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Abstract

Dornelas, Vivian; Anteneodo, Celia (Advisor). Spatial organiza-
tion of single-species populations. Rio de Janeiro, 2020. 93p.
Tese de Doutorado – Departamento de Física, Pontifícia Universi-
dade Católica do Rio de Janeiro.

It is common to observe in nature the emergence of collective behavior
in biological populations, such as pattern formation. In this work, we are
interested in characterizing the distribution of a single-species population
(such as some bacteria or vegetation), based on mathematical models that
describe the spatio-temporal evolution, and governed by elementary processes,
such as: dispersion, growth, and nonlocal competition by resources. First,
using a generalization of the FKPP equation, we analyze numerically and
analytically the impact of density-dependent regulatory mechanisms, both
on diffusion and growth. Such mechanisms represent processes of internal
feedback, which shape the system’s response to population overcrowding or
rarefaction. We show that, depending on the type of the response in action,
some individuals can organize themselves in disconnected sub-populations
(fragmentation), even in the absence of external restrictions, that is in a
homogeneous landscape. We discuss the crucial role that density-dependence
has in the form of patterns, particularly in fragmentation, which can have
important consequences for contact processes, such as the spread of epidemics.
After understanding this phenomenon in a homogeneous environment, we
study the role that a heterogeneous environment has in the spatial organization
of a population, which was presented as a growth rate that varies with
position. We investigate the structures that emerge near the border from one
environment to the other. We found that, depending on the shape of nonlocal
interaction and other model parameters, three different profiles can emerge
from the interface: (i) sustained oscillations (or spatial patterns, without
amplitude decay); (ii) attenuated oscillations (with amplitude decreasing from
the interface); (iii) exponential decay (without oscillations) to a homogeneous
profile. We related the wavelength and the rate of decay of oscillations with
the parameters of the interaction (characteristic length and form of decay
with distance). We discussed how the heterogeneities of the environment allow
access to information (hidden in the homogeneous case) about the biological
phenomena of the system, such as those that mediate competitive interactions.

Keywords
Population dynamics; Self-organization; Pattern formation; Nonlinear

diffusion.
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Resumo

Dornelas, Vivian; Anteneodo, Celia. Organização espacial de
populações de espécie única. Rio de Janeiro, 2020. 93p. Tese
de Doutorado – Departamento de Física, Pontifícia Universidade
Católica do Rio de Janeiro.

É comum observar na natureza a emergência de comportamentos co-
letivos em populações biológicas, como formação de padrão. Neste trabalho,
estamos interessados em caracterizar a distribuição de uma população de espé-
cie única (como alguns tipos de bactérias ou de vegetação), a partir de modelos
matemáticos que descrevem a evolução espaço-temporal, governados por pro-
cessos elementares como: dispersão, crescimento e competição não-local por
recursos. Primeiramente, utilizando uma generalização da equação de FKPP,
analisamos numérica e analiticamente, o impacto de mecanismos de regula-
ção dependentes da densidade, tanto na difusão quanto no crescimento. Tais
mecanismos representam processos internos de retroalimentação, que mode-
lam a resposta do sistema à superlotação ou rarefação da população. Mos-
tramos que, dependendo do tipo de resposta em ação, os indivíduos podem
se auto-organizar em subpopulações desconectadas (fragmentação), mesmo na
ausência de restrições externas, ou seja, em uma paisagem homogênea. Dis-
cutimos o papel crucial que a dependência com a densidade tem na forma
dos padrões, particularmente na fragmentação, o que pode trazer consequên-
cias importantes para processos de contato como disseminação de epidemias.
Tendo compreendido esse fenômeno em um meio homogêneo, estudamos o
papel que um ambiente heterogêneo tem na organização espacial de uma po-
pulação, que representamos através de uma taxa de crescimento que varia com
a posição. Investigamos as estruturas que emergem próximo a fronteira de um
meio para o outro. Descobrimos que, dependendo da forma de interação não-
local e de outros parâmetros do modelo, três perfis diferentes podem emergir
a partir da interface: (i) oscilações não-atenuadas (ou padrões espaciais, sem
decaimento da amplitude); (ii) oscilações atenuadas (com amplitude decaindo
a partir da interface); (iii) decaimento exponencial (sem oscilações) a um per-
fil homogêneo. Relacionamos o comprimento de onda e a taxa de decaimento
das oscilações com os parâmetros das interações (comprimento característico
e forma de decaimento com a distância). Discutimos como as heterogeneida-
des do ambiente permitem acessar informações (ocultas no caso homogêneo)
sobre os fenômenos biológicos do sistema, tais como os que mediam interações
competitivas.

Palavras-chave
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Dinâmica de populações; Auto-organização; Formação de padrões;
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50◦46’37.2”W). In the lower panel, multiscale mound pattern-
ing, potentially created by two different social-insect species [1],
in the Bangweulu floodplain Zambia – an ecosystem described
by the explorer David Livingstone as “A World of Water and
Anthills” (11◦06’40.1”S 30◦10’51.5”E). Imagery: Google, Digi-
talGlobe. 21
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growth rate as a function of the density ρ, for super-exponential
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Figure 2.4 Examples of density variation with time, for
different values of µ and different initial conditions. Red
curve: ρ0 = 2; blue curve: ρ0 = 1; purple curve: ρ0 = 0.1. 24

Figure 2.5 Schematic representation of the FTCS method.
At each time increment ∆t, for an x position, the densities of
the population within an ` neighborhood are taken into account,
which influence according to an interaction kernel γ. L is the
system size. 27

Figure 2.6 Temporal evolution of population density. Numer-
ical simulation of Eq. (2-5), with periodic boundary conditions,
was performed using the homogeneous influence function in an
` = 20 neighborhood, for a population of L = 200 size. The
other parameters are: D = a = b = 1, µ = 1.6, ν = 4.0, and the
increments dx = 0.08 and dt = 10−5. 28

Figure 2.7 The minimal value of ρ(x) as a function of t,
corresponding to the case ν = 4.0 and µ = 1.6, presented in
Fig. 2.6, for different values of the integration step dt indicated
on the figure. The inset shows a zoom near 10−308. All simulation
runs started from the same initial conditions. 28

Figure 2.8 The percentual error of the extreme values of
ρ as a function of dt. The parameters are the same of
Fig. 2.7, and t = 200. Notice that, even for the minimal density
(ρmin ' 4 × 10180), errors are smaller than 1% for sufficiently
low dt and decay with decreasing dt. 29

Figure 2.9 Temporal evolution of population density and
stationary pattern, using the homogeneous influence function
with ` = 10. The other parameters are D = 0.1, a = b = 1, and
ν = µ = 1. 29
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Figure 3.1 Patterns: a) We present numerical results of Eq. (3-
2) for the density ρ(x) at t = 2000, using L = 100, ` = 20,
µ = 1.0, and different values of diffusion exponent ν indicated
in the legend. b) The same on the log-scale. c) The mode growth
rate, given by Eq. (3-4), which is independent of ν. 32

Figure 3.2 Number of peaks and nonlinearity. For L = 200,
` = 20, ν = 4.0, and different values of µ – indicated on the
legend, numerical simulations of Eq. (3-2) show that increasing
the growth exponent µ decreases the number of peaks of the
stationary patterns. 33

Figure 3.3 Stationary profiles. We present the stationary density
ρ(x) for different values of ν: 0.8 (superdiffusion), 1.0 (normal
diffusion) and 4.0 (subdiffusion), and different values of the
growth exponent µ: 0.9, 1.0 and 1.4. 34

Figure 3.4 Maximal and minimal densities: (a) Temporal evolu-
tion of ρmax(t) and ρmin(t), for ν = 4.0 and values of µ indicated
in the legend. Inset: ρmin(t) on a larger scale. (b) Minimal den-
sity as a function of the growth exponent for different values of
the diffusion exponent. Inset: the same, with another scale. 36

Figure 3.5 Characteristic time τ of the exponential decay of
ρmin(t) ∼ exp(−t/τ) as a function of: (a) µ (for fixed values of ν)
and (b) ν (for fixed µ), as indicated in the figures. The dashed
vertical lines correspond to the values at which fragmentation
occurs for the same color curve, as explained in the text. 37

Figure 3.6 Characteristics of the stationary profiles. Station-
ary values of maximal density (ρmax), minimal density (ρmin),
width at half height (σ) and valley width (∆) as a function of
ν, for (a) µ = 0.9, (b) µ = 1.0, (c) µ = 1.4. 38

Figure 3.7 Phase diagram in the µ − ν plane. The color scale
represents the stationary minimal density ρmin.The vertical solid
line at µp ' 0.84 delimits superiorly the domain where no
patterns are formed, according to Eq. (3-5). In that region,
ρmin = ρmax = 1. Above µp, patterns emerge, and their minimal
value gradually decreases. The dashed line separates the non-
fragmented region, in color-scale, from the fragmented one,
in solid dark color. The hatched region corresponds to non-
calculated values due to computational limitations. 39

Figure 3.8 Characteristics of the stationary profiles. Sta-
tionary values of the maximal density (ρmax), minimal density
(ρmin), width at half height (σ) and valley width (∆) as a func-
tion of µ, for (a) ν = 4.0, (b) ν = 1.3 and (c) ν = 0.5, 0.8 and
1.0, where more intense colors correspond to higher values of ν.
The vertical lines represent µp ' 0.84. 40

Figure 3.9 Maximal and minimal values of the density as
a function of integration spatial step dx, for ν = 0.8 and
different values of µ. Some values of µ need a lower value of dx in
the numerical simulation, in order to observe their convergence
(hatched region in Fig. 3.7). 41
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Figure 3.10 Approximation by a generalization of the Gaus-
sian function. Stationary profiles obtained numerically – rep-
resented by the gray circles, along with the description given
by Eq. (3-7) – represented by the red lines, for the values of µ,
ν indicated in the figure. Fitting values of the parameters are
given in Table 3.1. 42

Figure 3.11 Ansatz exponent β as a function of model exponents
ν (a), µ (b). The solid line in (a) corresponds to β = (ν − 1)/2,
drawn for comparison. The vertical solid line in (b) represents
µ = µp ' 0.84. The value β = 0 is highlighted by dashed
horizontal lines. 43

Figure 3.12 Approximation by Fourier series expansion for
the values of µ, ν indicated in the figure. Inset: coefficients ρk,
Eq. (3-10), as a function of k. 44

Figure 4.1 Population distribution in an environment that
is: (a) homogeneously viable; (b) heterogeneous, with
viable and non-viable regions; and (c) heterogeneous,
with a viable region between non-viable ones. Depending
on the values of the parameters in Eq. (4-1), spatial patterns
can: develop around the uniform steady state in (a); and be
preserved in the viable region of the corresponding cases, in (b)
- (c). But even when the steady-state is uniform in case (a),
decaying oscillations can emerge in (b) - (c). The parameters
are a = b = 1; values of D are provided in the legend; and for
the kernel γq defined in Eq. (4-2), we set q = −0.5 and ` = 2.
For panel (b) and (c), A in Eqs. (4-10)-(4-5) is A→∞. 49

Figure 4.2 Interaction kernel and mode stability in a homo-
geneous environment. (a) γq(x), defined in Eq. (4-2), for the
values of q indicated on the figure, and ` = 2. (b) Mode growth
rate λ(k), corresponding to the values of q plotted in (a). (c)
γα(x), defined in Eq. (4-3), for the values of α indicated on the
figure, and ` = 2. (d) Mode growth rate λ(k), corresponding
to the values of α plotted in (c). While the case q = 0 (trian-
gular kernel) is the critical one – for which the maximal value
of λ(k?) = 0 at finite k?, when D = 0, the critical one for γα
is α = 2. We use a = b = 1 for the panels (b) and (d), and
dashed lines correspond to D = 0, whereas solid lines corre-
spond to D = 0.01. Notice that, when diffusion is absent, the
mode growth rate is proportional to the kernel Fourier trans-
form. 50

Figure 4.3 Pictorial representation of a one-dimensional
refuge. Within the L size refuge, the damaging A effect is
blocked. 52
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Figure 4.4 Stationary population density ρs vs. x in a refuge.
This heterogeneous environment is defined by Eq. (4-5), with
a = b = 1, A = 10−3 and L = 10. The vertical lines indicate
the refuge boundaries. We used the kernel γq(x), with q = 0.1
and ` = 2, and two different values of D. Symbols are results
from numerical integration of Eq. (4-1), and solid lines, from
the small-A approximation given by Eq. (4-9) – in excellent
accordance with the exact numerical solution. Let’s recall that,
in a homogeneous environment, no oscillations appear for q ≥ 0. 53

Figure 4.5 Pictorial representation of a semi-infinite habitat.
For x ≥ 0 the harmful effect A is blocked. 54

Figure 4.6 Decay exponential from the interface (A >> a).
Numerical integration of Eq. (4-1) (dots in the figure), and
exponential decay predicted by Eq. (4-12) (solid lines) for the
kernel γq with q = 0.1 and ` = 2. The grey region represents the
refuge and we use D = 0.1 and the values of A are given on the
legend. 55

Figure 4.7 Characterization of stationary profiles. Long-time
solutions approach a stationary state characterized by the wave-
length 2π/k̄ and the decay length x̄. This example was obtained
from numerical integration of Eq. (4-1), assuming a semi-infinite
habitat, with parameters D = 0.003, γq(x) with ` = 2 and
q = −0.5. 55

Figure 4.8 Long-time solutions of a population in a semi-
infinite habitat. (a) Stationary density, (b) Density
variation around the homogeneous solution. Parameters
are a = b = 1, A → ∞, values of D are given on the legend,
and for kernel γα defined in Eq. (4-3), α = 2.3 and ` = 2. Note
that the profiles are similar to those obtained in Fig. 4.1b. 56

