
Luiz Matheus de Alencar Carvalho

Identifying Microservices Candidates in Legacy
Code

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação in In-
formática of the PUC-Rio in partial fulfillment of the require-
ments for the degree of Mestre em Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
April 2020

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Luiz Matheus de Alencar Carvalho

Identifying Microservices Candidates in Legacy
Code

Dissertation presented to the Programa de Pós–graduação in In-
formática of the PUC-Rio in partial fulfillment of the require-
ments for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Marcos Kalinowski
Pontifícia Universidade Catolica do Rio de Janeiro – PUC-Rio

Renato Fontoura De Gusmão Cerqueira
IBM Research Brasil – IBM

Prof. Rafael Maiani de Mello
Centro Federal de Educação Tecnológica Celso Suckow da

Fonseca – CEFET-RJ

Rio de Janeiro, April the 28th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

All rights reserved.

Luiz Matheus de Alencar Carvalho
I am a Master’s student of Informatics at Pontifical Catho-
lic University of Rio de Janeiro (PUC-Rio) and a member
of OPUS Research Group at PUC-Rio. My research mainly
focuses on the process of migrating to a microservice architec-
ture. In particular, I am interested in improving techniques for
supporting developers along the identification and extraction
of microservices. I conducted empirical studies to understand
what criteria are considered relevant by specialists involved
in the process of migrating to a microservice architecture. Be-
sides, I am graduated in Computer Science at the Federal
University of Alagoas (UFAL), where I conducted research on
refactoring, software product line, and software testing.

Bibliographic data
Carvalho, Luiz Matheus de Alencar

Identifying Microservices Candidates in Legacy Code
/ Luiz Matheus de Alencar Carvalho; advisor: Alessandro
Fabricio Garcia. – Rio de janeiro: PUC-Rio, Departamento
de Informática, 2020.

v., 120 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Arquitetura de Microsserviços;. 2. Extração de Micros-
serviços;. 3. Arquitetura de Software;. 4. Evolução de Soft-
ware;. 5. Variabilidade de Software;. I. Garcia, Alessandro
Fabricio. II. Pontifícia Universidade Católica do Rio de Ja-
neiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

I would like to dedicate this thesis to my family, girlfriend, friends, and
professors. Without these loved and kind people, this thesis would not be

feasible.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Acknowledgments

First, thanks to all professors who provided intellectual support and incentive
to make this work possible. Furthermore, for the support so that the love
for learning remained puissant. To my family, for the formation and support
provided throughout my life through the most diverse ways and instruments. I
would also want to express gratitude to my girlfriend and friend Silvia Costa for
the endless conversations, understanding, and patience during my formation.
Moreover, to my friends for the moments of group study, encouragement,
esteem, or casualness. This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance
Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Abstract

Carvalho, Luiz Matheus de Alencar; Garcia, Alessandro Fabri-
cio (Advisor). Identifying Microservices Candidates in Le-
gacy Code. Rio de Janeiro, 2020. 120p. Dissertação de mestrado –
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.
Microservices is an industrial technique to promote better scalabi-

lity and maintainability of small and autonomous services. Previous studies
suggested that microservice architectures have been widely used to reduce
limitations found in legacy monolithic systems such as the inclusion of in-
novation, use of a different stack of technologies, among others. The pro-
cess of migrating to a microservices architecture is far from trivial. This
is particularly the case for the task of identifying candidate microservices
and the source code associated with each candidate, which is recognizably
time-consuming and error-prone. Thus, automated approaches have been
proposed to reduce the effort related to that task. These approaches com-
monly adopt one or two criteria to support the identification of microservices
from a legacy monolithic system. However, there is a lack of understanding
on the usefulness of these criteria in practical settings. Moreover, there is
limited knowledge on what are the criteria that practitioners consider rele-
vant. Taking into account these existing limitations, we conducted a survey
and interviews to better understand the usefulness of criteria reported in
empirical studies (e.g, case studies and reports) from the point of view of
practitioners. The results of the survey and interviews revealed that existing
automated approaches and tools are far from being aligned with practical
needs. To fulfill these needs, this work defines a automated approach na-
med toMicroservices. The approach relies on a combination of static and
dynamic analysis of the legacy code. The approach aims at indicating the
microservice candidates and the corresponding source extracted from the
legacy system. toMicroservices makes use of search-based software engi-
neering (SBSE) to optimize and balance the five criteria commonly adopted
by practitioners, namely feature modularization, network overhead reduc-
tion, reuse, coupling and cohesion. Additionally, an industrial case study
and a focus group were conducted a posteriori to support the evaluation
and improvements of toMicroservices.

Keywords
Microservices Architecture; Microservices Extraction; Software Archi-

tecture; Software evolution; Software Variability;

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Resumo

Carvalho, Luiz Matheus de Alencar; Garcia, Alessandro Fabricio.
Identificando Candidatos a Microsserviços em Código Le-
gado. Rio de Janeiro, 2020. 120p. Dissertação de Mestrado – De-
partamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.
Microsserviços é uma técnica industrial para promover melhor esca-

labilidade e manutenibilidade de pequenos e autônomos serviços. Estudos
prévios sugerem que a arquitetura de microsserviços vem sendo amplamente
usada para reduzir limitações encontradas em sistemas monolíticos legados
tais como melhoria de inovação, uso de diferentes tecnologias, entre outras.
O processo de migração para a arquitetura de microsserviços não é trivial.
Este é particularmente o caso da tarefa de identificar candidatos a micros-
serviço e o código fonte associado com cada candidato que é dispendiosa
e propensa a erro. Consequentemente, abordagens automatizadas têm sido
propostas para reduzir o esforço relacionado a essa atividade. Essas aborda-
gens comumente adotam um ou dois critérios para suportar a identificação
de microsserviços com base no sistema monolítico legado. Contudo, existe
uma falta de compreensão da utilidade desses critérios adotados na prática.
Além disso, há limitado conhecimento em quais são os critérios que pro-
fissionais consideram relevantes. Levando em consideração esses limitantes
existentes, nós conduzimos um survey e entrevista para melhor compreender
a utilidade de critérios relatados em estudos empíricos (e.g, estudos de caso
e relatos) do ponto de vista dos profissionais. Os resultados do survey e da
entrevista mostram que as abordagens automatizadas e ferramentas existen-
tes não são totalmente alinhadas com necessidades práticas. Para atender
às necessidades deles, este trabalho define uma abordagem automatizada
chamada toMicroservices. A abordagem baseia-se em uma combinação
de análise estática e dinâmica do código legado. A abordagem visa indicar
os candidatos a microsserviço e a fonte correspondente extraído do sistema
legado. toMicroservices faz uso da engenharia de software baseada em
busca para otimizar e balancear os cinco critérios comumente adotados por
profisionais, nomeados de modularização de funcionalidade, redução de so-
brecarga de rede, reúso, acoplamento e coesão. Além disso, um estudo de
caso e grupo focal foram conduzidos a posteriori para avaliar e melhorar
toMicroservices.
Palavras-chave

Arquitetura de Microsserviços; Extração de Microsserviços; Arqui-
tetura de Software; Evolução de Software; Variabilidade de Software;

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Table of contents

1 Introduction 13
1.1 On the Usefulness of Criteria Observed in Legacy Systems 14
1.1.1 Problem Statement 14
1.1.2 Proposed Solution 15
1.2 Variability as a Criterion 16
1.2.1 Problem Statement 16
1.2.2 Proposed Solution 17
1.3 A Microservice Extraction Approach with Many-objective Optimization 18
1.3.1 Problem Statement 18
1.3.2 Proposed Solution 19

2 Analysis of the Criteria Adopted in Industry to
Extract Microservices 22

2.1 Introduction 23
2.2 Microservice Extraction: An Illustrative Example 25
2.3 On the Criteria for Microservice Extraction 25
2.4 Survey Design 28
2.4.1 Goal, Population and Sample 28
2.4.2 Instrumentation 28
2.5 Results and Discussions 31
2.6 Threats to Validity 37
2.7 Related Work 37
2.8 Conclusions 38

3 Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 40

3.1 Introduction 42
3.2 Background 43
3.2.1 Customization and Variability 43
3.2.2 Microservices 43
3.3 Exploratory Study Design 44
3.3.1 Research Questions 44
3.3.2 Study Phases, Population and Sample 45
3.3.3 Instrumentation 45
3.4 Results and Analysis 46
3.4.1 Participants Characterization 47
3.4.2 Variability 47
3.4.3 Microservice Customization 49
3.5 Threats to Validity 51
3.6 Related Work 52
3.7 Conclusions 53

4 The toMicroservices Approach 54
4.1 Existing Approaches for Microservice Identification 55

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

4.2 An Overview of toMicroservices 59
4.3 Search-Based Software Engineering 62
4.4 Graph Representation 63
4.5 A Domain-Specific Language for Describing Feature-to-Code Mapping 65
4.6 Search-Based Approach 68
4.7 Objective Functions Computation 69

5 Search-Based Many-Criteria Identification of Microservices from Legacy
Systems 73

5.1 Introduction 75
5.2 Industrial Case Study 76
5.3 Proposed Approach 79
5.3.1 Input, Representation, and Output 79
5.3.2 Objective Functions 80
5.3.3 Genetic Operators 82
5.3.4 Implementation Aspects 82
5.4 Empirical Evaluation Design 83
5.4.1 Research Questions 83
5.4.2 Algorithm and Parameters 84
5.4.3 Quantitative Comparison Against Baseline 85
5.4.4 Qualitative Evaluation with Developers 85
5.5 Results and Analysis 86
5.5.1 RQ1 - Performance of toMicroservices 86
5.5.2 RQ2 - Analysis of solutions by developers 89
5.5.3 RQ3 - Most Influential Criteria 91
5.6 Lessons Learned 92
5.7 Threats and Literature Limitations 92
5.8 Conclusion 93

6 A Qualitative Evaluation of Recommended Microservice Architectures 94
6.1 Introduction 95
6.2 Refinement Operators 96
6.3 Study Design 98
6.3.1 Research Questions 98
6.3.2 Subject Selection 99
6.3.3 Study Execution 100
6.4 Results and Analysis 102
6.5 Threats To Validity 104
6.6 Concluding Remarks 104

7 Conclusions 106

Bibliography 111

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

List of figures

Figure 2.1 Criterion Usefulness: Distribution of Responses 32

Figure 3.1 The usefulness of variability for the migration process to
microservices architecture 48

Figure 4.1 toMicroservices overview under user perspective 60
Figure 4.2 toMicroservices process 61
Figure 4.3 Graph representation of a legacy system 64
Figure 4.4 A simplified example of a solution generated by

toMicroservices 65
Figure 4.5 Graph labeled from the simplified execution trace and

the relationship between a feature and regular expression 67

Figure 5.1 Alternative Architectures for the Legacy System 78
5.1(a)Monolith 78
5.1(b)Alternative 1 78
5.1(c)Alternative 2 78

Figure 5.2 Excerpt of the legacy’s representation 79
Figure 5.3 Microservice candidates for the excerpt of Figure 5.2 80
Figure 5.4 Boxplot of the Hypervolume (HV) and Euclidean Dis-

tance to the Ideal Solution (ED). For HV higher values are bet-
ter, for ED lower values are better. 87
5.4(a)HV 87
5.4(b)ED 87

Figure 5.5 Solutions with best ED per run of toMicroservices
(NSGA-III) and Baseline (NSGA-II) considering the traditional
criteria of Coupling and Cohesion. 88

Figure 5.6 Solutions of toMicroservices (NSGA-III) and Baseline
(NSGA-II) considering the aditional criteria of Feature Modu-
larization and Overhead. 89

Figure 6.1 toMicroservices re-execution with refinement operators 97

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

List of tables

Table 2.1 Survey questions about characterization of respondents 29
Table 2.2 Specific questions to all the criteria of second group 30
Table 2.3 Common questions to all the criteria of second group 31
Table 2.4 Questions in the third group 31
Table 2.5 On the Criteria Usefulness: Participant Responses 32

Table 3.1 Variability Implementation Approaches 48

Table 4.1 Characteristics of the automated approaches for microser-
vice identification 58

Table 5.1 Results of Hypervolume (HV) and Euclidean Distance
from Ideal Solution (ED) of the 10 independent runs. 87

Table 5.2 Results of the Qualitative Evaluation 89
Table 5.3 Criteria cited by participants during the microservices

adoption analysis 91

Table 6.1 Questions conducted after the focus group execution, and
their median 102

Table 7.1 Papers and chapter book that resulted from this dissertation109
Table 7.2 Other papers resulting from the masters 110

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

A inspiração mais profunda da ciência não é
um privilégio dos cientistas, porque a exigên-
cia da ordem se encontra presente mesmo nos
níveis mais primitivos da vida.

Rubem Alves, Filosofia da Ciência: introdução ao jogo e suas regras.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

1
Introduction

Microservices are small and autonomous services that work together by
using lightweight communication protocols (1). The notion of small refers to
the need for producing fine-grained microservices with each modularizing a
single feature (2). The notion of autonomous implies that each microservice
should be highly decoupled (1, 2). In the same vein, lightweight protocols
are adopted to avoid overheads and further improving decoupling. These
microservice characteristics (1, 2) facilitate the incorporation of variability in a
software’s system. In fact, a well-designed microservice architecture promotes
separation of features as tiny services, which favors the design of configurable
systems (3).

Many companies have been adopting microservice architectures to mod-
ernize legacy systems (3, 4, 5, 6, 7, 8). Legacy systems are commonly found
in industry and represent a long term massive investment. Despite their busi-
ness importance, legacy systems are difficult to extend, include innovation,
and expensive to maintain (9, 10). These systems usually have a monolithic
architecture, with components realizing tangled features and being strongly
connected with each other (6, 11).

There are many factors driving the process of migrating a system to a
microservice architecture. Previous studies indicate that practitioners involved
in these migrations are mainly motivated to improve the maintainability of ex-
isting systems (6, 11). Moreover, the benefits perceived by practitioners and
reported in the microservices adoption are: reduced effort for maintenance and
evolution, increased availability of services, easiness of innovation, continuous
delivery, easiness of DevOps incorporation, facilitated scalability of compo-
nents with more demand, and the like (6, 11).

However, there are various challenges along the process of migrating
legacy systems to a microservice architecture. Separating features of a legacy
system into small units to create the microservices is reported as one of the
main challenges by practitioners (1, 6, 11). To perform this task, practitioners
should reflect upon the source code structure of the legacy system (12).

Automated approaches have been proposed to analyze legacy systems
with the goal of identifying microservice candidates (13, 14, 15, 16). These

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 1. Introduction 14

approaches also determine which legacy code elements may be used to support
the implementation of each microservice candidate. There are certain criteria,
some of them adopted by existing automated approaches, to support decisions
on deriving a microservice architecture from a legacy system.

In this work, a criterion is an aspect used to support the decision
making process to transform (either partially or fully) the legacy system in a
microservice architecture. Each criterion requires the extraction of information
from either the structure or execution of the legacy system. Automated
approaches usually adopt coupling and cohesion in the target system as the
key criteria (13, 14, 15, 16). However, there is a lack of understanding about
the importance of these criteria and other ones for supporting the adequate
identification of microservice candidates.

In this research, we address three research problems. We describe them
below with their corresponding solutions proposed in this dissertation. Sec-
tion 1.1 introduces our empirical studies aimed at assessing the usefulness
of criteria observed in legacy systems by practitioners. Developers may also
take into consideration variabilities already defined in the legacy code when
“microservifying” their legacy systems. The relationships between variability
and microservice architectures are presented in Section 1.2. In particular, we
discuss how variability is implemented before and after the process of migrat-
ing to microservice architecture and the usefulness of variability to identify
microservice candidates.

Section 1.3 introduces a new search-based approach that relies on various
criteria to identify microservice candidates. The selected criteria were those
considered useful or moderately useful in practice through our empirical studies
introduced in Section 1.1. Five criteria are adopted. Moreover, we performed
two empirical studies to evaluate and improve our automated approach. These
studies are based on an industrial legacy system, which was undergoing a
migration to a microservice architecture.

1.1
On the Usefulness of Criteria Observed in Legacy Systems

This section focuses on the problem of revealing which criteria practition-
ers consider useful when identifying microservice candidates in their systems.

1.1.1
Problem Statement

The source code of legacy systems contains valuable information for
enabling the identification of microservices. In fact, practitioners make use of

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 1. Introduction 15

legacy code along the process of migrating to a microservice architecture (12).
Therefore, the use of proper decision-making criteria in this process is of
paramount importance. The mistake of not observing adequate criteria when
identifying microservices could lead to several problems, including the wrong
choices on selecting wrong feature boundaries or even the complete failure of
the process (17).

For example, network communication overhead may eventually be disre-
garded as a key criterion in microservice extraction. However, this negligence
may cause afterwards a high network overhead and harming response time as
the communication between microservices is made through the network. As far
as modularity is concerned, cohesion and coupling are common indicators of
which parts of the legacy code could be modularized as microservices (18). In
fact, one should not miss to observe cohesion and coupling in the legacy system
as they are essential for adequate modularity of the microservice candidates
(18).

Several studies have been conducted with experienced practitioners con-
cerning the process of migrating to a microservice architecture (6, 11, 12).
They reported that: (i) the processes of identifying and extracting microser-
vices remain as the key challenge (6, 11, 12, 17), and (ii) it is important to
observe appropriate criteria for identifying microservices (6, 11, 12, 17). How-
ever, there is a lack of understanding on how to identify microservices based
on legacy systems in terms of: (i) a list of adequate decision-making criteria,
and (ii) how useful are these criteria under the point of view of experienced
practitioners.

These prevailing challenges may be motivated by the fact that microser-
vice architectures emerged entirely in the industry and not in the academia,
differently from many other architectural styles, such as the blackboard archi-
tectures and the N-tier architectures (19, 20). This initial industrial emphasis,
without direct involvement of the academia, possibly slowed the process for re-
searchers to fully understand the peculiarities of the intricacies of identifying
microservices from legacy systems.

1st problem: Lack of understanding about the criteria for identi-
fying microservices of legacy systems and their usefulness.

1.1.2
Proposed Solution

To address this problem, we conducted a search by empirical studies
relating the process of migrating to microservice architecture. The goal was

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 1. Introduction 16

to reveal a set of criteria cited in the process. The set of criteria were used to
conduct an online survey that investigate the criteria perceived as useful by
practitioners for identifying microservices of legacy systems. Practitioners were
inquired about the usefulness of the criteria identified in technical reports, case
studies, and other empirical studies. Moreover, we inquired information on how
these criteria were measured and analyzed. The tools adopted to measure and
analyze each criterion was also questioned.

As a result, we found that four criteria are considered useful while
the others are moderately useful. The useful criteria are coupling, cohesion,
reuse, requirements. The moderately useful criteria are database schema,
visual representation, and network communication overhead. Our results point
out that the criteria set in an overall perspective are adequate to identify
microservices based on legacy code. In addition, we questioned the survey
participants regarding other useful criteria, and the responses did not suggest
additional criteria. These results support the completeness of the criteria set
found during the review in mapping studies.

Moreover, the survey results indicate that academic solutions and tools
do not satisfy the practitioner’s needs to properly observe the relevant criteria.
The used tools are insufficient to support criteria analysis which makes it hard
for practitioners to analyze and reveal trade-offs. In this way, practitioners
often consider simultaneously at least four useful criteria in the decision-
making process to identifying microservices. However, academic solutions tend
to only support the analysis one or two criteria. In summary, our survey
provide valuable findings to produce realistic approaches. These approaches
should better support the decision making process for identifying microservices.
Chapter 2 presents the online survey.

1.2
Variability as a Criterion

Among the criteria, variability is a primordial and fundamental concept
in software engineering (21, 22). Variability is the ability to derive different
products from a common set of artifacts, usually incorporated in systems with
flexible configuration demands (21).

1.2.1
Problem Statement

Configurable systems contain a common set of artifacts to generate
software products (21, 22). These systems can be configured in several ways.
For example, the use of preprocessor directives in the source code can be

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 1. Introduction 17

used to enable and disable features (23, 24) to generate different system
configurations. Alternatively, the use of feature models (21) can also be
used to (de)select features in model-driven product lines. Variability has
been supported in many well-known systems, including operating systems
(e.g., Linux) and cryptography libraries (e.g., OpenSSL). In addition, there
is software in enterprise environments that also contain variability (25, 26).

However, there is still little understanding of how variability is a criterion
influential in the design of microservice architectures (3, 11, 12, 27). One
should also try to understand how variability already present in the legacy
system influences the selection of microservice candidates. Among the few
studies that report this relationship, Tizzei et al. (3) reported a case involving
the migration of a legacy system to a microservice-based product line. Their
goal was to reduce the effort to fix bugs, facilitate the incorporation of new
features to satisfy customer requirements as well as to improve scalability
and configurability of computational resources. Tizzei et al. (3) concludes the
resulting system achieved better reuse, configurability, and reduction of bug
failures as compared to the original legacy system.

2nd problem: Lack of understanding about the influence of vari-
ability along the migration to a microservice architecture.

1.2.2
Proposed Solution

Seven criteria were analyzed in the first sampling of the online survey
presented in Chapter 2. We could not analyzed the variability criterion in
depth. We had a small sample of practitioners with previous experience in
taking part of processes involving the migration to microservice architectures
with variability in mind.

Thus, we have increased the sample of the survey to allow the analysis
of the variability criterion. Our goal was to understand to what extent this
criterion is important in identifying microservices. Moreover, we invited the
survey participants for an interview. In this interview, we inquired about
the information prior and after the process of migrating to the microservice
architecture.

In the new survey sample, the reasoning about variability along the
migration process was considered useful by the experienced participants.
Moreover, we found that half the participants already had some variability
in some of their legacy systems, which were migrated to a microservice

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 1. Introduction 18

architecture. Besides that, the mechanisms existing in the legacy system to
implement variability more frequently reported by the survey participants are
less dependent on the programming language extensions.

Regarding the interview results, three patterns used to implement vari-
ability in microservice architecture were cataloged. Furthermore, the evidence
points out that microservice extraction may increase software customization
after the process of migrating to a microservice architecture in customization-
free legacy systems. Chapter 3 presents the variability criterion analyses based
on the survey and interview studies.

1.3
A Microservice Extraction Approach with Many-objective Optimization

1.3.1
Problem Statement

As previously mentioned, developers commonly consider at least four
criteria simultaneously while identifying and extracting the microservice can-
didates of legacy systems. These criteria widely vary from coupling and co-
hesion to requirements and network overhead. For instance, the consideration
of network overhead before the microservice extraction may be more produc-
tive. Network overhead analysis consists of measuring the network overhead
estimates given the separation of legacy code elements into two microservices,
which communicate with each other. If network overhead is measured only
after the refactoring into microservices is performed, the effort of changing
already implemented decisions is high.

In the same way, coupling and cohesion are commonly adopted criteria by
automated approaches to indicate microservice candidates (13, 14, 15, 16). The
automated approaches maximize cohesion and coupling since a common goal of
the process of migrating to a microservice architecture is improve modularity
and maintainability, usually missing on legacy systems (6, 9, 10, 11). Another
goal of these approaches also reduces the need for redesign of the extracted
microservices in a short, medium, or long term.

Given the use of multiple criteria for identifying microservice candidates,
practitioners have to deal with emerging trade-offs. For example, a software
engineer may desire that extracted microservices have a low or limited net-
work overhead. The same software engineer may consider cohesion as a very
useful criterion; that is, they intend to maximize the cohesion of extracted mi-
croservices. However, maximizing cohesion can eventually increase the network
overhead caused by the communication of two or more extracted microservices

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 1. Introduction 19

to risky levels.
In addition, all the criteria, considered by a maintainer, require process-

ing and measuring data from different sources of information. The cohesion
criterion is often measured based on structural properties extracted from the
code structure. In fact, static analysis is often applied to measure cohesion (16).
Moreover, the size of the trafficked data between two candidate microservices
may be used to quantify the potential impact on network overhead. Properties
extracted from executions of the legacy system through dynamic analysis (29)
are more adequate to support this quantification.

3rd problem: Simultaneously satisfy multiple interacting and pos-
sibly conflicting criteria is challenging along microservices extrac-
tion.

1.3.2
Proposed Solution

In order to address the third problem, this dissertation research pro-
poses an approach, named toMicroservices, to identify microservices. The
proposed approach supports the use of five criteria observed in our empiri-
cal studies (Chapter 2) as moderately useful or useful for the process of mi-
grating to a microservice architecture. The evaluation of these criteria was
made by practitioners with experience in extracting microservices. Therefore,
toMicroservices intends to be a more realistic approach because the adopted
criteria are more aligned with criteria perceived as useful in practice. More-
over, our approach does not restrict the decisions to the optimization of a
single or two conventional criteria, such as coupling and cohesion, which are
not sufficient to reflect particularities of a microservice architecture.

toMicroservices makes use of static and dynamic analyses. That is,
these analyses are made on legacy systems to enable to extract relevant
information from the source code and the program executions (29). These
different sources of information are adopted to measure the criteria, exploring
the potential of each one. Finally, toMicroservices also deals with trade-
offs like the one aforementioned between network overhead and cohesion
by adopting search-based software engineering (SBSE) techniques. Basically,
SBSE is the use of search-based optimization algorithms to address difficult
problems of balancing competing constraints in software engineering (30, 31).
The aforementioned survey results also indicate that experienced practitioners
commonly consider at least four criteria as really need to be balanced along
migrations to microservices. Thus, we adopted a many-objective optimization

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 1. Introduction 20

algorithm suited to address the challenges of dealing with more than three
objectives that represent conflicting criteria (32) in the toMicroservices
approach.

