
Alexandre Velloso Pereira Rodrigues

Essays on Two-stage Robust Models for Power
Systems: Modeling Contributions and

Applications of the
Column-and-Constraint-Generation Algorithm

Tese de Doutorado

Thesis presented to the Programa de Pós-Graduação em
Engenharia Elétrica of PUC-Rio in partial fulfillment of the
requirements for the degree of Doutor em Engenharia Elétrica.

Advisor : Prof. Alexandre Street de Aguiar
Co-Advisor: Prof. David Pozo Camara

Rio de Janeiro
August 2020

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



Alexandre Velloso Pereira Rodrigues

Essays on Two-stage Robust Models for Power
Systems: Modeling Contributions and

Applications of the
Column-and-Constraint-Generation Algorithm

Thesis presented to the Programa de Pós-Graduação em
Engenharia Elétrica of PUC-Rio in partial fulfillment of the
requirements for the degree of Doutor em Engenharia Elétrica.
Approved by the Examination Committee.

Prof. Alexandre Street de Aguiar
Advisor

Departamento de Engenharia Elétrica – PUC-Rio

Prof. David Pozo Camara
Co-Advisor

Skolkovo Institute of Science and Technology – Skoltech

Prof. Anthony Papavasiliou
Université Catholique de Louvain – UCLouvain

Prof. Pascal Van Hentenryck
Georgia Institute of Technology – GA TECH

Prof. Phillipe Vilaça Gomes
Departamento de Engenharia Elétrica – PUC-Rio

Prof. Pierluigi Mancarella
University of Melbourne – UM

Prof. Rodrigo Moreno
Universidad de Chile – UCh

Rio de Janeiro, August 25th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



All rights reserved.

Alexandre Velloso Pereira Rodrigues

Alexandre Velloso Pereira Rodrigues received his M.Sc. degree
in Mathematical Methods in Finance from the National
Institute for Pure and Applied Mathematics (IMPA), Rio de
Janeiro, Brazil in 2005. Since 2010, he has been working for
the Brazilian Innovation Agency – Financiadora de Estudos
e Projetos (Finep). Currently, he is a visiting scholar at the
School of Industrial and Systems Engineering (ISyE) at the
Georgia Institute of Technology, Atlanta, USA.

Bibliographic data

Velloso Pereira Rodrigues, Alexandre

Essays on Two-stage Robust Models for Power
Systems: Modeling Contributions and Applications of the
Column-and-Constraint-Generation Algorithm / Alexandre
Velloso Pereira Rodrigues; advisor: Alexandre Street de
Aguiar; co-advisor: David Pozo Camara. – 2020.

168 f. : il. color. ; 30 cm

1. Tese (doutorado) – Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Engenharia Elétrica, Rio de
Janeiro, 2020.

Inclui bibliografia.

1. Engenharia Elétrica – Teses. 2. Algorítmo de Geração
de Linhas e Colunas. 3. Otimização Robusta Ajustável.
4. Fluxo de Potência Ótimo com Critério de Segurança.
5. Programação Diária. 6. Planejamento de Expansão da
Transmissão. I. Aguiar, Alexandre Street de. II. Pozo Camara,
David. III. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



Acknowledgments

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



Abstract

Velloso Pereira Rodrigues, Alexandre; Street de Aguiar,
Alexandre (Advisor); Pozo Camara, David (Co-Advisor). Essays
on Two-stage Robust Models for Power Systems:
Modeling Contributions and Applications of the
Column-and-Constraint-Generation Algorithm. Rio de
Janeiro, 2020. 168p. PhD Thesis – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

This dissertation is structured as a collection of five papers formatted
as chapters. The first four papers provide modeling and methodological
contributions in scheduling or investment problems in power systems
using the adaptive robust optimization framework and modifications to
the column-and-constraint-generation algorithm (CCGA). The first paper
addresses the security-constrained short-term scheduling problem where
automatic primary response is considered. A two-stage robust model is
adopted, resulting in complex mixed-integer linear instances featuring
binary variables associated with first- and second-stage decisions. A new
tailored CCGA which explores the structure of the problem is devised. The
second paper uses deep neural networks for learning the mapping of nodal
demands onto generators’ set point for the first paper’s model. Robust-based
modeling approaches and the CCGA are used to enforce feasibility for
the solution. This method results in important computational gains as
compared to results of the first paper. The third paper proposes an adaptive
data-driven approach for a two-stage robust unit commitment model, where
the polyhedral uncertainty set is characterized directly from data, through
the convex hull of a set of previously observed non-dispatchable generation
profiles. The resulting problem is suitable for the exact CCGA. The fourth
paper proposes an adaptive two-stage distributionally robust transmission
expansion model incorporating long- and short-term uncertainties. A novel
extended CCGA is devised to tackle distributionally robust subproblems.
Finally, under a different and higher-level perspective, the fifth paper
investigates the adequacy of systematic inducement prizes for fostering
innovations in theoretical and computational aspects for various modern
power systems challenges.

Keywords
Column-and-Constraint Generation Algorithm; Adaptive Robust

Optimization; Security-Constrained Optimal Power Flow; Unit
Commitment; Transmission Expansion Planning; Deep Neural Network.
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Resumo

Velloso Pereira Rodrigues, Alexandre; Street de Aguiar, Alexandre;
Pozo Camara, David. Ensaios em Modelos de Dois Estágios
em Sistemas de Potências: Contribuições em Modelagem
e Aplicações do Método de Geração de Linhas e Colunas.
Rio de Janeiro, 2020. 168p. Tese de Doutorado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

Esta dissertação está estruturada como uma coleção de cinco artigos
formatados em capítulos. Os quatro primeiros artigos apresentam
contribuições em modelagem e metodológicas para problemas de operação
ou investimento em sistemas de potência usando arcabouço de otimização
robusta adaptativa e modificações no algoritmo de geração de linhas e
colunas (CCGA). O primeiro artigo aborda a programação de curto prazo
com restrição de segurança, onde a resposta automática de geradores é
considerada. Um modelo robusto de dois estágios é adotado, resultando
em complexas instâncias de programação inteira mista, que apresentam
variáveis binárias associadas às decisões de primeiro e segundo estágios.
Um novo CCGA que explora a estrutura do problema é desenvolvido. O
segundo artigo usa redes neurais profundas para aprender o mapeamento
das demandas nodais aos pontos de ajuste dos geradores para o problema do
primeiro artigo. O CCGA é usados para garantir a viabilidade da solução.
Este método resulta em importantes ganhos computacionais em relação ao
primeiro artigo. O terceiro artigo propõe uma abordagem adaptativa em
dois estágios para um modelo robusto de programação diária no qual o
conjunto de incerteza poliedral é caracterizado diretamente a partir dos
dados de geração não despachável observados. O problema resultante é afeito
ao CCGA. O quarto artigo propõe um modelo de dois estágios adaptativo,
robusto em distribuição para expansão de transmissão, incorporando
incertezas a longo e curto prazo. Um novo CCGA é desenvolvido para
lidar com os subproblemas. Finalmente, sob uma perspectiva diferente e
generalista, o quinto artigo investiga a adequação de prêmios de incentivo
para promover inovações em aspectos teóricos e computacionais para os
desafios de sistemas de potência modernos.
Palavras-chave

Algorítmo de Geração de Linhas e Colunas; Otimização Robusta
Ajustável; Fluxo de Potência Ótimo com Critério de Segurança;
Programação Diária; Planejamento de Expansão da Transmissão; Redes
Neurais Profundas.
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1
Introduction

This doctorate thesis, which is organized as a collection of independent
essays, has two main objectives, both related to improving current industry
practices in modern power systems:

1. Firstly, as the main objective, to provide specific mathematical
frameworks, based on two-stage robust optimization models and on
modified versions of the column-and-constraint-generation algorithm,
to determine solutions for selected practical problems in power
systems. These selected problems relate to short- and medium-term
generators’ scheduling, and to long-term transmission expansion
planning. In these applications, robust approaches are applied to model
uncertain net load or component failures, while modifications to the
column-and-constraint-generation algorithm are tailored to tackle each
resulting formulation.

2. Secondly, to analyze challenges and technological gaps of current
approaches to power system models in Brazil, as well as how innovations
for these models are financed and implemented. Moreover, to discuss,
in the perspective of the Brazilian case, whether inducement prizes
would constitute a suitable systematic mechanism to foster innovation in
theoretical and computational aspects for the various existing challenges.

This first chapter provides an introduction to the work reported in
this document. In Section 1.1, challenges associated with modern power
systems are outlined. Sections 1.2 and 1.3 provide motivation, respectively,
for the applications of the two-stage robust optimization approach and the
column-and-constraint-generation solution algorithm. Finally, the document
structure and the specific objectives of each chapter are presented in Section
1.4.

1.1
Modern Power System Challenges

Electric power systems are among the largest and most complex
engineered systems ever designed and constructed. As an example, in the
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Chapter 1. Introduction 14

United States, power systems ship hundreds of billion of dollars in electricity
every year and are composed by hundreds of thousands of kilometers of
high-voltage transmission lines, thousands of generators, millions of kilometers
of distribution lines, and millions of geographically dispersed consumers.
These large structures are expected to generate, transport, and distribute the
electricity required by virtually every economic activity of modern society
at very high standards of reliability, accessibility, and cost affordability.
However, the once stable, vertically integrated, and regulated systems featuring
predictable net demand underwent deep changes associated with market
deregulation processes [1–3], technology disruptions on both demand and
supply side, and new environmental constraints.

Initiated in the 1980s, market reforms were a long process of general
liberalization of electricity sector and modification of the regulatory framework.
These reforms facilitated the dissolution of large integrated companies with
the aim to reduce costs, increase price transparency, enabling third party
access, and fostering economically driven generation capacity expansion [1,2].
In this new environment, the investments in capacity expansion became
less centralized and coordinated, while the profit-maximizing agents were
incentivized to pursue innovations in various technologies to reduce costs and
increase efficiency.

On the generation side, due to technological advances and environmental
incentives, non-dispatchable renewable energy generation from large solar and
wind power units has undergone a sharp increase in the last two decades.
These sources are already major components in some electricity markets and
are expected to penetrate even further. For instance, main intergovernmental
organizations such as the United Nations have indicated that increasing
investments in clean energy technologies is an important mechanism in
tackling climate change and its undesired effects [4, 5]1. High integration
of these clean, however, intermittent and variable energy sources brings
additional challenges that have been widely discussed [6–17]. Notwithstanding
the environmental benefits, non-dispatchable renewable sources are driven by
complex time-varying spatial and temporal dynamics [18]. Thus, to benefit
the most from such intermittent sources, conventional generation and/or fast
operational actions might be required to provide (up and down) reserves in a
reliable fashion.

1On 25 September, the United Nations General Assembly unanimously adopted the
Resolution A/RES/70/1. “Transforming Our World, the 2030 Agenda for Sustainable
Development". Among the sustainable goals of this resolution, goal number 7 refers to
sustainable energy - “Sustainable Development Goal 7: Ensure access to affordable, reliable,
sustainable, and modern energy for all"
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Chapter 1. Introduction 15

On the demand and/or distribution side, the load has also become less
predictable. The number of microgrids, distributed renewable energy sources
at the consumer level, as well as plug-in electric vehicles and energy storage
systems have risen in recent years, configuring a shift from a conventional to
a smart-grid paradigm. In this context, distribution networks are expected to
become active systems: New communication technologies will facilitate the
interaction with the transmission system and fast controllable distributed
energy resources, including batteries and flexible loads, will operate to
efficiently balance supply and demand [19].

These features of modern power systems represent fundamental changes
in many of the assumptions that traditional power systems were built on. As
a consequence, systems are being demanded and operated in circumstances
for which they were not built. In this configuration, it has been progressively
more challenging to satisfy the aforementioned very high standards that society
demands from power systems. The necessity for addressing these challenges
has been driving intense research aimed at new models and algorithms both
in industry and academia.

Power system’s operations require constant equilibrium between nodal
loads and generation, which is ensured on the scale of seconds by automatic
primary response mechanisms that govern the synchronized generators. These
generators respond automatically to frequency variations, caused for example
by power imbalances, by adjusting their power outputs until frequency is
normalized and the power balance is restored. For longer timescales, ranging
from a few minutes to hours or even days ahead, the operation and planning
are strongly based on the solution of mathematical optimization problems, as
independent system operators and/or planners seek consistent and efficient
schedules that comply with many complex physical constraints.

Power system’s models are usually arranged in time-horizon layers
for which there are different approximations of the physical reality and
different representations of the relevant uncertainties. Some of the most studied
decision-making problems in power systems are outlined next:

– Short-term scheduling problems: The goal of short-term scheduling
problems such as the economic dispatch problem and the optimal power
flow problem is to determine setpoints for the generators at minimal
cost to meet forecasted load demand. The security-constrained version
of the optimal power flow problem requires that the dispatch allows for
steady-state points of operations for prescribed security criterion such as
the failures of main lines and/or generators. The security-constrained
optimal power flow is a nonlinear and nonconvex problem based on
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the ac optimal power flow constraints ([20] and [21]). Short-term
scheduling problems are fundamental building blocks for power systems
and are solved many times a day by system operators under various
circumstances, either in real-time or in large-scale studies. These needs
have been intensified by increasing unpredictability of non-dispatchable
renewable generation.

– Unit commitment problem: The main purpose of the unit
commitment problem [8, 22, 23] is to manage generating resources
by scheduling the on/off statuses of generators and determining
their dispatch levels in order to meet demand at minimum cost.
The programming horizon is usually of many hours or a few days
ahead, divided into a few smaller time periods (for example hours). The
unit commitment problem normally considers a series of combinatorial
engineering constraints, such as minimum uptime and downtime for
generators, ramping limitations for generators to increase or decrease the
power output, and the network constraints. Computational complexities
of this problem potentially arise from a large number of binary variables
related to on/off generators’ statuses, a large number of nodes or
buses, and tight restrictions on the transmission network. Adding to
the complexity, unit commitment models frequently co-optimize energy
and reserves to limit risks associated with non-dispatchable renewable
generation uncertainties and/or component failures.

– Network topology optimization: The aim of this problem is to
reduce operational cost or guarantee feasibility by modifying the network
topology. Under this category, transmission switching represents the
deliberate switching of the on/off status of a transmission line by the
operator [24]. Even though counterintuitive, significant operating cost
reductions and system reliability enhancements may be achieved by not
allowing flow through certain lines [25, 26]. This is explained by Braess’
Paradox [27]. Broadly, due to Kirchhoff’s voltage law, every network
cycle adds constraints to the power flow problem. By removing lines
and breaking loops, it is possible to reduce network congestion and
approach the desired merit-order dispatch; that is, cheapest generators
are dispatched first [27,28].

At the distribution level, auxiliary systems perform periodic operations
on tap changers and capacitors bank in order to guarantee that the point
of operation remains at appropriate levels [29]. This problem is usually
called a volt/var control. However, the high insertion of distributed
photovoltaic generation (a form of clean and renewable energy) can
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cause, due to its uncertain and intermittent nature, operational problems
[19, 29]. Therefore, as per [19] and [29], new models and strategies for
operating distribution systems with a high penetration of distributed
photovoltaic generation might be needed.

– Long-term hydrothermal scheduling problem: Planning the
operation for systems with high penetration of hydro generation, as is
the case for Brazil, Norway, and Colombia, among others, is a complex
task [30, 31]. The operator needs to coordinate power generation with
operational restrictions that involve multiple uses of water such as
irrigation, navigability, consumption, etc [32,33]. In addition, generating
plants are sometimes arranged in cascades on the same river [34–
36], with inflows subject to significant uncertainty [30, 31, 37, 38].
The long-term hydrothermal scheduling problem normally takes into
account multi annual periods (for example in the Brazilian case) and is
usually formulated as a multistage (several decision instances) stochastic
problem [31,39,40]. In a simplified way, hydrothermal scheduling models
program the generation from water sources, featuring low operational
cost, along with other more expansive sources, aiming at minimal
long-term cost, while ensuring the availability of natural resources for
future energy consumption [31]. Because the complexity increases with
the number of states (such as reservoir storage levels) and stages (decision
instances), relevant simplifications are necessary to apply state-of-the-art
techniques for solving this problem [39–42].

– Transmission expansion problem: Unlike generation investment,
which is generally market-driven and hence decentralized, network
infrastructure is generally centrally planned. The transmission expansion
planning problem consists in determining which transmission lines will be
built aiming at minimizing the combined costs for investment and future
operational cost. However, it is relevant to highlight that this problem is
generally related to strategic policies, as the outcome of a transmission
plan extends far beyond providing a simple least-cost connection between
the generation and loads. For example, it may directly or indirectly shape
the economic development for covered regions [43], or even facilitate
policies for fostering innovation in various generation technologies. As for
electrical aspects, the system reliability, operational flexibility, reserves
deliverability, and long-run adaptability [43] are key concepts that are
significantly affected by the selected transmission capacity updates.
On the uncertainty side, planners have been dealing with several deep
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Chapter 1. Introduction 18

uncertainties arising from social and economic transformations, political
and environmental issues, and technology disruptions, among others [43].

To tackle current challenges, many techniques invented in optimization
are used in power systems, for example: linear programming [31, 44, 45],
Lagrangian relaxation [46–48], mixed-integer programming [22,41,49], convex
programming [50,51], non-linear programming [49,52], stochastic optimization
[31, 53–55], robust optimization [56–58], etc. In this sense, modern power
systems represent a huge success story for optimization.

The next section motivates the use of the two-stage robust optimization
approach in power systems problems.

1.2
Two-stage Robust Optimization in Power System Applications

For many years, power systems’ operations relied on deterministic
approaches [59]. However, as summarized in the prior section, uncertainties
in modern power systems have risen to much higher levels. In this context,
traditional approaches might not be adequate either because short-term
deterministic models (where the exact demand and non-dispatchable
generation are assumed to be known) must be run within a much narrower
time frame or because uncertainty and/or component failures require explicit
modeling.

Besides the deterministic framework, propelled by available historical
data, stochastic optimization approaches have been largely employed in
academic papers to cope with uncertain non-dispatchable renewable generation
[60]. In this approach, uncertain data are assumed to be random and to follow
a known (or partially known) probability distribution. However, there are
relevant situations where the availability of abundant data is not sufficient
to ensure computational tractability of stochastic-optimization-based models
with an accurate representation of the uncertainty factors (the interested
reader is referred to [61] and [60] for a discussion on the subject). For example,
an accurate representation of a parametric joint probability distribution of a
high-dimensional uncertainty vector in stochastic unit commitment models
generally requires a large number of scenarios. Many scenario-reduction
techniques, clustering methods, and sampling techniques have been proposed
to mitigate the tractability issue associated with large stochastic models.
However, it is important to mention that the sample size needed to ensure
primal and dual solution stability imposes additional tractability challenges
to stochastic models. In this sense, stochastic-programming-based approaches
are technically random methods. For instance, the sampling-variability level
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of optimal schedules and marginal costs (generally used as ex-ante day-ahead
commitment and prices, respectively) may be prohibitive for industry practice
even when a large number of scenarios are used and the objective function
variability is controlled within a given probability confidence level. Moreover,
there are potential regulatory flaws stemming from relying on a method
that may give rise to different solutions on different computers. Thus,
the aforementioned tractability and solution stability issues associated with
stochastic-based models constitute relevant challenges that, to some extent,
prevent the wide adoption of stochastic models in industry practice.

In contrast, robust models enabling the use of exact solution methods
are deterministic approaches that, regardless of very specific technicalities
associated with commercial solvers (affecting all methods relying on them),
should always yield the same solutions no matter the hardware platform.

Another relevant aspect to be taken into consideration in
stochastic-programming-based approaches is to ensure a proper time-series
representation capable of capturing the dynamics of uncertain renewable
generation. As per references [18] and [62], the true underlying stochastic
process driving renewable generation is a high-dimensional, non-Gaussian, and
time-varying random process exhibiting complex spatial and time dependences
that are difficult to capture with current state-of-the-art time-series models.
In this context, the problem of characterizing the scenarios of wind power
generation for multiple units is still an open field of research (see recent work
[62] addressing this topic). In addition, parametric models in high-dimensional
applications generally suffer from statistical issues such as the presence of
a huge number of parameters that significantly jeopardize their accuracy in
out-of-sample tests.

Such issues associated with model tractability and/or difficult
representation of complex structures in the time-series models justify the
need for alternative approaches to characterize uncertainty, even in the
presence of abundant historical data.

These facts have motivated the use of the two-stage robust optimization
models, which are commonly referred to as adaptive robust optimization
framework, to address component failures and/or uncertain non-dispatchable
renewable generation in power system’s problems. Uncertainties are, in general,
represented by polyhedral uncertainty sets relying on assumptions about the
uncertainty factors (see [63] and [64]). Under this framework, the solution is
that which performs the best in the worst-case scenario. General two–stage
robust models comprise three optimization levels and may be formulated in
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different ways. For example:

z∗ = min
x∈X
{c(x) + max

u∈U
min

y∈Y(x,u)
h(y)} (1-1)

or

z∗ = min
x∈X
{c(x) |φ(x) = max

u∈U
min

y∈Y(x,u)
h(y); φ(x) < ε} (1-2)

These very flexible general structures can accommodate different
problems and models. For instance, first-stage decision x may represent
generators’ commitment decision (for unit commitment problems), investments
in lines (for transmission expansion planning problems) or short-term
generators’ setpoints (for optimal power flow problems). The second level
usually models the worst-case realization u of uncertain parameters within
an admissible set of events U for a given fist-stage decision x. The set U is
the so-called uncertainty set. The third-level model (or second-stage decision)
determines y, which represents the best system response in terms of cost or
reliability for given first-stage decision x and second-level realization u.

A key aspect in robust models is the uncertainty set description U .
Traditionally, U has been modeled as a polyhedral set. The budget-constrained
approach [8] has been largely employed due to its simplicity and capability of
controlling conservativeness with a single parameter. The reader is referred to
Chapter 4 for a thorough discussion. While the recent literature on two-stage
robust optimization has considered probability agnostic models (see [65], [63],
and [64]), relevant efforts have been made to account for the information
extracted from data to devise more realistic descriptions of the uncertainties.
The interested reader is referred to [66], and [12] for applications in short-term
operational models and to [67] for a hybrid-robust-and-stochastic approach
applied to the transmission expansion problem.

1.3
Column-and-Constraint-Generation Algorithm for Robust Models

Assuming a linear fixed cost function, the third-level problem,
parameterized by first-stage decision and second-level uncertainty realization,
can usually be cast by the following linear program:

g(x,u) = min
y

h>y (1-3)

subject to

Wy ≥ b + Bu−Tx : λ, (1-4)
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where matrices W, B, and T, and vector b are fixed parameters. This structure
is particularly convenient since g(·, ·) is a convex function on both x and u.
By strong duality, it is possible to recast the two lowermost levels as a single
nonlinear problem,

φ(x) = max
u,λ

(b + Bu−Tx)>λ (1-5)

subject to

W>λ = h (1-6)

λ ≥ 0 (1-7)

u ∈ U (1-8)

This problem is frequently referred to as oracle or oracle subproblem
and is generally NP-hard. Nonlinearity arises due to the product u>B>λ
and typical mixed-integer linear program techniques are frequently applied
to linearize this term. Even though (1-5)–(1-8) is potentially complex, the fact
that, for fixed optimal second-stage solutions u∗,λ∗, the objective value in (1-5)
is convex with respect to the first-stage decision vector x, presents a perfect
situation to use the Benders decomposition method [8]. Benders decomposition
is an iterative procedure between a master problem that determines x only and
the oracle subproblem (1-5)–(1-8). Each iteration the method provides dual
information (dual cuts) about the subproblems in the form of valid hyperplanes
(cuts) that restrict the master problem [44]. There are cases, however, where
this approach requires many iterations of the potentially NP-hard subproblem
to converge. Another drawback of this method is that it requires convexity for
the third-level problem (1-3)–(1-4).

These situations motivate the use of the column-and-constraint-generation
algorithm [68], which is also an iterative procedure relying on a
master problem and oracle subproblems. A key difference is that the
column-and-constraint-generation algorithm provides much stronger primal
cuts than the Benders decomposition. This method leverages the fact
that the two lowermost levels correspond to a maximization, within a
polyhedral uncertainty set U , of a convex function given by the output
of the inner minimization (1-3)–(1-4). Therefore, from standard results of
convex analysis, one of the vertices belongs to the optimal solution set
[44]. Unlike Benders decomposition, the column-and-constraint-generation
algorithm adds to the master problem, at each iteration, the primal
constraint (1-4) parameterized by the newly determined vertex u∗. Another
advantage over Benders decomposition is that the constraints generated by

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



Chapter 1. Introduction 22

column-and-constraint-generation algorithm do not rely on dual information
from (1-3)–(1-4). This is particular useful for applying the method to cases
where (1-3)–(1-4) is not convex, as in Chapter 2.

1.4
Document Structure and Contributions

This doctoral dissertation is structured as a compendium of five papers
which are presented as chapters that can be read separately. Therefore, each
Chapter 2–6 is an independent essay encompassing motivation, notation,
introduction, and conclusion. All papers have been reformatted to fit this
document requirements. Minimal rewording to the original work or inclusion
of new graphs or tables has been performed to provide a better fit. The papers
related to Chapters 2, 4, and 5 have been accepted/published, the paper for
Chapter 3 has been submitted, and paper for Chapter 6 is under preparation
for submission.

Chapter 2 addresses the N − 1 security-constrained short-term
scheduling problem, where the automatic primary response is explicitly
considered. Specifically, under each contingent state, the nodal demands must
be satisfied and the synchronized units generating below their limits are
constrained to follow a linear model for primary response. The resulting
formulation is a mixed-integer linear program since the primary response model
introduces disjunctions to the scheduling problem. In the presence of these
disjuntions, exact methods relying on traditional Benders’ decomposition do
not scale well. As an alternative, a tailored decomposition scheme that deals
with a resulting nonconvex third-level problem is proposed. This scheme is
based on modifications to the column-and-constraint-generation algorithm.
The method involves procedures for preprocessing dedicated cuts and for
numerically determining the post-contingency responses. Heuristics to generate
high-quality primal solutions and upper bounds for the method are also
discussed. Finally, the proposed method is tested on large-scale systems. The
contents of this chapter are based on a paper accepted for the Electric Power
Systems Research [69].

Chapter 3 also addresses the N − 1 security-constrained short-term
scheduling problem with automatic primary response of synchronized
generators, although using a different approach from that of Chapter 2.
As in [28,48,70–72] it is assumed that data from previous solves are available.
The proposed approach involves deep neural networks that produces a
function/policy which maps the vector of nodal net loads onto the nominal
dispatch, disregarding power flow constraints and the automatic primary
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response. The feasibility with respect to problem constraints is enforced by
robust-based methods. First, inspired by [48], a Lagrangian dual scheme
is adopted to penalize physical constraints included in the learning model.
During the training phase, a first dedicated column-and-constraint-generation
algorithm is applied directly to the leaning model to add new constraints, for a
few critical contingent states, to be penalized in the Lagrangian dual scheme.
In these constraints, a tailored approximation for the post-contingency
generation is adopted to limit the number of predictors of the deep
neural network model. After the training phase, a modified version of the
column-and-constraint-generation algorithm from Chapter 2 is applied to find
the nearest feasible solution to the prediction. The proposed approach is tested
on large-scale systems.

Chapter 4 presents a two-stage robust unit commitment model
for the day-ahead energy and reserve scheduling under high renewable
integration. An alternative scenario-based framework whereby uncertain
renewable generation is characterized by a polyhedral uncertainty set relying
on the direct specification of its vertices is proposed. A simple, yet efficient,
adaptive data-driven procedure is adopted to dynamically update the
uncertainty set with observed daily renewable-output profiles. Within this
setting, the proposed data-driven two-stage robust unit commitmeent model
ensures protection against the convex hull of realistic scenarios empirically
capturing the complex and time-varying intra-day spatial and temporal
interdependences among renewable units. The resulting formulation is solved
by the column-and-constraint-generation algorithm until ε-global optimality.
Out-of-sample experiments reveal that the proposed approach is capable of
attaining efficient solutions in terms of cost and robustness while keeping the
model tractable and scalable. The contents of this chapter are based on the
paper published in the IEEE Transactions on Sustainable Energy [73].

Chapter 5 describes a distributionally robust optimization approach
for the transmission expansion planning problem, considering both long-
and short-term uncertainties on the system demand and non-dispatchable
renewable generation. On the long-term level, as is customary in
industry applications, deep uncertainties arising from social and economic
transformations, political and environmental issues, and technology disruptions
are addressed by long-term scenarios devised by experts. In this setting,
many exogenous long-term scenarios containing partial information about
the random parameters, namely, the average and the support set, can
be considered. For each long-term scenario, a conditional ambiguity set
models the incomplete knowledge about the probability distribution of
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the uncertain parameters in the short-term operation. Consequently, the
mathematical problem is formulated as a distributionally robust model
with multiple conditional ambiguity sets. The resulting infinite-dimensional
problem is recast as an exact, although very large, finite mixed-integer
linear programming problem. To circumvent scalability issues, a new
enhanced-column-and-constraint-generation decomposition algorithm with
an additional Dantzig–Wolfe procedure is proposed. In comparison to
existing methods, the proposed decomposition scheme leads to a better
representation of the recourse function and, consequently, tighter bounds.
Numerical experiments based on the benchmark IEEE 118-bus system are
reported to corroborate the effectiveness of the method. The contents of this
chapter are based on the paper accepted for the IEEE Transactions on Power
Systems [74].

On a different note, Chapter 6 investigates the use of inducement prizes
as a general mechanism to foster innovation in theoretical and computational
aspects of power systems’ models. It is argued that many structural changes
mostly associated with market deregulation processes, technology disruptions
on both demand and supply side, and new environmental constraints
deeply modified the once stable and predictable power systems. It is also
discussed that, as a consequence, important modeling and computational
challenges arose for various operative horizons and that the main operations
in power systems are increasingly based on the solution of complex and
large optimization problems and/or forecasting methods. In view of these
challenges, the use of prizes in power systems is contextualized in light of
regulation measures that facilitated the implementation of open innovation
initiatives in US public agencies and is motivated by prior experiences with
inducement prizes on the industry and government levels to foster innovation
in various fields. Particularly, we discuss the contest platform called Grid
Optimization [75] proposed by the Advanced Research Projects Agency-Energy
(ARPA-E) seeking to increase flexibility, safety, and the integration of
non-dispatchable renewable generation. Finally, it is argued that the main
operative decision-making challenges in power systems possess, at a very high
degree, the main key features of the problems that are likely to have their
solutions improved by a series of competitions and prizes. This qualitative
analysis is mostly based on methodologies from the National Endowment for
Science, Technology and the Arts (Nesta) [76].
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2
An Exact and Scalable Problem Decomposition for
Security-Constrained Optimal Power Flow

In this chapter, we present decomposition techniques for solving
large-scale instances of the security-constrained optimal power flow (SCOPF)
problem with primary response. Specifically, under each contingency state,
we require that the nodal demands are met and that the synchronized units
generating below their limits follow a linear model for primary response. The
resulting formulation is a mixed-integer linear program since the primary
response model introduces disjunctions to the SCOPF problem. Unfortunately,
exact methods relying on traditional Benders’ decomposition do not scale
well. As an alternative, we propose a decomposition scheme based on
the column-and-constraint-generation algorithm where we iteratively add
disjunctions and cuts. We provide procedures for preprocessing dedicated cuts
and for numerically determining the post-contingency responses based on the
master problem solutions. We also discuss heuristics to generate high-quality
primal solutions and upper bounds for the method. Finally, we demonstrate
the efficiency of the proposed method on large-scale systems.

The contents of this chapter are based on a paper accepted for the Electric
Power Systems Research [69].

2.1
Introduction

System reliability under contingencies has been widely discussed in the
literature. In this context, the goal of the well-known security constrained
optimal power flow (SCOPF) problem [77–83] is to produce a pre-contingency
(or nominal) schedule for generators at minimal cost, such that it allows
for feasible steady-state points of operation for a predefined set of credible
contingencies. A review of the SCOPF problem, its challenges and trends is
available in [80].

The specification of the set of credible contingencies varies in academic
works. Generally, a loss of up to one or two elements (generators and/or
transmission lines) is considered. Interesting discussions about credible
contingencies and reserve requirements can be found in [78, 82] and the
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references therein. Security criteria and regulation for reserves also vary across
independent system operators. A survey about the requirements for reserves
across U.S. ancillary services can be found in [84]. Without loss of generality,
we consider the N−1 criterion for generators in this paper; that is, the system
must operate under the loss of any individual generator.

Variants of the SCOPF problem include the corrective case [81] where
re-scheduling is possible, and the preventive case where no re-dispatch
occurs [79, 82]. In this work, we consider preventive SCOPF with primary
response [82]. In this framework, the synchronized generators must be able to
automatically respond to contingencies to restore the balance between loads
and generation.