Figure 4.9 Phase diagram and characteristics of the station-
ary profiles as a function of diffusion coefficient D and
q, in the semi-infinite habitat. We used the kernel γq(x), with
` = 2. (a) Phase diagram on the q − D plane, and cut at (b)
D = 10−3, (c) q = −0.5 (d) q = 0.5. The remaining parameters
are a = b = 1. In diagram (a), for each point on the grid, the
type of regime was determined based on the values of 2π/k̄ and
x̄ that characterize the solutions of Eq. (4-1): sustained oscil-
lations (k̄ > 0 and x̄ → ∞, lilac), decaying oscillations (k̄ > 0
and finite x̄, orange), and pure exponential decay (k̄ = 0 and
finite x̄, gray). The lines between regimes were determined from
k = ±kr + iki, the complex pole of R̃(k) with the smallest pos-
itive imaginary part (dashed line for ki = 0 and dotted line for
kr = 0). Its components were also used to determine the full-
lines (theoretical 1) in panels (b)-(d). The symbols correspond
to measurements of numerical profiles and the thin dashed lines
to the harmonic estimate (theoretical 2) given by Eq. (4-19). 57
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Figure 4.10 Comparison of R̃(k) with the harmonic response
R̃H(k). R̃(k) of our model, given by Eq. (4-13) (solid lines)
and harmonic response RH(k), given by Eq. (4-16) (dashed
lines), where the values of k0 and ζ were obtained by fitting
Eq. (4-16) to R̃(k). In all cases, q = 0.5, ` = 2 and two
different values of D shown on the legend were considered.
Notice that, for D = 2×10−1, the response can be described by
the harmonic approximation. For D = 2 × 10−4, the response
is multipeaked, the harmonic approximation fails, and also the
observed dominant mode is not given by the absolute maximum,
but by the small hump at k ' 2.1, as predicted by the analysis
of complex poles. 61

Figure 4.11 Phase diagram and characteristics of the station-
ary profiles as a function of the shape parameter 2− α,
for kernel γα(x) with ` = 2. The remaining conditions and the
conventions are the same as in Fig. 4.9. 62

Figure 4.12 Determination of the oscillation wave number, k̄,
and the decay length, x̄. Contour lines for the fixed wave-
lengths and the decay lengths. Colors for different oscillatory
regimes as in previous figures. We considered interaction follow-
ing kernel γq in (a) and γα in (b). The remaining parameters
are D = 10−3 and a = b = 1. Two points are highlighted:
(k̄, x̄) = (7, 3) (black circle) and (5,2) (gray square). Figure
reprinted from [2] 63

Figure 4.13 Oscillations produced using parameters for
the highlighted points in Fig. 4.12. (a) (`, q) =
(1.19,−0.55), (`, α) = (0.61, 2.94) (black circle), and (b)
(`, q) = (1.275,−0.055), (`, α) = (0.883, 2.397) (gray square).
The kernels γq (solid blue) and γα (dashed black) are shown in
the respective insets. The red line shows a fit with mode k̄ and
decay x̄, namely ρH(x) = 1 + Be−x/x̄ sin(k̄x+ φ), where B and
φ were adjusted. 64

Figure 4.14 Comparison with experimental data of patterns
in a refuge. a) Stationary patterns within a refuge in the center
(gray region, L = 4), using influence function γq where q = −0.8
and ` = 2. The other parameters are D = 3× 10−3 and A = 1;
b) Reprinted from Ref. [3]. 65
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Figure 4.15 Long-time spatial distribution in 2D. Simulated
scenarios: (a) a circular region (with radius 5 a.u., highlighted
with a black dashed boundary) where the growth rate is positive
a (in a strong negative background a−A); (b) a circular region
(with radius 2.5 a.u., highlighted with a black dashed boundary)
where the growth is strongly negative a − A (while outside,
it is positive, a); (c) four regions with negative growth rates
a−A (in a positive background, a); (d) random landscape with
growth rates uniformly distributed in [0.5a, 1.5a]. In all cases,
the interaction kernel is γq, with ` = 2 and q = 0.5, D = 10−3,
a = b = 1 and A = 10 . Colors show the deviation from the
homogeneous state ρ(x, t) − ρ0 (where ρ0 = 1 for the chosen
values of the parameters). For the numerical integration, a
pseudo-spectral method was used with ∆x = 0.2 and ∆t = 10−3.
For details see Ref. [4]. Figure reprinted from [2]. 65

Figure 6.1 Diffusion and their respective population density
for different exponents of diffusion. Upper panels: D1(x);
and bottom panels:D2(x). On the left panels, the diffusion D(x)
given by Eq. (6-4) is represented, while on the right panels,
the population density ρ(x, t = 10) obtained by the numerical
solution of Eq. (6-1) is represented. The parameters are D0 = 1,
L = 10, a = 1, and the value of ν is described on the legend. 71

Figure 6.2 Temporal evolution of the density as a function of
x for ν = 1.5 and the same parameters of Fig. 6.1. Left: D1 and
Right: D2. 72

Figure 6.3 The critical size of the refuge as a function of the
diffusion exponent. Obtained for D1(x) with a = 1. 72

Figure 6.4 Periodic diffusion: Temporal evolution of the
density as a function of x for D0 = 1, α = 0.8, β = 10, x0 = 0,
a = 1, and L = 10. 73

Figure A.1 Interaction kernel and mode growth rate. (a) In-
teraction profiles γ for the uniform, triangular, and exponential
kernels with ` = 2 (see Table A.1), and (b) mode growth rate
λ(k), where the parameters used are D = 10−3, ν = µ = 1, and
ρ0 = 1. 83

Figure A.2 Comparison between the two families of influence
functions and their respective mode growth rate, using
` = 2 and D = 10−3. Left: Results for γα. Right: Results for γq. 84

Figure A.3 Maximal value of the mode growth rate as a
function of D with q = −0.5, and profiles of mode growth
rate λ(k). The vertical lines indicate the values of D above
which (i) the maximal value of λ becomes negative (D ' 0.003),
and (ii) this maximum becomes located at k = 0 (D ' 0.18). 85
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Figure A.4 Maximal value of the mode growth rate as a
function of q with D = 10−3, and profiles of mode
growth rate λ(k). The k?i represent the i-th local maximum.
The vertical lines indicate the values of q above which (i) the
maximum value of λ becomes negative (q ' −0.093), (ii) the
second peak becomes the global maximum of the dispersion
ratio (q ' 0.21) and (iii) the dispersion ratio stops oscillating
(q ' 0.45). 85

Figure A.5 Maximal value of the mode growth rate as a
function of α with D = 10−3, and profiles of mode growth
rate λ(k). The vertical line represents α ' 2.16, at which
λ(k?) = 0. 86

Figure B.1 Comparison of profiles for different influence
functions with ` = 1. Stationary population density as a
function of x obtained from numerical integration of Eq. (4-
1) , for different values of D and L = 10. We use A = 10−3, so
the growth rate outside of the mask is negative (A−a = 0.999).
The gray region correspond to the refuge. 87

Figure B.2 Comparisons between analytical and numerical
results. Left: Top-hat kernel; Right: Exponential kernel.
Steady population density as a function of x obtained numeri-
cally from Eq. (4-1), and analytically from Eq. (4-9), for L = 10,
` = 1, A = 10−3, and D described in the figure. 88

Figure B.3 Comparison between the patterns of the two
families of influence functions. Left: population density
using the γα kernel inside a refuge of size L = 20. Right:
population density using the γq kernel inside a refuge of size
L = 10. The others parameters are ` = 2 and D = 10−3. 88

Figure B.4 Uniform influence function γh, with ` = 1. The
steady population density as a function of x obtained numer-
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1
Introduction

The study of pattern formation has many applications and is of great
interest to many areas of research, such as: Physics, Biology, Mathematics,
among others. Patterns – which can be spatial or temporal – emerge when there
is a correlation between the elements within a system [1, 5, 6, 7, 8, 9, 10, 11, 12].

We are interested in: understanding how they form in the biological
population of single species that spatially self-organize; and, in particular,
determining the critical conditions for the onset of patterns.

Studied populations range from simple organisms, such as cells and
bacteria, to systems in ecological scale, such as vegetation.

We will see two different ways to observe pattern formation:

– The first one is when self-organized structures emerge from internal
interactions. We will approach it in a homogeneous landscape, through
dynamics with density-dependent feedbacks [7, 13, 14, 15, 16], in order
to understand the shape of the stationary profiles of a population and,
particularly, population fragmentation.

– Second, we will see that the external factor - such as the heterogeneous
landscape [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], can impose
patterns on a population, depending on the internal interactions of the
system. In this case, different kinds of stationary profiles can emerge:
sustained oscillations (or spatial patterns, without amplitude decay);
decaying oscillations (with decreasing amplitude from the interface), or
exponential decay towards a flat profile.

To study this emergence of patterns, we use a standard single-species
model (a generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation [28, 29,
30]) that includes nonlocal intraspecific competition for resources, beyond
reproduction and dispersal terms.

We propose general forms of the influence function that sets how the
interaction between individuals depends on the distance. This function effec-
tively includes long-range interactions that can emerge due to shared resources
and from the underlying dynamics of the environment. Following computa-
tional and theoretical approaches, we will investigate the spatial structures
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that emerge in both the situations described above. We provide theoretical
predictions based on mode linear stability analysis, in accordance with the
numerical results.

This document is structured as it follows:

– In Chapter 2, we provide introductory information with general consid-
erations. We present the adopted model, explaining its components, and
we show how to analyze this model numerically and analytically;

– In Chapter 3, we study, in a homogeneous landscape, how density-
dependent feedbacks influence the shape of the patterns, and the factors
that favor population fragmentation;

– In Chapter 4, we study the effect that the heterogeneous landscape has
on the spatial distribution of a population, more precisely between viable
and non-viable regions.

We provide an analogy between the solution of the density distribution
in the steady-state, and the forced linear oscillator, which helps us to
understand the structures that emerge from the interface. Moreover, we
discuss how the information about the interaction kernel can be extracted
from observable oscillations. Additionally, outcomes for 2D landscapes
are shown to illustrate that the main phenomenology investigated is not
restricted to 1D;

– In Chapter 5, we present the final considerations, summarizing what has
been presented;

– In Chapter 6, we present a preliminary study about the role of limited
heterogeneous habitats on population dynamics, considering a space-
dependent diffusion.
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2
Population dynamics

We present, in this chapter, previous concepts and some definitions that
will be necessary for the understanding of the research presented in this work.
The model adopted is described, as well as the numerical and analytical
methods used to solve it. We start with a phenomenological description of
pattern formation.

2.1
Pattern formation

Many systems observed in nature are spatially organized with a periodic
– or almost periodic – distribution, without centralized control. There are many
examples where the patterns are generated either by a heterogeneous landscape
or by the intrinsic behaviors of the population taken into consideration. Some
organisms can be responsible for shaping a landscape with patterns, such
as: the termites, which create mounds with associated vegetation thickets, in
many places of the world (Fig. 2.1 taken from Google [1]) ; the male Tilapia
mossambica, which creates hexagonal territory; or bees, which always create
the alveolar in a hexagonal shape because it uses less wax and makes the most
of the hive space.

Patterns can also be found in collective behavior, such as: flocks of birds
(murmuration) [31] and clusters of fish [32], which form structures in space-
time; and in traffic and pedestrian dynamics [33].

Moreover, controlled experiments with bacterial colonies growing on a
homogeneous substrate [3, 34, 35] also show different types of patterns. They
indicate that the emergence of self-organization might be intrinsic to the
population. Although it is a very broad topic, we will restrict our study
to a biological population that is composed of simple organisms of a single
species. The population follows the Markovian dynamics, without memory.
Populations of some bacteria and plants can be labeled in this category. We
will explore patterns that emerge from intraspecific interactions and/or from a
heterogeneous landscape. Particularly, we investigate the pattern formation
that emerges from the generalized Fisher-Kolmogorov-Petrovskii-Piskunov
(FKPP) equation, which we present in the next section.
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Figure 2.1: Examples of patterns created by animals. In the upper panel,
we can see a satellite picture of termite mounds with associated vegetation in
Pantanal, Brazil (11◦56’34.8”S 50◦46’37.2”W). In the lower panel, multiscale
mound patterning, potentially created by two different social-insect species
[1], in the Bangweulu floodplain Zambia – an ecosystem described by the
explorer David Livingstone as “A World of Water and Anthills” (11◦06’40.1”S
30◦10’51.5”E). Imagery: Google, DigitalGlobe.

2.2
Single-species model

There are many mathematical models in the literature for the spatio-
temporal dynamics of a single-species population that describe: diffusion,
growth, competition and interaction between species [36]. The classic simplest
model is the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equation [28,
29], where the population density ρ(~x, t) at position ~x and time t is given
by

∂tρ(~x, t) = D∇2ρ(~x, t) + aρ(~x, t)− bρ2(~x, t), (2-1)
where D is the diffusion coefficient, a is the (clonal) reproduction rate, and b
is the strength of (intraspecific) competition that bounds population growth.
Those are all positive constants. While a > 0 guarantees a positive growth
rate (a necessary condition for the survival of the species), b > 0 guarantees
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that the interaction term is negative (intraspecific competitive interaction), a
condition for the logistical effect to be obeyed.

In Eq. (2-1) competition is local, in the sense that it occurs at scales much
shorter than those associated to the diffusion process. However, competition
effects might also extend to larger scales, making the interaction essentially
nonlocal. For instance, nonlocal cooperation and competition can be present
in vegetation mediated by roots [37, 38, 39]. Also, nonlocality can emerge due
to the spread of substances released or consumed by the individuals [8, 11, 16,
37, 40, 41].

Then, assuming that interaction can act at a distance according to a
kernel (also called influence function) γ, and, that diffusion and growth are
not constant, in one dimension, Eq. (2-1) is extended as

∂tρ(x, t) = ∂x(D(ρ)∂xρ) + f(ρ)ρ− bρ[γ ? ρ](x, t) , (2-2)

where [γ ? ρ](x, t) ≡
∫∞
−∞ γ(x − x′)ρ(x′, dt)dx′, and the kernel is normalized,

i.e.,
∫∞
−∞ γ(x)dx = 1. Furthermore, we assumed γ ≥ 0 to describe competitive

interactions between individuals. That generalization takes density-dependent
feedback into account.

The FKPP equation is intended to describe the temporal evolution of
population distributions, but it may also describe gene distribution or niche
occupation [28]. We describe below the meaning and the contribution of each
term to the dynamics.

Diffusion

Density-dependent mobility can arise due to the environments’ struc-
ture [42, 43], such as in porous-media. Also, it can originate from complex
biological and social reactions in response to overcrowding or rarefaction of
the population density [23, 44]. For instance, in populations of insects, such
as ants, it has been observed that the diffusion coefficient can be facilitated
or hindered by population concentration [36]. In this situation and in other
examples [14, 36, 45, 46, 47], a power-law form for the diffusion coefficient
can be used as phenomenological description. Therefore, we will consider the
diffusion coefficient D(ρ) = D̃ρν−1 where ν is a positive constant. Then, the
generalized diffusion equation is given by

∂tρ = D∂xxρ
ν . (2-3)

It generates two different anomalous diffusive behaviors. The solutions
for this equation are depicted in Fig. 2.2 for ν < 1 (left) and ν > 1 (right).
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Figure 2.2: Schematic representation of nonlinear anomalous diffusion.
On the left, we have a superdiffusive system, and on the right, a subdiffusive
one.

