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Abstract

Torres, D. L.; Feitosa, R. Q. (Advisor); Marcato, J. J. (Co-Advisor).
Applying Fully Convolutional Architectures for the Se-
mantic Segmentation of UAV, Airborn, and Satellite Re-
mote Sensing Imagery. Rio de Janeiro, 2020. 78p. Dissertação de
mestrado – Departamento de Engenharia Elétrica, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

The increasing availability of remote sensing data has created new oppor-
tunities and challenges for monitoring natural and anthropogenic processes
on a global scale. In recent years, deep learning techniques have become
state of the art in remote sensing data analysis, mainly due to their ability
to learn discriminative attributes from large volumes of data automatically.
One of the critical problems in image analysis is the semantic segmentation,
also known as pixel labeling. It involves assigning a class to each image site.
The so-called fully convolutional networks are specifically designed for this
task. Recent years have witnessed numerous proposals for fully convolutio-
nal network architectures that have been adapted for the segmentation of
Earth observation data. The present work evaluates five fully convolutional
network architectures that represent the state of the art in semantic seg-
mentation of remote sensing images. The assessment considers data from
different platforms: unmanned aerial vehicles, airplanes, and satellites. Th-
ree applications are addressed: segmentation of tree species, segmentation
of roofs, and deforestation. The performance of the networks is evaluated
experimentally in terms of accuracy and the associated computational load.
The study also assesses the benefits of using Conditional Random Fields
(CRF) as a post-processing step to improve the accuracy of segmentation
maps.

Keywords
Deep Learning; Fully Convolution Neural Networks; Remote Sensing;

Semantic Segmentation; Remote Sensing Platforms;
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Resumo

Torres, D. L.; Feitosa, R. Q.; Marcato, J. J.. Aplicação de Redes
Totalmente Convolucionais para a Segmentação Semântica
de Imagens de Drones, Aéreas e Orbitais.. Rio de Janeiro,
2020. 78p. Dissertação de Mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

A crescente disponibilidade de dados de sensoriamento remoto vem criando
novas oportunidades e desafios em aplicações de monitoramento de proces-
sos naturais e antropogénicos em escala global. Nos últimos anos, as técnicas
de aprendizado profundo tornaram-se o estado da arte na análise de dados
de sensoriamento remoto devido sobretudo à sua capacidade de aprender
automaticamente atributos discriminativos a partir de grandes volumes de
dados. Um dos problemas chave em análise de imagens é a segmentação se-
mântica, também conhecida como rotulação de pixels. Trata-se de atribuir
uma classe a cada sítio de imagem. As chamadas redes totalmente convo-
lucionais de prestam a esta função. Os anos recentes têm testemunhado
inúmeras propostas de arquiteturas de redes totalmente convolucionais que
têm sido adaptadas para a segmentação de dados de observação da Terra.
O presente trabalho avalias cinco arquiteturas de redes totalmente convo-
lucionais que representam o estado da arte em segmentação semântica de
imagens de sensoriamento remoto. A avaliação considera dados provenientes
de diferentes plataformas: veículos aéreos não tripulados, aeronaves e saté-
lites. Cada um destes dados refere-se a aplicações diferentes: segmentação
de espécie arbórea, segmentação de telhados e desmatamento. O desempe-
nho das redes é avaliado experimentalmente em termos de acurácia e da
carga computacional associada. O estudo também avalia os benefícios da
utilização do Campos Aleatórios Condicionais (CRF) como etapa de pós-
processamento para melhorar a acurácia dos mapas de segmentação.

Palavras-chave
Aprendizado Profundo; Redes Totalmente Convolucionais; Sensori-

amento Remoto; Segmentação Semântica; Plataformas de sensoriamento
remoto
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1
INTRODUCTION

Earth observation via remote sensing technology is widely used to moni-
tor, assess, and gather information concerning the planet’s systems. This tech-
nology measures emitted and reflected radiation captured by multiple sensors
mounted on suitable stable platforms. Each of these platforms is character-
ized by different technological, operational, and economic factors that play an
important role in the sense of how efficiently the information is captured. In
this respect, these technologies deliver suitable data, which, combined with the
analysis and the development of proper methods, provide important informa-
tion regarding the natural and anthropogenic environments.

General description of different platforms includes spatial resolution,
temporal resolution (revisit time), and object range (distance from the object
to the sensor). For instance, satellite surveys can map repeatedly large-
coverage areas. However, in general, they have a coarse spatial resolution
and may suffer from cloud cover during the image acquisition [3, 4]. Aircraft
surveys, on the other hand, offer high-resolution images and tend to have more
flexibility since the acquisition time can be controlled under suitable weather
conditions. However, they are less stable than space-based technologies and
involve expensive cost regarding campaign organization efforts [5]. Unmanned
Aerial Vehicles (UAVs), also called Drones, address this cost problem, and
offer very high-resolution images which provide a granular understanding of the
object(s) in the image [6]. However, the low altitude and short flight endurance
currently limit the range of activity of these devices in some applications.

In remote sensing, the mapping of land cover dynamics is a common
and challenging problem aiming to locate instances of a given object class
in a specific image [7]. On the other hand, computer vision has evolved
substantially in the last decade, mainly due to the introduction of deep learning
methods. In this context, convolutional neural networks (CNNs) have become
the most common approach for different image analysis tasks such as automatic
classification, object detection, and semantic segmentation [8–15]. Recently,
CNNs have been widely applied for remote sensing problems achieving the
state-of-the-art in many applications [16]. Combining the power of CNNs on
images from different remote sensing platforms, different studies using object
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Chapter 1. INTRODUCTION 13

detection methods were introduced [11, 17, 18]. In this case, a CNN is trained
to delineate a bounding box around the target object, providing information
about their position and location. Although this information is valuable, some
key important details regarding the morphology of the object, like its individual
shape or contour, are not provided. In this sense, semantic segmentation based
algorithms arise as an alternative to achieve fine-grained information towards
complete scene understanding, presenting the potential to capture object forms
more accurately than single object detection.

The first idea for deep semantic segmentation methods was to build a
patch-based CNN. This approach consists of splitting the image into patches
and classifying their central pixel using a traditional CNN. A critical drawback
of this method is the redundant operations, specifically in overlapping patches,
associated with its high computational cost. To overcome these difficulties,
fully convolutional neural networks (FCNs) were first proposed in [19]. The
network uses convolutional and pooling layers to build an end-to-end network
able to manage different spatial resolutions and predict class labels for all
pixels, exploiting context, and location information of the objects in the scene.
Later on, with U-Net [20], a technique to improve the spatial accuracy of
the segmentation outcome was proposed. Typically, in this approach, the
input image is first processed by an encoder stage consisting of convolutional
and pooling layers that reduce the spatial resolution. It is then followed
by a decoder stage that recovers the original spatial image resolution by
using upsampling layers followed by convolutional layers ("up-convolution").
In addition, the network uses the so-called skip connections appending the
output of the corresponding layers in the encoder stage to the inputs of the
decoder stage. The SegNet architecture [14], as the U-Net, employs the same
principle of the encoder and decoder paths. However, instead of using skip
connections, the decoder makes use of the pooling indices computed in the
pooling operation of the corresponding encoder layers to upsample the result
up to the original image resolution.

Some authors proposed the use of a conditional random fields (CRF)
based post-processing to further improve the spatial and semantic accuracy of
the FCN outcome (e.g., [15, 21]).

Notwithstanding the reported improvements brought about by CRF,
these methods have a significant drawback: FCN and CRF need to be trained
separately so that such methods constitute no end-to-end solution. In the
last few years, real end-to-end FCN architectures for semantic segmentation
were published, which reportedly performed at least as good as prior solutions
that included CRF post-processing (e.g., [15, 22]). This was achieved due to
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innovative techniques to capture multi-scale context within the FCN, such
as global-to-local contexts aggregation as in ScasNet [22] and atrous spatial
pyramid pooling in DeepLabv3+ [23].

Motivated by the state-of-the-art of DL semantic segmentation models,
we evaluate in this work the use of five state-of-the-art deep learning methods
for the semantic segmentation of individual targets on three different scenarios:
segmentation of a single tree species, of building rooftop and deforestation in
the Amazon Biome using images derived from UAV, aerial and satellite images.

Regarding satellite imagery, we focus on the monitoring of environmental
changes, specifically on the deforestation practices within the Brazilian Ama-
zon. The implications of the Amazon deforestation regarding global warming
and the conservation of ecosystems and biodiversity of the region constitute
a global concern for different government associations. In this sense, some or-
ganizations such as the National Institute for Space Research (INPE) focus
its effort on the processes of understanding and monitor the rhythms of envi-
ronmental changes in the Amazon Biome. Yet, it is still lacking of automatic
methods for the effective mapping and estimation of annual deforestation rates.

On the other hand, the usage of aerial imagery for mapping the location
and morphology of building rooftop in dense urban environments can be a
valuable input for policymakers. Reliable and timely maps of buildings are
essential for urban planning and city modeling, especially in areas experiencing
rapid urbanization, evidencing the possibility of the application of different
FCN approaches in this research area.

Concerning UAV platform, we focus on identifying the canopy of the
threatened species Dipteryx alata Vogel, also known as cumbaru. It comes
about in midwestern Brazil, and due to its particular shadow and canopy,
it is used for afforestation practices over urban areas. This species has a
tremendous social and economic relevance for the development of some areas
of the Brazilian Cerrado [24]. It has been threatened by extinction according
to the IUCN (2020) (The International Union for Conservation of Nature’s
Red List of Threatened Species, https://www.iucnredlist.org/species/
32984/9741012), which makes its preservation a very important issue since
this particular species provides fruits for a large number of bird species.

https://www.iucnredlist.org/species/32984/9741012)
https://www.iucnredlist.org/species/32984/9741012)
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1.1
Objectives

The objectives of this work are the following:

– General objective:
Evaluate deep learning methods to segment individual objects using
images from different platforms (Satellite, Aircraft and UAV systems).

– Specific objectives:

1. Compare five state-of-the-art deep learning semantic segmentation
methods, namely U-Net, SegNet, Fully Convolutional DenseNet,
and Deeplabv3+ with the Xception and MobileNetV2 backbone.

2. Assess the performance on the aforementioned networks for the seg-
mentation of three object classes: individual tree species, rooftops
and deforested areas.

3. Assess the performance of the aforementioned networks for the
semantic segmentation of UAV, aerial and satellite images.

4. Assess the improvements of using CRFs as a post-processing step
for the Cumbaru and Building Rooftop datasets.

1.2
Contributions and Novelties

The main contributions of this work are the following:

1. A comparison of five state-of-the-art fully convolutional neural networks,
namely U-Net, SegNet, Fully Convolutional DenseNet, and Deeplabv3+
with the Xception and MobileNetV2 backbone.

2. An analysis of the aforementioned FCNs on differents platforms: UAV,
airborne, and satellite images.

3. An analysis of the FCNs in the semantic segmentation of three object
targets: individual tree species, rooftops, and deforested areas.