A case study using a industrial legacy system was conducted to evaluate
and improve toMicroservices. A subset of features in the legacy system was
analyzed by toMicroservices. In a quantitative study, toMicroservices was
compared with a baseline approach. The baseline approach used only two
criteria found in automated approaches to identify microservice candidates (13,
14, 15, 16). The criteria are coupling and cohesion insofar as the most adopted
ones in those existing automated approaches. Our results point out that
toMicroservices, which supports five criteria – coupling, cohesion, reuse,
overhead network, and feature modularization, generated better solutions than
the baseline approach. The fact of optimizing coupling and cohesion does not
imply that adequate solutions are automatically found also in terms of network
overhead and feature modularization.

In our case study, microservice candidates generated by
toMicroservices were individually presented to developers, and we ques-
tioned about their adoptability. In addition, we also observed to what extent
developers were able to recognize features during the analysis of each mi-
croservice candidate. Several features and subfeatures were recognized by
the developers, and half of the microservices would be adopted by them.
In addition, lessons learned were obtained, such as the importance of visual
representations and the user interaction with toMicroservices during the
optimization to better explore the profile and knowledge of the user.

Furthermore, we conducted a focus group to evaluate a complete solu-
tion (i.e., a entire microservice architecture) generated by toMicroservices.
Lessons learned from the case study were added in toMicroservices to gen-
erate new microservice architectures. After this improvement, we inquired two
groups of developers about the architecture generated by toMicroservices.
The results reveal a high level of adoptability of the architectural solution after
merge operations were applied to microservices present in the recommended
architecture.

This dissertation is a collection of four papers either accepted or un-
der submission. In addition to Chapters 2 and 3 in which the criteria are
investigated, Chapter 4 presents toMicroservices and the proposed mea-
surements and optimizations to identify microservices. Chapter 5 shows the
evaluation of the proposed approach in an industrial legacy system. The eval-
uation includes (i) an objective comparison between a baseline approach and
toMicroservices, and (ii) a qualitative study in which developers evaluate

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 1. Introduction 21

the microservice candidates. Moreover, Chapter 6 introduced an evaluation of
the microservice architectures generated by toMicroservices with two groups
of developers. The solutions generated by toMicroservices in this study also
incorporate several improvements needed based on the lessons learned in the
previous case study. Finally, Chapter 7 presents the conclusions and ideas for
future work.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

2
Analysis of the Criteria Adopted in Industry to
Extract Microservices

Previous automated approaches to identify microservice candidates in
legacy code are usually based on a small number of criteria, often one or
two (13, 15, 14, 16, 33). The criteria most adopted are coupling and cohesion
insofar as they are criteria very consolidated in software architecture to improve
modularity. However, there is a lack of understanding of their adequacy, or the
need to adopt other criteria by automated approaches to identify microservice
candidates.

Thus, we conducted a search for empirical studies reporting the process
of migrating to microservices architecture. In this task, we searched empirical
studies elicited from two mapping studies (34, 35) about microservices archi-
tecture. After that, we have collected a set of eight criteria mentioned in these
empirical studies to identify microservices based on legacy code. Moreover, we
conducted an online survey with experienced practitioners in the identification
and extraction of microservices. The sampling was made by inviting authors
and subjects from the empirical studies found to answer the survey. We in-
quired about the usefulness of criteria, measurement ways, and tools used.

This chapter contains the paper: “Analysis of the Criteria Adopted in
Industry to Extract Microservices” (67). This paper was published at Joint
7th International Workshop on Conducting Empirical Studies in Industry
(CESI) and 6th International Workshop on Software Engineering Research
and Industrial Practice (SER&IP), a co-located workshop in the International
Conference on Software Engineering (ICSE), hosted in Montrèal, Canada, in
2019. The paper presents seven criteria, including their perceived usefulness.
The additional criterion (variability) and its results are addressed in Chapter 3.
The results conclude that experienced practitioners usually adopt at least
four criteria in the identification of microservices, suggesting that automated
approaches to identify microservices based on legacy code (13, 14, 15, 16, 33)
are oversimplifying the problem. Moreover, the survey participants indicated
a limited set of ways and tools used to measure criteria.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 23

2.1
Introduction

Microservices have been successfully adopted for developing software sys-
tems in successful companies, such as Netflix (5) and Uber (4). Microservices
are small and autonomous services that work together (1). A microservice is
expected to have fine granularity (61). It is also expected to be autonomous:
(i) it should consist of a service highly independent from others, and (ii) it
should enable an independent choice of technologies, such as the programming
language, the database, the communication protocol, and the like. A num-
ber of benefits are typically associated with a microservice-based architecture,
such as reduced maintenance effort, increased availability, improved innova-
tion, continuous delivery, DevOps enabler, scalability, and reduced time to
market (6, 11).

Not rarely, microservices are not developed from scratch, but they
result from the migration of existing systems (4, 5, 6, 7, 37). Given the
claimed benefits of microservices, there is a growing interest of both industry
and academia on streamlining the migration to a microservice architecture.
However, the migration from a monolithic architecture to microservices is
perceived as challenging by developers who have experienced it (1, 6, 11).
In particular, the success of this migration is largely dependent on the use of
appropriate criteria for extracting microservices from a code base.

In this work, microservice extraction comprehends the task of deciding
whether and which parts of existing system functionality(ies) will be migrated
to a microservice, by the selection, decomposition, and reuse of existing system
parts. Academic approaches for supporting the microservice extraction have
been proposed (1, 13, 14, 15). Most often, they tend to support the extraction
of microservices with either one or two conventional criteria, namely coupling
and cohesion (13, 15). A few others tend to solely use the information on
database schema (1, 14) to support extraction decisions.

There is limited knowledge on whether academic techniques (e.g., (1, 13,
14, 15)) are aligned with how practitioners perform microservice extraction.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 24

Existing studies in the industry often focus on reporting benefits and challenges
on the migration to a microservice architecture (e.g., (3, 4, 5, 6, 7, 11, 37)). For
instance, they point the selection and decomposition of microservices are often
the most challenging activities (3, 6). However, it remains unclear what are
the extraction criteria perceived as useful by practitioners along these tasks.
Differently from many software engineering techniques, microservices emerged
in the industry and not in the academia∗. This fact possibly slowed the process
for researchers to fully understand the peculiarities of this architecture style.

To address this gap, this paper presents an investigation of the criteria
perceived as useful by practitioners for extracting microservices. To achieve
this aim, we perform an exploratory study based on an online survey. The
basis for our survey is a set of seven criteria mentioned in articles written
by either researchers or practitioners. We want to understand the degree of
usefulness (if any) of these criteria. We also questioned which tools are actually
used by practitioners while analyzing the criteria for microservice extraction.
The survey was distributed to industry specialists, which included developers,
architects, project managers, and industry researchers. Our survey relies on
the participation of 15 specialists from different countries located in North
America, South America and Europe. They all have considerable practical
experience on migrating existing systems to microservices architecture. These
participants also have extensive experience in software development.

Overall, the survey results suggest academic solutions do not satisfy
the industrial needs. For instance, practitioners often consider simultaneously
at least four dominant criteria as well as their trade-offs to support their
decisions. Academic solutions tend to only support the analysis a few criteria,
which makes it hard for developers to reveal and analyze trade-offs with
unsupported criteria. This is one of the reasons why practitioners reported they
consider existing tooling support insufficient or even irrelevant for enabling
well-informed decisions on microservice extraction. In summary, our survey
provides a step further on a more realistic understanding of the relative
usefulness of microservice extraction criteria in practice, from the point of
view of industry specialists. Thus, we expect our survey results encourage
researchers and practitioners to work more closely to design appropriate
techniques and tooling support for microservice extraction.

The remainder of this paper is organized as follows. We present an
illustrative example in Section 2.2, the set of investigated criteria in Section 2.3,
our survey design in Section 2.4, results and discussions in Section 2.5, threats
to validity in Section 2.6, limitations of related work in Section 2.7, and

∗https://martinfowler.com/articles/microservices.html

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 25

conclusions in Section 2.8.

2.2
Microservice Extraction: An Illustrative Example

In spite of the potential benefits, the decomposition of an existing system
into microservices is complex. We present a real case to illustrate how a
particular criterion can affect the (mis)decision of extracting microservices
from an existing system. This example comes from a system (from herein called
“monolithic system”) with limited modularization and no documentation.
Maintainers of this system reported its notable limitations to incorporate new
technologies. Some of the characteristics (and other ones) led to the partial
migration of a monolithic structure to a microservice architecture.

The monolithic system was initially developed assuming a single process
execution with communication made by local function calls. For the partial
migration to a microservice architecture, engineers and developers decided to
identify and extract some functionalities to microservices, thereby introducing
network communications among them. Even though the extracted microser-
vices fostered the decoupling of functionalities, a drawback was observed after-
wards in the response time of some requests to the REST API. The analysis
of the code extracted from the original monolithic system revealed some inner
loops producing remote communication overhead. Developers decided to add
a cache layer in the calls of this API, reducing roundtrips to dependencies and
achieving the expected time response by the users.

This example illustrates how certain criteria affect the outcome of the
extraction process. The decoupling among system functionalities was the dom-
inant (maybe single) criterion considered along extraction. However, the result
decomposition indirectly affected communication overhead, deteriorating sys-
tem performance. The lack of reasoning upfront about other important criteria
(communication overhead, in this case) and their trade-offs led to the microser-
vices’ unsuccess. A better understanding of these criteria is critical to support
decision-making process during the microservice extractions.

2.3
On the Criteria for Microservice Extraction

To define a representative set of criteria, we searched in the technical
literature the criteria explicitly reported for migrating existing systems to a
microservice architecture. This review involved reading and analyzing papers
cited by two mapping studies on microservices (34, 35). As a result, we
compiled an initial set of seven criteria, including (i) the ones used in academic

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 26

techniques, and (ii) the ones mentioned in technical literature, albeit not
necessarily supported by existing academic automated techniques. Our goal
was to understand their usefulness from the perspective of practitioners with
experience on microservices migration processes. These criteria, included in
our survey with specialists (Section 2.4), are described below.

Coupling. Coupling comprehends the manner and degree of interde-
pendence between software modules or functionalities (36). Newman men-
tions that microservices should be decoupled from each other as much as
possible (1). Different coupling metrics are used by existing techniques (e.g.,
(13, 15)) for microservice extraction. Coupling is the most cited criterion in the
literature (35, 34). In addition, case studies select coupling as the dominant
(sometimes, single) criterion along the microservices migration process (e.g.,
(8)).

Cohesion. Cohesion is the manner and degree in which inner elements
– data and behaviors – of a single module (or functionality) are related to each
other (36). A microservice is expected to modularize a functionality (e.g., a
domain entity) with highly cohesive inner elements. Therefore, cohesion is an
important aspect for microservice architectures. Existing academic techniques
indeed consider cohesion to recommend the extraction of microservices from
existing systems (15). We also found case studies of microservice-driven
migrations reporting cohesion as a relevant criterion (8). However, cohesion is
used as a secondary criterion in some academic solutions; coupling is considered
the main criterion.

Overhead in the communication of extracted microservices.
Overhead is related to the amount of time a system would spend on perform-
ing actions not directly addressing the user needs (36). Communication over-
head concerns the negative impact of extracting microservices on time spent
along future microservice communication, which was originally performed lo-
cally (e.g., via function calls) in the “monolithic system”. The derived mi-
croservices will need to keep communicating by protocols such as HTTP and
AMQP, therefore, this communication may result in some penalties, possibly
prohibitive ones, to the system performance (1, 38, 91). That is the reason why
communication overhead might need to be considered beforehand, through mi-
croservice selection activities. It should be noted that coupling and overhead in
the communication of extracted microservices are different criteria. Coupling
is the degree between different elements while overhead is time consumed in
network communication.

Potential of reuse. Reuse is the use of already developed assets in
the solution of different problems (36). For example, microservices, software

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 27

product lines, frameworks, and libraries aim to support different levels of reuse.
Each extracted microservice could be reused by two or more of its callers. The
cost of microservice extraction can be justified by actual reuse in the short
or long term. Higher the potential of microservice reuse, the better. That is
why practitioners may consider this criterion when selecting and decomposing
microservices. There is another way of considering reuse along the migration
process: only built microservices that can reuse parts of the existing code base.
Previous studies carried out migrations to microservices in order to maximize
code reuse (6, 37).

Data dependencies in the database schema. Data entities have
dependencies in a database schema (39). Moreover, the database structure
could be considered the greatest source of dependencies for a wide range of
systems. Migrating to the microservices architecture may lead to splitting
the database into smaller databases. Database decomposition can achieve
data coupling reduction and increase microservices’ independence. Such an
independence make it possible the selection of different database technology
for each microservice. In addition, within the database schema it is possible
to find valuable information about the domain entities (e.g, their relations,
constraints, and the like). The analysis of the database schema is mentioned
as a way of possibly starting the microservice extraction process (1, 14).

Impact on software requirements. Requirement is the software
capability needed by a user to solve a problem or achieve an objective
(36). In microservices migration process, practitioners may also consider
the possible impact of candidate microservices on certain non-functional (or
functional) requirements. For example, non-functional requirements as security
may influence which parts of existing systems could be extracted. Functional
requirements may provide a better understanding of the domain concepts.

High-level criteria from visual models. Some decomposition cri-
teria can be more easily analyzed from visual models. The migration of an
existing system to a microservice architecture can be seen as a combination
of reverse engineering and re-engineering. Reverse engineering (40) may use
graphical resources to build representations of the existing systems in higher
levels of abstraction. Thus, visual representations, such as UML, could be
useful to derive architectural on detailed designs of the system. These repre-
sentations may be used to support analyses of high-level criteria that impact
on the selection and/or decomposition of microservices. For instance, two func-
tionalities with a strong architectural dependency may be a criterion used to
give up on their modularization as two microservices. Moreover, behavioral
models of the system may be used to decide on the possible boundaries of a

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 28

candidate microservice. Our literature review revealed a previous study that
consider use cases to define some criteria for microservices extraction (91).

2.4
Survey Design

This section presents the design of our survey based on the potentially
useful criteria used along microservice extraction.

2.4.1
Goal, Population and Sample

We conducted an exploratory survey (41) with the goal of understanding
what criteria are considered useful. Specialists on microservice migration
participated in the survey. To achieve ours goal, we asked the subjects to
evaluate the perceived relevance of the criteria presented in Section 2.3.
Moreover, we inquired the subjects which techniques and tools they use when
applying each criterion. The target of our survey is composed of specialists with
a background in migrating existing systems to microservices. We developed
a search plan (42), aiming at identifying a representative sample of this
target. We selected a source of sampling composed of two mapping studies on
microservices (34, 35). Then, we searched in this source by works addressing
the migration of existing systems to microservice architecture. In the following
step, we performed a snowballing search(43) in the pieces of work that cited the
referred mapping studies. For performing this search, we used Google Scholar†.

The survey was sent to authors of scientific papers. Some of these authors
actively participated in the migration process to microservices architecture.
They have played key roles, such as developers or architectures. In this way,
they represented the target to our survey. Moreover, we are also invited subjects
(i.e., participants) of the empirical studies (reported in the analyzed papers) to
take part of the survey when the paper authors agreed is distributing the survey
to the corresponding study’s subjects. After execution, our search plan resulted
in the recruitment of 70 subjects. The survey was executed during January
2019. From the 70 subjects recruited, 15 participants responded, resulting in
a participation rate of 21.23%.

2.4.2
Instrumentation

In this study, we applied an online questionnaire for gathering subjects’
data. The questionnaire items are divided into three groups. The first group is

†scholar.google.com

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 29

composed of questions for characterizing the survey participants. This group
of questions is presented in Table 2.1. Among others, we asked the subjects’
academic background, development experience, and position in the current
job. More specifically, we asked about their background in migrating existing
systems to microservices.

Table 2.1: Survey questions about characterization of respondents
Question Type
Do you want to receive future information about
the survey results? Choice: Yes, No

Name Open Question
Email Open Question

What is your academic background?
Choice: HS,
Grad, Master,
PhD, Other

How long have you been developing software?
(years) Positive Number

What is your position in your current job? Open Question
How many migration processes to a microservice
architecture did you only participate in the past
(e.g., in architecture decisions, programming tasks,
and others)?

Positive Number

How many migration processes to a microservice
architecture are you currently participating (e.g.,
in architecture decisions, programming tasks, and
others)?

Positive Number

How many migration processes to a microservice
architecture did you only observe in the past (e.g.,
examination, analysis, review, consulting, and oth-
ers)?

Positive Number

How many migration processes to a microservice
architecture are you currently observing (e.g., ex-
amination, analysis, review, consulting, and oth-
ers)?

Positive Number

What is (are) the domain(s) of the systems that
underwent migration(s) to a microservice architec-
ture with your involvement?

Open Question

The second group of questions (Table 2.2) aims at gathering the perceived
utility of criteria presented in Section 2.3. We used a five-point Likert scale
associated with the following levels of usefulness, from the lowest to the highest:
1) Not useful - it was not useful at all, 2) Slightly useful - it was only useful
to a small degree, 3) Moderately useful - it was not considerably usefulness, 4)
Useful - it was considerably usefulness, 5) Very useful - it was indispensable.

To avoid misinterpretations, we provided in the questionnaire a formal

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 30

Table 2.2: Specific questions to all the criteria of second group
Criterion Question Type Answer

Coupling How did you mea-
sure coupling? Checkbox 1. The structure of

the source code
2. Program execu-
tion
3. Others

Cohesion How did you mea-
sure cohesion? Checkbox 1. The structure of

the source code
2. Program execu-
tion
3. Others

Communication
Overhead

How did you
measure over-
head in future
network commu-
nication between
extracted mi-
croservices?

Checkbox 1. The structure of
the source code
2. Program execu-
tion
3. Others

Reuse
Potential

How did you mea-
sure reuse? Checkbox 1. The syntax of

the code
2. Code duplica-
tion
3. Others

Requirements
Impact

What are the
requirements
considered (if
any)?

Open, Lik-
ert Scale Textual

Visual
Models

What was (were)
visual representa-
tion(s) used?

Open Textual

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 31

definition of each criterion evaluated (see Section 2.3). We also asked the
participants to justify their answers. We also want to understand what is used
to analyze or measure each criterion. For this purpose, we asked the tools
and techniques they use in each criterion evaluated. We also asked whether
developers consider these tools sufficient to support the migration process, as
shown in Table 2.3.

Table 2.3: Common questions to all the criteria of second group

Question Type
Feel free to justify the usefulness (or not) of the criteria
in the decision-making process

Open
Question

What tool(s) was (were) used for measuring or analyzing
the criteria?

Open
Question

For each criterion investigated, we also applied particular questions,
based on its characteristics. Coupling, cohesion and overhead are usually
measured through static and dynamic analysis (44). In this way, we asked
whether subjects use one of these approaches or both. For reuse, we asked
whether this criterion is measured through the syntax of the source code
and by the incidence of duplicated code. Regarding software requirements,
we questioned whether non-functional and functional requirements are used.
Regarding visual models, we inquired about the type of artefacts commonly
used to represent the system in higher levels of abstraction.

The third group of questions are about the sufficiency of the tools to
support the extraction of microservices. We also asked about cases where
the extraction may have failed. These questions are all open answer and are
presented in Table 2.4.

Table 2.4: Questions in the third group
Question
Do you believe that existing tools are sufficient to support the migration
process?
Was there any case that the extraction of the microservice was not suc-
cessful (led to a high overhead communication between microservices, data
inconsistency, or some other problems)?

2.5
Results and Discussions

Next we present the results of the application of our survey to a group
of 15 specialists. The experience of the respondents can be evidenced by the

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 32

Table 2.5: On the Criteria Usefulness: Participant Responses
Criterion Responses Median#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
Coupling 3 3 3 4 4 4 4 5 4 4 5 5 4 5 4 4
Cohesion 5 4 5 4 4 5 4 5 2 4 5 5 5 3 3 4
Communication Overhead 2 2 1 4 3 4 2 3 4 3 5 1 4 3 2 3
Reuse Potential 4 4 4 3 5 2 4 5 1 2 1 4 2 2 5 4
Database Schema 4 4 1 3 2 4 5 3 2 1 5 5 1 4 3 3
Requirements Impact 4 4 4 3 3 5 5 3 4 1 4 5 5 4 4 4
Visual Models 3 2 5 3 2 2 4 2 1 5 3 5 3 5 3 3

Figure 2.1: Criterion Usefulness: Distribution of Responses

fact they all have both previous and ongoing experience with microservices
migration processes. For instance, the vast majority of the respondents had
already concluded their participation in at least two migration processes (a
mean of 2.7 processes). Moreover, most of them are actively participating in
at least one project (a mean of 1.6) where the microservices extraction is
currently underway.

The respondents have extensive experience in software development. The
time in years the participants have been developing software is considerably
high: (i) the mean is 17.4 years and median is 18 years, and (ii) with a maximum
of 35 years and a minimum of 3 years. Our sample of respondents is also well
diversified in terms of the roles they play in their projects: developers (33.3%),
architects or engineers (20%), team leaders (20%), and industry researchers
(26.7%).

Table 2.5 and Fig. 4.1 presents the answers of the participants with
respect to the usefulness of each extraction criterion. As explained in Section
IV.B, we used a five-point Likert scale to enable the respondents to classify
each criterion from not useful at all (1) to very useful (5). The analysis of
the medians (last column) of each criterion (rows) in Table 2.5 reveals which
criteria are useful (median equal to 4) and moderately useful (median equal to
3). The columns show the answers of each participant with their IDs varying
from #1 to #15. Fig. 4.1 provides a different perspective on the responses by
showing which criteria concentrates more positive, neutral, or negative scores.
In the following, we discuss first the usefulness of each criterion. We start
discussing those criteria considered as the most useful by the practitioners.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 33

After that, we explore other dimensions in the obtained responses.
Cohesion as the most useful criterion, but proper tool support

is missing. Cohesion was considered the most useful criterion: it has the
highest concentration of “very useful” answers, represented by the light grey
color in Fig. 4.1. This criterion presented the median equal to 4 (Table 2.5).
This was a surprising result as we expected that coupling would outperform
cohesion. Coupling is usually prioritized in the conventional decomposition of
software modules, while cohesion tends to be used to confirm the incidence
of modularity flaws. One participant justified that “A highly cohesive func-
tionality should make a natural unit that is very easy to spot and derive the
microservice boundaries”. Cohesion was described by the majority of the par-
ticipants as more useful than coupling to support decisions on microservice
extraction. Multiple respondents mentioned cohesion is the key criterion to
identify domain entities by domain driven design, a typical method used in
industry to identify microservice candidates.

Despite the relevance of cohesion, surprisingly, only 33.3% respondents
reported they use some tool, such as IntelliJ‡, to apply this criterion. These
results suggest that cohesion is predominantly analyzed manually. One of the
reasons it that some practitioners mentioned they need to understand the
cohesion from a dynamic analysis perspective. Actually, more than 30% of the
participants reported using the system execution to analyze cohesion. One of
the respondents even mentioned he tries to infer cohesion while debugging the
code with IntelliJ. Some participants use static cohesion measurement, but
most of them do it by convenience as most of the existing tools support only
static cohesion measurement.

Coupling is also an useful criterion, but again dynamic anal-
ysis support is missing. Coupling also achieved a median of 4 (Table 2.5).
It was the second criterion in terms of concentrating “very useful” and “useful”
answers (Fig. 4.1). Few participants (26.6%) again reported using some tool
to support coupling analysis, such as IntelliJ and SonarQube§. Even though
many participants reported to use the program structure for coupling analy-
sis, almost 40% of the respondents mentioned other strategies. In particular,
33.3% mentioned they need to infer actual coupling of functionalities from a
dynamic analysis perspective while considering a functionality to be extracted
to a microservice. They need to understand which of the static dependencies
can have indeed an impact on possible performance bottlenecks if a function-
ality is modularized as a microservice. However, the use of dynamic coupling

‡https://www.jetbrains.com/idea/
§https://www.sonarqube.org/

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 34

analysis is always challenging as it can generate a large output, and clearly
requires proper tool support (89). One participant also mentioned he usually
analyzes the change history of functionalities to reveal their co-changes that
imply logical coupling (not capture by static dependencies).

Impact on requirements: functional and non-functional re-
quirements are equally important. Impact on requirements was the third
most relevant criterion. The distribution of answers for this criterion in the
Likert scale was quite similar to the one observed for coupling. Most of the
participants perceived this criterion as “useful” or “very useful”, but there was
one participant that gave the lowest score for this criterion. He mentioned the
requirements specification of the existing system did not predict at all relevant
requirements (either functional or non-functional) for the microservices being
considered in the migration process.

We expected that non-functional requirements would appear much more
frequently than functional requirements. Functional requirements were by
far the most quoted type of requirement considered along the microservice
extraction: 77% of the valid responses considered them as “very useful”.
Functional requirements are used to infer the domain concepts which can
be isolated in microservices. Performance was perceived as the most useful
(median of 4) non-functional requirement. Respondents were clearly concerned
with performance deterioration. A total of 86% of participants rely on explicit
description of requirements in the migration process.

Reuse opportunities are considered on microservice extrac-
tion, albeit not unanimously. Reuse also achieved a median of 4 in the
responses. One participant mentioned the practice of reuse “is indeed a key
driving factor for the migration to microservices architecture; it is important
to promote the reuse of the extracted microservice by other systems”. However,
the relevance of reuse was not unanimous. There was a distribution of different
answers across the five points in the Likert scale. While 8 participants gave
the highest scores (either 5 or 4), 6 partipants gave the lowest scores (either 1
or 2) and 1 participant gave a borderline score (3).

Some participants argue there are other more effective ways to achieve
reuse. One participant quoted that: “Though arguably a good reason to create
new microservices, I haven’t witnessed any project in which its main motivation
was reuse. The most common solution for achieving reuse was the use of
software libraries instead.”. Others argue that the existing monolithic code
was so intermingled that opportunity for reuse could not even be considered.
Among the participants, 40% reported they use tools, such as IDEs and its
plugins, for supporting reuse analysis. Code duplication (26.6%), code syntax

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 35

(46.6%), and other factors were adopted in the decision-making process to find
reuse opportunities while deciding on extracting microservices. However, 60%
of the respondents stated that reuse analysis is predominately manual.