When ν > 1, the dynamics is subdiffusive. That is, the variance of the spatial
distribution increases sub-linearly with time. This anomaly occurs because
mobility increases with density, and so, more populated regions become more
active. In this case, the density profile tends to follow platykurtic distributions
(sub-Gaussian). And when ν < 1, the dynamics are superdiffusive (the variance
increases super-linearly with time). In that case, mobility decreases with
density, and less dense region are more active. The density profile tends to
follow leptokurtic distributions (super-Gaussian) [48].

Growth

Figure 2.3: Schematic representation of the per capita growth rate
as a function of the density ρ, for super-exponential growth µ > 1 and sub-
exponential growth µ < 1.

Population growth can also be governed by density-dependent factors.
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For instance, related to the Allee effect, the per capita reproduction rate
vanishes at the low concentration limit. But there are also cases where
reproduction is favored when the concentration is low, due to the absence
of overpopulation disadvantages.

In order to consider different behaviors, we will also consider the power
law f(ρ) = aρµ−1, where the solution for ρ̇ = ρµ is given by

ρ(t) = ρ0

[
1 + 1− µ

ρ1−µ
0

at

] 1
1−µ

. (2-4)

If µ → 1, the growth in time is exponential, while µ = 0 represents linear
growth. In the Fig. 2.3 the per capita rate of the growth is depicted as a
function of ρ, for µ > 1 and µ < 1; and in the Fig. 2.4, the temporal evolution
of the density is represented for different growth exponent.
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Figure 2.4: Examples of density variation with time, for different
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When µ < 1, the population grows more in less occupied regions, filling
the emptiest spaces and decreasing the variation in density. When µ > 1, we
have the opposite effect, favoring the growth in more populated areas.
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Competition

We consider that an individual has its resources limited by the number of
neighbors in the region of influence. For instance, plants absorb nitrogen from
the soil through the roots, reducing nutrients and, occasionally, killing nearby
plants at spatial scales much larger than the size of the individual. Because of
such mechanisms, it is necessary to assume a nonlocal competition, which can
be mediated by an influence function or an effective kernel, which determines
how that neighborhood affects the individual. Under some conditions, such
spatial coupling may promote spatial instability, a key ingredient for pattern
formation.

Differently from the original FKPP Eq. (2-1), the nonlocal FKPP equa-
tion – given by Eq. (2-2) – can exhibit self-organized structures depending
on the particular properties of the kernel and the values of the diffusion and
reproduction rates [49, 50, 51, 52].

With these generalizations, Eq. (2-2) becomes

∂tρ(x, t) = D∂xx(ρν) + aρµ − bρ[γ ? ρ](x, t) . (2-5)

We will study the effect of some types of influence functions, which we
will define throughout the work.

2.3
Linear stability analysis

By studying pattern formation, through the generalized FKPP equation,
we find nonlinear effects that emerge from the interaction between the nonlin-
ear feedbacks in diffusion and growth processes, and also on nonlocality.

With analytical methods, we will be able to understand the relationships
between interactions and the shape of patterns. As the equation from which we
will start is nonlinear, our analytical results are based on the linearization of
the equation of evolution around a homogeneous state. This leads us to a linear
stability analysis that will allow us to identify the emergence of structures with
a characteristic spatial scale.

However, as the information obtained analytically is limited due to
the nonlinear character of the system, we also present numerical methods
(which will be described in Sec. 2.4) that provide information about the entire
evolution.

The steps presented here for the linear stability analysis, are the same
followed in chapters 3 and 4. Then, we start by assuming a small perturbation
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around the nontrivial homogeneous solution of the main equation, ρ0 =
(b/a)1/(µ−2), i.e.,

ρ(x, t) = ρ0 + ε(x, t). (2-6)
The first term of Eq. (2-5), after expanding and neglecting second-order terms,
is

ρν = ρν0 + νρν−1
0 ε,

∂xxρ
ν = νρν−1

0 ∂xxε.

Replacing the expansions in Eq. (2-5) and considering that the kernel is
normalized (

∫∞
−∞ γ(x)dx = 1), we have

∂tε = Dρν−1
0 ∂xxε+ b(µρ0 − 1)ε− bρ0

∫ ∞
−∞

γ(x− y)ε(y)dy, (2-7)

which in Fourier space becomes 1

∂tε̃(k, t) = λ(k)ε̃(k, t) , (2-8)

where the rate λ(k) is given by the mode growth rate

λ(k) = −k2Dρν−1
0 − bρ0γ̃ + b(µρ0 − 1). (2-9)

It is an important quantity that will appear all throughout the work. In
terms of it, ε̃(k, t) = ε̃(k, 0)eλ(k)t. Thus, if λ < 0, any initial perturbation will
fade out, such that in the long-time limit, the population distribution ρ(x)
will be flat (homogeneous distribution). On the contrary, if there are unstable
modes, with λ(k) > 0, stationary sustained oscillations will be produced with
a characteristic mode k? (the maximum of λ), which is, initially, the fastest
growing one [53].

Since the equation is very nonlinear and nonlocal (integro-differential),
limitations arise even for very particular cases. For instance, for the linear
case, ν = µ = 1 (which recovers the nonlocal competitive FKPP, many
times investigated in the literature), no solution for the stationary patterns
is known. Only for the case without the diffusive term, a nonlinear procedure
[52, 54] gives the stationary solution. Near the transition to patterns (small
amplitude), the solution for sine-like patterns can be obtained by perturbative
approaches [55].

1The Fourier transform of a function f(x) is defined as f̃(k) =
∫∞
−∞ f(x)e−ikxdx.
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2.4
Numerical method

Numerical integration of Eq. (2-5), with periodic boundary conditions,
was performed starting from a homogeneous state, plus a random perturbation,
uniformly distributed with a very small amplitude, following a standard
forward-time-centered-space scheme [56] (depicted in Fig. 2.5).

t

t+  t
x

L

Figure 2.5: Schematic representation of the FTCS method. At each
time increment ∆t, for an x position, the densities of the population within
an ` neighborhood are taken into account, which influence according to an
interaction kernel γ. L is the system size.

The used algorithm is fourth order Runge-Kutta in time and second
order in space (method adopted in all the numerical simulations). We let the
dynamics evolve until the stationary regime has been reached. In simulations,
we used different values of space and time increments (dx and dt), according
to the parameters and model studied. The choice was made according to a
convergence analysis that will be described later.

Following this method, we represent in Fig. 2.6 the temporal evolution of
density as a function of position for a specific case of Eq. (2-5) where λ(k?) > 0.
The parameters used are described in the figure.

In order to provide a concrete response regarding the accuracy of our
numerical scheme, we estimate the error in our simulations. In the Fig. 2.7,
we show the temporal evolution of the maximal and minimal values of ρ as a
function of time for different discretization steps dt. In the Fig. 2.8, the error
associated to ρ(t = 200) is shown as function of dt.

The error of a given value of ρ was estimated as |ρ−ρ1|
ρ1
× 100, where ρ1 is

the limit value for dt→ 0, that is ρ(dt = 10−6) in the figure.
Notice that the error decays with dt, and for sufficiently small dt it falls

within a desired accuracy. For instance, 1%, when dt = 10−4, for the minimal
value of ρ (ρmin ' 4 × 10180 in the case of the figure) while the error is still
smaller for the maximal value of ρ.

In Fig. 2.9 we can see the pattern being created as the time evolves. In
this example, the minimum density stabilizes at a constant value. Similar cases
will be studied in Chapter 3.
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3
Self-induced population fragmentation

Population fragmentation is characterized by critical changes in the
spatial distribution of individuals, creating isolated sub-groups of a given
initial population. This phenomenon has important consequences for secondary
processes such as epidemic spreading, species invasion [6] or also speciation [57].
Fragmentation is often attributed to landscape heterogeneity, which embraces
the spatial distribution of geographical and environmental features [58]. If
natural barriers are sustained for long periods of time, fragmentation can be
induced [57].

This scenario has been vastly studied in the context of metapopulation
theory, which takes into account the ecological landscape heterogeneity [20].
The degree of fragmentation of the landscape, which is imposed to the
population, is widely known for playing an important role and determining the
species richness and ecosystem stability, against external perturbations [20, 59,
60]. But regardless of environment heterogeneity, arrangements of individuals
in space can also emerge solely from their interactions, bringing critical
consequences to the evolutionary dynamics and social behavior of living
organisms [61, 62, 63, 64, 65].

Precisely, we explore in this chapter the conditions under which popula-
tion dynamics can self-induce fragmentation in the absence of external barriers.
The results of this research were published in the Ref. [66].

3.1
Model

Following the model given in the Sec. 2.2, we investigate the class
of dynamics where diffusion and growth coefficients have power-law density
dependencies. Before proceeding, we adimensionalize Eq. (2-5), by defining
the scaled variables

ρ′ = ρ/ρ0,

t′ = aρµ−1
0 t,

x′ =
√
aρµ−ν0 /D x, (3-1)
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where ρ0 = (b/a)1/(µ−2) is the uniform stationary solution, that becomes ρ′0 = 1.
Then, substituting the scaling relations (3-1) into Eq. (2-5) and eliminating
the prime superindexes, Eq. (2-5) becomes

∂tρ(x, t) = ∂x(ρν−1∂xρ) + ρµ − ρ
∫ ∞
−∞

γ(x− y)ρ(y)dy . (3-2)

In this way, the exponents µ and ν are the only remaining parameters,
once fixed kernel γ. For logistic effect (referring to limited resources), we must
have µ < 2, to ensure that the population size remains bounded. The influence
kernel that we consider in this chapter is the homogeneous influence function,
also known as top-hat kernel, which is constant inside a certain region of width
2`,

γh(x) = 1
2`Θ(`− |x|) , (3-3)

being non-null only if |x| < `, and which Fourier transform is γ̃h(k) =
sin(k`)/(k`).

Typical profiles that emerge in our numerical simulations are presented
in Fig. 3.1, where we can also observe the mode growth rate that assumes
positive values.

3.2
Linear stability analysis

We will follow the standard procedure, explained in Sec. 2.3, where we
assume a small perturbation around the nontrivial homogeneous steady state,
i.e., ρ(x, t) = 1 + ε(x, t). The linearization of Eq. (3-2) provides the mode
growth rate

λ(k) = −k2 − γh(k) + µ− 1 . (3-4)
The first term on the right side of Eq. (3-4) is associated with diffusion

and is always negative, tending to stabilize the homogeneous state. The term
γ̃h(k), associated with nonlocality, takes positive and negative values and
therefore, can contribute to destabilizing the homogeneous state and can
originate pattern formation. Additionally, the nonlinearity in the growth rate
(µ 6= 1) shifts the mode growth rate according to the linear case (µ = 1),
contributing to the destabilization when µ > 1, and to stabilization when
µ < 1. Notice that the diffusion exponent ν does not appear explicitly in the
mode growth rate due to the normalization used.

We can find the dominant mode k?, which is the maximum of λ(k), by
considering the derivative of Eq. (3-4) equal to zero. Also, we can numerically
calculate its approximate value by k?` ' 3π/2. This value gives us information
about the wavelength.

To obtain patterns, it is necessary that λ(k) > 0; that is, µ is greater
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Figure 3.1: Patterns: a) We present numerical results of Eq. (3-2) for the
density ρ(x) at t = 2000, using L = 100, ` = 20, µ = 1.0, and different values
of diffusion exponent ν indicated in the legend. b) The same on the log-scale.
c) The mode growth rate, given by Eq. (3-4), which is independent of ν.

than a critical value
µp ≡ (k?)2 − 1

k?`
+ 1, (3-5)

that constitutes the frontier for the onset of patterns. Moreover, when patterns
appear, the number m of peaks can be estimated by

m = k?L

2π ' 0.715L
`
, (3-6)

where L is the system size.
Notice that nonlinearities are also contained in the spatial and time

scales, according to Eqs. (3-1); and for that reason, they influence pattern
wavelength and growth rate. Therefore, although ν does not appear explicitly
in Eq. (3-4), it has an indirect influence.

The theoretical linear approximation is not valid when approaching the
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limit of consistency of the model, i.e., when µ ≈ 2. If µ > 2, the population
grows indefinitely. In order to analyze what happens with the number of peaks
when we approach this limit, we represent in Fig. 3.2 the shape of patterns for
L = 200, ` = 20, ν = 4.0 and different values of µ. In this case, we started
with 7 peaks (m = 7.5) and the value decreases, while increasing µ.

0

2

4

6

8

0 50 100 150 200

ρ
(x
)

x

1.4

1.8

1.9

Figure 3.2: Number of peaks and nonlinearity. For L = 200, ` = 20,
ν = 4.0, and different values of µ – indicated on the legend, numerical
simulations of Eq. (3-2) show that increasing the growth exponent µ decreases
the number of peaks of the stationary patterns.

We can interpret the change of the number of peaks in terms of the
interactions between the individuals. As we increase the exponent µ, the
population’s growth becomes greater in more populated regions, producing
a large concentration in the peak. If the diffusion exponent ν is greater or
equal to one, we have two phenomena occurring: the population is growing and
spreading further. In consequence, we observe fewer peaks when increasing the
value of µ.

3.3
Numerical results

In all the numerical simulations of this chapter – exceptions aside, we
set the system size L = 100 and the competition interaction range ` = 20. As
a consequence of this choice, Eq. (3-6) predicts that, when there are patterns
(i.e., when µ > µp ' 0.84), the estimated number m of peaks is m = 3.75.
Therefore, we are more likely to observe 4 peaks. But, we chose realizations
with the same number of peaks for comparisons.
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Figure 3.3: Stationary profiles. We present the stationary density ρ(x)
for different values of ν: 0.8 (superdiffusion), 1.0 (normal diffusion) and 4.0
(subdiffusion), and different values of the growth exponent µ: 0.9, 1.0 and 1.4.

