Proposition 1. We proceed by computing Dxψ and Dyψ at (x̄, ȳ). We find

Dxψ(x̄, ȳ) = L1ω
′(|x̄− ȳ|)|x̄− ȳ|−1(x̄− ȳ) + 2L2(x̄− x0),

and
−Dyψ(x̄, ȳ) = L1ω

′(|x̄− ȳ|)|x̄− ȳ|−1(x̄− ȳ)− 2L2(x̄− x0).

For ease of presentation, we introduce the following notation:

ξx̄ := Dxψ(x̄, ȳ) and ξȳ := Dyψ(x̄, ȳ).

DBD
PUC-Rio - Certificação Digital Nº 1621750/CA



Chapter 4. Degenerate Fully Nonlinear Equations 49

From Proposition 1 we learn that for every ε > 0, there are matrices
X, Y ∈ S(d) satisfying the viscosity inequalities

σ(|ξx̄ + ξ|)F (X)− f(x̄) ≤ 0 ≤ σ(|ξȳ + ξ|)F (Y )− f(ȳ). (4.6)

In addition,  X 0
0 −Y

 ≤
 Z −Z
−Z Z

 + 2L2I + εA2, (4.7)

where A := D2ψ(x̄, ȳ) and

Z := L1ω
′′(|x̄− ȳ|)(x̄− ȳ)⊗ (x̄− ȳ)

|x̄− ȳ|2
+L1

ω′(|x̄− ȳ|)
|x̄− ȳ|

(
I − (x̄− ȳ)⊗ (x̄− ȳ)

|x̄− ȳ|2

)
.

Step 3 - Next we apply the matrix inequality (4.7) to suitable vectors to
recover information on the eigenvalues of X − Y . Let v ∈ Sd−1 and consider
first (v, v) ∈ R2d; we obtain

〈(X − Y )v, v〉 ≤ (4L2 + 2εη),

where η := ‖A2‖. It is consequential that all eigenvalues of X − Y are bellow
4L2 + 2εη. Furthermore, we apply (4.7) to vectors of the form (z,−z) ∈ R2d,
where

z := x̄ − ȳ

|x̄ − ȳ|
;

we then get

〈(X − Y )z, z〉 ≤ 4L1ω
′′(|x̄− ȳ|) + (4L2 + 2εη)|z|2. (4.8)

From the definition of ω, we learn it is twice differentiable, ω > 0 and ω′′ < 0.
It then follows from (4.8) that at least one eigenvalue of X − Y is bellow
−4L1+4L2+2εη. Observe that this quantity will be negative for L1 sufficiently
large. In the sequel, we compute

M−
λ,Λ(X − Y ) ≥ 4λL1 − (λ + (d − 1)Λ)(4L2 + 2εη);

this inequality builds upon the definition of ellipticity and (4.6) to produce

4λL1 ≤ (λ + (d − 1)Λ)(4L2 + 2εη) + f(x̄)
σ(|ξx̄ + ξ|) −

f(ȳ)
σ(|ξȳ + ξ|) . (4.9)

Step 4 - At this point we examine two different cases. We start by considering
|ξ| > C0, where C0 > 0 is yet to be determined. Estimate the norm of ξx̄ as
follows:
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|ξx̄| ≤ L1|w′(|x̄− ȳ|)| + 2L2 ≤ cL1, (4.10)
for some constant c > 0, universal. We choose next C0 := 100cL1, for L1 to be
fixed later. Since |ξx̄| < cL1 and |ξ| > 100cL1 it follows that

|ξ + ξx̄| ≥ C0 −
C0

100 = 99
100C0;

a similar reasoning yields

|ξ + ξȳ| ≥ C0 −
C0

100 = 99
100C0;

The former inequalities, combined with the fact that σ is nondecreasing yield,

f(x̄)
σ(|ξx̄ + ξ|) ≤

‖f‖L∞(B1)

σ
(99C0

100

) ≤ ‖f‖L∞(B1) (4.11)

and −f(ȳ)
σ(|ξȳ + ξ|) ≤

‖f‖L∞(B1)

σ
(99C0

100

) ≤ ‖f‖L∞(B1). (4.12)

On their turn, inequalities (4.11) and (4.12) combined with (4.9) yield

4λL1 ≤ (λ+ (d− 1)Λ)(4L2 + 2εη) + 2‖f‖L∞(B1). (4.13)
By choosing L1 = L1(λ,Λ, d, L2, r) � 1 sufficiently large, we obtain a
contradiction. Consequential on this contradiction is the fact that L ≤ 0;
hence, we obtain Lipschitz-continuity of the solutions in the case |ξ| > C0.