Even though SCOPF is a nonlinear and nonconvex problem [20, 21],
for computational purposes, several authors adopt dc approximations [78,
79, 82, 83]. Some authors have dedicated works to address the quality of
approximations or relaxations to practical situations [45,51,85,86] or to discuss
how to exploit dc SCOPF solutions on more accurate ac SCOPF approaches
[87]. Notwithstanding these relevant discussions, the focus of this work is to
improve current industry approaches still based on dc SCOPF algorithms. In
such models, stability constraints for the system are generally expressed as
power flow limits. In practical applications, the solution provided by the dc
model can be checked for ac power flow feasibility. Then, iterative and/or
heuristic procedures can be applied to further restrict the dc power flow
constraints until feasibility is reached.

The primary response of generators is explicitly modeled in [88] for a
unit commitment application and in [82, 83], and [89] for SCOPF problems.
In [82, 83], and [88] variables that represent the frequency drop in each
contingency state were used to generate linear approximations of primary
response. These variables are multiplied by parameters that represent the
sensitivity of generators to frequency changes. Such frequency regulation
parameters are related to droop coefficients. We refer the interested reader to
the discussions about droop coefficients in [82] (and references therein) where,
particularly, the authors argue that the co-optimization of the droop coefficient
and the SCOPF might save on costs. In this work, we have also opted for the
dc power flow approximation with a linear model for primary response. In
summary, for each contingency state, we have substituted the single variable
representing frequency drop adopted in [82] and [83] with a single global signal
to generators (also a variable).

The SCOPF problem featuring automatic primary response of generators
is a mixed-integer linear program (MILP) even under the dc relaxation. This
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is because the constraints for the automatic response of generators may lead
to power outputs above generator limits [88]. To remedy this, we require
binary variables for each generator and for each contingency state to determine
whether a generator is producing according to the constraints for automatic
response or at its limit. The size of the problem is generally large. It is
proportional to the number of contingencies since we are required to represent
the network and the power flow variables for each post-contingency state.

The Benders’ decomposition approach, which has often been applied
to solve energy planning problems [8, 79, 81, 90], is a natural candidate to
tackle the preventive SCOPF problem. Generally, in Benders’ approaches,
the extensive formulation is recast into a master problem and subproblems.
The master problem for power systems applications usually solves the nominal
dispatch, and the subproblems represent the redispatch or corrective actions
under contingencies and/or uncertain scenarios. An iterative procedure that
involves solving the master problem and subproblems is performed. During
this process, Benders’ cuts for the violated subproblems are added into the
master problem. The process continues until all subproblems are feasible. A
valuable review on the Benders’ decomposition method can be found in [91].

Unfortunately, preventive SCOPF imposes challenges for the application
of traditional Benders’ decomposition since the subproblems are nonconvex.
The constraints that enforce the primary response of synchronized generators
contain binary variables. Despite such challenges, a solution method inspired
by [8] considering nonconvex subproblems was provided in [82]. However, the
optimality for this method is not guaranteed. An alternative that ensures
optimality is to recast the master problem to include the constraints for
the primary response. This modification, however, does not scale well since
the number of binary variables increases quadratically with the number of
synchronized generators (assuming the N − 1 security criteria for generators).

In order to remedy the aforementioned limitations, we have devised an
exact and scalable algorithm to tackle the preventive SCOPF problem with
primary response. The focus of this work is on the computational and practical
aspects of the solution methodology. The proposed decomposition scheme
differs significantly from previously proposed solution methods. The outline
of the method is as follows.

In the master problem we consider a nominal optimal power flow problem
that accounts for valid constraints for each contingency state. We initially
disregard the network for contingency states and the disjunctions (binary
variables) in the master problem. This approach alleviates the computational
burden required for solving the master problem. During the iterative process
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only a small subset of the disjunctions and network constraints are introduced
to the master problem by a column-and-constraint-generation algorithm
(CCGA) [68]. In the proposed decomposition approach, the only optimization
problem that is solved is the master problem. This is possible since we use:
i) preprocessed structures based on the power transfer distribution factors
(PTDF) that are useful both as feasibility checkers and as dedicated cuts in
the post-contingency states, and ii) a numerical procedure that determines
the post-contingency variables based solely on the nominal generation. The
aforementioned preprocessed structures allow us to monitor the critical
congested areas of the system. As it is necessary, these structures are
transformed into constraints (that differ from Benders’ cuts) that are added to
the master problem. These cuts represent the network for the post-contingency
states. Likewise, as it is necessary, we introduce the disjunctions (binary
variables) representing the primary response model for a few contingency states
into the master problem. We also propose a method to find high-quality primal
solutions and a procedure that monitors the upper and lower bounds for the
method.

In summary, the main contribution of this work is a decomposition
approach that combines a column-and-constraint-generation algorithm with
numerical methods to determine exact solutions to the SCOPF problem
in such a way that the nonconvex subproblems do not need to be solved
directly. We demonstrate that this approach is possible due to the presence
of valid post-contingency constraints in the master problem and due to the
preprocessed structures derived from a PTDF-based formulation.

The rest of this chapter is organized as follows: The notation is introduced
in Section 2.2. In Section 2.3, the SCOPF model is introduced. The solution
methodology is presented in Section 2.4. Numerical experiments are reported
in Section 2.5. Finally, this paper is concluded in Section 2.6.

2.2
Nomenclature

This section introduces the notation of this chapter. We use bold symbols
for matrices (uppercase) and vectors (lowercase). Additional symbols can be
interpreted by the following general rules: Symbols with superscript “(j)”
denote new variables, parameters or sets corresponding to the j-th iteration of
the solution method. The symbols with superscript “(∗)” denote the optimal
value of the associated (iterating) variable.
Sets
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E , Es Feasibility sets for the nominal power flow constraints and for the
power flow constraints under contingency state s, respectively.

Fs Feasibility set for primary response constraints under contingency
state s.

G,L,N Sets of generators, transmission lines and buses, respectively.

H Subset of G for devising primal solutions.

S Set of contingencies.

S Subset of S with disjunctive constraints, used in the
column-and-constraint-generation algorithm.

X ,Xs Sets of power flow-related decision variables for nominal state and
for contingency state s.

Ys Set of decision variables associated with primary response under
contingency state s.

Parameters

α, αs,l Largest transmission line capacity violation and violation for
transmission line l, under contingency state s.

β, β1, β2 Parameters for selecting preprocessed cuts.

γ Vector of parameters for primary response.

γi Parameter for primary response of generator i.

ε Tolerance for transmission line violation.

ε Tolerance for the binary search procedure.

A, B Line-bus and Generator-bus incidence matrices.

c Vector of generation costs.

ci Generation cost of generator i.

d Vector of nodal net loads.

e Vector of ones with appropriate dimension.

es Total load imbalance for contingency state s.
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f Vector of line capacities.

g,g Vectors of lower and upper limits for generators.

ĝ Vector of capacities for generators.

gi Upper limit for generator i.

ĝi Capacity of generator i.

K0 Matrix of power transfer distribution factors.

K1,k2 Preprocessed structures for positive flow limits.

K3,k4 Preprocessed structures for negative flow limits.

M Big-M.

lb, ub Lower/upper bound for the decomposition method.

p Parameter for primal solution approach.

r Vector of primary response limits of generators.

ri Primary response limit of generator i, given by γiĝi.

S Angle-to-flow matrix.

z Objective value of the master problem for the column-and-constraint-generation
algorithm.

zp Objective value z when using the parameter p.

Nominal-state-related decision variables and vectors

θ, f ,g Phase angles, line flows, and nominal generation.

gi Generation of generator i in nominal state.

Contingency-state-related decision variables and vectors

θs Vector of phase angles under contingency state s.

µs Vector of dual variables associated with nodal load balance
constraint under contingency state s.

fs Vector for line flows under contingency state s.
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gs Vector for generation under contingency state s.

g′s Provisional vector for gs.

gs,i Generation of generator i under contingency state s.

g
′
s,i Provisional variable for gs,i.

ns Global signal under contingency state s.

u+
s ,u−s Vectors of slack variables for line capacities.

v+
s ,v−s Vectors of slack variables for nodal demand balance.

xs Binary vector indicating whether generators reached g under
contingency state s.

xs,i Binary variable indicating whether generator i reached gi under
contingency state s.

2.3
SCOPF with Primary response Formulation

We assume a generic framework where a bid-based market for energy
and reserve and/or unit commitment (UC) procedures have taken place hours
before (or in the day before). We assume that, at the time the SCOPF is solved,
the operator has precise forecasts for the few-minutes-ahead non-dispatchable
generation, and nodal net loads. For notational conciseness we assume that all
generators are synchronized.

2.3.1
Power Flow Constraints

We use the following dc power flow constraints:

Af + Bg = d (2-1)

f = Sθ (2-2)

− f ≤ f ≤ f (2-3)

g ≤ g ≤ g (2-4)

Afs + Bgs = d ∀s ∈ S (2-5)

fs = Sθs ∀s ∈ S (2-6)

− f ≤ fs ≤ f ∀s ∈ S (2-7)

gs ≤ g ∀s ∈ S. (2-8)
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Constraints (2-1)–(2-4) model the power flow in the nominal state. Expression
(2-1) represents nodal power balance under a dc power flow model, while
Kirchhoff’s second law is accounted for in (2-2). Transmission line limits and
generator limits are enforced by (2-3) and (2-4), respectively. In (2-4), we allow
generation bounds g and g to be different from the minimum and maximum
(ĝ) set points for the generators due to commitment and/or operational
constraints. Analogously to block (2-1)–(2-4), the set of constraints (2-5)–(2-8)
model the power flow under each contingency state s.

2.3.2
Primary Response Model

The primary response under contingency state s is modeled by a global
signal1 ns sent to all synchronized generators. This approach differs from
those of [82] and [83], where variables representing frequency drops under
contingency states are considered. We assume that the response of generator i
is proportional to its capacity ĝi and also to a predefined coefficient γi that is
associated with the droop coefficient. Hence, under s, the automatic response
of synchronized generator i is given by gs,i − gi = nsγi ĝi, with the additional
constraints that gs,i ≤ gi. Mathematically, we have

gs,i = min{gi + nsγi ĝi, gi} ∀i ∈ G, ∀s ∈ S, i 6= s (2-9)

gs,s = 0 ∀s ∈ S. (2-10)

By using traditional MILP modeling techniques to rewrite (2-9)–(2-10), we
obtain

|gs,i − gi − nsγi ĝi| ≤ gi(1− xs,i) ∀i ∈ G,∀s ∈ S, i 6= s (2-11)

gi + nsγi ĝi ≥ gi(1− xs,i) ∀i ∈ G,∀s ∈ S, i 6= s (2-12)

gs,i ≥ gi(1− xs,i) ∀i ∈ G,∀s ∈ S, i 6= s (2-13)

ns ∈ [0, 1] ∀s ∈ S (2-14)

xs,i ∈ {0, 1} ∀i ∈ G,∀s ∈ S (2-15)

gs,s = 0 ∀s ∈ S. (2-16)

2.3.3
1An alternative interpretation is that ns mimics the system’s response which is required

for adjusting the power (or frequency) imbalance. The physical interpretation for the
limitation of 1 to ns is that γi multiplied by capacity is the maximum deliverable reserve or
maximum ramp for a given time frame.
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Extensive Formulation for the SCOPF Problem

The SCOPF problem is modeled as a MILP, where we minimize the
cost of nominal generation in the objective function subject to constraints
(2-1)–(2-8) and (2-11)–(2-16). For conciseness, we define X = [g, f ,θ], Xs =
[gs, fs,θs], and Ys = [g,gs,xs, ns]. Let Ys ∈ Fs denote the disjunctions related
to (2-11)–(2-16) while X ∈ E and Xs ∈ Es denote the power flow constraints
in nominal ((2-1)–(2-4)) and contingency states ((2-5)–(2-8)) respectively. The
extensive formulation for the SCOPF problem, labeled as EF method, is as
follows

min
X ,[Xs,xs,ns]s∈S

c>g (2-17)

subject to:

X ∈ E (2-18)

Xs ∈ Es ∀s ∈ S (2-19)

Ys ∈ Fs ∀s ∈ S. (2-20)

2.4
Solution Methodology

In this work we focus on methods that guarantee optimality for the
SCOPF problem. A Benders’ decomposition with valid post-contingency
constraints in the master problem is presented in Section 2.4.1. Preprocessed
structures for feasibility checking and cut generation are presented in Section
2.4.2, while a useful binary search is introduced in Section 2.4.3. The CCGA is
described in Section 2.4.4. A method for finding high-quality primal solutions
is presented in Section 2.4.5.

2.4.1
Modified Benders’ Decomposition

The intuitive Benders’ decomposition approach for (2-17)–(2-20) is
to define the master problem as the nominal schedule, associated with
(2-17)–(2-18), and the subproblems as the separable feasibility recourse
problems enforcing (2-19)–(2-20) for each s ∈ S. Unfortunately, this approach
introduces nonconvexities to the subproblems [82], and thus, does not
guarantee optimality.

In order to ensure the convexity of the subproblems, and thus optimality
for the method, we define the subproblems as feasibility-like problems for the
constraints in (2-19). As part of the modification, we also add the following
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valid post-contingency constraints to the master problem:

e>gs = e>d ∀s ∈ S. (2-21)

The purpose of (2-21) is to strengthen the master problem with the necessary
post-contingency condition that the total generation and the total load are
equal. By also enforcing (2-8) we guarantee that post-contingency generation
is within bounds. We define the master problem2 as

min
X ,[gs,xs,ns]s∈S

c>g (2-22)

subject to:

(2-18) (2-23)

(2-8), (2-20), (2-21) ∀s ∈ S. (2-24)

The subproblem for each s ∈ S, where g(∗)
s is the solution determined in

(2-22)–(2-24), is then defined as

min
v+

s ,v−s ,fs,gs,θ
e>(v+

s + v−s ) (2-25)

subject to:

(2-6), (2-7) (2-26)

gs = g(∗)
s : µs (2-27)

Afs + Bgs = d + v+
s − v−s . (2-28)

A feasibility Benders’ cut is then added to the master problem at
each iteration, for each s that is not feasible; that is, ∀s ∈ S such that
e>(v+(∗)

s + v−(∗)
s ) > ε, where ε is a tolerance level for the net load imbalance.

The Benders’ cut for s is as follows: e>(v+(∗)
s + v−(∗)

s ) +µ>(gs− g(∗)
s ) ≤ 0. We

label this approach as the BD method.

2.4.2
Precomputation of Dedicated Cuts

In this subsection, an alternative method named BDDC is introduced.
Unlike the BD method that involves subproblems that generate Benders’ cuts,
the BDDC method uses preprocessed structures as feasibility checkers and to
generate cuts. These structures, that are also applied in the CCGA of Section
2.4.4, are based on the PTDF formulation for dc power flow.

2There are two main difference with respect to the EF: Line constraints (2-6)–(2-7) are
not included, and constraint (2-5) is substituted by (2-21).
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In the BDCC method, we have the same master problem (2-22)–(2-24) as
the BD method. Thus, g(∗)

s is determined in (2-22)–(2-24), where the primary
response constraints (2-20) and the post-contingency generation constraints
(2-8) and (2-21) are enforced.

The aforementioned preprocessed structures are constructed directly
from the PTDF-based formulation for the dc power flow. This formulation,
for contingency state s, is as follows:

min
u−s ,u+

s

0 (2-29)

subject to:

− f + u−s = K0(d−Bg(∗)
s ) = f − u+

s (2-30)

u−s ,u+
s ≥ 0. (2-31)

In (2-30), g(∗)
s is a solution determined by (2-22)–(2-24) and K0 is the

PTDF matrix. A similar description for (2-30) is presented in [92]. We highlight
that (2-8) and (2-21) are enforced in the master problem and therefore are
not necessary in (2-29)–(2-31). As opposed to the subproblems of the BD
method we do not allow nodal imbalance in (2-29)–(2-31). Thus, a given master
problem solution g(∗)

s is feasible under contingency state s if there is a feasible
solution u−s , u+

s for (2-29)–(2-31).
In this work we assume that we have more lines |L| than buses |N |

and that there are no isolated buses. Under these assumptions and because
we enforce (2-8) and (2-21) in the master problem, we do not need to solve
(2-29)–(2-31) to check for feasibility in post-contingency states or to obtain
cuts. Manipulating (2-30), we derive the preprocessed structures:

(u+
s ) : K1gs + k2 ≥ 0 (2-32)

(u−s ) : K3gs + k4 ≥ 0. (2-33)

Interestingly, the matrices K1, K3 and the vectors k2, k4 can be efficiently
precomputed3 and are the same for all s ∈ S. Another feature is that (2-32)
and (2-33) are directly associated with the transmission lines of the system,
relating either to the positive (2-32) or negative (2-33) limits. By inspecting
solutions gs on (2-32)–(2-33) it is possible to verify the existence of violated
lines and the intensity of violations (in MW) under each contingency state.

3The incorporation of line outages as part of the set of credible contingencies would
require the precomputation of different structures for K1, K3, k2, and k4. This would lead
to a linear increase in the size of the precomputed data for the problem (as many as the line
contingencies). This would not present a significant computational obstacle.
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The algorithm for the BDDC method involves adding rows of (2-32) and
(2-33) as lazy constraints to problem (2-22)–(2-24). We do not require that an
optimal solution gs is found. Whenever a feasible (suboptimal) integer solution
is determined by the solver, as a subroutine, we check the feasibility of gs using
(2-32) and (2-33). We define αs,i as the violation of line l, for contingency state
s and α as the largest violation among all transmission lines for all s. We then
add to (2-22)–(2-24) as lazy constraints the rows of both (2-32) and (2-33)
corresponding to violated lines such that αs,l > α/β1, where β1 is a parameter.
We stop the algorithm when α is smaller than a defined tolerance ε. This
procedure converges in finite steps since adding all rows of (2-32) and (2-33),
for every s ∈ S, to (2-22)–(2-24) results in a problem which is equivalent to
(2-17)–(2-20).

Unfortunately, the application of the BDDC method alone is not scalable
since its master problem contains all the binary variables. Before proceeding to
the proposed CCGA (Section 2.4.4), we introduce next a useful binary search
procedure.

2.4.3
Numerical Procedure for Calculating the Global Signal

Under the primary response model, the post-contingency generation for
s; that is, gs, is defined by the combination of the nominal schedule g(∗) and the
global signal n(∗)

s . Namely, given g(∗) and n(∗)
s , it is straightforward to compute

g(∗)
s by applying the relations in (2-11)–(2-16).

Interestingly, n(∗)
s can also be calculated from g(∗). This is achieved by a

binary search for ns for each s ∈ S. The binary search is possible in this case
since, for a fixed g(∗), each component of gs is monotone with respect to ns.
Thus, despite the presence of the disjunctions, we only need to find the correct
n(∗)
s that results in a vector g(∗)

s that satisfies the total net demand. Given the
fast convergence of the binary search, the tolerance ε can be set to very small
values. This procedure is described next.
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Algorithm Binary Search(s, ε, g(∗))
1: Initialization: j ← 0 and n(0)

s ← 0.5
2: for i ∈ G, i 6= s do
3: if g(∗)

i + n
(j)
s γi ĝi ≥ gi then: g(j)

s,i ← gi
4: else: g(j)

s,i ← g
(∗)
i + n

(j)
s γi ĝi

5: end if
6: end for
7: g(j)

s,s ← 0; es ← (e>gs − e>d).
8: if |es| ≤ ε then: n(∗)

s ← n
(j)
s , g(∗)

s,i ← g
(j)
s,i ,∀i ∈ G and BREAK

9: else if: es > 0 then: n(j+1)
s ← n

(j)
s /2

10: else: n(j+1)
s ← (1 + n

(j)
s )/2

11: end if
12: j ← j + 1; Go to step 2.

2.4.4
Column-and-Constraint-Generation Algorithm

We define the master problem for the CCGA as follows

z = min
X ,[g′s]s∈S ,[xs,ns]s∈S

c>g (2-34)

subject to:

(2-18) (2-35)

g′s − g ≤ r ∀s ∈ S (2-36)

(2-8), (2-16), (2-21) ∀s ∈ S (2-37)

(2-20) ∀s ∈ S. (2-38)

Note that, as opposed to the BDDC method, in (2-38) we define a
different set of contingency states S for the disjunctive constraints (starting
with S = ∅). We also abuse notation by using g′s as a provisional variable for the
post-contingency generation replacing gs in (2-36) and (2-37). We performed
this substitution to make explicit that gs is not determined in (2-34)–(2-38)
for the entire iterative process. The determination of gs in (2-34)–(2-38) would
only be possible in the presence of the disjunctive constraints (2-20) for s.
These disjunctive constraints are not initially present in (2-34)–(2-38) for
computational purposes. In fact, the determination of gs is performed by the
binary search algorithm, which requires only g and tolerance as inputs. The
purpose of g′s in (2-36) and (2-37) is to guarantee that g is determined in such
a way that the binary search algorithm is capable of enforcing the primary
response compatibility to gs, while meeting the global demand. That is, for
each s, |e>gs − e>d| ≤ ε.
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In order to verify the above claim, note that by (2-36) and (2-8),
g
′
s,i ≤ min {gi, gi + γiĝi} for each i and s, where g′s,i is the i-th element of

g′s. Fixing ns = 0 in the binary search algorithm implies gs = g, except for
gs,s = 0. If instead we set ns = 1 then gs,i = min {gi, gi + γiĝi} ≥ g

′
s,i for each

i and s, with i 6= s. For i = s, we have that g′s,s = gs,s = 0. Thus, since g′s
meets the global demand, it is always the case that e>gs ≥ e>g′s = e>d by
choosing ns = 1. By the monotonicity and continuity of gs,i with respect to ns
for a given gi, there is a value n(∗)

s that results in g(∗)
s that satisfies the global

demand and preserves the primary response model.
At each iteration j of the CCGA, we solve the master problem

(2-34)–(2-38) to obtain g(j) and z(j). Then, for each s ∈ S, we perform the
binary search algorithm to define g(j)

s according to the primary response model.
Next, for all s, we check feasibility of the solutions g(j)

s using (2-32) and (2-33).
We use α(j)

s,i to define the violation of each line l, for each contingency state
s and we use α(j) as the largest violation among all transmission lines for all
s. We identify the contingency state s(j) that contains the most violated line.
If s(j) ∈ S we skip the rest of this step. Otherwise we set S = S ∪ s(j) which
means including the disjunctions (2-20) for s(j) into (2-34)–(2-38).

We also add to (2-34)–(2-38) the rows of both (2-32) and (2-33)
corresponding to violated lines using two criteria: i) For the post-contingency
states s ∈ S we include the lines where α

(j)
s,l > α(j)/β1. ii) For the

post-contingency states s /∈ S we include the lines where α
(j)
s,l > α(j)/β2.

The objective of this step is to enforce the network constraints for critical
lines in post-contingency states. Typically, β1 > β2. We are stricter with the
states s ∈ S since defining tight parameters for contingency states without
corresponding disjunctions may lead to the inclusion of many constraints at a
time. A user defined tolerance ε (in MW) for maximum line violation is used
to stop the iterative process. The CCGA is described next.
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Algorithm CCGA(ε, ε, β1, β2)
1: Initialization: j ← 0, S← ∅.
2: Solve master problem (2-34)–(2-38) to obtain g(j)

3: for s ∈ S do
4: Apply Binary Search(s, ε, g(∗)) to obtain: z(j), g(j)

s , n
(j)
s

5: for ∀l ∈ L do
6: Compute α(j)

s,l as the maximum between violation of (2-32) and violation of (2-33)
7: end for
8: end for
9: Compute α(j) as the maximum among all α(j)

s,l

10: Identify the state s(j) associated with α(j)

11: if s(j) /∈ S then: S← S ∪ s(j) (add (2-20) for s(j) to (2-34)–(2-38))
12: end if
13: for s ∈ S do
14: if s ∈ S then: β ← β1

15: else: β ← β2

16: end if
17: for l ∈ L do
18: if α(j)

s,l > α(j)/β

19: if cuts (2-32)–(2-33) for the pair (l,s) are not yet added to master problem
20: then: add cuts (2-32)–(2-33) for contingency state s, line l to master problem
21: end if
22: end for
23: end for
24: if α(j) < ε then: z(∗) ← z(j), g(∗) ← g(j); BREAK
25: else: j ← j + 1; Go to step 2.
26: end if.

2.4.5
Finding High-Quality Primal Solutions and Monitoring the Optimality Gap
using the CCGA

Because very large cases might still impose computational challenges,
we propose a procedure for finding feasible primal solutions. This procedure
restricts the disjunctions in (2-20) to a subset of synchronized generators
H ⊂ G. The generators in G \ H respond with gs,i − gi = nsγi ĝi; that is,
we define xs,i = 1,∀s ∈ S,∀i ∈ G \ H, i 6= s.

The following criterion is used for defining H. We rank the synchronized
generators according to a “cost/limit” index (ci/gi) and define H as the p%
generators with lowest ranks, where p is a parameter. The objective value of
the problem using this approach is denoted as z(∗)

p . Note that z(∗)
100 = z(∗).

This approach reduces the number of binary variables and thus the
complexity of the problem. It is then a tool for finding upper bounds for
(2-17)–(2-20). If we apply CCGA(ε, ε, β1, β2) using the proposed primal
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method; i.e., setting xs,i = 1,∀s ∈ S,∀i ∈ G \ H in (2-34)–(2-38) we obtain
ub = z(∗)

p as a valid upper bound. If the problem is infeasible for p then
z(∗)
p ← inf.

Note, however, that a procedure that monitors the optimality gap is
still required. A lower bound for (2-17)–(2-20) is not obtained for p < 100.
Conversely, solving for p = 100 generates upper bounds only after a feasible
solution is found. This typically occurs in the later iterations when the
tolerance ε for all lines in every contingency state is achieved.

We propose a simple strategy that monitors the bounds. Note that solving
the SCOPF with the CCGA for low values of p tends to be faster than for high
values of p. Thus, we start p = 0 and increase it sequentially. The solution
for each p < 100 provides an upper bound for (2-17)–(2-20). As a parallel
procedure, we solve for p = 100 to obtain valid lower bounds. Namely, for each
iteration j of the CCGA for p = 100, a valid lower bound is defined as the best
bound provided by the solver. This procedure monitors the gap efficiently.

2.5
Computational Experiments

We compared the proposed CCGA with two solution methods: EF and
BDDC described in Sections 2.3.3 and 2.4.2.

We performed simulations for various values of γ, β1, and β2. Our results
indicate that varying the parameters may impact the performance of the
CCGA. However, the dominance of the CCGA over other methods (EF and
BDDC) was a constant, despite the parameterization. We have reported results
for β1 = 5, β2 = 1.2, and γi = 0.05 for all i ∈ G.

We used Gurobi 8.1.1 under the modeling package JuMP 0.18.5 for Julia
Language 0.6.4 on a Xeon E5-2680 processor at 2.5 GHz and 128 GB of RAM.
We set the optimality gap of Gurobi to 0.5% for the EF method and BDDC
method as well as for the master problem of the CCGA. The maximum line
violation was set to ε = 0.05 MW and the precision for the binary search
algorithm to ε = 10−10 MW.

The data are based on modified versions of the benchmark systems
presented in [93]. The size of the instances for the EF method, after Gurobi’s
presolve, are reported in Table 3.1.

2.5.1
Solution Method Comparison

Table 2.2 provides the computational times for selected methods and
the number of iterations for the CCGA method in parentheses. The CCGA
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System Continuous Binary Linear
Variables Variables Constraints

118 IEEE 10,604 2,862 19,137
1354 PEGASE 323,571 63,455 513,677
1888 RTE 387,979 79,032 624,780
1951 RTE 563,273 149,370 1,010,994
2848 RTE 1,104,192 276,822 1,934,115
2868 RTE 1,284,568 348,036 2,328,081
6468 RTE 5,067,009 1,563,640 9,756,668

Table 2.1: Instance Size for the EF method after Presolve

System
Solution Method

EF BDDC CCGA
118 IEEE 46.2 27.6 8.0 (4)
1354 PEGASE T T 138.0 (12)
1888 RTE T 2,899.0 14.0 (4)
1951 RTE T T 16.2 (4)
2848 RTE T T 26.6 (4)
2868 RTE T T 31.0 (3)
6468 RTE T T 7,881.6 (18)

T - Time limit of 4 hours exceeded.

Table 2.2: Comparative CPU times (s) and number of iterations

dominates the other methods, which were only able to solve the 118 IEEE
case within a reasonable time limit. For this instance, the CCGA required less
than one third of the time of the BDDC method and less than one fifth of the
time of the EF mehod. The only other instance that the BDDC method was
able to solve in less than 4 hours was the 1888 RTE. The CCGA was more
than 200 times faster for this instance. Interestingly, the number of iterations
required by the CCGA is generally small, implying that the CCGA solved far
less complex MILPs than the other methods. The only instance that posed
difficulties for the CCGA was the 6468 RTE that contains more than 6,000
buses, 1,200 generators, and 9,000 transmission lines. Nevertheless, a solution
for the optimality gap of 0.5% was achieved in less than 3 hours.

Interestingly, as reported next, it is possible to determine high-quality
solutions in competitive computational times for large systems by applying
the primal method of Section 2.4.5.

2.5.2

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



Chapter 2. An Exact and Scalable Problem Decomposition for
Security-Constrained Optimal Power Flow 42

p
Cost Cost Gap Time Iter.

(103 $) (%) (s) (#)
100 1624.8 0.00 7881.6 18
10 1625.8 0.02 813.5 17
0 1628.7 0.25 481.2 16

Table 2.3: Primal Approach for the 6468 RTE System

p
Cost Cost Gap Time Iter.

(103 $) (%) (s) (#)
100 1190.6 0.00 138.0 12
50 1192.6 0.17 64.7 11
10 1195.4 0.40 21.1 11
0 1208.3 1.49 9.4 10

Table 2.4: Primal Approach for the 1354 PEGASE System

Finding Primal Solutions and Determining Bounds

The method of Section 2.4.5 for defining primal solutions was applied
for the 6468 RTE and 1354 PEGASE systems. CCGA was used to solve the
SCOPF problem for different values of p to an optimality gap of 0.5%. The
results are summarized in Tables 2.3 and 2.4. Columns 1 and 2 present the
cost and the relative cost gap for each p with respect to the cost achieved by
p = 100. Columns 3 and 4 report the required computational time and number
of iterations.

For the 6468 RTE system (Table 2.3) the result is quasi-optimal even for
p = 0. For the 1354 PEGASE system (Table 2.4) the solution for p = 0
is already competitive, and required 9.4 seconds only. By increasing the
complexity of the problem to p = 10, the cost gap is reduced by more than 1%
for a reasonable solution time of 21.1 seconds. For p = 50, the CCGA required
64.7 seconds to converge, achieving a negligible cost gap of 0.17.

Despite the good results for small values of p, the cost gap is not
observable before solving for p = 100. Thus, we adopted the strategy of
Section 2.4.5 for obtaining bounds. We used multi-threading to solve problems
in parallel. In the first thread we solved a sequence of problems for increasing
values of p, starting with p = 0. We have stored the costs and times for the
solutions of each p. In the second thread we solved for p = 100 and recorded
solving time and the best bound of each iteration provided by Gurobi. A
convergence plot from applying this method to the 1354 PEGASE system is
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Figure 2.1: Bounds for the 1354 PEGASE system.

illustrated in Fig. 2.1. The proposed strategy yields the true optimality gap
and is a useful decision-making tool for system operators.

2.6
Conclusion

We presented an exact and scalable column-and-constraint-generation
algorithm for the SCOPF problem with primary response of generators.
Under the proposed framework, we add the disjunctions as necessary in an
iterative process that does not involve subproblems. This is possible by a
scheme that involves a master problem with valid post-contingency constraints,
preprocessed structures that serve both as feasibility checkers and delayed cuts,
and a numerical procedure that reduces the complexity of the master problem
by exogenously calculating the nonconvex primary response. We also proposed
a procedure for finding high-quality primal solutions that helps monitor the
bounds for the method. As shown by the computational experiments, this
approach scales to large instances of the SCOPF problem with primary
response.