4. An assessment of Conditional Random Fields as post-processing in the
Cumbaru and Rooftop datasets.
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1.3
Organization of the remainder text

Chapter 2 describes the works related to this research.
Chapter 3 provides the theory and fundamental concepts essential for

the understanding of the tested methods.
Chapter 4 describes the study areas and introduces the fundamentals of

FCNs, specifically, the FCN approaches investigated in this work.
Chapter 5 further presents the protocol followed in our experimental

analysis and the recorded results.
Chapter 6 summarizes the conclusions derived from the performed ex-

periments and provides directions for the continuation of this research.
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2
RELATED WORKS

This chapter summarizes the works related to this research that have been
proposed so far. Most of them were developed in the context of deforestation
detection, rooftop segmentation, and tree species segmentation.

2.1
Deforestation Detection

Change detection is defined as the process to analyze and measure the
differences in a region at different dates. In particular, for the forest context,
change detection has been established as an essential task for monitoring
the degradation of forest environments and for the preservation of natural
ecosystems. Several studies are available in the literature to detect and monitor
forest changes relying on satellite images, mainly due to its optimal spectral,
spatial, and temporal properties [25–28]. In this regard, multiple change
detection techniques have been developed [29–32], which constitute an effective
instrument in the processes of identifying and labeling regions that underwent
significant changes.

Visual interpretation constitutes one of the earliest techniques for mo-
nitoring deforestation. In this case, the identification of forest change is carried
out by the analysis of different factors such as color, tonality, texture, shape,
and context [32]. Using the combination of these elements, Asner et al. [32]
incorporates reflectance data and texture analysis to assess forest canopy
damage in the Amazon using Landsat images. The main disadvantage of this
technique is the considerable time needed to identify the changes, being in
some cases not feasible in the analysis of large areas.

In comparison with visual interpretation, automatic approaches allow a
faster analysis. Some of the early approaches includes techniques based on ima-
ge algebra [29, 31, 33, 34]. Nelson et al. [35] studied image differencing, image
rationing, and vegetation index differencing (VZD) for detecting forest canopy
alteration and found that the VZD shows more accurate results delineating
healthy and defoliated forest. Hayes et al. [36] assessed the normalized differ-
ence vegetation index (NDVI) image differencing, principal component analysis
(PCA), and RGB-NDVI change detection to detect deforestation practices in
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Guatemala’s Maya Biosphere Reserve. The authors found that the RGB–NDVI
reached the highest accuracy of about 85%.

Several authors reached different conclusions about which method yielded
the best results among the different algebra-based approaches since these
results differ depending on the characteristics of the research areas. Moreover,
the classification step to differentiate change from no-change depends on
the selection of an optimal threshold, being necessary some pre-classification
techniques to define the best value.

Other methods of change detection include machine learning algorithms
to perform direct classification. Some of these works are based on more
complex systems such as artificial neural networks [37], decision trees [38],
fuzzy theory[39], and support vector machines [40]. These change detection
methods present good results for identifying changes in medium- to coarse-
resolution imagery, but fail when dealing with high-resolution images because
they tend to produce the salt-and-pepper pattern on the resulting maps [38].
This effect occurs due to high-frequency components and high contrast of
the high-resolution images, as well as the variation in the image acquisition,
which often results in too many changes being detected [38]. Indeed, the main
limitation of the method is the difficulty of modeling contextual information
as the pixels within a neighborhood are often ignored [41].

Deep Learning methods have shown great potential for change detection
approaches, showing higher results in comparison to traditional machine
learning methods [42]. The capability to capture spectral-spatial-temporal
information in an image sequence makes deep learning approaches very suitable
to the change detection task [43–46]. In the category of pixel classification, Hou
et al. [47] use low-rank saliency computation based on the premise that only
small regions of the image changed. Here, a CNN is applied to the change
features extracted from super-pixels generated using the SLIC algorithm.
Other approaches include patch-based classification, which includes the Early
Fusion and Siamese CNN [48–50].

Fully convolutional neural networks (FCNs) are one of the leading types
of architectures within the different deep learning networks. Unlike traditional
CNNs, which predict a unique probability for each input image, FCNs can
assign probabilities to each pixel in the image. One of the first works using
FCN in the change detection context was proposed in [51]. In this work,
earlier proposed ideas of Early Fusion and Siamese Network were extended,
by training from scratch FCNs instead of the traditional CNNs, achieving
better performance and faster computation. Recently, other fully convolutional
methods such as the U-Net have been successfully applied for the automatic
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mapping of bi-temporal images [52, 53]. De Bem et al. [53] compare different
architectures such as SharpMask, U-Net, and ResUnet to map deforestation
between images on different dates. The ResUnet model achieved the best
results in terms of F1-score and IoU, while SharpMask and U-Net models
presented comparable but slightly lower results. Peng et al. [54] proposed an
effective architecture named UNet++ based on the U-Net model, dense skip
connections, and residual blocks. The author concludes that the proposed
UNet++ outperforms the results in [53] on both visual and quantitative
metrics. Motivated by this, we then propose the use of other state-of-the-art
FCNs architectures following the Early Fusion approach to detect deforestation
changes in the Brazilian Amazon.

2.2
Building Rooftop Segmentation

The automatic mapping of different urban objects such as buildings plays
an important role in environmental modeling and monitoring, for updating
geographical databases, disaster managing, land cover, infrastructure planning,
and counting. In this regard, several algorithms ranging from traditional
methods to more advanced machine learning approaches have been suggested
and widely used for remote sensing images.

During the early days, these techniques were mainly used for the image
classification task due to the lack of high-resolution images. In this sense,
Bischof et al. [55] compared the results of the maximum likelihood classifier
with an artificial neural network (ANN) for classifying satellite images into
forest, buildings, agricultural land, and water. Later, some researches in the
area focused on combining the potentialities of ANN with other methods to
improve the image classification results also of satellite images. In this line,
Abraham et al. [56] proposed an automatic technique based on a wavelet-
based watershed method and ANN for building classification on highly dense
urban areas. Further on, Joshi et al. [57] proposed a method for the automatic
detection of building rooftops in satellite images. Here, a traditional ANN is
first trained to perform a binary classification between rooftop and non-rooftop
regions, following a Support Vector Machine (SVM) classifier to improve the
performance of the model and reduce false-positives that could be left by the
previous step. One weakness of this approach was the few cases where the
ANN was very accurate. Moreover, the method fails to detect rooftops with
different color information.

With the advances in the computer vision field, feature extraction
through CNNs has outperformed traditional approaches for visual recognition
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concerning roof shapes. In this regard, Castagno et al. [18] used different CNN
based architectures such as Resnet50, Inceptionv3, and Inception-ResNet to
extract high-level features of Satellite and airborne LiDAR imagery. Similar
to[57], these features then fed a second-stage SVM or random forest classifiers
to provide an accurate single roof geometry decision. Satellite image and
LiDAR data fusion achieved the highest accuracy .The good performance was
achieved largely due to the fusion of optical images with data LiDAR.

Many studies show the capabilities of CNNs as a feature extractor
for object-based classification [18, 57–59]. These studies, in fact, have been
shown to achieve good overall performance. Although highly dependent on the
intermediate classification outcomes of CNNs, they do not constitute end-to-
end solutions.

In the last few years, advances in remote sensing platforms have made
available large amounts of high-resolution aerial imagery making room for
different applications of deep learning methods [60, 61]. In particular, for the
semantic segmentation task, different methods have shown good performance
in the segmentation of different objects. In this regard, Zhong et al. [62]
proposed the use of different configurations of FCN to segment buildings
and roads using aerial RGB images, reaching a precision accuracy of about
78%. Further on, Xu et al. [63] improved the building classification by the
application of a new model based on residual networks, defined as Res-U-Net,
to perform segmentation of high-resolution imagery. On the other hand, Wu
et al. [64] proposed a multi-constraint fully convolutional network (MC–FCN)
for the automatic segmentation of buildings on high-resolution aerial images,
achieving improvement over the U-Net of about 3.2% in the Jaccard index at
the cost of 1.8% increment in the training time. Recently, Lichao et al. [65]
proposed a relational context-aware fully convolutional network on two aerial
images datasets: ISPRS Vaihingen and Potsdam benchmarks. The proposed
method achieved competitive results and outperformed the baselines in terms
of mean F1-score, mean IoU, and overall accuracy.

Some researches try to improve the semantic segmentation outcome by
using a post-processing step based on Conditional Random Field (CRF).
Mnih et al. [66] investigated the use of deep neural networks trained on
aerial images to learn discriminative features in the detection of roads and
buildings from noisy labels. Moreover, it also proposed the use of the CRF
technique for improving the predictions of the networks, achieving moderate
results. Kluckner et al. [67] proposed a segmentation technique based on super-
pixels and a CRF stage to classify and to construct synthetic 3D models
of rooftops on aerial images. The results showed that the integration of the
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CRF stage to the super-pixel method improved the final building classification
significantly. In the context of the ISPRS 2D semantic labeling benchmark,
Gerke et al. [68] performed a multi-class image classification by training
an Adaboost-based classifier followed by a CRF. The CRF stage smooths
the Adaboost prediction, which can affect negatively the final classification
result. A later ISPRS benchmark [69] used CNNs and hand-crafted features
to perform a pixel-wise classification of aerial imagery, and a CRF to improve
the segmentation accuracy. The reported results showed no significant accuracy
gains due to the CRF step, although the improvement of the visual results may
make it worthwhile. One downside of the method is that CRF tends to reduce
regions with ambiguous probabilities and eliminate small labeled regions [69].

In this work, we compare and analyze five deep fully convolutional
networks, in the semantic segmentation of individual building rooftops on
aerial images. Secondly, CRFs post-processing is performed on the resultant
segmentation maps in the final classification.

2.3
Single Tree Species Segmentation

Forest monitoring provides essential information to support public poli-
cies related to protection, control, climate change mitigation, and sustainable
development. Therefore, the continuous monitoring of forest trends through
remote sensing enables a cost efficient measurement of vegetated ecosystems.
In this context, satellite observations constitute a suitable platform to cover
large areas at regular periodicity [70].

In the forest monitoring context, single tree detection is an essential task
for many applications, including resource inventories, wildlife habitat mapping,
biodiversity assessment, and hazard and stress management [8]. Over the years,
researchers have worked in this field, mapping single tree species based on
different satellite imagery and achieving moderate results [9, 10, 71–73]. In the
last decade, new approaches emerged to take advantage of the characteristics of
active sensors, especially light detection and ranging (LiDAR) systems, which
became a trend for tree crown detection [74]. More recently, the authors in [75]
concluded that combining LiDAR data with optical imagery generally leads to
better classification accuracy. Although this conclusion might be generalized,
the authors focused on classifying tree species in urban environments.