Communication overhead is a secondary criterion as partici-
pants often postpone its analysis. Microservices may need to communi-
cate with other microservices or subsystems. Then, the overhead on microser-
vice communication was expected to be a primary criterion while deciding for
microservice extraction. However, it was overall perceived as moderately use-
ful with a median equal to 3. Fig. 4.1 shows it has the highest distribution of
answers in the Likert scale. Some comments state that the other benefits of
extracting microservices outweight the possible drawback of increased commu-
nication overhead.

Only five of the respondents considered communication overhead is
“very useful” or “useful”. These respondents were the same who classified
performance as an important non-functional requirement. We observed that
many participants postpone the analysis of communication overhead, i.e., they
tend to postpone it for after the extraction of the microservice(s). However,
some participants mentioned they try to predict if the communication overhead
will be prohibitive, and/or which kind of microservice decomposition will
minimize the overhead. Some participants reported the use of different tools
to support overhead analysis, such as Intellij IDEA, JMeter, and debugging
tools. Runtime analysis via logs and microservices monitoring tools were also
mentioned.

Surprisingly, dependencies on database schemas is frequently
a neglected criterion. Opinions on the usefulness of this criterion also
varied as much as communication overhead. This was a surprising result.
Proponents of microservices often state the each microservice should have its
own tiny database. Therefore, we expected that data dependencies in database
schema would be often used in the extraction of microservices. However, our
respondents seem to decompose microservices using different strategies with
respect to the database.

Half of the respondents seem to follow recommendations of proponents
of microservices architectures. In this case, most of them stated they use tools
associated with relational database management systems to reason about the
database schema decomposition. These participants also mentioned database
schema is useful for identifying independent domain concepts.

High-level criteria from visual representations used for deter-
mining microservice boundaries. Only five (one third) of the respondents
considered high-level criteria, derived from visual representations, as “very use-

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 36

ful” or “useful”. One third considered their usefulness as moderate, while the
other one third qualified them as “not useful” or “slightly useful”. The most
common representations are class diagram, dataflow models, and use cases.
Regardless the type of representation, the most common use of it was to sup-
port the definition and analysis of criteria to determine the boundaries of the
microservices being considered for extraction.

All practitioners often use at least four dominant criteria
simultaneously. Most of the academic solutions investigated in our liter-
ature review (Section III) suggest some dominant criteria for extracting mi-
croservices. Most of them: (i) support the analysis of one or two criteria only
(1, 13, 14, 15), and (ii) suggest to use coupling and cohesion as the dominant
criteria. In fact, the vast majority of the proposed techniques for supporting
microservice extracting rely on coupling or on a combination of coupling and
cohesion only (13, 15). Moreover, they only support the analysis of coupling
and cohesion of functionalities already structured as separated modules. How-
ever, our survey revealed that existing systems are often legacy systems. Thus,
some functionalities being considered to be extracted as microservices tend to
be scattered and tangled with each other in the implementations of existing
modules. They are not modularized in the existing system, which hampers the
use of academic techniques for supporting microservice extraction.

To make the matters worse: most of the respondents (9 out of 15) reported
at least four criteria were simultaneously used to support decisions on the
extraction of each microservice. This result can be observed in Table 2.5:
these respondents are the ones who pointed out at least four criteria “very
useful” or “useful”. Table 2.5 shows that four of these respondents qualified
more than four criteria “very useful” or “useful”. The 6 remaining respondents
used 3 dominant criteria. However, the results of our suggest that academic
solutions are currently oversimplifying the problem of microservice extraction.
Practitioners need to consider to maximize the satisfaction of these multiple
criteria and deal with various emerging trade-offs.

Most specialists believe existing tools are not sufficient. We
questioned about whether existing tools are sufficient to support the decision-
making process of extracting microservices. A tally of 53,3% of the participants
answered no. Only 26,7% said that tools are sufficient, while 20% stated that do
not believe in tools to support the migration process. This was the quote of one
of the participants: “The tools themselves cannot provide a path clear enough
to allow easy decisions towards extraction or not.” In the opposite direction,
other participant said: “Tools could help to provide more confidences on the
effectiveness of these decisions”. We also inquired whether any extraction of

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 37

certain microservices was unsuccessful due to some criterion neglected in the
process. Surprisingly, 40% of the respondents answered yes. They stated that
the lack of synthesized information about the relevant criteria was one of the
reasons to overlook a certain criterion in spite of their ultimate importance.

2.6
Threats to Validity

The survey questionnaire is composed of a large number of questions,
which may discourage the subjects’ participation. In this sense, before running
the survey, we first invited other researchers to review the questionnaire. Based
on their feedback, we then conducted a pilot with real subjects. In this pilot,
we observed an acceptable participation rate for the context of surveys in the
field.

The small sample of respondents in the survey is a threat to validity.
However, most of survey participants declared significant experience on mi-
grating systems to microservice. This achievement was possible due to the
fact we followed a formal recruitment strategy for identifying highly qualified
subjects to participate in the survey (see Section 2.4). This sampling process
resulted in the recruitment of 70 individuals involved with the research and
practice of implementing microservices. A participation rate of 21.5% is quite
high for online surveys of this kind, which usually ranges from 3% to 10%.

2.7
Related Work

Along the migration of an existing system to a microservice architecture,
some techniques have been proposed to extract source code information and
recommend microservices. Mazlami et al. (13) present a strategy to decompose
systems into microservices considering three coupling metrics. These metrics
are used to weight a graph where nodes represent system classes. Edges are
associated with weights provided by the coupling metrics. The components
provided by a clustering algorithm are used to recommend microservices to
the developer.

Other previous study considers the production and use of diagrams to
understand the legacy systems for suggesting microservices. The idea is to
separate and group Enterprise Java Beans (EJB) according to the type of data
it handles (14). In other words, this is a strategy centered on a model-based
criterion. Moreover, Newman (1) presents recommendations of microservice
extractions based on certain criteria associated with the database schema. Jin
et al. (15) propose a functionality-oriented microservice extraction method by

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 38

monitoring system execution traces and clustering them. In spite of promoting
the use of dynamic execution of the system, it is still limited because it only
considered coupling and cohesion. As observed in our survey, practitioners
need to explore various combinations of criteria in order to make successful
microservice extractions in industry cases. Unfortunately, these combinations
are not either supported or used in existing techniques and methodologies
found in the literature review.

Francesco et al. (12) interviewed and applied a questionnaire to develop-
ers. Their goal was to understand the performed activities, and the challenges
faced during the migration. They reported what are the existing system arti-
facts (e.g., source code and documents) the respondents used to support the
migration. The main reported challenges were: (i) the high level of coupling,
(ii) the difficulty of identifying the service boundaries, and (iii) the microser-
vices decomposition. However, they did not specifically analyzed the usefulness
of the extraction criteria addressed in our survey.

Taibi et al. (11) also conducted a survey with the objective of elucidating
motivations that led to an microservice migration process and what were the
expected returns. The main motivations were the improvement of maintainabil-
ity, scalability, and delegation of team responsibilities. In addition, difficulties
were cited in this process, such as decoupling from the monolithic system,
followed by migration, and splitting of data in legacy databases.

2.8
Conclusions

In this paper, we reported a survey performed with specialists to assess
what criteria are useful to extract microservices during the migration to a
microservice architecture. We questioned how the participants measure and
analyze (with or without tools) each criterion. We also inquired them if:
(i) existing tooling support is sufficient, and (ii) unsuccessful microservice
extractions occurred. To identify potential respondents, we searched for studies
in two mapping studies about microservices migration. We also made a
snowballing search starting from the mappings.

Even though there were some variations across participants’ answers, the
results revealed that participants consider criteria related to modularity – i.e.,
coupling, cohesion, and reuse – and requirements impact as relevant. The other
three criteria are commonly seen as moderate, albeit considered “useful” or
“very useful” by certain respondents. In other words, there is no criterion that
can be claimed to be not useful. Their degree of usefulness clearly varies from
a context to another. Moreover, effective decisions on microservices extraction

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 2. Analysis of the Criteria Adopted in Industry to
Extract Microservices 39

are clearly far from being simplistic. Our results suggest four criteria are usually
considered simultaneously to support decisions. This finding questions the
practicality of academic solutions, which generally consider only one or two
criteria.

In fact, existing techniques and tools were seen as insufficient. Mistaken
decisions on microservice extractions are mentioned to be often related to the
lack of synthesized information about the relevant criteria and their trade-
offs. All these findings of our survey suggest researchers and practitioners to
work more closely. Otherwise, it is unlikely we will able to design appropriate
techniques and tooling support for microservice extractions. There are many
unaddressed questions: how to automatically identify possible trade-offs among
the seven criteria based on the legacy code? how to better combine static and
dynamic analysis to reveal such trade-offs? how to anticipate information on
potential communication overheads before the microservice extractions or in a
step-wise manner?

As future work, we plan to perform interviews and additional analysis,
such as the identification of existing patterns, in the answers. For example:
how the degree of developers’ experience related to their criteria prioritization?
what are other new criteria (beyond the seven ones) spontaneously mentioned
in their responses? Moreover, so far we have 15 answers. However, the survey is
still open. We are expecting to receive more answers. These additional answers
may help us to further confirm or reveal new insights.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

3
Extraction of Configurable and Reusable Microservices from
Legacy Systems: an Exploratory Study

Software engineering pioneers (45), including Parnas (22) and
Brooks (47), claim the need for the management of software families in
the least 50 years. Since then, variability has become a key concept in soft-
ware engineering (21). However, the relationship between variability and a
microservice architectural style is little understood or explored from a prac-
tical perspective, and insofar, to the best of our knowledge, there is a only
a concrete case reported in the literature that systematically explore this
relationship (3).

Chapter 2 evaluated the usefulness of seven criteria, excluding variability.
This happened because few practitioners with previous experience in identify
microservice candidates taking variability into account answered the survey.
Once the microservice architecture is an emergent topic on software engineer-
ing, we conducted further searches by empirical studies relating the process
of migrating to a microservice architecture. In this work, we adopted a more
recent and exhaustive mapping study (27) regarding microservices to perform
this expansion. In this order, we obtained 26 participants and half of them are
experienced with variability. Moreover, we invited survey participants to an
interview. The interview allows a deeper understanding of the process of mi-
grating a legacy system to a microservice architecture. We focus on topics not
inquired in the survey of the previous chapter, such as adopted technologies
and patterns to implement variability.

This chapter contains the paper: “Extraction of configurable and reusable
microservices from legacy systems: an exploratory study”. This paper was pub-
lished at the 23rd International Systems and Software Product Line Conference
(SPLC), hosted in Paris, France, 2019. The main finding of the paper is that
variability is a key criterion to identify microservice candidates, when present
in the legacy code. In addition, half of the survey’s participants indicated they
had previous experience to identify microservice candidates in the presence of
variability. Copy and paste through the use of a version control system is the
most adopted mechanism to implement variability in the source code before
the process of migrating to a microservice architecture. Finally, three patterns

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 41

to implement variability in microservice architecture were identified during the
interviews. In case the reader has read Chapter 2, you may consider to skip Sec-
tion 3.2.2, which provides a succinct description of microservice architecture’s
concepts.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 42

3.1
Introduction

Legacy systems, commonly found in industry, represents a long term
massive investment. Despite of their business importance, legacy systems are
difficult to extend and include innovation (9). In addition, these systems usu-
ally have a monolithic architecture, with components tangled in a single unit,
strongly connected and interdependent (6, 11). Currently, many companies
have been adopting microservice architectures to modernize monolithic legacy
systems (3, 4, 5, 6, 7, 8). Microservices are small and autonomous services
that work together (1). The benefits of adopting microservices are: reduced
effort for maintenance and evolution, increased availability of services, ease
of innovation, continuous delivery, ease of DevOps incorporation, facilitated
scalability of parts with more demand, etc (6, 11).

Service-based architectures must meet some attributes to satisfactorily
fulfill their purpose (48): (i) scalability, enabling optimization in the use of
hardware resources to meet high demand services; (ii) multi-tenant efficiency,
offering transparency in the use of shared services, since the service should
optimize the sharing of resources and also isolate the behavior of different
tenant; and (iii) variability, where a single code base provides common and
variable functionalities to all tenants. Microservices are known to work well
with the first two attributes (3), however, the literature is scarce in relation to
the use of variability. A possible explanation for the lack of discussion may be
the fact that this technology was initially conceived in the industry and only
in the last years have had attention of academia∗.

Configurable systems are widely developed in the industry to meet
demands related to different types of hardware, different platforms, serving
diverse customers or market segments, etc (49). In this context, we should
understand how functionalities should be modularized and customized as
microservices to fulfill customer needs.

∗https://martinfowler.com/articles/microservices.html

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 43

The goal of this paper is to investigate the importance of variability re-
lated to the process of extracting microservices from monolithic legacy systems
in industry. To this end, we analyzed 26 survey responses and seven interviews
with practitioners. Among the 26 participants, 13 dealt with variability dur-
ing the extraction and they stated that variability was a key criterion for
structuring the microservices. Moreover, we observed an increase of requests
for customization after microservices extraction from legacy systems that ini-
tially were not configurable. In this way, initial evidence points out that the
microservices extraction can increase software customization.

This paper is organized as follows. Section 3.2 presents the background.
Section 3.3 details our study. Results and discussion are in Section 3.4.
Sections 3.5 and 3.6 address threats to validity and related work, respectively.
Section 3.7 concludes the paper.

3.2
Background

This section presents the main concepts involved in this paper, such as
customization, variability, and microservices.

3.2.1
Customization and Variability

Service-oriented architectures must allow tenant-specific configuration
and customization. The tenant-specific adaptations may affect all layers of the
application, from functional requirements to database schema. Furthermore,
tenants do not only have different requirements regarding functional prop-
erties, they can also require different non-functional requirements of service
properties (50).

To achieve such customization, industry must deal with software vari-
ability, which is the ability of a system or an asset to be adapted for using
in a particular context (51). Variability can be viewed as consisting of two
dimensions (52). The space dimension is concerned with the use of software in
multiple contexts. The time dimension is concerned with the ability of software
to support evolution and changing requirements in its various contexts.

3.2.2
Microservices

A microservice is expected to have fine granularity (61) and be au-
tonomous: (i) it should consist of a service highly independent from others,

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 44

and (ii) it should enable an independent choice of technologies. For communi-
cation, microservices architecture commonly adopted lightweight protocols.

Not rarely, microservices are not developed from scratch, but they result
from the migration of existing systems (1, 4, 6). However, the migration from an
existing system to microservices is perceived as challenging by developers who
have experienced it (6, 11). Studies indicate that developers use the source
code of the existing system in migration to microservice architecture (12).
In this way, approaches were proposed using criteria observed in source
code (13, 15), generally using coupling and cohesion criteria. Others approaches
recommend observing the database schema (1, 14). However, there is a lack of
the comprehension of variability usefulness in the migration process when the
existing system is a configurable system or software product line.

3.3
Exploratory Study Design

The goal of our exploratory study is to better understand the migration
process to microservice architecture and how software variability is useful in
the decision-making process. In what follows, we show in Subsection 3.3.1
the research questions and their motivations. Subsection 3.3.2 presents the
two phases (survey and interview), population, and sampling. In addition,
Subsection 3.3.3 shows the instruments used in the survey and interview.

3.3.1
Research Questions

Based on the aforementioned goal, we intend to answer the following
research questions:

RQ1 How important is variability in the migration process to the
microservice architecture?

– RQ1.1 Did the original systems contain some sort of customization, prior
to the migration?

– RQ1.2 What mechanisms were used to implement variability prior to
the migration process to microservice architecture?

– RQ1.3 Do developers consider variability as useful criteria in migration
process to microservice architecture?

RQ2 How is variability present after migration to the microservice
architecture?

– RQ2.1 Does microservices extraction increase software customization?

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 45

– RQ2.2 What mechanisms are used to software customization in the
microservice architecture?

In summary, for RQ1 we want to investigate the relevance of variability
and its mechanisms to support and guide the migration of configurable systems
to a microservice architecture. RQ2 aims to understand how variability is
present after migration to microservice architecture, since there is a lack of
understanding about how configurable systems coexist with the microservice
architecture.

3.3.2
Study Phases, Population and Sample

Our exploratory study is composed of two phases: (i) a survey with
specialists, and (ii) interviews with specialists who answered the survey. The
specialists target of our survey are practitioners and industrial researchers
with a background in migrating existing systems to microservices. We used
the results of three mapping studies (27, 34, 35) to identify an initial target
population. In addition, we performed a snowballing search (43) in studies that
cited the referred mapping studies. For performing this search, we used Google
Scholar†.

Our strategy to contact specialists was to invite the authors of the papers
found in the three mapping studies to participate in the survey. We requested
that they submit the survey to the subjects of the empirical studies. After
execution, our search plan resulted in the recruitment of 90 subjects. The
survey was executed from January to March 2019. From the subjects recruited,
we collected answers from 26 participants, resulting in a participation rate of
29%. Of which 13 participants also answered our questions related to software
variability. To carry out deep analysis, we invited the survey participants to
an interview. We have conducted seven interviews.

3.3.3
Instrumentation

Survey. We organized the survey questionnaire into two groups. The
first group is composed of questions for characterizing the participants. We
asked the academic background, development experience, and position in the
current job. We also inquired about their background in migrating existing
systems to microservices.

†https://scholar.google.com/

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 46

The second group of questions has the objective of perceiving the
usefulness of variability, in the extraction of microservices. For this group
of questions, we used a five-point Likert scale associated with the levels of
usefulness for variability, from the least (1) to the most (5). We also asked the
participants to justify their answers. To avoid misinterpretations, we provided
in the questionnaire a definition of variability, which is the ability to derive
different products from a common set of artifacts (21).

Interview. The goal of this phase was to understand the post characteristics
of the migration process. The interviews were conducted using video conference
tools. Each interview was conducted by an interviewer and a scribe that took
notes. For the execution of the interview, we chose a semi-structured approach.
That is, questions that answers can be quantified (structured) and also other
questions that suggest the theme (unstructured) (92).

Regarding the questions, the participants were first questioned with open
and general questions about more high-level themes, in an unstructured way.
For example, explaining about the existing system that was/is being migrated
to microservice architecture. After that, we inquired them with quantitative
questions. For example, the number of microservices extracted. This approach
was chosen by observing that survey participants had an experience mean of
15.77 years in software development. Moreover, participants have been involved
in the migration process to the microservice architecture. In the questions
we investigated the themes: (i) existing systems, (ii) migration process, (iii)
variability, and (iv) tools.

3.4
Results and Analysis

In this section, we present the results and their analysis. The first phase
of our study (survey) brings a better comprehension about usefulness of
variability. In a previous study, we observed how relevant are seven criteria
during migration to microservices architecture. However, the previous study
did not perform an analysis of variability (67). This happened because of the
low number of participants with expertise on migrating some existing system
with variability to a microservice architecture. In this present work, the greater
number of survey answers allowed us made analyses about variability in the
first phase. Moreover, the second phase of study (interview) provided initial
results about the post-migration process to microservice architecture. Among
them, the request for increased customization of the microservices in order to
deal with different customers or groups, in which, before the migration process
was not made.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 47

3.4.1
Participants Characterization

Survey respondents experience may be evidenced by previous and on-
going activities with the migration process to microservice architecture. The
vast majority of the respondents had already concluded their participation in
at least two migration process (a mean of 2.5 and median of 2) and most of
them are actively participating in at least one project (a mean of 1.3 and me-
dian of 1) where the microservices extraction is currently underway. Besides
that, participants observed at least one process (a mean of 1.5 and median of 1)
and they are observing at least one migration (a mean of 1.5 and median of 1).
The respondents have extensive experience in software development. The time
in years the participants have been developing software is considerably high:
(i) the mean is 15.8 years and median is 15 years, and (ii) with a maximum of
35 years and a minimum of 3 years. Our sample of respondents is diversified
in terms of the roles that they play in their employment: developers (42%),
architects or engineers (23%), team leaders (19%), and industry researchers
(19%).

3.4.2
Variability

From the 26 participants, 50% have never considered variability. For these
respondents, the domain they work does not require the ability of deriving
different products from a common set of artifacts (21). Their intention was
to specifically migrate a single software system to a microservice architecture.
However, the other half of the participants have answered that their existing
systems, which were the target of microservices extraction, had variability.
Thus, these respondents were able to answer about the usefulness of variability
along the migration to a microservice architecture.

Among the participants with previous experience to answer on the
usefulness of this criterion (see Figure 3.1): (i) 31% considered it as not
relevant by assigning values of 1 or 2 in the Likert scale, and (ii) 69% of
the participants considered it as useful or very useful. There is no response
with moderate usefulness. Among those that considered variability important,
one participant said: “It was useful to identify the variabilities and features of
each product”. Other participant said that “There are 3 systems that will be
affected by the migration and we need to ensure the differences between them
and how these differences can be handled by the migration process”. In this way,
most participants consider variability useful or very useful in the migration
process to the microservices architecture. However, previous approaches to

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 48

microservices extraction do not make use of variability criterion.

Figure 3.1: The usefulness of variability for the migration process to microser-
vices architecture

Regarding the variability implementation approaches, the most common
ones are those shown in Table 3.1. In the last column of the table, we present
the proportion in which they were cited.

Table 3.1: Variability Implementation Approaches
Approach Percentage
Version control 77%
Design patterns 62%
Framework 62%
Components 54%
Parameters 46%
Build systems 38%
Aspect-oriented programming 31%
Feature-oriented programming 15%
Pre-processor 8%

Version control was the most common variability implementation ap-
proach used in existing systems, that is, in systems before the migration to
microservice architecture. One might consider this is the most simplistic ap-
proach as it leads to the management of copy and paste of different products.
For example, without the need of extending the programming language be-
ing adopted as in feature oriented programming. Approaches more sophisti-
cated are less common ones, like the use of aspect-oriented programming and
feature-oriented programming. The mean of variability implementation ap-
proaches used is 4.5. All the respondents mentioned more than one approach
to implement variability.

The survey results enable us to answer RQ1 as follows:

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 49

RQ1.1: 50% of participants answered that at least one of their exist-
ing systems (from which microservices were extracted) had variability.
RQ1.2: Version control is the most used mechanism (77%) to imple-
ment variability in those existing systems.
RQ1.3: 69% of participants considered variability during the migra-
tion process as useful or very useful

3.4.3
Microservice Customization

During the interview phase, we inquired the participants whether the
extraction allowed that some microservices could be used in different contexts.
To our surprise, four (57%) of the interviewed participants said that some
customization was required after this migration process to microservice archi-
tecture. The customization was needed to attend requests of different groups
inside the same enterprise or customers of the software system. The four cases
previously answered in the survey that the systems prior to migration to mi-
croservices had no variability. This seems to be an indication that the process
of migration to microservices leverages the customization of the single system
by increasing modularity and more interfaces available to its customers. Com-
mon ways to manage these new requirements for dealing with customization
of the software systems are reported in the following paragraphs.

Regarding the other three participants (43%) of the interview, two of
them reported in both the survey and the interview that: (i) the system
has variability before the migration to microservice architecture, (ii) and the
system continued to have variability after the migration. In one of these cases,
the variability in the migrated system relied on design patterns and parameters
in the interface to identify a tenant (50). In the other case, the migration
process is still underway. However, it is expected that some microservices will
not exist or have their behavior drastically modified in different usage contexts.
In the third case which there was no variability before or after the migration,
the software system was completely developed and after migrated for a single
customer and it will not be used by different groups of the enterprise.

RQ2.1: Initial evidence points out that the migration process to a
microservices architecture increase the customizations of the system.

During the interviews, four participants reported that the migration to
microservices was not made with the goal of turning the system more easily

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 50

customizable. However, after the migration, customization requests emerged
by different clients or groups within the same enterprise.

Among the four cases that reported this growth for customization post-
migration, three of them described which approaches were adopted to im-
plement variability in microservice architecture. The other participant report
that the need for customization emerged after the microservices extraction;
however, he did not observe or participate in the process of implementing or
managing the customizations.

We describe below the three implementation approaches employed to
deal with the customization required after the microservices extraction: Copy
and Paste, Big Interface, and Filtering to the Different Platforms.

Copy and Paste was adopted after the migration process to microservice
architecture by one of the participants. That happened when customizations
in the interface of extracted microservices began to be requested by different
groups within the same enterprise. In this case, it was decided to copy the
microservices implementation and perform the customization. Thus, the copied
microservice coexists with the original (inclusive at runtime). Changes are
performed in both microservices by the original developers when maintenance
is required in mandatory features. It was also reported that code of test cases
is submitted to the same copy and paste process and it is managed in the
same way. This approach is often used in the industry as it promptly promotes
reuse of verified functionalities, without requiring high upfront investment and
achieving short-term benefits, as reported by Dubinsky et al. (53).

Big Interface was also an adopted solution. In this reported case, certain
consumers of the microservice APIs needed additional information, or the same
information in different formats. To fulfill this demand, the developers just
included all required information in already existing APIs. However, it should
be noted that this solution raises well-known issues related to the big interface
problem (54).