In future works we will generalize these techniques. As a first step,
convexifications of ac power flow, such as those studied in the recent works
of Coffrin and Van Hentenryck [45, 51], will be used to model the system’s
response after contingencies.
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3
Combining Deep Learning and Optimization for
Security-Constrained Optimal Power Flow

The security-constrained optimal power flow (SCOPF) is fundamental
in power systems and connects the automatic primary response (APR) of
synchronized generators with the short-term schedule. Every day, the SCOPF
problem is repeatedly solved for various inputs to determine robust schedules
given a set of contingencies. Unfortunately, the modeling of APR within
the SCOPF problem results in complex large-scale mixed-integer programs,
which are hard to solve. To address this challenge, leveraging the wealth
of available historical data, this chapter proposes a novel approach that
combines deep learning and robust optimization techniques. Unlike recent
machine-learning applications where the aim is to mitigate the computational
burden of exact solvers, the proposed method predicts directly the SCOPF
implementable solution. Feasibility is enforced in two steps. First, during
training, a Lagrangian dual method penalizes violations of physical and
operations constraints, which are iteratively added as necessary to the
machine-learning model by a Column-and-Constraint-Generation Algorithm
(CCGA). Second, another different CCGA restores feasibility by finding the
closest feasible solution to the prediction. Experiments on large test cases show
that the method results in significant time reduction for obtaining feasible
solutions with an optimality gap below 0.1%.

3.1
Introduction

3.1.1
Motivation

Power systems operations require constant equilibrium between nodal
loads and generation. At the scale of seconds, this balance is achieved by
Automatic Primary Response (APR) mechanisms that govern the synchronized
generators. For longer time scales, ranging from a few minutes to hours or even
days ahead, this balance is obtained by solving mathematical optimization
problems, as independent system operators seek consistent and efficient
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schedules satisfying complex physical and operational constraints. The need
to solve these optimization problems in a timely manner is driving intense
research about new models and algorithms, both in industry and academia. In
this vein, this work aims at speeding up solution times of security-constrained
optimal power flow (SCOPF) problem [77–83] by combining deep learning and
robust optimization methods. The SCOPF is solved by operators every few
minutes for different sets of bus loads. The high penetration of renewable
sources of energy has increased the frequency of these optimizations. The
SCOPF problem considered in this work links the APR to the very short-term
schedule. It is also relevant to mention that the SCOPF problem is directly
or indirectly present in many other power system applications, including
security-constrained unit commitment [94], transmission switching [95], and
expansion planning [96]. Thus, a reduction in the computational burden would
allow system operators to introduce important modeling improvements to
many applications.

3.1.2
Contextualization and Related Work

The SCOPF problem determines a least-cost pre-contingency generator
dispatch that allows for feasible points of operation for a set of contingencies,
e.g., individual failures of main lines and/or generators. The SCOPF problem
may refer to the corrective case [81] where re-scheduling is deemed possible and
to the preventive case where no re-dispatch occurs [69, 79,82], i.e., the system
must be able to achieve a feasible steady-state point without a new schedule.
A valuable review of the SCOPF problem and solution methods is available in
[80]. Interesting discussions about credible contingencies, reserve requirements,
security criteria, and regulation for reserves can be found in [78,82,84] and the
references therein. Without loss of generality, the N − 1 security criterion for
generators is adopted in this chapter, i.e., the system must operate under the
loss of any single generator.

The SCOPF is a nonlinear and nonconvex problem based on the AC
optimal power flow (OPF) equations. Extensive reviews can be found in [20]
and [21]. The DC formulation of the SCOPF has been widely used in both
academia and industry [78, 79, 82, 83]. Interesting discussions regarding the
quality of approximations and relaxations of the OPF problem can be found
in [45, 51, 85, 86]. The DC-SCOPF can also be used to improve AC-SCOPF
approaches [87]. It is not within the scope of this work to discuss the quality
of aforementioned approximations or relaxations to the optimal power flow.
Instead, this research offers a new approach that improves current industry
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practices, which is still strongly based on DC-SCOPF.
The APR of synchronized generators is essential for stability. These

generators respond automatically to frequency variations, caused by power
imbalances for instance, by adjusting their power outputs until frequency
is normalized and the power balance is restored. Unfortunately, the APR
deployment, which is bounded by generators limits only, may result in
transmission line overloads [69, 82, 97]. Therefore, this work co-optimizes the
APR of synchronized generators within the (preventive) SCOPF problem.
Even though the APR behavior is nonlinear, linear approximations are used
in practice [98]. In [69, 82, 83, 88, 89], the APR is modeled by a single variable
representing frequency drop (or power loss) for each contingency state and by
a participation factor for each generator.

The DC-SCOPF problem with APR is referred to as the SCOPF problem
for conciseness in this chapter. It admits an exact extensive formulation (with
all variables and constraints for nominal state and contingency states) as a
mixed-integer linear program (MILP) [69, 82]. Nevertheless, this formulation
is generally very large because the APR constraints require binary variables
for each generator and for each contingency state to determine whether
generators are producing according to the linear response model or are at their
limits [69, 82]. Thus, the number of binary variables increases quadratically
with the number of generators, which makes the extensive form of the
SCOPF impractical. Better modeling strategies and decomposition schemes
are required.

The robust optimization framework has been widely applied in power
systems due to its interesting tradeoff between modeling capability and
tractability. See [99] for a review of robust optimization applications in
power systems. The SCOPF problem can be modeled as a two-stage
robust optimization or adaptive robust optimization (ARO) and tackled
by two main decomposition methods: Benders decomposition [8] and
the column-and-constraint-generation algorithm (CCGA) [68]. Both
approaches rely on iterative procedures that solve a master problem and
subproblems. The master problem is basically the nominal OPF problem with
additional cuts/constraints and variables representing feasibility or optimality
information on the subproblems. Whereas Benders decomposition provides
dual information about the subproblems through valid cuts restricting the
master problem, the CCGA adds primal contraints and variables from the
subproblems to the master problem.

Unfortunately, the SCOPF problem is not suitable for a traditional
Benders decomposition since the subproblems are nonconvex due to the APR
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constraints (which feature binary variables). Despite such challenges, inspired
by [8], an interesting heuristic method was proposed in [82] but it does not
guarantee optimality. In contrast, the CCGA algorithm proposed in [69] is
an exact solution method which was used to produce optimal solutions to
power network with more than 2,000 buses. Notwithstanding aforementioned
contributions, both approaches still require significant computational effort to
obtain near-optimal solutions.

Machine learning (ML) approaches have been advocated to address the
computational burden associated with the hard and repetitive optimization
problems in the power sector, given the large amounts of historical data
(i.e., past solutions). Initial attempts date back to the early 1990s, when, for
example, artificial neural networks were applied to predict the on/off decisions
of generators for an unit commitment problem [100, 101]. More recently, ML
was used to identify partial warm-start solutions and/or constraints that can be
omitted, and to determine affine subspaces where the optimal solution is likely
to lie [71]. Artificial neural network and decision tree regression were also used
to learn sets of high-priority lines to consider for transmission switching [72],
while the k-nearest neighbors approach was used to select previously optimized
topologies directly from data [28]. As for the security and reliability aspects
of the network, the security-boundary detection was modeled with a neural
network to simplify stability constraints for the optimal power flow [102],
while decision trees were applied to determine security boundaries (regions)
for controllable variables for a coupled natural gas and electricity system [103].
Machine learning was also applied for identifying the relevant sets of active
constraints for the OPF problem [70].

Unlike these applications, where the main purpose of machine learning is
to enhance the solver performance by classifying sets, eliminating constraints,
and/or by modeling specific parts of the problems, the machine-learning
approach in [48] directly predicts the generator dispatch for the OPF by
combining deep learning and Lagrangian duality. This approach produces
significant computational gains but is not directly applicable to the SCOPF
problem which features an impractical number of variables and constraints.
This work remedies this limitation.

3.1.3
Contributions

The chapter assumes the existence of historical SCOPF data, i.e.,
pairs of inputs and outputs [28, 48, 70–72] The proposed approach uses a
deep neural network (DNN) to approximate the mapping between loads
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and optimal generator dispatches. To capture the physical, operational, and
APR constraints, the chapter applies the Lagrangian dual scheme of [48]
that penalizes constraint violations at training time. Moreover, to ensure
computational tractability, the training process, labeled as CCGA-DNN,
mimics a dedicated CCGA algorithm that iteratively adds new constraints
for a few critical contingencies. In these constraints, an approximation for the
post-contingency generation is adopted to keep the size of the DNN small.
The resulting DNN provides high-quality approximations to the SCOPF in
milliseconds and can be used to seed another dedicated CCGA to find the
nearest feasible solution to the prediction. The resulting approach may bring
two orders of magnitude improvement in efficiency compared to the original
CCGA algorithm.

In summary, the contributions can be summarized as follows: i) a novel
DNN that maps a load profile onto a high-quality approximation of the SCOPF
problem, ii) a new training procedure, the CCGA-DNN, that mimics a CCGA,
where the master optimization problem is replaced by a DNN prediction, iii) an
approximation for the post-contingency generation which keeps the DNN size
small, and iv) an dedicated CCGA algorithm seeded with the DNN evaluation
to obtain high-quality feasible solutions fast. Of particular interest is the tight
combination of machine learning and optimization proposed by the approach.

3.1.4
Chapter Organization

This chapter is organized as follows. Section introduces the notation.
Section 3.3 introduces the SCOPF problem. Section 3.4 presents the properties
of the SCOPF problem and the CCGA for SCOPF. Section 3.5 introduces the
deep learning models in stepwise refinements. Section 3.6 describes the CCGA
for feasibility recovery. Section 3.7 reports the case studies and the numerical
experiments and Section 3.8 concludes the chapter.

3.2
Nomenclature

This section introduces the main notation. Bold symbols are used
for matrices (uppercase) and vectors (lowercase). Additional symbols are
either explained in the context or interpretable by applying the following
general rules: Symbols with superscript “j”, “k”, or “l” denote new variables,
parameters or sets corresponding to the j-th, k-th, or l-th iteration of the
associated method. Symbols with superscript “ ∗ ” denote the optimal value of
the associated (iterating) variable. Symbols with superscript “t” are associated
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with the data set for the t-th past solve. Dotted symbols are associated with
predictors for the corresponding variable.

Sets

E , Es Feasibility sets for variables associated with the nominal state and
contingent state s, respectively.

Fs Feasibility set for primary response variables under contingent state
s.

C, C Full set and subset of constraints.

G,L,N Sets of generators, transmission lines and buses, respectively.

S, S Full set and subset of contingencies, respectively.

T , T Full set and subset of past solves, respectively.

U+, U− Subsets of line–contingent state pairs.

Ys Set of decision variables associated with automatic primary
response under contingent state s.

Parameters

α, ρ Learning rate and Lagragian dual step size.

β, β1, βc Parameters for selecting constraints.

γ Vector of parameters for primary response.

γi Parameter for primary response of generator i.

ε Tolerance for transmission line violation.

λ, λc Vectors for all Lagrangian multipliers and Lagrangian multipliers
for constraint c.

ν, νc, ν̃c Vector for violations, violation for constraint c, and median
violation for c among past solves T .

A, B Line-bus and Generator-bus incidence matrices.

ω Vector of weights for deep neural network.

d Vector of nodal net loads.
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e Vector of ones with appropriate dimension.

f Vector of line capacities.

g,g Vectors of lower and upper limits for generators.

gi Upper limit for generator i.

ĝ Vector of capacities for generators.

ĝi Capacity of generator i.

h(·) Piecewise linear generation costs.

K0 Matrix of power transfer distribution factors.

K1 Preprocessed matrix for flow limits.

k2,k3 Preprocessed vectors for flow limits.

r Vector of primary response limits of generators.

ri Element of r related to generator i, given by γiĝi.

S Angle-to-flow matrix.

Nominal-state-related decision variables and vectors

θ, f ,g Phase angles, line flows, and nominal generation.

gi Generation of generator i in nominal state.

Contingent-state-related decision variables and vectors

θs Vector of phase angles under contingent state s.

τ+
s , τ

−
s Vectors of line violation under contingent state s.

φ, sφ Highest line violation and related contingent state.

φ̃ Median highest line violation among instances T .

fs Vector for line flows under contingent state s.

gs Vector for generation under contingent state s.

g′s Provisional vector for gs.
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gs,i Generation of generator i under contingent state s.

g
′
s,i Provisional variable for gs,i.

ns Global signal under contingent state s.

xs Binary vector indicating whether generators reached g under
contingency state s.

xs,i Element of xs corresponding to generator i.

3.3
SCOPF Problem

In this chapter, it is assumed that, at the time the SCOPF problem
is solved, the operator has precise forecasts for the few-minutes-ahead
non-dispatchable generation and loads. For simplicity, all generators are
regarded as synchronized.

3.3.1
Power Flow Constraints

The SCOPF formulation uses traditional security-constrained DC power
flow constraints over the vectors for generation g, flows f , and phase angles θ.
In matrix notations, these constraints are represented as follows:

Af + Bg = d (3-1)

f = Sθ (3-2)

− f ≤ f ≤ f (3-3)

g ≤ g ≤ g (3-4)

Afs + Bgs = d ∀s ∈ S (3-5)

fs = Sθs ∀s ∈ S (3-6)

− f ≤ fs ≤ f ∀s ∈ S (3-7)

gs ≤ g ∀s ∈ S (3-8)

Equations (3-1)–(3-4) model the DC power flow in pre-contingency
state and capture the nodal power balance (3-1), Kirchhoff’s second law
(3-2), transmission line limits (3-3), and generator limits (3-4). Analogously,
equations (3-5)–(3-8) model the power flow for each post-contingency state
s. The bounds g in (3-4) and (3-8) may be different from capacity ĝ due to
commitment and/or operational constraints.
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3.3.2
Automatic Primary Response

The APR is modeled as in [69,82,83]: under contingent state s, a global
variable ns is used to mimic the level of system response required for adjusting
the power imbalance. The APR of generator i under contingency s, gs,i − gi,
is proportional to its capacity ĝi and to the parameter γi associated with the
droop coefficient, i.e.,

gs,i = min{gi + nsγi ĝi, gi} ∀i ∈ G, ∀s ∈ S, i 6= s (3-9)

gs,s = 0 ∀s ∈ S. (3-10)

These equations are nonconvex and can be linearized by introducing binary
variables xs,i to denote whether generator i in scenario s is not at its limit, i.e.,

|gs,i − gi − nsγi ĝi| ≤ gi(1− xs,i) ∀i ∈ G,∀s ∈ S, i 6= s (3-11)

gi + nsγi ĝi ≥ gi(1− xs,i) ∀i ∈ G,∀s ∈ S, i 6= s (3-12)

gs,i ≥ gi(1− xs,i) ∀i ∈ G,∀s ∈ S, i 6= s (3-13)

ns ∈ [0, 1] ∀s ∈ S (3-14)

xs,i ∈ {0, 1} ∀i ∈ G,∀s ∈ S (3-15)

gs,s = 0 ∀s ∈ S. (3-16)

3.3.3
Extensive Formulation for the SCOPF Problem

The extensive formulation for the SCOPF problem using variables for
generation, flows, and phase angles is as follows:

min
θ,f ,g,[θs,fs,gs,ns,xs]s∈S

h(g) (3-17)

s.t.: (3-1)− (3-4) (3-18)

(3-5)− (3-16) ∀s ∈ S. (3-19)

Using power transfer distribution factors (PTDF), constraints (3-1)–(3-8)
can be replaced by the following constraints:

e>g = e>d (3-20)

− f ≤ K0(d−Bg) ≤ f (3-21)

(3-4) (3-22)

e>gs = e>d ∀s ∈ S (3-23)
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− f ≤ K0(d−Bgs) ≤ f ∀s ∈ S (3-24)

(3-8) ∀s ∈ S. (3-25)

Constraints (3-20)–(3-25) that involve the PTDF matrix K0 are from [92]. The
total demand balance for the nominal and contingent states are enforced by
(3-20) and (3-23) respectively. In constraints (3-21) and (3-24), the PTDF
matrix translates the power injected by each generator at its bus into its
contribution to the flow of each line. These constraints also bound the flows
from above and below. Observe that g and gs are the only variables in this
formulation.

For conciseness, denote the power flow constraints (3-20)–(3-22) and
(3-23)–(3-25) by g ∈ E and gs ∈ Es respectively. Similarly, denote the APR
constraints (3-11)–(3-16) by Ys = [g,gs,xs, ns] ∈ Fs. The extensive SCOPF
formulation then becomes

min
g,[gs,xs,ns]s∈S

h(g) (3-26)

s.t.: g ∈ E (3-27)

gs ∈ Es ∀s ∈ S (3-28)

Ys ∈ Fs ∀s ∈ S. (3-29)

Note that the number of binary variables above grows quadratically with the
number of generators. Hence, solving (3-26)–(3-29) becomes impractical for
large-scale systems.

3.4
SCOPF Properties and CCGA

This section introduces key properties of the SCOPF problem and
summarizes the CCGA proposed in [69]. These properties are necessary for
the CCGA and the ML models. The CCGA serves both as a benchmark for
evaluation and is used as part of the feasibility recovery scheme proposed in
Section 3.6.

Property 1: For s ∈ S, given values g∗ and n∗s for g and ns, there exists
a unique value g∗s for gs that can be computed directly using constraints
(3-11)–(3-16).

Property 2: Consider s ∈ S and a value g∗ for g. If there exists a value n∗s
for ns that admits a feasible solution to constraints (3-11)–(3-16) and (3-23),
then this value n∗s is unique and can be computed by a simple bisection method
[69].
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Property 2 holds since, for a given g∗, each component of gs is continuous and
monotone with respect to ns. Hence the value n∗s and its associated vector g∗s
that satisfy constraint (3-23) can be found by a simple bisection search over
ns.

Property 3: Constraint (3-24) can be formulated as:

K1gs + k2 ≥ 0 (3-30)

K1gs + k3 ≥ 0, (3-31)

using matrix operations to obtain K1, k2, and k3.
Note that each row of K1 and each element of k2 and k3 are associated with
a specific transmission line. Therefore, for each s ∈ S and for each line, the
(positive and negative) violation of the thermal limit of the line can be obtained
by inspecting (3-30)–(3-31) for the proposed value g(∗)

s .

3.4.1
Column-and-Constraint-Generation Algorithm

The CCGA, which relies on the above properties, alternates between
solving a master problem to obtain a nominal schedule g and a bisection
method to obtain the state variables of each contingency. The master problem
is specified as follows:

min
g,[g′s]s∈S ,[xs,ns]s∈S

h(g) (3-32)

s.t.: g ∈ E (3-33)

g′s − g ≤ r ∀s ∈ S (3-34)

(3-8), (3-23), (3-16) ∀s ∈ S (3-35)

Ys ∈ Fs ∀s ∈ S (3-36)

Kl
1g
′

s + kl2 ≥ 0 ∀(l, s) ∈ U+ (3-37)

Kl
1g
′

s + kl3 ≥ 0 ∀(l, s) ∈ U− (3-38)

Constraints (3-32)–(3-38) uses variables g′s to denote a “guess” for the
post-contingency generation: the actual vector gs is not determined by the
master problem but by the aforementioned bisection method. Constraint (3-33)
enforces the nominal state constraints. Constraint (3-34) imposes a valid
bound for post-contingency generation. For all contingencies, constraint (3-35)
enforces the generation capacity (3-8), total demand satisfaction (3-23), and
the absence of generation for a failed generator (3-16). The APR is enforced
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“on-demand” in (3-36) for a reduced set of contingent states S. Initially, S = ∅.
Inequalities (3-37)–(3-38) are also the “on-demand” versions of (3-30)–(3-31)
for (a few) pairs of transmission lines and contingencies. Initially, U+ and U−

are empty sets.
The CCGA algorithm is specified in Algorithm 1. At iteration j,

the master problem (3-32)–(3-38) computes gj. The bisection method then
determines the contingent state variables [gjs,xjs, njs]s∈S . The vectors τ+

s and
τ−s of non-negative numbers represent the positive and negative violations of
transmission lines for contingent state s: they are calculated for all s ∈ S by
inspecting constraints (3-30)–(3-31) for [gjs]s∈S . The algorithm then computes
the highest single line violation φ among all contingent states and uses sφ to
denote the contingent state associated with φ. The pairs lines/contingencies
featuring violations above a predefined threshold β are added to the master
problem by updating sets U+ and U−. Likewise, sφ is added to S. As a result,
the variables and APR constraints associated with sφ are added to the master
problem during the next iteration. The CCGA terminates when φ < ε, where
ε is the tolerance for line violation.

Algorithm 1 CCGA
1: Initialization: j ← 0,S← ∅, U+ ← ∅, U− ← ∅
2: for j = 0, 1, . . . do
3: Solve: (3-32)–(3-36) to obtain gj

4: njs ← apply bisection method on all s ∈ S
5: gjs ← enforce (3-11)–(3-16) on all s ∈ S
6: τ−s , τ+

s ← get the line violations of gjs using (3-30)–(3-31) for all s ∈ S
7: φ← compute the highest line violation among all s ∈ S
8: sφ ← select the contingent state associated with φ
9: S← S ∪ {sφ}
10: U+ ← U+ ∪ { (l, s) | τ+

s [l] > β}
11: U− ← U+ ∪ { (l, s) | τ−s [l] > β}
12: BREAK if φ ≤ ε.
13: end for

The following result from [69] ensures the correctness of CCGA: It shows
that a solution to the master problem produces a nominal generation for which
there exists a solution to each contingency that satisfies the APR and total
demand constraints. Since the CCGA adds at least one violated line constraint
and, possibly, a set of violated APR constraints for one contingency to the
master problem at each iteration, it is guaranteed to converge after a finite
number of iterations.
Theorem 1: For each solution g∗ to the master problem, there exist values n∗s
and g∗s that satisfy the demand constraint e>g∗s = e>d and the APR constraints
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(3-11)–(3-16) for each contingency s.
Proof : By (3-8) and (3-34), g′s,i ≤ min {gi, gi + γiĝi} for each i and s, where
g
′
s,i is the i-th element of g′s. When ns = 0, gs = g, except for gs,s = 0. When
ns = 1, gs,i = min {gi, gi + γiĝi} ≥ g

′
s,i for each i and s, with i 6= s. Since, by

(3-23), g′s meets the global demand, e>gs ≥ e>g′s = e>d when ns = 1. By the
monotonicity and continuity of gs,i with respect to ns (for a given gi), there is
a value n∗s whose associated g∗s satisfies the demand constraint in (3-23) and
preserves the APR constraints �.

3.5
Deep Neural Networks for SCOPF

This section describes the use of supervised learning to obtain DNNs that
map a load vector into a solution of the SCOPF problem. A DNN consists of
many layers, where the input for each layer is typically the output of the
previous layer [104]. This work uses fully-connected DNNs.

3.5.1
Specification of the Learning Problem

For didactic purposes, the specification of the learning problem uses
the extensive formulation (3-26)–(3-29). The training data is a collection of
instances of the form

{dt; gt, [gts, nts,xts]s∈S}t∈T

where (gt, [gts, nts,xts]s∈S) is the optimal solution (ground truth) to the SCOPF
problem for input dt. The DNN is a parametric function O[ω](·) whose
parameters are the network ω: It maps a load vector d into an approximation
O[ω](d) = {ġ, [ṅs, ẋs, ġs]s∈S} of the optimal solution to the SCOPF problem
for load d. The goal of the machine-learning training to find the optimal weights
ω∗, i.e.,

ω∗ = argmin
ω

∑
t∈T

Lt0(ġt) +
∑
s∈S

Lts(ġts, ẋts, ṅts) (3-39)

s.t.: O[ω](dt) = (ġt, [ġts, ṅts, ẋts]) ∀t ∈ T (3-40)

ġt ∈ E t ∀t ∈ T (3-41)

ġts ∈ E ts ∀t ∈ T ,∀s ∈ S (3-42)

Ẏ ts ∈ F ts ∀t ∈ T ,∀s ∈ S (3-43)
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where the loss functions are defined as

Lt0(ġt) = ||gt − ġt||2
Lts(ġts, ẋts, ṅts) = ||gts − ġts||2 + ||xts − ẋts||2 + ||nts − ṅts||2

and minimize the distance between the prediction and the ground truth. There
are two difficulties in this learning problem: the large number of scenarios,
variables, and constraints, and the satisfaction of constraints (3-41)–(3-43).
This section examines possible approaches.

3.5.2
The Baseline Model

The baseline model is a parsimonious approach that disregards
constraints (3-41)–(3-43) and predicts the nominal generation only, i.e.,

ω∗ = argmin
ω

∑
t∈T

Lt0(ġt)

s.t.: O[ω](dt) = (ġt) ∀t ∈ T

It uses a DDN model with 5 linear layers, interspersed with 5 nonlinear layers
that use the softplus activation function. The sizes of the input and output
of each layer are linearly parameterized by |L| and |G|. A high-level algebraic
description of layers of the DNN follows:

li = γ(Wili−1 + bi), for each layer li
l1 = γ(W1d + b1)

The elements of vector ω are rearranged as matrices Wi and vector of biases
bi. Note that the demand vector d is the input for the first layer. The symbol
γ denotes a nonlinear activation function. Unfortunately, training the baseline
model tends to produce predictors violating the problem constraints [48,70].

3.5.3
A Lagrangian Dual Model for Nominal Constraints

This section extends the baseline model to include constraints on the
nominal state (3-41). Constraints (3-42)–(3-43) on the contingency cases are
not considered in the model. To capture physical and operational constraints,
the training of the DNN adopts the Lagrangian dual approach from [48].

The Lagrangian dual approach relies on the concept of constraint
violations. The violations of a constraint f(x) = 0 is given by |f(x)|, while
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the violations of f(x) ≥ 0 are specified by max(0,−f(x)). Although these
expressions are not differentiable, they admit subgradients. Let C represent
the set of nominal constraints and νc(g) be the violations of constraint c
for generation dispatch g. The Lagrangian dual approach introduces a term
λcν

t
c(gt) in the objective function for each c ∈ V and each t ∈ T , where λc is

a Lagrangian multiplier. The optimization problem then becomes

LR(λ) = min
ω

∑
t∈T

(Lt0(ġt) +
∑
c∈C

λcν
t
c(ġt)) (3-44)

s.t. O[ω](dt) = (ġt) ∀t ∈ T (3-45)

and the Lagrangian dual is simply

LD = max
λ

LR(λ) (3-46)

Problem (3-46) is solved by iterating between training for weights ω and
updating the Lagrangian multipliers. Iteration j uses Lagrangian multiplier
λj and solves LR(λj) to obtain the optimal weights ωj. It then updates the
Lagrangian multipliers using the constraint violations. The overall scheme is
presented in Algorithm 2. Lines 3–10 train weights ωj for a fixed vector of
Lagrangian multipliers λj, using minibatches and a stochastic gradient descent
method with learning rate α. For each minibatch, the algorithm computes the
predictions (line 6), the constraint violations (line 7), and updates the weights
(line 9). Lines 2–13 describe the solving of Lagrangian dual. It computes
the Lagrangian relaxation described previously and updates the Lagrangian
multipliers in line 11 using the median violation ν̃c for each nominal constraint
c.

Algorithm 2 Lagrangian Dual Model (T , C, α, ρ, Jmax, λ0, ω0)
1: j ← 0.
2: for j = 0, 1, . . . Jmax do
3: for k = 0, 1, . . . do
4: Sample minibatch: Tk ⊂ T
5: for t ∈ Tk do
6: Compute: O[ωj ](dt) = ġt and Lt0(ġt)
7: Compute νtc(ġt) ∀c ∈ C
8: end for
9: ωj ← ωj − α∇ωj [

∑
t∈T (Lt0(ġt) +

∑
c∈C λcν

t
c(ġt))]

10: end for
11: λj+1

c ← λjc + ρ ν̃c ∀c ∈ C
12: ωj+1 ← ωj

13: end for
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3.5.4
CCGA-DNN Model

This section presents the final ML model, the CCGA-DNN, which mimics
a CCGA algorithm. In particular, the CCGA-DNN combines the Lagrangian
dual model with an outer loop that adds constraints for the contingent states
on-demand.

Observe first that a direct Lagrangian dual approach to the SCOPF
would require an outer loop to add predictors [ġs, ẋs, ṅs]s∈S and constraints
(3-42)–(3-43) for selected contingency states s. Unfortunately, the addition of
new predictors structurally modifies the DNN output O[ω](·) and induces a
considerable increase in the DNN size.

The key idea to overcome this difficulty is to mimic the CCGA closely,
replacing the master problem with the prediction O[ωl](dt) at iteration l.
Moreover, constraints (3-43) are replaced by constraints of the form

ġts,i = max{0,min{ġti + ṅtsγi ĝi , gi}}, (3-47)

where ṅts is obtained by the bisection method on the prediction. Again,
these constraints are not differentiable but admit subgradients and hence
can be dualized in the objective function. The CCGA-DNN is summarized
in Algorithm 3. At each iteration l, the Lagrangian dual model (Algorithm
2) produces updated weights ωl and multipliers λl (line 5). The inner loop
(lines 6–12) applies the bisection method to find ṅts for all t and constraints
(3-11)–(3-16) to obtain ġts (lines 8–9). These values are then used to compute
the highest line violation φt among all states and the associated contingent
state stφ (line 10). The inner loop also increases the element of the counter
vector p associated with stφ whenever the highest violation for solve t is
above tolerance ε (line 11). Then, in the main loop, contingency states with
high frequencies of violated lines are identified (line 13) using a threshold β1.
The algorithm is terminated if S′ is empty and median relative violations for
nominal constraints in (3-41) are within tolerances βc (line 14). Otherwise, the
set of constraints is updated by adding constraints (3-30)–(3-31) and (3-47)
for added contingent states (line 15). The Lagrangian multipliers for added
constraints (3-30)–(3-31) ∀s ∈ S′ are initialized in line 16. Finally, constraints
(3-30)–(3-31) ∀s ∈ S are updated with the median violation φ̃ for those lines
associated with some φt (line 17). Note that the process of updating Lagrangian
multipliers for (3-30)–(3-31) ∀s ∈ S is different and much stricter than that
for nominal constraints in Algorithm 2.
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Algorithm 3 SC Lagrangian Dual Model (T , α, ρ, β1, βc, ε, jMax)
1: C← {(3-41)}, S← ∅, λ0 ← 0, ω0 ← 0
2: Create a counter vector p of size |S|
3: for l = 1, 2, . . . do
4: p← 0
5: λl,ωl ← Lagrangian Dual Model(T , C, α, ρ, Jmax, λl−1,ωl−1)
6: for t ∈ T do
7: ġt ← O[ωl](dt)
8: ṅts ← bisection method, ∀s ∈ S
9: ġts ← enforce (3-11)–(3-16), ∀s ∈ S

10: Compute: φt and identify stφ
11: if φt > ε then increase (stφ)-th element of p by 1
12: end for
13: S′ ← {s |p[s] / |T | > β1}
14: BREAK if S′ ≡ ∅ and ν̃c ≤ βc,∀c ∈ (3-41).
15: C← C ∪ {(3-30)− (3-31), (3-47), ∀s ∈ (S′ \ S)}
16: λl(3-30), λ

l
(3-31) ← 0, ∀s ∈ (S′ \ S)

17: λl(3-30), λ
l
(3-31) += ρ φ̃, ∀s ∈ S

18: end for

3.6
Feasibility Recovery and Optimality Gap

The training step produces a set of weights ω∗ and the associated
DNN produces, almost instantly, a dispatch prediction ġ = O[ω∗](d) for
an input load vector d. However, the prediction ġ may violate the nominal
and contingency constraints. To restore feasibility, this chapter proposes a
feasibility-recovery CCGA, denoted by FR-CCGA, that finds the feasible
solution closest to ġ. The master problem for FR-CCGA is similar to
(3-32)–(3-38) but it uses a different objective function, i.e.,

min
g,[g′s]s∈S ,[xs,ns]s∈S

||ġ− g|| (3-48)

s.t.: (3-33)–(3-38) ∀ S, S, U+, U− (3-49)

Note that ġ is a constant vector in FR-CCGA. While CCGA and FR-CCGA
are similar in nature, FR-CCGA is significantly faster because O[ω∗](d) is
often close to feasibility.

The FR-CCGA and CCGA can be run in parallel to provide upper and
lower bounds to the SCOPF respectively. This may be useful for operators to
assess the quality of the prediction and the associated FR-CCGA solution and
decide whether to commit to the FR-CCGA solutions or wait until a better
solution is found or the optimality gap is sufficiently small.
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System |G| |L| |N | Total Binary Linear
Variables Variables Constraints

118-IEEE 54 186 118 13,466 2,862 19,137
1354-PEG 260 1,991 1,354 387,026 63,455 513,677
1888-RTE 297 2,531 1,888 467,011 79,032 624,780

Table 3.1: Instance Size for the SCOPF Problem (3-26)–(3-29) after Presolve

System Iterations Contingent States S added (by generator numbers)

118-IEEE 3 {4}
1354-PEG 3 {23, 65, 74, 112, 126, 163, 222}
1888-RTE 2 {152, 153}

Table 3.2: Training Summary for Algorithm 3

3.7
Computational Experiments

3.7.1
Data

The test cases are based on modified versions of 3 system topologies from
[93]. Table 3.1 shows the size of a single instance for each topology. For each
topology, the training and testing data is given by the inputs and solutions
of many instances that are constructed as follows. For each instance, the net
demand of each bus has a deterministic component and a random component.
The deterministic component varies across instances from 82% of the nominal
net load to near-infeasibility values by small increments of 0.002%. The random
component is independently and uniformly distributed ranging from -0.5% to
0.5% of the corresponding nominal nodal net load for each bus and instance.
Algorithm 1 was applied to solve each instance for a maximum line violation
of ε = 0.05 MW and an optimality gap of 0.25%.