In fact, urban forests are a particular case of forests with singular
attributes and peculiarities. Urban forests are commonly defined as woody
vegetation located in an urban area and usually limited to single and/or groups
of trees distributed in parking places, gardens, small parks, and along roads
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in the city. Thus, the heterogeneity of urban environments makes the accurate
classification of tree species more challenging than in natural forests. Firstly,
a high spatial resolution image is required in order to differentiate them as
individual objects. Secondly, with the progress of urbanization, urban trees
are heavily influenced in their environment by urban patterns like streets,
communities, and factories [76].

Unmanned Aerial Vehicles (UAVs) can provide appropriate temporal and
spatial resolution images to produce suitable datasets for mapping forested
areas on the individual tree level [77]. This may allow a better detection of
single trees in urban scenarios. Following this trend, Feng and Li [78] proposed
a method for mapping tree species in urban areas based on histograms and
thresholding using UAV observations. Similarly, Baena et al. [79] used object
based image analysis on high spatial resolution UAV images to identify and
quantify tree species across different landscapes.

On the other hand, some deep learning based approaches for tree species
detection have been proposed in recent years. Li et al. [80] presented a deep
learning based framework for oil palm tree detection and counting, using high
spatial resolution satellite images. Weinstein et al. [81] used RGB images from
an airborne observation platform along with airborne LiDAR data to detect
tree crowns through a deep learning network.

Considering UAV platforms, Natesan et al. [82] proposed a deep learning
framework for tree species classification. In this approach, images of pre-
delineated tree crowns were the inputs to a CNN to classify the delineated
trees to one out of three classes: red pine, white pine, and non-pine. Similarly,
Masanori et al. [83] used UAVs to acquire RGB images of individual tree crowns
and carried out a multiresolution segmentation algorithm [84] to classify seven
different types of trees. Overall accuracy up to 89% was reported in this study.
In [11], Santos et al. proposed different deep learning methods for detecting
law protected tree species using high resolution RGB imagery. These methods
delivered a bounding box that enclosed each object instance, but did not
delineate the shape or contour of the target.

In recent years, a few studies have already evaluated the potential of the
FCN architectures, specifically U-Net, for forest mapping from optical images
[85, 86]. In [85], the authors used a U-Net to identify instances of a given tree
species fromWorldView-3 images. Similarly, in [86], the U-Net was trained with
the RGB bands and the digital elevation models (DEM) from high resolution
UAV imagery. The importance of monitoring urban forests and the lack of
studies on using FCNs’ capabilities for this purpose motivated the present
study.
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FUNDAMENTALS

Remote Sensing Image analysis plays a key role in the earth observation
technology. In recent years, as deep learning methods emerge, remote sensing
image classification has gained recognition offering novel possibilities for the
research in different applications. In this chapter, we first present an overview
of the fundamentals of remote sensing techniques and their different platforms.
Moreover, we also introduce the fundamental principles of different deep
learning methods, specifically Fully Convolutional Networks.

3.1
Remote Sensing

Remote sensing is the science of detecting and monitoring the physical
characteristics of an area by measuring the emitted or reflected electromagnetic
radiation from the Earth’s at distance [87]. These remote sensors provide fast
and repetitive image acquisition of extensively large areas displacing the slower,
costly data collection on the ground. Remote sensing has become a well-
established tool for many applications, ranging from monitoring forest fires
[28], deforestation [88], climate changes [28] and others, providing a global
perspective of the earth.

The electromagnetic energy can be recorded by either passive or active
sensors (see Fig 3.1). Depending on what is being sensed and the application,
these various sensors are mounted on different platforms for the remote image
acquisition.

Passive sensors are devices that measure the naturally available energy
reflected by the Earth surface. A common example of passive sensor-based
technologies is the optical sensors that collect reflected electromagnetic energy
generated by the sunlight. Nonetheless, important drawbacks of these sensors
include their dependency on the availability of natural energy, the presence of
clouds, and poor weather conditions. Other types of natural energy sensed by
passive sensors include thermal infrared and radiometers [89].

On the other hand, active sensors incorporate the source of electromag-
netic radiation and do not depend on the sun. Specifically, they emit radiations
toward the target and measure the time delay between the emission and the

DBD
PUC-Rio - Certificação Digital Nº 1821704/CA



Chapter 3. FUNDAMENTALS 24

radiation reflection from the target [90]. Some examples of active sensors are
RADAR (Radio Detection And Ranging), LiDAR (Light Detection And Rang-
ing), and SAR (Synthetic Aperture Radar).

Figure 3.1: Passive and Active sensors

3.1.1
Remote Sensing Platforms

Different platforms are used as vehicles from which remote sensing sensors
map and monitor the Earth. Typical platforms are aircrafts (plane, unmanned
aerial vehicles (UAVs), helicopters, balloons, etc) or on a spacecraft (satellites)
orbiting the Earth from outside the atmosphere. Each platform has advantages
and disadvantages in terms of distance from sensor to the object of interest,
periodicity of image acquisition, timing of image acquisition, location and
extent of coverage, as illustrated in Figure 3.2.

Figure 3.2: Remote Sensing Platforms. From [91]

Airborne Platforms
Airborne platforms include airplanes, helicopters, unmanned aerial sys-
tems (UAS), and free-floating balloons. These vehicles can be categorized
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based on their elevation restrictions in low (less than 30,000 feet) and
high altitudes flights (above 30,000 feet). In general, the higher the fly,
the more stable a platform is at the cost of less resolution and detail of
the image. The main advantage of airborne remote sensing, compared to
satellite, is the ability to offer high spatial resolution imagery (20 cm or
less).

UAV is a kind of aircraft system that is operated remotely by automatic
systems or from the ground. UAVs were originated mostly for military
applications. Now they can be used to collect remotely sensed data for
a variety of commercial and research purposes. The primary advantages
of UAV sensors are the very high-resolution images and its low altitude
flights to capture detailed information of the terrain. It can also allow a
more precise analysis of the landscape, regarding the local-scale analysis
about the area of interest [28]. This characteristic enhance the suitability
of UAVs for applications in Precision Agriculture [92]. The primary
limitation of this technique is the turbulence and variable wind speeds
causing in some cases blurred images.

Satellite
Airborne remote sensing missions are often carried out as one-time
operations, whereas earth observation satellites offer the possibility of the
continuous monitoring of the Earth. The path of the satellite is referred
to as its orbit. In this regard, there exist satellites following north-
south orbits or polar orbits or in conjunction with the Earth’s rotation
(west-east orbit). Many of these orbits are also sun-synchronous so that
the satellite covers the same area at the same local time when solar
illumination is available. One example is the Landsat 8 satellite, which
orbits the Earth in a sun-synchronous way with a temporal resolution
of 16 days. On the other hand, as satellites are positioned at a high
altitude (705 km for Landsat 8) the spatial resolution is not as good
as the airborne platforms. Landsat data, for example, has 30m spatial
resolution, meaning that each pixel corresponds to a 30m × 30m large
area on the ground.

Satellite platforms can image any place on Earth with the same quality
and standard of service. Many remote sensing applications have benefited
from currently free available satellite images and from historical imagery.
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3.2
Convolutional Neural Network

One of the most powerful Artificial Neural Networks architecture is the
Convolutional Neural Networks (CNNs). CNNs circumvent the limitations
of traditional neural networks in terms of computational complexity when
operating on large images. Comparatively, CNNs involve less parameters, an
operate on local regions instead of the image as a whole [93].

3.2.1
Topology of Convolutional Neural Network

The input of traditional CNNs is a 3D input tensor. Its width and
height define the spatial dimension of the image, and the depth the numbers
of channels. A typical architecture of a convolutional network is made of three
basic layers: convolutional layers, pooling layer, and fully-connected layer, as
shown in Figure 3.3.

Figure 3.3: VGG-16 architecture. Adapted from [1, 2]

Convolutional layers extract feature representations of each input
feature map. Conventionally, the first convolutional layers capture low-level
features such as edges, color, while deeper in the network, layers capture more
abstract representations or high-level features.

Each convolution layer is equipped with several convolution kernels. The
scalar product between the learnable weights of the kernels and a region of the
input image defined by its field of view is first calculated. Then, the result is
applied to a nonlinear activation function, such as sigmoid, hyperbolic tangent,
softmax, or RELU, to obtain a new feature map. The spatial dimension of the
output feature map will depend on the kernel size, on the adopted stride, and
on the use or not of padding.
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Pooling layers reduce the spatial dimension of the input image as
well as the number of parameters and computational load involved in the
subsequent layers. Pooling layers come about typically in two variants: the
Max-Pooling and the Average-Pooling. The Max-Pooling operation returns
the maximum value of a sub-region of the feature map. Average-Pooling, on
the other hand, computes the average over each sub-region. Average and Max-
Pooling are different in the amount of information they retain, while Max-
pooling eliminates less important elements, average pooling blends them. This
could be preferable in situations where no dominant feature information is
required.

After feature extraction, the final classification of the image is done using
fully connected layers. The feature map produced by the previous layer is
flattened into a vector, which is first multiplied by a weight matrix and then
applied to a non-linear activation function, which delivers the final probabilities
for each class of the problem.

Normalizing the input data of neural networks has been known for
decades [29] to be beneficial to neural network training. There are many reasons
for that. One of them is to prevent the early saturation of the non-linear
functions, gradient oscillations, and convergence problems. However, even with
normalization, these problems can occur during the training of deep neural
networks because the distribution of the intermediate results changes as the
weights are updated during the training. Ioffe et al. [94] refers to this issue as
Internal Covariate Shift, and address the problem by normalizing the results
of intermediate layers within the network for each training mini-batch. This
operation is called batch-normalization.

During training, batch-normalization normalizes the output of a previ-
ous activation layer by subtracting the batch mean and dividing by the batch
standard deviation. The standardized output can be shifted and scaled using
two trainable parameters β and γ which define the new mean and standard
deviation of each input variable per mini-batch. Such as transform is differen-
tiable which allows the backpropagation of the gradient through the network.
In the inference time, γ and β are fixed, using the previous calculated means
and variance of each batch.

3.3
Fully Convolutional Neural Network

Over the past few years, the fully convolutional networks (FCN) [19] have
gained recognition due to their ability to perform pixel-based classification in
an end-to-end fashion [95, 96].
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This task is known as semantic image segmentation, and can be efficiently
acomplished by modifying the fully-connected layer of a traditional CNN
into convolutional layers [19]. Typically, these networks consist of an encoder
module, which reduces spatial resolution by convolution and pooling operations
through consecutive layers, and a decoder module that retrieves the original
spatial resolution. Similar to conventional CNNs, convolutional layers extract
meaningful features by convolving the input image with kernels or filters.
During convolution, each filter operates over a local region of the input volume,
which is equivalent to the filter size. The spatial extent of the input image
considered in calculating a position of an activation map is called receptive
field or field of view. To enlarge the receptive field, we can use larger filters or
add more layers. Both strategies imply more parameters, more operations, and
higher computational complexity. To compensate for this effect and reduce the
computational cost, pooling layers reduce the resolution of the feature maps.
In consequence, part of spatial information gets lost, mainly at fine details.