Step 5 - Consider now the complementary case; i.e., let |ξ| ≤ C0, where
C0 = 100cL1 was chosen in the previous step. Define the operator

G(x, p,M) := σ(|ξ + p|)F (M) − f(x).

It follows that G(x, p,M) is uniformly elliptic provided |p| > πC0. By using
previous regularity results (see, for instance, [61]), we derive Hölder-continuity
of the solutions. Gathered with the former step, this fact completes the proof
of the theorem. �

Remark 9 In Theorem 10 we avoid the dependence on ξ ∈ Rd by splitting
the space into BC0 and Rd \ BC0 . In the former case, the Imbert-Silvestre
regularity theory implies β-Hölder-continuity for the solutions. However, when
analyzing the latter Lipschitz-regularity is available. This is in fact in line with
the heuristics associated with the problem: when |ξ + Du| � 1, the equation
is in fact uniformly elliptic.
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Once compactness for the solutions of the ξ-perturbed equation is
available, we approximate solutions to (4.1) and (4.5) by solutions to F = 0.
This is our next goal; however before we advance, we need first to introduce a
new concept, which is the content of next section.

4.3
Non-collapsing moduli of continuity

In this section we formalize the notion of a family of non-collapsing
moduli of continuity.

Definition 8 (Non-collapsing) A set Γ of moduli of continuity defined over
an interval I ⊂ R is said to be non-collapsing if for all sequences (fn)n∈N ⊂ Γ,
and all sequences of scalars (an)n∈N ⊂ I, we have

fn(an)→ 0 implies an → 0.

The former definition plays an important role in the tangential analysis
developed in the thesis. In fact, when one tries to connect the prospective
regularity theory for σ(|Du|)F (D2u) = f with the one available for F (D2h) =
0, we aim at profiting from a sort of cancellation effect, to be understood in the
viscosity sense. This is only achievable, however, if one carefully modulates the
rate in which σ(t) approaches zero, as t → 0. Put differently, we must ensure
the degeneracy law is not, itself, degenerate.

Definition 9 We define the collapsing measure of a family of moduli of
continuity Γ defined over an interval I ⊂ R as

µ (Γ) := sup
{
s ∈ I

∣∣∣∣ inf
σ∈Γ

σ(s) = 0
}
.

For obvious reasons all finite sets of moduli of continuity are non-collapsing,
and the interesting environment are infinite sets; for this reason in this section
all families of moduli of continuity shall be not finite.

It is not difficult to observe that the measure defined above characterizes
non-collapsing sets as follows:

Proposition 6 Let Γ be a family of moduli of continuity defined over an
interval I. The following are equivalent:

1. Γ is non-collapsing.

2. For all sequences (fn)n∈N ⊂ Γ and a ∈ I \ {0}, lim inf
n→∞

fn(a) > 0.
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3. µ (Γ) = 0.

Proof. It is immediate that (2) and (3) are equivalent.
(1)⇒ (2). Suppose, seeking a contradiction, there was a sequence (fn)n∈N and
a certain a > 0 such that

lim inf
n→∞

fn(a) = 0.

Hence, there is a subsequence (fnk)nk∈N such that

fnk(a)→ 0,

and, since Γ is non-collapsing, we conclude that a = 0, which is a contradiction.

(2) ⇒ (1) Let us suppose, for the sake of contradiction, that (1) is not valid.
Thus, there would exist (fn)n∈N ⊂ Γ and (an)n∈N ⊂ I, with fn(an) → 0 and
an 9 0. So, up to a subsequence, there exists a certain a0 > 0 such that

an ≥ a0 > 0.

Since all the functions fn are non-decreasing, we would have

fn (an) ≥ fn (a0) > 0

and, recalling that fn(an)→ 0, we would have fn (a0)→ 0, which contradicts
(2). �

Observe that µ behaves as a kind of “measure of collapse”: for
non-collapsing sets Γ, we have µ(Γ) = 0 and for collapsing sets Γ we have
µ(Γ) > 0. The higher the value of µ(Γ) the more degenerate the family Γ,
otherwise refereed as “more collapsing”.

Notice that

µ (Γ1 ∪ Γ2) = max {µ (Γ1) , µ (Γ2)} .

However, for infinitely many unions it is possible that µ (Γn) = 0 for all n ∈ N
and

µ

( ∞⋃
n=1

Γn
)

= 1.