3.7.2
Training Aspects

The training set T is composed by a random sample containing 70% of
the generated instances. Algorithm 3 was applied with ε set to 1 MW, β1 to
5%, βc to 1.5 ·10−2, and ρ to 105. The inner loop of Algorithm 2 (lines 4–11) is
executed 1.5 · 105 times with a learning rate α varying from 10−4 to 10−10 and
Jmax was set to 1. The DNN models were implemented using PyTorch package
with Python 3.0. The training was performed using NVidia Tesla V100 GPUs
and 2 GHz Intel Cores. Table 3.2 presents a training summary. In the following,
the baseline model is denoted byMb and the CCGA-DNN byMccga. Note that
the first iteration of Algorithm 3 returns the weights of the baseline model.
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Figure 3.1:Mccga prediction for selected generators for the 1354-PEG system.

Generation Range (MW)

System Model 10 50 100 250 500 1000 2000
50 100 250 500 1000 2000 5000

118-IEEE Mb 2.3 2.8 0.7 0.3 N/A N/A N/A
Mccga 2.5 3.0 0.7 0.4 N/A N/A N/A

1354-PEG Mb 2.4 1.3 1.1 0.9 0.4 0.2 0.1
Mccga 5.0 1.8 1.2 1.0 0.4 0.3 0.2

1888-RTE Mb 1.3 1.2 0.7 0.4 0.3 0.1 N/A
Mccga 1.4 1.1 0.6 0.4 0.3 0.1 N/A

Table 3.3: Prediction Mean Absolute Errors (%)

3.7.3
Prediction Quality

Accurate predictions were obtained for all DNN models and topologies.
Figure 3.1 illustrates howMccga can learn complex generator patterns arising
in the 1354-PEG system. Table 3.3 reports the mean absolute errors for
predictions ġt, segmented by generation range: Mb achieves a slightly better
accuracy which is expected since it is the less constrained model.

Table 3.4 reports selected indicators of violations: the relative violation
λ(3-20) of the total load constraint and the relative violation RLV of the lines
associated with φ. The results report median values as well as lower and upper
bounds for intervals that capture 95% of the instances. Both models achieve
the desired tolerance of βc = 1.5 · 10−2 for λ(3-20) (the tolerance βc does not
apply to RLV). ModelMccga produces lower overall violations and has a major
effect on RLV.

3.7.4
Comparison with Benchmark CCGA

The previous sections reported on the accuracy of the predictors. This
section shows how FR-CCGA leverages the predictors to find near-optimal
primal solutions significantly faster than CCGA. More precisely, it compares,
in terms of cost and CPU time, CCGA and FR-CCGA when seeded with
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λ(3-20) RLV

System Model Median 95%-Interval Median 95%-Interval

118-IEEE Mb 0.016 0.001 0.055 0.099 0.000 0.467
Mccga 0.003 0.000 0.011 0.000 0.000 0.548

1354-PEG Mb 0.018 0.001 0.062 0.259 0.086 1.256
Mccga 0.010 0.000 0.040 0.005 0.000 0.117

1888-RTE Mb 0.012 0.001 0.047 0.205 0.021 1.418
Mccga 0.005 0.000 0.027 0.007 0.000 0.057

λ(3-20) – Net load constraint violation divided by total load.
RLV – Relative violation for line associated with φ.

Table 3.4: Selected Indicators of Violation Across Instances (%)
System Model Median 95%-Interval

118-IEEE Mb 0.05 0.01 0.12
Mccga 0.18 0.05 0.47

1354-PEG Mb 0.05 0.01 0.13
Mccga 0.09 0.05 0.14

1888-RTE Mb 0.04 0.00 0.10
Mccga 0.04 0.01 0.07

Table 3.5: Distance between Prediction and Feasible Solution (%)

Mb andMccga, for 200 randomly selected instances for each system topology.
Each instance was solved with the same tolerances as in the training. They
were solved using Gurobi 8.1.1 under JuMP package for Julia 0.6.4 on a laptop
Dell XPS 13 9380 featuring a i7-8565U processor at 1.8 GHz and 16 GB of
RAM. Tables 3.5, 3.6, and 3.7 summarize the experiments. Table 3.5 reports
the distances in percentage between the predictions and the feasible solutions
obtained by FR-CCGA when seeded with the predictions. For instance, for
Mb, this distance is ∑i |gbi − gfi |/

∑
i g

f
i , where gbi is Mb’s prediction for

generator i and gfi is i’s generation computed by FR-CCGA seeded with gb. As
should be clear, the predictions are very close to feasibility. Table 3.6 reports
the computation times which show significant increases in performance by
FR-CCGA especially when seeded withMccga and on the 1354-PEG system,
the most challenging network. FR-CCGA is about 160 times faster than CCGA
on this test case. FR-CCGA is also significantly more robust when using
Mccga instead of Mb. Table 3.7 indicates that the cost/objective increase of
FR-CCGA over CCGA is very small for bothMb andMccga.

Figure 3.2 illustrates the behavior of the algorithms on a randomly chosen
instance of the 1354-PEG system. The red line represents the upper bound
(feasible solution) generated in 1.87 seconds by the FR-CCGA seeded with
Mccga. The blue line represents a sequence of true lower bounds (infeasible
solutions) generated by Algorithm 1.

3.8
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System Model Median Mean Min. Max. Std.

118-IEEE
CCGA 0.210 0.214 0.101 3.717 0.305
Mb 0.024 0.057 0.021 1.580 0.160
Mccga 0.026 0.068 0.023 1.372 0.171

1354-PEG
CCGA 321.746 327.210 75.585 741.798 127.101
Mb 5.335 8.434 1.320 133.366 13.505
Mccga 1.521 2.168 0.768 8.449 1.740

1888-RTE
CCGA 5.479 7.406 3.110 30.923 7.073
Mb 5.316 5.501 1.224 18.074 3.348
Mccga 2.120 1.945 0.911 4.543 0.919

Table 3.6: CPU Time Comparison

System Model Median Mean Min. Max. Std.

118-IEEE Mb 0.021 0.019 -0.073 0.055 0.014
Mccga 0.027 0.030 -0.010 0.112 0.020

1354-PEG Mb 0.020 0.021 -0.007 0.051 0.012
Mccga 0.067 0.067 0.032 0.091 0.017

1888-RTE Mb 0.026 0.024 -0.003 0.070 0.011
Mccga 0.033 0.033 0.004 0.070 0.013

Table 3.7: FR-CCGA Cost Increase over CCGA (%)
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Figure 3.2: Convergence plot for theMccga for the 1354-PEG system.

Conclusion

This chapter proposed a tractable methodology that combines deep
learning models and robust optimization for generating solutions for the
SCOPF problem. The considered SCOPF modeled generator contingencies
and the automatic primary response of synchronized units. Computational
results over two large test cases demonstrate the practical relevance of the
methodology as a scalable, easy to specify, and cost-efficient alternative tool
for managing short-term scheduling.
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4
Two-Stage Robust Unit Commitment for Co-Optimized
Electricity Markets: An Adaptive Data-Driven Approach for
Scenario-Based Uncertainty Sets

Two-stage robust unit commitment (RUC) models have been widely used
for day-ahead energy and reserve scheduling under high renewable integration.
The current state of the art relies on budget-constrained polyhedral uncertainty
sets to control the conservativeness of the solutions. The associated lack of
interpretability and parameter specification procedures, as well as the high
computational burden exhibited by available exact solution techniques call
for new approaches. In this chapter, we use an alternative scenario-based
framework whereby uncertain renewable generation is characterized by a
polyhedral uncertainty set relying on the direct specification of its vertexes.
Moreover, we present a simple, yet efficient, adaptive data-driven procedure
to dynamically update the uncertainty set vertexes with observed daily
renewable-output profiles. Within this setting, the proposed data-driven RUC
ensures protection against the convex hull of realistic scenarios empirically
capturing the complex and time-varying intra-day spatial and temporal
interdependences among renewable units. The resulting counterpart features
advantageous properties from a computational perspective and can be
effectively solved by the column-and-constraint generation algorithm until
ε-global optimality. Out-of-sample experiments reveal that the proposed
approach is capable of attaining efficient solutions in terms of cost and
robustness while keeping the model tractable and scalable.

The contents of this chapter are based on the paper published in the
IEEE Transactions on Sustainable Energy [73].

4.1
Introduction

Non-dispatchable renewable energy generation (REG) has undergone
a sharp increase in the last decades and is already one of the major
components in some electricity markets. High integration of these intermittent
and variable energy sources brings additional challenges to short-term power
system operation that are well known and have been widely discussed [6–17].
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Briefly, REG variability, especially from wind power units, is driven by complex
time-varying spatial and temporal dynamics [18]. In order to benefit from
REG resources, a mix of conventional generation and expensive operational
actions are both needed to constantly deploy (up and down) reserves in a fast
and reliable way. For this reason, the uncertainty inherent to REG should
be precisely accounted for in the scheduling and dispatch models used to
determine appropriate levels of energy and reserves, such as those adopted in
currently implemented co-optimized electricity markets [11,16,17,90,105–108].

Due to the appealing tradeoff between tractability and accuracy,
two-stage adaptive robust optimization has been used to deal with uncertainty
in day-ahead generation scheduling [7–17]. The interested reader is referred
to [99] for a detailed literature review. In such robust unit commitment
(RUC) models, a trilevel optimization problem is built to characterize
the min(decision)-max(uncertainty)-min(decision) structure. Within such a
scheme, the first-level problem determines, before the observation of the
uncertain parameters, the day-ahead commitment for each generator. In the
second-level problem, the worst-case scenario of uncertainties is selected within
a given polyhedral uncertainty set as a function of the first-level decisions.
Finally, in the third level, the best operational reaction (redispatch) is obtained
for the second-level scenario within the first-level scheduled resources.

4.1.1
State-of-the-art literature in RUC

A key aspect in RUC is the way that uncertainties are represented.
The success of an RUC model mainly depends on the selection of an
uncertainty set that is capable of capturing the main patterns present in the
uncertain parameters while keeping model tractability. Valuable and thorough
discussions on the subject can be found in [99] and [109].

Most previously reported two-stage RUC models [7–17] rely on
the budget-constrained polyhedral uncertainty set presented in [57]. The
specification of a budget-constrained uncertainty set is made through
linear inequality constraints defining the boundaries of a polyhedron. Such
boundaries are set up by componentwise box-like limits and linear (budget)
constraints limiting the number of components deviating from their nominal
scenario. In this framework, each vertex of the polyhedron representing the
uncertainty set is indirectly determined by the intersection of constraints,
which may hinder the physical interpretation of the scenarios.

Variants of conventional budget-constrained uncertainty sets have been
proposed in [61] and applied in [10–15] to better model the variability of
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renewable power generation. In [10], an interesting approach based on linear
models was proposed to improve the dynamics of REG scenarios. The use
of parametric linear models was also described in [11]. For those cases,
the polyhedral uncertainty sets were defined based on affine constraints
representing linear models for renewable injections. In addition, budget
constraints were applied to the residuals of the models to control the
conservativeness of solutions. In [12], An and Zeng introduced variants of
robust models based on linear expected-value operators (averages) applied to
multiple worst-case operational costs. In such a work, each worst case resulted
from a different budget-constrained uncertainty set centered on an exogenously
generated scenario. Multiple spatial and temporal budget constraints were
presented in [13] to increase the modeling capability. In [14], a flexible
uncertainty set was characterized in terms of a user-defined parameter to
capture the risk of misestimating the box-like limits for REG levels. In [15], a
flexible uncertainty set was adjusted over time to provide a tradeoff between
economics and robustness of the generation schedule. Notwithstanding, the
approaches presented in [10–15] rely on budget-constrained uncertainty sets.
Therefore, the modeling choices for describing REG variability, which features
complex, nonlinear, and time-varying dynamics [18], are restricted to linear
models due to tractability issues.

From a computational perspective, another drawback associated
with the use of budget-constrained uncertainty sets is the combinatorial
growth of the number of vertexes of the polyhedron with respect to the
number of uncertain parameters. The resulting RUC models based on
budget-constrained uncertainty sets are challenging instances of trilevel
programming that are generally addressed through decomposition-based
methods. The state-of-the-art techniques such as the column-and-constraint
generation algorithm (CCGA) [68] and Benders decomposition [8] involve the
iterative solution of a master problem and a subproblem, also known as oracle
subproblem. In the related literature, the oracle subproblem represents the
worst-case-scenario search procedure corresponding to the two lowermost
optimization levels of the trilevel counterpart. Hence, the oracle is an
instance of bilevel programming, which, in the presence of budget-constrained
uncertainty sets, is NP-hard [8]. Solution techniques available to tackle the
oracle subproblem can be categorized in two groups. On the one hand, heuristic
yet efficient methods, such as variants of the outer-approximation algorithm
[110], were applied in [7–10] and [13]. On the other hand, in [11, 12, 14–17],
well-known linearization procedures, relying on the binary representation
of the vertexes of the polyhedron characterizing the uncertainty set, were
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used to obtain exact yet computationally expensive single-level equivalents
based on mixed-integer linear programming (MILP). Thus, existing solution
methodologies for RUC models with budget-constrained uncertainty sets either
efficiently provide a solution without being able to acknowledge optimality or
rely on exact MILP-based NP-hard models that are challenging to solve in
practice.

4.1.2
Contributions

Motivated by the above issues of existing works [7–17] and the wide
availability of REG data, the objective of this chapter is to propose an
alternative to the use of budget-constrained uncertainty sets in RUC. In
this work, we consider the RUC for co-optimized electricity markets, i.e., the
centralized robust joint scheduling of energy and reserves targeting total cost
minimization. Here, as suggested in [111], the uncertainty characterization
is directly connected to data. To that end, we propose modeling the REG
uncertainty in day-ahead RUC by an alternative scenario-based polyhedral
uncertainty set that is built through a novel data-driven approach. Based
on the general scenario-based uncertainty set description provided in [112],
we define a new polyhedral uncertainty set as the convex hull of a set of
exogenously generated multivariate points, or scenarios, capturing relevant
information regarding the uncertainty process over a given time window. Thus,
differently from [12], each vertex of the polyhedron representing the uncertainty
set is defined as one of these exogenous scenarios. In the proposed data-driven
framework, scenarios represent observed daily renewable-generation profiles,
i.e., matrices whose dimension is given by the number of renewable units
and the number of time periods of the scheduling horizon, typically 24 hours.
Hereinafter, the proposed data-driven scenario-based uncertainty set is referred
to as DDUS.

Two recent examples of successful application of the scenario-based
uncertainty sets first proposed in [112] can be found in [113] and [114]. Within a
finance context, the vertexes of the uncertainty set were generated directly from
most recent observed data in [113]. Using a general mathematical setting, in
[114], sampled points were endogenously selected to belong to the uncertainty
set through embedded statistical hypothesis tests. In the context of RUC,
however, this alternative framework has not been explored yet despite its
relevant benefits.

From a modeling perspective, the use of the proposed uncertainty
characterization for RUC is advantageous in several aspects as compared
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with previous models relying on budget-constrained uncertainty sets [7–17].
First, the true underlying uncertainty process drives the construction of the
polyhedron representing the uncertainty set, which is made up of vertexes with
high physical interpretability. As a consequence, the resulting RUC features
relevant information about the complex and time-varying temporal and spatial
dependences found in REG within the scheduling horizon. Moreover, the novel
data-driven procedure devised to build polyhedral uncertainty sets through
their vertexes is an entirely exogenous adaptive and nonparametric process.
Therefore, the proposed approach paves the way for the use of a wide
range of existing scenario-generation methods as alternatives to the proposed
data-driven procedure. For instance, any nonlinear model or data-processing
scheme useful for defining or preprocessing the scenarios, such as clustering,
data categorization, or filtering processes based on weather-related and
real-time dispatch information, can be used to generate vertexes for the
uncertainty set.

The incorporation of the proposed DDUS in RUC is also beneficial
from a methodological perspective. Similar to existing models [7–17], the
resulting data-driven formulation, denoted by DDRUC, is suitable for the
state-of-the-art CCGA. In addition, as a salient feature, the proposed
scenario-based robust framework is characterized by a relevant property: one
of the multivariate points within the given time window of observed data is the
worst-case vertex provided by the optimal solution of the oracle subproblem.
This property results in an oracle that is solvable in polynomial time [114],
unlike the oracle subproblems described in [7–17]. It is also worth mentioning
that, according to our empirical findings, which are consistent with those
reported in [113], the use of DDUS typically requires a narrow time window
to attain high-quality solutions. This aspect is particularly relevant for the
practical adoption by system operators to schedule generation in electricity
markets.

The contributions of this chapter are threefold:

1. To raise awareness of the modeling capability and computational
advantages of the scenario-based polyhedral uncertainty sets proposed in
[112] to address REG uncertainty in RUC problems. Within this general
framework, we propose defining scenarios as matrices representing the
hourly generation profiles of all renewable units within a day. Hence, for
the first time in the RUC literature, REG variability is described by a
polyhedral uncertainty set relying on the convex hull of a polynomial set
of multivariate points.
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2. To propose a nonparametric data-driven procedure that defines the
vertexes of the resulting polyhedral uncertainty set directly from
observed data, thereby embedding the true complex and time-varying
interdependences among renewable units.

3. To present a novel data-driven two-stage robust unit commitment model
that is scalable, easy to specify, and suitable for the exact CCGA due to
the resulting computationally inexpensive and polynomial-time-solvable
oracle subproblem.

4.1.3
Chapter Organization

The rest of this chapter is organized as follows. The nomenclature in
introduced in Section 4.2. In Section 4.3, the alternative uncertainty set is
described. The proposed RUC model is formulated in Section 4.4. The solution
methodology is presented in Section 4.5. An evaluation procedure for assessing
the devised model and numerical experience are reported in Section 4.6.
Finally, this chapter is concluded in Section 4.7.

4.2
Nomenclature

This section lists the notation. Bold symbols are reserved to matrices
(uppercase) and vectors (lowercase). Additional symbols with superscript “(k)”
denote new variables corresponding to the k-th scenario selected by the solution
method.

4.2.1
Sets

F Feasible set for the decision variables associated with thermal
generators.

H Set of time periods.

R Set of renewable energy generators.

S Set of renewable energy generation scenarios.

Sj Subset of S including the scenarios selected until iteration j.

U Uncertainty set defined as the convex hull of S.

X Set of first-stage generation-related variables.
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4.2.2
Constants

Γ, Λ Spatial and temporal budgets used in the budget-constrained
uncertainty set formulation.

∆+
ih,∆−ih Upper and lower deviation bounds for renewable generator i

and period h used in the budget-constrained uncertainty set
formulation.

ε Feasibility tolerance.

A Line-bus incidence matrix.

B Thermal generator-bus incidence matrix.

cg Vector of fuel costs of thermal generators.

cdn, cup Vectors of cost rates for down- and up-spinning reserves.

dh Vector of nodal consumptions in period h.

e Vector of ones with appropriate dimension.

f Vector of line capacities.

G,G Diagonal matrices of maximum and minimum generation limits of
thermal units.

Gi Capacity of thermal unit i.

K Number of days for observed renewable energy generation data.

P Renewable generator-bus incidence matrix.

RDi, RUi Ramp-down and ramp-up limits of thermal unit i within two
consecutive periods.

Rdn,Rup Diagonal matrices of downward and upward limits for corrective
actions of thermal units within each period.

S Angle-to-flow matrix.

SDi, SUi Shut-down and start-up ramp rates for thermal unit i.

uhk Vector of renewable energy generation in period h for scenario k.

Uk Scenario k of S.
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ûh Vector of expected day-ahead renewable energy generation levels
in period h.

ûih Expected day-ahead power output of renewable generator i in
period h.

4.2.3
First-Level Decision Vectors

θh Phase angles in period h.

csdh , csuh Shut-down and start-up costs in period h.

fh Line power flows in period h.

gh Nominal generation levels in period h.

rdnh , r
up
h Down- and up-spinning reserves in period h.

vh Binary on/off statuses in period h.

4.2.4
Second- and Third-Level Decision Variables

αk Second-level decision variable representing the convex combination
weight of scenario Uk used in the scenario-based uncertainty set
U .

θwch Third-level decision vector representing the worst-case nodal phase
angles in period h.

fwch Third-level decision vector representing the worst-case line power
flows in period h.

gwch Third-level decision vector representing the worst-case generation
redispatch in period h.

s+
h , s−h Third-level decision vectors representing the renewable energy

spillage and load shedding in period h.

U Second-level decision matrix representing the generation levels for
all renewable units across the day-ahead scheduling horizon.

uh Second-level decision vector representing the h-th column of U.

uih Second-level decision variable representing the i-th element of uh.
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z+
ih, z

−
ih Second-level decision variables, used in the budget-constrained

uncertainty set formulation, representing upward and downward
deviations from the expected value for renewable generator i in
period h.

4.2.5
Dual Variables

βh Vector of dual variables associated with the power balance
equations in period h.

γh, τ h Vectors of dual variables associated with generation redispatch
limits in period h.

ζh,κh Vectors of dual variables associated with ramping-up and
ramping-down constraints in period h.

σh,πh Vectors of dual variables associated with the power flow capacity
constraints in period h.

ςh, ξh Vectors of dual variables associated with load shedding and
renewable energy spillage limits in period h.

ωh Vector of dual variables associated with Kirchhoff’s second law
constraints in period h.

4.2.6
Functions

Φ(·) Worst-case system power imbalance.

a(·),b(·) Vector functions used to enforce ramping limits.
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4.3
Uncertainty Set Characterization

In generation scheduling under high penetration of renewable-based
generation, uncertain data comprise the day-ahead power output for each
renewable generator i ∈ R and each time period h ∈ H. Thus, we represent
uncertainty by a renewable generator-by-time matrix, U ∈ R |R|×|H|, where
U = [u1, ...,uh, ...,u|H|] and uh ∈ R|R| is the uncertainty vector whose
components uih correspond to the available generation of each renewable
generator i in period h. Note that generation levels of different REG units
may present spatial, temporal, and cross-lagged dependences.

In robust optimization, uncertainty is modeled through uncertainty sets.
Before presenting the proposed DDUS, a general formulation for conventional
budget-constrained uncertainty sets is provided based on the above matrix
characterization.

4.3.1
Conventional Budget-Constrained Uncertainty Sets

In robust generation scheduling, uncertainty sets typically rely on
fluctuation intervals representing the support of the uncertainties [7–9,16,17],
and spatial and/or temporal budget constraints modeling the conservativeness
or risk aversion of the decision maker [7–9, 13, 16, 17]. Thus, conventional
budget-constrained uncertainty sets can be defined as the set of matrices U
such that:

uih = ûih + ∆+
ihz

+
ih −∆−ihz−ih ∀i ∈ R, ∀h ∈ H (4-1)

0 ≤ z+
ih, z

−
ih ≤ 1 ∀i ∈ R, ∀h ∈ H (4-2)∑

i∈R
z+
ih + z−ih ≤ Γ|R| ∀h ∈ H (4-3)

∑
h∈H

z+
ih + z−ih ≤ Λ ∀i ∈ R. (4-4)

As per (4-1) and (4-2), decision variables z+
ih and z−ih determine the

available generation for renewable generator i in period h, represented by uih.
The lower and upper box-like limits, ûih−∆−ih and ûih + ∆+

ih, are, respectively,
the minimum and maximum possible values for uih. The first budget constraint
(4-3) limits, for each period, the number of renewable generating units that
may deviate from their expected value by parameter Γ, which can vary from 0
to 100%. As in [57], this constraint means that up to bΓ|R|c generators1 can

1In cases where Γ|R| is not an integer, an additional renewable generator is allowed to
deviate to make up for the residual fraction, Γ|R| − bΓ|R|c.
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simultaneously change their production from their expected values ûih to their
upper or lower bounds in the same period. The second budget constraint (4-4)
limits the number of periods in which each renewable generator i ∈ R can
deviate from its expected production. For the sake of simplicity, parameter Λ
represents an integer number of periods ranging between 0 and |H|.

4.3.2
Scenario-Based Uncertainty Sets Driven by Data

In order to build a flexible, easy to specify, and practical uncertainty set
that allows scalability for the available exact solution techniques for RUC, we
propose a scenario-based polyhedral uncertainty set [112–114] to model REG
uncertainty. To that end, the uncertainty set is defined as the convex hull of a
set of multivariate points representing scenarios, i.e., REG profiles. Among the
various exogenous approaches that could be used to generate the scenarios, we
propose the use of a data-driven scheme. Historical daily profiles are therefore
directly used as scenarios, thereby embedding relevant information about the
true underlying uncertainty process in each vertex of the uncertainty set.
Mathematically, the proposed DDUS, U , is cast as follows:

U =

U∈R|R|×|H|
∣∣∣∣∣∣U =

K∑
k=1

αkUk,
K∑
k=1

αk = 1, αk ≥ 0

 (4-5)

where {Uk}k=1,...,K is the set of daily REG profiles corresponding toK previous
days, which is hereinafter referred to as S. Note that U is the convex hull of
S, thereby representing the smallest convex set that contains every scenario
in S. Moreover, by definition, the vertexes of the polyhedral uncertainty set U
are in S [44]. Additionally, it is worth highlighting that the conservativeness
level of the proposed DDUS is solely modeled by K. As a consequence, this
parameter must be adjusted based on an out-of-sample test according to the
decision maker’s preference on cost and reliability.

The capability of DDUS to capture temporal and spatial dependences
is illustrated in Figs. 4.1 and 4.2, where two-dimensional projections of the
multidimensional DDUS are shown for the data of the second case study
examined in Section 4.6, for the period between 10/31/2012 and 12/15/2012.
Fig. 4.1 shows a high-dependence pattern, exhibited in bus 5 for 12:00 p.m. and
1:00 p.m., and a low-dependence pattern, observed in the same bus for 12:00
p.m. and 6:00 p.m. Likewise, different spatial dependences can be visualized
in Fig. 4.2 for 9:00 a.m.

An interesting interpretation for the use of observed generation profiles
as vertexes of the uncertainty set is that we are implicitly performing an
endogenous stress test for each feasible solution of the RUC problem whereby
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relevant multidimensional dependences found in the true hourly REG within
a day are empirically accounted for. Furthermore, by using the proposed
DDUS within an adaptive decision-making scheme, the evolution of the
REG dependences across time can be dynamically updated. Hence, strong
assumptions about the nature of the true model behind data are not required.

Figure 4.1: Examples of temporal dependences.

Figure 4.2: Examples of spatial dependences.

Moreover, note that the proposed framework can be adapted to consider
sophisticated REG forecasts. As an example, any exogenous day-ahead
forecasting procedure could be used to detrend/deseasonalize historical data
and generate forecast errors. The errors computed for the K previous
days could thus be added to an updated day-ahead forecast to generate
data-driven adjusted scenarios to build S. With this simple preprocessing
scheme, the shaping capability of the proposed data-driven approach could
be straightforwardly combined with state-of-the-art forecasting methods.

It is also worth mentioning that, if, instead of using real data, our
data-driven model were built based on a Monte Carlo simulation of a
time-series model, as done under a stochastic programming framework, our
model can be viewed as a sampled version of a chance-constrained model. For
instance, according to Calafiore [115], if the number of scenarios K (generated
through Monte Carlo sampling methods) in DDUS is greater than |R||H|/ε−1,
where ε ∈ (0, 1) is a user-defined parameter that can be made arbitrarily
small, the expected probability of violations (shedding load or curtailing REG)
remains below ε. As per our numerical experiments, the CCGA, in practice,
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converges with a much smaller subset of theK sampled scenarios. Hence, in the
case where our model is used to reproduce sample-based chance-constrained
problems as done in [115], our robust approach would be a computationally
efficient solution methodology.

4.4
Two-Stage Robust Unit Commitment Model

For expository purposes, we use a standard two-stage robust optimization
framework with a single uncertainty set [99], which is a particular instance
of the general notion of stochastic robust optimization presented in [12] and
[116]. This model is simpler to describe and analyze yet bringing out the main
features of the proposed data-driven approach. Based on previous works on
robust energy and reserve scheduling [11,16,17] and industry practice [105,117],
a base-case dispatch for energy is considered while ensuring ε-feasibility for all
realizations within the uncertainty set. The mathematical formulation for the
proposed DDRUC problem is as follows:

min
X ,[θh,fh]h∈H

∑
h∈H

{
e′(csdh + csuh ) + (cg)′gh + (cup)′ ruph + (cdn)′rdnh

}
(4-6)

subject to:

Afh + Bgh + Pûh = dh ∀h ∈ H (4-7)

− f ≤ fh ≤ f ∀h ∈ H (4-8)

fh = Sθh ∀h ∈ H (4-9)

Gvh + rdnh ≤ gh ≤ Gvh − ruph ∀h ∈ H (4-10)

0 ≤ ruph ≤ Rup vh ∀h ∈ H (4-11)

0 ≤ rdnh ≤ Rdn vh ∀h ∈ H (4-12)

− b(vh,vh−1) ≤ gh − gh−1 ≤ a(vh,vh−1) ∀h ∈ H (4-13)

{csdh , csuh ,vh}h∈H ∈ F (4-14)

Φ(X ) ≤ ε (4-15)

Φ(X ) = max
U∈U

{
min

[θwc
h ,fwc

h ,

gwc
h ,s+

h
,

s−
h

]h∈H

∑
h∈H

e′(s+
h + s−h ) (4-16)

subject to:

Afwch + Bgwch + Puh = dh + s+
h − s−h : (βh) ∀h ∈ H (4-17)

− f ≤ fwch ≤ f : (σh,πh) ∀h ∈ H (4-18)

fwch = Sθwch : (ωh) ∀h ∈ H (4-19)

gwch − gwch−1 ≤ a(vh,vh−1) : (ζh) ∀h ∈ H (4-20)
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gwch−1 − gwch ≤ b(vh,vh−1) : (κh) ∀h ∈ H (4-21)

gh − rdnh ≤ gwch ≤ gh + ruph : (γh, τ h) ∀h ∈ H (4-22)

0 ≤ s−h ≤ dh : (ςh) ∀h ∈ H (4-23)

0 ≤ s+
h ≤ Puh : (ξh) ∀h ∈ H

}
, (4-24)

where X is the set of first-level variables related to generation, i.e.,
X = [csdh , csuh ,gh, rdnh , r

up
h ,vh]h∈H, and third-level dual variables are shown in

parentheses.
The two-stage DDRUC (4-6)–(4-24) is formulated as a (min-max-min)

trilevel optimization problem. The first optimization level (4-6)–(4-15)
determines the on/off statuses of generating units, as well as the energy and
reserve scheduling. The objective function (4-6) comprises shut-down costs,
start-up costs, production costs, and up- and down-reserve costs. Constraint
(4-7) represents nodal power balance under a dc power flow model. Expression
(4-8) represents transmission line power flow limits, while Kirchhoff’s second
law is accounted for through (4-9). The limits for generation levels and up- and
down-spinning reserves are imposed in expressions (4-10)–(4-12). Inter-period
ramping limits are modeled by (4-13), where the components of the auxiliary
vector functions a(·) and b(·) are [16]: ai(vih, vih−1) = RUivih−1 + SUi(vih −
vih−1)+Gi(1−vih) and bi(vih, vih−1) = RDivih+SDi(vih−1−vih)+Gi(1−vih−1).
Following [22], equation (4-14) represents constraints related to shut-down
costs, start-up costs, and minimum up and down times. Equation (4-15)
ensures redispatch capability within a feasibility tolerance, ε, under the set
X for all plausible realizations within the uncertainty set.

The second-level problem comprises the outer maximization problem in
(4-16). The goal of the second-level problem is to find the weights {αk}k=1,...,K

in (4-5) corresponding to the worst-case uncertainty realization U ∈ U for
a given value of X . The measure of worst case is given by the minimum
power imbalance function, which receives as inputs the values of the first- and
second-level variables, X and U, respectively. The third-level problem, i.e.,
the inner minimization problem (4-16)–(4-24), plays the role of the minimum
power imbalance function. The objective of this problem is to find a redispatch
solution that minimizes the total sum of the mismatch variables artificially
introduced in the power balance constraint (4-17). The mismatch variables, s−h
and s+

h , can be interpreted as load shedding and REG spillage, respectively.
Constraints (4-17)–(4-21) are analogous to first-level expressions (4-7)–(4-9)
and (4-13). The maximum operational deviation from nominal scheduled
generation is controlled by constraint (4-22), whereby generation redispatch
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levels gwch are limited by up- and down-reserves.
Within this approach, by ensuring ε-feasibility for a given set of observed

data points, the proposed DDRUC provides solutions that are optimized and
tight for a given stress test setup. Therefore, the resulting reserve procurement
can be interpreted as the least-cost schedule that allows reserve deliverability
for realistic system-stress conditions. The proposed approach differs from
current industry practice, where stress tests are applied ex post as offline
validation procedures.