Filtering to the Different Platforms was an approach that uses an
intermediary microservice between other microservices and consumers, similar
to a gateway microservice. This intermediary microservice has the sole purpose
of filtering the outputs for specific platforms. The case described by the
participant had three different platforms, namely mobile, web, and desktop,
that need customized information from the same microservice. For example,
when a consumer uses a mobile platform, the user interface returns more
targeted and lean responses to these devices, that is, it was a filter of the
original outputs from target microservice interface with its customization for
the different platforms. This pattern seems to be a form of resolution to

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 51

mitigate problems from the previously presented approach.
In addition to the approaches described to deal with the customization

that emerged after the migration process to the microservice architecture,
the interviewed participants were also inquired about integration between
extracted microservices and the legacy system. It was possible to observe that,
in five cases, where the migration process was completed by the interview date,
four of them extracted the microservices in an incremental process, that is,
some microservices were extracted and integrated with the legacy system and
their behavior was observed. In this integration, it was common to use feature
toggles or similar mechanisms to switch between the legacy system and the
integration between extracted microservices. A feature toggle is an age-old and
simple concept (55, 56). It basically is a variable used in a conditional statement
to guard code blocks, with the aim of either enabling or disabling the feature
code in those blocks for testing or release. (56). This was used in a production
environment for the problems reported or observed by the team monitoring
this transition. This approach allowed a fast return to a stable version (legacy
system). In general, some microservice with database access (usually a key-
value database) was used as a microservice filter to choose the switch between
using only legacy system and the extracted microservices integrated with the
legacy system. One participant of the interview reported using this switch
strategy between both versions for a small portion of their users. In survey
participants, 43% reported steps related to the integration between the legacy
system and the extracted microservices. Besides that, the effort related in most
cases were medium or high.

RQ2.2: Three approaches employed to implement the customization
required after the microservices extraction are (i) Copy and Paste, (ii)
Big Interface and (iii) Filtering to the Different Platforms. Microser-
vices are usually extracted in an incremental process. Moreover, feature
toggles (or similar mechanisms) are used to switch between the legacy
system and the extracted microservices integrated with the legacy sys-
tem.

3.5
Threats to Validity

The first threat is related to the number of questions in the survey, that
might discourage the subjects’ participation. To alleviate this threat we made
a subject matter expert reviews (41) with two experts. After considering their

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 52

feedback, we conducted a pilot study with four real subjects. In this pilot, we
observed an acceptable participation rate.

Another threat concerns the number of valid respondents in the survey.
This sampling process resulted in the recruitment of 90 individuals. A partic-
ipation rate of 29% is considered good for online surveys of this kind, which
usually ranges from 3% to 10%. In addition, most of the survey participants
declared to have significant experience in migrating systems to microservice
architecture (see Section 3.4.1). This quality of subjects was reached due to
the fact we followed a formal recruitment strategy (see Section 3.3.2).

About the interview, a threat is the process of collecting data during the
interviews. To deal with this threat we asked the participants permission to
record the interviews for future analysis and transcriptions. In addition, all
interviews were performed by an interviewer, which made the questions, and
the scribe, responsible for taking notes, analysis of the respondent behavior,
and ask additional questions.

3.6
Related Work

In the migrating of existing system to a microservice architecture, some
techniques extract source code information and properties to recommend
microservices. Mazlami et al (13) present a strategy to decompose systems
into microservices considering three coupling metrics. These metrics are used
to weight a graph where nodes represent system classes. Edges are associated
with weights provided by the coupling metrics. The components provided by
a clustering algorithm are used to recommend microservices to the developer.

Other previous study considers the production and use of diagrams to
understand the legacy systems for suggesting microservices. The idea is to
separate and group Enterprise Java Beans (EJB) according to the type of data
it handles (14). In other words, this is a strategy centered on a model-based
criterion. Moreover, Newman (1) presents recommendations of microservice
extractions based on certain criteria associated with the database schema. Jin
et al (15) propose a functionality-oriented microservice extraction method by
monitoring system execution traces and clustering them. In spite of promoting
the use of dynamic execution of the system, it is still limited because it only
considered coupling and cohesion. As observed in our survey, practitioners
need to explore various combinations of criteria in order to make successful
microservice extractions in industry cases. Unfortunately, these combinations
are not either supported or used in existing techniques and methodologies
found in the literature review.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 3. Extraction of Configurable and Reusable Microservices from Legacy
Systems: an Exploratory Study 53

Francesco et al. (12) interviewed and applied a questionnaire to develop-
ers. Their goal was to understand the performed activities, and the challenges
faced during the migration. They reported what are the existing system arti-
facts (e.g., source code and documents) the respondents used to support the
migration. The main reported challenges were: (i) the high level of coupling,
(ii) the difficulty of identifying the service boundaries, and (iii) the microser-
vices decomposition. However, they did not specifically analyzed the usefulness
of the extraction criteria addressed in our survey.

Taibi et al. (11) also conducted a survey with the objective of elucidating
motivations that led to the microservices migration process and what were the
expected returns. The main motivations were the improvement of maintainabil-
ity, scalability, and delegation of team responsibilities. In addition, difficulties
were cited in this process, such as decoupling from the monolithic system,
followed by migration, and splitting of data in legacy databases.

3.7
Conclusions

This paper presented an exploratory study composed of two phases. In
the first phase, a survey was applied to specialists experienced in the migration
process to microservice architecture. In this survey, we also inquired the utility
of variability and mechanisms used to implement them. In the second phase,
we performed an interview with survey participants.

We could ask about the requests for customization after the microservice
extraction, and the mechanisms used by the participants to deal with post-
migration customization. We also observed initial evidence that microservice
extraction can increase software customization, mainly because some users
made demand for customization after microservices were extracted. The more
common approaches to implement customization in extracted microservices
are copy and paste, big interface, and filtering to the different platforms.
Moreover, feature toggles (or similar mechanisms) are commonly used to
switch/integrated the legacy system and the extracted microservices.

Our study is still ongoing, so for future work we expect to have more
responses to our survey and more participant interviews. In this way, we will
be able to draw more analysis about useful criteria for extracting configurable
microservices from monolithic legacy systems.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

4
The toMicroservices Approach

The process of migrating to a microservice architecture is the examina-
tion and alteration of a legacy system to be (fully or partially) adherent to a
microservice architecture. That is, the process of migrating are structured into
two phases: (i) microservice identification, i.e., the selection of microservices
for which possibly reusable code elements are spotted in the legacy system, and
(ii) microservice extraction wherein the actual creation of each microservice is
performed using partially or fully the code elements spotted in the previous
phase.

Survey results indicated that practitioners commonly consider four cri-
teria as useful or very useful in the decision making to identify microservices
of the legacy systems. However, automated approaches to identify microser-
vices (13, 14, 15, 16) commonly make use of one or two criteria, usually in-
cluding the coupling criterion. Moreover, the practitioners often reported the
available tools are limited to identify microservice candidates (Chapters 2 and
3). Nevertheless, survey results suggest that automated approaches simplify
the process of migrating to a microservice architecture.

This chapter proposes toMicroservices, an automated approach to
identify microservice candidates by relying on the existing code of a legacy
system. toMicroservices is built based on: (i) the outcomes of the empirical
study already performed in this dissertation (Chapter 2), and (ii) a compar-
ative analysis of existing approaches (Section 4.1), which enable us to figure
out what are their limitations to be addressed by our approach. The goal is to
create a practical approach to identify microservice candidates from a legacy
system, in which the approach is more aligned with the developers’ needs.

toMicroservices is presented in detail, including artifacts generated
to and required from the user. Moreover, the processes of generating these
artifacts are introduced. The processes includes a many-objective evolutionary
algorithm to optimize five criteria measured based on static and dynamic
properties extracted from the legacy system. In addition, a domain-specific
language is proposed to indicate boundaries of features, which are, in principle,
considered as possible candidates to be fully or partially modularized as
microservices.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 55

4.1
Existing Approaches for Microservice Identification

Before presenting our approach, we present and compare the automated
approaches to identify microservices, which were found in three mapping stud-
ies (27, 34, 35). We also followed a backward snowballing through the found
papers (describing the automated approaches) to identify other approaches
not discussed in those mapping studies. Finally, we updated it through a rapid
review on approaches to the process of migrating to a microservice architec-
ture (57). Several manual and automated approaches have been proposed to
identify microservice candidates (27, 34, 35, 57). Such an identification consists
of establishing parts of the source code of the legacy system that are related
to each microservice candidate. The approaches adopt different criteria along
the decision making of microservice identification.

Coupling is the most commonly adopted criterion by the automated
approaches. Coupling is the manner and degree of interdependence between
software modules (36). Similarly to coupling, cohesion is also commonly
used by the automated approaches to quantify the desirable interdependence
between internal member of a module. This criterion is often defined as the
manner and degree to which the tasks performed by a single software module
are related to one another (36).

Moreover, database schema is another criterion being considered. A
schema provides the (description of the data types and their relationships
in a database (46)). Database schema is a criterion considered in a manual
approach (57) and in one of the existing automated approaches (14). Besides,
the criterion of functional requirement, which specifies a functionality that
a system shall perform (36), is often used to derive cases of use of the
legacy system (15, 16). Other criteria found in empirical studies are presented
in Chapter 2. The existing approaches for microservice identification are
introduced, detailed and compared in what follows.

Newman (1) suggests a manual approach adopting database schema as
especially important and useful criterion for extracting microservices. The
adoption of the database schema criterion is justified in the sense that legacy
systems are too much coupled to a particular database and its schema with
databases. Schema analysis indicated by Newman (1) is predominantly manual,
that is, there is not an algorithm or automated tool to identify microservice
candidates, and the schema analysis is focused on the relationship between
database entities. Several other manual approaches have been proposed after
the appearance of Newman’s approach (1). Their description can be found
in the rapid review performed by Mella et al.(57). However, the fully manual

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 56

identification of microservice candidate in legacy systems is time-consuming
and risky (6, 12, 28).

In this sense, automated approaches have been proposed to reduce the
effort related to identify microservice candidate and increase the quality of
these identifications. In the context of using the database schema to identify
microservices, Escobar et al.(14) created an automated approach and evaluated
it in a case study with a legacy system that makes use of EJB (Enterprise
JavaBeans). In summary, the proposed approach relates classes representing
entities in the database schema (entity beans in EJB) with other classes
responsible for the business rules (session beans in EJB). In summary, the
approach relates each class representing an entity in the database (entity beans
in EJB and called class-entity in this work) with other classes responsible for
the business rules. Each relationship that started with an entity-class (class
representing a database entity) is called by a cluster in Escobar et al.(14)
work. After that, the intersection between the same classes in different clusters
is used to measure coupling. Consequently, a clustering algorithm minimizes
the measured coupling between the microservice candidates identified. The
coupling between classes is examined through the source code of the legacy
system.

Regarding the coupling usage in automated approaches, Mazlami et
al.(13) also adopted a clustering algorithm based on coupling criteria to
indicate microservices using the source code or change history from the legacy
system. The approach uses coupling measurement to weight edges that indicate
relationships between vertices (representing classes). After that, the Kruskal’s
algorithm is used to cluster the graph vertices according to the number of
desired microservices given by the user of the approach. Among the ways to
measure coupling, three different forms were defined: (i) contributor coupling,
(ii) logical coupling, and (iii) semantic coupling. Contributor coupling strategy
defined the weight with the cardinality of the intersection of the developer’s sets
that contributed to the classes related. Regarding the logical coupling strategy,
it is calculated based on the number of times that classes were changed together
in the same commit. Both contributor coupling and logical coupling take into
account change history to measure coupling. However, Mazlami et al.(13) did
not observe how the change history is affected by the quality of the practices
employed along the changes (e.g, the number of commits or pattern adopted
in merge requests). In order to measure the semantic coupling, Mazlami et
al.(13) uses the frequency of a term in classes to measure coupling.

Eski et al.(33) identify microservice candidates combining two ways to
measure coupling. The first way considers the coupling between classes. The

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 57

second way of computing coupling take into account that change frequently
based on software repository (e.g, git). This approach is similar to Mazlami
et al.(13) that also measure coupling by static and change history analysis.
However, Eski et al.(33) made use of the Fast Community Algorithm (58) to
identify microservice candidates in the graph that represents the legacy system.
In this graph, each edge is weighted by the two mentioned coupling measures,
and the Fast Community Algorithm minimizes both.

Different to the aforementioned studies, Jin et al.(15) made an approach
based on the dynamic analysis of the legacy system, that is, properties
are extracted from the system execution (29). Functional requirements are
previously identified and cataloged by users of the approach to execute the
legacy system. Thereafter, the trace executions are analyzed to remove traces
the are covered by others. The resulting traces generate clusters. After that,
clusters similarity is used to indicate microservices considering the coupling
criterion. Furthermore, Jin et al.(15) proposed a mutation operator that it is
analogous to the move method refactoring proposed by Fowler (71). In other
words, the operator moves different classes inside a microservice candidate
to another microservice candidate. Thus, the genetic algorithm adopts this
mutation operator to generate offspring.

The approach proposed in (15) was extended by Jin et al.(16) to use the
intra-connectivity of classes in a microservice candidate to identify the internal
relationship in a cohesion sense, and the inter-connectivity evaluates the
relationship between different traces of the system execution, which provides
indicators about the coupling criterion. In this sense, Jin et al.(16) also exercise
features implemented in the legacy system. However, feature modularization
is not directly measured and optimized. In addition, textual terms also
weight the relationship between classes. Thus, cohesion and coupling are
measured each one by to different measurements from a dynamic and static
perspective. Even as Mazlami et al. (13) which measure semantic coupling,
there is little evidence of how these textual terms are suitable for legacy
systems since the systems analyzed in their comparisons are not legacy
systems. Finally, a genetic algorithm is used to optimize the measured coupling
and cohesion. Furthermore, the genetic algorithm also adopts the mutation
operator aforementioned of the Jin et al.(15) work.

The characteristics of automated approaches are summarized in Ta-
ble 4.1. The most common criterion is coupling. Table 4.1 also shows the types
of analyses that are adopted. That is, from where the information to measure
the criterion mentioned are extracted, ranging from static and dynamic analy-
sis to change history analysis. Besides, granularity represents the unit(s) of the

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 58

Table 4.1: Characteristics of the automated approaches for microservice iden-
tification
Paper Criteria Analysis

Type Granularity Algorithm

Escobar et
al. (14) Coupling Static Class, Class-

Entity Not informed

Mazlami et
al. (13) Coupling

Static,
Change
History

Class Kruskal

Eski et
al. (33) Coupling

Static,
Change
History

Class Fast Commu-
nity (58)

Jin et
al. (15) Coupling Dynamic Class Genetic Algo-

rithm

Jin et
al. (16)

Coupling,
Cohesion

Static,
Dynamic Class, Method

Genetic Algo-
rithm (NSGA-
II (77))

program structure used in the analyses of the legacy system (i.e., class-entity,
class and method). Finally, Table 4.1 also presents the algorithm used by each
approach to optimize the measured criteria.

As far as evaluations of the automated approaches are concerned, Jin
et al.(16) performed a study of their approach that represents the widest
evaluation as compared to reported assessments of other existing approaches.
Jin et al.(16) compare their approach with two other automated approaches
to identify microservice candidates (13, 15) and one automated approach
commonly used to modularize legacy systems (59). In order to perform the
evaluation, a quality model is confronted against the results, that is, the
microservice candidates resulted from the four compared approaches. This
quality model adopts metrics of independence of functionality, modularity,
and evolvability. In this context, Jin et al.(16) suggest that their proposed
approach achieves better results than the three compared approaches.

Case studies are powerful instruments for refining approaches (60) as
they make it possible an in-depth, contextual, long-term assessment of the ap-
proach’s elements. In this way, Eski et al.(33) present a case study wherein the
practitioners identified microservice candidates. These microservice candidates
were compared with the ones generated by the automated approach proposed
by them (33). The method for comparing both sets of microservice candidates
is based on the similarity of these sets. The minimum number of operations
to transform a set of microservice candidates into other set is computed and
adopted in the case study. Lastly, the similarity of the microservice candi-
date proposed by the automated approach is compared with the microservice

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 59

candidate identified by the practitioners. The results present a high similar-
ity about the set of microservices identified by the automated approach and
practitioners. However, there is a lack of understanding on the limitations of
the automated approach, such as the neglected optimization of other key cri-
teria, and how the metrics can be more adherent to the practitioners’ specific
purposes.

Table 4.1 summarizes the automated approaches and shows that a very
few criteria are adopted by them. In addition, the studies conducted with
automated approaches do not consider the state of practice by ignoring other
useful criteria for the process of identifying microservices. These and other
limitations of the existing approaches described here also motivated a number
of decisions made on the design our approach, to be described in the next
sections. We present first an overview of our approach in the next section.

4.2
An Overview of toMicroservices

Our automated approach toMicroservices uses five criteria, namely
coupling, cohesion, reuse, feature modularization, and network overhead. These
criteria are adopted insofar as they were often mentioned in our empirical
studies (Chapter 2). In fact, the five criteria were classified by practitioners as
useful or moderately useful.

toMicroservices uses different data sources to measure the five criteria.
Static and dynamic analyses are adopted to quantify these criteria. Also,
toMicroservices uses code elements as entry points to associate features
with execution traces. Each entry point defines one of the possible entries to
the feature boundaries. Each entry point is a method that is part of the feature
boundaries. That is, the boundaries of a feature delimit the feature scope; i.e,
they consist of the set of program methods that directly interact with methods
of other features. The seeds of each feature are regular expressions and are used
to labeled methods with the features.

Figure 4.2 shows an overview of toMicroservices, including required
inputs and generated outputs under the perspective of the toMicroservices
user. To execute toMicroservice in a legacy system, the user must provide
the following inputs: (i) the legacy source code, including indicators of code
elements that will not be parsed, (ii) program inputs and the corresponding ex-
ecutions of the legacy systems, (iii) regular expressions indicating entry points
to each feature, and (iv) the number of desired microservice candidates. The
inputs are used to automatically measure and optimize the criteria aforemen-
tioned. Finally, the toMicroservices user receives a Pareto set, where each

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 60

solution contains microservice candidates (including the measurements of each
criterion), and the code in method level related to each microservice candidate.

Figure 4.1: toMicroservices overview under user perspective

Our survey shows that functional requirements was the most cited cat-
egory of useful requirements (more than non-functional requirements) by the
survey participants. Thus, toMicroservices adopts a measurement strategy
for a criterion called “feature modularization”. In summary, toMicroservices
associates each feature and its corresponding source code from the legacy sys-
tem as provided by the user. Furthermore, our approach tries to minimize the
amount of features per each microservice candidate, thereby avoiding feature
tangling in the resulting microservice implementation.

The second most cited and useful criterion was network overhead. Thus,
toMicroservices deals with this performance issue by estimating the network
overhead. Performance may become a scalability problem if network overhead
is not reduced in microservice candidates. toMicroservices also address other
non-functional requirements: (i) reusability by quantifying reuse in terms of
how many times a microservices is (re)used by other microservice candidates,
and (ii) maintainability by promoting developing of features (see above) into
cohesive microservices.

Another non-functional requirements can be included in a future version
of toMicroservices as a criterion. For example, adding security constraints
to toMicroservices to avoid extracting methods or classes in different mi-
croservices, which would otherwise facilitating attacks through network com-
munication. In this way, addressing the security non-functional requirement.

toMicroservices still does not use explicitly visual models and vari-
ability because they can be present in legacy systems in many diverse ways.
Regarding variability, participants reported a wide range of implementation
mechanisms adopted in the legacy system. The most mentioned mechanisms re-
ported by the participants include version control, design patterns, and frame-

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 61

work. Thus, the analysis of legacy systems with variability would need to con-
template the detection of those mechanisms and their different forms. In the
same sense, the visual models’ answers in the survey (Section 2) cited several
types of UML diagrams. Thus, variability and visual models were kept beyond
the current scope of toMicroservices.

toMicroservices measures and optimizes the five aforementioned crite-
ria by default: coupling, cohesion, reuse, feature modularization, and network
overhead. To perform this optimization, toMicroservices is a search-based
approach, in which a genetic algorithm is adopted. The genetic algorithm uses
search operators that will manipulate the graph representation of the legacy
systems. During this manipulation, the measured criteria are adopted as fit-
ness functions to the comparison between the generated solutions. Finally,
toMicroservices presents the best alternative solutions (Figure 4.2) found to
the user of the approach in a Pareto set.

toMicroservices approach is presented in Figure 4.2 with its complete
process. The first step (automated graph generator) requires: (i) the legacy
code, (ii) its executions, and (iii) regular expressions associated with features
as shown in Section 4.5; each regular expression describes the entry points of
a feature. The aforementioned inputs are provided by the toMicroservices
user as aforementioned. The artifact generated by the first step is the graph
representation of the legacy system; this representation is introduced in
Section 4.4.

Figure 4.2: toMicroservices process

The second step is the search process (Section 4.3 introduces search-based
software engineering), i.e., a set of steps to search for alternative solutions with
microservice candidates. In this process, a many-objective genetic algorithm,
NSGA-III, was adopted to optimize the criteria (Section 4.6). The input to
this process are the: (i) graph representation of the legacy code, (ii) number
of desired microservices provided by the user, and (iii) criteria set presented
in Section 4.7. The result is a Pareto set, in other words, a set of microservice
architectures. Each alternative microservice architecture is also structured as
a graph (Section 4.4).

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 62

4.3
Search-Based Software Engineering

The term Search-Based Software Engineering (SBSE) was coined by Har-
man and Jones (30) to describe an approach to software engineering in which
search-based optimization algorithms are used to address problems in the
field (31). Such search-based techniques could provide solutions to the difficult
problems of balancing competing constraints (30). Therefore, the optimization
algorithms may suggest ways of finding acceptable optimal or near-optimal
solutions. Search-based techniques are usually applied in situations where per-
fect solutions are either theoretically impossible or practically infeasible (30).
Successful application of SBSE could be found in the resolution of several
problems. Among them, test case generation (62, 88), software product lines
architecture recommendations (63), test order selection (64), and microservice
identification (16).

Harman and Jones (30) also argue that a software engineering problem
needs to be reformulated as a search-based problem. In this way, it is necessary
to define:

– the representation of the problem which is amenable to symbolic manip-
ulation.

– fitness functions.

– manipulation operators.

The representation is how the solution to the software engineering prob-
lem is stored or theoretically described. The representation is of fundamental
importance insofar as it accurately describes the desired solution and allows
manipulation of these solutions by operators. The quality of the proposed so-
lution is evaluated by a fitness function. Different solutions are generated by
search operators that either modify previous solutions or compare them in or-
der to obtain better solutions, while the fitness function verifies how good the
solutions are.

Several problems in software engineering are many-objective or multi-
objective (31), that is, the problems contain more than one fitness function
to be optimized. In the many-objective, more than three fitness function are
adopted. These problems usually have not only one solution. Because the
objectives to be optimized can be in conflict leading to a compromise among
the objectives. In such a situation, the result is a set of optimal solutions. This
set is known as Pareto-optimal solutions or Pareto set (31). Among the Pareto
set elements, each element cannot be claimed better than others directly by
the SBSE approach. Usually, multi-objective search-based algorithms return

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 63

the Pareto set to the user of the approach. Thus, the user needs to select the
best possible solution from the Pareto set according to her priority.

A common metaheuristic in SBSE is the genetic algorithms among
the search-based optimization algorithms, including the handling of multi-
objective problems (31). The genetic algorithm uses concepts of population
and recombination (65). In general, the genetic algorithms start with a ran-
domly chosen population. In each generation, members of the population (a
representation of the problem solution in software engineering) are manipu-
lated by recombination or crossing over their elements (chromosomes). These
elements are joined to the population. After that, part of the offspring and the
original population is mutated. At the end of each generation, the selection
process is used to generate a new population. The selection is guided by the
fitness functions. Finally, a new generation is started or the search process for
the best individuals is completed.

4.4
Graph Representation

The extracted information from the legacy system is represented in a
directed graph where each vertex represents a legacy system method. Each
edge contains information about method calls from either a static or dynamic
perspective. In summary, the graph that represents the legacy system is G =
(V, E) in which:

V is a set of vertices

E ⊂ {vi ∧ vj | (vi, vj) ∈ V 2 ∧ vi 6= vj} a set of edges
(4-1)

sc, dc, dt : E → N (4-2)

Each edge represents a relationship between methods. Moreover, contains
information about data traffic, syntactic calls, and dynamic calls occurrence.
These pieces of information are respectively represented by dt, sc, and dc

functions, defined in Equation 4-2. Thus, from each edge, there is a function
for each of the three aforementioned information.

If e = (vi, vj) where vi and vj represent methods from the legacy system,
and vi ∈ V and vj ∈ V , then sc(e) provides the amount of syntactic calls to
another vj method present in the body of the vi method. In the same way,
dc(e) provides the amount of calls from method vi to method vj at runtime.
Moreover, dt(e) is the data traffic between the method vi and the method
vj. The heuristic to measure data traffic is discussed in network overhead

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 64

(m1, <F1>) (m2, <F1>)

(m4, <F2>)(m5, <F2>)

e1

(m3,
<F1, F2>)

e2

e3

e4

Figure 4.3: Graph representation of a legacy system

measurement (Section 4.7). In addition, the edge e exists only when there
is at least a syntactic call in the vi method body to the method vj.

fc : V → F (4-3)
The information captured about features is used to label vertices (meth-

ods in a legacy system) with features responsible for implementing them. Thus,
each vertex is associated with features, as defined in Equation 4-3, where F is
a set of features.

md : V → D (4-4)
Besides that, the metadata contains data about the vertices name and

additional information as the class name where a method is contained in the
legacy system. The function in Equation 4-4 associates each vertex with a D
set of metadata.

An example of the representation adopted by toMicroservices, based
on the definition of the Equation 4-1, is shown in Figure 5.2. The graph
presents five vertices, each representing a method in the legacy system under
analysis. The vertices m1, m2, and m3 were labeled with the feature F1 in
a first execution. Afterward, the next executions labeled a feature F2 in the
methods m3, m4, and m5.