For instance, starting off with a non-collapsing set Γ1, we can easily consider
σ1, σ2, ... such that

µ (Γ1 ∪ {σj : j ∈ N}) = 1;

thus, defining
Γk = Γ1 ∪ {σ1, ..., σk}
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for all k ≥ 2, we have µ (Γn) = 0 for all n ∈ N and

µ

( ∞⋃
n=1

Γn
)

= 1.

A plenty of examples of non-collapsing sets of moduli of continuity can be
generated by the next propositions:

Proposition 7 If Γ is a family of moduli of continuity σ : I ⊂ R → R such
that all σ ∈ Γ are increasing and the set

Γ−1 :=
{
σ−1 : σ ∈ Γ

}
is equicontinuous, then Γ is non-collapsing.

Proof. If Γ−1 is equicontinuous, given ε > 0, there is a δ > 0 such that

|x− y| < δ ⇒ sup
σ−1∈Γ−1

∣∣∣σ−1 (x)− σ−1 (y)
∣∣∣ < ε.

for all x, y ∈ I. Thus

|σ (x)− σ (y)| < δ ⇒ sup
σ−1∈Γ−1

∣∣∣σ−1 (σ (x))− σ−1 (σ (y))
∣∣∣ < ε,

for all x, y ∈ [0, 1] and all σ ∈ Γ. Choosing y = 0,

σ (x) < δ ⇒ x < ε

for all x ∈ [0, 1] and all σ ∈ Γ, i.e.,

x ≥ ε =⇒ inf
σ∈Γ

σ (x) ≥ δ.

Hence, Γ is non-collapsing. �

Proposition 8 Let Γ be a family of moduli of continuity and assume

S := sup
ω∈Γ

ˆ 1

0

ω−1(t)
t

dt <∞.

Then µ (Γ) = 0.

Proof. From Proposition 7, if suffices to show

ωn ∈ Γ, ωn(a)→ 0 =⇒ a = 0.
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Hence, let us suppose, seeking a contradiction, there exist a sequence ωn ∈ Γ
and a positive a > 0 such that bn := ωn(a)→ 0. We estimate

S ≥
ˆ 1

0

ω−1
n (t)
t

dt ≥
ˆ 1

bn

ω−1
n (t)
t

dt ≥ a

ˆ 1

bn

1
t
dt −→ +∞,

as n→ 0. We reach a contradiction, and Proposition 8 is proven. �

Another way of producing a family of non-collapsing moduli of continuity
is through a sort of “shoring-up” process.

Definition 10 (Shore-up) A sequence of moduli of continuity (σn)n∈N is said
to be shored-up if there exists a sequence of positive numbers (γn)n∈N such that
γn → 0 satisfying

inf
n
σn(γn) > 0,

for every n ∈ N,

Here is a simple proposition relating the notion of shored-up sequence
and non-collapsing moduli of continuity, which is better appreciated through
the picture below:

Figure 4.2: The geometric idea of shoring up as to prevent collapsing.

Proposition 9 If a sequence of moduli of continuity (σn)n∈N is shored-up then
Γ := ∪n∈N {σn} is non-collapsing.

Proof. For all s > 0, let ns be an integer such that γn < s for all n > ns.

Since all the functions σn are non-decreasing, we have σn (γn) ≤ σn (s) for all
n > ns. Thus

0 < inf
n>ns

σn(γn) ≤ inf
n>ns

σn (s) .
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Since σ1 (s) > 0, . . . , σns (s) > 0, we conclude that

inf
n
σn (s) > 0

and (σn)n∈N is non collapsing. �

4.4
Tangential analysis: an approximation result

In this section we establish an approximation result, relating (4.1) and
(4.5) with the solutions to the homogeneous, uniformly elliptic, problem F = 0.
The approximating function whose existence is ensured by the next proposition
plays a pivotal role in producing oscillation controls for the solutions to (4.1).

In what follows, we translate Assumption 6 into a smallness condition
for the source term f . In fact, throughout this section, we require

‖u‖L∞(B1) ≤ 1 and ‖f‖L∞(B1) < ε, (4.14)

for some ε > 0 yet to be determined. To see the conditions in (4.14) are not
restrictive, consider the function

v(x) := u(rx)
K

,

for 0 < r � 1 and K > 0 to be determined. Notice that v satisfies

σ (|Dv|)F (D2v) = f in B1, (4.15)

where
σ(t) := σ

(
K

r
t
)
, F (M) := r2

K
F
(
K

r2M
)

and
f(x) := r2

K
f(rx).