4.5
Solution Methodology

This work leverages from the fact that the two lowermost levels
(4-16)–(4-24) correspond to a maximization, within a polyhedral uncertainty
set U , of a convex function given by the output of the inner minimization
in (4-16) as a function of U. Therefore, from standard results of convex
analysis, one of the vertexes belongs to the optimal solution set [44]. In
other words, at the optimal solution, all αk are equal to 0 except that
corresponding to the worst-case vertex, which is equal to 1, thereby being
binary valued. Hence, we can replace the continuous polyhedral uncertainty
set U in the outer maximization of (4-16) with the discrete set of scenarios S.
By doing so, problem (4-6)–(4-24) can be cast as a single-level MILP-based
equivalent wherein expressions (4-16)–(4-24) are replaced with one set of
redispatch constraints (4-17)–(4-24) for each one of the K scenarios in S.
Such a scenario-based model is structurally similar to that presented in [118]
for a different problem, namely stochastic unit commitment. Unfortunately,
addressing such a full-scenario-based equivalent by the branch-and-cut
algorithm may lead to intractability.

Alternatively, problem (4-6)–(4-24), and its single-level equivalent,
likewise, are suitable for the CCGA [68], which ensures finite convergence
to global optimality by iteratively solving a master problem and an oracle
subproblem. At each iteration, the master problem, which is a relaxed version
of the full-scenario-dependent equivalent problem, finds a trial solution that is
evaluated in terms of operational feasibility by the oracle procedure. The oracle
returns to the master problem violated constraints that will change the master
problem solution at the next iteration. The algorithm terminates when the
oracle does not find any violated constraint, thereby certifying the incumbent
trial solution as globally optimal.

4.5.1
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Master Problem

The master problem is a relaxed version of problem (4-6)–(4-24). Thus,
at each iteration j of the CCGA, the master problem is an instance of MILP
as follows:

min
X ,[θh,fh]h∈H

[θ(k)
h
,f (k)

h
,g(k)

h
,s+(k)

h
,

s−(k)
h

]h∈H,k=1,...,|Sj |

∑
h∈H

{
e′(csdh + csuh ) + (cg)′gh + (cup)′ruph + (cdn)′rdnh

}
(4-25)

subject to:

Constraints (4-7)–(4-14) (4-26)

Redispatch constraints for scenario k, k = 1, . . . , |Sj| (4-27)∑
h∈H

e′(s+(k)
h + s−(k)

h ) ≤ ε, k = 1, . . . , |Sj| (4-28)

where set Sj comprises the scenarios of S selected by the oracle subproblem
until iteration j of the CCGA.

Expressions (4-25)–(4-26) are identical to (4-6)–(4-14). As per (4-27), a
set of redispatch constraints is iteratively added. Such redispatch constraints
correspond to (4-17)–(4-24) where variables θwch , fwch ,gwch , s+

h , and s−h are
respectively replaced with new variables θ(k)

h , f (k)
h ,g(k)

h , s+(k)
h , and s−(k)

h , whereas
uh is replaced with the corresponding scenario of Sj selected at previous
iterations by the oracle subproblem. Finally, in (4-28), the system power
imbalance under every scenario in Sj is bounded by the threshold ε.

4.5.2
Oracle Subproblem

The oracle subproblem corresponds to the two lowermost optimization
levels (4-16)–(4-24) for given upper-level decisions provided by the preceding
master problem. This bilevel program can be solved in two different ways:

1. By the enumeration of all feasible values for variables αk. This solution
approach, hereinafter referred to as the inspection-based oracle, consists
in the serial or parallel evaluation of the imbalance through the solution
of the third-level problem for all K scenarios in S. The inspection-based
oracle is thus equivalent to searching through all vectors {αk}k=1,...,K

that are candidates for optimality, i.e., those with one entry equal to 1
and all other entries equal to 0. Note that each optimization problem
is a linear program, which runs in polynomial time with interior point
methods. As the value of K is not related to the instance size, the
inspection-based oracle can be easily implemented as a computational
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routine that receives a pair (X ∗,S) and returns the worst-case scenario
U∗ in S and the associated power imbalance Φ(X ∗) in polynomial time
[114].

2. By the application of branch-and-cut algorithms (readily available in
off-the-shelf MILP solvers) to a single-level MILP-based equivalent
subproblem. Based on a discrete representation of S, this solution
approach consists in casting the original bilevel subproblem as a
single-level MILP equivalent, denoted byMILP-based oracle subproblem.
Such an equivalent requires modeling variables αk as binary, using the
dual of the lower level of the subproblem, and applying well-known
integer algebra results [119] to recast the resulting bilinear terms as linear
expressions. The MILP-based oracle subproblem is thus a linearized
version (relying on standard disjunctive constraints) of this mixed-integer
nonlinear problem:

Φ(X ) = max
[αk]k∈K,

[βh,γh,ζh,κh,ξh,πh,
σh,ςh,τh,ωh,uh]h∈H

∑
h∈H

{
β′h(dh −Puh)

− π′hf − σ′hf

+ γ ′h(gh − rdnh )

− τ ′h(gh + ruph )

− ζ ′ha(vh,vh−1)

+ κ′hb(vh,vh−1)

− ς ′hdh − ξ′hPuh
}

(4-29)

subject to:

uh =
∑
k∈S

αkuhk ∀h ∈ H (4-30)
∑
k∈S

αk = 1 (4-31)

αk ∈ {0, 1} ∀k ∈ S (4-32)

βh − ςh ≤ e ∀h ∈ H (4-33)

− βh − ξh ≤ e ∀h ∈ H (4-34)

−A′βh + πh − σh − ωh = 0 ∀h ∈ H (4-35)

− S′ωh = 0 ∀h ∈ H (4-36)

− γh + τ h −B′βh + ζh
− ζh+1 − κh + κh+1 ≥ 0 ∀h ∈ H (4-37)

πh,σh, τ h,γh, ζh,κh, ςh, ξh ≥ 0 ∀h ∈ H. (4-38)
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In (4-29)–(4-38), the objective function (4-29) and constraints
(4-33)–(4-38) represent, respectively, the objective function and constraints of
the dual formulation for the third-level problem presented in (4-16)–(4-24).
The proposed DDUS is equivalently modeled by constraints (4-30)–(4-32),
where uhk stands for the h-th column of the k-th data point, Uk. According
to (4-5) and the aforementioned results of convex analysis, U is replaced
with S in (4-30) and (4-31), whereas variables αk are characterized as binary
in (4-32). Note that problem (4-29)–(4-38) is a mixed-integer nonlinear
optimization problem with bilinear terms in the objective function (4-29).
Such nonlinearities involve products of uh and third-level dual variables. As
is customary in the literature [11, 16, 17], an equivalent MILP formulation for
(4-29)–(4-38), i.e., the MILP-based oracle, is achieved by applying standard
integer algebra results [119] that allow recasting the nonlinear products in
(4-29) as linear expressions.

4.5.3
Algorithm

For given S and ε, the proposed CCGA works as follows:

Algorithm CCGA(S, ε)
1: Initialization: j ← 0 and Sj ← ∅.
2: Solve the master problem (4-25)–(4-28) to obtain X ∗.
3: Solve the subproblem for (X ∗, S) to obtain Φ(X ∗) and the worst-case scenario
U∗.
4: if Φ(X ∗) ≤ ε then : STOP
5: else: j ← j + 1, Sj ← Sj−1 ∪ {U∗}, and go to step 2
6: end if.

The algorithm iteratively adds violated constraints into the master
problem and terminates when infeasibility is within ε.

In order to reduce the search space, vertex-identification algorithms [120]
could be implemented ex ante to determine the subset of S comprising the
vertexes of U . However, in a high-dimensional case, it is very unlikely to find
a point in S that is not a vertex of U . Hence, the use of vertex-identification
procedures, in practice, may deteriorate the performance of the CCGA as only
an insignificant number of points of S, most likely none, would be excluded
for being in the interior of the DDUS.
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4.6
Numerical Results

This section reports results from an illustrative 4-bus system and
the IEEE 118-bus test system over a 24-hour time span. For the sake of
reproducibility, data for both test systems can be downloaded from [121].
For expository purposes, wind-related uncertainty is considered. The source of
data for wind power generation is the Global Energy Competition (GEFCom)
[122,123].

As explained in the next section, the proposed DDRUC has been assessed
with two benchmark models based on two-stage robust optimization and
two-stage stochastic programming. Such an assessment has been conducted
through backtesting on historical data observed over a given set of days.

The benchmark RUC model, hereinafter referred to as BRUC, relies on
the budget-constrained uncertainty set formulated in Section 4.3.1. DDRUC
has been implemented for different time windows, i.e., for different values
of K, whereas different combinations of budgets Γ and Λ were considered
for BRUC. For quick reference, the instances of both models are denoted by
DDRUC(K) and BRUC(Γ,Λ), respectively. For a given day d, the uncertainty
set for DDRUC(K) is directly defined using the REG profiles observed in the
K previous days, i.e., considering S as {Uk}k=d−K,...,d−1.

For the sake of a fair comparison, BRUC is also adaptively adjusted
across the rolling-horizon study, similarly to DDRUC, in order to prevent
over-conservative solutions. This is done through a moving window of previous
observed days within which the lower and upper box-like limits used in the
budget-constrained uncertainty sets are defined according to the corresponding
hourly minimum and maximum production limits for each renewable unit. Our
tests indicated that the length of such a moving window is not as relevant for
BRUC as the selection of K is for DDRUC. Hence, based on trial and error,
the budget-constrained uncertainty sets for BRUC(Γ,Λ) were built using the
previous 35 days.

The instances of DDRUC were addressed by the CCGA with both
the inspection- and the MILP-based oracle subproblems. In contrast, BRUC
was solved by the CCGA with a modified version of the MILP-based oracle
subproblem, as done in [16]. To that end, expressions (4-30) and (4-31)
in problem (4-29)–(4-38), representing the uncertainty set constraints, were
replaced with (4-1)–(4-4), whereas the linearization scheme mentioned in
Section 4.5.2 was applied to the resulting bilinear terms.

Additionally, in order to provide a comparison between the proposed
data-driven robust approach and stochastic programming, a benchmark
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stochastic unit commitment model, hereinafter referred to as BSUC, was
analyzed. BSUC is a mixed-integer linear program structurally similar to the
DDRUC master problem (4-25)–(4-28). Three differences characterize BSUC,
namely 1) an expected imbalance cost term is added to the objective function
(4-25), 2) the set of scenarios in (4-27) comprises uncertainty realizations
obtained from a scenario-generation procedure using probabilistic information,
and 3) imbalance requirements are eliminated by dropping constraint (4-28).
The value of the imbalance cost was set to $500/MWh, which corresponds
approximately to 25 times the average value (or 13 times the highest value) of
the fuel costs, cg, for the thermal generators.

The scenario-generation procedure for BSUC was based on a multivariate
lognormal distribution inferred from the previous 100 days. First, the historical
data were normalized and a logarithmic transformation was applied. Then,
a multivariate normal distribution was estimated and 500 independent and
equally distributed scenarios were generated based on the expected value vector
and the covariance matrix. Finally, the inverse transformations were applied
to rescale the scenarios. As for the solution methodology, BSUC was tackled
by the branch-and-cut algorithm, which was initialized with the previous day’s
solution for binary scheduling variables and reserve contributions.

Simulations were run using Gurobi 7.0.2 under JuMP (Julia 0.5) on a
Xeon E5-2680 processor at 2.5 GHz and 128 GB of RAM.

4.6.1
Evaluation Methodology

The performances of DDRUC(K), BRUC(Γ,Λ), and BSUC have been
compared in terms of their tradeoff between cost and robustness. The
evaluation methodology consists in conducting a rolling-horizon out-of-sample
backtest over a set of days for which realistic REG data are available.

For each day d within the backtest horizon, the instances under
assessment are solved using available historical REG data for past days,
i.e., excluding day d. The solution of such instances of DDRUC, BRUC,
and BSUC yields the corresponding values of the total cost for that day.
Subsequently, solution robustness is quantified by computing the infeasibility
of the generation dispatch associated with the resulting generation schedules
and the actual REG scenario observed for day d. To that end, based on
industry practice, a single-period version of the inner minimization problem in
(4-16)–(4-24) is solved for each hour of this day. Hence, based on the resulting
hourly levels of load shedding and REG spillage, out-of-sample statistics for
robustness are devised.
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Avg. Avg. Avg.
Instance time iter. cost LOLP PWS

(s) no. ($) (%) (%)
DDRUC(42) 20.0 (34.7) 13.4 62122 1.56 2.67
DDRUC(35) 17.7 (28.8) 12.8 61894 1.85 3.53
DDRUC(28) 15.2 (23.2) 12.0 61592 2.33 4.15
DDRUC(20) 11.9 (17.0) 10.9 61121 3.91 5.43
BRUC(90,24) 157.7 6.2 66256 4.13 1.00
BRUC(90,1) 688.7 71.5 63401 5.36 1.09
BRUC(70,24) 115.9 6.5 62349 12.44 2.86
BRUC(50,24) 13.0 6.2 60571 21.60 5.25
BSUC 1494.0 − 61967 9.78 2.96

Table 4.1: 4-Bus System –Results from DDRUC, BRUC, and BSUC

4.6.2
Illustrative 4-Bus System

First, we consider an illustrative test system consisting of 4 buses, 4
transmission lines, 14 thermal generators, and 2 wind farms [121]. Wind
generation data were rescaled from buses 2 and 5 from [122]. The optimality
gap of Gurobi was set at 0% and the CCGA was implemented until no
imbalance was found for the instances of DDRUC and BRUC. Hence, such
simulations were run to optimality for ε = 0. As for BSUC, a time limit of
1,500 seconds was considered. The evaluation backtest was conducted for 336
days of realistic wind power generation data. Table 4.1 and Fig. 4.3 summarize
the results from the backtest for several instances of DDRUC, BRUC, and
BSUC.

Columns 2–4 of Table 4.1 respectively provide the average computing
times, iteration numbers, and costs over the 336 runs of the models being
examined. For the instances of DDRUC, the first figure in column 2 corresponds
to the method using the inspection-based oracle subproblem, whereas the
second figure in parentheses is associated with the approach relying on the
solution of the MILP-based equivalent for the oracle subproblem. Column 5
presents a reliability index referred to as loss of load probability (LOLP), which
is defined as the fraction of hours with load shedding exceeding 0.1% of the
system load. Analogously, column 6 reports the probability of wind spillage
(PWS), defined as the fraction of hours in which wind spillage exceeds 0.1%
of the available wind power generation. Thus, the values of LOLP and PWS
listed in Table 4.1 represent valuable statistical information on the robustness
of the solutions provided by each model.

Table 4.1 shows the impact of K on the computational effort required
by DDRUC. It should be emphasized that the number of iterations of the
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CCGA grows at a less than linear rate withK whereas computing times behave
similarly. As a relevant result, the impact of K on computing times is lower
when the subproblem is solved by the vertex inspection, which outperforms
the MILP solver for all instances.

As compared with BRUC, DDRUC is in general more effective from
a computational perspective. For the instances with no temporal budget
constraints (Λ = 24), the average numbers of iterations for BRUC are
approximately half of those required to solve the instances of DDRUC.
However, such reduced numbers of iterations do not imply shorter computing
times because the MILP-based oracle for BRUC is computationally expensive.
Moreover, for Λ = 1, which is far less conservative, BRUC requires significantly
more iterations to converge on average, thereby increasing the computational
burden. An exception is the instance BRUC(50, 24), which is a particular case
with no temporal budget constraints and a spatial budget corresponding to
precisely a single renewable generator deviating from the expected production.
Interestingly, this was the case for which BRUC achieved the worst solution
robustness in terms of LOLP, which is 5.5 times higher than the worst level
attained by DDRUC. Regarding BSUC, its required computational effort is
considerably greater than those of DDRUC and BRUC. The 1,500-s time limit
was reached almost every day of the rolling-window study.

As can also be observed in Table 4.1, as K grows from 20 to 42, both
LOLP and PWS decrease. Note also that, in comparison with BRUC and
BSUC, all solutions provided by DDRUC gave rise to acceptably small LOLP
values ranging between 1.56% and 3.91%, while keeping the average cost at
reasonable levels within a narrow 1.6% band. The superiority of DDRUC
over BRUC and BSUC is thus evidenced in terms of the tradeoff between
cost and robustness. Such a tradeoff is further illustrated in Fig. 4.3, where
robustness is expressed in terms of the out-of-sample reliability index LOLP.
Note that the solutions to DDRUC dominate in Pareto sense (lower cost and
lower LOLP) almost all solutions provided by BRUC. The only non-dominated
BRUC instance is the aforementioned BRUC(50, 24), which, albeit incurring
the lowest average cost, leads to an unreasonably high LOLP. Analogously,
despite featuring a reasonable average cost, the solution provided by BSUC
gave rise to a very high value of LOLP, namely 9.78%, which was substantially
outperformed by all instances of DDRUC. Hence, the BSUC solution was
dominated by the instances DDRUC(20), DDRUC(28), and DDRUC(35).

A breakdown of the average costs provided in column 4 of Table 4.1 is
presented in Table 4.2 for representative instances of DDRUC, BRUC, and
BSUC models. Thus, average production costs, average reserve costs, and
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Figure 4.3: Average cost vs. LOLP for the 4-bus system.

Instance Total Production Reserve Start-up and
shut-down

DDRUC(35) 61.9 55.7 6.1 0.1
DDRUC(20) 61.1 55.5 5.5 0.1
BRUC(90,24) 66.3 57.2 9.0 0.1
BRUC(90,1) 63.4 56.2 7.1 0.1
BSUC 62.0 55.7 6.2 0.1

Table 4.2: 4-Bus System – Average Cost Breakdown (103 $)

average start-up and shut-down costs are reported. It can be observed that the
largest cost component is the average production cost, representing between
86% and 91% of the average total cost for all instances. However, the average
reserve cost, which amounts to between 9% and 14% of the average total
cost, is the most relevant in terms of cost difference for any pair of instances.
Overall, reserve costs for DDRUC and BSUC are considerably lower than those
for BRUC. For further details, daily reserve costs are shown in Fig. 4.4. As
compared to BRUC, DDRUC and BSUC were able to address the next-day
REG profile with lower levels of reserves. Moreover, daily reserve costs for
DDRUC are less variable than those for BSUC due to the inherent stochastic
nature of the scenario-generation procedure.

For illustration purposes, Fig. 4.5 depicts two two-dimensional
projections of the scenarios in S for the 43rd day of the rolling window.
The 8 scenarios colored in red correspond to the scenarios selected by the
CCGA for DDRUC(35). Not surprisingly, some of the selected scenarios
present very high or very low REG profiles. Such scenarios are more likely to
yield higher imbalance costs (from either wind spillage or load shedding) at
intermediate iterations of the CCGA. Salient features of the selected scenarios
are also characterized by the scatter plot in Fig. 4.6, which shows the total
24-hour REG and the largest absolute variation of renewable generation
between two consecutive hours of each scenario. Note that the two scenarios
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Figure 4.4: Daily reserve costs for the 4-bus system.
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Figure 4.5: Scenarios in S for the 43rd day of the rolling window for the 4-bus
system.

with the largest absolute REG variation between two consecutive periods were
also selected. These scenarios also represent a challenge to the system as they
stress its ramping capability and require higher reserve levels.

4.6.3
118-Bus System

The second case study is a modified version of the IEEE 118-bus test
system with 10 wind farms. The optimality gap of Gurobi was set at 0.05%
for the master problem, the subproblem was solved to optimality through the
vertex inspection, and ε was equal to 0.1% of the total system demand.
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Figure 4.6: Scatter plot for the scenarios selected by DDRUC(35) in the 43rd
day of the rolling window for the 4-bus system.

DDRUC(35) DDRUC(35+10)
Average time (s) 774 792
Maximum time (s) 1752 2220
Average number of iterations 8.5 8.4
Average cost (104 $) 110.4 110.5
LOLP (%) 3.2 2.7
PWS (%) 5.8 4.6

Table 4.3: 118-Bus System – Results from the 214-Day Backtest

For this case study, we first assessed the performance of DDRUC(35) with
a second instance, denoted by DDRUC(35+10), whereby intra-day dynamics
of wind power generation for the same period in the previous year were
considered. Thus, the scenarios for DDRUC(35+10) were associated with the
previous 35 days and a ten-day period from the year before, beginning five
days prior to the date corresponding to the day under analysis in the backtest
scheme. For both instances, the backtest was performed for 214 days under
realistic wind power generation data [123]. The results listed in Table 4.3
indicate that the proposed DDRUC can provide a robust and cost-effective
generation schedule. Moreover, it is interesting to note that the cost increase
due to the consideration of 10 additional vertexes from the previous year is
negligible, while the values of LOLP and PWS respectively drop from 3.2%
and 5.8% to 2.7% and 4.6%.

It is also relevant to highlight the low computational burden exhibited
by both DDRUC instances. The significance of such a result was validated by
performing the 214-day backtest with BRUC, which was the only benchmark
model used for this case study due to the poor computational behavior featured
by BSUC for the illustrative example. Unfortunately, for BRUC, the CCGA
failed to converge in practical computing times.

DDRUC has been further assessed with BRUC through a reduced
backtest relying on a randomly selected sequence of 10 days. Simulations were
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Avg. Avg. Avg.
Instance time iter. cost LOLP PWS

(s) no. (104 $) (%) (%)
DDRUC(42) 494 5.0 110.2 1.67 0.83
DDRUC(35+10) 696 5.7 110.2 1.67 0.83
DDRUC(35) 378 5.6 110.1 1.67 1.25
DDRUC(28) 804 6.6 109.6 1.25 5.00
BRUC(70,24) 3847 3.0 109.6 8.33 1.67
BRUC(50,24) 3741 3.0 108.3 19.17 5.83

Table 4.4: 118-Bus System – Results from the 10-Day Backtest

run for a feasibility tolerance ε of 0.1% of the system demand and a practical
1-hour time limit. For the instances of BRUC examined, the time limit was
reached during the solution of the master problem. For such instances, the
CCGA was allowed to run until the corresponding iteration was completed.
Table 4.4 summarizes the results from the 10-day backtest. The reported results
suggest that the proposed DDRUC is a scalable alternative for RUC.

4.7
Conclusion

This chapter has described a new, comprehensive, and parsimonious
method to characterize REG uncertainty in day-ahead RUC. The proposed
method relies on an alternative scenario-based polyhedral uncertainty set
that is built through a novel data-driven approach. Unlike conventional
budget-constrained uncertainty sets, the proposed polyhedral uncertainty set is
characterized directly from data through the convex hull of a set of previously
observed REG profiles. Thus, relevant empirical information regarding the
existing complex and time-varying dynamics of REG sources is embedded in
the vertexes of the polyhedron. In addition, a salient feature of the proposed
uncertainty set is its capability to consider any exogenous model (or scheme)
for adjusting, including or excluding (filtering or clustering) scenarios based on
existing methods used in industry. Moreover, the resulting robust counterpart
for generation scheduling can be efficiently solved by the CCGA until ε-global
optimality. This relevant practical aspect stems from the reduced complexity
of the oracle subproblem, which is solvable in polynomial time. For the case
studies analyzed in the chapter, a relatively small number of past renewable
generation profiles were required by the proposed data-driven approach to
outperform two benchmarks, namely an RUC model based on a conventional
budget-constrained uncertainty set and a stochastic unit commitment model.
Numerical results indicate that the proposed method might be a practical,
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scalable, easy to specify, and cost-efficient alternative tool for managing wind
power variability in the unit commitment problem.

Future research will consider 1) exogenous day-ahead forecasting
methods for nominal scenarios, and 2) data-processing schemes based on
forecasting errors to generate the vertexes for the uncertainty set. In addition,
alternative budget-constrained uncertainty sets will be analyzed. Another
relevant avenue of research is the extension of the proposed data-driven
approach within a stochastic robust optimization framework.
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5
Distributionally Robust Transmission Expansion Planning: a
Multi-scale Uncertainty Approach

We present a distributionally robust optimization (DRO) approach
for the transmission expansion planning problem, considering both long-
and short-term uncertainties on the system demand and non-dispatchable
renewable generation. On the long-term level, as is customary in industry
applications, we address the deep uncertainties arising from social and
economic transformations, political and environmental issues, and technology
disruptions by using long-term scenarios devised by experts. In this setting,
many exogenous long-term scenarios containing partial information about
the random parameters, namely, the average and the support set, can
be considered. For each long-term scenario, a conditional ambiguity set
models the incomplete knowledge about the probability distribution of
the uncertain parameters in the short-term operation. Consequently, the
mathematical problem is formulated as a DRO model with multiple
conditional ambiguity sets. The resulting infinite-dimensional problem
is recast as an exact, although very large, finite mixed-integer linear
programming problem. To circumvent scalability issues, we propose a new
enhanced-column-and-constraint-generation (ECCG) decomposition approach
with an additional Dantzig–Wolfe procedure. In comparison to existing
methods, ECCG leads to a better representation of the recourse function and,
consequently, tighter bounds. Numerical experiments based on the benchmark
IEEE 118-bus system are reported to corroborate the effectiveness of the
method.

The contents of this chapter are based on the paper accepted for the
IEEE Transactions on Power Systems [74].

5.1
Introduction

The transmission expansion planning (TEP) problem is generally related
to strategic policies, as the outcome of a transmission plan extends far beyond
providing a simple least-cost connection between the generation and loads.
For example, it may directly or indirectly shape the economic development
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for covered regions [43], or even facilitate policies for fostering innovation in
various generation technologies. As for electrical aspects, the system reliability,
operational flexibility, reserves deliverability, and long-run adaptability [43]
are key concepts that are significantly affected by the selected transmission
capacity updates. On the uncertainty side, planners have been dealing with
several deep uncertainties arising from social and economic transformations,
political and environmental issues, and technology disruptions, among others.
In this context, the definition of coherent future scenarios is a necessary step
for defining the TEP [124].

Practical TEP applications generally rely on demand growth and
renewable integration scenarios. These scenarios, hereinafter referred to as
long-term scenarios, are projections that are based on hypotheses about
long-term drivers. The definition of the drivers that are relevant for the
construction of the long-term scenarios frequently involves stakeholders and
experts in various fields. In terms of modeling, the projections of long-term
scenarios are generally provided by econometric models with many explanatory
variables representing the long-term drivers. In this setting, a long-term
scenario is a description of the future state of the system; that is, a conditional
expectation on a specific set of beliefs and hypotheses (priors) that were used
to parameterize the drivers. Notwithstanding, in practice, system planners
want to consider multiple long-term scenarios [65, 125]. Therefore, different
hypotheses about the drivers are conceived, where these hypotheses draw
distinct consistent narratives of the economic, political, technological, and
environmental factors. [124]. A coherent long-term scenario for demand growth
and renewable integration is then built on each of these hypotheses.

5.1.1
Motivation and literature review

Despite the ability to consider many long-term profiles for the unknown
parameters, the traditional deterministic “what-if” approach, labeled in
this chapter as D-TEP, may not be sufficient for addressing all layers of
uncertainty in modern power systems. For example, the large increase in
renewable generation (RG) has introduced new levels of intermittency and
unpredictability to electrical systems. These new aspects have motivated a
change in numerous paradigms for short-term operation as well as for the
planning of transmission networks (see [63,126] and references therein).

In this context, it may be reasonable to consider both the long- and
short-term effects of the uncertainty. For instance, a long-term scenario with
high integration of wind-related sources would exhibit significantly more
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short-term variability than another where a reduced expansion of the wind
power technology occurs. Thus, the representation of multi-scale uncertainty
in TEP models has been receiving attention in the recent literature across
various approaches (stochastic, robust, and distributionally robust). We refer
the interest reader to [65], [126], [127], [128], and [67] for further details.

The most popular framework for decision-making under uncertainty
is the stochastic optimization (SO) approach, which considers scenarios
drawn from a predefined probability distribution function (PDF) [125, 129].
Unfortunately, the PDF of short-term uncertainty is considered difficult to
estimate, specially in long-term studies, where the market and system structure
may experience deep changes. This fact has motivated the use of the adaptive
robust optimization (ARO) framework to address TEP problems, which we
label as the ARO-TEP approach. In ARO-TEP problems, uncertainties are, in
general, represented by polyhedral uncertainty sets relying on few assumptions
about the uncertainty factors (see [63] and [64]). Under this framework, the
solution is that which performs the best in the worst-case scenario.

It is worth mentioning that while part of the recent literature on ARO
has considered probability agnostic models (see [65], [63], and [64]), relevant
efforts have been made to account for the information extracted from data to
devise more realistic descriptions of the short-term uncertainty. We refer the
interested reader to [66,73], and [12] for applications in short-term operational
models and to [67] for a hybrid-robust-and-stochastic approach applied to
the TEP problem. Nevertheless, in long-term TEP applications, the use of
scenario-based approaches relying on current data may be questionable, as the
structure of the uncertainties in the target period may significantly differ from
that found via data [125].

As an alternative to SO and ARO approaches, the distributionally robust
optimization (DRO) framework, first introduced in [130], has been developed
within a broad mathematical and operations research context in the 2010s (see
[131–134] and references therein). Unlike the SO approach that requires full
PDF specification, the assumption for DRO-based models is that only partial
information about the distributions of the uncertain parameters is available.
The DRO framework is a robust approach, which is based on the worst-case
expected cost. This contrasts with the more conservative ARO framework,
which considers the single worst-case scenario. Therefore, the DRO framework
produces ambiguity-averse models; that is, models that are robust against
predefined sets of probability distributions, the so-called ambiguity sets.

More recently, DRO approaches have been applied to model uncertainty
in power system problems such as congestion line management [135], economic
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dispatch [136], security-constrained optimal power flow [137], risk-based
optimal power flow with dynamic line rating [138], investment decisions in
wind farms [139], and unit commitment [140–142]. Regarding the application
of DRO to TEP (DRO-TEP), to the best of the authors’ knowledge only a
few works have been published so far. The network security was addressed in
[143] and a data-driven ambiguity set was applied in [144] to account for the
estimation uncertainty of empirical probability distributions. In both works,
notwithstanding the relevant contributions to the DRO-TEP literature, the
multi-scale nature of the uncertainty is not addressed.

Most of the aforementioned works under robust approaches (ARO and
DRO) are characterized by the traditional two-stage decision framework
involving first-stage decision, uncertainty realization, and second-stage
decision. The second-stage decision is modeled by a recourse function, which
in power system applications frequently represents the system’s redispatch
or corrective actions after uncertainty realization. Even though they provide
flexibility in decision-making under uncertainty, two-stage robust models are
generally hard to solve, requiring decomposition techniques.

The column-and-constraint-generation (CCG) algorithm, developed in
[68], has been largely applied to tackle two-stage models in power system
applications under both ARO and DRO frameworks. The CCG method is
a decomposition technique that relies on an iterative process that alternates
between a master problem and an oracle subproblem. In many applications,
each block of constraints and variables of the master problem is associated with
one possible realization (scenario) of the uncertain parameter. In summary,
the master problem is a relaxed version of the problem’s extensive formulation
where only a small subset of scenarios (and their respective constraints and
variables) is represented. The oracle subproblem is a search procedure that,
for a given first-stage trial solution determined by the master problem, finds
the scenario that, according to some metric, produces the highest cost (or the
largest violation for a specific set of constraints) for the recourse function. The
constraints and variables associated with the new scenario are then represented
in the master problem, which becomes more constrained.

The CCG method is tailored to the ARO framework, since the first-stage
solution and the single scenario determined by the oracle subproblem are
sufficient to compute, at each iteration, the exact worst-case value for the
recourse function. However, in the DRO framework, the recourse function is
not completely determined by a single scenario, as it deals with worst-case
expected values. As a consequence, recent applications of the CCG algorithm
to solve problems under the DRO framework have relied on loose upper bounds
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for the recourse function. Moreover, many iterations of the CCG algorithm may
be required until all the relevant scenarios are determined and introduced to
the master problem. Hence, to further develop the DRO approach, new tailored
uncertainty models and new solution methods are needed.