A possible output of toMicroservices is shown in Figure 5.3, where
(i) m1, m2, and m3 are part of the MS1 microservice, and (ii) m4 and m5
are included in MS2 microservice. In this example case, the communication
between m3 and m4 in the solution representation realizes the communication
between microservicesMS1 toMS2. The values of md, sc, dc, and dt functions
were omitted in the possible cases of inputs and outputs shown in Figure 5.2
and Figure 5.3.

toMicroservices provides to the user of approach: (i) a Pareto set

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 65

Figure 4.4: A simplified example of a solution generated by toMicroservices

where each element is a graph of microservice candidates, and (ii) the source
code in the legacy system associated with each candidate. The microservice
candidates generated by toMicroservices is a clustering of the graph defined
in Equation 4-1. The result is another graph where the vertices are microservice
candidates and the edges are the communication between methods by the
particular choices of the microservice candidates.

The graph of the microservice candidates (vertices) and their commu-
nications (edges) generated by toMicroservices is from now on called MSA
(i.e., microservice architecture). In addition, the cardinality of MSA is com-
puted by the number of microservice candidates and indicated by |MSA|. In
this work, a c-microservice or c microservice is some vertex in the MSA, in
other words, a microservice candidate.

4.5
A Domain-Specific Language for Describing Feature-to-Code Mapping

toMicroservices adopts a dynamic approach to reveal the traces be-
tween each feature and the code element that contribute to its implementa-
tion. In addition, toMicroservices inquire users to indicate the program entry
points to each feature in the execution trace. The decision of exploring the syn-
ergy between execution trace and seeds (entry points provided by users) was
made to provide a better accuracy in feature location (90). Feature location
is a well-known software engineering problem, which consists of establishing
which program element implement a feature (90).

Basically, an entry point is a relationship between a regular expression
and a feature. Each regular expression is compared with patterns in the

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 66

packages, classes, or methods names in the execution trace. That is, the regular
expression can provide a match with some method of the execution trace by
some name patterns. In the match, the method in the execution trace is labeled
in graph vertex that represents the legacy system under analysis with the
related feature.

Moreover, the dynamic analysis in the legacy system captures the depth
of each method call and store in the execution trace. The depth information
is used to label each method in the execution trace that is not an entry point
with the feature related to the last entry point detected with a lower depth
number than the current.

In order to facilitate this relationship between a feature and the regu-
lar expression, a domain-specific language (DSL) was defined in Backus-Naur
Form (BNF) to facilitate this interactions to toMicroservices users. More-
over, reducing the effort in feature location task. Grammar 4.1 presents the
BNF to describe the relationship between a feature and the regular expres-
sion. The character set (<Character> in the BNF) is an 8-bit Unicode, and
ε represents an empty transition (also called ε-transition). An execution trace
example is provided in Listing 4.1, while Listing 4.2 provides the description
of two features and their regular expressions.

Grammar 4.1: Our DSL to describe the relationship between regular expression
and features

〈Digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈Feature〉 ::= 〈Digit〉 | 〈Character〉

〈Regular_Expression〉 ::= 〈Digit〉 | 〈Character〉

〈Row〉 ::= 〈Feature〉 ’〈’ <Composed_Regular_Expression〉 ’>’

〈Composed_Regular_Expression〉 := 〈Regular_Expression〉
| 〈Regular_Expression〉 ’,’ 〈Composed_Regular_Expression〉
| ε

The analysis of an execution trace and the relationships of features and
regular expressions generates a labeled graph that represents the legacy system.
The labeled graph of the examples Listing 4.1 and Listing 4.2 is presented in
Figure 4.5. The examples are simplified cases from the industrial legacy system
presented in the Chapters 5 and 6.

Listing 4.1: Execution trace example
Name : User . getAdminIds#Depth :12

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 67

Name : User . g e tA l lUse r s#Depth :13
Name : User . loadLocalUsersCache#Depth :14
Name : User . getPermiss ion#Depth :13
Name : User . g e tA l lPe rmi s s i on Id s#Depth :14
Name : User . ge tPermi s s i on Ids#Depth :15
Name : P ro j e c t S e r v i c e . g e tA l lP r o j e c t s#Depth :16
Name : P r o j e c t I n f oS e r v i c e . g e t I n f o#Depth :17
Name : User . usersToVector#Depth :14

Listing 4.2: DSL example
User<User . getAdminIds>
Project<Pro j e c tS e r v i c e .∗>

The method User.getAdminIds (in the absolute name that includes a
class and package name when existing) is matched with the regular expression
associated with the feature User. In this case, the method User.getAdminIds
is associated with the regular expression of the feature User, then the
method is an entry point and labeled with this feature. The next meth-
ods with higher depth are also labeled with User feature until the method
ProjectService.getAllProjects that match with the regular expression of the
Project feature. Thus, ProjectService.getAllProjects is labeled in the graph
with Project feature and the method ProjectInfoService.getInfo also is la-
beled since it has higher depth. Finally, the method User.usersToV ector is
labeled with the User feature because the lower depth as an entry point is User
and not Project.

Figure 4.5: Graph labeled from the simplified execution trace and the relation-
ship between a feature and regular expression

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 68

4.6
Search-Based Approach

There are various criteria considered useful or moderately useful by ex-
perienced practitioners along decision making process to identify microser-
vice candidate. Many of them may conflict with each other. For example, the
modularity-related criteria, such as maximizing cohesion, may lead to addi-
tional undesired network overhead like aforementioned in Chapter 1. The two
facts, that is, the several criteria and conflicting relation between them moti-
vates a many-objective solution to indicate microservice candidate.

Thus, we adopted the evolutionary algorithms NSGA-III (32) with the
aim of finding a Pareto set to derive microservice candidates. Basically, NSGA-
III was chosen among genetic algorithms since it is able to optimize three or
more objectives (32). Our proposed metrics for all the criteria (Section 4.7)
are used as fitness functions. The values functions presented in Equations 4-9,
4-11, and 4-14 are maximization functions, while the ones in Equations 4-6,
and 4-17 are minimization functions.

Previous studies (30, 66) point that the Pareto set resulted from the
genetic algorithm is strongly related to the manipulation operators, that is,
the way on how a new population is generated in each cycle of the genetic
algorithm. Thus, we adopt a mutation operator defined in previous works
with positive results (15, 16). However, those previous works adopted a lower
number of criteria to indicate microservice candidates. The mutation and
crossover operators are introduced in what follows.

Mutation Operator. The operator presented by previous studies that
adopted genetic algorithms (15, 16) consists of moving a single method from
one microservice candidate in a current individual of the population to another
microservice candidate. In other words, be a vertex vi ∈ MSk, then vi is
moved from the MSk to another microservice MSz, where MSk ∈ MSA,
MSz ∈ MSA, and k 6= z. In a simplified form, this mutation operator can be
seen as an analogy of the move method refactoring presented by Fowler (71).

Crossover Operator. We also intend to adopt the crossover operator
to generate more diversity of microservice candidates. This operator swaps
the half of methods (represented by mk) in a MSk to other a MSk+1.
Afterwards, the half of methods in the MSk+1 (mk+1) are moved to MSk,
where each element of mk is different of the elements in mk+1. In summary,
the crossover operator exchange half of the methods in a c-microservice to
other c-microservice. The methods (vertices in our graph representation) are
chosen randomly. Finally, the parent solution and the applied swaps between
two microservice candidates are used to generate a offspring solution.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 69

4.7
Objective Functions Computation

Our approach uses five criteria found in empirical studies that evaluate
the process of migrating to microservice architecture. They are formalized in
what follows.

Coupling - To compute coupling between candidate microservices,
we rely on coupling using static information. The Equation 4-5 presents
the coupling computed for each microservice candidates (MSc), which is
represented as a vertex of MSA, whereMSc is a vertex ofMSA. In addition, sc
is the number of calls present in the body of vi method and particularly made
to the vj method, where (vi, vj) ∈ E (edges set in the graph that represent the
legacy system).

δ(MSc) =
vi ∈ MSc ∧ vj /∈ MSc∑

sc(vi, vj) (4-5)
In summary, δ function showed in Equation 4-5 is the number of static

calls from methods within a MSc to another microservice candidates in the
same MSA (microservice architecture).

Equation 4-6 describes how to compute the overall coupling of all MSc

in the MSA. Basically, it is the sum of the couplings associated with all
microservice candidates. Thus, the toMicroservices approach minimizes this
value.

Coupling =
∀MSc∈MSA∑

δ(MSc) (4-6)

Cohesion. The cohesion of a microservice candidates is computed by di-
viding the number of the static calls between methods within the microservice
boundary (i.e., the set of methods assigned to the candidate) by all possible
existing static calls. This declared way of measuring cohesion indicates how
strongly related the methods are within a microservice candidate.

ce(vi, vj) =

1, ifsc(vi, vj) > 0

0, otherwise
(4-7)

In order to compute it, the ce function is defined in Equation 4-7 as a
boolean function indicating the existence of at least a static call.

C(MSc) =
∑∀vi∈MSc∧vj∈MSc ce(vi, vj)
|MSc|(|MSc| − 1)

2

(4-8)

The cohesion of a microservice candidates is presented in Equation 4-
8, where |MSk| is the cardinality of a MSc. Basically, Equation 4-8 divides

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 70

the number of static calls by the number of all possible dependencies between
methods of a candidate microservice. In this sense, the denominator of Equa-
tion 4-8 is the combination two-by-two of all methods within a MSc. The
desired value in Equation 4-8 is the closest possible to 1.

Lastly, Equation 4-9 defines the microservice architecture cohesion as
the sum of cohesion of all MSc in the MSA. Thus, the genetic algorithm will
maximize the computed cohesion of the microservice architecture indicated.

Cohesion =
∀c∈MSA∑

C(c) (4-9)

Reuse. We computed microservice candidates reuse considering the
relationships between the microservice candidates and the user of the legacy
system (e.g, calling the API or user interface). In this order, we propose
to combine static and dynamic analysis to observe the level of reuse of a
microservice within the microservice architecture. In the dynamic analysis,
each microservice candidate is reusable when it is directly called by a user.
This concept is captured by the mdu function (microservice directly called by
the user). mdu function considers the system executions that allow identifying
dynamic calls between vertices, including start points by the user.

r(M) =

1, if ∑vi∈M∧vj /∈M sc(vj, vi) +mdu(M) > 1

0, otherwise
(4-10)

In order to measure the reuse associated with each microservice, we
defined the Equation 4-10. The goal of the equation captures the expectation
that each microservice is useful for other microservices in the architecture or
directly by the user. Whenever a microservice candidates is reused at least
twice, the microservice candidates indicates an adequate reuse level.

The reuse of a microservice architecture is defined in Equation 4-11 when
|MSA| is the number of microservices. In addition, the property 0 < Reuse < 1
is valid. The Equation 4-11 assume the value 1 when all microservices are used
at least twice by other microservice or the user.

Reuse =
∑∀M∈MSA r(M)
|MSA|

(4-11)

Finally, the genetic algorithm tries to maximizes the reuse defined in
Equation 4-11 for each of the candidate microservice architecture obtained.

Feature Modularization. We propose an strategy to indicate the
responsibility of microservice candidates based on the features associated with
executions of the target system. This information is provided by the user

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 71

of toMicroservices approach. Basically, the user provides a list of features
names accessible via an interface (e.g, Rest API) of the legacy system under
analysis. In addition, each feature label is associated with a part of an execution
case (e.g, an interaction case) indicated by the user.

Consequently, toMicroservices performs the traceability between fea-
tures labels and vertices (i.e, methods). This traceability is made during the
execution of the legacy system responsible for implementing them. We used
the vertices labeled to recommend feature modularization in the microservice
candidates with fine granularity and limited responsibility.

In this order, the notion of predominant feature was created to indicate
the occurrence of the feature that most occurs in the vertices (methods)
associated with a microservice candidate. This notion of predominant feature
is used to minimize the amount of features per microservices. Equation 4-12
defines the predominant feature (pf function) of a MSc, where FMc is a set
of occurrence by features in a MSc. Fc set is computed using fc defined in
Equation 4-3 that relates each vertex to a set of features indicated in the
execution of the legacy system.

pf(MSc) = max ∀k∈FMSc
{k} (4-12)

f(MSc) = pf(MSc)∑∀k∈FMSc k
(4-13)

Thus, the feature modularized measured of a c-microservice was defined
in Equation 4-13, that is, a measure of the number of occurrences of the most
common feature divided by the sum of all functionalities occurrences within
a c-microservice. Maximizing the values of the Equation 4-13 leads to the
presence of a single feature or a limited set of features in a c-microservice.

Regarding the feature modularization in the proposed microservice archi-
tecture, Equation 4-13 introduced the feature per microservices. This equation
avoids the fact that each microservice candidates has largely different features.

Equation 4-14 shows the measurement of functional requirement where
FMSA is the set of different predominant functionalities in the MSA. For
example, in the case of Figure 5.3, |FMSA| is two because microservice
MS1 has F1 and MS2 has F2 as predominant functionality. Whether the
predominant functionality of MS2 was F1, then |FMSA| would be one.

The division in Equation 4-14 of FMSA cardinality and MSA cardinality
is to avoid a separation of the same functionality by different microservice
candidates. In addition, the occurrences of the predominant functionality in
each c-microservice are summed.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 4. The toMicroservices Approach 72

F =
∑

∀c∈MSA

f(c) + |FMSA|
|MSA|

(4-14)

Regarding the optimization step, the genetic algorithm aims at maximiz-
ing the value obtained by Equation 4-14.

Network Overhead. A potential problem is the generated network
overhead from the extracted microservices, possibly affecting negatively non-
functional requirements as performance. In order to minimize that problem, we
created a heuristic to predict the network overhead. The heuristic uses the size
of the objects and primitive types assigned as parameters between methods
during the execution of the legacy system.

The network overhead measurement is showed in Equation 4-15 where
the function P (vj) return the set of arguments used in a execution of the
method vj. The function sizeOf(p, m) is the size of the p-th parameter in the
m-th call from vi to vj.

overhead(vi, vj,m) =
∀p∈P (vj)∑

sizeOf(p,m) (4-15)

dt((vi, vj)) = max
m=dc(vi,vj)
m=1 (overhead(vi, vj,m)) (4-16)

Thus, data traffic function (dt) is computed as shown in Equation 4-16,
where dc function is the total of calls from method vi to method vj in execution
time. The network overhead in a proposed MSA set is defined in Equation 4-
17. In summary, network overhead is the sum of data traffic to each MSc. The
values computed by Equation 4-17 is minimized by the genetic algorithm.

O(MSk) =
∀vi∈MSk∧∀vj /∈MSk∑

dt((vi, vj))

Overhead =
∀MSk∈MSA∑

O(MSk)
(4-17)

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

5
Search-Based Many-Criteria Identification of Microservices
from Legacy Systems

The cost of manual analyses for identifying microservices and their
associated legacy code is high (3, 6, 28). Moreover, potential risks as network
overhead and poor modularization can lead to an inadequate or complete
failure of microservice extraction (17). In this way, automated approaches
have been proposed to reduce cost and risk. Existing automated approaches
for microservice identification adopt only a few criteria (13, 14, 15, 16, 33).
Our previous results indicate that practitioners usually consider useful at least
four criteria. Such an empirical evidence indicates that the current automated
approaches are oversimplifying the microservice identification, and possibly
yielding microservice recommendations that developers would not adopt in
practice.

This chapter contains the paper: “Search-Based Many-Criteria Identifi-
cation of Microservices from Legacy Systems”. This paper was accepted as a
poster at Genetic and Evolutionary Computation Conference (GECCO), to be
hosted in Cancun, Mexico, 2020. The full version is being submitted to the In-
ternational Conference on Software Maintenance and Evolution (ICSME). The
paper presents how toMicroservices optimizes a selected set of five criteria
with a many-objective algorithm (NSGA-III (32)). Our automated approach is
applied to an industrial legacy system to support the evaluation and improve-
ment of toMicroservices. In this case study, toMicroservices was compared
to a baseline solution that optimizes two criteria: coupling and cohesion.

The adoption of coupling and cohesion was motivated insofar as they
are the most common criteria in current automated approaches. We observed
in our case study that the adoption of that two criteria is not sufficient
to optimize feature modularization, neither reduction of network overhead
as performed by toMicroservices. In addition, developers classified the
microservice candidates as adoptable in 50% of the cases and were capable
of recognizing between 4 to 7 features or subfeatures in the microservice
candidates. They recognized (sub)features, which over afterwards considered
as potential microservice candidates. We also report our lessons learned with
respect to the use of search-based software engineering along our case study.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 74

The next sections are part of the full paper mentioned above. In case
the reader has read Chapter 4, you may consider to skip Section 5.3, which
provides a more succinct description of our approach.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 75

5.1
Introduction

Legacy systems are commonly found in industry and represent a long-
term massive investment (9, 10). Despite their business importance, these
systems often depend on obsolete technologies (3, 6). Moreover, their mainte-
nance is inherently expensive as many features suffer from poor modulariza-
tion. Their features are highly tangled to each other within various system’s
modules (9, 10). Many industries are increasingly modernizing legacy systems
by extracting their features into microservices (3, 4, 5, 6, 7, 8). Nowadays this
is a key strategy to increase the longevity of legacy systems, while offering new
business opportunities to organizations (6, 11).

The identification of each single microservice from legacy code is a
complex, time-consuming, and error-prone task (6, 17, 12, 28, 67). To reap the
benefits of microservices, developers must reason about multiple criteria while
identifying legacy’s features as microservice candidates. A recent study with
industry experts revealed that developers must simultaneously satisfy at least
four criteria (67). These criteria are intrinsically associated with the definition
of what is a microservice. Microservices are small and autonomous services that
work together by using lightweight network protocols (1). The notion of small
refers to the need of producing cohesive, fine-grained microservices (61) with
each modularizing a single feature (2). The notion of autonomous implies that
each microservice should be highly decoupled, reusable, whereas reducing the
risk of unacceptable network overhead (1, 2, 11, 17).

The problem of microservice identification in legacy code is commonly
seen as a software remodularization task, which is known to be an NP-hard
problem. There is a huge number of possible combinations of source-code
elements and its multi-criteria nature (68). Some studies have proposed search-
based approaches for identifying microservices in existing systems, but they
are of limited applicability (13, 15, 16, 33). First, most of such approaches
solely rely on the use of coupling as a criterion to identify microservice
candidates (13, 15, 16, 33). The most recent approach explores the use of
coupling and cohesion (16).

However, none of them consider the multiple basic criteria that must
be addressed by each microservice. Second and even worse, the performance
of such approaches is merely assessed quantitatively and in the context of: (i)
simple, academic, already well-modularized systems (33), or (ii) an open source
project where they do not have any access to the actual developers (13, 15). The
performance of existing search-based approaches on confirming the potential
adoption of the microservices in practice is unknown. Third, such approaches

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 76

cannot be applied (or even easily adapted) to the context of real legacy systems.
They are too restrictive as they perform a coarse-grained search at the level
of modules (or files) and not a fine-grained search at the level of methods (or
functions). However, legacy systems often have very large files (or modules)
where many features are tangled to each other. In other words, methods in
a legacy module are often implementing various intertwined features, thereby
complicating the identification of microservice candidates.

Thus, we propose a many-criteria search-based approach, called
toMicroservices, for supporting the identification of microservices in legacy
code. Our approach simultaneously optimizes five criteria intrinsically as-
sociated with microservices, ranging from cohesion and coupling to feature
modularization, reuse and network overhead (Section 5.3). Differently from
existing approaches, toMicroservices is designed to identifying microservices
scattered in methods, rather than simply modules (files), in legacy code.

Our quantitative and qualitative evaluation of toMicroservices (Sec-
tion 5.4) is the first to be performed in the context of an industrial in-situ
case study (Section 5.2). The evaluation involved observations along two years
as well as interactions with the actual developers along the process of mi-
grating part of the legacy system to microservices. They relied on the use of
toMicroservices to identify microservice candidates.

Our main findings about our approach are (Section 5.5): (i) it outper-
forms an adaptation of a representative, state-of-the-art solution (our base-
line), (ii) it is able to find various microservices that simultaneously satisfy
well all the five criteria; many of these microservices were considered as highly
adoptable by the legacy developers, and (iii) it is able to successfully iden-
tify microservices that modularize features otherwise tangled and scattered
through many modules of the legacy code. Finally, we discuss threats to va-
lidity, related work and conclude the paper with suggestions of future work
(Section 5.8).

5.2
Industrial Case Study

Target Legacy System. Our case study relies on a Java legacy system
maintained for more than 15 years in the context of oil and gas industry. The
developers of this system reported that its maintenance is very complex and
time-consuming even to add a simple new feature. For example, as the system
does not use a database, the addition of a search for a keyword in files was more
time-consuming than expected. Moreover, the system exhibits all the legacy
problems mentioned in Section 5.1.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 77

Microservices Identification Context. Aiming at mitigating the dif-
ficulties to maintain the legacy system, five developers involved in its main-
tenance started a process of migrating the legacy system to a microservice
architecture. Initially, the developers tried to perform a manual analysis of the
source code to identify possible features to be extracted into microservices by
considering four main criteria: coupling, cohesion, reuse, and feature modular-
ization. However, this manual analysis required a high effort from developers
due to the system complexity and size. To reduce effort, the developers used
visual tools that represent classes and their relations of the legacy system as
a graph. The use of such tools was not helpful due to poor, complex modular-
ization of the software features.

Developers also considered to apply state-of-the-art search-based ap-
proaches (Section 5.1) to derive microservice candidates. However, they strug-
gled to use them for the reasons mentioned in the previous section. In fact,
the developers considered such solutions unsuitable in practice. Moreover, the
quality of the approaches’ results were considered largely unsatisfactory. Thus,
we presented toMicroservices (Section 5.3) to our industry partner as a pos-
sible alternative to automate the identification of microservice candidates for
the legacy system. The developers of the legacy system agreed to analyze the
microservice candidates generated by toMicroservices along their migration
to a microservice-oriented architecture.

“Microservification” of certain legacy’s features. Despite the
legacy’s several features, the developers decided for considering the “microserv-
ification” of three large, important features (or eventually their various sub-
features). These three features are described as follows:

- Algorithm: responsible to store and provide algorithms information by
a REST API, including parameters, binary, documents, and connection points
with other algorithms. In addition, this information can be stored in different
versions.

- Authentication: responsible for verifying the identity of system’s
users. This includes the creation of tokens and their validation, verification of
login and password, update of password, and related simple information about
the system’s users. Source codes related to this core functionality are used
extensively by almost the entire system for checks and information retrieval.

- Project: responsible for the concept of a collaborative environment
between system’s users. This collaborative environment includes share projects
and their metadata between different users or types of users. In addition, the
projects also store shared files.

Example of Many-Criteria Analysis. In the context of our case

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 78

study, Figure 5.1(a) depicts the current monolithic architecture, which is the
source of information. Figures 5.1(b) and 5.1(c) present illustrative alternative
microservice architectures, each one with two microservice candidates and
the residual legacy system. Source code elements responsible for the feature
Algorithm are highlighted in blue whereas the code elements highlighted in red
are related to the feature Projects.

Project

Algorithm

Apache

Browser

Authentication
User
Job
...

Algorithm

Project

Authentication
User
Job
...

Project

Algorithm

Authentication
User
Job
...

Apache

Browser

Apache

Browser

5.1(a): Monolith

Project

Algorithm

Apache

Browser

Authentication
User
Job
...

Algorithm

Project

Authentication
User
Job
...

Project

Algorithm

Authentication
User
Job
...

Apache

Browser

Apache

Browser

5.1(b): Alternative 1

Project

Algorithm

Apache

Browser

Authentication
User
Job
...

Algorithm

Project

Authentication
User
Job
...

Project

Algorithm

Authentication
User
Job
...

Apache

Browser

Apache

Browser

5.1(c): Alternative 2

Figure 5.1: Alternative Architectures for the Legacy System

Let us consider the Alternative 1 in the Figure 5.1(b). This architecture
has one microservice with implementation exclusively of the feature Algorithm.
Still, it has another microservice with implementation predominantly related
to Project but also with some methods related to Algorithm, which are called
in the logic of Project. We can infer that this solution is good in accordance
to coupling and cohesion, which are low and high, respectively. However, the
features are not well-modularized, since the implementation of Algorithm is
scattered in two microservices, and Algorithm is tangled with Project in the
second microservice.

Also, this alternative does not take into account that a method allocated
in the first microservice candidate could massively call a method allocated
within the second microservice, that would lead to a prohibitive network
overhead. On the other hand, Alternative 2 (Figure 5.1(c)) is better than
Alternative 1 in terms of feature modularization and would avoid network
overhead. In this case, all implementation of the feature Algorithm is within a
single microservice, similar to the implementation of Project. Because of this
good modularization, even existing massive calls between methods related to
Algorithms, it would not be problem since they are in the same microservice.

Both alternatives illustrate that more than two criteria are needed to
achieve satisfactory microservice identification. For industrial legacy systems,
as our case study, approaches should consider several criteria and optimize
them to obtain a suitable microservice architecture. Moreover, existing ap-
proaches make simplistic assumptions about real systems from which microser-
vices will be identified and extracted – e.g., features of the existing system

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 79

usually has well-modularized features in files, i.e., not tangled and scattered
through several methods of those files.

5.3
Proposed Approach

In this paper, we introduce toMicroservices - an automated approach
to identify microservice candidates on legacy systems to aid developers in
the migration process. Due to the complexity of the problem, the approach
relies on a many-objective optimization. toMicroservices uses five objective
functions related to criteria classified by developers as useful or moderately
useful (67). The criteria are Coupling, Cohesion, Feature Modularization,
Network Overhead, and Reuse, which are described in details in Section 5.3.2.
The approach’s details are presented in what follows.

5.3.1
Input, Representation, and Output

toMicroservices requires three pieces of information as input: (i) the
legacy source code, including code elements indicators that will not be parsed,
(ii) a list of features related to each execution of the legacy system and (iii)
the number of microservices to be identified. Our approach analyzes the input
at method level to achieve fine-grained microservices.