The shape of the patterns in function of ν and µ are presented in Fig. 3.3,
on the region where λ(k) > 0. In the standard case µ = ν = 1, each peak has
a Gaussian-like shape. But when feedbacks are taken into account, mobility
and reproduction rates respond to the degree of agglomeration of individuals.
Then, when ν > 1, the peaks tend to be more platykurtic (sub-Gaussian
distribution); that is, they have thinner tails, since the diffusion rate vanishes
at low densities. Similarly, when ν < 1 the peaks tend to be more leptokurtic
(super-Gaussian) – fatter tails, as the diffusion rate diverges at low densities.

Concerning the exponent µ, it is evident that the patterns that emerge
when µ < 1 have a minimum value, which is noticeably non-zero, in contrast
to the cases µ ≥ 1. These traits can be associated with the type of density-
dependent feedback (governed by µ): when µ < 1, population growth is
enhanced in low-density regions, raising the population level in the valley
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between clusters; while for µ > 1, the opposite effect occurs.
The combination of diffusion and growth nonlinearities generates the

diverse profiles shown in Fig. 3.3. In Sec. 3.4, we present mathematical
functions that described these patterns very well. Next, we will discuss the
emergence of these profiles, focusing on the characterization and definition of
fragmented states (Figs. 3.3b-c).

To identify the fragmentation process, we follow the temporal evolution of
the smallest value of the concentration of individuals, ρmin(t). Representative
cases are shown in Fig. 3.4a, where, in addition to the minimal value, the
largest value ρmax(t) is also inserted in the graphic.

We note that, for small enough values of µ, ρmin(t) stabilizes at a finite
level. In contrast, for µ greater than a critical value (µc ' 1 for ν = 4.0, such as
the case of Fig. 3.4a), ρmin(t) ∼ exp(−t/τ), decreasing exponentially with time
to the computational limit (% ∼ 10−308). Note, in Fig. 3.4b, that the critical
value of µ is function of ν. For µ < µp, the stationary value of ρmin = ρ0 = 1
and there are no patterns, as anticipated.

The characteristic time τ is represented in Fig. 3.5 as a function of the
exponents, including the cases shown in Fig. 3.4a.

When ν and µ obey certain conditions, the numerical outcomes suggest
the emergence of disconnected clusters, separated by depopulated regions.
To better characterize the fragmented patterns and the conditions for their
emergence, we consider, in addition to the stationary values (ρmax and ρmin),
the width σ of each cluster at half height and the length ∆ of the region
where ρ attains %, which we interpret as null density 1. The results are shown
in Fig. 3.6, varying diffusion exponent ν while keeping the growth exponent µ
constant. For µ = 0.9 (Fig. 3.6a), the shape of the patterns is almost insensitive
to ν. Importantly, we do not detect a region where the density vanishes (for
this reason symbols of ∆ are absent in the plot). That is to say, fragmentation
does not occur. Differently, in Fig. 3.6b-c, an abrupt drop of ρmin is observed
as a function of µ. Simultaneously, a non-zero ∆ is detectable in these cases.
Therefore, patterns become fragmented and that occurs beyond a critical value
of ν, which decreases with µ.

A phase diagram, obtained from numerical simulations, which is pre-
sented in Fig. 3.7, depicts the regions in the µ − ν plane where patterns can
develop, and where they are fragmented or not. The white region on the left of
the vertical solid line corresponds to the values of the exponents for which no
patterns arise, according to the condition given by Eq. (3-5). At the same time,

1We identify this region as zero density, since the null state is numerically stable within
it. Specifically, by zeroing the density values, they remain stable.
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Figure 3.4: Maximal and minimal densities: (a) Temporal evolution of
ρmax(t) and ρmin(t), for ν = 4.0 and values of µ indicated in the legend. Inset:
ρmin(t) on a larger scale. (b) Minimal density as a function of the growth
exponent for different values of the diffusion exponent. Inset: the same, with
another scale.

patterns emerge in the complementary domain. The solid dark area denotes
fragmented patterns, as defined above.

Fragmentation occurs depending on the balance between diffusion and
growth at low densities. Looking at Fig. 3.7, we see that fragmentation is
favored when the diffusion coefficient and per capita reproduction rate increase
super-linearly with the population concentration (ν and µ larger than one).
Differently, when ν and µ are small, diffusion and per capita growth diverge
at low densities, promoting the fast occupation of unpopulated regions, thus
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Figure 3.5: Characteristic time τ of the exponential decay of ρmin(t) ∼
exp(−t/τ) as a function of: (a) µ (for fixed values of ν) and (b) ν (for fixed µ),
as indicated in the figures. The dashed vertical lines correspond to the values
at which fragmentation occurs for the same color curve, as explained in the
text.

connecting clusters.
More details about the pattern shape transitions are shown in Fig. 3.8.

We see that, crossing the frontier of fragmentation along the line ν = 4 (Fig.
3.8a), there is a smooth variation in the shape quantities σ, ∆ and ρmax, as in
the cases of Fig. 3.6. (Except that, as µ→ 2, nonlinearities affect the number
of peaks m and hence, the measured quantities.) But when ν becomes small,
the behavior of pattern features changes. In Fig. 3.8b-c, we note a region where
quantities that characterize the shape vary exponentially with µ, followed by
a regime in which changes occur more rapidly. Note, for example, that while
the height of a peak ρmax rapidly increases, its width σ decreases with µ,
suggesting that each peak tends to approach a Dirac delta-like profile. The
effect is accentuated for small ν, as can be seen in Fig. 3.8c.

Moreover, it causes numerical difficulties. These difficulties prevent the
determination of whether a Dirac delta is attained or not for finite µ, since
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Figure 3.6: Characteristics of the stationary profiles. Stationary values of
maximal density (ρmax), minimal density (ρmin), width at half height (σ) and
valley width (∆) as a function of ν, for (a) µ = 0.9, (b) µ = 1.0, (c) µ = 1.4.

the increments dx and dt – used in simulations – must be reduced and thus,
increase the computational cost, as we can see in the Fig. 3.9.

It is worth mentioning that, although the dependency of ρmin on the
model exponents is similar to the dependency in Fig. 3.6b-c, mainly the abrupt
drop, we could not follow the behavior until % is attained (or not) due to
strong instability in the numerical integration when µ→ 2 (hatched region in
Fig. 3.7). Such complications interfere with a definite conclusion regarding the
fragmentation process for large values of µ, and especially for small ν.

Finally, concerning the timescales of the pattern shape transition, we
address further comments related to Fig. 3.5. For large values of ν (ν = 2.0, 4.0
in Fig. 3.5a), the time τ explodes as µ approaches the critical value for
fragmentation. In these cases, the characteristic time of relaxation towards
a local null population level – when fragmentation occurs, and the time of
relaxation towards a finite minimum population – when the opposite happens,
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Figure 3.7: Phase diagram in the µ − ν plane. The color scale represents
the stationary minimal density ρmin.The vertical solid line at µp ' 0.84
delimits superiorly the domain where no patterns are formed, according to
Eq. (3-5). In that region, ρmin = ρmax = 1. Above µp, patterns emerge, and
their minimal value gradually decreases. The dashed line separates the non-
fragmented region, in color-scale, from the fragmented one, in solid dark color.
The hatched region corresponds to non-calculated values due to computational
limitations.

both suffer a drastic change. That is, along with the transition related to the
minimum value of the stationary density ρmin, there is a transition in the time
scale of the dynamics, which becomes slower when µ approaches the critical
point (see Fig. 3.5a-b).

In contrast, there are other cases where a drastic change in the time
scale is not observed, and there is continuity of the values of τ across the
fragmentation boundary. That is, the time of decay of the density towards a
finite level (on the left of the vertical lines in the figure) or towards zero (on
the right of the vertical lines) does not suffer discontinuity. This indicates that,
depending on the region of the µ − ν plane, the transition to fragmentation
can occur in two distinct ways.

3.4
Mathematical description of the patterns

We show in this section two mathematical descriptions of the patterns
that emerge from the generalized Fisher-Kolmogorov-Petrovskii-Piskunov
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Figure 3.8: Characteristics of the stationary profiles. Stationary values
of the maximal density (ρmax), minimal density (ρmin), width at half height (σ)
and valley width (∆) as a function of µ, for (a) ν = 4.0, (b) ν = 1.3 and (c)
ν = 0.5, 0.8 and 1.0, where more intense colors correspond to higher values of
ν. The vertical lines represent µp ' 0.84.

equation (Eq. 3-2), such as those we presented in Fig. 3.3. The first model
is a periodic extension of a generalization of the Gaussian function, which
describes all the curves in very good approximation. Besides, some specific
patterns can also be approximated by the Fourier series expansion, using just
a few terms, as we will see below.

3.4.1
Generalization of the Gaussian function

Inspired by the porous media equation [43],and other related ones [67,
68, 69, 48, 70] – to which the solutions resemble the curves of interest – we
consider the ansatz

f(x) = A

(
1− βx2

2s2

)1/β

+
, (3-7)
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values of µ need a lower value of dx in the numerical simulation, in order to
observe their convergence (hatched region in Fig. 3.7).

where A, s are positive constants, and β is real. The sub-index “+” means null
value if the expression between parentheses is non-positive. That is, f(x) has
compact support [−x0, x0], with x0 = s

√
2/β.

If β → 0, Eq. (3-7) results in the Gaussian function; otherwise, it
represents the generalized Gaussian that arises within Tsallis statistics [71].
To describe the steady states observed in our case, we consider the periodic
extension of Eq. (3-7) with period Λ, that is

f ext(x) =
∑
k∈Z

f(x− kΛ). (3-8)

Figure 3.10 shows stationary patterns – represented by the gray circles,
adjusted by Eqs. (3-7)-(3-8) – represented by the red lines, and the Table 3.1
shows the values of the fitting parameters, where only one wavelength Λ of ρ(x)
(between successive minima of ρ) is ploted. Notice that the offset observed in
some of the cases, arises from the superposition given by the periodic extension.

We observe, in Fig. 3.10 and Table 3.1, that when ν = µ = 1, the shape
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Figure 3.10: Approximation by a generalization of the Gaussian func-
tion. Stationary profiles obtained numerically – represented by the gray circles,
along with the description given by Eq. (3-7) – represented by the red lines,
for the values of µ, ν indicated in the figure. Fitting values of the parameters
are given in Table 3.1.

µ = 0.9 µ = 1.0 µ = 1.4
A 1.4645[7] 1.8264[7] 2.5578[6]

ν = 4.0 β 0.793[3] 1.428[3] 1.594[2]
s 8.761[9] 8.521[7] 8.501[4]
A 2.222[1] 4.245[2] 61.5[2]

ν = 1.0 β -0.316[3] -0.076[2] -0.11[1]
s 4.149[6] 2.912[3] 1.077[6]
A 2.367[2] 4.797[8] 213.0[4]

ν = 0.8 β -0.395[4] -0.153[7] -0.259[8]
s 3.777[9] 2.560[9] 0.472[2]

Table 3.1: Parameter values from the (nonlinear least-square) fitting of Eq. (3-
8), in the interval [−Λ,Λ], to stationary patterns displayed in Fig. 3.10, after
centering a maximum at x = 0. The square brackets contain the estimated error
in the least significant figure (e.g., the notation 213.0[4] stands for 213.0±0.4).

is nearly Gaussian, since β ' 0. Gaussian approximations were found for a
similar evolution equation with normal diffusion [55]. But when the exponents
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become different from 1, deviations from the Gaussian form occur.
When ν > 1 (subdiffusion), β > 0 and clusters are platykurtic. On

the other hand, ν < 1 (superdiffusion), β < 0 and clusters are leptokurtic.
More importantly, according to Eq. (3-7), for β > 0, clusters have the
compact-support property (smooth boundary for 0 < β < 1 and sharp
boundary for β > 1). This natural cut-off could, in principle, be associated
with fragmentation. But since clusters are not isolated, there is an additional
condition for fragmentation: clusters should not overlap. This condition occurs
when the length of the support is shorter than the pattern wavelength, that
is, 2x0 < Λ. It is interesting to point out that these conditions – not shown –
match the fragmentation region relatively well, in the phase diagram of Fig. 3.7.

The accordance between the ansatz in Eq. (3-7) and numerical patterns
opens an interesting question regarding the possibility of achieving, at least
approximately, an analytical solution of Eq. (3-2), as found for some linear
processes [52, 55, 72]. Nevertheless, from the direct substitution of the periodic
ansatz into Eq. (3-2), a straightforward result was not found. Moreover, the
relation between the ansatz exponent β and the model exponents µ, ν is not
evident, but there is a strong trend given by a factor (ν−1)/2 (see Fig. 3.11a).
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Figure 3.11: Ansatz exponent β as a function of model exponents ν (a), µ
(b). The solid line in (a) corresponds to β = (ν − 1)/2, drawn for comparison.
The vertical solid line in (b) represents µ = µp ' 0.84. The value β = 0 is
highlighted by dashed horizontal lines.

This main contribution to β corresponds to the exponent that emerges
in the pure nonlinear diffusion [73]. Besides that, the exponent also depends
on µ in a nontrivial way, as it can be seen in Fig. 3.11b, thus the values of β
result from the interplay between both processes.
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3.4.2
Fourier series expansion

We also performed Fourier series expansions of the curves in Fig. 3.3,
such that the partial series of order n is given by

fn(x) = ρ0

2 +
n∑
k=1

ρk cos
(
kxπ

Λ/2

)
, (3-9)

where the coefficients are given by

ρk = 2
Λ

∫ Λ/2

−Λ/2
ρ(x) cos

(
kxπ

Λ/2

)
dx. (3-10)

In Fig. 3.12, the gray circles represent ρ(x) from numerical simulations,
the green lines show the Fourier expansions of second order, f2(x), the red lines
are f3(x), and the blue lines show fn(x), where the values of n are indicated
in the legend. The insets show ρk vs k.
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Figure 3.12: Approximation by Fourier series expansion for the values
of µ, ν indicated in the figure. Inset: coefficients ρk, Eq. (3-10), as a function
of k.

For some patterns, the coefficients rapidly tend to zero, and the associ-
ated series converges to ρ(x) even for n ≤ 3. However, higher terms will be
needed for larger µ.
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Differently from the case considered in [55] in which the first order
approximation works well, it is required here a higher order term of the Fourier
expansion.

So, in this section, we have an additional way to describe the patterns
– under certain circumstances – that has a simpler expression and is easy to
manipulate.