5.1.2
Contributions

In this chapter, we extend the ideas and developments of [127] and
present a new DRO-TEP model. We assume that the true joint distribution
of the uncertain parameters is difficult to estimate. Nevertheless, according to
industry practices, we assume that partial information regarding the random
parameters is available. In the designed framework, such partial information;
that is, the characterization of the conditional expected values and support
sets for the short-term net demand, is extracted from the long-term scenarios,
which are projected by experts [65, 124, 125]. It is relevant to emphasize that,
in this setting, the full specification of the conditional probability distribution
for the short-term uncertainty is not required and that multiple exogenous
long-term scenarios can be considered.

In terms of modeling, in order to couple long- and short-term
uncertainties, we propose an extension of the traditional two-stage DRO
framework to consider multiple ambiguity sets. This extension requires the
introduction of the concept of conditional ambiguity set, which is formalized in
this chapter. Therefore, current industry practices, involving the consideration
of multiple long-term scenarios, are accommodated within the proposed
multiple conditional ambiguity set parametrization for the DRO-TEP model1.

As for the solution approach, we propose a decomposition algorithm
tailored for DRO problems where the ambiguity set is parameterized by
first moment information. The new method is referred to as the enhanced
column-and-constraint-generation (ECCG) algorithm. The proposed scheme
differs from the CCG method by an inner loop, which is based on a
Dantzig-Wolfe procedure (DWP) that determines more than one scenario at
each main iteration of the algorithm. As a result, the proposed ECCG method
provides a better representation of the recourse function and consequently
a tighter Dantzig-Wolfe-like upper bound, which is also mathematically
formalized. Finally, as opposed to the CCG algorithm, more than one scenario
is included to the master problem at each main iteration, resulting in higher

1The proposed extension finds parallels in recent advances in robust optimization. The
Stochastic Robust Optimization model in [66] and the Extended Robust Model in [12]
propose extensions to the robust optimization framework to consider multiple uncertainty
sets.
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lower bounds. In order to determine the scenarios to be added to the master
problem, we propose a procedure that ranks the new scenarios based on their
contribution to the recourse function value and selects only those of best
rank. The combination of tighter lower and upper bounds results in fewer
iterations and reduced computational burden as compared to the benchmark
CCG algorithm.

In summary, the contributions of this chapter are twofold:

1. A new multi-scale DRO-TEP that is based on the concept of multiple
conditional ambiguity sets. This is a novelty in the literature of DRO
and suitable to current industry practices in TEP.

2. A new decomposition method (ECCG algorithm) that provides better
approximations for the distributionally robust recourse function than
the CCG algorithm, resulting in tighter bounds.

5.1.3
Chapter Organization

The rest of the chapter is organized as follows. In Section 5.2 the
nomenclature is introduced. In Section 5.3, the multi-scale uncertainty
modeling is described and formalized. The proposed DRO-TEP model is
formulated in Section 5.4. The solution methodology (ECCG algorithm) is
presented in Section 5.5. The case study and numerical experiments are
reported in Section 5.6. Finally, conclusions are addressed in Section 5.7.

5.2
Nomenclature

This section lists the main notation used in this chapter. Additional
symbols are explained in the text or are interpretable in the context using the
following general rules. The symbols with superscript “(j)” denote variables,
sets or results corresponding to the j-th iteration of the solution method.
The symbols with superscript “k” denote variables, parameters, and results
associated with the k-th extreme point (or scenario) of a given support set.
The symbols with subscript “ω” refer to variables, parameters or sets related
to the long-term scenario ω. The symbols with subscript “t” refer to variables,
functions or sets related to the t-th time period. Finally, the superscript “*”
indicates an optimal value of objective functions or variables.
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5.2.1
Sets and Indices

Ξ,Ξω Support set of the random vector and conditional support set of
the random vector under the long-term scenario ω.

Ω Set of long-term scenarios.

Dω Conditional ambiguity set under the long-term scenario ω.

Eω Set of the extreme points of Ξω.

Kω Set of indices of the extreme points of Ξω.

Pω Set of probability measures conditioned on the long-term scenario
ω.

S,Sω Sample space, and subset of the sample space associated with the
long-term scenario ω.

S,Sω Appropriate sigma-algebras for S and Sω, respectively.

T Set of time periods t.

X Set of feasible investment plans.

5.2.2
Functions

ξ̃ Measurable function (or random vector) modeling the uncertainty
in the net demand.

ξ̃t Subvector of ξ̃ related to period t.

ξ̃(s) Realization of ξ̃ for scenario s.

g(x, ξ, ω) Minimum-cost dispatch function for investment x, realization ξ,
and long-term scenario ω.

HDR(x, ω) Distributionally robust recourse function for investment x, under
the long-term scenario ω.

HDR(x, ω) Upper bound associated with HDR(x, ω).

HDR(x, ω) Lower bound associated with HDR(x, ω).
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5.2.3
Constants and Parameters

ε, ε Tolerances for the inner and main loops (in monetary and
percentage units, respectively).

λ(−)
ω ,λ(+)

ω Vectors of imbalance costs for the long-term scenario ω.

µ
ω
,µω Lower and upper bounds for the expected value of ξ̃ for the

long-term scenario ω.

ρω Probability or multi-objective weight of the long-term scenario ω.

ξ Generic point of Ξ.

ξkω k-th extreme point of Ξω.

ξ∗ω Extreme point of Ξω associated with the maximum reduced cost of
HDR(x, ω).

A Line-bus incidence matrix.

bω Vector of right-hand-side parameters of the operative model.

Bω Spatial decoupling matrix for ξ under the long-term scenario ω.

Bt,ω Submatrix of Bω for period t.

C Auxiliary matrix for disjunctive constraints.

cinv Vector of investment costs.

cω Vector of generation costs for the thermal generators under the
long-term scenario ω.

c∗ω Maximum reduced cost for the problem related to HDR(x, ω).

d Dimension of the uncertainty vector.

e Vector of ones with appropriate dimension.

F, f Matrix and vector for transmission constraints.

G Thermal generator-bus incidence matrix.

hω Vector of objective function coefficients of the compact operative
model.

L Maximum number of inner loop iterations.
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LB(j) Lower bound of the main loop at iteration j.

M Maximum number of scenarios added to the master problem per
iteration of the algorithm.

qω Vector of generation limits for the thermal units under the
long-term scenario ω.

rdwω , rupω Vectors of ramp-down and ramp-up limits between two consecutive
periods for the thermal units under the long-term scenario ω.

S Angle-to-flow matrix.

Ωω,Tω Recourse matrix and technology matrix for the long-term scenario
ω.

UB(j) Upper bound of the main loop at iteration j.

z∗DR Optimal value for the distributionally robust transmission
expansion planning problem.

5.2.4
Decision Variables or Vectors

α0ω Dual variable associated with the sum-one probability constraint.

αω,αω Dual vectors associated with the lower and upper limits,
respectively, for the expected value of ξ̃ under long-term scenario
ω.

θt Vector of phase angles in period t.

φ
(−)
t , φ

(+)
t Power imbalance vectors in period t.

πt Vector of dual variables of the compact version of the minimum-cost
dispatch model.

ft Vector of power flows in period t.

pk Probability of the extreme point k.

qt Vector of thermal generation in period t.

x Vector of investment decisions.

y Vector of variables for the compact version of the minimum-cost
operational problem.
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5.3
Uncertainty modeling

The proposed approach recognizes the need for a multi-scale
representation of the uncertainties affecting the TEP problem. The importance
of integrating long- and short-term uncertainties in TEP problems has been
discussed recently in the literature [67]. In Section 5.3.1, an illustrative example
based on a qualitative description of the proposed uncertainty representation is
provided, and in Section 5.3.2 the mathematical formalization of the approach
is presented.

5.3.1
Qualitative description of the uncertain parameters

In this chapter, the load and RG uncertainty are decomposed into:

1. A long-term component, which unfolds along many years and represents
the uncertainty on the expected demand growth and long-term renewable
integration.

2. A short-term component, which is characterized by the conditional
variability of the net demand (demand minus RG) on an hourly scale.

In regards to the long-term component, in general TEP applications,
governmental institutions or private consulting companies derive a few
coherent long-term scenarios2 with different structural hypotheses for
explanatory variables characterizing the economic, political, technological,
and environmental factors. Based on such hypotheses, the expected demand
growth and renewable integration levels are projected in subsequent studies
(see [65] for further details).

For example, experts may shape a plausible long-term scenario based on a
future disruption in solar technology and the cost reduction of batteries and/or
power electronic equipment. In this case, high penetration of distributed
generation is expected, and therefore, a reduced expected system net demand
(expected demand growth minus expected RG) is projected. However, the
resulting short-term net load probability distribution may change significantly
if a high economic development scenario with a lower distributed generation
integration occurs. Thus, to allow the decision maker to use typical outcomes
of long-term studies, in this chapter, a long-term scenario is characterized by
two types of ranges: ranges for the expected value of the conditional probability

2Scenario analysis is largely used in several real power systems such as WECC, Chile,
ERCOT, CAISO, UK National Grid (see [124] and [65]).
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Figure 5.1: Uncertainty components of the net demand (demand minus RG).

distributions, and ranges for the possible outcomes of uncertainty factors
(conditional support sets).

The short-term component of the uncertainty model is characterized
by multiple conditional ambiguity sets (sets of conditional probability
distributions), each of which connects to one corresponding long-term scenario.
The information extracted from a long-term scenario to parameterize the
related ambiguity set is the range for conditional expected value and range
of the conditional support set. This setting allows planners to represent
the lack of complete information regarding the underlying processes for the
short-term net demand while considering partial information from long-term
studies conducted by experts.

For comprehension purposes, a simple example, where the uncertain
parameter is the total net demand, is illustrated in Fig. 5.1. Two possible
long-term scenarios are depicted, namely, ω = H and ω = D representing
“High economic growth” and “Disruptive RG technology", respectively. The
long-term scenarios determine the support sets (ΞH and ΞD) and the ranges for
the expected value of the net load ([µ

H
,µH ] and [µ

D
,µD]). For each long-term

scenario, the set of possible short-term distributions, induced by respective
conditional ambiguity set, is abstractly represented in the illustration by
different density profiles. In the proposed two-stage DRO framework, the
investment decision (first-stage decision) is made under long- and short-term
uncertainty components (represented by the circle on the intersection of the
axes). The real-time operative dispatch decision (second-stage decision) is
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made under perfect information; that is, following the observation of both
uncertainty components (signaled by the “short-term realization"legend in the
illustration).

5.3.2
Probabilistic description of the uncertain parameters

For the sake of simplicity, the only uncertainty source considered in this
chapter is the net demand. It is represented by the vector of random factors
ξ̃ : S → Ξ, with image set, or support set, Ξ ⊂ Rd defining all possible net
demand extractions profiles. We consider a measurable space (S,S), where S is
the appropriate sigma-algebra of the sample space S, whose elements represent
all possible states of nature. In this setting, ξ̃ is a measurable function on
(S,S) that maps the points from the sample space, S, onto Ξ. The outcomes
or realizations of ξ̃ are represented by ξ̃(s) or, in short, ξ ∈ Ξ, wherever
convenient.

In order to represent the concept of long-term scenarios devised by
experts, we consider Ω as the set of indices for the long-term scenarios, and
we assume the existence of a partition, {Sω}ω∈Ω, of the sample space S, i.e.,
∪ω∈ΩSω = S and Sω ∩ Sω′ = ∅. In this setting, conditional supports are the
images of each part of the sample space, i.e., Ξω = ξ̃(Sω), such that the
unconditional support set is recovered by their union, i.e., ∪ω∈ΩΞω = Ξ. It
is relevant to note that we do not assume that Ξω and Ξω′ are disjoint.

The connection between the information provided by experts and the
probabilistic framework is given by the following inputs:

1) Conditional expected value ranges, {[µ
ω
,µω]}ω∈Ω.

2) Conditional support sets, {Ξω}ω∈Ω.

3) Probabilities {ρω = P (Sω)}ω∈Ω.

3’) Alternatively, {ρω}ω∈Ω can also be defined as weights to generate
Pareto-optimal solutions, thereby addressing long-term uncertainty
under a multi-objective framework.

Based on the conditional support set and expected value ranges for ξ̃, we
define the conditional ambiguity sets {Dω}ω∈Ω. Particularly, we assume that
for each long-term scenario ω, there exists a restricted (conditional) measurable
space (Sω ⊂ S,Sω ⊂ S). The conditional ambiguity set Dω is then defined as
the set of all conditional probability measures (restricted to Sω) that induce a
conditional expected value for ξ̃ within the specified range, i.e.,

Dω = {P ∈ Pω : µ
ω
≤ EP [ξ̃ | Sω] ≤ µω}. (5-1)

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



Chapter 5. Distributionally Robust Transmission Expansion Planning: a
Multi-scale Uncertainty Approach 104

In (5-1), Pω represents the set of all probability measures in the
measurable space (Sω,Sω), and EP [ξ̃ | Sω] represents the conditional expected
value of ξ̃ under a given probability measure P . For notation purposes, we
denote by EP [g(ξ̃) | Sω] :=

∫
Sω
g(ξ)dP the conditional expectation of a given

generic function g(ξ̃) with regard to a measure P ∈ Dω on (Sω,Sω).
For the sake of clarification, for the case depicted in Fig. 5.1; that is,

two long-term scenarios Ω = {ω1 = H,ω2 = D}, the inputs of the proposed
uncertainty model would be: 1) the conditional expected value ranges, [µ

H
,µH ]

and [µ
D
,µD]; 2) the conditional supports for the short-term component of the

net load, ΞH and ΞD; and 3) the probabilities (or weights) associated with
each long-term scenario, ρH and ρD.

5.4
Mathematical TEP model

TEP decisions (investments in candidate lines) are represented by the
binary vector x. The set X defines the feasible investment plans. On the
operational side, the cost of operating the system under a given investment
plan x, net demand realization ξ̃(s), and long-term scenario ω is represented
by the minimum-cost dispatch function g(x, ξ̃(s), ω). Thus, in cases where the
network planner assumes full knowledge regarding the probability measure
affecting the uncertain parameter ξ̃, i.e., under the assumption that P (·|Sω) is
the true conditional probability measure for each ω ∈ Ω, the classical two-stage
stochastic TEP approach is generally addressed by variants of the following
optimization problem:

min
x∈X

{
c>invx +

∑
ω∈Ω

ρωEP [g(x, ξ̃, ω)|Sω]
}
. (5-2)

Typically, the compact formulation for the operational cost function is given
by

g(x, ξ, ω) = min
y≥0

{
h>ωy

∣∣∣∣Wωy ≥ bω + Bωξ −Tωx
}
, (5-3)

whose right-hand-side is affected by an affine transformation of both
investment and uncertainty vectors. Hence, g(x, ξ, ω) is a convex function
on x and ξ. Note that the decision vector y stacks all the variables of
the operational problem (5-3). The objective function of (5-3) considers
operational and imbalance costs through vector hω, while the vectorial
inequality comprises all operational constraints through matrices Ωω,Bω,Tω,
and vector bω. In the next subsection (Section 5.4.1), the compact formulation
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for the short-term operational model (5-3) is detailed. The proposed DRO-TEP
model is presented in Section 5.4.2 and a finite reformulation is derived in
Section 5.4.3. In Section 5.4.4, benchmark models (ARO-TEP and D-TEP)
are presented as particular cases of the DRO-TEP model.

5.4.1
Short-term operation model description

The operational model is used to compute the dispatch cost under a
given investment plan x ∈ X and observed net load vector ξ ∈ xiω, which can
accommodate different components (sub-vectors), ξt, per period. Hence, the
compact formulation presented in (5-3) can be expanded as follows:

g(x, ξ, ω) = min
q,f ,θ

φ
(−)
t ,φ

(+)
t ≥0

∑
t∈T

(c>ωqt + λ(−)>
ω φ

(−)
t + λ(+)>

ω φ
(+)
t ) (5-4)

subject to:

Gqt + Aft = Bt,ωξt − φ
(−)
t + φ

(+)
t , ∀t ∈ T (5-5)∣∣∣ft − Sθt

∣∣∣ ≤ C(e− x), ∀t ∈ T (5-6)

− Fx− f ≤ ft ≤ f + Fx, ∀t ∈ T (5-7)

− rdwω ≤ qt − qt−1 ≤ rupω , ∀t ∈ T (5-8)

0 ≤ qt ≤ qω, ∀t ∈ T . (5-9)

As is customary in the literature of TEP, the standard optimal dc power
flow model is used (see [63] and [143]). The objective function (5-4) accounts
for the generation and imbalance costs for all time periods. Constraint (5-5)
addresses the nodal power balance for all buses. In this constraint, the matrix
Bt,ω allocates, for each period t and long-term scenario ω, the components of ξt
(scenario representing uncertainty realization) to the buses of the system. The
relation (5-6) addresses the Kirchhoff’s Voltage Law (KVL) through disjunctive
constraints, where the matrix C plays an auxiliary role. This matrix has
as many rows as the total number of lines (existing and candidates) and
as many columns as the number of candidate lines. The rows associated
with the existing lines are composed of zeros, enforcing the KVL constraints.
Each row representing a candidate line is composed of zeros and one nonzero
component. Specifically, a large constant is assigned to the i-th column of
the row representing the candidate line i. Thus, the KVL constraints are not
enforced for the lines that are not selected. The inequalities in (5-7) account
for the transmission capacities of both existing and candidate lines. In these
constraints, F is a diagonal matrix with the maximum capacity for the entries
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related to the candidate lines and zeros for the existing lines, while f is a
vector with the maximum capacity for existing lines and zeros for candidate
lines. The expressions (5-8)–(5-9) represent the generation ramping limits and
the maximum generation capacity respectively. Due to the imbalance terms in
(5-5), problem (5-4)–(5-9) always admits a feasible solution.

5.4.2
Distributionally robust TEP model

In order to address the lack of information regarding the true conditional
probability measure P (·|Sω), the recourse function is characterized by an
ambiguity-averse preference functional, based on the distributionally robust
approach [133]. Thus, the distributionally robust recourse function considers
the worst-case conditional expected cost among all expectations induced by
the probability measures in Dω. Mathematically, we have:

HDR(x, ω) = sup
P∈Dω

EP [g(x, ξ̃, ω)|Sω]. (5-10)

Accordingly, the DRO-TEP problem is defined as an extension of (5-2):

z∗DR = min
x∈X

{
c>invx +

∑
ω∈Ω

ρωHDR(x, ω)
}
. (5-11)

The sup problem in (5-10) is the classical problem of moments [145],
which can be expressed as the following semi-infinite (infinitely many variables
– columns) linear program:

HDR(x, ω) = sup
P∈Pω

∫
Sω

g(x, ξ̃, ω)dP (5-12)

subject to:∫
Sω

dP = 1 : α0ω (5-13)

µ
ω
≤
∫
Sω

ξ̃dP ≤ µω : αω, αω. (5-14)

5.4.3
Equivalent finite distributionally robust TEP model

By strong duality [146], problem (5-12)–(5-14) admits the following
semi-infinite (infinitely many constraints – rows) dual formulation:

HDR(x, ω) = min
α0,α,α

{
α0ω + µ>ωαω − µ>ωαω

}
(5-15)
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subject to:

α0ω + (αω −αω)> ξ̃(s) ≥ g(x, ξ̃(s), ω), ∀s ∈ Sω. (5-16)

The infinite set of linear constraints (5-16) can be recast as a single
nonlinear worst-case constraint,

α0ω ≥ sup
s∈Sω

{g(x, ξ̃(s), ω)− (αω −αω)> ξ̃(s)}. (5-17)

This equivalence holds for the following reason: Since (5-17) holds for the
supremum in s, it is also valid for all s [147]. Note that the right-hand-side of
(5-17) is the supremum of a convex function on ξ̃(s) over a polyhedral set Ξω.
Therefore, the solution s∗ for (5-17) is associated with a scenario whose image,
ξ̃(s∗), belongs to the set of extreme points3 of Ξω, hereinafter referred to as
Eω = {ξkω}k∈Kω . Consequently, if constraint (5-16) is enforced for Eω only, the
same feasible region for α0,α,α is found. Thus, problem (5-15)–(5-16) admits
the following equivalent finite formulation:

HDR(x, ω) = min
α0,α,α

{
α0ω + µ>ωαω − µ>ωαω

}
(5-18)

subject to:

α0ω + (αω −αω)> ξkω ≥ g(x, ξkω, ω), ∀k ∈ Kω, (5-19)

which constitutes an equivalent finite formulation for the distributionally
robust recourse function defined in (5-12)–(5-14).

The equivalent finite primal formulation for the recourse function
(5-12)–(5-14) is achieved by computing the dual of problem (5-18)-(5-19); that
is,

HDR(x, ω) = max
pk

∑
k∈Kω

g(x, ξkω, ω) pk (5-20)

subject to:∑
k∈Kω

pk = 1 (5-21)

µ
ω
≤

∑
k∈Kω

ξkω p
k ≤ µω. (5-22)

As can be observed, the candidates for worst-case distributions in Dω are
discrete. Aiming to achieve an equivalent finite formulation for the DRO-TEP
model (5-11), it should be noted that the right-hand-side of (5-19) is the

3This is a standard result from convex analysis: The maximum of convex functions within
a polyhedral set is achieved at one of the vertices [146].
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optimal value of an instance of problem (5-4)–(5-9) for a given x and a scenario
ξkω in Eω. For notational conciseness, we replace g(x, ξkω, ω) in (5-19) with
the objective function of (5-3), namely h>ωykω, evaluated on a generic feasible
operative point, ykω. In order to obtain an equivalent model, the operative
variables ykω and feasibility constraints of (5-3) for scenario ξkω must be included
in the new formulation. This substitution results in the following equivalent
extended dual formulation for the recourse function:

HDR(x, ω) = min
yk

ω ,α0,α,α

{
α0ω + µ>ωαω − µ>ωαω

}
(5-23)

subject to:

α0ω + (αω −αω)> ξkω ≥ h>ωykω, ∀k ∈ Kω (5-24)

Wωykω ≥ bω + Bωξ
k
ω −Tωx, ∀k ∈ Kω. (5-25)

The resulting set of constraints in (5-24)–(5-25) is equivalent to (5-19)
(in the sense of producing the same optimal value for problem (5-18)–(5-19)),
because 1) by optimality, h>ykω is bounded from below by g(x, ξkω, ω); and
2) every point that is feasible for (5-19) is also feasible for the new set of
constraints.

Thus, the DRO-TEP problem (5-11) can be recast as the following
equivalent finite mixed-integer scenario-based linear program:

z∗DR = min
x,yk

ω ,α0ω ,
αω ,αω

c>invx +
∑
ω∈Ω

ρω
[
α0ω + µ>ωαω − µ>ωαω

]
(5-26)

subject to:

x ∈ X (5-27)

h>ωykω ≤ α0ω + (αω −αω)> ξkω, ∀ω ∈ Ω, k ∈ Kω (5-28)

Wωykω ≥ bω + Bωξ
k
ω −Tωx, ∀ω ∈ Ω, k ∈ Kω. (5-29)

5.4.4
Particular cases of the distributionally robust TEP model

The DRO-TEP (5-26)–(5-29) can be particularized to the ARO-TEP
approach. The ARO-TEP formulation can be achieved by disregarding the
moment information; that is, dropping the terms involving αω and αω of
expressions (5-26) and (5-28). Under such an assumption, for each ω ∈ Ω,
the Cartesian product of (each dimension of) the range for the expected value
[µ

ω
,µω] is equivalent to the whole support set Ξω. Thus, except for degenerate

cases, the worst-case probability measure for the ARO-TEP model is such
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that all probability mass is assigned to the worst-case short-term scenario.
The D-TEP model is also a particular case of both the DRO-TEP and

ARO-TEP models. This particularization is achieved by collapsing the support
set and the moment range to a singleton (scenario). Thus, the ARO-TEP model
is more conservative than the proposed DRO-TEP model, while D-TEP is
less conservative. These benchmarks are used for comparison purposes in the
computational experiments.

5.5
Solution methodology

Problem (5-26)–(5-29) can be solved directly, in what we label as the
full-vertex approach (FVA) [127]. However, this approach is not scalable
since the problem size increases exponentially with the dimension (d) of the
uncertain parameter. Therefore, decomposition techniques are required.

In Section 5.5.1, we discuss the benchmark CCG algorithm and the
issues related to its application to DRO-based problems. An overview of the
proposed ECCG algorithm is presented in Section 5.5.2 and the detailed ECCG
algorithm is reported in Section 5.5.3. The ECCG algorithm is general enough
to be applied to similar problems (e.g. [142]), however, for didactic purposes,
the discussions in this section are focused on the proposed DRO-TEP model.

5.5.1
Overview of the traditonal CCG algorithm

The CCG algorithm alternates between a master problem and an
oracle subproblem. The master problem is a relaxed version of (5-26)–(5-29)
considering a small subset of constraints (5-28)–(5-29). We use K(j)

ω ⊂ Kω to
represent the subset of constraints at iteration j, which are associated with
the subset of scenarios E (j)

ω ⊂ Eω (vertices of Ξω). At each iteration j, the
master problem determines a lower bound (LB(j)) for z∗DR and a trial TEP
solution x(j). The master problem also determines, for each ω ∈ Ω, the variables
associated with the recourse function (α(j)

0ω ,α
(j)
ω ,α(j)

ω ) and the operational
response (y(j)

ω ). In turn, for each ω ∈ Ω, an oracle subproblem identifies
the new scenario ξ∗ω (not yet included to E (j)

ω ) that most violates constraint
(5-28), which is associated with constraint (5-19) in the dual recourse function
problem. Equivalently, ξ∗ω is the scenario that is related to the new primal
variable (new column p), which features the maximum reduced cost, c∗ω, for the
constrained primal recourse function problem; that is, (5-20)–(5-22) restricted
to the scenarios in E (j)

ω .

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



Chapter 5. Distributionally Robust Transmission Expansion Planning: a
Multi-scale Uncertainty Approach 110

The violated constraints and variables associated with ξ∗ω (for all ω ∈
Ω) are added to the master problem at the next iteration. The algorithm
terminates when no violated constraints are found by the oracle subproblem
or when the upper bound, UB(j), is arbitrarily close to the LB(j).

However, as opposed to the ARO framework, where the value of
the worst-case recourse function is given by g(x, ξ∗ω, ω), the definition
of HDR(x(j), ω) requires more than a single scenario. This implies that
approximations that generally involve the reduced cost c∗ω are necessary to
compute an upper bound. Unfortunately, when the scenarios in E (j)

ω are
insufficient for a reasonable approximation of HDR(x, ω), the values of c∗ω
may be very large, therefore generating loose upper bounds. Moreover, many
iterations of the method may be required until all relevant scenarios are
determined and included in the master problem.

5.5.2
Overview of the ECCG algorithm

The determination of a tight upper bound UB(j) involves the
computation of the true value of the recourse function for all ω ∈ Ω;
that is, {HDR(x(j), ω)}ω∈Ω. Unfortunately, computing HDR(x(j), ω) might be
intractable for high dimensional instances, since it requires the solution of
problem (5-20)–(5-22) or its dual, (5-18)–(5-19), considering the entire set of
exponentially many extreme points Eω. Thus, in order to deal with scalability
issues while controlling the approximation of the recourse function, we have
extended the CCG algorithm by introducing an inner loop. The inner loop is
the DWP applied to problem (5-20)–(5-22).

At each main iteration j, the DWP performs up to n = L inner
iterations, where a constrained version of the recourse function problem
(5-20)–(5-22) (considering only scenarios in E (j)

ω ) is alternated with the oracle
subproblem. The constrained version of the recourse function problem updates
(α(j)

0ω ,α
(j)
ω ,α(j)

ω ) and determines a lower (suboptimal) approximation for the
true recourse function. The oracle subproblem finds a new short-term scenario
ξ∗ω (featuring the maximum reduced cost, c∗ω) which is then introduced to
the constrained recourse problem (5-20)–(5-22). The DWP converges when
the maximum reduced cost is below ε or the maximum number of (inner)
iterations L is reached. As is shown in Section 5.5.4, the upper bound for the
ECCG algorithm is controllable and ε-tight for large values of L.

The final step of the ECCG algorithm is the selection of the scenarios that
are added to the master problem. Because the master problem is the bottleneck
of the DRO-TEP problem, it is not advised to include all scenarios determined
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by the DWP at each main iteration. Thus, the following selection procedure is
adopted. The new scenarios are ranked according to their contribution to the
objective value of the constrained recourse problem in the last inner iteration.
Then, the M ≤ L scenarios with highest ranks are added to the master
problem. For comprehension purposes, the proposed algorithm is summarized
in Fig.5.2.

5.5.3
Detailed description of the ECCG algorithm

The detailed algorithm is as follows:

1) Initialization: The set of scenarios E (j)
ω is initialized at j ← 0 with a

dummy scenario ξ0
ω ← (µω + µ

ω
)/2 to ensure the existence of a probability

measure capable of producing an expected value within [µ
ω
,µω]; that is,

E (0)
ω ← {ξ0

ω}.

2) ECCG main loop (assessing LB(j) and x(j)): For each iteration j of the
main loop, the master problem solution provides a trial solution x(j) and its
corresponding lower bound LB(j). The master problem is expressed as follows:

min
x,yk

ω ,α0ω ,
αω ,αω

c>invx +
∑
ω∈Ω

ρω
[
α0ω + µ>ωαω − µ>ωαω

]
(5-30)

subject to:

x ∈ X (5-31)

α0ω + (αω −αω)> ξkω ≥ h>ωykω, ∀ω ∈ Ω, k ∈ K(j)
ω (5-32)

Wωykω ≥ bω + Bωξ
k
ω −Tωx, ∀ω ∈ Ω, k ∈ K(j)

ω , (5-33)

where K(j)
ω = {0, 1, ..., |E (j)

ω |} is the set of indices that enumerates the set of
scenarios E (j)

ω = {ξ0
ω, ξ

1
ω, ..., ξ

|E(j)
ω |

ω }.

3) Dantzig–Wolfe Procedure inner loop (updating E (j)
ω ): For each ω ∈ Ω,

the counter n is initialized with n← 1, and the DWP is applied to the following
constrained version of recourse problem (5-20)–(5-22):

HDR(x(j), ω) = max
pk

∑
k∈K(j)

ω

g(x(j), ξkω, ω) pk (5-34)

subject to:∑
k∈K(j)

ω

pk = 1 : α(j)
0ω (5-35)

µ
ω
≤

∑
k∈K(j)

ω

ξkω p
k ≤ µω : α(j)

ω ,α(j)
ω , (5-36)
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Figure 5.2: Flowchart of the proposed ECCG algorithm.
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where HDR(x(j), ω) is a lower bound for HDR(x(j), ω). The DWP aims at
improving the approximation for HDR(x(j), ω) by determining new columns
for (5-34)–(5-36). Thus, we construct an oracle subproblem to identify the
scenario ξ∗ω ∈ Ξω with the highest reduced cost, c∗ω:

(c∗ω, ξ∗ω)← max
ξ∈Ξω

{
g(x(j), ξ, ω)− α(j)

0ω −
(
α(j)
ω −α(j)

ω

)>
ξ
}
. (5-37)

To solve problem (5-37), we replace function g(x(j), ξ, ω) with the
objective function of the dual problem associated with (5-3); that is(
bω + Bωξ −Tωx(j)

)>
π, where π represents the dual vector for the

constraints in (5-3). This modification to (5-37) results in the following
nonlinear problem:

max
ξ∈Ξω
π≥0

(
bω + Bωξ −Tωx(j)

)>
π − α(j)

0ω −
(
α(j)
ω −α(j)

ω

)>
ξ (5-38)

subject to:

W>
ωπ ≤ hω. (5-39)

Because ξ∗ω belongs to the set of extreme points (Eω) of the box-like
support set Ξω

4, the value of each component ξ[i] of the decision vector ξ,
in the optimal solution, is given either the upper (ξ[i]) or lower (ξ[i]) limit
of the i-th dimension of Ξω. Hence, an auxiliary binary variable u[i] ∈ {0, 1}
is used to express each component in the optimal solution as follows: ξ[i] =
u[i]ξ[i] + (1− u[i])ξ[i]. Under this transformation, the bilinear product ξ>π is
linearized by standard integer modeling techniques5, as done in [63, 65], and
[136].

4) Convergence of Dantzig–Wolfe inner loop: At each iteration of
the DWP inner loop, the short-term scenario ξ∗ω determined by the oracle
subproblem updates the set of extreme points, i.e., E (j)

ω ← E (j)
ω ∪ {ξ∗ω}.

If n equals L or the DWP tolerance level is achieved, i.e., c∗ω ≤ ε, the
algorithm proceeds to step 5. Otherwise, it returns to step 3 and n← n+1.

It is relevant to highlight that the DWP is performed separately for each
ω ∈ Ω. Thus, ∀ω ∈ Ω, the DWP identifies up to L scenarios, improving

4The optimal scenarios identified by problem (5-37) are extreme points of the polyhedral
support set Ξω, as this problem is a maximization of a convex function within a polyhedral
set [44]. This fact aligns with the result derived in Section 5.4.3.

