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Abstract

Pinto, David Souza; Oliveira, Fernando Luiz Cyrino (Advisor); Dantas,
Tiago Mendes (Co-Advisor). Exploring new methods to perform
Bagging with Exponential Smoothing. Rio de Janeiro, 2020. 75p.
Dissertação de Mestrado – Departamento de Engenharia Industrial,
Pontifícia Universidade Católica do Rio de Janeiro.

Exponential smoothing methods are flexible procedures for univariate
time series forecasting, developed in the 1960’s. Most recent developments
based on these models use bagging to improve forecast quality. One of these
implementations, BaggedETS, developed in 2016, brought improvements in
forecast quality and is distributed through the forecast package for R. A pos-
terior implementation, BaggedClusterETS, adds clustering and validation
steps to address the covariance effect associated with bagging. The proposal
resulted in further accuracy improvements. This work delves into three exten-
sions of the aforementioned methods: the first studies the effects of the max-
imum entropy bootstrap on the BaggedETS. The second explores different
dissimilarity measures to construct the clusters in BaggedClusterETS. The
third studies a simplified version of BaggedClusterETS, where the valida-
tion and selection steps are removed, and using only the medoids for bagging.
To test these proposals, 21 time series from civil aviation and energy consump-
tion were used.

Keywords
Time Series; Bagging; Clustering.
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Resumo

Pinto, David Souza; Oliveira, Fernando Luiz Cyrino; Dantas, Tiago
Mendes. Explorando novos métodos para realizar Bagging com
Amortecimento Exponencial. Rio de Janeiro, 2020. 75p. Dissertação
de Mestrado – Departamento de Engenharia Industrial, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Métodos de amortecimento exponencial são formulações versáteis para
a previsão de séries temporais univariadas, desenvolvidas na década de 1960.
Modelos mais recentes têm feito uso do bagging para melhorar a qualidade das
previsões. Um destes, o BaggedETS, desenvolvido em 2016, trouxe melhorias
na qualidade de previsão e está disponível na biblioteca forecast para R. Uma
proposta posterior, BaggedClusterETS, adicionou uma etapa de clustering
e validação para tratar o efeito da covariância associada ao uso do bagging,
resultando em ganhos adicionais de performance. Este trabalho explora três
extensões dos métodos supracitados e seus efeitos: o primeiro estuda os efei-
tos do maximum entropy bootstrap na realização do BaggedETS. O segundo
explora diferentes medidas de dissimilaridade para construir os clusters do
BaggedClusterETS. O terceiro emprega uma versão simplificada do Bag-
gedClusterETS, removendo as etapas de validação e seleção, empregando
apenas os medóides para realizar o bagging. Para testar estas propostas, 21
séries temporais da aviação civil e demanda energética foram empregadas.

Palavras-chave
Séries Temporais; Bagging; Clustering.
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No poem is intended for the reader,
no picture for the beholder,

no symphony for the listener.

Walter Benjamin, Illuminations: Essays and Reflections.
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1
Introduction

1.1
Context and motivation

Time series can be defined as an ordered collection of random variables,
indexed by the time t when they were obtained [1]. Such data is ubiquitous,
and applications can be found in the most varied fields such as economics,
social sciences, industry, and medical sciences to name a few. Forecasting
models for time series data can play a critical role in strategic decision-making
processes in a variety of business operations, from energy to supply chain and
logistics. On that account, these models ought to be accurate and efficient to be
serviceable. When forecasting errors are excessive, it can translate into either
missed opportunities or unnecessary operational costs – this is critical when
considering industries such as aviation or energy, where even small changes
can scale costs up or down. Thus, better forecasts can lead to better planning,
which has a cascading effect on business operations and their quality [2, 3, 4].

One way of improving forecasting quality is to employ bagging (bootstrap
aggregation) as proposed by Breiman almost 25 years ago [5]. The method
decreases predictor error through the generation of variations of a dataset via
bootstrap. The aggregation comes from the application of a reducing function
such as the mean to the ensemble. This method has been applied in a time
series setting for a variety of domains – works published from 2004 to 2018
showcase applications to demographic data, financial time series, and wind
speed forecasts [6]. An article on forecasts for aviation transporation highlights
how bagging led to a significant improvement in forecasting quality [3].