3.5
Summary and discussion

Using as a starting point a nonlocal Fisher-Kolmogorov-Petrovskii-
Piskunov equation, which became a relevant description in mathematical biol-
ogy [5, 8, 38, 41, 74, 75], we introduce density-dependent feedbacks in diffusion
and growth processes, and investigate their effects in shaping the population
distribution. We choose the particular form of power-law dependencies on the
density, that allows contemplating a large class of responses to population den-
sity, as found in populations of insects, bacteria, vegetation, and among other
cases – where diffusion and growth can be either enhanced or harmed by the
concentration of individuals.

The emerging patterns have shapes ranging from mild oscillations around
a reference level to disconnected clusters. The regulatory mechanisms of
population growth, represented by µ, are crucial for the emergence of patterns
as well as for their fragmentation. The same can be said about the type of
diffusion controlled by ν, despite, in general, diffusion has a homogenizing
effect.

Particularly, we focused on the self-induced population fragmentation,
determining the conditions that nonlinearities must obey. Briefly, we observed
that fragmentation is favored when growth and diffusion coefficients are
positively correlated with population density. Moreover, it arises from a
complex interplay between growth and dispersal processes, and nonlocality.

Beyond linear stability analysis, our results are supported by numerical
simulations. Since Eq. (3-2) is nonlinear and nonlocal, it is difficult to access,
analytically, the features of the stationary solutions. Despite that, analytical
solutions can be obtained in very special cases. For instance, neglecting
diffusion and considering constant growth rate (µ = 1), for the homogeneous
influence function, it is possible to obtain the peaks’ shape [52, 72]. Regarding
the role of density-dependent feedbacks, insights can be brought from studies
out of the pattern formation context, where the evolution of a single peak
follows a similar nonlinear but local equation [27, 43, 48, 70]. In these works,
the single peak generated by power-law density-dependencies can have a shape,
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which can range from concave to sharp, as found in the present context. In
particular cases, the exact solutions fit into the class of a generalized Gaussian
shape [43, 48, 70, 73].

These previous works motivated us to propose a periodic extension of that
ansatz for the profiles shown in Fig. 3.3, namely Eq. (3-8), which describes
remarkably well the numerical patterns (see Fig. 3.10). The parameter β
in Eq. (3-7) can be used to characterize pattern shape. Notice that β = 0
corresponds to a Gaussian function, while β > 0 (< 0) to platykurtic
(leptokurtic) clusters.

In particular, for β > 0, each individual cluster has compact-support.
This condition is associated with the emergence of fragmentation, along with
the constraint of non-overlap, 2x0 < Λ. These two conditions reproduce well the
fragmented-patterns region in the phase diagram (Fig. 3.7), where ρmin → %.
Let us mention that this phase diagram will change with other choices of the
length ` of the box-like kernel, as well as of other shapes of the influence kernel,
but it qualitatively exhibits the diversity of patterns that Eq. (3-7) can yield.

To establish a connection between the parameters {µ, ν} in Eq. (3-2)
and {A, s, β} in Eq. (3-7), one also faces obstacles due to the particular non-
linear and nonlocal character of the dynamics. For instance, standard pertur-
bative approaches can provide sine-like solutions near the transition to pat-
terns (small-amplitude limit). However, these solutions cannot be analytically
compared with the ansatz given by Eq. (3-8), since it has no closed form in
Fourier-space. A perturbative treatment would find additional challenges re-
lated to the fact that fragmentation occurs far from the transition to patterns.

Regarding the definition of fragmentation, previous models for pattern
formation that helped to explain self-organization in mussels [76], bacteria [34],
vegetation under the sea [77] and in semi-arid ecosystems [38, 78], produce an
arrangement of high density clusters interleaved by low density regions. In
some cases, when clusters are sharply defined or well-spaced, the population
level in between can be very low. More specifically, in these cases, population
concentration is expected to decay exponentially as we move away from the
peaks (see for instance Ref. [78]).

Taking into consideration that a biological population is constituted by
a finite number of individuals, the occurrence of very low densities in the
mean-field description can be associated with an effective fragmentation of
the population. This is because in the continuous density description, it is
possible to emulate the finiteness of the population by means of a threshold
value, inversely proportional to the number of individuals and below which the
density is considered null.
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Under this perspective, the region for fragmentation in the phase dia-
gram of Fig. 3.7 would be effectively enlarged as the number of individuals
diminishes. In contrast, according to our model, density-dependent feedbacks
drive the population density between clusters to zero in the long-time limit,
such that the stationary profiles are composed by clusters with the compact-
support property. As a consequence, actual fragmentation occurs and it is
robust independently of the number of individuals, or threshold value, consid-
ered.

Beyond the nonlocal interactions embedded in the influence function,
when there are isolated clusters, individuals are only in direct contact with
those within the same cluster. This restricts the propagation of contact
processes, such as diseases or information, transferred from one individual
to another. Initiating the contagion within an isolated cluster, the affected
population would be confined such as the recent covid-19 pandemic [79],
(despite the human behavior being more complex); while, in non-fragmented
patterns, the information can percolate to the whole population.

Furthermore, as widely studied in the context of metapopulations, a
fragmented habitat can promote population segregation, which also brings
consequences to the stability and diversity of ecosystems [59, 60]. In our
case, the distinct profiles that emerge from the dynamics are also expected
to influence the fate of the population.

DBD
PUC-Rio - Certificação Digital Nº 1612945/CA



4
Landscape-induced spatial oscillations in population dynamics

After having studied the spatial organization of single-species popula-
tions using the generalized FKPP equation in a homogeneous landscape, and
understanding how the nonlocality and the nonlinearities affect the patterns,
we will study in this chapter the dynamics of the population in a heterogeneous
landscape, since, in biological systems, environmental factors can suffer spatial
variations [3, 58, 80]. To discern the effect of the environment, we will remove
the nonlinearities introduced in the previous chapter, considering ν = µ = 1.

Heterogeneity is commonly found in natural environment, [10, 81, 82, 83].
In this chapter, we explore the idea that they can stress the system and resonate
with the internal scales, generating spatial oscillations in the distribution of
the population [10, 81, 83]. We will focus on sharp spatial changes in the
environmental conditions relevant for the population under consideration [3,
58, 84]. This kind of change is found in diverse situations in nature, e.g., on
the interface between forest and grassland [58], at the bounds of oases [80] or
harmful regions [38], or in artificial lab experiments [3], where there is a neat
contrast of spatial domains with different growth rates.

We will see that three kinds of stationary (long time) population profiles
can develop from the interface: sustained oscillations (or spatial patterns,
without amplitude decay), decaying oscillations (with decreasing amplitude
from the interface) or exponential decay towards a flat profile. These behaviors
are represented schematically in Fig. 4.1, and will be discussed quantitatively
later. The results of this research were published in Ref. [2].

4.1
Model

The generalized FKPP equation – presented in Sec. 2 and used in Sec. 3
– assumes a homogeneous environment, which is implicit in the coefficients
that do not depend on the position. We consider the following extension of
Eq. (2-5),

∂tρ(x, t) = D∂xxρ(x, t) + Ψ(x)ρ(x, t)− bρ(x, t)[γ ? ρ](x, t) , (4-1)
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Figure 4.1: Population distribution in an environment that is: (a)
homogeneously viable; (b) heterogeneous, with viable and non-viable
regions; and (c) heterogeneous, with a viable region between non-
viable ones. Depending on the values of the parameters in Eq. (4-1), spatial
patterns can: develop around the uniform steady state in (a); and be preserved
in the viable region of the corresponding cases, in (b) - (c). But even when the
steady-state is uniform in case (a), decaying oscillations can emerge in (b) -
(c). The parameters are a = b = 1; values of D are provided in the legend; and
for the kernel γq defined in Eq. (4-2), we set q = −0.5 and ` = 2. For panel
(b) and (c), A in Eqs. (4-10)-(4-5) is A→∞.

where the spatially-dependent reproduction rate Ψ(x) reflects the overall
habitat quality at a given location x [58]. Since we want to study sharp spatial
changes, we attribute the Heaviside step or rectangular functions to Ψ(x).

As for the kernel, we have chosen two families of influence functions that
allow us to continuously vary its compactness, as represented in Fig. 4.2a-c.
See Ap. A for other kernels.

The first one is the kernel based on a normalized generalization of the
exponential function, known as q-exponential [85], defined by

γq(x) = 2− q
2` [1− (1− q)|x|/`]1/(1−q)+ ≡ 2− q

2` expq(|x|/`) , (4-2)
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Figure 4.2: Interaction kernel and mode stability in a homogeneous
environment. (a) γq(x), defined in Eq. (4-2), for the values of q indicated
on the figure, and ` = 2. (b) Mode growth rate λ(k), corresponding to the
values of q plotted in (a). (c) γα(x), defined in Eq. (4-3), for the values of α
indicated on the figure, and ` = 2. (d) Mode growth rate λ(k), corresponding
to the values of α plotted in (c). While the case q = 0 (triangular kernel) is
the critical one – for which the maximal value of λ(k?) = 0 at finite k?, when
D = 0, the critical one for γα is α = 2. We use a = b = 1 for the panels (b)
and (d), and dashed lines correspond to D = 0, whereas solid lines correspond
to D = 0.01. Notice that, when diffusion is absent, the mode growth rate is
proportional to the kernel Fourier transform.

where q and ` control the shape of the kernel. The sub index + means [z]+ = 0
if z ≤ 0.

In the limit q → 1, the standard exponential is approached yielding
γ1(x) ∝ e−|x|/`. In the critical case q = 0, γq(x) produces the triangular
kernel, which Fourier transform is γ̃0(k) = sin2(k`)/(k`)2. The kernel shapes
are illustrated in Fig. 4.2a. As we will see, it is especially relevant that, only
for q < 0, can the Fourier transform of γq(x) take negative values. Then, we
focus on the range −1 ≤ q < 1, around this critical value. Moreover, in this
range, the interaction is restricted to a finite region and the kernel moments are
well-defined, a fact that will facilitate both: the numerical and the theoretical
approaches.

We also consider, as a second class of kernels, the stretched exponential
family defined by

γα(x) = e−(|x|/`)α

2`Γ(1 + 1/α) , (4-3)

with α > 0 for normalizability. When α = 1, the stretched exponential
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family produces the double exponential kernel, which Fourier transform is
γ̃1(k) = 1

1+`2k2 . That includes the Gaussian (α = 2), which Fourier transform is
γ̃2(k) = e−`

2k2/4. And it also reproduces the top-hat kernel in the limit α→∞.
The Fourier transform of γα(x) can take negative values if α > 2.

For a homogeneous landscape, Ψ(x) = a, from the linear stability
analysis, we find the mode growth rate λ(k), which was presented in Sec. 2,
such as

λ(k) = −Dk2 − aγ̃(k) , (4-4)
is plotted in Fig. 4.2b (d), for each kernel γq (γα) shown in Fig. 4.2a (c).

Note that, λ(k) > 0 occurs for sufficiently small D if the Fourier
transform of the kernel takes some negative values. Then, by substituting γ̃
into Eq. (4-4), we conclude that sustained oscillations can only appear if q < 0
(α > 2). This is a necessary but not sufficient condition that arises by imposing
λ(k?) > 0 in the most favorable case D = 0 (hence γ̃(k?) < 0), to induce the
growth of certain modes. Remembering that k? is the dominant mode.

In contrast, for q ≥ 0 (α ≤ 2), the uniform state is intrinsically stable
(that is, independently of the remaining parameters). In Fig. 4.2b(d), we plot
the mode growth rate for D = 0 and D > 0, which shows how diffusion affects
mode stability, damping fluctuations.

Concerning the interaction length ` > 0, when D = 0, the mode growth
rate is a function of k` only, then ` acts just as a scale factor. Therefore, when `
goes to zero (implying local dynamics), the dominant wavenumber k? is shifted
to infinity, meaning that patterns go continuously to a flat profile in that limit.
In contrast, for D > 0, the first term in Eq. (4-4) has a more homogenizing
effect the larger is k?, hence the smaller is `.

As a consequence, there is a critical value of `, below which patterns do
not emerge, even if for finite ` there is nonlocality [53]. Finally, there is also
a critical value of ac of the reproduction rate, when D > 0, and with all the
other parameters fixed, such that sustained oscillations emerge only for a > ac.

In summary, in the cases where λ(k?) ≤ 0 (i.e., either q ≥ 0, or
alternatives involving q < 0, such as large enough D, small enough `) or
small enough a, information regarding the interaction scale ` or other details
of the kernel profile are not stamped in the spatial distribution ρ(x, t), which
becomes uniform at long times.

It is worth noting that: although one has finite support (γq), the other
has tails (γα) below the critical value; however, both are qualitatively similar,
as we will confirm later. Therefore, we are going to use the family of the q-
exponential kernel, and then, we extend the result to stretched exponential.
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4.2
Numerical results

In this section, the heterogeneity of the landscape is introduced by
assuming that its profile can be written as Ψ(x) = a + ψ(x), where ψ(x)
represents the spatial variations of the environment around a reference level a.

The results that we will present were obtained through theoretical
and numerical techniques. The theoretical approach is based on mode linear
stability analysis. In parallel, we will show results obtained by numerically
solving Eq. (4-1).

4.2.1
Refuge

Figure 4.3: Pictorial representation of a one-dimensional refuge.
Within the L size refuge, the damaging A effect is blocked.

As paradigm of a heterogeneous environment with sharp borders, we first
consider that the spatial variations around the reference level a are given by

ψ(x) = −A[1−Θ(L/2− |x|)] , (4-5)

where Θ is the Heaviside step function and A > 0. This equation represents
a refuge of size L with growth rate a, immersed in a less viable environment
with growth rate a− A, as depicted in Fig. 4.3.

In a laboratory situation this can be constructed by means of a mask
delimiting a region that protects organisms from some harmful agent. For
instance, shielding bacteria from UV radiation [3]. In natural environments,
this type of localized disturbance appears due to changes in the geographical
and local climate conditions[58], or even engineered by other species [38].

In Sec. 4.1, we have seen that the uniform distribution is intrinsically
stable when q ≥ 0. In contrast, even if for q ≥ 0, spatial structures can emerge
due to heterogeneities in Ψ(x), as illustrated in Fig. 4.4 for the case D = 0.01.