The proposed approach uses a graph-based representation. Each vertex
represents a method of the legacy system assigned to its respective feature.
Each edge contains information on static and dynamic perspectives. Besides,
it represents a relationship between methods describing data communication,
syntactic calls between them, and dynamic calls occurrence. Figure 5.2 depicts
an excerpt of the adopted representation for the legacy system. The graph
presents five vertices, each representing a method in the legacy system under
analysis. The verticesm1,m2 andm3 are responsible for the feature Algorithm,
whereas the vertices m4 and m5 realize the feature Project.

e4 e3

e1

Apache

Browser

Authentication
User
Job
...

Algorithm

Project

(m1, Algorithm)

(m5, Project)

(m2, Algorithm)

(m4, Project)

(m3, Algorithm)

e2

e4 e3

e1

(m1, Algorithm)

(m5, Project)

(m2, Algorithm)

(m4, Project)

(m3, Algorithm)

e2
M1

M2

Figure 5.2: Excerpt of the legacy’s representation

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 80

Figure 5.3: Microservice candidates for the excerpt of Figure 5.2

The output artifacts generated by toMicroservices are: (i) a set of
candidate solutions, named Pareto Front (PF), where each element is a graph
of microservice candidates, and (ii) the source code in the legacy system
associated with each candidate. Each solution is another graph where the
vertices are microservice candidates and the edges are the communication
between methods and database entities by the particular choices of the
microservice candidates. A possible output of toMicroservices is depicted
in Figure 5.3, where: (i) m1, m2, and m3 are part of the MS1 microservice,
and (ii) m4 and m5 are included in MS2 microservice. In this case, the
communication between m3 and m4 in the solution representation realizes
the communication between microservices MS1 and MS2. The values for data
communication, syntactic calls between them, and dynamic calls occurrence
related to each edge were omitted in the examples shown in Figures 5.2 and 5.3.

5.3.2
Objective Functions

Next, we describe each criterion adopted as objective function. The crite-
ria of Coupling and Cohesion were based on related work, but adapted in our
approach to the fine-grained (methods) level. The criteria of Feature Modular-
ization and Reuse have been used in the context of traditional architectures,
which inspired us on proposing their application in the context of microser-
vices. Network Overhead is a novel designed criterion, which is introduced in
this paper.

These criteria are described next. From now on, MSA (MicroService
Architecture) refers to the graph of the microservice candidates (vertices) and
their communications (edges) generated by toMicroservices as well as MSC

(MicroService Candidate) refers to some vertex in the MSA.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 81

1. Coupling: this criterion is computed by using static information similarly
to (69). The individual coupling for each microservice candidate MSc is
computed by the sum of the number of static calls from the methods in vi

(that belongs to MSc) to methods in vj (that does not belongs to MSc). A
static call consists of a syntactic call to another vj method present in the body
of the vi method. The total coupling of a solution, i.e., an individual, is the
sum of the values of coupling associated with everyMSc in aMSA. The lower
the coupling, the better result.
2. Cohesion: cohesion is defined by dividing the number of the static calls
between methods within the microservice boundary (i.e., the set of methods
assigned to the candidate) by all possible existing static calls (similarly to (69)).
Hence, this measure indicates how strongly related the methods are within
a microservice candidate. The total cohesion of a solution is the sum of the
cohesion associated with everyMSc in aMSA. The higher the cohesion better.
3. Feature Modularization: in a pre-processing traceability step of our
approach, we use the legacy source code and the list of features related to each
execution of the system to assign to each vertex (i.e., methods) in the MSA

a label corresponding to the features it belongs to. Based on that, a MSA

can have MSc composed of methods belonging to several features. We used
the vertices labeled to recommend feature modularization in the microservice
candidates with fine granularity and limited responsibility. The predominant
features number for a MSc is the number of occurrences of the most common
feature divided by the sum of all features occurrences within MSc. The
feature modularization of a solution MSA is the sum of the predominant
features number in every MSc added to the division of the number of distinct
predominant features in the MSA by the number of microservice candidates.
It is desired a degree of feature modularization as higher as possible.
4. Network Overhead: Some non-functional requirements may be affected by
the network overhead of the identified microservices. To minimize the overhead,
we created a heuristic that uses dynamic information to predict the network
overhead. The heuristic uses the size of the objects and primitive types passed
as parameters between methods during the execution of the legacy system. In
addition, the heuristic considers the network overhead caused by the adopted
protocol to communicate with the future extracted microservices. For example,
the HTTP protocol adds a header to each call and, therefore, the size of
this header is considered in our estimation of network overhead. The network
overhead in a proposed MSA is defined as the sum of the sizes of the network
traffic data to each MSc.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 82

5. Reuse: In toMicroservices, a microservice candidate is considered
reusable when other microservices or the user call it. In this order, we com-
bine static and dynamic analysis to measure the level of reuse of aMSc within
MSA. In the dynamic analysis, each microservice candidate is reusable when it
is directly called by the user (e.g, calling the API or user interface). The static
analysis computes the relationships between the microservice candidates. Ide-
ally, a microservice should be reused as much as possible or at least twice (70).
The reuse of a MSA assumes the value 1 when all microservices are used at
least twice by other microservice or the user. Its value ranges from 0 to 1. The
goal is maximizing the reuse of the microservices encompassed by a solution.

5.3.3
Genetic Operators

The mutation operator of toMicroservices is based on the operator
used by previous studies that adopted genetic algorithms (15, 16). It consists
of moving a single method from one microservice candidate in an individual
of the population (a set or graph of the microservice candidate) to another
microservice candidate. In a simplified form, this mutation operator can be
seen as an analogy of the move method refactoring (71).

In our approach the crossover operator exchanges a fraction of the
methods in a microservice candidate to another microservice candidate. The
value of such a fraction is configurable. The methods (vertices in our graph
representation) and microservice candidates are randomly selected. The main
goal of this operator is generating more diversity of microservice candidates.

5.3.4
Implementation Aspects

One might argue the use of NSGA-II, which is the most common evo-
lutionary algorithms to deal with multi-criteria problems. But, different from
NSGA-III, NSGA-II faces some challenges and difficulties for problems with
more than three objectives (73). To implement NSGA-III, we use the jMetal,
which is an object-oriented Java-based framework that includes modern state-
of-the-art optimizers (72). We also adopted jMetal to implement a baseline
approach, which uses NSGA-II (77) with two objectives (see Section 5.4).

During the implementation, we decided to treat the microservice identi-
fication as a minimization problem. Hence, the objective functions related to
Cohesion, Feature Modularization and Reuse have their values inverted during
the evolutionary process. A constraint related to the minimum and maximum
numbers of methods by microservice was established in order to balance the

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 83

granularity and preserve the reasonability of each microservice. Solutions that
violate this constraint are discarded.

The pre-processing traceability step performed before the optimization
process in order to label each vertex with the feature that it implements was
realized as follows. The feature mapping was configured by the manual analysis
of the legacy system execution. During this analysis, a developer, who is an
expert in the design of the legacy system, informed entry points in the trace
execution of the three features, in principle, selected to become microservices
and their subfeatures. Each entry point in the trace execution was used to
label the vertices of the graph representation introduced in Section 5.3.1.

5.4
Empirical Evaluation Design

In this section we present details of the empirical study conducted to eval-
uate toMicroservices in the context of the legacy system presented in Sec-
tion 5.2. Next we describe the research questions, the algorithms’ parameters,
and the quantitative and qualitative studies. For the quantitative study, we
perform two experiments. The first one is the application of toMicroservices
using NSGA-III. The second experiment (from herein called “Baseline”) is an
adaptation of an existing approach (16) to perform a fine-grained search at
the level of method. Baseline optimizes the same criteria considered in (16):
coupling and cohesion.

5.4.1
Research Questions

The empirical study conducted to evaluate toMicroservices has the
goal of providing answers for the following research questions:

RQ1- How is the performance of toMicroservices during the optimization
process in comparison to the baseline approach? This question intends to pro-
vide information about the behavior and advantages of using a many-objective
approach, namely toMicroservices that uses NSGA-III, in comparison to the
Baseline approach, which considers only two objectives and uses NSGA-II. For
answering it, we rely on a quantitative study based on traditional quality in-
dicators used in multi-criteria optimization.

RQ2- Do the developers judge the solutions found by toMicroservices
adoptable to be implemented in practice? toMicroservices was conceived
based on criteria considered useful by practitioners (67). In this way, we want
to investigate practical usefulness of obtained solutions from the point of view

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 84

of developers. In order to obtain answer for RQ2, we conducted a quantitative
study with developers with expertise in the target system.

RQ3- What are the most influential criteria taken into account by de-
velopers during the solutions evaluation? To support our analysis, we explore
the expertise of developers asking about the criteria they really care for eval-
uating microservice candidates for the legacy system and, more importantly,
we analyze which criteria they really take into account during the evaluation.

5.4.2
Algorithm and Parameters

In NSGA-III the population size is defined according to the number of
reference points. In our case, this size was defined as 50 individuals. The
crossover and mutation rates were defined as 0.8 and 0.4 respectively (as
in (15)), and the maximum number of fitness evaluation was 500,000. This
last parameter is also the stopping criterion.

In addition to these traditional parameters, there are some parameters
related to our problem: the fraction of methods exchanged in the crossover
operator, that was set to 0.5, the number of microservice candidates and the
range of methods allocated in each microservice. The latter two parameters
were configured in two scenarios. In Scenario 1 : number of microservices was
5, whose size should have between 5% and 50% of the total number of methods
of the input. In Scenario 2, the number of microservices was 10 with minimum
of 3% and maximum of 16% of the input size in terms of methods number. Our
approach optimized five criteria: coupling, cohesion, feature modularization,
reuse and network overhead.

As briefly described at the beginning of this section, to evaluate
toMicroservices we considered a Baseline approach from a related work (15).
Baseline is a multi-objective approach that optimizes two traditional criteria
for identifying microservices, namely coupling and cohesion. This approach
uses the traditional NSGA-II algorithm, widely used in search-based soft-
ware engineering studies (74). The two objectives adopted by Baseline were
implemented according to the criteria of coupling and cohesion described
in Section 5.3.2. Baseline was setup mostly with the same parameters of
toMicroservices.

In this way, we can perform a fairly comparison between the two ap-
proaches. In this sense, the main difference between them is the objective
functions optimized during the evolutionary process. We executed 10 indepen-
dent runs for each approach due to the execution time which is impacted by
the legacy system size and the number of objectives.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 85

5.4.3
Quantitative Comparison Against Baseline

The quantitative study has the goal of providing pieces of evidence to
compare the behavior of toMicroservices against Baseline, providing answer
for RQ1.

Since we are dealing with multi-criteria optimization, our analysis is
based on two traditional quality indicators, namely Hypervolume (HV) and
Euclidean Distance to the Ideal Solution (ED). HV measures the area of the
objective space from a reference point to a front of solutions (75). In this study
we use the HV computed by a recursive and dimension-sweep algorithm (76).
The reference point adopted to compute HV was the worst values of all
objectives, considering solutions of both algorithms, and incrementing 10%
in each objective values to make the point strictly dominated by all existing
solutions. ED is used to find the closest solution to the best theoretical
objectives, i.e. an ideal solution (85). Since both NSGA-III and NSGA-II were
implemented to deal with all objectives as a minimization optimization, an
ideal solution has a value equal to 0 for all objectives.

To analyze the statistical difference between toMicroservices and
Baseline we used the Wilcoxon signed-rank test (78) as the data sets have
non-normal distribution. Furthermore, we also compute the effect size with
the Vargha-Delaney’s Â12 measure (79). Both tests are widely used to assess
search-based algorithms in Software Engineering (74, 80).

5.4.4
Qualitative Evaluation with Developers

This section describes a qualitative study conducted to evaluate the
practical usefulness of solutions obtained with toMicroservices, from the
point of view of developers. This study has the goal of providing pieces of
evidence to answer RQ2 and RQ3.

This qualitative study involved interviewing some developers of the
legacy system with respect to their opinion about some solutions generated
by toMicroservices in order to answer the posed questions. The following
steps were performed:

1) We selected eight developers specialist in the legacy system.
2) We selected five solutions from the set of non-dominated ones found

by toMicroservices. Each solution has the best value for one of the proposed
criteria. One of them has also the best trade-off among the five objectives as
it represents the best trade-off.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 86

3) Developers answered a survey where firstly they indicated, using the
Likert scale, how useful they find each proposed criterion.

4) In a second part of the survey we presented the three features we
are considering in our evaluation and asked the developers to indicate how
specialist, using the Likert scale, they are for each feature. The question
asks: Rate your knowledge about <feature>: Not knowledgeable (I do not know
anything); Somewhat knowledgeable (I have a vague idea); Knowledgeable (I am
familiar with it); Very knowledgeable (I know all/most classes and methods of
it).

5) During the interview, each developer assessed four microservices from
two different solutions. The solutions were selected from the set of solutions
created in Step 2. The first selected solution has the best value of the criteria
pointed as the most useful by the developer. The second one has the best value
of the criteria pointed as the lowest useful. Given the selected solutions, two
microservices were picked from each solution, according to the expertise of the
developer indicated in Step 4. For each microservice, we repeated the following
process: we presented the solution and asked the developer: Would you adopt
this microservice? Why?. The adoptability was collected in a five-point Likert
scale and the motivation was summarized by the interviewer and interviewee
in a textual field.

6) In the last step, all data were collected and analyzed by three of the
authors.

5.5
Results and Analysis

In the next sections we present the results of the empirical study to
answer the posed research questions.

5.5.1
RQ1 - Performance of toMicroservices

As aforementioned, the Baseline approach optimizes only two objectives,
namely coupling and cohesion. For the comparison of the performance of our
approach, which uses five objectives, we computed for the solutions of Baseline
the additional values of reuse, feature modularization, and overhead. This was
carried out after the evolutionary process of NSGA-II. This allows us to reason
about the advantages of using a many-objective approach in comparison to a
multi-objective one.

Table 5.1 presents results of the Wilcoxon statistical test and the Â12

effect size for the indicators of HV and ED. One should recall that for HV

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 87

greater values are better and for ED lower values are better. In the table we
can observe that NSGA-III reached a greater average value of HV than NSGA-
II. However, the standard deviation is greater than the one of NSGA-II. To
corroborate this analysis, we can analyze the boxplot in Figure 5.4(a). The
values of HV for NSGA-III are in a great interval, differently from NSGA-
II. The Wilconxon test pointed significant difference of HV values between
toMicroservices and the Baseline approach. The efect size shows that NSGA-
III of toMicroservices reaches better solutions than the NSGA-II of Baseline
in 85% of the independent runs.

Regarding ED, there is a similar situation concerning the average and
standard deviation values. However, here all the values of ED obtained by
toMicroservices are better than the Baseline. This is clearly seen in the
boxplot of Figure 5.4(b). This is also supported by the significant difference
(p-value < 0.05) and the effect size, which pointed that NSGA-III is the best
in all independent runs.

Table 5.1: Results of Hypervolume (HV) and Euclidean Distance from Ideal
Solution (ED) of the 10 independent runs.

Indicator Average (Std dev.) Wilcoxon Â12 Effect Size
NSGA-III NSGA-II p-value NSGA-III NSGA-II

HV 1.50E+11 9.69E+10 6.84E-03 85% 15%(5.36E+10) (1.23E+10)

ED 1.13E+08 7.59E+08 8.25E+06 100% 0%(7.67E+07) (2.25E+08)

NSGA−III NSGA−II5.
0e

+
10

1.
5e

+
11

5.4(a): HV
NSGA−III NSGA−II0e

+
00

4e
+

08
8e

+
08

5.4(b): ED

Figure 5.4: Boxplot of the Hypervolume (HV) and Euclidean Distance to the
Ideal Solution (ED). For HV higher values are better, for ED lower values are
better.

Figure 5.5 presents the values of coupling and cohesion on the search
space for both approaches. The solutions of toMicroservices are close to

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 88

−1

 0

 1

 2

 3

 5000 6000 7000 8000 9000 10000 11000

 C
o

h
es

io
n

 Coupling

NSGA−III
NSGA−II

Figure 5.5: Solutions with best ED per run of toMicroservices (NSGA-III)
and Baseline (NSGA-II) considering the traditional criteria of Coupling and
Cohesion.

Baseline ones regarding coupling, with some better solutions for the latter.
Taking into account cohesion, the values reached by NSGA-II are slightly bet-
ter (see the scale on Y axis). Considering only the objectives of coupling and
cohesion, we can observe that toMicroservices can reach acceptable solu-
tions, when compared to the Baseline. A small advantage for the Baseline was
expected, since the NSGA-II exclusively optimizes only these two objectives.
On the other hand, our approach optimizes three additional objectives, leading
to different benefits, as described in the following.

Here we investigate the relevance of using three additional objectives
equally relevant to identify microservices. Reuse is a boolean criterion, in which
all solutions of toMicroservices reached values equal to 1, indicating that the
microservice candidates found by the algorithms are reused in other parts of the
architecture. The impact of feature modularization and overhead on the results
is presented in Figure 5.6. In this figure we can see the difference in the search
space when toMicroservices considered additional criteria. All solutions
found by NSGA-III in our approach are better than the solution of NSGA-II of
the Baseline approach for the criterion of feature modularization. In addition,
almost all solutions of NSGA-III are also better regarding overhead, since they
are mostly grouped in the left area of the graph, which correspond to lower
overhead.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 89

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 2×10
8

 4×10
8

 6×10
8

 8×10
8

 1×10
9

 1.2×10
9

 1.4×10
9

 1.6×10
9

 F
ea

tu
re

 M
o
d
u
la

ri
za

ti
o
n

 Overhead

NSGA−III
NSGA−II

Figure 5.6: Solutions of toMicroservices (NSGA-III) and Baseline (NSGA-II)
considering the aditional criteria of Feature Modularization and Overhead.

5.5.2
RQ2 - Analysis of solutions by developers

For the qualitative study, we inquired eight participants about the
adoption of microservices generated by toMicroservices, as presented in
Table 5.2. As seen in this table, we designed two scenarios for the qualitative
study. In the first one, toMicroservices was setup to obtain solutions
considering the identification of five microservices from the legacy system.
In the second scenario, our approach was setup to identify 10 microservices.
These two scenarios were based on the choices of the actual developers along
the case study. Participants P1 to P4 were inquired about the adoptability
of microservices identified in the first scenario, where as P5 to P8 did the
same, but for the second scenario. Each participant was asked to analyze the
adoptability of the four microservices of the their corresponding scenario.

Table 5.2: Results of the Qualitative Evaluation
Participant Years of experience Recognizable New recognizable Preferred

in the system features features microservices
Scenario 1: Architectures with 5 microservices

P1 0.5 5 2 3,2,4,5
P2 2 3 2 3,2,4,1
P3 2 4 1 2,4,2,4
P4 20 7 6 1,1,1,1

Scenario 2: Architectures with 10 microservices
P5 13 6 4 5,3,2,1
P6 8 4 2 1,5,1,4
P7 1 5 3 3,3,2,4
P8 3 5 3 2,4,4,3

As far as the developers’ experience is concerned, the participants of our

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 90

study are mostly experienced developers, with a median time experience in
software development of 12.5 years. Regarding the time of experience with
the target legacy system, we have both experienced developers, with time
experience of 8, 13 and 20 years, and recent developers, with experience among
0.5 and 3 years. Seven participants are developers of the legacy systems and one
is a team leader. This is an interesting set of participants as we can identify
how both experienced and novice developers analyze the toMicroservices
solutions for microservice identification.

Interestingly, regardless of their experience in the legacy system, all
participants could identify the predominant features being modularized within
the microservices. In addition, the participants also recognized new features
(including subfeatures), which are not subfeatures previously informed as
known by the participants, but identified during the adoptability analysis of
the microservice candidates. However, participants with high experience in
the target system were able to recognize more features and new features than
moderately experienced participants. One participant of Scenario 2 stated the
following with respect to one feature (algorithm) and two subfeatures (parser
and writer): “This microservice is a subset of a more general microservice of
algorithm with at least parser and writer”.

The participants who analyzed solutions of Scenario 1 indicated that
some microservices would not be adopted in practice because of their large size.
According to the participants, these microservices had too many methods as
part of a coarse-grainded feature, and different features undesirably tangled in
the same candidate microservice. A participant stated that he would not adopt
this microservice because: “Very large with too many methods, which realize
different, unrelated features, i.e., project and authentication”. The quantitative
results indicated that 50% (8 microservices) of the proposed microservices are
partially adoptable or adoptable. One participant argues: “This microservice
realizes management of project files, and it is highly reusable by different
tenants.”. Other participants accepted another microservice: “The microservice
is highly cohesive. However, I would further decompose it into a smaller
microservice, even tough given certain constraints in our architecture, I would
adopt the proposed microservice as is”.

For Scenario 2, the analysis of the solutions by the developers pointed
that they would fully or partially adopt 63% (5 microservices) of the proposed
microservices. The participants indicated three microservices as not interesting
at all to be adopted in practice, mainly because the tiny features modularized
by them are too small.

One participant said: “This isolated microservice does not make sense. I

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 91

Table 5.3: Criteria cited by participants during the microservices adoption
analysis
Participant # Useful Criteria Most Influential Criteria

P1 4 Feature Modularization, Reuse, Cohesion
P2 5 Feature Modularization
P3 3 Feature Modularization
P4 5 Feature Modularization
P5 4 Feature Modularization, Cohesion
P6 5 Feature Modularization, Cohesion
P7 5 Feature Modularization
P8 5 Network Overhead, Cohesion, Feature Modularization

believe that it should be merged into the microservice in charge of mastering
project files.” However, the same microservice, which modularized the afore-
mentioned subfeature above, was accepted by other participant. Similar con-
tradicting cases occurred among other practitioners. These cases evidence a
divergence among participants and their analysis on the adequate level of gran-
ularity for the microservice boundaries.

In general, the results regarding the adoption of microservices obtained
by our approach were: three participants would adopt at least one microservice,
four participants would adopt two microservices, and only one participant
would not adopt any microservice.

5.5.3
RQ3 - Most Influential Criteria

During the analysis of the solutions we recorded the audio of the
interviews and took notes about any comment made by the developers.
Based on this information, we identified how many criteria the participants
analyzed and considered as useful. The number of criteria identified for each
participant is presented in the second column of Table 5.3. Five criteria were
clearly considered by five participants. Two participants took into account
four criteria during their analysis. Only one participant considered only three
criteria during the analysis of solutions. These results are consonant with the
literature reports, which state that in practice many criteria are useful during
the identification of microservices from legacy systems (67, 81). Besides that,
our results show that developers in fact use these criteria when to analyse a
proposed microservice.

Based on the information collected during the interviews, we produced a
ranking of the criteria that the participants most mentioned when considering
the characteristics of the solutions. This is shown in the last column of
Table 5.3. We can say that these are the most “preferable” criteria in the
point of view of developers along our case study. We can observe in this column
that feature modularization is the main criterion used in the analysis. This can

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 92

corroborate with the analysis in the previous subsection, where the participants
many times reasoned about features and subfeatures to confirm or refute the
adoption of a microservice candidate.

We can infer that developers search for microservices that contain a well-
defined, cohesive and reusable feature (or subfeature). Cohesion is also often
mentioned. Reuse and overhead were taken into account as the favorite criteria
only by two developers. We believe that these criteria are more difficult to be
analyzed, and the developers would need more time to reason about them.
Interestingly, the traditional criterion of coupling, used by the majority of
existing approaches, was not mentioned as the preferable criterion by any
participant.

5.6
Lessons Learned

Scattered features need further attention. For instance, Authentication
was not captured by a microservice as a main feature. The Authentication
methods were scattered between several microservices in the execution setting
with five and ten microservices generated. The scattered methods of Authenti-
cation can be due to two reasons: (i) bad modularization in the legacy system,
(ii) it is a crosscutting feature. An intensive bad modularization should be diffi-
cult to convert to acceptable values of cohesion and coupling in a microservice.
In addition, the crosscutting feature may be optimized with different fitness
values since in microservice architecture is common to find methods regarding
e.g. Authentication or Monitoring that are highly-coupled with other microser-
vices.

After the interview, the developers were inquired about improvements
that could help them in the analysis. Half of the participants pointed that a
visual representation of the methods inside a microservice could make the
analysis easier. In addition, at least one participant recommended: (i) to
remove auxiliary functions providing a “clear” view of the microservices (ii) to
remove dependencies that will not exist in the migrated system, and (iii) to
highlight the predominant feature or subfeature in a microservice.

5.7
Threats and Literature Limitations

Threats to Validity. We discuss here the main threats to validity of
our work. Regarding the qualitative study, three researchers analyzed the
developers’ textual answers to mitigate potential problems in the coding
process. After a first analysis, the three researchers gathered to converge

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 5. Search-Based Many-Criteria Identification of Microservices from
Legacy Systems 93

and decide for the adopted code, which was analyzed by a fourth researcher.
Another threat is related to the divergence of researchers’ opinions about which
criteria were taken into account by each participant. To mitigate this threat,
three authors deeply analyzed and discussed each participant answer until
achieving a consensus.

Another threat might be the number of independent runs executed in
the quantitative study insofar as an evolutionary algorithm was used. We
executed 10 runs because of the size of the legacy system and the number
of objectives, which required a lot of runtime to conclude each run. Despite
of being less than the recommended, our sample size was enough to execute
statistical comparisons. The standard deviation of the HV and ED results were
not abnormal, and there was no outlier in our sample.

Finally, the full microservice architectures (i.e., all possible microser-
vice candidates and their inter-dependencies in each solution) generated
by toMicroservices were not fully evaluated insofar as this task is time-
consuming. To mitigate this threat we inquired each developer on the adopt-
ability of a set of microservices selected by the same microservice architecture.