Later, bagging was combined with time series decomposition to improve
forecasting quality. The works of Cordeiro and Neves [7] and later Bergmeir,
Hyndman and Benítez [8] make use of bagging, albeit their internals differ
considerably. The latter, Bagged.BLD.MBB.ETS – which employs a com-
bination of Box-Cox transformation, STL decomposition, moving block boot-
strap, and exponential smoothing – has displayed the capability to improve
forecasting quality when compared to a simple exponential smoothing model,
and is readily available through the forecast package for the R programming
language [9]. To answer the question of why such method works, research on
the topic highlights that bagging tackles the three sources of uncertainty –
namely that which arises from the model, parameter and data itself [10].
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Dantas and Oliveira discussed the effect of covariance on forecast quality,
and add a clustering step is order to address this issue [6]. This effect arises
due to the correlation between each of the bootstrap innovations generated
for the ensemble, which contributes to the Mean Squared Forecast Error
(MSFE). For the study, the authors used one clustering technique, with one
clustering validity index, the average silhouette information criterion. The
method displayed an increase in forecast quality for monthly data.

A review of the literature revealed that there is a gap when it comes
to studies concerning the intersection of time series forecasting, bagging and
clustering. Although there have been some advances in the field [11], work on
single series forecasting seems to be lacking – in fact, this literature review
has indicated that, so far as it is possible to say, there are no publications
that directly continue the research started by Dantas and Oliveira. For this
study, variations based on the design proposed by Dantas and Oliveira are
considered (see [6]), alongside a different bootstrapping method is used for the
model proposed by Bergmeir, Hyndman, and Benítez [8].

1.2
Research objectives and questions

The central research objective for this project is the assembly of new
forecasting tools to increase prediction accuracy. Secondary objectives include
the introduction of different methods, followed by an appropriate performance
evaluation on real-world data.

The following questions are asked:
1. Do any of the proposed methods lead to an improvement in forecasting

quality, when compared to current methods and algorithms?
2. Do these methods introduce any additional computational overhead?

Since a clustering step is included in the methods explored in this study,
any form of improvement can come either of two sources: 1. How bootstraps are
generated; or 2. How bootstrapped series are clustered, the number of clusters
created, and how these series are selected. This research takes the work of [6]
as a starting point and reference to explore whether there can be any further
improvements to the proposed method.

1.3
Research classification

The research can be classified as applied, quantitative, experimental, and
bibliographic [12].
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Applied research the aim of which is to solve a specific problem, i.e. what
methods can be used to improve time series forecasting quality. Time
series forecasting and analysis tools are routinely deployed in a variety
of fields and applications – e.g. economics, energy planning, healthcare
and hydrology studies. As long as data is readily available, researchers
and practitioners can either apply available methods or tailor new ones
to the characteristics of a given domain.

Quantitative research which involves the effects that different numerical
methods have on forecasting quality for different series. There is a keen
interest in ranking and evaluating these models in relation to one another
with specific, measurable criteria. Two models can be compared with
each other using specific error metrics, and for larger experiments, it
is possible to test whether the difference between any given number of
models is statistically significant.

Experimental research this follows naturally from the previous category
since testing is required in order to evaluate whether any of the proposed
models work adequately. Given that experiments are conducted with the
help of a programming language, research can be reproduced by third
parties, given that the scripts, datasets and random seed are available.

Bibliographic research this is the enabling component for the previous
categories. A literature review is required to understand most recent
research and identify relevant tools and their functions. This step is also
vital to identify any research opportunities.