3.3.1
Atrous Convolutions

To increase the field of view without increasing the number of parameters,
Chen et al. [97] proposed the atrous convolutions. Atrous convolution, also
known as dilated convolution, operates on an input feature map (x) as follows:

y(i) =
∑
j

x[i+ r ∗ j]w[j] (3-1)

where i is the location in the output feature map y, w is a convolution filter,
and r is the dilation rate that determines the stride in which the input signal
is sampled [98].

The basic idea consists in expanding a filter by including zeros between
the kernel elements. For example, if a k× k filter is expanded by an expansion
rate r, r-1 zeros are inserted between each adjacent element of the original
filter along each dimension. Thus, the receptive field is expanded to [k + (k −
1)(r−1)]× [k+(k−1)(r−1)] [99] (see Figure 3.4). In this way, we increase the
receptive field of the output layers without increasing the number of learnable
kernel elements and the computational effort.

Later, Chen et al [15] proposed the Atrous Spatial Pyramid Pooling
(ASPP) illustrated in Figure 3.4.
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Figure 3.4: Atrous Spatial Pyramid Pooling.

This technique involves employing atrous convolution with different
rates in parallel as a strategy to extract features at multiple scales and to
alleviate the loss of the spatial information intrinsic of pooling or convolutions
with striding operations [23]. Notice that, the receptive field gets larger with
increasing rates while maintaining the number of parameters [99].

3.3.2
Depthwise Separable Convolution

Another way to reduce computational complexity and the number of
parameters in a model is through separable convolutions. Recent deep learning
approaches such as [98, 100] apply separable convolution to both, the encoder
and the decoder stages in the FCN model. Conceptually, the spatial separable
convolution brakes down the convolution into two separate operations: a
depthwise and a pointwise convolution, as illustrated in Figure 3.5.

In the traditional convolution, the kernel is as deep as the input and
operates on all input channels. A depthwise separable convolution involves
two steps. First, a spatial convolution is carried out independently over each
input channel. Here, the number of filters is equal to the number of input
channels and each filter operates independently on a single channel [100].
After completing the depthwise convolution, a so-called pointwise convolution
performs a 1×1 convolution with a kernel as deep as the number of chanels.
The main advantage of depthwise separable convolutions is that they involve
fewer parameters compared to regular convolutions, implying fewer operations
and faster computation [100].
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Figure 3.5: Depthwise Separable Convolution.
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4
METHODS

In this section, we describe the four FCN architectures assessed in this
work: SegNet, U-Net, FC-DenseNet, and the two variants of the DeepLabv3+
related to the adopted backbone: Xception and MobileNetV2. Finally, we
revisit the idea of applying conditional random fields (CRFs) as a post-
processing technique to improve the overall segmentation outcome.

4.1
U-Net

Like any traditional fully convolutional network, the U-Net (see Figure
4.1) has an encoder-decoder architecture [20]. The encoder is a stack of convo-
lutional and max-pooling layers. The decoder is a symmetric expanding path
that uses learnable deconvolution filters to upsample the feature maps. The
main novelty introduced by this network is the so-called skip connections.
Specifically, they allow the concatenation of the output of the transposed con-
volution layers with the correspondent feature maps of the encoder stage [101].
This step aims at retrieving the fine characteristics learned by the contracting
stages to restore the original input image’s spatial resolution [20].

C

C

C

Conv + ReLU

TransposeConv

Pooling

Softmax C Concatenate

Figure 4.1: Unet
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4.2
SegNet

SegNet was also one of the early proposed FCN architectures for semantic
segmentation [14]. This network has an encoder and a corresponding decoder
path, followed by a final pixel-wise classification layer. The encoder comprises
a series of convolutional layers, whose outputs are normalized before being
applied to a nonlinear activation function followed by 2 × 2 max-pooling
(see Figure 4.2). A distinguishing characteristic of SegNet is that it keeps the
pooling indices, i.e., the position of the cell within each 2 × 2 group of pixels
where the max-pooling operation took the maximum from. These indices are
forwarded to the correspondent upsampling layer of the decoder stage. Each
upsampling step of the decoder stage involves doubling the spatial resolution.
The max-pooling indices stored during the encoder phase determine the cell
of the corresponding 2 × 2 array at the higher resolution output where each
input value is to be loaded. The other three cells of the 2 × 2 array are zeroed.
In this way, SegNet seeks to retrieve the input image details lost in the encoder
downsampling steps.

Conv + BatchNorm + ReLU

Upsampling

Pooling

Softmax

Pooling Indices

Figure 4.2: SegNet architecture.

4.3
FC-DenseNet

Based on fully convolutional networks, Jégou et al. [102] extended the
DenseNet network [103] by adding an upsampling path to recover the input
resolution and proposed the fully convolutional DenseNet (FC-DenseNet). Its
architecture is illustrated in Figure 4.3. The traditional DenseNet is built
on the so-called dense blocks. Each dense block layer is composed of batch-
normalization, followed by a ReLU activation function and a 3 × 3 convolution
[102]. The output of a dense block is the concatenation of the outputs of each
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layer in the current block. Thus, the number of feature maps increases after
each layer, by a factor of k, a network hyperparameter called growth rate.

FC-DenseNet keeps the dense blocks of Smith et al. [103] and includes
the downsampling and upsampling paths with skip connections. The down-
sampling path consists of dense blocks followed by transition down (down-
sampling) layers, which are composed of a batch normalization, ReLU activa-
tion function, an 1 × 1 convolutional layer, and a 2 × 2 max-pooling operation
[102]. Analogously, the decoder consists of dense blocks and transition up (up-
sampling) layers, which perform a single transposed convolution with stride 2
[104]. Like the U-Net, the skip connections concatenate the feature maps in
the upsampling path with the downsampling feature map at the same level. To
avoid an excessive growth of feature maps in the upsampling path, the input
of the dense block is not concatenated with its output [102].

Layer

Layer

C

C

Layer

Layer

DenseBlock

INPUT

OUTPUT

C

C

Conv

Transition Down (TD) Transition Up (TU)

C ConcatenateDenseBlock (DB)

Layer BatchNorm. + ReLU + Conv

C

C

C

C

Figure 4.3: FC-DenseNet architecture.

4.4
DeepLabv3+ with the Xception Backbone

Keeping the encoder-decoder structure, the fourth and fifth approaches
considered in this work are based on the DeepLabv3+, which represents the
state-of-the-art for semantic image segmentation [98] at the time this disserta-
tion was written. A characteristic of this method is the atrous spatial pyramid
pooling (ASPP) described in the Section 3.3.1. In relation to conventional
architectures, ASPP allows increasing the field of view and thus the spatial
context considered at each layer with a smaller increase in the number of pa-
rameters and in computational complexity
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DeepLabv3+ inherited the depthwise separable convolutions (described
in section 3.3.2) introduced in its predecessor, the DeepLabv3 version. Fur-
thermore, the DeepLabv3+ version modified the Xception model presented in
[100], including more layers, replacing all max-pooling operations by depthwise
separable convolutions, and adding batch normalization and ReLU activation
after each 3×3 depthwise convolution[98], as described in Figure 4.4.

Figure 4.4: DeepLabv3+ Xception backbone Encoder [98]

In the decoder stage, the features obtained from the encoder are upsam-
pled by a factor of 4 and then concatenated with the corresponding low-level
features [105]. To make better use of higher level semantic features extracted
by the encoder, an 1 × 1 convolution is employed to reduce the number of
channels. After the concatenation, a 3×3 convolution is applied to refine the
features, ending with another bilinear upsampling by a factor of 4 to obtain
the resolution of the input image [98, 106]; see Figure 4.5.
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Figure 4.5: DeepLabv3+ architecture.

4.5
DeepLabv3+ with the MobileNetV2 Backbone

We also evaluated a variant of the DeepLabv3+ using a MobileNetV2
backbone [107]. This model was proposed to reduce computational complexity
so that DeepLabv3+ could run on mobile devices. The key concept behind
MobileNetV2 is the use of inverted residual blocks in the bottleneck of the
main architecture. In conventional residual blocks, the depth of the tensor
comprising the input feature maps is first reduced by a 1×1 convolution whose
output feeds a subsequent 3×3 convolution. Prior to adding the result to the
input feature map, another 1×1 convolution is carried out to match the depth
of input feature maps.

The inverted residual block presented in [107] works the other way
around. It first applies a 1×1 convolution to increase the depth of feature
maps’ tensor, followed by a 3×3 depthwise convolution. A subsequent 1×1
convolution compresses the resulting tensor back to the depth of the input
feature map. This scheme involves considerably fewer parameters than the
conventional residual block and is more computationally efficient.
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Figure 4.6: Difference between Residual Block and Inverted Residual Block
[107].

The encoder architecture of DeepLabv3+ with the MobileNetV2 back-
bone starts with a convolution with 32 filters, followed by a stack of inverted
residual blocks (IRB) [107], as described in the Table 4.1. When the table indi-
cates that the inverted residual block is repeated n times, the stride specified
in the table is applied only to the first block. For all other blocks the stride
is equal to 1. The expansion factor, on the other hand, stands for the number
of times the number of channels in the input tensor of the IRB is going to
increase.

Table 4.1: Encoder of DeepLabv3+ Mobilenetv2 architecture

Operation No. channels Expansion factor Times Stride

3 × 3 Conv 32 - 1 1
IRB 16 1 1 1
IRB 24 6 2 2
IRB 32 6 3 2
IRB 64 6 4 1
IRB 96 6 3 1
IRB 160 6 3 1
IRB 320 6 1 1

4.6
Conditional Random Fields

To improve semantic segmentation and labeling accuracy, probabilistic
graphical models have been used as post-processing. Markov random fields
(MRFs) and particularly conditional random fields (CRFs) have achieved
widespread success in this task [108–110].

While deep neural networks have proven efficient in learning features
from a small field of view, they fail to capture global context information. To
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address this issue, approaches have been proposed to combine the effectiveness
of CNNs to learn discriminatory features, with the CRF’s ability to model
broad spatial contexts. CRF approaches semantic labeling as a probabilistic
inference problem assuming that neighboring pixels tend to share the same
class label unless their descriptors differ significantly.

Given the set of pixels i ∈ S of an image, let x = {xi}i∈S be the
observed data and y = {yi}i∈S its corresponding labels, where yi may take
values in {l1, ..., lm} and m is the number of available classes. A CRF models
the posterior probability P (y|x) of the set of labels y given the image data x
as follows:

P (y|x) ∝ exp
−

∑
i∈S

A(yi,x) +
∑
i∈S

∑
j∈Ni

I(yi, yj,x)
, (4-1)

where A(yi,x) and I(yi, yj,x) stand for the association and iteration poten-
tials, also named unary and pair-wise terms, respectively. The optimum class
assignment ŷ given x is the one that maximizes the posterior, i.e.,

ŷ = arg min
y

∑
i∈S

A(yi,x) +
∑
i∈S

∑
j∈Ni

I(yi, yj,x)
 . (4-2)

The unary term relates to the posterior probability that a pixel i takes
a label yi given the data x. In this work, the posteriors are given by one of
the FCNs described in the foregoing sections. Consequently, the unary of any
pixel will consider a limited spatial context determined by the FCN largest
receptive field. On the other hand, the pair-wise term expresses how labels at
neighboring pixels, i and j ∈ Ni, interact given the observed data x, where Ni

is the neighborhood of pixel i. Notice that the pair-wise term allows for non-
neighboring pixels to interact through a sequence of intermediate neighboring
pixels. In this way, the CRF model is able to capture information of a context
as large as the image itself.