Notice that
σ−1(t) := r

K
σ−1(t).

Indeed,

σ−1(σ(t)) = σ−1
(
σ
(
K

r
t
))

= r

K
σ−1

(
σ
(
K

r
t
))

= t.

By choosing r < K, it follows easily that
ˆ 1

0

σ−1(t)
t

dt ≤
ˆ 1

0

σ−1(t)
t

dt and σ(1) = σ
(
K

r

)
≥ σ(1) ≥ 1.
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Hence, σ meets Assumptions 5. Clearly, F is a (λ,Λ)-elliptic operator. Finally,
by setting

r := ε and K := 1
‖u‖L∞(B1) + ‖f‖L∞(B1)

we produce (4.14) and find that (4.15) falls within the same class as (4.1).

Proposition 10 (Approximation Lemma) Let S be a set of
non-collapsing moduli of continuity and u ∈ C(B1) be a normalized viscosity
solution of an equation of the form

σ (|Du+ ξ|)F
(
D2u

)
= f in B1,

where ξ ∈ Rd, σ ∈ S satisfies Assumption 4, F satisfies Asumption 1, and f
verifies Assumption 6. Given δ > 0, there exists ε = ε(δ, λ,Λ,S) > 0 such that
if f ∈ Bε(L∞(B1)) then we can find a function h ∈ BL

(
C1,β(B1/2)

)
such that

dL∞(B1/2) (u, h) < δ,

where L and β are universal numbers, in particular independent of S, δ and
ε.

Proof. For ease of presentation we split the proof in five steps.

Step 1 - Suppose the thesis of the lemma fails to hold. Then there exist
sequences (σj)j∈N, (ξj)j∈N, (uj)j∈N, (Fj)j∈N, (fj)j∈N and a number δ0 > 0 such
that, for every j ∈ N, we have

1. Fj : S(d)→ R is a (λ,Λ)-elliptic operator;

2. σj is a modulus of continuity satisfying σj(0) = 0 and σj(1) ≥ 1. In
addition, if σj(aj) → 0 then aj → 0. We observe that such a condition
arises naturally under Assumption 5. In fact, if σj(aj)→ 0, we have

σ−1
j (σj(aj)) ≤ ωσ−1 (|σj(aj)|) −→ 0.

Therefore„
aj = σ−1

j (σj(aj)) −→ 0;

3. fj ∈ L∞(B1) is such that

‖fj‖L∞(B1) <
1
j

;
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4.
σj(|Duj + ξj|)Fj(D2uj) = fj in B1, (4.16)

however,
sup
x∈B1/2

|uj(x) − h(x)| ≥ δ0 (4.17)

for every h ∈ C1,β
loc (B1) and every β ∈ (0, 1).

Step 2 - Because ellipticity is uniform along the sequence (Fj)j∈N, it follows
that Fj → F∞ as j → ∞, through a subsequence if necessary. In addition, it
follows from Theorem 10 that (uj)j∈N converges uniformly to a function u∞.
Our goal is to prove that

F∞(D2u∞) = 0 in B9/10.

To that end, introduce the second order polynomial p(x), defined as

p(x) := u∞(y) + b · (x − y) + 1
2(x − y)TM(x − y);

it is clear that p(y) = u∞(y); suppose without loss of generality that p(x) ≤
u∞(x) for x ∈ B3/4. Our goal is to verify that

F∞(M) ≤ 0. (4.18)

Step 3 - For 0 < r � 1 fixed, let (xj)j∈N be defined by

p(xj) − uj(xj) := max
x∈Br

(p(x) − uj(xj)) .

We infer from (4.16) that

σj(|b + ξj|)Fj(M) ≤ fj(xj).

If (ξj)j∈N is an unbounded sequence, consider the (renamed) subsequence
satisfying |ξj| > j, for every j ∈ N. There exists j∗ ∈ N such that

|b + ξj| > 1

for every j > j∗. From Assumption 4 we have

Fj(M) ≤ σj(|b + ξj|)Fj(M) ≤ fj(xj),

for j > j∗. By letting j → ∞, we obtain (4.18). Conversely, if (ξj)j∈N is
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bounded, at least through a subsequence

b + ξj −→ b + ξ∗.

If |b + ξ∗| > 0, we know σj(|b+ ξj|) 9 0. Hence

Fj(M) ≤ fj(xj)
σj(|b + ξj|)

−→ 0

and (4.18) follows. If, on the other hand, |b + ξ∗| = 0, we distinguish two
cases. The first is b ≡ 0 and ξj → 0. If there is a subsequence (ξj)j∈N for which
ξj 6= 0, the previous reasoning applies and the argument is complete.