5The linearization procedure requires the consideration of bounds for the components of
the dual vector π associated with constraint (5-5). These bounds are set based on an iterative
process that scales its initial value whenever one of the bounds are met. The initial value
is set to the maximum imbalance cost. In our numerical results, we observed no particular
numerical problem.
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from below, at each inner iteration, the approximation HDR(x(j), ω) for
HDR(x(j), ω).

5) Convergence test for the main loop (assessing UB(j)): The upper
bound for the ECCG algorithm at iteration j is given by UB(j) = c>invx(j) +∑
ω∈Ω ρωHDR(x(j), ω), where HDR(x(j), ω) = HDR(x(j), ω) + c∗ω. This result is

demonstrated in Theorem 1, presented in Section 5.5.4.
If 1 − LB(j)/UB(j) ≤ ε, the algorithm terminates and x(j) is the

ε-optimal solution. Otherwise, for each ω ∈ Ω, the scenarios added by the
DWP are ranked according to their contribution to HDR, i.e., the product
g(x(j), ξkω, ω)pk. The M ≤ L scenarios with highest ranks are added to the
master problem for the next iteration. This operation is represented in Fig. 5.2
by E (j)

ω ← bestM(E (j)
ω \E (j−1)

ω ), where E (−1)
ω = ∅. Then, E (j+1)

ω ← E (j)
ω , update

the iteration counter j ← j + 1 and the algorithm returns to step 2.
Remark: Note that for a given pair {x(j), E (j)

ω }, the proposed ECCG
algorithm with M = L provides equal or greater lower bound for the iteration
j + 1 than that obtained by the CCG algorithm. This is because the CCG
algorithm is a particular case that adds only M = L = 1 of the M scenarios
added by the general ECCG algorithm.

5.5.4
Dantzig-Wolfe-like upper bound for the DRO-TEP model

Theorem 1 (ECCG algorithm upper bound)

1. UB(j) = c>invx(j) + ∑
ω∈Ω ρωHDR(x(j), ω) is an upper bound for the

DRO-TEP problem (5-11), i.e., z∗DR ≤ UB(j).

2. UB(j) is ε-tight for x(j) when L = +∞; that is,
UB(j) ≤ c>invx(j) +HDR(x(j), ω) + |Ω|ε.
Particularly, for ε = 0, UB(j) = c>invx(j) +HDR(x(j), ω).

The proof of Theorem 1 is better presented using the result of
Proposition 1.

Proposition 1: For each ω ∈ Ω and trial solution x(j), HDR(x(j), ω) =
HDR(x(j), ω) + c∗ω is a local upper bound for the recourse function, i.e.,
HDR(x(j), ω) ≥ HDR(x(j), ω) for all ω ∈ Ω and x(j).

Proof of Proposition 1. Note that, for each ω, owing to optimality of problem
(5-37),

g(x(j), ξ, ω)− α(j)
0ω −

(
α(j)
ω −α(j)

ω

)>
ξ ≤ c∗ω, ∀ξ ∈ Ξω. (5-40)
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As the former inequality holds for each ξ, it also holds on average for all
probability measures in Dω; that is, ∀P ∈ Dω,∫

Sω

g(x(j), ξ, ω)dP − α(j)
0ω −

(
α(j)
ω −α(j)

ω

)> ∫
Sω

ξdP ≤ c∗ω. (5-41)

Rearranging the terms and using the first-moment constraint in (5-1), the
following inequalities also hold for all ∀P ∈ Dω:∫

Sω

g(x(j), ξ, ω)dP ≤ c∗ω + α
(j)
0ω + (α(j)

ω −α(j)
ω )>

∫
Sω

ξdP (5-42)

≤ c∗ω + α
(j)
0ω +α(j)>

ω µω −α(j)>
ω µ

ω
. (5-43)

Particularly, for the worst-case P we have that
∫
Sω

g(x(j), ξ, ω)dP = HDR(x(j), ω). (5-44)

Thus, we complete the proof of Proposition 1 noting that, by strong
duality (applied to problem (5-34)–(5-36)), the right-hand-side of (5-43)
precisely meets the upper bound. Therefore,

HDR(x(j), ω) ≤ c∗ω + α
(j)
0ω +α(j)>

ω µω −α(j)>
ω µ

ω
(5-45)

= HDR(x(j), ω) + c∗ω. � (5-46)

Proof of Theorem 1. The proof for item 1) is based on the result of
Proposition 1. We know that

∑
ω∈Ω

ρωHDR(x(j), ω) ≤
∑
ω∈Ω

ρωHDR(x(j), ω), (5-47)

as ρω ≥ 0 for all ω ∈ Ω. Hence, as x(j) might not be the optimal solution, x∗,

z∗DR = c>invx∗ +
∑
ω∈Ω

ρωHDR(x∗, ω) (5-48)

≤ c>invx(j) +
∑
ω∈Ω

ρωHDR(x(j), ω) = UB(j). (5-49)

As for the item 2), by Proposition 1, we have HDR(x(j), ω) ≤
HDR(x(j), ω) ≤ HDR(x(j), ω). Since the DWP converges for L = +∞, then
c∗ω ≤ ε and HDR(x(j), ω) − HDR(x(j), ω) ≤ ε, ∀ω ∈ Ω. Thus, 0 ≤ UB(j) −
c>invx(j) −HDR(x(j), ω) ≤ |Ω|ε. �

5.6

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



Chapter 5. Distributionally Robust Transmission Expansion Planning: a
Multi-scale Uncertainty Approach 116

Computational tests

This section reports the results from computational experiments. The
first set of experiments is presented in Section 5.6.1, where the solutions
of DRO-TEP models are compared, in terms of costs and reliability, with
the solutions of benchmark models, namely ARO-TEP and D-TEP. In the
second set of experiments, in Section 5.6.2, the computational capability of
the proposed ECCG algorithm is compared with the CCG algorithm and the
FVA, for different uncertainty vector dimensions.

The computational experiments are based on a modified version of the
IEEE 118-bus system, which encompasses 118 buses, 91 loads, 54 generators,
154 existing lines and 32 candidate lines for transmission expansion. Without
loss of generality, we assume that the net demand (ξ̃) is the only uncertain
parameter. In the experiments, ξ̃ = [ξ̃1, ξ̃2, . . . , ξ̃d] is modeled as the daily net
load, composed of d time periods, within a static TEP study. The uncertain
net demand is decoupled into nodal demands by submatrix Bt, as per (5-5).
For expository purposes, in all experiments in this section, we used two distinct
long-term scenarios, i.e., Ω = {ω1, ω2}, by defining {[µ

ω
,µω]}ω∈Ω and {Ξω}ω∈Ω.

In order to create diversity we stressed the system differently in each long-term
scenario; that is, buses experiencing uncertain net demand in ω1 and ω2

are located in distinct regions of the network and are subjected to different
parameters. In summary, ω1 and ω2 were constructed using two main principles:

1. ω1 is much more volatile than ω2; many more buses in ω1 are subjected
to uncertain net demand than in ω2.

2. ω2 produces slightly higher costs than ω1 for ξ ∈ [µ
ω
,µω] for the initial

(not expanded) network; that is,

g(0, ξ ∈ [µ
ω2
,µω2 ], ω2) ≥ g(0, ξ ∈ [µ

ω1
,µω1 ], ω1). (5-50)

For the sake of reproducibility, detailed input data used in the
experiments of both Sections 5.6.1 and 5.6.2 can be downloaded from [148]. All
tests were run using Gurobi 7.0.2 under JuMP (Julia 0.5) on a Xeon E5-2680
processor at 2.5 GHz and 128 GB of RAM.

5.6.1
Assessment of the DRO-TEP model

We assessed instances of the proposed DRO-TEP model against instances
of the benchmark models ARO-TEP and D-TEP in terms of cost and
reliability. For quick reference, in this subsection, the instances of DRO-TEP,
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ARO-TEP and D-TEP models are denoted, respectively, by DRO(ρω1 ,ρω2),
ARO(ρω1 ,ρω2), and DET(ρω1 ,ρω2), where ρω1 and ρω2 refer to the weights of
corresponding long-term scenario. The specification of the instances of the
benchmark models was performed by adapting the ambiguity set information
as described in Section 5.4.4. In this experiment, the daily net demand was
divided into six blocks of 4 hours (d = 6) and all instances were optimized to
optimality.

The experiment was conducted as follows. First, the TEP solution
was computed for each instance. Then, the solutions were evaluated in
out-of-sample simulations under variants of the Normal and Beta distributions
for describing the net demand ξ̃. Each out-of-sample simulation accounted for
10,000 samples of the short-term net demand, representing 5,000 simulated
days for each ω ∈ Ω. In these simulations, for each individual scenario
realization, we used (5-4)–(5-9) to compute the operational dispatch. In total,
4 different distributions were used for each ω ∈ Ω, resulting in 8 out-of-sample
cases. As low-variance marginal distributions for ξ̃t, we used: 1) a Normal
distribution such that the probability of the event [ξ̃t ∈ Ξtw| Sω] is equal to
95%, where Ξtw is the projection of Ξw for each period t; and 2) a symmetric
Beta distribution defined in Ξtw, with parameter 4.5. As high-variance marginal
distributions for ξ̃t we used: 1) a Normal distribution such that the probability
of the event [ξ̃t ∈ Ξtw| Sω] is equal to 90%; and 2) a symmetric Beta distribution
defined in Ξtw, with parameter 1.5. Even though the net loads typically exhibit
temporal correlation, for the sake of simplicity, we assumed independence
across different periods.

The main outcomes of the case study are summarized in Table 5.1,
where column 1 identifies the instances. Columns 2–4 present TEP solutions,
namely, number of invested lines (column 2), investment costs (column 3), and
in-sample total costs (column 4) – including the investment, operational, and
imbalance costs. Therefore, columns 2 to 4 are classified as in-sample results.
Columns 5–20 present out-of-sample results for selected distributions for ξ̃
for both ω1 and ω2. The out-of-sample results are divided in 4 blocks, each
block corresponding to one different distribution. For each block we present,
for both ω1 and ω2, the total expected cost and the reliability index (RI). We
define RIω as the conditional probability (conditioned to long-term scenario
ω) of experiencing a load shedding greater than 0.5% of the system nominal
demand within a given operative day. Despite the fact that the total cost
already incorporates a term related to the dispatch infeasibility (imbalance
costs), the RI provides valuable statistical (frequency) information regarding
the operative reliability of the solutions.
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Regarding in-sample outcomes, the solution for DRO(100,0) is more
conservative than that for DRO(0,100), determining more invested lines (9
vs. 3) at a higher investment cost ($19x104 vs. $7x104). This result is coherent
since ω1 was designed to be much more volatile than ω2, which is confirmed
by respective total in-sample costs presented in column 4. The solution
for DRO(50,50), considering both ω1 and ω2, lies between DRO(100,0) and
DRO(0,100) in terms of invested lines, investment costs and total cost. As
expected, ARO(50,50) is the instance that presents the most conservative
solution, encompassing 10 new lines at the cost of $22x104. The solution for the
instance DET(50,50), which solely relies on long-term averages (disregarding
short-term variability), determined no investments and is the least expensive
($38x104) in terms of total in-sample cost. Nevertheless, in-sample total costs
are not comparable across different instances, since, by construction, they
assume distinct distributions for ξ̃. As for the out-of-sample assessment, note
that DRO(100,0) performs better than DRO(0,100) in terms of cost and RI
for ω1 across all distributions, whereas the opposite holds for ω2. This result
is coherent since the invested lines for these two instances were determined
considering solely the corresponding long-term scenario, disregarding the
outcomes of the other long-term scenario. In summary, when assessed under ω2,
DRO(100,0) presents reasonable RI, but high relative costs compared to other
DRO-based instances. When assessed under ω1, especially for high-variance
distributions, DRO(0,100) presents very high RI and high costs. In contrast,
DRO(50,50) performs well under all distributions in terms of costs and
reliability. It is particularly interesting to highlight that DRO(50,50) presents
1) similar values for RI as those presented by DRO(0,100) under ω2, and 2)
lower costs than DRO(100,0) for all distributions, even under ω1. The latter
is explained by the fact that, as compared to DRO(50,50), the expensive
investments of DRO(100,0), $19x104, which were driven by the worst-case
probability for the aggressive ω1 only, do not pay off in terms of costs
in the proposed out-of-sample analysis under more reasonable (unimodal)
distributions.

Regarding the benchmark instances, ARO(50,50) consistently presents
low RI values under all distributions for both ω1 and ω2, as expected.
Nevertheless, it is dominated in all cases, in terms of expected cost, by
DRO(50,50), which also achieved almost the same values for RI, even under
high-variance distributions. As for DET(50,50), it performs well under the
low-variance Beta distribution for long-scenario ω2. However, for all other cases,
DET(50,50) is dominated by DRO(50,50) in terms of cost and reliability. It is
relevant to highlight that the optimistic solution of DET(50,50) produces high

DBD
PUC-Rio - Certificação Digital Nº 1621837/CA



Chapter 5. Distributionally Robust Transmission Expansion Planning: a
Multi-scale Uncertainty Approach 120

costs as a consequence of the unacceptable risk levels observed in most cases,
which rules out this approach under this experiment parameterization.

As the planner needs to decide the investment strategy under uncertainty
of the distribution and long-term scenario, the authors advocate that, within
the limitations of this case study, the DRO(50,50) instance produces the best
tradeoff in terms of cost and RI among the tested instances. The authors
acknowledge however that the extent of the benefits of the proposed approach
can be influenced by the system topology, the premises for long-term scenarios,
and costs (investments, imbalance, etc.). Notwithstanding, the proposed
DRO-TEP approach remains a relevant tool for planners in determining
effective investment decisions featuring a consistent balance between expected
cost and reliability in a setting where short-term operational uncertainty is
ambiguous.

5.6.2
Assessment of the ECCG algorithm

In this subsection, the performance of the proposed ECCG algorithm
is assessed against those of the benchmark methods mentioned in Section 5.5,
namely, the FVA applied in [127], and the CCG algorithm applied in [136,142].
All 3 methods (FVA, CCG algorithm, and ECCG algorithm) were applied to
solve 4 different DRO(50,50) instances comprising 4, 5, 8, and 12 time periods
(d = 4, 5, 8 or 12).

In order to decide which results to report, we performed a sensitivity
analysis on the parameters. As detailed in Section 5.5, the specification of the
ECCG algorithm involves 4 parameters / tolerances, namely, the maximum
number of inner iterations L, the maximum number of scenarios included to
the master problem per main iteration M , the DWP tolerance ε, and global
tolerance for the problem (main loop) ε. The global tolerance, which was set
to ε = 1%, is the only parameter also applicable to FVA and CCG algorithm.
We recall that the CCG algorithm is a particular case of the ECCG algorithm
where M = L = 1 and the tolerance ε is not applicable. As for the 3 other
parameters of the ECCG method, our experiments indicated that when L is
higher than a certain threshold and ε is low, very good approximations for
HDR(x, ω) are obtained. These approximations can be measured, for example,
by the ratio c∗ω/HDR(x, ω) (the lower, the better). For the instance sizes (d = 4,
5, 8 or 12) that we investigated, increasing L after a certain value almost did not
impact the M scenarios selected by the method. Thus, for the sake of brevity
and due to space limitations, we decided to report results for fixed L = 20 and
ε = 0.10$. In this setting, the sensitive parameter for the ECCG algorithm is
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Method
Uncertainty Vector Dimension

4 5 8 12
t. Iter. t. Iter. t. Iter. t. Iter.
(s) (s) (s) (s)

FVA 170 - 1,825 - T - T -
CCG 289 9 625 10 8,171 15 T T
ECCG(1) 111 5 195 5 1,262 6 14,510 11
ECCG(2) 75 3 119 3 955 4 12,247 7
ECCG(3) 87 3 158 3 811 3 8,503 5
ECCG(4) 56 2 90 2 1,168 3 6,776 4
ECCG(5) 62 2 98 2 549 2 4,083 3

T - Time limit of 18 hours exceeded without convergence.

Table 5.2: Comparative CPU times (s) and number of iterations

M , which is reported for values ranging from 1 to 5. For quick reference, the
instances of ECCG are denoted by ECCG(M). In this experiment, the Gurobi
optimality gap was set to 0.5% for the master problem of both decomposition
methods (and to ε = 1% for the FVA). Table 5.2 displays the computing times
and number of iterations

It can be observed in Table 5.2 that the ECCG algorithm dominates
the others, particularly, for higher values of d. Superior results were achieved
for higher values of M that required fewer iterations of the master problem.
The benchmark methods are only practical for low-dimensional uncertainty
vectors. The FVA, for instance, failed to converge in 18 hours for d ≥ 8. The
CCG algorithm is also limited to low values of d (failing to converge for d = 12),
mainly because it produces upper bounds that are not tight, thereby requiring
additional iterations to approximate HDR(x, ω).

Table 5.3 extends the results presented in Table 5.2 for d = 8, detailing
each iteration (reported in column 2) of both CCG and ECCG methods.
Columns 3-5 provide the computing times for the master problem, the DWP
inner loop, and the whole iteration. Columns 5-7 present, respectively, the
processing times of a given iteration, the cumulative time, and the gap of the
ECCG algorithm. Columns 8-9 display the number of inner loop iterations for
ω1 and ω2.

Table 5.3 results show that the time to solve the master problem
grows across iterations with a much higher rate than the time to solve the
subproblems for all cases. Therefore, it is clear that the master problem is
the bottleneck for both decomposition methods. The key advantage of the
ECCG algorithm over the CCG algorithm is that it requires less iterations
of the master problem because of two main factors: 1) tighter upper bounds
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Time GAP Inner iter.
(s) (%) (#)Method Iter.

Master DWP Iter. Accum. ω1 ω2

1 13 7 20 20 85.1 1 1
2 29 9 38 58 57.2 1 1
3 47 9 56 114 56.1 1 1
4 99 9 108 222 55.0 1 1
5 142 11 153 375 45.8 1 1
6 148 12 160 535 45.3 1 1
7 244 11 255 790 44.8 1 1
8 365 13 378 1,168 40.0 1 1
9 343 12 355 1,523 40.0 1 1
10 473 11 484 2,007 39.8 1 1
11 760 13 773 2,780 35.4 1 1
12 711 14 725 3,505 10.0 1 1
13 1,319 18 1,337 4,842 7.4 1 1
14 1,671 17 1,688 6,530 1.4 1 1

CCG

15 1,623 18 1,641 8,171 0.7 1 1
1 13 81 94 94 60.8 16 20
2 23 124 147 241 47.8 19 20
3 60 128 188 429 41.3 19 20
4 110 134 244 673 1.6 14 18
5 147 119 266 939 1.0 13 14

ECCG(1)

6 226 97 323 1,262 0.8 12 8
1 13 82 95 95 60.8 16 20
2 48 142 190 285 33.6 20 20
3 169 134 303 588 10.4 18 17ECCG(2)

4 289 78 367 955 0.6 5 12
1 14 83 97 97 60.8 16 20
2 101 118 219 316 16.2 14 20ECCG(3)
3 386 109 495 811 0.7 10 14
1 14 83 97 97 60.8 16 20
2 151 153 304 401 3.9 14 20ECCG(4)
3 685 82 767 1,168 0.2 9 7
1 14 82 96 96 60.8 16 20ECCG(5) 2 321 132 453 549 0.7 14 17

Table 5.3: Detailed iteration data for d=8

due to the DWP, and 2) tighter lower bounds due to the selection of up to
M scenarios with high contribution to the recourse function to be added to
the master problem at each iteration. The effect of point 1 is observed by
comparing the GAP after the first iteration of the CCG, 85.1%, with the GAP
for any ECCG method, 60.8%. As the first stage solution is the same for all
methods, the difference is solely due to the better approximation of the recourse
function. The effect of point 2 is detected by the improved performance with
higher values of M .
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A convergence plot in Fig. 5.3 further illustrates the results of this
subsection.

5.7
Conclusions

In this chapter we have proposed a multi-scale distributionally
robust transmission expansion planning model. We have introduced
the concept of multiple conditional ambiguity sets to account for the
information of long-term studies conducted by experts in current industry
practices. Due to intractability issues associated with DRO-TEP models,
an enhanced-column-and-constraint-generation algorithm, providing better
approximations of the recourse function and tighter bounds, was devised.
Results for the IEEE 118-bus system have shown that, in comparison
to existing methods, the proposed DRO-TEP model is effective in
producing a consistent tradeoff between cost and reliability in out-of-sample
tests. As for the computational aspects, the ECCG algorithm has
significantly outperformed the CCG algorithm. Notwithstanding, the proposed
methodology is not exhaustively developed in this chapter. The foundations
of ECCG rely on finding new scenarios for the recourse function, then
recomputing the dual variables iteratively. Extending this rationale for
different ambiguity sets is an avenue for research. Likewise, devising metrics to
select the best M scenarios for the master problem and studying procedures
to drop old cuts are interesting research themes.
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Figure 5.3: Convergence times for selected methods for d=8.
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6
Fostering Innovation in Power Systems Models through
Inducement Prizes: a Proposition for the Brazilian Power
Sector

Electric power systems are large and complex structures. Recent
transformations arising due to, among other elements, the high penetration
of non-dispatchable renewable generating sources have changed the way power
systems are operated, requiring new sophisticated computational models and
new problem solving methods. Improvements in these models are subjects of
extensive research in academia and industry since they can represent savings
of billions of dollars a year. The Brazilian electric power system particularly
faces complexities arising from an intricate composition of reservoirs and
hydroelectric units arranged in cascade. This paper analyzes challenges and
technological gaps of current approaches to power system models in Brazil,
as well as how innovations in these models are financed and implemented.
The adequacy of innovation inducement prizes in the Brazilian case is then
discussed. Finally, we recommend a reorientation of the Brazilian government
center (CEPEL), which currently has the role of exclusive developer of the
computational models that impact the entire Brazilian power sector.

6.1
Introduction

Power systems are large and complex structures that generate, transport,
and distribute the electricity required by virtually every economic activity of
modern society. Typically, the main desired characteristics for power systems
are reliability, accessibility, and cost affordability. In order to achieve these
objectives, appropriate regulation and planning are necessary. Although there
is considerable diversity in the mechanisms and rules of the different existing
energy markets [1,149–151], virtually all of them rely heavily on the results of
computational models to ensure the desired properties.

The use of optimization-based models is strongly disseminated in the
industry, including independent system operators (ISOs), planners, regulators
and market participants [152–156]. In this sense, there are also many
researchers and academic papers [8,22,23,31,157,158], specialized consultancies
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and commercial software aimed at computational optimization associated with
energy planning. Furthermore, energy policies as well as regulatory measures
that ensure long-term coherence to electrical systems are based on future
simulations of the systems. Some examples are power and reserve margin to
ensure reliability criteria in various electrical systems, studies for transmission
expansion planning, and the calculation of the firm energy certificates in Brazil.

Profound transformations in power systems associated with market
deregulation processes [1–3], new environmental constraints, and technology
disruptions on both demand and supply side have changed the expectations
on the systems and the way they are operated, exacerbating the dependence
on computational models. For example, due to large penetrations of
non-dispatchable renewable energy generation (REG), there is an increasing
stochasticity in power systems requiring sophisticated models to be solved
repeatedly under various conditions. These sources are expected to penetrate
even further as relevant multilateral international organizations have declared
that increasing investments in clean energy technologies is one of the most
important mechanism in tackling climate change and its undesired effects.
High integration of these clean, however, intermittent and variable energy
sources brings additional challenges that have been widely discussed [6–17].
In this configuration, it has been progressively more challenging to satisfy
the aforementioned high standards that society demands from power systems.
The necessity for addressing these challenges has been driving intense research
aimed at new models and algorithms both in industry and academia.

The benefits of increasing the efficiency of power systems
operational/planning models are not easily measurable and involve multiple
dimensions of analysis. Some studies, although in simplified estimations,
have tried to attribute economic values to a more efficient modeling. For
example, using a simplified representation of the Brazilian electric power
system, [159] reported that planning the multi-year operation without the
incorporation of the Kirchhoff’s second law and the N − 1 security criterion
generates a time-inconsistency gap (defined in [160]) of about 100% for the
cost of hydrothermal operation (hundreds of millions of dollars per year).
In [154], it is also estimated from simple assumptions that an increase in
market efficiency of 5%, resulting from improvements in the optimal power
flow problem, could generate savings of billions of dollars per year, only
considering the United States. In addition to the aforementioned issues,
at a higher level, the very market design and environmental policies are
themes that must be modeled and validated on adequate theoretical and
computational frameworks. Obviously, these regulatory aspects have equally
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important impacts which are even more difficult to measure. In summary, the
challenges of modern power systems deserve very special attention.

In Brazil, which has the largest power system in Latin America, the
operation is carried out by a single ISO, the National System Operator
(ONS). A single public-owned research center, the Electrical Energy Research
Center (CEPEL), is the exclusive developer of the official models used for
operation and for large-scale studies, including system expansion. CEPEL
focuses on research and development in electric systems and equipment.
It has infrastructure of dozens of laboratories and staff featuring excellent
technical skills and recognized academic activity. Currently, the promotion
of innovation in power systems models in Brazil is done mainly through the
funding of CEPEL and some obligatory private R&D projects from companies
in the power sector. Despite recent valuable efforts from CEPEL, important
challenges and even technological gaps exist for current models used in Brazil.
It is relevant, therefore, to propose alternative/complementary ways to foster
innovation in computational and theoretical aspects of power system models.

By taking a different and more open approach; that is, by acknowledging
the existence of considerable intellectual and computational resources
(universities, research centers, private companies, individual researchers and
NGOs) capable of contributing innovative ideas, techniques and methodologies,
various governmental and private institutions (USBR, USDA, NASA [161],
Netflix [162], Google [163], Shell [164], among many others) have adopted
open innovation ([165]) schemes to solve some of their technological challenges.
These schemes include power system-related initiatives [75, 122, 123]. In this
context, several strategies such as innovation inducement prizes, contests, and
crowdsourcing schemes have been employed.

Inducement prizes are important mechanisms for fostering innovation
featuring relevant advantages over traditional methods such as low cost
for implementation (with payment only for success); a multiplier effect,
that is, they can stimulate spending on innovative activities greater than
the resources offered; interaction between groups of researchers, generating
synergies and better results; less bureaucracy than other mechanisms;
absence of pre-established biases regarding the technological route, enabling
unconventional solutions; etc [76, 166–168]. In [167], there is an extensive
literature review on innovation contests, defined as "IT-based and time-limited
competitions arranged by an organization or individual calling on the general
public or a specific target group to make use of their expertise, skills or
creativity in order to submit a solution for a particular task previously defined
by the organizer who strives for an innovative solution".
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Notwithstanding, according to the literature, the use of innovation
inducement prizes should be accompanied by a diagnosis of the suitability of
this instrument for the technological challenge to be overcome. In this sense,
there are works [76, 169] that pose questions to be answered to determine
whether the innovation inducement prize is an adequate instrument to respond
to the proposed challenge.

6.1.1
Chapter Objectives

Two main research questions are proposed in this chapter:

1. "Are inducement prizes adequate instruments for fostering innovation in
power power systems models?"

2. "Would inducement prizes be applicable and justifiable for the Brazilian
power sector case, where there is a single ISO and a government-owned
institution which is the single provider of models?"

In order to address these two questions, first, we outline typical
problems/challenges of modern power systems in Section 6.2. Then, the
Brazilian power system case is contextualized and discussed in Section 6.3.
Innovation inducement prizes and associated requirements are summarized
next, in Section 6.4. The suitability of inducement prizes for fostering
innovation in theoretical and practical aspects of the power system’s problems,
particularly, for the Brazilian case is discussed in Section 6.5. Finally, Section
6.6 concludes the paper.

6.2
Power Systems Challenges

On the scale of milliseconds or a few seconds ahead, the ISO monitors
the system that is governed by automatic control. This control system aims
at maintaining the system’s frequency stable by balancing generation and
net load. When the net load is increased, a gap between demand and total
generation is created and, instantaneously, the speed of rotation, or frequency,
of the engines starts to drop. This frequency drop activates the control system
of the generators, present in synchronized generators, which in turn increases
the power of the machines to restore the frequency to acceptable bounds and
thus ensure the stability of the system [98]. It is possible to draw a parallel with
a cyclist, that, when facing a more inclined climb feels the pedal heavier and
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instantly experiences a drop in speed and therefore a reduction in the rotating
angular speed of the pedal. The cyclist’ instantaneous reaction would be to
increase the force on the pedal to return to the same speed, or frequency of
rotation, and thus remain balanced (equivalent to stability). The fundamental
problem of power systems is to program, at reasonable cost, the availability of
generating resources to act on the automatic response mechanism continuously,
while acknowledging engineering constraints. The optimization models are part
of the main technologies used to accomplish this planning task.

From a few minutes after automatic response up to years and decades
ahead, what is desired is to determine the generation capacity and/or its
expansion in such a way that the system is capable to balance future net load
and generation at low losses/costs, while recognizing that failures or forecast
deviations might occur. In some systems this problem of optimal resource
allocation is based on the agents’ bids, expressing their cost of opportunity
and their risk aversion levels [170,171]. In other systems, the optimal resource
allocation model receives generators’ availability and audited costs as inputs
[171]. Regardless of which market design is adopted - audited costs or bids -, in
both cases, optimization models are widely used to carry out the programming
and planning of energy resources.

In summary, the activity of energy operation/planning, from the
operation of a few minutes or hours ahead [172, 173], through daily horizons
[23], to the planning for the expansion of generation and transmission assets
[157], is based on the results provided by computational models. These models
are usually arranged in time-horizon layers for which there are different degrees
of description of the physical reality and different representations of the
relevant uncertainties. However, it is not trivial to define which simplifications
should be used at each level. In fact, any criterion for selecting the uncertain
factors that should be considered in a given time horizon is debatable. For
each scale, there is a vast literature on the impacts of including new modeling
elements. Studies show, for example [159], that simplifications in modeling may
spark large inconsistencies between reality and what was planned, resulting in
an unrealistic assessment of the future, oftentimes leading to risky situations
under adverse scenarios. Some authors [63] also point out that it is relevant,
in certain cases, to detail short-term uncertainties in planning models for the
expansion of generation and transmission, in order to capture the need for
investments in lines and plants which would bring flexibility to the operation
and enable compliance with the reliability and environmental criteria required
by society.

Long-term uncertainties can have equally important impacts. For
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generation and transmission expansion planning [63, 157, 158], uncertainties
related to environmental, climatic, social and political issues are faced, as
well as the possibility of the emergence of disruptive technologies that will
substantially alter the load profile [174]. Other aspects that appear as major
global challenges to energy markets, which affect all of the aforementioned
issues, involve the high penetration of REG and the forecasting of time
series (winds, inflows, and solar radiation, for example) related to short- and
long-term weather-like events.

Although it is very difficult to detail and categorize the many challenges
in electric power systems, some of the most relevant and studied problems are
outlined below. Note that these problems/challenges are all influenced by the
high penetration of REG.

– Short-term scheduling problems: The goal of short-term scheduling
problems such as the economic dispatch problem and the optimal power
flow problem is to determine setpoints for the generators at minimal
cost to meet forecasted load demand. The security-constrained version
of the optimal power flow problem requires that the dispatch allows for
steady-state points of operations for prescribed security criterion such as
the failures of main lines and/or generators. The security-constrained
optimal power flow is a nonlinear and nonconvex problem based on
the ac optimal power flow constraints ([20] and [21]). Short-term
scheduling problems are fundamental building blocks for power systems
and are solved many times a day by system operators under various
circumstances, either in real-time or in large-scale studies. These needs
have been intensified by increasing unpredictability of non-dispatchable
renewable generation.

– Unit commitment problem: The main purpose of the unit
commitment problem [8, 22, 23] is to manage generating resources
by scheduling the on/off statuses of generators and determining
their dispatch levels in order to meet demand at minimum cost.
The programming horizon is usually of many hours or a few days
ahead, divided into a few smaller time periods (for example hours). The
unit commitment problem normally considers a series of combinatorial
engineering constraints, such as minimum uptime and downtime for
generators, ramping limitations for generators to increase or decrease the
power output, and the network constraints. Computational complexities
of this problem potentially arise from a large number of binary variables
related to on/off generators’ statuses, a large number of nodes or
buses, and tight restrictions on the transmission network. Adding to
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the complexity, unit commitment models frequently co-optimize energy
and reserves to limit risks associated with non-dispatchable renewable
generation uncertainties and/or component failures.

– Network topology optimization: The aim of this problem is to
reduce operational cost or guarantee feasibility by modifying the network
topology. Under this category, transmission switching represents the
deliberate switching of the on/off status of a transmission line by the
operator [24]. Even though counterintuitive, significant operating cost
reductions and system reliability enhancements may be achieved by not
allowing flow through certain lines [25, 26]. This is explained by Braess’
Paradox [27]. Broadly, due to Kirchhoff’s voltage law, every network
cycle adds constraints to the power flow problem. By removing lines
and breaking loops, it is possible to reduce network congestion and
approach the desired merit-order dispatch; that is, cheapest generators
are dispatched first [27,28].