1.4
Structure

In addition to this introduction, this dissertation also includes the fol-
lowing chapters: Chapter 2 reviews the literature on exponential smoothing,
bootstrapping, bagging, and clustering. Queries on scientific databases and bib-
liometrics were combined to understand the evolution of the topic throughout
the years and to identify pivotal publications on the topic. Chapter 3 details
the method employed for this study. It outlines how the tools for this project
were established, and how experiments were built and analysed. Chapter 4
includes a description of the datasets used, the computational environment,
and a presentation of the results obtained, as well as the blueprints to repro-
duce the experiments. The last chapter, Chapter 5, presents the conclusions
and the relevant considerations that can be drawn from the previous chapter’s
experiments, alongside further research recommendations.
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2
Literature review

This research uses the work of Dantas and Oliveira as its starting point.
The authors combine bagging, clustering, and exponential smoothing, address-
ing a covariance effect that arises from generating bootstrap replicates [6] —
a direct extension of the work by Bergmeir, Hyndman and Benítez [8]. Check-
ing for references for future research, recommendations for expansions include
incorporating weighting schemes when generating the aggregated forecast and
introducing new decomposition and forecasting methods. To better understand
what has been done since their article was published, what the relevant tech-
nologies are, and where to best place efforts, this chapter will focus on providing
both the theoretical background of the relevant methods in conjunction with a
review of the available literature on the topic. This is to ensure that research is
within the bounds of what is relevant for a continuation of the aforementioned
research.

This chapter is divided into four sections: the first reviews the state
of the art, and provides an overview of what has been published before and
after the work of Dantas and Oliveira [6], publication metrics, and an outline of
relevant articles. The Exponential smoothing and Resampling methods
sections analyse the relevant numerical methods that enable forecasting and
bagging.Clustering is studied in a separate section due to its sprawling nature
and how it is categorised in literature [13, 14, 15]. The section presents a
definition of the clustering method, details how different methods are classified,
what methods are available for time series, and the inner workings of the
relevant methods for this research. A subsection on cluster validity indices
details how to assess the quality of a clustering operation. The last section
discusses the relevant Implementations found when reviewing the literature.

2.1
State of the art

2.1.1
Query results

In order to structure a strategy to query SCOPUS and Web of Science
(WOS), the bibliography listed in [6] was used. The articles helped establish a
general understanding of the methods used and what elements to look for in
other works.
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While some references were clearly available for bootstrap methods,
bagging and forecasting, (e.g. [8, 5, 16]), for clustering, a literature review
[14] was combined with books and other articles. This preliminary research
on the topic aided in constructing an understanding of how to operate with
clustering methods and what other options are available. Thus, for the queries,
only partitioning methods were considered, as these were the only kind used by
Dantas and Oliveira [6]. This classification includes methods such as k-means,
k-medians, partitioning around medoids (PAM) or k-medoids, and fuzzy c-
means [14, 17, 18].

Considering the three components of the method researched by Dantas
and Oliveira [6] — i.e. time series forecasting, bagging and clustering — the
following interactions were queries on both SCOPUS and WOS:

1. [Bagging] and [Clustering],
2. Time series and [Bagging],
3. Time series and [Clustering],
4. Time series and [Bagging] and [Clustering],
5. Exponential smoothing and [Bagging],
6. Exponential smoothing and [Clustering],
7. Exponential smoothing and [Bagging] and [Clustering].

The tag [Bagging] contains the term bagging itself, alongside the ex-
pressions bootstrap and maximum entropy bootstrap. For [Clustering],
the aforementioned partitioning clustering methods were considered: k-means,
k-medians, k-medoids, partitioning around medoids, PAM. Time series and
Exponential smoothing were the sole terms for the time series component
— ARIMA models were not considered for this study. These queries were then
merged into the following four sets, each representing a combination of key-
words for a certain aspect of the research. Set 1 contains combinations for
Time Series or Exponential Smoothing in relation to [Bagging] terms. Set 2 is
the smallest of the sets, considering only the interactions between [Clustering]
methods and [Bagging]. Set 3 relates to the works dealing with the combina-
tion of [Clustering], time series, and exponential smoothing. Set 4 combines
the three previously described components into the queries. The list below
provides an overview of the combinations used.
Set 1 (Time series or Exponential smoothing) and [Bagging].
Set 2 [Bagging] and [Clustering].
Set 3 (Time series or Exponential smoothing) and [Clustering].
Set 4 (Time series or Exponential smoothing) and [Clustering] and [Bag-