Actually, using CRF inference as post-processing does not exploit the full
potential of CRF. This is mainly because CNN is trained with no regard to the
CRF post-processing. Nevertheless, it has been shown to be beneficial when
combined with some of the aforementioned FCN architectures. However, this
accuracy gain comes at the cost of increased computational complexity both
for training and inference.
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5
EXPERIMENTS AND RESULTS

In this chapter, we describe the set of experiments conducted to assess the
performance of the different fully convolutional neural networks. The analysis
is carried on a set of images captured by three different platforms.

The performance of the FCN designs is evaluated experimentally in terms
of overall accuracy, F1-score, and Intersection Over Union. We also verify
the benefits of conditional random fields (CRFs) as a post-processing step to
improve the segmentation maps. Additionally, we compare visually the FCN
outcome with the corresponding reference.

5.1
Study Area and Data Acquisition

Three different scenarios were chosen for evaluating experimentally the
performance of the fully convolutional networks. First, using UAVs for the
segmentation of single tree crowns in urban areas. Secondly, using aircraft
images for individual building rooftop segmentation. Finally, using satellite
images for the deforestation analysis in the Brazilian Amazon. The experiments
on the three approaches are described in the following sections.

5.1.1
Single Tree Species - the cumbaru trees

The first scenario comprises UAV images of Campo Grande municipality,
in the state of Mato Grosso do Sul, Brazil (Figure 5.1). This dataset was a
subset of the one presented in [11] and comprises 225 UAV images acquired
from 13 August 2018 to 22 September 2018 using a Phantom 4 advanced
quadcopter (DJI Innovation Company Inc., China) in three study areas,
depicted in Figure 5.1. The UAV was equipped with an RGB camera with
20 megapixels, a CMOS sensor, with a nominal focal length of 8.8 mm, and a
field of view of 84◦. The flight height ranged from 20 to 40 m over the targets,
which assured a mean ground sample distance (GSD) of approximately 1 cm
(Figure 5.2).
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Figure 5.1: Study area at Campo Grande, Mato Grosso do Sul, Brazil.

a) b)

c) d)

Figure 5.2: Image samples with the reference tree contour in pink, showing
variations in terms of scale (a,b), illumination (c), and different urban patterns
(d).
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The target species is the cumbaru trees, an endangered and protected
species in the target region. An analyst well acquainted with the target area
produced the reference masks by delineating each single tree manually. Field
inspections were performed to assure data quality.

The images were 5472 × 3648 pixels (20 megapixels) large and represent
a wide range of appearances and scale variations. They were acquired at
different times of the day and were therefore affected by different illumination
conditions. The images were captured over diverse neighborhoods characterized
by different urban patterns. The cumbaru class accounted for approximately
44% of the total pixels of the dataset.

5.1.2
Individual Building Rooftop

The dataset of the second study area was provided by Campo Grande
city hall, a municipality in the state of Mato Grosso do Sul, Brazil (Figure 5.1).
Also in this dataset, the images correspond to an urban scenario. The dataset
comprises two aerial orthophotos with a spatial resolution of 5619×5946 pixels,
and a GSD of 10 cm.

a) b)

c) d)

Figure 5.3: Image samples with the reference rooftop contour in blue.
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The pixels corresponding to the rooftop class represents 23% of the total
pixels in this dataset.

5.1.3
Brazilian Amazon Deforestation

The last study area corresponds to the portion of Amazon forest local-
ized in the coordinates 09◦36’51"S - 10◦18’35"S latitude, and 062◦56’41"W -
064◦20’51"W longitude in the state of Rondônia, Brazil (Figure 5.4). The state
extends over approximately 238.000 km2, covering around 5% of the total
Brazilian Amazon being one of the most deforested states. The area is charac-
terized by dominant tropical swamp vegetation and a significant extension of
wet and dry land savannas (termed "cerrados" in Brazil) [111].

Figure 5.4: Study area at Rondônia, Brazil.

Data of deforestation in the Amazon have been made freely available on
the website of the National Institute for Space Research (INPE) through two
main initiatives: the DETER (Real-Time Deforestation Detection System) and
PRODES (Amazon Deforestation Calculation Program) projects. In particu-
lar, the PRODES project monitors the Brazilian Amazon forest from images
provided by the Landsat family with 30 meters of spatial resolution and 16-
day temporal resolution. In our case study, we used the images from Landsat-8
Operational Land Image (OLI) with a spectral range of 7 bands and with a
radiometric resolution of 16 bits.

The dataset comprises two Landsat-8 images of size 5120 × 2550,
acquired on the period between July, 1st of 2016 and August, 21st of 2017,

DBD
PUC-Rio - Certificação Digital Nº 1821704/CA



Chapter 5. EXPERIMENTS AND RESULTS 42

searching for images with minimum cloud cover. The labeling of deforestation
was done by visual photo-interpretation of images, carried out by qualified
professionals. These experts identify the change patterns based on three main
observable images elements: tone, texture, and context. Also, they only identify
deforestation polygons with an area greater than 6.25 hectares.

For the creation of the reference maps, PRODES adopts a methodology
of incremental mapping. In the production of incremental mapping, PRODES
creates an exclusion mask (see Reference 1 in Figure 5.5), which covers the
areas deforested in previous years, and another mask (see Reference 2 in Figure
5.5), which covers the deforestation on the reference year. The exclusion mask
is used to eliminate the possibility of old deforestation being mapped again,
so the work of photo-interpretation is done only on the reference year image
with the new increments of deforestation.

a) b)

c) d)

Figure 5.5: NIR-G-B composition of two crop of the images at dates 2016 and
2017 a),b), respectively, c) Reference 1, and d) Reference 2

The dataset is highly unbalanced, with a representation of the class
deforestation of only 2% of the total number of pixels in the image.

To reduce the classification errors at the borders between the prediction
maps and the reference estimated visually by experts, we created a buffer inside
the deforestation polygons. The buffer was created by the difference between
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the dilation of four pixels and the erosion of two pixels of the deforestation
polygons. These polygons were not considered for the training and test phases.

5.2
Evaluation Metrics

In the following experiments, Accuracy is reported in terms of three
metrics: overall accuracy (OA), F1-score (F1), and intersection over union
(IoU).

The overall accuracy is given by:

OA = tp+ tn

tp+ tn+ fp+ fn
(5-1)

where tp, tn, fp, fn stand for the number of true positives, true negatives,
false positives and false negatives, respectively. In our analysis, positives and
negatives refer to the pixels assigned by the underlying classifier. Such positives
and negatives are true or false, depending on whether or not they agree with
the ground truth, respectively.

The F1-score is defined as:

F1 = 2× P ×R
P +R

, (5-2)

where P and R stand for precision and recall, respectively, and are given
by the ratios [112]:

P = tp

tp+ fp
(5-3)

R = tp

tp+ fn
(5-4)

For the semantic segmentation tasks, the intersection over union (IoU),
also known as the Jaccard index, has often been used as an accuracy metric.
IoU is given by the ratio of the number of pixels present both in the reference
and in the prediction masks to the total number of pixels present across both
masks [113], formally:

IoU = |Reference ∩ Prediction|
|Reference ∪ Prediction|

(5-5)

In addition, for the deforestation dataset in the Brazilian Amazon we
also used the metric Alarm Area (AA) [49]. This metric is given by the ratio
of the positives to the total samples in the test set.

AA = tp+ fp

tp+ tn+ fp+ fn
(5-6)

The metric represents the proportion of total area analyzed that the
method considered to have been deforested. The usefulness of this metric
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concerns an operational scenario in which the automatic method selects
areas with a certain probability of having suffered deforestation, which will
subsequently be visually evaluated by photo-interpreters. Therefore, the metric
indicates the reduction of the analyst’s effort in comparison to the analysis of
the entire imaged area.

5.3
Network Architectures

We started our experiments with the networks’ configurations exactly as
defined in the corresponding original papers. Next, we varied some of their
hyper-parameters, such as the number of layers, operations per layer, and the
number and size of kernels, aiming to fine-tune each network to the target
application. After these preliminary experiments, we selected for SegNet, U-
Net, and FC-DenseNet the architectures described in Table 5.1 for cumbaru
and rooftop segmentation. For both DeepLabv3+ variants, we adopted the
original design as described in Sections 4.4 and 4.5. Table 5.2 shows for each
network the total number of parameters that must be estimated by supervised
training.

Table 5.1: Details of the SegNet, U-Net, and FC-DenseNet architectures used
in the experimental analysis of Cumabru and Rooftop datasets

SegNet U-Net FC-DenseNet
Layer Kernel No. Layer Kernel No. Layer Kernel No.

En
co
de
r

2 × SB + pool 32 UB + pool 32 conv1 32
2 × SB + pool 64 UB + pool 64
3 × SB + pool 128 4 × (UB + pool) 128 8 × (DB + TD) 48
3 × SB + pool 256 UB + pool 256
3 × SB + pool 512 UB 512 DB 176

D
ec
od

er

Up + 2 × SB 512 TC + Concat.+ UB 256
SB + Up 256 TC + Concat. + UB 128
2 × SB 256 TC + Concat. + UB 128
SB + Up 128 TC + Concat. + UB 128 8 × (TC + DB) 192
2 × SB 128 TC + Concat. + UB 128
SB + Up 64 TC + Concat. + UB 64

SB 64 TC + Concat. + UB 32
SB + Up 32

SB 32
conv2 (1 × 1) 2 conv2 (1 × 1) 2 conv2 (1 × 1) 2

Softmax Softmax Softmax

For SegNet, we adopted the following notations: SB stands for the SegNet block (3 × 3 convolution
+ batch normalization + ReLU) and Up for unpooling layers. Concerning the U-Net, UB stands for
U-Net block (2 × (3 × 3 convolution + ReLU)), and TC denotes a 3 × 3 transposed convolution. The
FC-DenseNet was built from dense blocks (DB) of 2 layers, where each layer stands for (ReLU + 3 ×
3 convolution). The transition down (TD) operation represents (ReLU + 1 × 1 convolution).
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Table 5.2: Number of parameters of each network.
Method Parameters

U-Net 11M
SegNet 16M

FC-DenseNet 0.4M
DeepLabv3+ (Xception) 41M

DeepLabv3+ (MobileNetV2) 2M

For the Amazon Deforestation, we ended up using a simpler network ar-
chitecture as the total number of samples in this dataset was significantly fewer
than the other two applications. In this way, we avoided over parametrized
networks which can lead to over-fitting and lower generalization performance.
We conducted our experiment with the configuration for Segnet, U-Net, and
FC-DenseNet described in Table 5.3.