In the limit of weak heterogeneity, i.e., under the condition |ψ(x)|/a� 1,
we obtain an approximate analytical solution assuming that the steady solution
of Eq. (4-1) can be expressed in terms of a small deviation ε(x) around the
homogeneous state ρ0 = a/b. Then, when we substitute ρ(x) = ρ0 + ε(x) into
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Figure 4.4: Stationary population density ρs vs. x in a refuge. This
heterogeneous environment is defined by Eq. (4-5), with a = b = 1, A = 10−3

and L = 10. The vertical lines indicate the refuge boundaries. We used the
kernel γq(x), with q = 0.1 and ` = 2, and two different values of D. Symbols
are results from numerical integration of Eq. (4-1), and solid lines, from the
small-A approximation given by Eq. (4-9) – in excellent accordance with the
exact numerical solution. Let’s recall that, in a homogeneous environment, no
oscillations appear for q ≥ 0.

the Eq. (4-1), we obtain

∂tε = D∂xxε+ (a+ ψ(x))(ρ0 + ε)− b(ρ0 + ε)[γ ? (ρ0 + ε)] , (4-6)

where, the last term is

b(ρ0 + ε)[γ ? (ρ0 + ε)] = bρ2
0 + bρ0(γ ? ε) + bερ0 +O(ε2) (4-7)

discard terms of order equal or higher than, O(ε2, Aε,A2), and Fourier trans-
form, we obtain

ρ̃s(k) = 2πρ0δ(k) + ρ0ψ̃(k)
−λ(k) , (4-8)

where λ(k) was already defined in Eq. (4-4) and ψ̃(k) is the Fourier transform of
the small fluctuations in the landscape quality, which, for the case of Eq. (4-5)
is ψ̃(k) = A[2 sin(Lk/2)/k − 2πδ(k)].

Finally, assuming that λ(k?) < 0, the steady density distribution is given
by ρs = ρ0 + εs, that is,

ρs(x) = ρ0 + F−1
{
ρ0ψ̃(k)
−λ(k)

}
, (4-9)

where the inverse Fourier transform F−1 must be numerically computed in
general. For small heterogeneity, Eq. (4-9) is in very good accordance with the
exact numerical solution obtained by integration of the dynamics Eq. (4-1), as
it can be seen in Fig. 4.4. Notice the two different profiles, depending on the
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diffusion coefficient D: one gently following the landscape heterogeneity, and
the other strongly oscillatory.

For small D, the induced oscillations display two evident characteristics,
which depend on γ̃q: well-defined wavenumber and decaying amplitude for
increasing distances from the interfaces at x = ±L/2 (highlighted by dashed
vertical lines in Fig. 4.4). We will see that the details of the kernel γq can be
seen through the characteristics of the oscillations.

4.2.2
Semi-infinite habitat

Figure 4.5: Pictorial representation of a semi-infinite habitat. For x ≥ 0
the harmful effect A is blocked.

Since oscillations are induced by changes in the landscape, it is worth
focusing, from now on, on one of the interfaces. Moreover, we assume a refuge
much larger than the wavelength of the oscillations, sufficient to follow over
several cycles the structure originated on the interface. To do that, we consider
a semi-infinite habitat defined by

ψ(x) = −AΘ(−x) , (4-10)

where for convenience the interface was shifted to x = 0, such that the low-
quality region is at x < 0, as depicted in Fi. 4.5.

As an additional feature, we consider that the harmful conditions are
very strong, that is, A → ∞. The purpose is twofold: on the one hand, it
allows to test the robustness of the results beyond the small-A approximation;
on the other hand, it allows a simplification as it follows. When A � a, ρ is
very small in the unfavorable region. Then, the nonlinear competition term
can be neglected, and the Eq. (4-1) can be approximate by

∂tρ(x ≤ 0, t) ' D∂xxρ+ (a− A)ρ, (4-11)

so, the stationary solution is

ρ(x ≤ 0) ∼ e
√

(A−a)/D x, (4-12)
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leading to a steady distribution that decays exponentially from the interface, as
observed in Fig. 4.6. Thus, in the limit A→∞, we have ρ(x ≤ 0, t) = 0. This
is the setting used to produce Fig. 4.1b, by numerical integration of Eq. (4-1).
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Figure 4.6: Decay exponential from the interface (A >> a). Numerical
integration of Eq. (4-1) (dots in the figure), and exponential decay predicted
by Eq. (4-12) (solid lines) for the kernel γq with q = 0.1 and ` = 2. The grey
region represents the refuge and we use D = 0.1 and the values of A are given
on the legend.

As sketched in Fig. 4.7, for each steady distribution attained at long
times, we measure the wavelength, from which we obtain the wavenumber k̄,
and the decay length x̄, by observing that the envelope of the oscillations
decays as exp(−x/x̄).
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Figure 4.7: Characterization of stationary profiles. Long-time solutions
approach a stationary state characterized by the wavelength 2π/k̄ and the
decay length x̄. This example was obtained from numerical integration of
Eq. (4-1), assuming a semi-infinite habitat, with parameters D = 0.003, γq(x)
with ` = 2 and q = −0.5.
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The stationary spatial structures that emerge for x > 0 can be classified
into the three types depicted in Fig. 4.1b and Fig. 4.8:

(i) sustained oscillations (lilac line, with k̄ > 0 and x̄→∞);

(ii) decaying oscillations (orange line, with k̄ > 0 and finite x̄);

(iii) exponential decay (gray line k̄ = 0 and finite x̄).
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Figure 4.8: Long-time solutions of a population in a semi-infinite
habitat. (a) Stationary density, (b) Density variation around the
homogeneous solution. Parameters are a = b = 1, A→∞, values of D are
given on the legend, and for kernel γα defined in Eq. (4-3), α = 2.3 and ` = 2.
Note that the profiles are similar to those obtained in Fig. 4.1b.

Observing Fig. 4.8, which was obtained from a numerical simulation using
the stretched kernel, by Eq. (4-3), one can note the similarity with the other
family of kernels adopted in Fig. 4.1b (using γq).

In these figures, three types of profiles appear when D changes. We also
systematically varied the shape parameter q to construct the phase diagram in
the plane q−D presented in Fig. 4.9a. Similarly, we will see further the phase
diagram in the plane (2− α)−D in Fig. 4.11a.
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Figure 4.9: Phase diagram and characteristics of the stationary
profiles as a function of diffusion coefficient D and q, in the semi-
infinite habitat. We used the kernel γq(x), with ` = 2. (a) Phase diagram on
the q − D plane, and cut at (b) D = 10−3, (c) q = −0.5 (d) q = 0.5. The
remaining parameters are a = b = 1. In diagram (a), for each point on the
grid, the type of regime was determined based on the values of 2π/k̄ and x̄
that characterize the solutions of Eq. (4-1): sustained oscillations (k̄ > 0 and
x̄ → ∞, lilac), decaying oscillations (k̄ > 0 and finite x̄, orange), and pure
exponential decay (k̄ = 0 and finite x̄, gray). The lines between regimes were
determined from k = ±kr + iki, the complex pole of R̃(k) with the smallest
positive imaginary part (dashed line for ki = 0 and dotted line for kr = 0).
Its components were also used to determine the full-lines (theoretical 1) in
panels (b)-(d). The symbols correspond to measurements of numerical profiles
and the thin dashed lines to the harmonic estimate (theoretical 2) given by
Eq. (4-19).

4.3
Theoretical framework

To perform a theoretical prediction of k̄ and x̄, within the linear approx-
imation, we consider that these oscillation parameters should be related to
the poles of the integrand eikxψ̃(k)/[−λ(k)] in the expression for the inverse
Fourier transform that provides the solution, according to Eq. (4-9). As far as
the external field ψ(x) does not introduce non-trivial poles, like in the case of a
Heaviside step function (ψ̃(k) ∼ 1/k), only the complex zeros of λ(k) matter.
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The dominant mode (the mode that decays more slowly) is given by
the pole kr + iki with minimal positive imaginary part; which, except for
amplitude and phase constants, will provide approximately patterns of the
form e−kix cos(krx), allowing the identifications k̄ = kr and 1/x̄ = ki. The
zeros of λ(k) were obtained numerically, by using the Taylor expansion of
λ(k) around k = 0 and solving Dk2 + ∑N

n=0
1
n!
dnγ̃
dkn
|k=0 k

n = 0, in the limit of
sufficiently large N (See Ap. C). This calculation is in very good accordance
with the results of numerical simulations presented in Fig. 4.9 (called theor.
1), explaining the observed regimes (see Tab. 4.1). In fact, the modes that
persist beyond the interface have relatively small amplitudes, so that the
system response is approximately linear in this region.

Regime Zeros of λ(k) Characteristics of poles

Exponential decay kr = 0 Pure imaginary

Decaying oscillations kr, ki 6= 0 Complex conjugate

Sustained oscillations ki = 0 Two real roots

Table 4.1: Characteristics of poles. Predictions of the oscillatory regime by
poles of 1/λ(k), used as theoretical 1 in Figs. 4.9 and 4.11.

Recall that this analysis assumes mode stability (λ(k) < 0). When
λ(k?) > 0, the system is intrinsically unstable, with the poles having a null
imaginary part (lying on the real axis). Nevertheless, the initially fastest
growing mode, given by the maximum of λ(k), tends to remain the dominant
one in the long term [53], yielding k̄ ' k? for the sustained oscillations
(x̄→∞).

Alternatively, to obtain further insights, it is useful to consider the
response function R̃(k) that, from Eq. (4-8), is

R̃(k) ≡ |ε̃s(k)|2

|ψ̃(k)|2
= ρ2

0
λ2(k) . (4-13)

Moreover, despite it missing some information on the dynamics (con-
tained in the phase of λ(k)), it can provide a more direct estimation of the
observed parameters than through poles calculations. In order to do that, we
resort to the bell-shaped response of a forced linear oscillator, described by

ÿ + 2ζk0ẏ + k2
0y = f(x) , (4-14)
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where ζ is the damping coefficient, k0 the natural frequency of the system, and
f(x) the external forcing, in Fourier space we have

−λH(k)ỹ ≡ (−k2 + 2ζk0ki+ k2
0) ỹ(k) = f̃(k) , (4-15)

which the response function is

R̃H(k) ≡ 1
|λH(k)|2 = 1

(k2 − k2
0)2 + 4ζ2k2

0k
2 , (4-16)

whose zeros (poles of 1/λH(k)) are

k = k0(±
√

1− ζ2 + iζ). (4-17)

Note that, under a step forcing f(x) = k2
0Θ(x), which simulates our

present setting, those poles carry the essential information of the damped
oscillation solution, given by ỹ(k) = f̃(k)/[−λH(k)]. In the underdamped case
(ζ < 1), this solution is explicitly given by

y(x) =
[
1− k0

κ
e−x/ξ sin(κx+ φ)

]
Θ(x) , (4-18)

where κ = k0
√

1− ζ2, real parte of Eq. (4-17), ξ = 1/(ζk0), the inverse of the
imaginary part of Eq. (4-17), and the phase constant φ = tan−1(ξκ).

The solution for the overdamped case emerges for ζ > 1, when the zeros
of λ(k) are pure imaginary with ki = k0(ζ±

√
ζ2 − 1). The connection between

the poles of R̃H(k) and the dynamic solution is possible because, as previously
discussed, f̃ does not introduce relevant poles, and the forced solution has a
similar form to the homogeneous one for more details.

Steady density distribution Forced linear oscillator

External driving force ψ(x) = −AΘ(−x) f(x) = k2
0Θ(x)

FT equation ε̃s(k) = ρ0ψ̃(k)
−λ(k) ỹ(k) = f̃(k)

−λH(k)

Mode growth rate λ(k) = −Dk2 − aγ̃(k) −λH(k) = −k2 + i2ζk0k + k2
0

Response function R̃(k) =
∣∣∣∣ ε̃s(k)
ψ̃(k)

∣∣∣∣2 = ρ2
0

|λ(k)|2 R̃H(k) =
∣∣∣∣ ỹ(k)
f̃(k)

∣∣∣∣2 = 1
|λH(k)|2

Table 4.2: Summary of the analogy made between the solution of
the steady-state density distribution and the forced linear oscillator.
These results were used as a base to theoretical 2 in Figs. 4.9 and 4.11.
Remembering that ρs = ρ0 + εs.

The harmonic model is, in fact, the minimal model for the observed
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structures and the correspondence between Eqs. (4-16) and (4-18) , which will
allow the estimation of the oscillation features. In the limit of small ζ, R̃H(k)
there is a sharp peak, characterized by a large quality factor Q ≡ k?/∆k,
where ∆k is the bandwidth at half-height of R̃(k) around k? 1. First, we see
that the position of the peak of R̃H approximately gives the oscillation mode κ,
according to k? = k0

√
1− 2ζ2 = κ +O(ζ2). Second, the bandwidth is related

to the decay length through ∆k = 2/x̄+O(ζ2) [86].
Combining all together, as long as R̃(k) resembles the bell-shaped form

of R̃H(k), we can use, at first order in ζ, the estimates

k̄ ' arg max
k

(R̃) ≡ k? and x̄ ' 2
∆k . (4-19)

The expression for x̄ is also valid in the overdamped limit of large ζ, in
which case, the maximum is located at k? = 0.

The adequacy of the harmonic framework is illustrated in Fig. 4.10. In
the case D = 2× 10−1, the harmonic response is able to emulate R̃(k). Then,
if the linear approximation holds, one expects that the estimates given by
Eq. (4-19) should work. In fact, they do work in this case, as we will see below.
Alternatively, when D = 2 × 10−4, R̃(k) does not follow the harmonic shape,
and the prediction of the decay length fails.

In Fig. 4.9, we compare the values of k̄ and x̄ extracted from the numerical
solutions of Eq. (4-1), to those estimated by Eq. (4-19) (dashed lines) and,
more accurately, to those predicted from the poles of R̃(k) (solid lines), which
perfectly follow the numerical results. The harmonic estimates are shown in the
full abscissa ranges, as a reference, even in regions where the approximation is
not expected to hold, because discrepancies give an idea of the departure from
the harmonic or linear responses.

Figure 4.9c shows outcomes for a fixed q < 0 (q = −0.5), corresponding
to a vertical cut in the diagram of Fig. 4.9a. Sustained oscillations (i.e., x̄→ 0)
can emerge for q < 0 when diffusion is weak, namely: for D < Dc ' 0.0025
(lilac colored region), where Dc is obtained from λ(k?) = 0. When D increases
beyond this critical value, oscillations are damped with a finite characteristic
length x̄. For even larger values ofD, oscillations completely disappear (k̄ → 0).

Note that numerics and theory (symbols vs. lines) agree, close to the
pattern transition pointDc, where the response peak is sharp (largeQ). Despite
the lack of accordance for a larger D, the theoretical prediction qualitatively
works with a shift of transition to an exponential decay (dotted line).