On the opposite, it can be b = ξj = 0 for every j ∈ N, sufficiently large.
This case is tackled in the next step.

Step 4 - We work under the assumption b ≡ ξj ≡ 0. Notice that if
Spec(M) ⊂ (−∞, 0], ellipticity produces (4.18); in fact

F∞(M) ≤ λ
d∑
i=1

τi ≤ 0,

where {τi, i = 1, . . . , d} are the eigenvalues of M . Hence, we also suppose
M has k > 0 strictly positive eigenvalues. Let (ei)ki=1 be the associated
eigenvectors and define

E := Span {e1, e2, . . . , ek} .

Consider the orthogonal sum Rd = E ⊕ G and the orthogonal projection PE
on E. Define the test function

ϕ(x) := κ sup
e∈Sd−1

〈PEx, e〉 + 1
2x

TMx.

Because uj → u∞ locally uniformly, and 2−1xTMx touches u∞ at zero, the
stability of minimizers implies that ϕ touches uj at xκj ∈ Br, for every
0 < κ� 1 and j � 1.

Suppose xκj ∈ G. In this case, ϕ touches uj at xκj , regardless of the
direction e ∈ Sd−1. It follows that

σj
(
|Mxκj + κe|

)
Fj(M) ≤ fj(xj)

for every e ∈ Sd−1. By taking supremum with respect to the direction e on
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both sides of the former inequality, and noticing that

κ ≤ sup
e∈Sd−1

|Mxκj + κe|,

we obtain
Fj(M) ≤

fj(xκj )
σj(κ) −→ 0

as j →∞. To complete the proof we focus on the case PExκj 6= 0. Here

sup
e∈Sd−1

〈
PEx

κ
j , e

〉
= |Pexκj |.

From the information available for uj, we obtain

σj

(∣∣∣∣∣Mxκj + κ
PEx

κ
j

|PExκj |

∣∣∣∣∣
)
Fj

(
M + κ

(
Id +

PEx
κ
j

|PExκj |
⊗

PEx
κ
j

|PExκj |

))
≤ fj(xκj ).

Write xκj as

xκj ,=
d∑
i=1

aiei,

where {ei, i = 1, . . . , d} are the eigenvectors of M . Hence,

Mxκj =
k∑
i=1

τiaiei +
d∑

i=k+1
τiaiei,

with τi > 0 for i = 1, . . . , k. We then obtain

κ ≤ κ + 1
|PExkj |

k∑
i=1

τia
2
i ≤ κ + 1

|PExkj |

〈
d∑
i=1

τiaiei,
k∑
i=1

τiaiei

〉

≤
〈
Mxκj + κ

PEx
κ
j

|PExκj |
,
PEx

κ
j

|PExκj |

〉

≤
∣∣∣∣∣Mxκj + κ

PEx
κ
j

|PExκj |

∣∣∣∣∣ .
Once again we get

Fj(M) ≤ Fj

(
M + κ

(
Id +

PEx
κ
j

|PExκj |
⊗

PEx
κ
j

|PExκj |

))
≤

fj(xκj )
σj(κ) −→ 0

as j →∞.

Step 5 - Hence, we conclude that F∞(M) ≤ 0 and, therefore, u∞ is a
subsolution to F∞ = 0 in the viscosity sense. To verify that u∞ is also
a supersolution is analogous and we omit the details. Standard results in
the regularity theory of viscosity solutions to homogeneous elliptic equations
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yield u∞ ∈ C1,β
loc (B1) for some β ∈ (0, 1). By setting h := u∞ we obtain a

contradiction and complete the proof. �

A fundamental fact about the approximating function h is related to its
Taylor expansion centered at an arbitrary point x0 ∈ B1/4. In fact, we have

sup
x∈Br
|h(x) − h(x0) − Dh(x0) · (x − x0)| ≤ Cr1+β,

for 0 < r � 1.

4.5
Existence of approximating hyperplanes

Let us move forward with the proof of Theorem 5. Hereafter let L > 0
and 0 < β < 1 be the universal numbers from Proposition 10. As before, we
restate it in what follows.