Table 5.3: Details of the SegNet, U-Net, and FC-DenseNet architectures used
in the experimental analysis of Amazon Deforestation.

SegNet U-Net FC-DenseNet
Layer Kernel No. Layer Kernel No. Layer Kernel No.

En
co
de
r 2 × SB + pool 32 UB + pool 32 conv1 32

2 × SB + pool 64 UB + pool 64
3 × SB + pool 128 UB + pool 128 8 × (DB + TD) 64

UB 128

D
ec
od

er

Up + 2 × SB 128 TC + Concat.+ UB 128
SB + Up 64 TC + Concat. + UB 64

SB 64 TC + Concat. + UB 32
SB + Up 32 8 × (TC + DB) 128

SB 32
conv2 (1 × 1) 2 conv2 (1 × 1) 2 conv2 (1 × 1) 2

Softmax Softmax Softmax

For SegNet, we adopted the following notations: SB stands for the SegNet block (3 × 3 convolution
+ batch normalization + ReLU) and Up for unpooling layers. Concerning the U-Net, UB stands for
U-Net block (2 × (3 × 3 convolution + ReLU)), and TC denotes a 3 × 3 transposed convolution. The
FC-DenseNet was built from dense blocks (DB) of 4 layers, where each layer stands for (ReLU + 3 ×
3 convolution). The transition down (TD) operation represents (ReLU + 1 × 1 convolution).

For the DeepLabv3+ architecture, we reduced the number of layers in
the encoder path for both variants. The decoder structure remained the same
as described in section 4.4 for the Xception and MobileNetV2 backbones. The
encoder for both variants followed the structure illustrated in Table 5.4.
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Table 5.4: Details of the encoder architectures of DeepLabv3+ variants used
in the experimental analysis of Deforestation.

Xception Mobilenetv2
Layer Kernel No. Times Stride Layer Kernel No. Times Stride

En
co
de
r conv1(3 × 3) 32 1 2 conv1(3 × 3) 32 1 2

conv1(3 × 3)* 64 1 1
SC 128 2 1 IRB 16 1 1

SC-last 128 1 2 IRB 24 2 2
Shortcut 128 1 2 IRB 32 3 2

Add(Shortcut, SC-last) 128 1 2
SC 256 2 1

SC-last 256 1 2
Shortcut 256 1 2

Add(Shortcut, SC-last ) 256 1 1

For the Xception model, we adopted the following configuration: SC stands for Separable Convolution block
(Depthwise Convolution + Batch-Normalization + (1 × 1) Convolution + Batch-normalization), Shortcut
to indicate the residual (1 × 1) convolution, and * to highlight the input feature map of the shortcut
connection. Mobilenetv2 was built from inverted residual block (IRB), where each block stands for a ((1 ×
1) Convolution + Depthwise Convolution + (1 × 1) Convolution), as described in Section 4.5.

Table 5.5: Number of parameters of each network for the Deforestation
application.

Method Parameters

U-Net 1.4M
SegNet 0.88M

FC-DenseNet 0.29M
DeepLabv3+ (Xception) 1.1M

DeepLabv3+ (MobileNetV2) 0.21M

5.4
Experimental Setup

The networks were implemented using the Keras deep learning framework
[114] on a system with the following configuration: Intel(R) Core(TM) i7
processor, 64 GB of RAM, and NVIDIA GeForce GTX 1080Ti GPU. All
models in the three applications were trained from scratch for up to 100
epochs using the Adam optimizer. The decay of the first and second moments
was set as described in [115]. Early stopping was used to avoid over-fitting.
Training stopped when the performance in the validation set degraded over ten
consecutive epochs. In the end, the model that exhibited the best performance
in the validation set across all executed epochs was kept for the test phase.
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To evaluate the generalization of the network architectures in the cum-
baru and rooftop applications, we applied five-fold cross-validation for each
method. Thus, for each fold, the total dataset was randomly split into three
disjoint sets: 70% for training, 10% for validation, and 20% for testing.

In particular, for cumbaru segmentation, the images were divided into
non-overlapping patches of 512× 512 pixels for all models, for a total of 5250
patches in the entire dataset. The final segmentation of the entire image was
the mosaic of all patch-wise segmentation outcomes.

For rooftop segmentation, the two orthophotos were divided into 49 non-
overlapping tiles of size 1024×1024. Similar to cumbaru segmentation, the
images were split in patches of 512×512 pixels with 50% overlap. Specifically,
196 patches were cropped for the total dataset.

For these two datasets, we empirically adjusted the batch size for each
model individually, also taking into account the GPU memory demand and
availability. The batch size was set to 16 for the U-Net, 8 for the SegNet,
6 for the FC-DenseNet, 2 for the DeepLabv3+ with the Xception backbone,
and 6 for the DeepLabv3+ with MobileNetV2. We tested Deeplabv3+ with an
output stride equal to 16 for a field of view of 32×32. The selected atrous rate
was 6, 12, and 18, as proposed in [98]. The hyperparameter learning rate was
set to 10−4. We used for both applications the binary cross-entropy loss.

For the Deforestation dataset, we selected a combination of pairs of co-
registered Landsat images, acquired on the dates 2016 and 2017, as specified in
section 5.1.3. We combined the images of both date following the Early Fusion
method [49].

Each Landsat image comprised the Coastal Aerosol, Blue, Green, Red,
near-infrared regions (NIR), Short Wave Infrared 1 and 2 (SWIR1, SWIR2
respectively) for a total of 7 spectral bands. We also included the Normalized
difference vegetation index (NVDI), from Red (visible) and near-infrared bands
(NIR), as shown in Equation 5-7. We also added the NDVI as a 8th band.

NDV I = NIR−Red
NIR +Red

(5-7)

The resultant NDVI values were concatenated along the spectral dimen-
sion for a total of 8 bands per each Landsat image.

We divided the images into 100 non-overlapping tiles of size 250 × 512.
Therefore, we split the total set of tiles in 20% for training, 5% for validation,
and 75% for testing.

The extracted input tiles are split into patches equal to 128×128 with
an overlap of 80%, for a total of 19503 in the entire image.
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Taking into account the proportion of deforestation samples (about 2%)
on the image with respect to the non-deforestation class (around 98%), we
applied data augmentation only considering patches with the presence of de-
forestation areas. In this way, we tried to bring some balance by increasing the
number of samples of the under-represented class. These samples were aug-
mented by applying 90° rotations, horizontal and vertical flip transformations
for the training patches.

We also applied weighted cross-entropy loss, as seen in equation 5-8. The
idea is to assign a larger weight to the weakly represented class.

Weighted Loss = − 1
NM

N∑
i=1

M∑
j=1

[wdy(i,j)log(ŷ(i,j)) + wnd(1− y(i,j))log(1− ŷ(i,j))]

(5-8)

where N stands for the total number of training pixels, wd and wnd

for the weights of the deforestation class and non-deforestation, respectively.
Moreover, yi and ŷi represent the target and predicted label at pixel i.

The weights for the classes deforestation and non deforestation were
empirically set to 2 and 0.4, respectively.

The batch-size configuration in this application was selected experimen-
tally to 16 for all tested networks.

5.5
Post-processing CRF

As for the post-processing, we adopted a fully connected CRF, consid-
ering that all pixels were connected to all other pixels in the image, Equation
(4-2) took the form:

ŷ = arg min
y

∑
i∈S

A(yi,x) +
∑
i,j∈S

I(yi, yj,x)
 (5-9)

We defined as association potential A(yi,x) = − logP (yi|xi), where
P (yi|xi) denotes the posterior probability given the FCNs tested in this work.
As in [15] and [110], we used for the pair-wise term the following expression:

I(yi, yj,x) = µ(yi, yj)
w1 exp

(
− ||ci−cj ||2

2σα2 − ||xi−xj ||2
2σβ2

)

+w2 exp
(
− ||ci−cj ||2

2σγ2

)  (5-10)

where µ(yi, yj) = 1 if yi 6= yj, and zero otherwise, xi,j represents
the observed data at pixel i, j, and ci,j denotes the pixel spatial coor-
dinates. The hyperparameters for the cumbaru application w1, w2, σα,
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σβ and σγ were set to 1, 1, 80, 13, and 3, respectively, which corres-
ponded to their default values as proposed in [110]. In the case of the
rooftop segmentation, the hyperparameters σα, σβ which controls the prox-
imity and similarity between pixels were set to 1. For our experiments, we
adapted the fully CRF code available at https://github.com/Golbstein/
Keras-segmentation-deeplab-v3.1/blob/master/utils.py.

5.6
Results

In this section, we present the results of the experimental evaluation of
the selected semantic segmentation approaches, as well as a visual analysis
of the segmentation outcomes. The experiments were carried out on images
obtained from different platforms, UAVs for single cumbaru segmentation,
aerial images for rooftop pixel-wise classification, and satellite images for
Deforestation in Amazon forest.

5.6.1
Performance Evaluation for Cumbaru Segmentation

5.6.1.1
Segmentation Accuracy for Cumbaru Segmentation

Segmentation Accuracy Figure 5.6 shows the average results over five
fold cross-validation for each method. All networks performed well in the task,
achieving OA and an F1-score above 85% and IoU above 75%. The plot also
shows pictorially the standard deviation for each metric across the folds. The
standard deviation was about 1% for OA and a little larger for F1 and IoU.

U-Net Segnet FC-DenseNet Xception MobileNetV2
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93.5

90.9

80.6
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77.1
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OA F1-score IoU

Figure 5.6: Mean of the overall accuracy (OA), F1, and IoU in the fivefold
cross-validation for the all FCN architectures.

https://github.com/Golbstein/Keras-segmentation-deeplab-v3.1/blob/master/utils.py
https://github.com/Golbstein/Keras-segmentation-deeplab-v3.1/blob/master/utils.py
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FC-DenseNet was the most accurate among the tested architectures.
It reached on average OA = 96.7%, F1 = 96.1%, and IoU = 92.5%. It
outperformed the second ranked network, the U-Net, in 0.9% in terms of OA
and F1 respectively, and 1.6% for IoU.

Shortly behind U-Net came DeepLabv3+ in the MobileNetV2 version.
The differences between these two architectures in all three metrics were about
1.4%, 1.7%, and 3.1% in terms of OA, F1, and IoU, respectively. Figure 5.6
also shows the standard deviation around the mean values recorded by each
architecture along the five folds for all three metrics. These three high ranked
methods also presented lower dispersion than the other two in our experiments,
behaving fairly stable across the folds.

The low variation across the folds observed in our experiments is an
indication of the better generalization ability of these three methods.