5.8
Conclusion

This paper introduced toMicroservices, an automated approach to
identify microservices from legacy systems. toMicroservices deals with
five criteria observed as relevant and useful in an industrial survey.
toMicroservices was compared with a baseline approach in an industrial
case study. The baseline considered only two traditional criteria, namely cou-
pling and cohesion.

The quantitative results pointed out significant difference between the
baseline and toMicroservices, reinforcing the needs to adopting more crite-
ria than traditional ones. We observed that the criteria of Feature Modular-
ization, Network Overhead, and Reuse introduced a new perspective in the
optimization of the solutions since they are not subsumed by coupling and
cohesion. The qualitative results indicated that developers would adopt mi-
croservices identified by toMicroservices during the process of migrating to
microservice architecture. Moreover, the results of the case study show that
developers usually take into account five criteria to assess the possible adoption
of a microservice candidate. In addition to coupling and cohesion, the criteria
of Feature Modularization, Network Overhead, and Reuse provided insightful
information that were clearly used in the analysis by the developers. Feature
modularization was the most influential criterion.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

6
A Qualitative Evaluation of Recommended Microservice Ar-
chitectures

The previous chapter presented a quantitative and two qualitative eval-
uations of toMicroservices. Those studies focused on comparing the perfor-
mance of toMicroservices and a baseline approach. Moreover, practitioners
of an industrial case were questioned about individual microservices generated
by toMicroservices. The results suggest that toMicroservices generates
better solutions then the baseline approach. Moreover, toMicroservices was
evaluated as able to generate microservice candidates that are adoptable by
practitioners.

Furthermore, the findings from the past study indicate the importance
of adding a certain degree of interaction between users and the solutions
generated by toMicroservices. In particular, our approach should be able
to allow developers to perform certain modifications on candidate microser-
vices, and ask for our approach to search for further improvements considering
those modifications. Developers should also be able to accept adequate mi-
croservice candidates, partially modify adequate microservices and re-execute
toMicroservices to discover new microservices given the constraints gener-
ated by the user. Thus, this chapter presents toMicroservices with these
improvements.

Moreover, the previous studies in Chapter 5 did not investigate
the complete adoptability of the microservice architectures generated by
toMicroservices. Thus, this chapter presents a focus group study to
expand the understanding of the adequacy of the solutions generated
by toMicroservices. Groups of developers in our industrial case study
were inquired about the entire microservice architectures generated by
toMicroservices. For this purpose, architectural artifacts were presented to
the developers using visual representations. In addition, the relative usefulness
of the artifacts was questioned to each developer. Furthermore, developers were
also inquired about the relative perception of the focus group method to better
instruct the analyses of the candidate microservice architectures.

The content of this chapter presents an expansion of the paper presented
in the previous chapter. Thus, we intend to submit these new results as original

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 95

contributions in a full paper to be submitted the journal IEEE Transactions
on Software Engineering, the leading international journal in our field.

6.1
Introduction

A software architecture is composed of modular units, such as microser-
vices and their relationships (19, 20, 82). Each architecture unit is traced to
a set of source code elements (19, 20, 82). toMicroservices produces a set
of microservice architectures and the traces of each microservice to its source
code counterparts. Moreover, we evaluated whether developers would even-
tually adopt each microservice candidate. Our approach provides alternative
microservice architectures, each composed of multiple microservice candidates.
Thus, our previous studies have not assessed if those microservice architecture,
as a whole, would help developers in making architectural decisions. We cover
this gap in this chapter.

toMicroservices generates a Pareto set, where each individual (solu-
tion) in this set is a microservice architecture. Each microservice architecture
is composed of microservice candidates, each realized by several methods in
the source code. As presented in Chapter 4, each architecture is represented
as a graph microservices, and each microservice, in turn, is represented as a
graph of methods.

The study of this chapter consists of a focus group (83) conducted to
evaluate the architectural solutions provided by toMicroservices. The choice
of the focus group was made since architectural decisions are usually performed
together within the system’s organization. The focus group allows to assess
toMicroservices in an industrial system, where multiple perceptions are
discussed and decisions are made by a group of people.

Moreover, refinement operators were built to be used by an specialist in
the system under analysis. The operators allow to better explore different
developers’ profiles and knowledge about the system under analysis. The
operators are based on results of the qualitative study presented in Chapter 5,
where the collected data supported the creation of two operators. Among them,
the frozen operator allows toMicroservices users to select methods that will
not be moved between microservice candidates in the future generations of
offspring by the genetic algorithm. The additional operators allow moving a
single method or a set of methods between microservice candidates.

The study introduced in Chapter 5 analyzed the adoptability of microser-
vice candidates generated by toMicroservices in an industrial legacy system.
Besides, the traceability to the associated code of the legacy system was also

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 96

investigated. Since our initial goal was to understand the preference of devel-
opers for the characteristics of isolated microservices, in that previous study
only some parts of the whole architecture were analyzed.

To complement the aforementioned study, we conducted a focus group
study to observe possible global architectural decisions within the context of
the same industrial legacy system. A focus group study is an research technique
that collects data through group interaction on a topic determined by the
researcher (84). The focus group method is suited to obtain an initial evaluation
of solutions, collect lessons learned, recommendations, practitioners’ feedback
on research questions, and identify potential problems (83).

Our results indicate that developers needed a few modifications to refine
the microservice architecture discussed by each group of developers. The de-
velopers chosen to merge some microservice pairs and moved a few proportion
of methods between microservice candidates. The result also suggests that the
visual representation was considered very useful by developers than: (i) each of
the actual relationships (dependencies) between microservice candidates, and
(ii) the traceability of architectural elements to the source code counterparts.

Section 6.2 introduces the refinement operations to be executed during
the optimization by toMicroservices. Section 6.3 presents the study design,
while Section 6.4 shows the results and answers to the research questions.
Finally, Section 6.5 introduces threats to validity and Section 6.6 presents the
conclusions.

6.2
Refinement Operators

In the study of Chapter 5, we collected decisions that developers per-
formed in the analysis of adoptability in microservice candidates generated by
toMicroservices. These decisions include moving several methods or even
removing a single method. For example, a participant stated: “There are ten
methods that should be in another microservice”. This quote suggests that in
the real case, the developer would move the methods to another microser-
vice. Furthermore, developers responded that they would adopt 50% of the
microservice candidate that were presented.

Based on the aforementioned qualitative analysis of common developers’
decisions, we created two refinement operators that can be applied during
toMicroservices re-execution. The refinement operators and their decisions
are:

– Move operator changes block of methods to another microservice,
where this block should contain at least one method.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 97

Figure 6.1: toMicroservices re-execution with refinement operators

– Frozen operator prevents that selected methods to be moved to the
genetic operators during in the next offspring generation.

Figure 6.1 presents the re-execution of toMicroservices and the steps
in which the user is required. First, toMicroserives is initiated by the same
inputs presented in Section 4.2: the legacy source code, including indicators of
code elements that will not be parsed, (ii) executions of the legacy systems,
(iii) a list of features related to each execution of the legacy system, (iv)
regular expressions to each feature, and (v) the number of desired microservice
candidates. In Figure 6.1 this initiation is represented in the first step. After
that, the toMicroservices user selects the best solution in the Pareto front as
the second step. Several ranking strategies can be applied to select a solution
in the Pareto front (64, 85, 86, 87). Among them, the selection can be guided
by more valuable criteria or the best Euclidean distance from an ideal solution.

The third step consists of the user’s assessment of the selected architec-
ture (solution). The user can accept the solution and finish the re-executions;
otherwise, the fourth step will request that the user to apply the refinement
operators in the accepted solution. The operators allow better exploring the de-
veloper’ profile and knowledge about the system under analysis. Among them,
move operator only changes block of methods, while frozen operator imposes
constraints on the next execution of toMicroservices. These constraints im-
pose that mutation operations and the crossover operator are executed in the

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 98

next search process without being applied to frozen methods. After the fourth
step, the modified solution and their constraints to the next search process
is provided to the toMicroservices approach in addition to the same inputs
previous given. Thus, a new execution is started with the constraints. Besides,
the constraints imposed by the frozen operator can be modified in the next
steps of refinement during the re-executions in the third step.

6.3
Study Design

This section introduces the study research question, subjects selection,
and study execution that we designed to investigate the toMicroservices
approach.

6.3.1
Research Questions

We intend to answer the following research questions to evaluate and
improve future versions of toMicroservices.

RQ1. Do the practitioners judge the solutions found by
toMicroservices adoptable to be implemented in practice?
toMicroservices is an automated approach to identify microservices by
relying on a legacy system and being built from an overall useful set of criteria
based on empirical evidence. For a comprehensive evaluation of the use of such
criteria, a post-build evaluation may guarantee the claim of practical applica-
tion with deductive empirical evidence and even provide new indications to be
added to the approach. Our previous study (Chapter 5) evaluated individual
microservice candidates under the point of view of practitioners in a industrial
legacy system. However, a complete solution (a microservice architecture) was
not evaluated. Thus, RQ1 intends to evaluate toMicroservices solutions in
the view of its adoption in practical cases. We designed a focus group study
that involved practitioners with experience in the system under analysis. This
allowed us to gather results to understand the adoptability of a generated
solution, and consequently how to potentially improve toMicroservices if
needed.

RQ2. What is the effort to modify the microservice architectures gener-
ated by toMicroservices?
Solutions generated by toMicroservices may naturally contain imperfections
or even not satisfying a specific developer as previously investigated (Chap-
ter 5). These imperfections, if not major, in the generated architectures may
be fix without a considerable effort. However, the level of required effort is un-

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 99

known. Such a level of effort on fixing solutions generated by toMicroservices
can be measured by the number of moved methods between microservice can-
didates, number of merges of two or more microservice candidates, or number
of decompositions of one microservice in two or more. Therefore, the RQ2 goal
is to evaluate the effort to change a generated solution to better satisfy the
developer’s goal.

RQ3. Which are the most useful artifacts provided by toMicroservices

to support developers on adopting a generated architecture?
toMicroservices presents three architectural artifacts to the user: (i) a visual
representation, (ii) a set of relationships between microservice candidates, and
(iii) the set of traces from the source code to each microservice candidate (and
vice-versa). These architectural artifacts are mentioned as useful by other au-
thors (19, 20). The relative importance of each artifact is unknown in solutions
generated by toMicroservices as complete solutions have not been evaluated
yet. In addition, previous studies present gaps in providing an understanding of
the useful artifacts to present the microservice architecture (27). This research
question intends to evaluate the usefulness of each artifact for the microservice
architecture generated by toMicroservices at a design stage.

RQ4. Does the focus group method support practitioners to make deci-
sions related to the selected microservice architecture?
As previously mentioned, focus group is a method of study commonly adopted
in software engineering and social sciences, usually to explore the potential of
groups and their reasoning. Architectural decisions influence further decisions
made along the next phases of the development cycle (e.g, implementation and
testing). In this context, the discussion of complementary or contradictory
developers’ viewpoints may contribute to formulate well-informed key deci-
sions. Therefore, we intend to understand with the RQ4 whether focus groups
was useful to assist in the process of evaluating an architecture generated by
toMicroservices in practice.

6.3.2
Subject Selection

In total, seven developers participated in the study. The developers have
years of experience with the industrial legacy system used in this study and
they have participated in the qualitative study presented in Chapter 5. They
were divided into two groups. The division choice was performed by their profile
answers collected in the previous qualitative study (Chapter 5). We follow the
guidelines of focus group studies that recommend clustering the groups by
similarities (83).

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 100

Four developers presented a profile with a fine-grained microservice per-
spective since they positively evaluated microservice candidates that modular-
ized single subfeatures with a very few amount of methods. The other three
developers have a coarse-grained microservice profile, where several subfeatures
or a complete feature in a microservice was indicated as adequate. The division
by profile also helped to better configure toMicroservices to the particular
needs or perspectives from those two groups. The fine-grained group received
a solution where toMicroservices was configured to generate ten microser-
vices. The coarse-grained group received a solution with five microservices.
The choice of the microservices number was made based on the number of
subfeatures previously recognized by the developers, and the grouping of sub-
features observed as adequate by the developers per microservice candidates.
These data were collected in the interview of the previous study (Chapter 5),
where generated microservices were individually analyzed.

In addition to the seven developers, an additional developer was selected
to apply the refinement operators before the focus group. This developer has
two years of experience in the maintenance activities of the system under
analysis, which include the features analyzed. Thus, he was not included in
the focus group study.

6.3.3
Study Execution

The additional developer used features and subfeatures recognized in the
previous qualitative study (Chapter 5) to guide the refinement applications. He
chose either to freeze a method related to a subfeature previously recognized
or move methods that did not relate to the frozen subfeature.

The additional developer performed three complete refinement cycles as
shown in Figure 6.1, where refinement operators were applied. In the total,
three hours per group were spent on activities of: (i) a manual analysis of the
generated solution, and (ii) a comparison of feature modularizations indicated
as positive in the analysis of individual microservice candidates (Chapter 5).
The solution with the best Euclidean distance was chosen in each cycle. The
ideal solution was simulated with the best criteria found per each fitness
function, that is, creating a simulated point with the best fitness function
found in the Pareto set. The simulated point was used as a reference point to
compute the Euclidean distance from the ideal solution.

The artifacts given to developers during the focus group execution
were: (i) visual representation of the microservice architecture, (ii) the details
of the relationships between methods pertaining to different microservice

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 101

candidates, where each method call is presented as a relationship, and (iii)
the traceability to the legacy code at the level of methods. The visual
representation contained the microservice candidates and their relationships.
The relationship is directional, and the weight in each relationship is the
coupling between the microservice candidates, in terms of the number of static
calls between methods in a microservice candidate to methods in another
microservice candidate.

During the execution of the focus group, the interview of each group was
performed at a different moment. The developers were first introduced to the
visual representation of the generated microservice architecture. The moder-
ator of the focus group explained how the relationships presented in the vi-
sual representation between each candidate microservice were computed. After
that, each microservice candidate has the main responsibilities and subfeature
described. Moreover, the moderator stated that developers could request in any
moment details of the relationships between microservice candidates, the list
of methods in each microservice candidate, or the source code of each method.
The relationships between microservice candidates include the methods that
call or are called from other microservice candidates. That is, they determine
the provided and required interfaces of each microservice candidate.

After the previous explanation, the moderator required developers to
evaluate the architecture presented. During the discussions, the moderator
required that each decision was justified. The justifications included the
refactoring operations required to modify the architecture, information based
on their experience with the legacy code, or reasons for accepting or rejecting
candidate microservices and/or their relationships.

At the end of the focus group execution, the developers were ques-
tioned about the adoptability of the microservice architecture generated by
toMicroservices. They were also questioned about the usefulness of (i) the
visual representation, (ii) the relationships and interfaces, (iii) microservice-to-
code traces, and (iv) the focus group method. Finally, developers were inquired
about the adoptability of the modified microservice architectures. The ques-
tions aforementioned were responded on a five-point Likert scale, where the cat-
egories from the highest level to the lowest are: very useful, useful, moderately
useful, little useful, useless. Regarding adoptability questions, the categories
were: clearly adoptable, adoptable, moderately adoptable, little adoptability,
not adoptable at all. Moreover, the focus group execution lasted for one hour.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 102

Table 6.1: Questions conducted after the focus group execution, and their
median

Inquired Questions Fine-grained Coarse-grained
Adoptability of initial microservice architecture 3 1

Usefulness of Visual Representation 4.5 3
Usefulness of Relations and interfaces 3 1

Usefulness of Focus Group 5 4
Adoptability of final microservice architecture 4 4

6.4
Results and Analysis

The developers were inquired whether the generated architecture by
toMicroservices were adoptable in the industrial system. Table 6.1 shows
the result in terms of the median of a five-point Likert-scale. The developers in
the fine-grained group indicated a moderate adoptability in the initial solution.
The developers in the coarse-grained group pointed that the initial architecture
was not adoptable.

Developers were also inquired about the adoptability of the modified so-
lution during the focus group execution. The median suggests the adoptability
of the solution to both groups. To answer RQ1, the analysis of both presented
questions suggested that the developers would not adopt the solution generated
by toMicroservices. However, with modifications such as those performed in
the focus group study, the solution would be adopted in the real system.

The moderator of the focus group collected the modifications suggested
during the focus group execution. The goal was understanding which modi-
fications were carried out to make the generated solutions adoptable in the
industrial system. Regarding methods in each microservice candidate, the de-
velopers in the fine-grained group moved less than 1% of the methods to other
microservice candidates. The methods moved are related to the authentica-
tion feature. As previously discussed in Chapter 5, modularizing crosscutting
features, such as authentication, into microservices is a challenge. In the coarse-
grained group, no method was moved. The additional modifications performed
by both groups were limited to merge pairs of microservice candidates.

In response to RQ2, the modifications being predominantly the merge of
microservices pairs leads to a low effort to modify the generated microservice
architecture. In summary, this fact shows the suitability of the microservice
candidates and their related code, motivated by the addition of interactivity
with a specialist of the system under analysis. Regarding the ability to
recognize features and subfeatures, all developers were able to recognize them
through visual representation and the source code presented. In addition,
other subfeatures were not indicated by developers during the analysis of

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 103

the architectures, or even, subfeatures as poorly modularized through the
microservice candidates.

Table 6.1 also indicates that the visual representation of the solution
was accepted as more useful than observing the relationships between method
calls from different microservices. In both groups, developers spent more time
discussing elements related to visual representation than all the other artifacts
presented. The developers also stated that relationships were more useful than
the source code during the focus group as also seen in Table 6.1. Regarding the
RQ3, the visual representation of the microservice architecture was considered
as the most useful artifact.

In the visual representations, the weights provided on the directed edges
were the number of static calls between methods of different microservice
candidates. The developers indicated that this number is difficult to interpret.
That is, they cannot directly understand what this value in relation to the
beneficial or harmful coupling involving the microservice candidates.

However, the weight presented was used in a comparative and useful way
during the developers’ arguments. The weights were compared relatively to
each other. Both developers groups used the weights presented in the visual
representation to make relative comparisons involving the candidates and to
make decisions and justify them during the focus group. The comparison
between the different weights was useful because the weights indicated elements
with extremely strong coupling, which they considered unacceptable.

The fine-grained group argued then the weight less than 10 between
microservice candidates were acceptable. In the microservice candidate that
modularized the project file, the developers accepted a coupling of more than
100 since it was possibly indicating the satisfaction of other desirable criteria,
such as reuse and cohesion. The coarse-grained group was much more rigorous
than the fine-grained group since they tend to avoid strong (harmful) coupling
between microservices. They argued that other forms of modularization could
be adopted internally to each microservice when they discussed criteria like
feature modularization.

The developers in the fine-grained group considered merging all microser-
vice candidates related to project subfeatures in a single microservice. This was
motivated by the high density of relations shown in the visual representation
and confirmed by the relationship analysis. However, the high reuse and co-
hesion were decisive for the maintenance of the microservice that modularizes
the project file subfeature. The other two microservices related to the project
have been joined due to the high coupling between the pair of microservice
candidates. Thus, they merged permission and metadata subfeatures in a sin-

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 104

gle microservice. In the coarse-grained group, the lack of weight between the
resulting microservices was one of the arguments to maintain the modification
of the proposed solution.

Finally, the developers in both groups were inquired about the focus
group method and their usefulness to analyze and modify a proposed microser-
vice architecture relied on a legacy system. The fine-grained group considered
it a very useful method, while the coarse-grained group considered it useful.
In response to RQ4, these responses suggest that focus groups are a pertinent
method to be applied by practitioners in evaluations of architectural decisions.

6.5
Threats To Validity

The threats in the execution of the focus group were mitigated to a
pilot execution with a group of two developers with less than 1 year in the
maintenance on the system under analysis. The developers were inquired
about a microservice architecture generated by toMicroservices. Moreover,
a research specialist in empirical studies also reviews the artifacts. In both
steps, artifacts problems were identified and corrected the: (i) refinement of
visual representation to better the position the edges and their weight and (ii)
the summary creation about the subfeatures in each microservice candidate.

The developers were questioned at a design stage in the process of
migrating to a microservice architecture where implementation tasks on such
microservice candidates are not yet being performed. That is, microservices
are not actually being extracted during the focus group execution.

Focus group study guidelines in empirical software engineering suggest
that groups should be selected relied on similarities (83). We dived the group
relied on the granularity profile observed in a previous study. We divided the
group to guide meetings more focused on the criteria and avoiding subjective
discussions points to the developers’ profile.

6.6
Concluding Remarks

We adopted a focus group method to evaluate toMicroservices. The
focus group study was performed with an industrial legacy system under
the process of migrating to microservice architecture and its experienced
developers. Lessons learned were collected from our observations and results. In
this study, we observed that toMicroservices is able to generate an adoptable
solution after some merge operations.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 6. A Qualitative Evaluation of Recommended Microservice
Architectures 105

The results also suggest the importance of visual artifacts that are
generated by automated tools in conception phases. Otherwise, developers
struggle to have a global picture of the future microservice architecture to
be derived from the refactoring of the legacy system. In fact, developers
indicated visual representations as more useful than other artifacts provided,
contradicting our initial expectations. Developers indeed used more the visual
representations to discuss and support their decisions during the focus group.

Furthermore, the focus group method itself has shown to be powerful
method to discuss possible microservice architectures (and, thus, properly
suppor the evalution of toMicroservices), extract complementary knowledge
from the developers of the legacy system, and consolidate a single accepted
architecture by the developers groups.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

7
Conclusions

This dissertation focused on designing and implementing an automated
approach to identify microservice candidates based on information extracted
from the legacy code. Our approach was called toMicroservices and uses
methods of search-based software engineering. toMicroservices adopts five
criteria, and they are optimized by a genetic algorithm able to handle with
many-objectives. This is quite different from the other existing automated
approaches, which only use one or two criteria. The mere use of coupling and
cohesion does not capture important influential criteria that are more specific
to microservice architectures.

We conducted empirical studies to support the design and improvement
of toMicroservices. We cataloged a set of criteria commonly found in empir-
ical studies that report the process of migrating existing systems to a microser-
vice architecture. Our evaluation of these criteria under the point of view of
experienced practitioners allowed us to build toMicroservices avoiding the
oversimplification of state-of-the-art automated approaches. Besides, the re-
sults also indicated a limitation in the used tools to measure each individual
criterion. In a general sense, the experienced practitioners also indicated they
consider existing tools limited to support migrations to microservice architec-
tures.

Moreover, our empirical studies also allow a deeper understanding of the
importance and presence of variability in legacy systems under the process
of migrating. Half of the participants answered that they reasoning about
variability as they progressed in their migration processes. Several mechanisms
were used to implement variability in the legacy system before the migration,
where the most common was the use of control version systems. After the
migration process, the interview with developers suggests an increase in
demands that lead to implementing variability in the migrated microservice
architecture. Moreover, we cataloged in the interview three patterns used to
implement variability in the migrated microservice architecture.

toMicroservices was evaluated and improved along a case if an indus-
trial legacy system, which is undergoing a process of partially migrating it to
a microservice architecture. In this legacy system, toMicroservices was able

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 7. Conclusions 107

to identify adoptable microservice candidates as evaluated by their developers.
Regarding the criteria, feature modularization was the most used criterion to
evaluate each microservice candidate. Moreover, the developers were able to
recognize features modularized in microservice candidates. Finally, our study
in the industrial legacy system, in which several developers were involved,
indicated the importance of an interactive automated approach to identify
microservice candidates in a step-wise fashion.

Therefore, a model for re-executing toMicroservices was created, fa-
voring the interaction with the developers and allowing the automated appli-
cation of refinements on the solutions. Thus, this interactive strategy allows
a developer to incorporate his knowledge about the legacy system and to ac-
commodate his preferences along the decomposition of the microservices. This
also enable developers to follow either fine-grained, coarse-grained or hybrid
decompositions of microservices. Our empirical evaluation suggests a low effort
to modify solutions generated by toMicroservices after the addition of such
an interactive process.

Our research outcomes lead to the at least two practical implications:

– The synergistic use of optimization, feature location, static analysis and
dynamic analysis, as implemented by toMicroservices, has the poten-
tial of reducing effort of developers, supporting architectural reasoning,
and making informed decisions along the identification of microservices
from legacy code.

– There is room for the improvement of microservice identification ap-
proaches by making them more interactive. The creation of operators
to support interactions with the developers relied on observation from
our case study. We cannot generalize the completeness and usefulness
of these set of operators to other projects. In any case, enabling those
operations have shown to be promising in reducing effort and finding so-
lutions that actually reflect architects’ knowledge along the re-executions
of the automated approach.

In future work, we plan to experiment toMicroservices in an additional
industrial project and in an open-source software project, which are also
undergoing partial or full migrations to a microservice architecture. These
studies will enable us to improve the external generalization of our findings, as
well as capture new opportunities for making toMicroservices more practical
and robust. Moreover, we plan to improve the measurements of the five criteria
adopted in toMicroservices as well as incorporate other criteria that may

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 7. Conclusions 108

capture challenging requirements, such as scalability and other non-functional
requirements.

Finally, the empirical studies were reported in published papers or are
(or being) submitted to conferences or journals. These papers are presented
in Table 7.1 to facility future references. Table 7.2 also show papers that do
not result from the core research of this dissertation, but are results of fruitful
research collaborations during the Masters course.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 7. Conclusions 109

Table 7.1: Papers and chapter book that resulted from this dissertation
Paper Chapter Status
Luiz Carvalho, Alessandro Garcia, Wesley K.
G. Assunção, Rafael de Mello, Maria Julia de
Lima. Analysis of the criteria adopted in indus-
try to extract microservices. In Proceedings of
the joint 7th International Workshop on Con-
ducting Empirical Studies in Industry and 6th
International Workshop on Software Engineer-
ing Research and Industrial Practice, CESSER-
IP’19, ICSE 2019, p. 22–29, 2019.