1If k− < k+ are the points which R̃(k±) = R̃(k?)/2. Then, ∆k/2 = (k+ − k−)/2. If only
k+ exists, then we estimated ∆k/2 = k+ − k?.
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Figure 4.9d (which corresponds to vertical cut at q = 0.5 in the diagram
of Fig. 4.9a) shows the corresponding results for a fixed q > 0 (q = 0.5), which
is characterized by the absence of sustained patterns. Above D ' 0.02, the
response R̃(k) is unimodal, a bell-shaped curve that resembles the harmonic
response, as shown in Fig. 4.10, producing a good agreement between theory
and numerical results, despite being far from the large-Q limit. However, for
smaller values of D, the profile is multipeaked, compromising the use of the
harmonic approximation. Besides that, the observed mode is wrongly predicted
by k?, suggesting strong nonlinear effects. Even so, it is interesting that a
detailed analysis of the response function still allows extracting the effective
dominant mode, given by the position of its first small hump at k ' 2.1
representing a ghost dominant mode.

0

0.5

1

0 5 10 15

D

R̃
(k
)/
R̃
(k̄
)

k

2 10−1

2 10−4

Figure 4.10: Comparison of R̃(k) with the harmonic response R̃H(k).
R̃(k) of our model, given by Eq. (4-13) (solid lines) and harmonic response
RH(k), given by Eq. (4-16) (dashed lines), where the values of k0 and ζ were
obtained by fitting Eq. (4-16) to R̃(k). In all cases, q = 0.5, ` = 2 and two
different values of D shown on the legend were considered. Notice that, for
D = 2× 10−1, the response can be described by the harmonic approximation.
For D = 2 × 10−4, the response is multipeaked, the harmonic approximation
fails, and also the observed dominant mode is not given by the absolute
maximum, but by the small hump at k ' 2.1, as predicted by the analysis
of complex poles.

Figure 4.9b displays k̄ and x̄ as a function of q, for a fixed value of the
diffusion coefficient (D = 10−3), corresponding to a horizontal cut in Fig. 4.9a.
Recall that the smaller the value of q, the more confined is the interaction
(thus, the larger is x̄). For q < qc ≈ −0.093, there are sustained oscillations
(x̄→∞). Above qc, oscillations decay, which is indicated by the transition of
1/x̄ from null to finite values. Again, near this transition, the linear response
prediction is good. Nevertheless, far from the critical point, it fails, as noticed
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above q ' 0.2, where there is a strong mismatch between the main mode of
the linear response analysis and the numerical one. Also, in this case, a small
hump in the response function represents the dominant mode.

Finally, we do the same analysis for the influence function γα, and similar
results are shown in Fig. 4.11. On panel b, we have results for a horizontal cut
in D = 10−3, where for α < αc ' 1.84 (2 − α ' −0.16), there are sustained
oscillations.

10-4

10-3

10-2

10-1

100

101

−1 −0.5 0 0.5 1
0

2

4

6

8

10

−1 −0.5 0 0.5 1

D

2− α

10-4

10-3

10-2

10-1

100

101

−1 −0.5 0 0.5 1

a

2− α

2π/k̄
2π/kr
2π/k⋆

1/x̄
ki
∆k/2

0

2

4

6

8

10

−1 −0.5 0 0.5 1

b

wavelength

inverse deay length

(numer.)

(theor. 1)

(theor. 2)

(numer.)

(theor. 1)

(theor. 2)

Figure 4.11: Phase diagram and characteristics of the stationary
profiles as a function of the shape parameter 2 − α, for kernel γα(x)
with ` = 2. The remaining conditions and the conventions are the same as in
Fig. 4.9.

4.4
Inferring information about the interactions

In this section, we extend the discussion about the mapping between
kernel and the oscillation parameters, showing the way hidden information
about the interactions can be extracted from landscape-induced oscillations.

In Sec. 4.3 we have shown how the interaction kernel determines the
dominant wavelength k̄ and the decay length x̄. Now, we aim to show how,
reciprocally, information about the interaction kernel can be extracted from
the induced oscillations, assuming that the population dynamics is governed
by the generalized FKPP equation, Eq. (4-1), with unknown kernel γ.

Using the theoretical estimates given by Eq. (4-19), within their validity
range, we plot in Fig. 4.12a the contour lines for certain wavelengths k̄ and
decay lengths x̄: k̄(`, q) = constant, and x̄(`, q) = constant. These contour lines
depend both on ` and q. However, since k̄ is strongly controlled by `, while x̄
is more closely related to the shape parameter q, there is a crossing of the lines
that identifies the kernel properties. For comparison, we consider in Fig. 4.12b,
the stretched-exponential kernel γα(x).
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Figure 4.12: Determination of the oscillation wave number, k̄, and
the decay length, x̄. Contour lines for the fixed wavelengths and the decay
lengths. Colors for different oscillatory regimes as in previous figures. We
considered interaction following kernel γq in (a) and γα in (b). The remaining
parameters are D = 10−3 and a = b = 1. Two points are highlighted:
(k̄, x̄) = (7, 3) (black circle) and (5,2) (gray square). Figure reprinted from
[2]

Let us imagine that decay oscillations with specific values of k̄ and x̄

are observed (black circles and gray squares in Fig. 4.12). Then, assuming
a particular kernel, we can extract the interaction length ` and the shape
exponent β, from the (`, β) ↔ (k̄, x̄) mapping, where β represents either q or
α.

Then, solving numerically the Eq. (4-1) with the parameters extracted,
we obtain the oscillation shown in Fig. 4.13 (panel a for the black circles, panel
b for the gray squares). However, since the information provided by the theory
is limited, it is not possible to infer exactly which particular form of γ governs
the dynamics just by measuring (k̄, x̄) of the oscillations.

Nevertheless, the characteristic length and compactness of the influence
function can be accessed. In the insets of Fig. 4.13, we show the kernels
which parameters have been extracted from the mapping of each point (k̄, x̄)
of Fig. 4.12. Although one has finite support while the other has (stretched
exponential) tails, both present similar coarse-grained appearance for given
(k̄, x̄).
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Figure 4.13: Oscillations produced using parameters for the high-
lighted points in Fig. 4.12. (a) (`, q) = (1.19,−0.55), (`, α) = (0.61, 2.94)
(black circle), and (b) (`, q) = (1.275,−0.055), (`, α) = (0.883, 2.397) (gray
square). The kernels γq (solid blue) and γα (dashed black) are shown in the
respective insets. The red line shows a fit with mode k̄ and decay x̄, namely
ρH(x) = 1 +Be−x/x̄ sin(k̄x+ φ), where B and φ were adjusted.

4.5
Comparison with experimental data

Natural situations, in which we can investigate the influence of hetero-
geneities in a population of a single species, are difficult to find. However,
there are experiments, such as the one in Ref. [3], where the dynamics of
non-chemotactic bacteria were investigated considering a refuge in a harmful
context. More precisely, where external variation is controlled by an exter-
nal heterogeneous UV-light field. Due to the simplicity of the organism, the
Eq. (4-1) was considered a good candidate as a model. We observed that the
density distribution obtained in the experiment reproduces the shape captured
by our model in Fig. 4.1c, mainly, the peaks on the interface and the attenuated
oscillations within the refuge.

In Fig. 4.14 we show the result of our simulation using the model given
by Eq. (4-1). The spatial organization is qualitatively similar to the case
experimentally investigated by Perry, although it needs to incorporate other
elements for more realistic reproduction.
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Figure 4.14: Comparison with experimental data of patterns in a
refuge. a) Stationary patterns within a refuge in the center (gray region,
L = 4), using influence function γq where q = −0.8 and ` = 2. The other
parameters are D = 3× 10−3 and A = 1; b) Reprinted from Ref. [3].

4.6
Two-dimensional landscapes

−0.25 0 0.25

ρ(x, t)− ρ0

5 a.u.

(a) (b)

(c) (d)

Figure 4.15: Long-time spatial distribution in 2D. Simulated scenarios:
(a) a circular region (with radius 5 a.u., highlighted with a black dashed
boundary) where the growth rate is positive a (in a strong negative background
a − A); (b) a circular region (with radius 2.5 a.u., highlighted with a black
dashed boundary) where the growth is strongly negative a−A (while outside,
it is positive, a); (c) four regions with negative growth rates a − A (in a
positive background, a); (d) random landscape with growth rates uniformly
distributed in [0.5a, 1.5a]. In all cases, the interaction kernel is γq, with ` = 2
and q = 0.5, D = 10−3, a = b = 1 and A = 10 . Colors show the deviation
from the homogeneous state ρ(x, t)− ρ0 (where ρ0 = 1 for the chosen values of
the parameters). For the numerical integration, a pseudo-spectral method was
used with ∆x = 0.2 and ∆t = 10−3. For details see Ref. [4]. Figure reprinted
from [2].
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In this section we show results of simulations for relevant 2D scenarios,
verifying that the picture of induced oscillations described up to now for 1D
also holds in 2D.

Snapshots of simulations for different 2D landscapes are presented in
Fig. 4.15: a refuge (a), a defect (b), multiple defects (c) and spatial randomness
(d) where a wide range of spatial scales are present [81, 87]. It is worth to
remark that, in 2D, for the kernel γq, patterns only appear in homogeneous
landscapes if q < qc ' 0.25 (i.e., if λ(k?) > 0). Thus, in all the cases of
Fig. 4.15 (using q = 0.5) we would not find oscillations if the landscape were
homogeneous.

In Fig. 4.15, we see that, for 2D, the same picture as in 1D is found:
the decaying oscillations appear near the landscape disturbances with a clear
wavenumber and decay length. The linear response approach presented in this
chapter can straightforwardly be extended to 2D.

Figure 4.15d shows a case where the landscape is random (in space, but
time-independent). This situation, investigated in many previous studies [10,
81], produces a pattern that is noisy, but has a dominant wavelength, which
is related to `. Furthermore, although there is not a clear identification of the
decay length from pattern observation, the linear theory would allow us to
estimate the characteristic spatial correlation length from the width of the
spectrum.

4.7
Concluding remarks

We have studied the non-local FKPP equation, which is a general mod-
eling of nonlocally competing populations, in the presence of heterogeneous
environments. We have identified three types of spatial structures close to a
discontinuity of the environment: (i) sustained oscillations, (ii) decaying oscil-
lations, and (iii) exponential decay. We have also shown that these structures,
observed through the integration of the population dynamics Eq. (4-1), can be
understood within a theoretical framework, as discussed in Sec. 4.2.2.

In the numerical examples, we have chosen to use the families γq and γα as
interaction kernels, because it allows scanning shapes of different compactness.
It is worth to remark that, due to the computational cost, our numerical
study was carried out for 1D, but the same phenomenon also emerges in
2D environments, as shown in Sec. 4.6. The approach developed here can be
straightforwardly extended to reach a broader ecological context.

The interesting point is that sharp heterogeneities reveal information on
the interaction scales that are otherwise hidden. Then, the natural or artificial
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interposition of an interface can act as a lens that allows seeing what is veiled in
a homogeneous landscape. A closer look at this connection is shown in Sec. 4.4.

Finally, let us comment that our choice of sharp interfaces was motivated
by the purpose of showing the emergence of essentially three simple classes of
structures (i)-(iii), defined above. The single-interface case we analyze is par-
ticularly interesting because it puts into evidence the dominant wavenumber
and the decay length.

In spite of that, this result is actually broader and can be used to
understand the effects of arbitrary heterogeneous landscapes, such as the
multiple and random cases shown in Fig. 4.15. It is noteworthy that similar
structures emerge behind propagating fronts [10, 88].

Lastly, it is also interesting to remark that the reported results can reach
contexts beyond population dynamics, since nonlocality is commonly found in
complex systems.
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5
Conclusions

The objective of this work is to show the role that the density-dependence
mechanism and the heterogeneous environment have in the spatial organization
of single-species populations. Population dynamics was mathematically mod-
eled by the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation, that
includes diffusion, growth and nonlocal neighborhood competition/interference
through an integral kernel. This description is enough to describe patterns ob-
served experimentally in bacterial colonies (for instance see Sec. 4.5).

Through computational and theoretical approaches, we investigated the
shape of the stationary pattern, and we divided this work into two main parts,
which correspond to different classes of environments where the individuals
live:

– Homogeneous landscape: fragmentation is often attributed to landscape
heterogeneity in literature, but we show that this kind of arrangement
of individuals in space can emerge solely from their interactions.

In our studies, we include nonlinearities in diffusion and reproduction
rates to mimic density-dependent feedbacks. This takes into account the
fact that the concentration of individuals can affect the rate of dispersion
of the population (yielding subdiffusive and superdiffusive processes) due
to the reaction to overcrowding and sparseness.

Furthermore, concentration can also influence the growth rate, either
spoiling or supporting an individual’s reproduction. We determined a
phase diagram in the space of parameters that characterize the nonlin-
earities, exhibiting the domains where patterns emerge.

We also identify and classify different shapes of patterns: continuous,
fragmented and peaked. Besides that, we discuss their implications for
population stability and survival. We concluded that fragmentation is
favored when growth and diffusion coefficients are positively correlated
with population density; and when ν and µ are small, the diffusion and
the per capita growth diverge at low densities, promoting fast occupation
of unpopulated regions and thus, connecting clusters.
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– Heterogeneous landscape: we investigated the spatial structures that
emerge near defects associated with sharp spatial changes in the pop-
ulation growth rate.

We found that, depending on the influence function, three different
profiles of the population density originate from the interface: sustained
oscillations, decaying oscillations, and exponential decay towards a flat
profile.

We provide theoretical predictions of the wavelength and the decay
length of the induced wrinkles in population density based on mode
linear stability analysis, in good accordance with numerical results.

Moreover, a more direct estimation is done on the light of the response
function of a forced linear oscillator, which provides insights on the ob-
served phenomenon. We found that, while the characteristic spatial scale
of the kernel mainly regulates the mode of oscillation, its compactness
regulates the decay-length.

Thus, within the decaying oscillation regime, there is information cross-
ing between the oscillation metrics in the kernel parameter space. This
allows access to hidden information about the underlying complex bio-
logical phenomena that mediate competitive interactions.