SegNet’s architecture ranked forth, staying 3.9%, 4.3%, and 7.2% be-
hind DeepLabv3+ MobileNetV2, in terms of OA, F1, and IoU, respectively.
The range within which performance varied in our experiments confirmed that
SegNet stood behind the first three architectures in the ranking. The inferior
SegNet’s results were most probabily due to the way it recoveres the original
image resolution in the network expansion stage. SegNet employed interpola-
tion, while U-Net and FC-DenseNet used transposed convolution. Moreover,
the skip connections of U-Net and FC-DenseNet were more effective in recov-
ering high resolution spatial details than the consideration of pool indices by
SegNet.

In the recent few years, the DeepLabv3+ Xception has been regarded
as the state-of-the art in semantic segmentation. Nevertheless, it achieved in
our experiments the worst performance among all tested architectures, both
in terms of absolute average accuracies and in terms of variability across the
five folds.

The DeepLabv3+ variants brought no improvement in relation to U-Net
and FC-DenseNet results. This suggests that the larger receptive fields induced
by the dilated convolutions was little relevant in this particular application.

Figure 5.7 shows the performance after post-processing the results pro-
duced by each network with a fully connected CRF. Compared with the results
of Figure 5.6, CRF brought just a slight improvement for all network designs.
The profile in Figure 5.7 is quite similar to that of Figure 5.6. Again, after
CRF post-processing, FC-DenseNet was the best performing architecture, fol-
lowed by U-Net, DeepLabv3+MobileNetV2, and then SegNet with DeepLav3+
Xception as the worst performing network.
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U-Net + CRF Segnet + CRF FC-DenseNet + CRF Xception + CRF MobileNetV2 + CRF
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Figure 5.7: Average of the accuracy, F1-score, and IoU in fivefold cross-
validation for all the methods using CRF.

To better visualize the benefits of post-processing, Figure 5.8 shows just
the accuracy gain brought by CRF. DeepLav3+ with the Xception backbone
was the network that most profited from CRF. In second and third place stand
SegNet and DeepLabv3+ MobileNetV2, respectively. The gains for U-Net and
FC-DenseNet were considerably lower, below 0.6%.
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Figure 5.8: Performance gains due to CRF in terms of overall accuracy, F1-
score, and IoU.

5.6.1.2
Visual Analysis for Cumbaru Segmentation

Figures 5.9–5.13 show the outcomes of all methods for five sample images
of our dataset. References are shown on the left as the ground truth mask
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overlaid on the input image. The next four columns on the right contain
the segmentation produced by each network, whereby the upper and lower
rows correspond to the outcome prior to and after CRF post-processing,
respectively.

Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.9: Sample Segmentation 1 prior (first row) and after CRF post-
processing (second row).

Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.10: Sample Segmentation 2 prior (first row) and after CRF post-
processing (second row).

Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.11: Sample Segmentation 3 prior (first row) and after CRF post-
processing (second row).
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Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.12: Sample Segmentation 4 prior (first row) and after CRF post-
processing (second row).

Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.13: Sample Segmentation 5 prior (first row) and after CRF post-
processing (second row).

We first analyzed the results prior to CRF post-processing. More than the
U-Net architecture, SegNet tended to produce holes in the canopy region. This
effect is especially apparent in Figures from 5.9 to 5.12. Figures 5.10 and 5.13
show that SegNet also produced a number of false positives in some images.
Often, it also failed to detect the canopy edges, as exemplified in Figure 5.12.

The Figures show that U-Net outperformed SegNet in virtually all test
images. Actually, the MobileNetV2 version of DeepLabv3+ generated fewer
holes than U-net in some images. However, DeepLabv3+ MobileNetV2 was
more prone to produce false positives (see Figures 5.9, 5.10, and 5.12).

Both DeepLabv3+ variants often failed over dark canopy regions as
exemplified by Figures 5.12 and 5.13. These figures also show that SegNet
performed better than the DeepLabv3+ variants over dark areas, but not as
well as the other networks. FC-DenseNet and U-Net’s results contained fewer
false positives and false negatives in dark canopy regions.

The figures also reveal that the Xception variant of DeepLabv3+ achieved
the poorest performance among the evaluated architectures, due to holes
(Figures 5.9 and 5.11), false positives (Figures 5.9, 5.10, and 5.12), and poorly
classified dark areas (Figures 5.12 and 5.13).
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The effects of CRF post-processing on the segmentation outcome can be
observed by comparing the results shown in the upper and lower rows of Figure
5.9 to Figure 5.13. CRF acted by smoothing the class labels produced by the
networks. It was particularly effective at filling holes and suppressing small
regions of false positives. That was related to the fact that both DeepLabv3+
variants profited more than all other networks from CRF post-processing as
indicated in Figure 5.8. However, these errors corrected by CRF came about
as few small regions that represented in terms of the number of pixels a small
proportion of the entire image. Thus, although CRF contributed to producing
cleaner segmentation outcomes, such improvements did not manifest in a
significant change in the accuracy metrics. This could be observed even in
the results of FC-DenseNet, the best performing network among all tested
approaches. Note in Figures 5.9 to 5.12 that CRF managed to remove small
holes left by FC-DenseNet in the canopy region.

5.6.2
Performance Evaluation for the Rooftop Segmentation

5.6.2.1
Segmentation Accuracy for Rooftop Segmentation

The bar graph in Figure 5.14 summarizes the results of the experiments
carried out in the Rooftop dataset. The figure shows the classification perfor-
mance achieved by the FCNs approaches in terms of Overall Accuracy (OA),
F-1 score, and IoU over 5-fold cross-validation.

U-Net Segnet FC-DenseNet Xception MobileNetV2
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76.9 75.4

80.2
83.6

OA F1-score IoU

Figure 5.14: Mean of the overall accuracy (OA), F1, and IoU in the fivefold
cross-validation for the all FCN architectures.

The first three bar groups correspond to the U-Net, SegNet, and FC-
DenseNet methods. Segnet and FC-DenseNet performed similarly with a slight
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difference of 0.3%, 1% and 1.5% in terms of Overall Accuracy, F-1 score, IoU,
respectively, over the five-folds. As illustrated in the figure, the results of both
methods were superior to U-Net, with a difference of 1% for OA, 2.5% for
F1-score, and 3.9% for IoU in relation to SegNet. This better results achieved
by SegNet and FC-DenseNet might be attributed to the use of the batch-
normalization layers that deal with the internal covariate shift problem.

The last group of bars corresponds to the DeepLabv3+ variants. In this
case, DeepLabv3+ MobileNetV2 overcame the results of the Xception version
with a difference of about 0.8% for OA, 2% for F1-score, and 3.4% for IoU.
Figure 5.14 also reveals that MobileNetV2 and Xception variants consistently
achieved better performance on the test set among all the FCN models. This
superiority of the DeepLabv3+ variants might have been caused by the atrous
convolution, which effectively expands the field of view of the filters to capture
more contextual information. This effect is quite remarkable on this dataset
given the presence of roofs with different sizes and other objects with low
interclass variance in each image patch.

Figure 5.15 refers to the FCNs approaches using the CRF post-
processing.

U-Net + CRF Segnet + CRF FC-DenseNet + CRF Xception + CRF MobileNetV2 + CRF
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Figure 5.15: Mean of the accuracy, F1-score, and IoU in fivefold cross-validation
for all the methods using CRF.

The CRF had a negative effect on the accuracy when compared with the
results in Figure 5.14. Being more specific, the CRF reduced the accuracy in
almost 2% for OA, F1-score, and IoU for all variants. The results after the
CRF step present a similar profile as in Figure 5.14. Again, the DeepLabv3+
variants achieved the best results followed by SegNet and FC-DenseNet with
a similar but slightly better performance than the U-Net model.
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5.6.2.2
Visual Analysis for Rooftop Segmentation

In addition to the quantitative results, we further performed a qualitative
analysis of the networks’ outcomes. Figures 5.16 to 5.20 present five outcome
instances, the reference and the segmentation before and after applying the
CRF. The first row of the Figures contain the prediction maps of each of
the tested FCNs approaches, and the second row shows the corresponding
outcomes after the CRF post-processing.

Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.16: Sample Segmentation 5 prior (first row) and after CRF post-
processing (second row).
Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.17: Sample Segmentation 5 prior (first row) and after CRF post-
processing (second row).
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Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.18: Sample Segmentation 5 prior (first row) and after CRF post-
processing (second row).

Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.19: Sample Segmentation 5 prior (first row) and after CRF post-
processing (second row).

Reference U-Net SegNet FC-DenseNet Xception MobileNetV2

Figure 5.20: Sample Segmentation 5 prior (first row) and after CRF post-
processing (second row).

A comparison of the prediction maps before the CRF step with the
reference confirms the results shown in Section 5.6.2.1. The DeepLabv3+

DBD
PUC-Rio - Certificação Digital Nº 1821704/CA



Chapter 5. EXPERIMENTS AND RESULTS 58

networks managed to correctly classify most of the samples, generating less
false positives and false negatives than the other FCNs architectures. This is
especially apparent in figures 5.16, 5.19, and 5.20. In particular, it can be noted
that MobileNetV2 more accurately delimited the edges of the rooftops.

In contrast with the Deeplabv3+ variants, it is specially seeing in Figures
5.17 and 5.20 that the U-Net, Segnet and FC-DenseNet methods were not
able to identify some roofs. Consider for example in Figure 5.20 the roofs not
recognized at the bottom of the image. This might have been caused because
some roofs look like the street. We believe that the ability of DeepLabv3+
variants to consider context at multiple scales has helped to recognize these
rooftops.

The second rows of Figures 5.17 and 5.20 correspond to the prediction
maps after the CRF step. Comparing the results before and after CRF, we ob-
serve that this post-processing refined the segmentation results in some cases,
reducing the number of false positives and false negatives, as is particularly
apparent in Figure 5.16. However, the CRF step tended to eliminate some
small roofs predictions, as seen in Figure 5.18. Also, the CRF merged roofs
close to each other. This effect was particularly apparent in Figures 5.18 and
5.19, respectively.

5.6.3
Performance Evaluation for the Deforestation Detection

5.6.3.1
Segmentation Accuracy for Deforestation Detection

Figures 5.21 presents the accuracy results obtained by the FCNs for
the Amazon dataset in terms of Overall Accuracy, Recall, Precision, and F1-
score. The figure summarizes the results in terms of mean values and standard
deviations computed after 50 runs. Each run with the same configuration of
training and test samples as described in Section 5.4.

We carried out no experiments with the CRF with this dataset given the
few samples that represent a deforestation region. As CRF encourages label
agreement between neighboring pixels, this effect may harm the quality of final
segmentation by removing most of these small regions.

For this dataset, all networks achieved similar Overall Accuracies above
98%. This is not surprising, as the dataset is dominated by one single class,
the non deforestation class.
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Figure 5.21: Mean of the overall accuracy (OA), Recall, Precision, and F1, over
50 run for the all FCN architectures.

In terms of F1-score, U-Net and FC-DenseNet achieved the best results
among all FCN approaches, with a slight difference between them of 0.3%.
DeepLabv3+ MobileNetV2 architecture ranked third, with a better perfor-
mance than Segnet and DeepLabv3+ Xception, and behind U-Net and FC-
DenseNet. As shown in the Figure, MobileNetV2 showed comparable results
with the U-Net and FC-DenseNet in terms of precision, but, with a difference
in terms of recall of about 6.9% and 4.6%, respectively, that degraded the F1-
scores. On the other hand, Segnet and Xception models showed results inferior
to MobileNetV2 of about 1.2% and 2.4%,respectively.