Theorem 11 (Restatement of Theorem 5) Let u ∈ C(B1) be a viscosity
solution to

F (Du,D2u) = f in B1, (4.19)
where F (~p,M) = σ(|~p|)F (M). Suppose Assumptions 1, 4, 6 and 5, to be
detailed later, hold true. Then u ∈ C1

loc(B1) and there exists a modulus of
continuity ω : R+

0 → R+
0 such that

sup
x∈Br(x0)

|Du(x) − Du(x0)| ≤ ω (r) ,

for every x0 ∈ B1/4 and 0 < r < 1/4. In addition, ω depends on d, λ,Λ, σ,
‖u‖L∞(B1) and ‖f‖L∞(B1).

As to ease the presentation, let us define two new moduli of continuity:

γ(t) := tσ(t) and ω(t) := γ−1(t).

Next we make a first choice of constants 0 < r < µ1 < 1, by dividing the
analysis in two cases:

Case 1. If ω(t) = o(tβ), we choose 0 < r < 1/2 so small that

2Lrβ = ω(r) =: µ1 > r.

This is the most interesting case, for which the degeneracy law is stronger than
t

1
β
−1.
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Case 2. If tβ = O(ω(t)), we fix 0 < α < β and make 0 < r < 1/2 so small
that

2Lrβ = rα =: µ1 > r.

Notice that, once fixed 0 < α < β, the above choice becomes universal.
In what follows we shall treat both cases concomitantly. Define, hereafter,

the ratio
0 < θ := r

µ1
< 1.

Next, under Assumption A5, we know the sequence

(ak)k∈N :=
(
σ−1

(
θk
))

k∈N

belongs to `1. We apply Lemma 4 to the sequence (ak)k with, 0 < δ < 1
10 fixed

and 0 < ε < 1 chosen in such a way

ε (1 + δ) = 1

This creates a sequence of positive numbers (ck)k ∈ c0 for which

19
22

∞∑
i=1

σ−1
(
θk
)
≤
∞∑
i=1

σ−1
(
θk
)

ck
≤
∞∑
i=1

σ−1
(
θk
)
. (4.20)

In the sequel, we generate a shored-up sequence of moduli of continuity by the
following recursive formula:

σ0(t) = σ(t);

σ1(t) = µ1

r
σ(µ1t);

σ2(t) = µ1µ2

r2 σ(µ1µ2t);
...

σn(t) = µ1µ2 · · ·µn
rn

σ(µ1µ2 · · ·µnt),

(4.21)

where µ1 > r has already been chosen and for k ≥ 2, the value of µk is
determined through the following new algorithm:

If
µ2

1
r2 σ

(
µ2

1 · c2
)
≥ 1,

then
µ2 = µ1;

otherwise
µ1 < µ2 < 1
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is chosen such that
µ1µ2

r2 σ ((µ1µ2) · c2) = 1,

where c2 is the 2nd element of the sequence (ck)k ∈ c0 for which (4.20) is
verified.

Next we apply the above algorithm recursively, that is: once chosen
r < µ1 ≤ µ2 ≤ · · · ≤ µk we decide on the value of µk+1 as:

if selecting µk+1 = µk yields σk+1(ck+1) ≥ 1,

we set µk+1 = µk. Otherwise, µk+1 > µk is chosen such that

σk+1 (ck+1) = 1,

where, as before, ck+1 is the (k+1)th element of the sequence (ck)k ∈ c0 crafted
in Proposition 4, for which (4.20) holds.

Let S denote the family of moduli of continuity generated through the
described algorithm:

S := {σ0(t), σ1(t), · · · , σn(t), · · · } .

According to Proposition 9, this is a non-collapsing family of moduli of
continuity.

The next proposition produces an oscillation control for the difference of
the solutions to (4.1) and an affine function.

Proposition 11 Let u ∈ C(B1) be a normalized viscosity solution to (4.5).
Suppose Assumption 1, 4, 6 and 5 are in force. There exists an ε > 0 such that
if ‖f‖L∞(B1) < ε, then, one can find an affine function `(x) and a universal
constant C > 0 such that

`(x) = a+ b · x, with |a| + |b| ≤ C

and
sup
x∈Br
|u(x) − `(x)| ≤ µ1 · r,

for constants r < µ1 < 1.

Proof. From Proposition 10 we infer the existence of h ∈ C1,β
loc (B1) such that

sup
x∈B9/10

|u(x) − h(x)| ≤ δ,
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for some δ > 0, to be set further in the proof. As mentioned before, the
regularity of the approximating function h yields

sup
x∈Br
|h(x) − h(0) − Dh(0) · x| ≤ Lr1 +β

for a universal constant L > 0 and every 0 < r � 1. By choosing a := h(0)
and b := Dh(0) it is clear that both coefficients are bounded by C. In addition,
a straightforward application of the triangular inequality yields

sup
x∈Bρ
|u(x) − a − b · x| ≤ δ + L

2 r
1 +β.