The robustness of these findings is tested through two generalized classes
of influence functions and by investigating one- and two-dimensional
landscapes. The theoretical framework takes a significant step in the
direction of narrowing the connection between individual and population-
level dynamics. Our findings provide new insights about the role of
environmental heterogeneities in population spatial patterns.
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6
Perspectives

From the research presented up to now, many scenarios can be studied
to increase the scope of this work. For example, environmental conditions are
not constant. Factors such as temperature, wind, humidity, nutrients, among
others, can fluctuate over time. To include this phenomenon, a noise can be
introduced in the control parameters. Furthermore, we might analyze other
forms of density dependence in the parameters, as well as other forms of
heterogeneity.

We are currently studying the case where the environment heterogeneity
is reflected in a space-dependent diffusion coefficient. Below, we present the
obtained results, which will be part of a future publication.

The system analyzed here consists of a population growing inside an L-
size refuge, considering extreme conditions in which the population does not
survive outside, i.e., ρ(0, t) = ρ(L, t) = 0. Within this refuge, the conditions of
diffusion are not homogeneous. At first, we consider Stratonovich’s formalism
to describe diffusion, where the diffusive term is given by ∂x[

√
D∂x(

√
Dρ)].

Later, it can be extended to other diffusivity formalisms, comparing its results.
As we are interested in analyzing how different diffusion coefficients D(x)

influence persistence of the population within the refuge, we will simplify the
equation in order to have only the diffusive term and the growth term, as it
follows

∂tρ(x, t) = ∂x

[√
D(x)∂x

(√
D(x)ρ(x, t)

)]
+ aρ(x, t). (6-1)

If D(x) = D0 is constant, the critical habitat size for the species’ survival
is [27]

Lc = π

√
D0

a
. (6-2)

That is, if the size is L > Lc, the population goes extinct and, if L < Lc,
the population grows indefinitely.

Two different forms of diffusion were chosen: diffusion varying with
a power law, and a periodic diffusion following the cosine function. We
solve numerically the Eq. (6-1) using the forward-time-centered-space (FTCS)
second order scheme. The initial condition is ρ0(x) = 10−3 ± ε(x), where
ε ∈ [−10−4, 10−4] is an uniformly distributed random perturbation. First,
we consider a power law for diffusion. Afterwards, we will further explore
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two possibilities, when diffusion is minimum D1(x) or maximum D2(x) in the
center:

Dpl
1 (x) = D0

∣∣∣∣∣ xL/2
∣∣∣∣∣
ν

, (6-3)

Dpl
2 (x) = D0

[
1−

∣∣∣∣∣ xL/2
∣∣∣∣∣
ν]
, (6-4)

where the diffusion exponent ν is positive.
In Fig. 6.1, we present the diffusion as a function of x (on the left panel)

and the population density in a refuge of size L = 10 (on the right panel) for
different values of ν.
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Figure 6.1:Diffusion and their respective population density for differ-
ent exponents of diffusion. Upper panels: D1(x); and bottom panels:D2(x).
On the left panels, the diffusion D(x) given by Eq. (6-4) is represented, while
on the right panels, the population density ρ(x, t = 10) obtained by the numer-
ical solution of Eq. (6-1) is represented. The parameters are D0 = 1, L = 10,
a = 1, and the value of ν is described on the legend.

The size of the refuge chosen in Fig. 6.1 is large enough for the population
to survive. As Eq. (6-1) does not have the logistical term, which limits growth,
the population grows exponentially and the density shown is not the stationary
solution.
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In Fig. 6.2, the temporal evolution of the population density for a specific
value of ν is shown. On the left panel for diffusion D1(x) and on the right panel
for diffusion D2(x).
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Figure 6.2: Temporal evolution of the density as a function of x for ν = 1.5
and the same parameters of Fig. 6.1. Left: D1 and Right: D2.

A previous result is shown in Fig. 6.3, where we see how the exponent of
the diffusion influences the critical size Lc of the refuge, obtained numerically.
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Figure 6.3: The critical size of the refuge as a function of the diffusion
exponent. Obtained for D1(x) with a = 1.

The second expression for the diffusion coefficient for which we intend
to study survival/extinction has an oscillatory behavior within the habitat,
following a cosine type function, that is

Dp(x) = D0

[
1 + α cos

(
βπ

L
(x− x0)

)]
, (6-5)
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which temporal evolution and density behavior are shown in Fig. 6.4, for a
particular case of parameters.

Figure 6.4: Periodic diffusion: Temporal evolution of the density as a
function of x for D0 = 1, α = 0.8, β = 10, x0 = 0, a = 1, and L = 10.

In summary, in this thesis, we describe the organization of single-species
populations in homogeneous and heterogeneous environments. The material
described in this chapter is just one example of how we can extend the scope
of this study.

Furthermore, since nonlocality and anomalous diffusion are found in
diverse complex systems, the impact of our results can go far beyond the
context of population dynamics.
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A
Influence functions of non-local competition

The mathematical model used in this work, Eq. (2-5), takes into account
that individuals in the population compete for resources with all neighbors
within an ` distance, and this interaction is mediated by an influence function
γ(x). When the range of competitive interaction between individuals is too
short `→ 0, this corresponds to well-located delta distribution function,

γ`→0(x− x′) = δ(x− x′), (A-1)

and the competitive term is described by −bρ2(x, t). In this case, we recover
the original FKPP equation described by the Eq. (2-1), and the stationary
profile is homogeneous, i.e., there are not patterns.

In Table A.1, we collect the influence functions presented during the work
and their respective Fourier transform.

Top-hat γh(x) = 1
2`Θ(`− |x|) γ̃h(k) = sin(k`)

k`

q-exponential γq(x) = 2− q
2` [1− (1− q)|x|/`]1/(1−q)

+ −

q → −∞ (Top-hat) γ-∞(x) = 1
2`Θ(`− |x|) γ̃-∞(k) = sin(k`)

k`

q = 0 (Triangular) γ0(x) = 1
` [1− |x|/`]+ γ̃0(k) = sin2(k`)

(k`)2

q = 1 (Exponential) γ1(x) = 1
2`e
−|x|/` γ̃1(k) = 1

1+(k`)2

Stretched exponential γα(x) = e−(|x|/`)α

2`Γ(1 + 1/α) −

α = 1 (Exponential) γ1(x) = 1
2`e
−|x|/` γ̃1(k) = 1

1+(k`)2

α = 2 (Gaussian) γ2(x) = 1√
π`
e−(|x|/`)2

γ̃2(k) = e−(k`)2/4

α→∞ (Top-hat) γ∞(x) = 1
2`Θ(`− |x|) γ̃∞(k) = sin(k`)

k`

Table A.1: Summary of the influence function adopted throughout the
work, and some particular cases in which there is an exact Fourier transform.
When q → −∞, we made the change `→ `(1− q).

In Fig. A.1, we can observe, in the left panel, the influence kernel, and,
in the right panel, the mode growth rate (Eq. (2-9) presented in the Chap. 2)
for three functions defined in the Tab. A.1.
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Figure A.1: Interaction kernel and mode growth rate. (a) Interaction
profiles γ for the uniform, triangular, and exponential kernels with ` = 2 (see
Table A.1), and (b) mode growth rate λ(k), where the parameters used are
D = 10−3, ν = µ = 1, and ρ0 = 1.

For the particular cases where there is no exact expression for the Fourier
transform γ̃(k) (see Table A.1), we need to find numerically the value of the
mode stability λ(k).
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In Fig. A.2, we present a direct comparison between the results of the
two families of influence functions used in Chap. 4, γq and γα. We can observe
the interaction kernel, its respective mode growth rates. Remembering that,
when q ≤ −0.093, the profile shows sustained oscillation for D = 10−3 (see
Fig. 4.9b). The same occurs when α ≥ 2.16 and D = 10−3 (see Fig. 4.11b).
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Figure A.2: Comparison between the two families of influence func-
tions and their respective mode growth rate, using ` = 2 and D = 10−3.
Left: Results for γα. Right: Results for γq.
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In Figs. A.3, A.4 and A.5, we present the maximal value of the mode
growth rate and profiles of mode growth rate.

Figure A.3: Maximal value of the mode growth rate as a function
of D with q = −0.5, and profiles of mode growth rate λ(k). The
vertical lines indicate the values of D above which (i) the maximal value of
λ becomes negative (D ' 0.003), and (ii) this maximum becomes located at
k = 0 (D ' 0.18).

Figure A.4: Maximal value of the mode growth rate as a function of q
with D = 10−3, and profiles of mode growth rate λ(k). The k?i represent
the i-th local maximum. The vertical lines indicate the values of q above which
(i) the maximum value of λ becomes negative (q ' −0.093), (ii) the second
peak becomes the global maximum of the dispersion ratio (q ' 0.21) and (iii)
the dispersion ratio stops oscillating (q ' 0.45).
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Figure A.5: Maximal value of the mode growth rate as a function of
α with D = 10−3, and profiles of mode growth rate λ(k). The vertical
line represents α ' 2.16, at which λ(k?) = 0.
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B
Complementary results for heterogeneity

In this appendix, we present complementary results for the population
within a refuge (Section 4.2.1).

Weak heterogeneity

In Fig. B.1, we show numerical results for the stationary patterns of
the kernels shown in Fig. A.1, for different values of D. As we increase the
diffusion coefficient D, oscillations are more damped. Notice that the uniform
kernel (top-hat) is the one that promotes more oscillatory profiles.
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Figure B.1: Comparison of profiles for different influence functions
with ` = 1. Stationary population density as a function of x obtained from
numerical integration of Eq. (4-1) , for different values ofD and L = 10. We use
A = 10−3, so the growth rate outside of the mask is negative (A− a = 0.999).
The gray region correspond to the refuge.

In Fig. B.2 we present comparisons between analytical (Eq. 4-9) and
numerical (Eq. 4-1) solutions for the population density distribution. For the
particular cases where there is no exact expression for the Fourier transform
γ̃(k)(see table), we need to find numerically the value of the mode stability
λ(k).

DBD
PUC-Rio - Certificação Digital Nº 1612945/CA



Appendix B. Complementary results for heterogeneity 88

0.997

0.998

0.999

1.000

1.001

1.002

-20 -15 -10 -5 0 5 10 15 20

ρs

x

D = 0.02

Analytical
Numerical

0.994

0.996

0.998

1.000

1.002

1.004

1.006

-20 -15 -10 -5 0 5 10 15 20

ρs

x

D = 10−2
Analytical
Numerical

Figure B.2: Comparisons between analytical and numerical results.
Left: Top-hat kernel; Right: Exponential kernel. Steady population
density as a function of x obtained numerically from Eq. (4-1), and analytically
from Eq. (4-9), for L = 10, ` = 1, A = 10−3, and D described in the figure.

Strong heterogeneity

In Fig. B.3, we present the patterns within a refuge (with zero growth
rate outside), for the same kernels presented in Fig. A.2.
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Figure B.3: Comparison between the patterns of the two families of
influence functions. Left: population density using the γα kernel inside a
refuge of size L = 20. Right: population density using the γq kernel inside a
refuge of size L = 10. The others parameters are ` = 2 and D = 10−3.
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Critical refuge size

For A > a, the population outside the refuge goes to zero, since
the growth rate is negative there. Inside the refuge the profiles are almost
insensitive to A > a, mainly for decreasing D.

Furthermore, a critical refuge size for population survival emerges [27],

Lc = 2
√
D/a arctan

√
(A− a)/a . (B-1)
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Figure B.4: Uniform influence function γh, with ` = 1. The steady
population density as a function of x obtained numerically from Eq. (2-5), for
different values of D. In this case Dc ' 10.1, then the populations goes extinct
when D = 20.
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Figure B.5: Exponential influence function γ1. Steady population density
as a function of x obtained numerically from Eq. (2-5), for different values of
L, ` and D described in the figure. In this case, for L = 10 (or 20), we have
Dc ' 10.1 (or 40.4).

Large-A approximation

We will repeat here the analytical derivations made in Section 4.2.1, now
for A→∞. In this case, the stationary form of Eq.( 4-1) becomes

D∂xxρ+ aρ− bρ(γ ? ρ) = 0 , (B-2)

inside of the mask, while outside, ρ(x, t) = 0.
We Fourier transform Eq. (B-2), obtaining

−Dk2ρ̃+ aρ̃− bF {ρ(γ ? ρ)} = 0 . (B-3)

Moreover, we assume that inside the mask there is a perturbation around a
homogeneous state ρ0 = a/b, such that

ρ(x, t) = [ρ0 + ερ1(x, t)]T (x), (B-4)

where T (x) = Θ(L/2−|x|). Assuming ρ(γ ?T ) ' ρ and T (γ ?ρ) ' γ ?ρ, which
is valid for ` � L, and discarding terms of order higher than O(ε2), then we
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have

F {ρ(γ ? ρ)} = ρ0γ̃ρ̃+ ρ0ρ̃− ρ2
0T̃ .

Therefore
ρ̃(k) = bρ2

0T̃ (k)
Dk2 + bρ0γ̃

. (B-5)

Finally, by applying the inverse Fourier transform to Eq. (B-5), we obtain
the steady population density distribution for infinite A, inside the refuge, that
in the particular case T̃ (k) = 2 sin(kL/2)/k reads

ρ(x) = bρ2
0L

π

∫ ∞
0

cos(kx) sin(kL/2)/(kL/2)
Dk2 + bρ0γ̃

dk, (B-6)

that unless a linear transformation has the same shape that the case for small
A, inside the refuge.

In Fig. B.6, we compare results for different values of A including infinite
A. Four different values of D are considered, and the kernel is γh.
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Figure B.6: Uniform influence function γh, with ` = 1 and L = 10.
Steady population density as a function of x obtained numerically from Eq. (2-
5), for different values of A and D described in the figure.
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C
Calculation of poles

The following figures show the poles of the mode growth rate, using the
Taylor expansion of λ(k) around k = 0, where λ(k) is given by

Dk2 +
N∑
n=0

1
n!
dnγ̃

dkn
|k=0 k

n = 0, (C-1)

as shown in the Sec 4.3.

Figure C.1: Poles of the mode growth rate λ(k) in the complex plane
for γq. The influence function used was γq, with ` = 2 and q indicated in the
figure. In panels a-b: D = 10−3, and c-d: D = 10−1. The blue dots are for
N=20, and the red crosses for N=50.
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Figure C.2: Poles of the mode growth rate λ(k) in the complex plane
for γα and D = 10−3. The influence function used was γα, with ` = 2 and α
indicated in the figure. The blue dots are for N=100, and the red crosses for
N=150.
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