ging].
For both aggregators, title, abstract and keywords were searched. For
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WOS, an additional restriction was applied to the queries: only articles,
books, book chapters, and proceeding papers were probed. Such filter was not
applied to SCOPUS queries. The combination of results yielded around 5325
publications since 1978 for all these topics. Partial combination of the sets
reveals a slightly large number of total articles (5518), suggesting there might
be a crossover between some of the topics. Table 2.1 displays the breakdown
for each of the sets. The first two columns indicate the total number of results
for each aggregator, the third column represents the number of articles after
merging the results, and the fourth represents the percentage of results in
relation to all the sets. Sets 1 and 3 are the largest of the four, making up
88% of the publications on the topics. The combination of the three topics
(i.e. the combination of time series/exponential smoothing with bagging and
clustering) stands at a meagre 0.7% at the time of writing. This might indicate
that the topic has not been researched extensively.

SCOPUS WOS Merged %

Set 1 1555 2283 2656 48.3
Set 2 201 430 587 10.7
Set 3 1941 1480 2221 40.3
Set 4 10 34 39 0.7

Total 3707 4227 5503 100.0

Table 2.1: Results by set

Set 1 Set 1, the largest in number of publications, covers a wide time frame:
until 1994 there were 73 publications on the combined themes, with the number
sharply rising each year, peaking at 222 articles and chapters in 2017. In
2020, at the time of writing, 39 items were published. An analysis of the 20
most cited articles in this set includes works on applications of the bootstrap
to estimate standard errors, confidence intervals, and other measures. There
are also applications for quality control, data snooping, hydrology, and data
quality (i.e., missing values). Table 2.2 showcases that there are no applications
combining the exponential smoothing and the maximum entropy bootstrap.
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Keyword SCOPUS WOS

“time series” and “bootstrap” 1473 2016
“time series” and bagging 123 306
“time series” and “maximum entropy bootstrap” 14 16
“exponential smoothing” and bootstrap 21 25
“exponential smoothing” and bagging 4 7
“exponential smoothing” and “maximum entropy
bootstrap”

0 0

Table 2.2: Queries for set 1

Set 2 Set 2 has an irregular publication pattern. After two publications in
1997, no works were published until 2000. But research seems to only have
gained momentum from 2007 onwards. This is likely due to an increase in
computation power, reaching the peak of publications in 2016 — a total of
85 abstracts were located in the queries for this year. Interest on the topics
seems to have plateaued afterwards, and in 2020, at the time of writing, only
four articles published. The most cited articles reveal applications for text
classification, image processing, pattern discovery, and economics. Again, k-
means seems to be a popular option (64 results on SCOPUS, 391 on WOS),
with fuzzy c-means at a distant second (16 and 28, respectively). k-medians, k-
medoids / partitioning around medoids / PAM have few publications available,
as highlighted in table 2.3.

Keyword SCOPUS WOS

bagging and k-means 64 391
bagging and k-medians 0 2
bagging and “PAM” 3 19
bagging and “partitioning around medoids” 1 2
bagging and “k-medoids” 3 9
bagging and “fuzzy c-means” 16 28

Table 2.3: Queries for set 2

Set 3 Set 3 is the second largest, with 2233 articles on time series/exponential
smoothing combined clustering. Again, the topic gained momentum from 2003
onwards, with 616 results — over a fourth of the total production — in 2018
and 2019 alone. As seen in table 2.4, searches indicate that k-means is a popular
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clustering method for time series (963 and 753 results for SCOPUS and WOS,
respectively), fuzzy c-means comes second (375 and 281 results). Least popular
methods include k-medians, k-medoids, partitioning around medoids (PAM).
When substituting ‘time series’ for ‘exponential smoothing’, no results are
found for queries that contain k-medians or k-medoids.