We proceed with the (universal) choices

δ := µ1 · r
2 and µ1 := Lrβ;

Choosing δ as above, sets the value of ε > 0, through Proposition 10, and the
proof is completed. �

The next proposition extends the statement in Proposition 11 to
arbitrarily small radii, in a discrete scale generated by the radius 0 < r � 1.
Moving across those discrete scales involve an scaling argument. At this precise
point of the argument, scaled solutions fail to satisfy the original equation (4.1).
In turn, they satisfy

Fn(Dun + ξn, D
2un) = fn(x) in B1,

where, ξn ∈ Rd is arbitrary and at each scale the new operator Fn(~p,M) has
law of degeneracy σn and diffusion agent Fn. The switch from (4.1) to (4.5) is
justified by the necessity of producing uniform compactness estimates available
at this instance of the argument.

Proposition 12 (Oscillation control at discrete scales) Let u ∈ C(B1)
be a normalized viscosity solution to (4.5). Suppose Assumptions 1, 4, 6 and
5 are in force. Then there exists a sequence of real numbers (µn)n∈N and a
sequence of affine functions (`n)n∈N of the form

`n(x) := An + Bn · x

satisfying
sup
x∈Brn

|u(x) − `n(x)| ≤
(

n∏
i=1

µi

)
rn, (4.22)

|An+1 − An| ≤ C

(
n∏
i=1

µi

)
rn (4.23)
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and
|Bn+1 − Bn| ≤ C

n∏
i=1

µi (4.24)

for every n ∈ N.

Proof. We prove the proposition through an induction argument. As before,
we proceed in steps.

Step 1 - For µ1 and ` = `1 as in Proposition 11, consider the auxiliary function

u1(x) := u(rx) − `(rx)
µ1r

.

Notice that u1 solves

σ1

(∣∣∣∣∣Du1 + 1
µ1
D`

∣∣∣∣∣
)
F1(D2u1) = f1(x) in B1,

where
σ1(t) := µ1

r
σ(µ1t),

F1(M) := r

µ1
F
(
µ1

r
M
)

and f1(x) := f(rx).

The selection through the algorithm preceding 11 ensures that σ1(1) = 1.
Therefore, u1 falls within the scope of this result and we infer the existence of
an affine function `1 such that

sup
x∈Br
|u1(x) − `1(x)| ≤ µ1 · r.

At this point, we define u2 as

u2(x) := u1(rx) − `1(rx)
µ2r

,

for r < µ1 < µ2 to be chosen. It is clear that u2 satisfies

σ2

(∣∣∣∣∣Du2 + 1
µ1
D`1

∣∣∣∣∣
)
F2(D2u2) = f2(x) in B1,

where, as before,
σ2(t) = µ1µ2

r2 σ(µ1µ2t).

The governing diffusion agent for u2 is given by

F2(M) := r2

µ1µ2
F
(
µ1µ2

r2 M
)
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and the source term f2(x) := f(r2x). Hence, u2 meets the requirements of
Proposition 11, which ensures the existence of an affine function `2, with
universal bounds, such that

sup
x∈Br
|u2(x) − `2(x)| ≤ µ1 · r.

Proceeding inductively, we notice that

uk+1(x) := uk(rx) − `k(rx)
µk+1r

solves an equation with degeneracy σk+1, given by

σk+1(t) := µk+1

r
σk (µk+1t) =

∏k+1
i=1 µi
rk+1 σ

(
k+1∏
i=1

µit

)
.

Recall, µk+1 ≥ µk is determined in such way that either µk+1 = µk or else

σk+1 (ck+1) = 1. (4.25)

As before, we resort to Proposition 11 to ensure the existence of an affine
function `k+1 satisfying

sup
x∈Br
|uk+1(x) − `k+1(x)| ≤ µ1 · r.

Step 2 - Reverting back to the original solution u, we find

sup
x∈B

rk

|u(x) − `k(x)| ≤
(

k∏
i=1

µi

)
rk,

where

`k(x) := `1(x) +
k∑
i=2

`i
(
r−(i−1)x

)i−1∏
j=1

µj

 ri−1

= Ak + Bk · x.