Figure 5.22 shows the amount of False Positive and False Negative for
each network. Segnet produced the smallest number of incorrectly classified
pixels and produced the least false positives. Regarding the number of false-
negatives, it was clearly behind the other approaches. The comparatively low
precision of U-Net, FC-DenseNet, Xception, and MobileNetV2 is related to
the high number of false-positives yielded by these networks. In terms of false-
negatives, these methods showed a clear superiority over Segnet.

U-Net Segnet FC-DenseNet Xception MobileNetV2
0

20000

40000

60000

80000

100000

120000

Nu
m

be
r o

f P
ix

el
s

False Positives
False Negatives

Figure 5.22: Mean Pixel Distributions
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In Figure 5.23, we evaluate the method in terms of the Alarm Area and
Recall defined in Section 5.2. The curve is constructed by using a thresholding
method, where each point of the image represents the decrease from one to
zero of this threshold with steps of 0.001. In terms of Overall Accuracy, a
high threshold decreases the misclassifying errors of the FCNs due to the over-
estimation of deforestation samples, highlighting those that should deserve
more attention. A photo-interpreter then visually analyzes the image, or
an inspector could be sent to the indicated areas to check what was real
deforestation and what was just a false alarm. This reduces the human effort
of the visual interpretation task; however, it also increases the error due to
the under-estimation of the positive samples. These factors could be addressed
by finding a balance between the number of potentially deforested samples
indicated by the Alarm Area and the quantification of the avoidance of false-
negatives samples (or Recall), as the probability threshold varies. In this sense,
it is desirable in the scheme a high value of Recall with a low value of the Alarm
Area.
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Figure 5.23: Evaluation performance of the deforestation approach considering
Alarm Area and Precision versus Recall.

As noticed in Figure 5.23a), all methods achieved Recall values of about
90% when looking at less than 10% of the whole imaged area. It means that
90% of the correctly identified deforestation is contained in 10% of the image.
Hence, instead of looking at the entire image, the analyst would focus on 10%
of it, reducing human work by 90%. Beyond this value (90%), U-Net presented
the best performance. It managed to classify more deforested samples correctly,
with a minimum increase in the area to be observed. As expected, for threshold
values close to 0, Recall and Alarm Area showed the highest performance,
about 100%, since most of the samples were classified as deforestation.
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The Precision and Recall curves are also summarized in Figure 5.23b).
The main benefit of this scheme is to reduce the high cost that implies the dis-
placement to some difficult access Amazon regions suspected of deforestation.
In this scheme, it is a desirable outcome a high threshold with high precision
values. Considering the area under the curve, the U-Net describes the best
system with the highest precision as the thresholds varies.

5.6.3.2
Visual Analysis for Deforestation Detection

Figure 5.24 shows the results of Deforestation detection in two adjacent
tiles of the test set. Figures 5.24 a) and b) show the images in 2016 and 2017,
respectively, followed a NIR-G-B composition (Near Infrared, Green, and Blue
bands). Figure 5.24 c) corresponds to the reference map, where unchanged and
changed classes are colored in blue and green, respectively. Figures 5.24 d)-i)
stand for the prediction maps produced by each fully convolutional network.

Compared with the reference map, the models detected roughly the same
deforestation sites, and corroborate the results presented in section 5.6.3.1. The
deforestation results of U-Net and FC-DenseNet methods are more consistent
with the reference maps, as shown in Figures 5.24 d) and f). Next, we have
the MobileNetV2, showing comparable results due to more false-positives and
false-negatives samples. Segnet and Xception presented a comparatively higher
tendency to produce false-negatives.

All FCN models were able to accurate classify the deforestation patches,
although, U-Net and FC-DenseNet performed a bit better. A design feature
that distinguishes these networks from their counterparts is the use of skip
connections. However, the performed experiments do not allow attributing the
better accuracies achieved by these networks to this feature.

5.6.4
Computational Complexity

In this section, we compare the methods in terms of computational load
for training and inference. Table 5.6 and 5.7 presents the average training and
inference times measured on the hardware infrastructure described in Section
5.4. The training time represents the mean time among the five folds for
each method for the Rooftop and Cumbaru datasets. For the Deforestation
detection, the training time stands for the mean time for the 50 runs. The
mean inference time stands for the average time taken by each model to make
a prediction for a whole image. All the models were trained from scratch with
the same optimizer and learning rates for all the applications.
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a) Image-2016 b) Image-2017 c) Reference
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Figure 5.24: Prediction maps produced by U-Net, Segnet, FC-DenseNet,
Xception and MobileNetV2 in two adjacent tiles of the test set.

Table 5.6: Average processing time for each method for Cumbaru and Rooftop
dataset.

Cumbaru dataset Rooftop dataset
Method Training Inference Training Inference

Time (h:min) Time (s) Time (h:min) Time (ms)

U-Net 13:15 1.15 0:47 250
SegNet 09:12 1.17 1:11 350

FC-DenseNet 15:03 1.14 0:31 220
DeepLabv3+ (Xception) 20:33 4.44 0:31 870

DeepLabv3+ (MobileNetV2) 10:46 2.26 0:17 540
CRF - 35.17 - 8.35
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The cumbaru dataset contains more high resolution images than the
Rooftop dataset. In consequence, it took longer for training and inference.

The difference in training times for each of the methods is given by the
number of iterations or epochs the FCNs needs to converge, as monitored by
the Early Stopping. On the other hand, additional layers in a deep network
come at cost of a higher computational load in the inference. As networks
continue to get deeper, these costs may become prohibitive for real-time
applications. In particular, the DeepLabv3+ variants were deeper than the
other three methods, which implied longer inference times in both applications.
Finally, the CRF post-processing implied additional execution times, which
prevents its usage in applications where the processing time is crucial.

Table 5.7 reports the average of the training and prediction time in the
test set for each run on the Deforestation dataset. The table exhibits the lowest
training times when compared with the other two applications, because this
dataset is composed of a single image. Besides, the architecture is the simplest
one among the tested counterparts. It should be mentioned that we worked in
this case with smaller patches (128×128) with 80% overlap, which contributes
to increase the inference time.

Table 5.7: Average processing time for each FCN for the Deforestation Dataset.
Method Training Inference

Time (min:s) Time (s)

U-Net 07:47 29.9
SegNet 22:17 34.4

FC-DenseNet 9:49 38.6
DeepLabv3+ (Xception) 9:28 36.3

DeepLabv3+ (MobileNetV2) 10:13 25.3
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6
CONCLUSIONS

In this work, we evaluated five state-of-the-art fully convolutional net-
works for semantic segmentation on different datasets composed of RGB and
multispectral images acquired by UAV, airplane, and satellite platforms. Five
architectures were tested: SegNet, U-Net, FC-DenseNet, and two DeepLabv3+
variants, specifically Xception and MobileNetV2. The analysis was conducted
on two datasets that represent an urban context and one represented a forested
area. The experiments demonstrated that networks could learn the distinguish-
ing features of the target class in a supervised way. This fact indicated that
the tested FCN designs could delineate several targets, provided that enough
representative labeled samples are available for training.

In the first set of experiments, on the cumbaru dataset, FC-DenseNet
attained the best performance among the tested networks. Ranked second
and third were U-Net and DeepLabv3+ MobileNetV2, respectively, with a
difference of 1.4%, 1.7%, and 3.1% in terms of Overall Accuracy, F1-score,
and IoU, followed by SegNet. The lowest accuracy scores were achieved by
DeepLabv3+ Xception.

We also observed in our study that post-processing the networks’ out-
comes with a fully connected CRF was beneficial in this application in nearly
all cases. However, the numerical impact on the overall accuracy metrics was
often modest, because CRF generally fixes errors in small image regions. Yet,
the improvement in segmentation quality was usually significant, as evidenced
by visual inspection. The price for such accuracy gain was the comparatively
long CRF processing time, about 30 times the FC-DenseNet’s inference time.
We also noticed that DeepLabv3+ Xception benefited from CRF more than
all other architectures.

For the segmentation of Rooftops using aircraft images, DeepLabv3+
variants were the best performing network in terms of overall accuracy, F1-
score, and IoU, respectively. FC-DenseNet and SegNet ranked in third and
fourth places, respectively, with similar but slightly difference values between
the metrics, above 1.5%. U-Net exhibits the lowest quantitative values for all
of the accuracy metrics.

After, the post-processing step we noticed in our experiments that
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fully connected CRF reduces false positive and false negative samples in the
prediction results of all of the FCNs. However, it shows a negative effect on
the accuracy metrics for all the models. Typical downsides is that CRF tend
to eliminate small labeled regions and merges some roofs that are very close to
each other. Moreover, similar to UAV dataset, the CRF post-processing stage
presumes a longer processing time.

In the last application we proposed the use of the aforementioned FCN
models to handle spatial and temporal information of satellite images to detect
yearly changes in the vegetation cover of the Brazilian Amazon. The expe-
riments were conducted on two Landsat-8 images acquired one year apart
from each other. The work shows a great potential of the methods in identify
deforestation samples with a small training data with augmentation in the form
of overlapping sample patches; keeping a faster training with a high accuracy
in the prediction maps. In this case, U-Net and FC-DenseNet presented the
best performance in most experiments. The FCNs also produced predictions
masks with well-defined deforestation samples. Among the models, U-Net and
FC-DenseNet shows a lower tendency to produce false-negative samples.

We also include in the study the metric Alarm Area as a function to
evaluate the human interaction in the visual interpretation task of deforested
areas. Here, the analysis is restricted to a small portion of the image as the
probability threshold varies. Results show that 90% of deforestation examples
are present in only 10% of the total imaged area.

In general, all tested networks showed good performance for the segmen-
tation of diverse targets, different platforms, and a varied proportion of the
target class. Although, in our experiments, we cannot establish a superior-
ity of one network over another as the behaviour of each FCN differs as the
scenario changes. For instance, FC-DenseNet and U-Net presented the best
performance in the UAV and Satellite datasets, respectively. Although, for
the Rooftop Segmentation, the DeepLabv3+ with the MobileNetv2 encoder
consistently achieve better performance on the test set among all the FCN
models.

Based on the comparison of different remote sensing platforms, it is worth
to mention that the very high resolution of UAV provide higher accuracy results
among the different platforms.

In the continuation of this research, we intend to verify if CRF is
generally able to mitigate the problem of scarce training data for FCN based
semantic segmentation. Additionally, we aim to investigate the application
of morphological algorithm as an alternative to CRF. Another issue that
deserves further analysis concerns the generalization of these network designs.
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Unfortunately, the number and diversity of annotated databases available for
this purpose are still limited. We are currently working on building a more
diverse database in terms of sensors and climate characteristics.
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