Keyword SCOPUS WOS

“Time series clustering” 644 438
“time series” and k-means 963 753
“time series” and k-medians 7 2
“time series” and “k-medoids” 57 38
“time series” and “PAM” 45 33
“time series” and “partitioning around medoids” 26 21
“time series” and “fuzzy c-means” 375 281
“exponential smoothing” and k-means 13 9
“exponential smoothing” and k-medians 0 0
“exponential smoothing” and “k-medoids” 0 0
“exponential smoothing” and “PAM” 2 2
“exponential smoothing” and “partitioning around
medoids”

1 1

“exponential smoothing” and “fuzzy c-means” 10 5

Table 2.4: Queries for set 3

Set 4 Set 4 is the smallest of the sets, covering the intersection of time
series/exponential smoothing with bagging and clustering. Research has been
inconsistent. Studies were first published in 2001, then in 2004, and resuming
in 2007 until 2009. From 2012, there have been yearly publications. This
set contains applications on geospatial, medical, agriculture, environmental
domains. Table 2.5 summarises the results for the different queries of this set.

Keyword SCOPUS WOS

bagging and “time series” and clusters 9 35
bagging and “time series” and k-means 4 7
bagging and “time series” and k-medians 0 0
bagging and “time series” and “PAM” 1 1
bagging and “time series” and “k-medoids” 0 1

Continues on tbe next page
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Continued from the previous page

Keyword SCOPUS WOS

bagging and “time series” and “partitioning around
medoids”

1 1

bagging and “time series” and “fuzzy c-means” 0 0
bagging and “exponential smoothing” and clusters 1 2
bagging and “exponential smoothing” and k-means 0 1
bagging and “exponential smoothing” and k-medians 0 0
bagging and “exponential smoothing” and “k-
medoids”

0 0

bagging and “exponential smoothing” and “PAM” 1 1
bagging and “exponential smoothing” and “partition-
ing around medoids”

1 1

bagging and “exponential smoothing” and “fuzzy c-
means”

0 0

bagging and “exponential smoothing” and weighting 0 1

Table 2.5: Queries for set 4

2.1.2
Applications in literature

When mining each of the sets for relevant materials, either theoretical
references or examples of applications, a mix of materials for time series
forecasting that include either a bagging or clustering component can be
identified.

Cordeiro and Neves proposes a combination of exponential smoothing
models and the sieve bootstrap to produce forecasts, and tested the model on
M3 data [7]; Bergmeir, Hyndmand, and Benítez proposes a different model, a
combination of Box-Cox transformation, STL decomposition, moving block
bootstrap, and exponential smoothing, again tested on M3 data [8]. This
latter model has seen application for aviation demand forecast [3], and energy
consumption [4]. All these make a well founded argument for enhancements in
forecasting accuracy — especially in sectors sectors where, due to their scale,
even small gains in forecasting lead to significant financial impact. [19] take
on tourism demand forecasts for Australia, working with a hybrid procedure
to model future arrivals. When bagging the model, the authors noticed an
increase in predictor accuracy.
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Considering applications for the maximum entropy bootstrap developed
by Vinod and López-de-Lacalle [20], there is the determination of the onset
and withdrawal of the monsoon season [21]. An application for time series
data related to the torque friction of rolling bearing, used the bootstrap
method to combine the results of five different forecasting technique and were
able to solve a prediction problem under conditions where the probability
distribution is unknown and with changes to the trend [22]. The method was
applied to a weather generator, and managed to achieve better performance
in computational efficiency and extrapolation [23]. For a more theoretical
application, the method enabled the extraction of descriptive statistics from
functional time series, and enabled the estimation of the functional principal
components [24].

Clustering was used in combination with time series forecasting methods
to improve predictor quality for network traffic loads [25]. The authors noted
accuracy gains over simple forecast methods when applying this integrated
approach. A problem of daily peak load forecasting was tackled with a
model that combines double seasonal Holt-Winters, neural networks, and fuzzy
clustering — although complex, the authors noted the approach improved
forecast quality [26]. A proposition where a density clustering, based on the
forecasts at a horizon h, and where the bootstrap methods employed to
produce the forecasts are non-parametric was also identified in literature.
These methods are used as an alternative to the sieve bootstrap since they
do not share its limitations [27, 28]. Time series clustering was employed
to analyse data from European electricity markets, highlighting differences
between northern and southern countries [29]. Authors applied hierarchical
clustering methods with a convex combination of metrics.