2 Published

Luiz Carvalho, Alessandro Garcia, Wesley K.
G. Assunção, Rodrigo Bonifácio, Leonardo P.
Tizzei, Thelma Elita Colanzi. Extraction of con-
figurable and reusable microservices from legacy
systems: An exploratory study. In Proceedings
of the 12rd International Systems and Software
Product Line Conference - Volume A, SPLC’19,
p. 26–31, 2019.

3 Published

Luiz Carvalho, Alessandro Garcia, Wesley
K. G. Assunção, Thelma Elita Colanzi, Ro-
drigo Bonifácio, Leonardo P. Tizzei, Rafael de
Mello, Renato Cerqueira, Márcio Ribeiro. Re-
engineering Legacy Systems as Microservices:
An industrial survey of Criteria for Identifying
Microservices. In Handbook of Re-Engineering
Software Intensive Systems into Software Prod-
uct Lines, Springer.

2-3 Invited chap-
ter

Luiz Carvalho, Alessandro Garcia, Thelma
Elita Colanzi, Wesley K. G. Assunção, Maria
Julia Lima, Baldoino Fonseca, Márcio Ribeiro,
Carlos Lucena. Search-Based Many-Criteria
Identification of Microservices from Legacy Sys-
tems. Poster, In the Genetic and Evolutionary
Computation Conference, GECCO’20.

4-5 Accepted

Luiz Carvalho, Alessandro Garcia, Thelma
Elita Colanzi, Wesley K. G. Assunção, Ju-
liana Alves Pereira, Baldoino Fonseca, Már-
cio Ribeiro, Maria Julia Lima, Carlos Lu-
cena. On the Performance and Adoption of
Search-Based Microservice Identification with
toMicroservices. In the Conference on Soft-
ware Maintenance and Evolution, ICSME’20.

4-5 To submit in
May 2020

Luiz Carvalho, Alessandro Garcia, Wesley K.
G. Assunção, Thelma Elita Colanzi, Baldoino
Fonseca, Márcio Ribeiro, Carlos Lucena. Many-
objective Search-based Identification of Mi-
croservice Architectures: A Qualitative Study in
the Industry. In IEEE Transactions on Software
Engineering.

4-5-6 To submit

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Chapter 7. Conclusions 110

Table 7.2: Other papers resulting from the masters
Paper Status
Towards a Catalog of Java Dependency Injection Anti-
Patterns. Rodrigo Laigner, Marcos Kalinowski, Luiz Car-
valho, Diogo Mendonça, Alessandro Garcia. In proceed-
ings of the 32th Brazilian Symposium on Software Engi-
neering, p. 104-113, 2019.

Published

On the density and diversity of degradation symptoms
in refactored classes: A multi-case study. Willian Oizumi,
Leonardo Sousa, Anderson Oliveira, Luiz Carvalho,
Alessandro Garcia, Thelma Colanzi, Roberto Oliveira. In
proceedings 30th International Symposium on Software Re-
liability Engineering, p. 346-357, 2019

Published

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography

[1] NEWMAN, S.. Building Microservices. O’Reilly Media, 1st edition,
2015.

[2] LEWIS, J.; FOWLER, M.. Microservices., 2014.

[3] TIZZEI, L. P.; NERY, M.; SEGURA, V. C. V. B. ; CERQUEIRA, R. F. G..
Using microservices and software product line engineering to
support reuse of evolving multi-tenant saas. In: INTERNATIONAL
SYSTEMS AND SOFTWARE PRODUCT LINE CONFERENCE, p. 205–214,
New York, NY, USA, 2017. ACM.

[4] FOWLER, S.. Production-Ready Microservices. O’Reilly Media, 1st
edition, 2016.

[5] WATSON, C.; EMMONS, S. ; GREGG, B.. A microscope on microser-
vices, 2015.

[6] LUZ, W.; AGILAR, E.; DE OLIVEIRA, M. C.; DE MELO, C. E. R.; PINTO,
G. ; BONIFÁCIO, R.. An experience report on the adoption of
microservices in three brazilian government institutions. In:
BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING, p. 32–41, New
York, NY, USA, 2018. ACM.

[7] GOUIGOUX, J.; TAMZALIT, D.. From monolith to microservices:
Lessons learned on an industrial migration to a web oriented
architecture. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ARCHITECTURE WORKSHOPS, p. 62–65, 2017.

[8] BUCCHIARONE, A.; DRAGONI, N.; DUSTDAR, S.; LARSEN, S. T. ;
MAZZARA, M.. From monolithic to microservices: An experience
report from the banking domain. IEEE Software, 35(3):50–55, 2018.

[9] BISBAL, J.; LAWLESS, D.; WU, B. ; GRIMSON, J.. Legacy information
systems: Issues and directions. IEEE Software, 16(5):103–111, Sept.
1999.

[10] RANSOM, J.; SOMERVILLE, I. ; WARREN, I.. A method for assessing
legacy systems for evolution. In: EUROMICRO CONFERENCE ON

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography 112

SOFTWARE MAINTENANCE AND REENGINEERING, p. 128–134, March
1998.

[11] TAIBI, D.; LENARDUZZI, V. ; PAHL, C.. Processes, motivations, and
issues for migrating to microservices architectures: An empirical
investigation. IEEE Cloud Computing, 4(5):22–32, 2017.

[12] FRANCESCO, P. D.; LAGO, P. ; MALAVOLTA, I.. Migrating towards
microservice architectures: An industrial survey. In: INTERNA-
TIONAL CONFERENCE ON SOFTWARE ARCHITECTURE, p. 29–2909,
2018.

[13] MAZLAMI, G.; CITO, J. ; LEITNER, P.. Extraction of microservices
from monolithic software architectures. In: INTERNATIONAL CON-
FERENCE ON WEB SERVICES, p. 524–531, 2017.

[14] ESCOBAR, D.; CÁRDENAS, D.; AMARILLO, R.; CASTRO, E.; GARCÉS,
K.; PARRA, C. ; CASALLAS, R.. Towards the understanding and
evolution of monolithic applications as microservices. In: LATIN
AMERICAN COMPUTING CONFERENCE, p. 1–11, 2016.

[15] JIN, W.; LIU, T.; ZHENG, Q.; CUI, D. ; CAI, Y.. Functionality-oriented
microservice extraction based on execution trace clustering. In:
INTERNATIONAL CONFERENCE ON WEB SERVICES (ICWS), p. 211–
218, 2018.

[16] JIN, W.; LIU, T.; CAI, Y.; KAZMAN, R.; MO, R. ; ZHENG, Q.. Service
candidate identification from monolithic systems based on exe-
cution traces. IEEE Transactions on Software Engineering, p. 1–1, 2019.

[17] TAIBI, D.; LENARDUZZI, V. ; PAHL, C.. Microservices Anti-patterns:
A Taxonomy, p. 111–128. Springer International Publishing, Cham, 2020.

[18] CANDELA, I.; BAVOTA, G.; RUSSO, B. ; OLIVETO, R.. Using cohesion
and coupling for software remodularization: Is it enough? ACM
Transactions on Software Engineering and Methodology, 25(3):24:1–24:28,
June 2016.

[19] BASS, L.; CLEMENTS, P. ; KAZMAN, R.. Software Architecture in
Practice. Addison-Wesley Professional, 3rd edition, 2012.

[20] ROZANSKI, N.; WOODS, E.. Software Systems Architecture: Work-
ing With Stakeholders Using Viewpoints and Perspectives.
Addison-Wesley Professional, 2 edition, 2011.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography 113

[21] APEL, S.; BATORY, D.; KSTNER, C. ; SAAKE, G.. Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer
Publishing Company, Incorporated, 2013.

[22] PARNAS, D. L.. On the design and development of program
families. IEEE Transactions on Software Engineering, SE-2(1):1–9, March
1976.

[23] LIEBIG, J.; KÄSTNER, C. ; APEL, S.. Analyzing the discipline of pre-
processor annotations in 30 million lines of c code. In: PROCEED-
INGS OF THE TENTH INTERNATIONAL CONFERENCE ON ASPECT-
ORIENTED SOFTWARE DEVELOPMENT, p. 191–202, New York, NY,
USA, 2011. Association for Computing Machinery.

[24] MEDEIROS, F.; RIBEIRO, M.; GHEYI, R.; APEL, S.; KÄSTNER, C.; FER-
REIRA, B.; CARVALHO, L. ; FONSECA, B.. Discipline matters: Refac-
toring of preprocessor directives in the #ifdef hell. IEEE Trans.
Software Eng., 44(5):453–469, 2018.

[25] BERGER, T.; RUBLACK, R.; NAIR, D.; ATLEE, J. M.; BECKER, M.; CZAR-
NECKI, K. ; WĄSOWSKI, A.. A survey of variability modeling in in-
dustrial practice. In: INTERNATIONAL WORKSHOP ON VARIABILITY
MODELLING OF SOFTWARE-INTENSIVE SYSTEMS, VaMoS ’13, New
York, NY, USA, 2013. Association for Computing Machinery.

[26] MARTINEZ, J.; ASSUNÇÃO, W. K. G. ; ZIADI, T.. Espla: A catalog
of extractive spl adoption case studies. In: INTERNATIONAL SYS-
TEMS AND SOFTWARE PRODUCT LINE CONFERENCE - VOLUME B,
SPLC ’17, p. 38–41, New York, NY, USA, 2017. Association for Computing
Machinery.

[27] FRANCESCO, P. D.; LAGO, P. ; MALAVOLTA, I.. Architecting with
microservices: A systematic mapping study. Journal of Systems and
Software, 150:77 – 97, 2019.

[28] KNOCHE, H.; HASSELBRING, W.. Using microservices for legacy
software modernization. IEEE Software, 35(3):44–49, May 2018.

[29] BALL, T.. The concept of dynamic analysis. In: 7TH EUROPEAN
SOFTWARE ENGINEERING CONFERENCE HELD JOINTLY WITH THE
7TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS
OF SOFTWARE ENGINEERING, ESEC/FSE-7, p. 216–234, Berlin, Heidel-
berg, 1999. Springer-Verlag.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography 114

[30] HARMAN, M.; JONES, B. F.. Search-based software engineering.
Information and Software Technology, 43(14):833 – 839, 2001.

[31] HARMAN, M.; MANSOURI, S. A. ; ZHANG, Y.. Search-based software
engineering: Trends, techniques and applications. ACM Computing
Surveys, 45(1):11:1–11:61, Dec. 2012.

[32] DEB, K.; JAIN, H.. An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting ap-
proach, part i: Solving problems with box constraints. IEEE Trans-
actions on Evolutionary Computation, 18(4):577–601, Aug 2014.

[33] ESKI, S.; BUZLUCA, F.. An automatic extraction approach: Tran-
sition to microservices architecture from monolithic application.
In: INTERNATIONAL CONFERENCE ON AGILE SOFTWARE DEVELOP-
MENT: COMPANION, XP ’18, p. 25:1–25:6, New York, NY, USA, 2018.
ACM.

[34] ALSHUQAYRAN, N.; ALI, N. ; EVANS, R.. A systematic mapping
study in microservice architecture. In: INTERNATIONAL CONFER-
ENCE ON SERVICE-ORIENTED COMPUTING AND APPLICATIONS, p.
44–51, 2016.

[35] PAHL, C.; JAMSHIDI, P.. Microservices: A systematic mapping
study. In: INTERNATIONAL CONFERENCE ON CLOUD COMPUTING
AND SERVICES SCIENCE, p. 137–146, 2016.

[36] ISO/IEC/IEEE 24765: 2017(E): ISO/IEC/IEEE International
Standard - Systems and software engineering–Vocabulary. IEEE,
2017.

[37] SCARBOROUGH, W.; ARNOLD, C. ; DAHAN, M.. Case study: Mi-
croservice evolution and software lifecycle of the xsede user por-
tal api. In: CONFERENCE ON DIVERSITY, BIG DATA, AND SCIENCE
AT SCALE, p. 47:1–47:5, New York, NY, USA, 2016. ACM.

[38] KNOCHE, H.. Sustaining runtime performance while incremen-
tally modernizing transactional monolithic software towards mi-
croservices. ICPE ’16, p. 121–124, New York, NY, USA, 2016. ACM.

[39] ELMASRI, R.; NAVATHE, S.. Fundamentals of Database Systems.
Addison-Wesley Publishing Company, USA, 6th edition, 2010.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography 115

[40] CHIKOFSKY, E. J.; CROSS, J. H.. Reverse engineering and design
recovery: a taxonomy. IEEE Software, 7(1):13–17, 1990.

[41] LINAKER, J.; SULAMAN, S. M.; MAIANI DE MELLO, R.; HÖST, M. ;
RUNESON, P.. Guidelines for conducting surveys in software
engineering. 2015.

[42] DE MELLO, R. M.; TRAVASSOS, G. H.. Surveys in software engineer-
ing: Identifying representative samples. In: INTERNATIONAL SYM-
POSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASURE-
MENT, p. 55. ACM, 2016.

[43] WOHLIN, C.. Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In: INTERNA-
TIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFT-
WARE ENGINEERING, p. 38:1–38:10, New York, NY, USA, 2014. ACM.

[44] TAHIR, A.; MACDONELL, S. G.. A systematic mapping study
on dynamic metrics and software quality. In: INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE, p. 326–335, 2012.

[45] Broy, M.; Denert, E., editors. Software Pioneers: Contributions to
Software Engineering. Springer-Verlag, Berlin, Heidelberg, 2002.

[46] ELMASRI, R.; NAVATHE, S. B.. Fundamentals of Database Systems.
Pearson, 7th edition, 2015.

[47] BROOKS, F. P.. The Mythical Man-Month (Anniversary Ed.).
Addison-Wesley Longman Publishing Co., Inc., USA, 1995.

[48] CHONG, F.; CARRARO, G.. Architecture strategies for catching the
long tail. MSDN Library, Microsoft Corporation, p. 9–10, 2006.

[49] VON RHEIN, A.; GREBHAHN, A.; APEL, S.; SIEGMUND, N.; BEYER, D.
; BERGER, T.. Presence-condition simplification in highly config-
urable systems. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING - VOLUME 1, ICSE ’15, p. 178–188, Piscataway, NJ, USA,
2015. IEEE Press.

[50] MIETZNER, R.; METZGER, A.; LEYMANN, F. ; POHL, K.. Variability
modeling to support customization and deployment of multi-
tenant-aware software as a service applications. In: WORKSHOP
ON PRINCIPLES OF ENGINEERING SERVICE ORIENTED SYSTEMS,
PESOS ’09, p. 18–25, Washington, DC, USA, 2009. IEEE Computer Society.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography 116

[51] BACHMANN, F.; CLEMENTS, P. C.. Variability in software product
lines. Technical Report CMU/SEI-2005-TR-012, Carnegie Mellon University
- Software Engineering Institute, 2005.

[52] CAPILLA, R.; BOSCH, J. ; KANG, K.-C.. Systems and Software Vari-
ability Management: Concepts, Tools and Experiences. Springer
Publishing Company, Incorporated, 2013.

[53] DUBINSKY, Y.; RUBIN, J.; BERGER, T.; DUSZYNSKI, S.; BECKER, M.
; CZARNECKI, K.. An exploratory study of cloning in industrial
software product lines. In: European Conference on Software Mainte-
nance and Reengineering, p. 25–34. IEEE, 2013.

[54] C. MARTIN, R.. Agile Software Development, Principles, Patterns,
and Practices. Pearson, 1st edition, 2002.

[55] BASS, L.; WEBER, I. ; ZHU, L.. DevOps: A software architect’s
perspective. Addison-Wesley Professional, 2015.

[56] RAHMAN, M. T.; QUEREL, L.-P.; RIGBY, P. C. ; ADAMS, B.. Feature
toggles: Practitioner practices and a case study. In: INTERNA-
TIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES, MSR
’16, p. 201–211, New York, NY, USA, 2016. ACM.

[57] MELLA, F. P.; MÁRQUEZ, G. ; ASTUDILLO, H.. Migrating from mono-
lithic architecture to microservices: A rapid review. In: INTER-
NATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SO-
CIETY, 2019.

[58] NEWMAN, M. E. J.; GIRVAN, M.. Finding and evaluating community
structure in networks. Physical Review, 69:026113, Feb 2004.

[59] CHATTERJEE, M.; DAS, S. K. ; TURGUT, D.. Wca: A weighted clus-
tering algorithm for mobile ad hoc networks. Cluster Computing,
5(2):193–204, Apr 2002.

[60] RUNESON, P.; HÖST, M.. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software
Engineering, 14(2):131, Dec 2008.

[61] DRAGONI, N.; GIALLORENZO, S.; LAFUENTE, A. L.; MAZZARA, M.;
MONTESI, F.; MUSTAFIN, R. ; SAFINA, L.. Microservices: Yesterday,
Today, and Tomorrow, p. 195–216. Springer International Publishing,
Cham, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography 117

[62] ARCURI, A.. Restful api automated test case generation with
evomaster. ACM Transactions on Software Engineering and Methodology,
28(1):3:1–3:37, Jan. 2019.

[63] COLANZI, T. E.. Search based design of software product lines
architectures. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, p. 1507–1510, June 2012.

[64] ASSUNÇÃO, W. K. G.; COLANZI, T. E.; VERGILIO, S. R. ; POZO, A.. A
multi-objective optimization approach for the integration and
test order problem. Information Sciences, 267:119 – 139, 2014.

[65] HOLLAND, J. H.. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI, 1975. second edition, 1992.

[66] DEB, K.; PRATAP, A.; AGARWAL, S. ; MEYARIVAN, T.. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions
on Evolutionary Computation, 6(2):182–197, April 2002.

[67] CARVALHO, L.; GARCIA, A.; ASSUNÇÃO, W. K. G.; DE MELLO, R. ;
DE LIMA, M. J.. Analysis of the criteria adopted in industry to
extract microservices. In: JOINT 7TH INTERNATIONAL WORKSHOP
ON CONDUCTING EMPIRICAL STUDIES IN INDUSTRY AND 6TH IN-
TERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING RESEARCH
AND INDUSTRIAL PRACTICE, CESSER-IP ’19, p. 22–29, Piscataway, NJ,
USA, 2019. IEEE Press.

[68] MITCHELL, B. S.; MANCORIDIS, S.. On the automatic modulariza-
tion of software systems using the bunch tool. IEEE Transactions
on Software Engineering, 32(3):193–208, March 2006.

[69] CHIDAMBER, S. R.; KEMERER, C. F.. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering, 20(6):476–
493, June 1994.

[70] CAPILLA, R.; GALLINA, B.; CETINA, C. ; FAVARO, J.. Opportunities
for software reuse in an uncertain world: From past to emerging
trends. Journal of Software: Evolution and Process, 31(8):1–22, August
2019.

[71] Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography 118

[72] DURILLO, J. J.; NEBRO, A. J.. jmetal: A java framework for multi-
objective optimization. Advances in Engineering Software, 42(10):760–
771, 2011.

[73] DEB, K.; JAIN, H.. An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting ap-
proach, part i: Solving problems with box constraints. IEEE Trans-
actions on Evolutionary Computation, 18(4):577–601, 2014.

[74] COLANZI, T. E.; ASSUNÇÃO, W. K. G.; FARAH, P. R.; VERGILIO, S. R. ;
GUIZZO, G.. A review of ten years of the symposium on search-
based software engineering. In: Nejati, S.; Gay, G., editors, SEARCH-
BASED SOFTWARE ENGINEERING, p. 42–57, Cham, 2019. Springer Inter-
national Publishing.

[75] ZITZLER, E.; THIELE, L.; LAUMANNS, M.; FONSECA, C. M. ; DA FON-
SECA, V. G.. Performance assessment of multiobjective optimiz-
ers: An analysis and review. IEEE Transactions on Evolutionary Com-
putation, 7:117–132, 2003.

[76] FONSECA, C. M.; PAQUETE, L. ; LOPEZ-IBANEZ, M.. An improved
dimension-sweep algorithm for the hypervolume indicator. In:
IEEE INTERN. CONFERENCE ON EVOLUTIONARY COMPUTATION, p.
1157–1163, 2006.

[77] DEB, K.; PRATAP, A.; AGARWAL, S. ; MEYARIVAN, T.. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions
on Evolutionary Computation, 6(2):182–197, 2002.

[78] BERGMANN, R.; LUDBROOK, J. ; SPOOREN, W. P. J. M.. Different
Outcomes of the Wilcoxon-Mann-Whitney Test from Different
Statistics Packages. The American Statistician, 54(1):72–77, 2000.

[79] VARGHA, A.; DELANEY, H.. A critique and improvement of the cl
common language effect size statistics of McGraw and Wong. J.
of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[80] ARCURI, A.; BRIAND, L.. AHitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 24(3):219–250, 2014.

[81] CARVALHO, L.; GARCIA, A.; ASSUNÇÃO, W. K. G.; BONIFÁCIO, R.;
TIZZEI, L. P. ; COLANZI, T. E.. Extraction of configurable and

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography 119

reusable microservices from legacy systems: An exploratory
study. In: INTERNATIONAL SYSTEMS AND SOFTWARE PRODUCT
LINE CONFERENCE - VOLUME A, SPLC ’19, p. 26–31, New York, NY,
USA, 2019. ACM.

[82] PERRY, D. E.; WOLF, A. L.. Foundations for the study of software
architecture. SIGSOFT Software Engineering Notes, 17(4):40–52, Oct.
1992.

[83] KONTIO, J.; BRAGGE, J. ; LEHTOLA, L.. The Focus Group Method
as an Empirical Tool in Software Engineering, p. 93–116. Springer
London, London, 2008.

[84] MORGAN, D. L.. Focus groups. Annual Review of Sociology, 22(1):129–
152, 1996.

[85] COCHRANE, J.; ZELENY, M.. Multiple Criteria Decision Making.
University of South Carolina Press, Columbia, 1973.

[86] COELLO, C. A. C.. Handling preferences in evolutionary mul-
tiobjective optimization: a survey. In: PROCEEDINGS OF THE
2000 CONGRESS ON EVOLUTIONARY COMPUTATION. CEC00 (CAT.
NO.00TH8512), volumen 1, p. 30–37 vol.1, 2000.

[87] CORNE, D. W.; KNOWLES, J. D.. Techniques for highly multiobjec-
tive optimisation: Some nondominated points are better than
others. In: PROCEEDINGS OF THE 9TH ANNUAL CONFERENCE ON GE-
NETIC AND EVOLUTIONARY COMPUTATION, GECCO ’07, p. 773–780,
New York, NY, USA, 2007. Association for Computing Machinery.

[88] FRASER, G.; ARCURI, A.. Whole test suite generation. IEEE
Transactions on Software Engineering, 39(2):276 –291, feb. 2013.

[89] CORNELISSEN, B.; ZAIDMAN, A.; VAN DEURSEN, A.; MOONEN, L. ;
KOSCHKE, R.. A systematic survey of program comprehension
through dynamic analysis. IEEE Transactions on Software Engineering,
35(5):684–702, Sep. 2009.

[90] DIT, B.; REVELLE, M.; GETHERS, M. ; POSHYVANYK, D.. Feature
location in source code: a taxonomy and survey. J. Softw. Evol.
Process., 25(1):53–95, 2013.

[91] NAMIOT; SNEPS-SNEPPE, M.. On micro-services architecture.
International Journal of Open Information Technologies, 2(9), 2014.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

Bibliography 120

[92] SEAMAN, C. B.. Qualitative methods in empirical studies of soft-
ware engineering. IEEE Transactions on Software Engineering, 25(4):557–
572, July 1999.

DBD
PUC-Rio - Certificação Digital Nº 1812784/CA

	Identifying Microservices Candidates in Legacy Code
	Resumo
	Table of contents
	Introduction
	On the Usefulness of Criteria Observed in Legacy Systems
	Problem Statement
	Proposed Solution

	Variability as a Criterion
	Problem Statement
	Proposed Solution

	A Microservice Extraction Approach with Many-objective Optimization
	Problem Statement
	Proposed Solution

	Analysis of the Criteria Adopted in Industry to Extract Microservices
	Introduction
	Microservice Extraction: An Illustrative Example
	On the Criteria for Microservice Extraction
	Survey Design
	Goal, Population and Sample
	Instrumentation

	Results and Discussions
	Threats to Validity
	Related Work
	Conclusions

	Extraction of Configurable and Reusable Microservices from Legacy Systems: an Exploratory Study
	Introduction
	Background
	Customization and Variability
	Microservices

	Exploratory Study Design
	Research Questions
	Study Phases, Population and Sample
	Instrumentation

	Results and Analysis
	Participants Characterization
	Variability
	Microservice Customization

	Threats to Validity
	Related Work
	Conclusions

	The toMicroservices Approach
	Existing Approaches for Microservice Identification
	An Overview of toMicroservices
	Search-Based Software Engineering
	Graph Representation
	A Domain-Specific Language for Describing Feature-to-Code Mapping
	Search-Based Approach
	Objective Functions Computation

	Search-Based Many-Criteria Identification of Microservices from Legacy Systems
	Introduction
	Industrial Case Study
	Proposed Approach
	Input, Representation, and Output
	Objective Functions
	Genetic Operators
	Implementation Aspects

	Empirical Evaluation Design
	Research Questions
	Algorithm and Parameters
	Quantitative Comparison Against Baseline
	Qualitative Evaluation with Developers

	Results and Analysis
	RQ1 - Performance of toMicroservices
	RQ2 - Analysis of solutions by developers
	RQ3 - Most Influential Criteria

	Lessons Learned
	Threats and Literature Limitations
	Conclusion

	A Qualitative Evaluation of Recommended Microservice Architectures
	Introduction
	Refinement Operators
	Study Design
	Research Questions
	Subject Selection
	Study Execution

	Results and Analysis
	Threats To Validity
	Concluding Remarks

	Conclusions
	Bibliography