In addition, we have

|Ak+1 − Ak| ≤ C

(
k∏
i=1

µi

)
rk

and
|Bk+1 − Bk| ≤ C

(
k∏
i=1

µi

)
,
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which completes the proof. �

4.6
Convergence analysis

In this final section we discuss the convergence of the approximating
hyperplanes obtained in Section 4.5. To ensure this fact, we must examine
the summability of the series associated with (An)n∈N and (Bn)n∈N. Such a
convergence shall imply a modulus of continuity that takes the form of a
sum, associated with the products Πn

i=1µi, which ultimately yields a proof
of Theorem 11.

Proof of Theorem 11.
The algorithm employed to craft the sequence (µn)n∈N is key in the proof.

There are two possibilities:

Either the sequence stabilizes for some k0 ≥ 2, that is

µk0 = µk0+1 = µk0+2 = · · ·

or else for infinitely many k’s, there holds µk < µk+1. And when this happens:∏k+1
i=1 µi
rk+1 σ

([
k+1∏
i=1

µi

]
ck+1

)
= 1. (4.26)

The former case falls into a classical setting, for which the convergence
analysis yields in fact local C1,τ–regularity of solutions, for some 0 < τ < β.

Let us now investigate the latter case. Readily from (4.26) one obtains

σk+1 (ck+1) = 1, ⇐⇒
∏k+1
i=1 µi
rk+1 σ

(
k+1∏
i=1

µi · ck+1

)
= 1,

which yields
k+1∏
i=1

µi = 1
ck+1

σ−1
(

rk+1∏k+1
i=1 µi

)

≤
σ−1

(
θk+1

)
ck+1

.

(4.27)

Estimate (4.20) combined with estimate (4.27) shows the sequence

(τk)k∈N :=
(

k∏
i=1

µi

)
k∈N

is summable and its `1 norm is bounded by
∞∑
i=1

σ−1(θi).
Therefore, it follows from (4.23) and (4.24) that (An)n∈N and (Bn)n∈N

are Cauchy sequences. That is, there exist a real number A∞ and a vector B∞
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such that
An −→ A∞ and Bn −→ B∞.

Set `∞(x) := A∞ +B∞ · x. Observe also

|A∞ − An| ≤ C
∞∑
i=n

τir
n and |B∞ − Bn| ≤ C

∞∑
i=n

τi.

For any 0 < ρ� 1 let n ∈ N be such that

rn+1 < ρ ≤ rn.

We then estimate

sup
x∈Bρ
|u(x) − `∞(x)| ≤ sup

x∈Brn
|u(x) − `n(x)| + sup

x∈Brn
|`n(x) − `∞(x)|

≤ Cτnr
n + C

( ∞∑
i=n

τi

)
rn

≤ 1
r
C

[
τn +

∞∑
i=n

τi

]
ρ

≤
(
C
∞∑
i=n

τi

)
ρ.

Finally, set
γ(t) := C

∞∑
i=bln t−1c

τi,

where bMc := the biggest integers that is less than or equal toM . Since τi ∈ `1,
γ(t) us indeed a modulus of continuity. We have

sup
x∈Bρ
|u(x) − u(0) − Du(0) · x| ≤ γ(ρ)ρ,

and the proof of Theorem 11 is finally complete. �
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A
Notations

In what follows we list some notations used throughout the thesis.

d stands for dimension of the space.
B1 is a unity ball.
Br represents the ball of radius r.
C(B1) denotes the space of continuous functions in B1.
C∞c (B1) is the space of smooth functions with compact support in B1.
S(d) is the space of real d× d symmetric matrices.
F is a (λ,Λ)-elliptic operator.
F is the degenerate elliptic operator.
M±

λ,Λ Pucci’s extremal operators.
Fij represents the derivative of F (M) with respect to the entry mij of M ∈ S(d).
(u,m) denotes a solution to MFG system.
(u∗,m∗) is a minimizing solution to MFG system.
I stands for the functional with Hessian-dependent Lagrangian.
Ī is the relaxed functional.
ΓF is the convex envelope of F .
co(X) stands for the convex hull set.
σ is a modulus of continuity.
c0(X) is the space of the sequences (xj)∞j=1 such that ‖xj‖X → 0.
Hx0 denotes the tangent hyperplane.
Σ denotes a family of laws of degeneracy.
Ξε,λ,Λ,Σ stands for the set of all continuous functions u ∈ C(B∞) such that ‖u‖∞ ≤ 1 .
Nτ(ε)

(
C1,β(B1/2)

)
is the τ(ε)—neighborhood of C1,β(B1/2).

S is a set of non-collapsing moduli of continuity.
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