Two reviews on the available clustering literature have been identified
[14, 15]. Implementations for R were also located. The cluster library, whose
algorithms are detailed on the book by Kaufman and Rousseeuw [30], the
TSclust package [31], and the dtwclust package [32]. When looking for other,
more general references, four books on the topic were identified. Of these, only
one does not have a chapter dedicated to time series clustering [33], three
include one chapter dedicated to time series clustering [17, 18, 34], and one of
the books is completely dedicated to the topic [13]. The work by [33] has an
emphasis on how to implement clustering methods with R, and includes code
examples and relevant libraries.

At the time of writing, an implementation developed by [11] combines
the three aforementioned elements (i.e., time series forecasting, bagging, and
clustering), in which clustering and other ensemble methods were used to
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improve forecasts for smart meter data. The internals are greatly different
from the model proposed by [6].

In the method proposed by [11], first data is z-score normalised and
regression coefficients are computed. These coefficients are then used for
clustering. The number of clusters is validated by an internal CVI. Series within
each cluster can be aggregated based on the consumers themselves or through
simple aggregation. These aggregated series are then bootstrapped, to generate
training data for forecasting methods. The forecast horizon for the authors is
one day ahead. Ensemble learning methods are used to combine the multitude
of forecasts produced for a given customer cluster into one single forecast. The
final forecast is then computed through aggregation of the data generated in
the previous step and compared with real consumption data. Smart meter data
was collected from Australia, Ireland, and London [11]

For [6], B replicates of the train series are generated with MBB and
forecast for a horizon h. The symmetric mean absolute percentage error
(sMAPE) is calculated using the validation and forecast series. Series are then
grouped into k clusters using PAM, where the Silhouette criterion is used to
obtain the optimum number of clusters. From each cluster, a fraction of the
series with the lowest errors is selected and an ETS model is then adjusted.
Datasets from the M3 and CIF 2016 competitions were used, with yearly,
quarterly, and monthly frequency, totalling 2901 different series [6].

It is important to emphasise that, while all the above-mentioned refer-
ences are important contributions, none expands on the framework proposed
by Dantas and Oliveira [6]. Table 2.6 lists publications (articles in journals,
proceedings, books, and book chapters) that are relevant to this research. Ma-
terials are presented by their year of publication.

Reference Description

Lahiri (2003) [35] Reference for different bootstrap methods
(Book).

Liao (2005) [14] Literature review on clustering methods.
Cordeiro and Neves (2006)
[36]

Review on bootstrap methods for time series
forecasting.

Hyndman and Khandakar
(2008) [37]

Implementation of automatic selection of ex-
ponential smoothing models with state space
models.

Cordeiro and Neves (2009)
[7]

Implementation of time series bagging, em-
ploys the sieve bootstrap.

Continues on the next page
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Continued from the previous page

Reference Description

Vinod and
López-de-Lacalle (2009)
[20]

Article for the meboot R library, imple-
menting the maximum entropy bootstrap.

Kotsakos et al. (2014) [38] Book chapter. Contains a section discussing
some univariate and multivariate dissimi-
larity measures. For the clustering algo-
rithms themselves, the authors list partition-
ing, hierarchical, density-based, and trajec-
tory clustering as shape-based methods.

Montero and Vilar (2014)
[31]

Article for the TSclust R library, imple-
menting a variety of dissimilarity measures
for time series clustering.

Reddy and Vinzamuri
(2014) [39]

Book chapter. For partioning methods, the
book covers the basic k-Means algorithm and
eleven varitons, including Fuzzy c-means. For
hiearchical clustering, five agglomerative and
three divisive methods are discussed.

Aghabozorgi,
Shirkhorshidi, and Wah
(2015) [15]

Literature review on clustering methods,
published a decade after the work of Liao
(2005)[14].

Bergmeir, Hyndman, and
Benítez (2016) [8]

Combines exponential smoothing, Loess-
based decomposition, bootstrap and bagging
to improve forecast quality.

Caiado, Maharaj, and
D’Urso (2016) [40]

Book chapter showcasing existing work for
model, observation, and feature-based meth-
ods, together with examples and applica-
tions.