At the distribution level, auxiliary systems perform periodic operations
on tap changers and capacitors bank in order to guarantee that the point
of operation remains at appropriate levels [29]. This problem is usually
called a volt/var control. However, the high insertion of distributed
photovoltaic generation (a form of clean and renewable energy) can
cause, due to its uncertain and intermittent nature, operational problems
[19, 29]. Therefore, as per [19] and [29], new models and strategies for
operating distribution systems with a high penetration of distributed
photovoltaic generation might be needed.

– Long-term hydrothermal scheduling problem: Planning the
operation for systems with high penetration of hydro generation, as is
the case for Brazil, Norway, and Colombia, among others, is a complex
task [30, 31]. The operator needs to coordinate power generation with
operational restrictions that involve multiple uses of water such as
irrigation, navigability, consumption, etc [32,33]. In addition, generating
plants are sometimes arranged in cascades on the same river [34–
36], with inflows subject to significant uncertainty [30, 31, 37, 38].
The long-term hydrothermal scheduling problem normally takes into
account multi annual periods (for example in the Brazilian case) and is
usually formulated as a multistage (several decision instances) stochastic
problem [31,39,40]. In a simplified way, hydrothermal scheduling models
program the generation from water sources, featuring low operational
cost, along with other more expansive sources, aiming at minimal
long-term cost, while ensuring the availability of natural resources for
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future energy consumption [31]. Because the complexity increases with
the number of states (such as reservoir storage levels) and stages (decision
instances), relevant simplifications are necessary to apply state-of-the-art
techniques for solving this problem [39–42].

– Transmission expansion problem: Unlike generation investment,
which is generally market-driven and hence decentralized, network
infrastructure is generally centrally planned. The transmission expansion
planning problem consists in determining which transmission lines will be
built aiming at minimizing the combined costs for investment and future
operational cost. However, it is relevant to highlight that this problem is
generally related to strategic policies, as the outcome of a transmission
plan extends far beyond providing a simple least-cost connection between
the generation and loads. For example, it may directly or indirectly shape
the economic development for covered regions [43], or even facilitate
policies for fostering innovation in various generation technologies. As for
electrical aspects, the system reliability, operational flexibility, reserves
deliverability, and long-run adaptability [43] are key concepts that are
significantly affected by the selected transmission capacity updates.
On the uncertainty side, planners have been dealing with several deep
uncertainties arising from social and economic transformations, political
and environmental issues, and technology disruptions, among others [43].

6.3
Brazilian Case

Brazil has the largest electric power system in Latin America. The
country’s energy consumption in 2017 was 463,900 TWh (52,957 average
MWh), according to the state-owned agency Empresa de Pesquisa Energética
(Energy Research Company). The system is almost entirely interconnected,
with peak power loads of approximately 85,700 MW, according to the ONS.
The installed capacity, in 2018, was 157.8 GW. Electricity generation is
hydrothermal, however, predominantly hydroelectric (approximately 60.4% of
installed capacity and about 70% of actual generation, in 2017). The hydro
power is generated from approximately 200 hydro plants of various sizes
cascaded in 12 main hydrographic basins. The main reservoirs have multi-year
storage capacity. Thermal generation is carried out by gas, nuclear and coal
plants (corresponding to 20% of generation in 2017). Completing the portfolio,
wind generation has shown significant growth since the 2000s and, in 2017,
corresponded to 12.5 GW of installed capacity, featuring a generation share of
7.4%.
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The energy transmission assets comprised, in 2017, 129.4 thousand km
of grid network with voltages ranging from 230 kV to 765 kV ac, in addition
to two 600 kV dc lines. Power interconnections are mainly with Argentina.
Currently, there are important ultra-high voltage connection projects between
new hydroelectric projects in the Amazon (north) and the region with the
highest consumption (south-southeast).

6.3.1
Contextualization

The Brazilian electric power sector has undergone profound changes since
the reforms of the 1990s that continued until the 2010s. Before the reforms,
the distribution utilities were public and a single state-owned company,
Eletrobras, was the owner of the main generation and transmission assets.
This state-owned company was responsible for planning the sector’s operation
and expansion. In this context, CEPEL was created as a government entity
belonging to Eletrobras. One of CEPEL’s missions was the development
of models and algorithms for power systems problems. Between 1990 and
the 2010s, the distribution utilities were privatized, as well as a large part
of the generation and transmission assets. Currently, the sector has a new
institutional organization, which includes a regulatory agency (ANEEL),
a single independent operator (ONS), a free contract market (for large
consumers, traders and distribution utilities) and an agency linked to
ministerial bodies which performs dedicated studies (EPE).

As a legacy of the regulatory and institutional frameworks adopted
in the electricity sector before the reforms, CEPEL remains the exclusive
official provider of energy planning models used by ONS and other government
agencies. The operation remains centralized by ONS and the energy dispatch
is based on costs, determined by CEPEL’s computational models. These costs,
which are calculated as functions of the storage levels in reservoirs, are used
as proxies for setting the short-term energy prices. All energy contracts in
Brazil are valued based on the cost scenarios produced by CEPEL’s models.
The same applies to the projects that are candidates for the expansion of the
system.

6.3.2
Innovation in Power Sector Models and Obligatory Research and
Development

The innovations in the official models for Brazilian power system occur
basically through CEPEL, given its unique position as the provider of
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computational models for the operation and expansion of the Brazilian power
system. The innovations in the last decades had an incremental character,
being supported mainly by CEPEL’s internal R&D, as well as by research from
small power system groups in Brazilian universities, and by the absorption
of research (literature) carried out outside Brazil. The financing for this
innovation system is predominantly public, mainly composed of the portion
of the CEPEL’s annual budget destined to the research structure and to the
staff. Another source of funding is indirectly associated with energy companies
(generation companies, transmission companies, and distribution utilities),
which are required by law to dedicate 1% of their revenue to R&D in the
electricity sector, 40% of which is discretionarily applied by the company. The
R&D values are considerable. According to data from the Brazilian regulatory
agency (ANEEL), R$7 Billion1 were spent between 2011 and 2017, scattered
in about 1,800 projects, conducted mostly by research groups in Brazilian
universities. Part of this mandatory R&D, R$ 620 million2, refer to projects
classified by the executors themselves as “planning". Another R$ 355 million3

were classified as projects for “operating electricity systems". However, from the
available data, it is difficult to discern how many of these projects were, in fact,
related to algorithms or mathematical models for power systems operation.
Considering the Brazilian regulatory framework (centralized dispatch based
on government models), and from the personal experiences of the authors in
participating in projects of this nature, the focus of private agents, with regard
to obligatory R&D, is to devise models for energy trading or for proprietary
risk management. In other words, mitigation of risks related to prices generated
by CEPEL’s models and/or maximizing a single producer’s profit, in view of
expected prices.

There were also at least two R&D project initiatives by ANEEL aiming
at exclusive research in mathematical models for energy planning. These were
also conducted by groups in Brazilian universities, consuming according to the
agency R$ 26 million between 2008 and 2016.

6.3.3
Recent Efforts from CEPEL

In order to deal with the complex Brazilian electric power system,
CEPEL has developed several valuable computational models throughout

1Conversion rate for US Dollar to Brazilian Real was at 5.16 as of June 30, 2020, but
this figure has been much lower, denoting that the amount dedicated to R&D in Dollars is
actually larger than dividing R$7 Billion by 5.16.

2This amount was calculated from the public spreadsheet provided by ANEEL.
3This amount was calculated from the public spreadsheet provided by ANEEL.
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its decades of history. These models are organized in layers and address
issues such as hydrological inflow forecasting, hydrological risk aversion,
REG forecasting, coupling plants/reservoirs in equivalent units, as well as
energy planning based on long-, medium- and short-term models. Models are
connected by curves/functions, which translate the expected future cost of the
operation given the reservoirs’ storage level. The main models for planning
the operation are called NEWAVE (long- to medium-term model), DECOMP
and DESSEM (short-term model). The representation of engineering/technical
constraints increases for the short-term planning horizon (DESSEM), while
the representation of uncertainty inherent to hydrological inflows increases for
long-term planning (NEWAVE).

Recent efforts from CEPEL include:

– Parallel processing in NEWAVE and DECOMP based on [175–
177]

– Selective sampling in the generation of scenarios for the NEWAVE
and DECOMP models based on [178].

– Introduction of non-anticipative constraints in the dispatch of
thermal plants, based on [179].

– Incorporation of transmission losses in the DESSEM model [180].

– River-Level and Routing Constraints for DESSEM model [181].

– Increase in the number of equivalent reservoirs from 4 to 9, based
on [182,183].

– Aspects related to the use of water in the NEWAVE model:
NEWAVE takes into account the influence of the net water head, due
to effects in hydro turbines’ productivity. The values for evaporation,
storage loss due to water withdrawal, minimum flow energy, and stored
water/energy are corrected using second degree polynomials, whose
derivative is taken into consideration in the calculation of the expected
future cost for the operation. However, depending on the curvature of the
polynomial, the problem becomes nonconvex, and this derivative would
lead to an inaccurate calculation of the future cost function. In order to
correct this, around 2012/2013, the NEWAVE model was improved by
approximating/linearizing the polynomials for the nonconvex cases.

– Risk-averse mechanisms for NEWAVE were implemented: i) ad
hoc risk-averse curves [184, 185], and ii) CVaR consideration, based on
[186–188].
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– Processes for “selection” or “elimination” of cuts: Hydrothermal
planning models typically use iterative decomposition methods for
determining a solution. These methods divide the planning horizon in
many time frames and compute information about the operational cost
for each time frame. This information, at each iteration, is propagated to
earlier time frames through Benders’ cuts4, which are based on first-order
dual approximations (derivatives). The processes for “selection” or
“elimination” of cuts enhanced the computational performance of the
NEWAVE model. These implemented procedures for managing the cuts
are based on [189–191].

– Implementation of Resampling Methods: Resampling methods for
the simulated scenarios were implemented on NEWAVE, based on the
ideas of [54].

6.3.4
Current Challenges

Despite CEPEL’s valuable efforts to improve its models, there is currently
an important agenda of challenges to be covered. Among the main challenges
there are elements corresponding to each of the topics mentioned in Section
6.2. For example, among technological gaps, it can be mentioned that until
2019, the Brazilian market had only 4 submarkets, each of which featuring
3 price ranges (for high, medium, and low demand) that were updated on
a weekly basis. As of 2020, indicative hourly prices are released, which will
begin to take effect in 2021, also calculated by CEPEL’s models. This change
is due to the need to signal the scarcity of resources in the hourly time frame,
which does not yet happen in Brazil. Currently, the marginal cost of operation
is almost uniform across the hours, only showing considerable variability on a
monthly scale. The increasing penetration of intermittent renewable generation
in northeastern Brazil, requiring reserves with rapid response capacity, was one
of the determining factors in the decision to signal hourly marginal costs.

Another aspect about current prices/costs is that they are not determined
taking into account relevant elements of the short-term operation, such as cost
to turn the units on or off, minimum unit operating time and generators’ ramp
restrictions. The unit commitment models as well as the medium-term energy
planning models disregard these costs, which are allocated to all consumers in
the system as general or specific charges. Due to flexibility and controllability,
water generators are used to compensate for these short-term operations. In
addition, as noted by [159], failure to incorporate aspects of the operation into

4A complete review on Benders’s cuts is available in [91] and the references therein.
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medium-term planning can represent inefficiencies of hundreds of millions of
dollars a year.

As mentioned, short-term prices are defined by official models. These
models do not consider an individualized representation of the generating units
and reservoirs for hydroelectric generation. Until 2020, Newave considered 9
reservoirs, while private models are able to describe more than 100 reservoirs
in the Brazilian electrical system and present many other features that do
not exist in CEPEL models, such as an integrated unit commitment model,
a more precise representation of the transmission lines, and some thermal
plant contract restrictions. Even though it is possible to question convergence
and optimality issues for individual private models, it is a fact that the new
multi-stage integer and/or multi-stage mixed-integer linear techniques that
have been devised recently could allow for important upgrades on official
models.

There are relevant issues regarding the methodology for expanding the
Brazilian electric power system. Currently, there are two types of energy
consumers in Brazil. Consumers of the first type are classified as free agents,
typically large consumers representing around 30% of demand (2018), who
can choose the utility or generator from whom they purchase. The second
are captive consumers who are supplied by fixed local distribution utilities. In
order to require distribution utilities to contract energy efficiently, the process
that defines the new generating entrants to meet the demand expectation
for captive customers is centralized through auctions. The redefinition of
the energy contracting process carried out in 2004 as part of the reforms
in the Brazilian electricity sector represented a considerable advance. A
characterization of the expansion of the Brazilian market can be seen in
[151]. However, the methodologies for comparing candidates as new generating
units overlook relevant information (or attributes), such as ramp capacity,
capacity to provide reservoir regularization, capacity to make synchronous
compensation, dispatchability, location of the unit and level of uncertainty for
REG. Another aspect that deserves consideration is that the price scenarios
used to evaluate the developments are generated from an expansion model
that has a speculative configuration of assets, which are listed by government
agencies, based on methodologies that are not transparent, and/or arbitrary
(potentially optimistic).

In addition to presenting technological gaps, these issues expose that
perhaps the current approach to foster innovation in models of the Brazilian
power system needs to be revised. Therefore, given the current conjuncture
of identified challenges, whose potential impacts are in the order of hundreds
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of millions of dollars per year, and the challenging agenda for the Brazilian
electricity sector, it is necessary to analyze alternative forms of financing
innovation.

6.4
Innovation Inducement Prizes

Innovation inducement prizes, whose origins date back to the 18th
Century, have been used to redirect the existing energy and workforce
that are inert (or underutilized) to solve technological problems. Interesting
bibliographic and historical reviews on innovation prizes can be seen in
[76, 166, 167]. The prizes, which may or may not be financial resources, are
destined to winners of competitions to develop innovative solutions to a
previously established technological challenge. Generally, technology platforms
such as [192,193] are used for hosting competitions of such a nature.

6.4.1
Benefits of Innovation Inducement Prizes

Advantages5 of the innovation inducement prizes according to [166, 168]
include:

1. Greater efficiency compared to traditional funding when technological
objectives are clear, but means are speculative.

2. The possibility that an objective can be defined without specifying a
technological route, enabling unconventional solutions.

3. The use of financial resources only if the solution or minimal standards
are achieved.

4. A multiplier effect; that is, contests can stimulate the expenditure in
innovative activities greater than the resources offered by the sponsor of
the prize.

5. Competitions can be motivating forces to attract participants not
directly related to the traditional area of the challenge, or who would
never seek public resources or participate in government procurement
selection processes because of the excess of bureaucracy related to
traditional instruments.

6. Contests can contribute, through awareness and education, to problems
that affect society.

5We refer the reader to [166,168] for a complete discussion.
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Note that even if a contest does not produce immediately acceptable
solutions, there is still a positive externality: Many people are mobilized and
gain knowledge about the problem, so that, in the future, they can also develop
solutions. Some academic papers analyze results of application of contests to
solve technological issues in various fields [194–196].

6.4.2
Innovation Inducement Prize Adequacy

However, as mentioned above, inducement prizes should be accompanied
by a preliminary analysis to identify whether innovation inducement prizes
are an adequate instrument for addressing a specific challenge/problem (see
[76,169] for a thorough discussion).

In [169] it is suggested that affirmative answers to the following questions
are important evidences that prizes can be an effective financing tool.

1. “Is there a clear, achievable goal?" or “Is it of an ’engineering’ nature,
rather than basic research?"

2. “Are there many or few solvers?"

3. “Are the solvers willing to accept outcome risk?"

In [76], another set of questions are suggested:

4. “Can you define a clear goal (in response to your problem, need or
opportunity) and see a way to measure and judge whether the goal has
been met?"

5. “Do you think that you could generate the best solutions by opening up
the problem to a wider pool of innovators?"

6. “Do you think you could motivate innovators to participate?"

7. “Do you think you could accelerate progress through a prize?"

8. “Do you think that the solutions will be adopted or taken to market?"
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6.5
Fostering Innovating through Innovation Inducement Prizes in Brazil

This section argues for the use of innovation inducement prizes to foster
innovation for power systems challenges in Brazil.

6.5.1
Arguments for Using Innovation Inducement Prizes in Brazil

During the development of the methodologies used in Brazil for energy
planning, especially in the early 1970s to early 1990s, when the available
computational capacity and technical literature were far more restrictive,
the structuring of a dedicated research center was decisive for the advances
in energy planning techniques, many of them constituting the state-of-art
models for that period [31]. Today, however, there is a completely different
scenario in terms of resources and a much more connected world. There is
considerable intellectual and computational capacity (universities, research
centers, private companies, individual researchers, and NGOs) capable of
contributing innovative ideas, techniques and methodologies. This capacity,
with respect to energy planning, is due to the i) increasing number
of researchers and academic works in the in related fields, ii) greater
computational processing, including extremely cheap cloud processing, and iii)
new mathematical modeling and optimization software (some of them open
source). Also worthy of note is the non-negligible potential of contributions
from ideas and researchers from other fields of study [197].

The idea of an open innovation approach to energy planning is not
new. Open energy planning models [156] are already available. A thorough
discussions about effectiveness of open modeling in energy planing and open
data is presented in [198, 199]. Moreover, notable efforts involving contests
and inducement prizes for energy challenges occurred in the past few years. In
[122, 123] contests were successfully proposed for developing new methods for
forecasting REG outputs. In [75], a contest platform called Grid Optimization
was proposed by the Advanced Research Projects Agency-Energy (ARPA-E)
seeking to increase flexibility, safety and the integration of non-dispatchable
renewable generation.

The fact that the main institutions involved in Brazil are
government-owned should not be perceived as an obstacle to the introduction
of innovation contests. For example, motivated by benefits and possibilities
of innovation contests, in 2010, the United States Government developed its
own platform, called challenge.gov [200], to publicize its contests. Statistics of
this platform are presented in [168]: Since 2010, the U.S. government has run
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nearly 1,000 challenges in more than 100 federal agencies. It is important to
note that this recent increase in the number of contests promoted by United
States public agencies came after the publication of measures such as the
Energy Policy Act (2005), the NASA Authorization Act (2005), the American
Medical Innovation Fund Prize Act Strategy for Innovation (2009) and the
presidential memorandum "Guidance on the Use of Challenges and Prizes to
Promote Open Government"(2010). These elements of legislation encouraged
and allowed greater autonomy for agencies to organize and implement contests
and prizes (see [166, 168] for a more in-depth discussion on the subject). An
interesting analysis of the direct and indirect impacts of the aforementioned
challenge.gov platform can be seen in [168].

6.5.2
Adequacy of Innovation Inducement Prizes for Power Systems Challenges

In view of the questions posed in Section 6.4.2, in this subsection, we
discuss some aspects of power systems challenges.

Energy planning, in a simplified way, is a multilevel and/or multistage
optimization problem that minimizes a cost function (operational, investment,
etc), restricted to network and risk constraints associated with equipment
failure, uncertainty for future inflows and REG. In this sense, the mathematical
problems of energy planning have measurable objectives. However, the
definition of the objective function is not trivial and depends, among other
aspects, on the planning horizon. In the authors’ opinion, a necessary step for
prizes to be successfully used in power systems challenges is the construction
of a simulator6 to precisely represent the physical reality of the system. In
this way, the solutions presented by the competitors could be evaluated in
this simulator, which must be agnostic to the methodology used to obtain
the solution. The definition of the characteristics of such a simulator or its
construction are not trivial elements. Thus, addressing the first part of question
1 and question 4, we understand that the power system’s challenges are related
to an objective measurement (although the definition of the metric and an
underlying simulator that provides inputs for this metric are complex issues).
As for the second part of question 1, energy planning is an applied problem,
typically an engineering problem, where the algorithms and underlying applied
mathematical theory that are developed come in response to existing problems.

Regarding the capacity for external collaboration with CEPEL
(addressing questions 2 and 5), it is important to note that the many
international associations and communities focused on issues in power systems

6Certainly, different simulators would be necessary for different planning horizons.
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involve enormous potential resources (problem solvers). For example, these
resources include many researchers in academia, industry professionals (from
generation, transmission and distribution utilities), consultancy firms, 17
national laboratories in the United States alone and many others worldwide,
etc. There are also many technical/scientific journals dedicated to these
themes. Within this context, power systems challenges or, in a broader
sense, energy challenges, are studied from the most diverse angles. Researchers
belong to different realms of knowledge such as electrical engineering, computer
sciences, applied mathematics, physics, etc. Therefore, there is a great deal
of knowledge available that can be channeled towards solving issues in the
electricity sector. Hence, as indicated by [76], the use of a prize in these cases
can arouse the interest of several participants, increasing the probability of
presenting a solution to the problem or increasing the quality of the winning
solution.

As for question 3, the necessary resources of the participants are basically
time and computational resources (modeling and/or optimization software and
computational processing). As such, there are no other equipment restrictions
or necessary financial investments. Therefore, a wide range of professionals
and groups of academics and students from related fields remain potential
participants. Incentives to motivate participants, in this case, may involve
several elements that range from financial prizes, through recognition and
publicity to the winners, and even the feeling of providing solution to a
socially significant problem. Recognition from the solution of a problem of
this relevance can open important doors for the winners. Thus, addressing
question 6, in addition to financial motivation, the authors believe that solving
challenges for the Brazilian electricity sector, the largest in Latin America, with
one of the most complex hydrothermal systems in the world, would have great
appeal.

For [76], the use of innovation contests is recommended for cases in
which: i) There are people working on the problem from different angles,
but without sufficient coordination or progress has not taken place at the
necessary speed; and ii) The knowledge to solve the problem exists, but there
are no incentives to mobilize people to invest in its solution. These are evident
characteristics for power systems challenges for Brazil. For example, it is
worth mentioning the application of Stochastic Dual Dynamic Programming
(SDDP) [31], the basis of multi-stage planning methodology for medium- and
long-term operation in Brazil. Its use, a few years ago, was restricted to
some researchers and rare members of the industry. Currently, however, this
technology can be obtained in ready-to-use open-source packages [201, 202]
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with very good computational performance. Recently, many other relevant
advances for this method and other multi-stage methods for the dispatch
of hydrothermal units came from non-Brazilian institutions and/or research
groups [41, 42, 52, 55, 203–206]. Therefore, according to [76], the creation of
a contest that publicizes the problem, clarifies the beneficial impacts of its
solution, builds cooperation tools and creates a sense of urgency through the
definition of deadlines will accelerate development (question 7) of innovative
solutions to the problem in question.

With respect to question 8, it is important to conjecture that one of
the possible reasons why a problem has not yet been solved is the lack of
attractiveness of the market for its solution. However, as in the Netflix [162]
prize, for example, the incorporation of solutions in proposed contests would
be carried out by the organizers themselves in the Brazilian case; that is, the
government agency that develops and implements energy planning solutions,
CEPEL, and the system operator, ONS, thus increasing the chances that the
benefits will be effectively incorporated by society.

6.5.3
Recommendation

In light of the previous discussions; that is, considering

– the relevance of the issue addressed, the magnitude of which ranges
from millions to billions of dollars per year and with impacts on energy
security;

– the current scheme for financing innovations in power systems models in
Brazil and its respective results;

– the important agenda of challenges for the Brazilian power system;

– the enormous amount of qualified resources that can be channeled to
propose solution to existing challenges;

– the adequacy of inducement prizes to foster innovation in power systems
models;

– the previous experiences of innovation inducement prizes, including
government initiatives and/or power system-related initiatives;

we propose a new policy/program. This program aims at fostering innovation
in theoretical and computational aspects of electric power systems models in
Brazil. The main vector of this proposal is the realization of multiple contests
as a way to induce innovations.
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A central aspect, in the authors’ view, is the role of the Brazilian
government, which currently, through its own agency (CEPEL), researches,
develops, and implements algorithms and computational innovations. We
recommend a review of the current method to encourage innovations in
the mathematical-computational models in Brazilian electric power system.
Currently, practically all developments are carried out internally and with
limited search for external solutions. Recognizing that the community
(researchers, associations, students, companies, etc.) can provide innovative
solutions to problems, the role of CEPEL would gradually shift from being
an exclusive developer and implementer to coordinating knowledge capture
efforts to solving technological challenges. Also to focus on developing the
best parameters and simulators to evaluate the proposed solutions from
participants, for each proposed challenge.

In this new proposed form, CEPEL would seek to capture the high
innovative potential and various specialties of the knowledge spread across
the world. Basically, CEPEL would be the manager of the knowledge and
innovations by reporting relevant issues, organizing contests and platforms
for interfacing with participants, in addition to managing other funding
mechanisms. It is important to note that this proposed new role does not
depend on the market model adopted, whether audited costs (current) or
based on the price offers from agents. In both cases, power systems models
are paramount to the regulator.

However, it is recognized that structuring a series of contests of this
nature is not a trivial task, requiring coordination and organization. There are
several and important elements that must be considered in the design of each
innovation prize in order to achieve the desired objectives. Note, for example,
that the main challenges of Section 6.2 have different time scales requiring
distinct representations of the physical constraints and power flow constraints.
It is also necessary to structure ways of connecting the different models with
different time scales and objectives. Other issues involve organizing data (the
tasks are data-intensive), defining the scope of the contests and the definitions
and implementations of the proposed simulators, among others. Therefore,
even though facing a challenging agenda, given its privileged role, CEPEL is
believed to have the ideal expertise to lead a paradigm shift in the search for
better models. We believe that a series of pilot challenges, as was the case for
the Grid Optimization competition [75], would be an ideal starting approach.
Moreover, that particular contest can provide important practical experiences
and insights.

For a deeper analysis on the topic of organization of inducement prizes,
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which is not the scope of this work, we suggest to the reader the discussions in
[76, 168]. In [76], there is a comprehensive guide on designing and structuring
prizes. Based on a recent bibliographic review, [168] summarizes the design
elements, and also presents guidelines for making the contests.

6.6
Conclusion and Future Steps

Innovation contests have been used successfully by governments and
private institutions. In this work, the adequacy of innovation inducement prizes
was analyzed to promote solutions for power systems models, which involve
complex problems that have important impacts on society. The characteristics
of these challenges were discussed and shown to be suitable for inducement
prizes since they are engineering problems, whose objectives are measurable.
In addition, there is no need for a large research infrastructure or investment
to participate in contests of this nature. Another reason is that there is vast
related knowledge spread across the world for the main tools needed to generate
contributions (operations research, mathematical modeling in power systems,
etc).

Therefore, it was proposed in this work the adoption of a policy based
on contests to stimulate solutions in power system models for Brazil. In
this context, the role of the government agency, which today is the sole
researcher, developer and provider of models, would gradually change or, at
least, incorporate the management of an open innovation model.
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7
Conclusion

This thesis provided mathematical frameworks based on
two-stage robust optimization models and on modified versions of the
column-and-constraint-generation algorithm (CCGA) for three different
electric power system problems, namely: the N − 1 security-constrained
optimal power flow with automatic primary response, the unit commitment
with uncertain non-dispatchable renewable generation, and the transmission
expansion planning with long- and short-term uncertainties. It also addressed
the use of inducement prizes or contests to foster innovation in electric power
system’s models.

Summaries, main contributions, and conclusion for addressed topics of
this thesis are outlined below :

7.1
Regarding the N−1 security-constrained optimal power flow problem with
automatic primary response

In Chapters 2 and 3, the N − 1 security-constrained optimal power flow
problem was addressed. The formulation for the problem included the N − 1
security criterion for generators and a specific model for the automatic primary
response of synchronized generators which resulted in a complex mixed-integer
linear program since the primary response model introduced disjunctions to
the scheduling problem. Thus, decomposition strategies with a master problem
and subproblems resulted in non-convex subproblems.

In Chapter 2, a dedicated CCGA was devised, where the only
optimization problem solved was the master problem; that is, subproblems
were not involved. This was possible since the method used i) preprocessed
structures based on the power transfer distribution factors (PTDF) that were
useful both as feasibility checkers and as dedicated cuts in the post-contingency
states, and ii) a numerical procedure to determine the post-contingency
variables based solely on the nominal generation. These structures were
transformed into primal constraints that were added to the master problem for
most violated constraints (lines). Likewise, the disjunctions (binary variables)
representing the primary response model for a few contingent states were added
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to the master problem for selected states. A method to find high-quality primal
solutions and a procedure that monitors the upper and lower bounds for the
method were also proposed.

In Chapter 3, it was assumed that data from previous solves were
available. An approach combining a deep neural network and the CCGA from
Chapter 2 was used. The deep neural network mapped the vector of nodal
net loads onto the nominal dispatch, disregarding power flow constraints and
the automatic primary response. The feasibility was enforced by robust-based
approaches. First, a Lagrangian dual scheme was adopted to penalize physical
constraints included in the learning model. Then, an outer procedure that
resembles a CCGA was applied directly to the learning model to add new
constraints, for a few critical contingent states. The final step involved a
modified version of the CCGA from Chapter 2 to restore feasibility.

In summary, the main contributions for the N − 1 security-constrained
optimal power flow problem are as follows.

1. A decomposition approach that combines a CCGA with numerical
methods to determine exact solutions to the problem in such a way that
the non-convex subproblems do not need to be solved directly.

2. An approach that produces high-quality primal heuristics for the
problem.

3. A novel scheme that combines a deep neural network and robust methods
to produce near-optimal feasible solutions.

From a computational perspective, the combination of methods
proposed in Chapters 2 and 3 significantly outperformed the prior
state-of-the-art approach. Additionally, the computational effort required
to attain high-quality near-optimal solutions was within industry standards
for the tested benchmark systems.

7.2
Regarding the unit commitment under uncertainty for co-optimized
electricity markets

In Chapter 4 an alternative to the use of budget-constrained uncertainty
sets in two-stage robust unit commitment was proposed. A co-optimized
electricity market was considered; that is, the centralized robust joint
scheduling of energy and reserves targeting total cost minimization. The
uncertainty characterization was directly connected to data. To that end,
we proposed modeling the uncertainty in day-ahead unit commitment by an
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alternative scenario-based polyhedral uncertainty set built through a novel
data-driven approach. Based on the general scenario-based uncertainty set
description provided in [112], we defined a new polyhedral uncertainty set
as the convex hull of a set of exogenously generated multivariate points, or
scenarios, capturing relevant information regarding the uncertainty process
over a given time window. The resulting robust counterpart for generation
scheduling were efficiently solved by the CCGA until ε-global optimality. This
relevant practical aspect stems from the reduced complexity of the oracle
subproblem, which is solvable in polynomial time.

In the case studies analyzed in the chapter, a relatively small number of
past renewable generation profiles were required by the proposed data-driven
approach to outperform the budget-constrained uncertainty set.

7.3
Regarding the transmission expansion planning with long- and short-term
uncertainties

In Chapter 5, the transmission expansion planning problem with long-
and short-term uncertainties was considered. We introduced the concept of
multiple conditional ambiguity sets to account for the information of long-term
studies conducted by experts. A distributionally robust approach was used to
model the short-term uncertainty parameterized by long-term information.
Results for the IEEE 118-bus system show that, in comparison to existing
methods, the proposed DRO-TEP model is effective in producing a consistent
tradeoff between cost and reliability in out-of-sample tests.

In order to solve the resulting problem, an enhanced
column-and-constraint-generation algorithm (ECCGA), providing better
approximations of the recourse function and tighter bounds than the
CCGA, was devised. As for the computational aspects, the ECCG algorithm
significantly outperformed the CCG algorithm.

7.4
Regarding Innovation for Power System Models

Chapter 6 discusses, with a focus on Brazil, the importance of an
adequate innovation system to drive developments in models in power systems,
especially in the context of changing paradigms regarding the penetration of
non-dispatchable renewables, smart grids, etc. The paper discusses general
challenges of power systems in this current context and the way in which
models are managed and improved in Brazil, basically by a single public
institution (CEPEL) and by a series of uncoordinated R&D initiatives.
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A historical contextualization of the Brazilian case is presented. Recent
incremental improvements in CEPEL models are described as well as existing
challenges and technological gaps.

The main contribution of the chapter is to argue that innovation
inducement prizes are an adequate instruments to foster innovations in power
system’s models in Brazil. This is due to the fact that the prizes are instruments
for channeling knowledge to well-defined engineering problems for which there
is a great inert force capable of helping with ideas and solutions and, therefore,
promoting innovations. This argument is made based on the prize literature
(innovation economics). Finally, the paper argues that the role of CEPEL,
which adopts a closed stance regarding innovations in its models (it internally
researches, develops, implements and defines the evolution agenda) should be
modified.
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