D’Urso (2016) [41] Book chapter focused on fuzzy clustering,
commenting on its matheamtical and compu-
tational aspects, how to evaluate partitions,
existing variants (prototype, distance, and
objective function, and data feature-based
implementations).

Continues on the next page
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Continued from the previous page

Reference Description

Dantas, Oliveira, and
Repolho (2017) [3]

Application of Bagged.BLD.MBB.ETS
to aviation data, leading to an improvement
of forecasts.

Dantas and Oliveira (2018)
[6]

Expands the model propsed by Bergmeir,
Hyndman and Benítez (2016) [8]. Resulted
in forecasting quality improvements for
monthly data.

De Oliveira and Oliveira
(2018) [4]

Application of bagging with ARIMA and ex-
ponential smoothing to electric consumption
series.

Petropoulos, Hyndman,
and Bergmeir (2018) [10]

Experiments on why bagging works.
The work explore alternatives to bag-
ging, alongside alternatives to the mov-
ing block bootstrap procedure for the
Bagged.BLD.MBB.ETS method.

Hyndman and
Athanasopoulos (2019) [16]

Time series forecasting reference (book).

Laurinec et al. (2019) [11] Application of clustering with other machine
learning methods to smart meter data.

Maharaj, D’Urso, and
Caiado (2019) [13]

Time series clustering book, includes mate-
rials for partitioning, hierarchical, dynamic
time warping, fuzzy and other clustering
methods, alongside their mathematical for-
mulations.

Martins, Lagarto, and
Cardoso (2019) [29]

Application of hierarchical, agglomerative
clustering to analyse electricity market
prices. Also employs a convex combination
of distances.

Sardá-Espinosa (2019) [32] Article for the dtwclust R library, imple-
menting a framework for time series cluster-
ing construction and evaluation.

Table 2.6: Selected references from literature

2.2
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Exponential smoothing

Exponential smoothing methods were proposed in the late 1950s and
early 1960s by Brown, Holt and Winters. These methods use weighted averages
of the observed data to produce point forecasts, where more recent data points
are more important than older ones. This is reflected in the mathematical
modelling of these methods, where these weights decay exponentially [42, 43,
44, 16, 8, 3].

The first, and most simple method, called single exponential smooth-
ing (SES) considers only a level lt and a hyper-parameter α — i.e., the model
does not take into consideration any kind of trend or seasonality pattern.
The second, Holt’s linear method models a level lt and a trend bt and two
hyper-parameters, the α from SES, and a β for the trend [16]. Holt-Winters’
method is an expansion of Holt’s work, where the seasonal cycles of a time
series are taken into account [44, 43]. Thus, there are three equations for com-
puting the level lt, the trend bt, and seasonality st. These three equations also
take three hyper-parameters α, β, γ. The models can either be additive or
multiplicative. For Holt’s linear and Holt-winter’s models, a damping of the
trend bt can be also be enabled, by introducing a hyperparameter φ [16].

Besides these models, other combinations based on trend and seasonal
components can be modelled as shown in table 2.7, for a total of 9 different
exponential smoothing methods. Models in bold correspond to the methods
described below, a relation between the trend-seasonal components shorthand
is available in table 2.8.

Seasonality
Trend None (N) Additive (A) Multiplicative (M)

None (N) (N, N) (N, A) (N, M)
Additive (A) (A, N) (A, A) (A, M)
Additive, damped (Ad) (Ad, N) (Ad, A) (Ad, M)

Table 2.7: Exponential smoothing methods (Adapted from [16])
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Shorthand Name of the method

(N, N) Simple exponential smoothing
(A, N) Holt’s linear method
(Ad, N) Additive damped trend method
(A, A) Additive Holt-Winters’ method
(A, M) Multiplicative Holt-Winters’ method
(Ad, M) Holt-Winters’ damped method

Table 2.8: Shorthands for the named exponential smoothing methods (Adapted
from [16])

The state space models framework extends the exponential smoothing
family [37] — it uses the same terms for trend and seasonality use to categorise
these methods, but considers that the forecasting error can be either additive
or multiplicative, as shown in tables 2.9 and 2.10. While the error does not
have an impact on the point forecast, their inclusion enables the generation of
prediction intervals for the forecasts. The acronym for these models, ETS,
stands for the Error, Trend, Seasonal components. [16, 37, 8]. The ets()
function, available in the forecast library includes both options: users can
specify the model they want to use, or let an embedded automatic procedure
to set the model to the available data [9].
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Seasonality
Trend N A M
N yt = lt−1 + εt

lt = lt−1 + αεt

yt = lt−1 + st−m + εt

lt = lt−1 + αεt

st = st−m + γεt

yt = lt−1st−m + εt

lt = lt−1 + αεt/st−1

st = st−m + γεt/lt−1

A yt = lt−1 + bt−1 + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

yt = lt−1 + bt−1 + st−m + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

st = st−m + γεt

yt = (lt−1 + bt−1)st−m + εt

lt = lt−1 + bt−1 + αεt/st−m

bt = bt−1 + βεt/st−m

st = st−m + γεt/(lt−1 + bt−1)
Ad yt = lt−1 + φbt−1 + εt

lt = lt−1 + φbt−1 + αεt

bt = φbt−1 + βεt

yt = lt−1 + φbt−1 + st−m + εt

lt = lt−1 + φbt−1 + αεt

bt = φbt−1 + βεt

st = st−m + γεt

yt = (lt−1 + φbt−1)st−m + εt

lt = lt−1 + φbt−1 + αεt/st−m

bt = φbt−1 + βεt/st−m

st = st−m + γεt/(lt−1 + φbt−1)

Table 2.9: Additive error models (Adapted from [16])
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Seasonality
Trend N A M
N yt = lt−1(1 + εt)

lt = lt−1(1 + αεt)
yt = (lt−1 + st−m)(1 + εt)
lt = lt−1 + α(lt−1 + st−m)εt
st = st−m + γ(lt−1 + st−m)εt

yt = lt−1st−m(1 + εt)
lt = lt−1(1 + αεt)
st = st−m(1 + γεt)

A yt = (lt−1 + bt−1)(1 + εt)
lt = (lt−1 + bt−1)(1 + αεt)
bt = bt−1 + β(lt−1 + bt−1)εt

yt = (lt−1 + bt−1 + st−m)(1 + εt)
lt = lt−1 + bt−1 + α(lt−1 + bt−1 + st−m)εt
bt = bt−1 + β(lt−1 + bt−1 + st−m)εt
st = st−m + γ(lt−1 + bt−1 + st−m)εt

yt = (lt−1 + bt−1)st−m(1 + εt)
lt = (lt−1 + bt−1)(1 + αεt)
bt = bt−1 + β(lt−1 + bt−1)εt
st = st−m(1 + γεt)

Ad yt = (lt−1 + φbt−1)(1 + εt)
lt = (lt−1 + φbt−1)(1 + αεt)
bt = φbt−1 + β(lt−1 + φbt−1)εt

yt = (lt−1 + φbt−1 + st−m)(1 + εt)
lt = lt−1 + φbt−1 + α(lt−1 + φbt−1 + st−m)εt
bt = φbt−1 + β(lt−1 + φbt−1 + st−m)εt
st = st−m + γ(lt−1 + φbt−1 + st−m)εt

yt = (lt−1 + φbt−1)st−m(1 + εt)
lt = (lt−1 + φbt−1)(1 + αεt)
bt = φbt−1 + β(lt−1 + φbt−1)εt
st = st−m(1 + γεt)

Table 2.10: Multiplicative ETS models (Adapted from [16])
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2.3
Resampling methods

2.3.1
IID Bootstrap and Bagging

The bootstrap — also known as IID bootstrap –, introduced in 1979
by Efron [45], has been used as a tool to gauge statistical precision, and to
measure the uncertainty that is linked to either an estimator or a statistical
learning method. The method is used to estimate a parameter θ̂ for a random
sample x with an unknown distribution F [46, 47, 48]. This computer-intensive
method does not make assumptions about the underlying structure of the
random process that produced the data. A non-exhaustive list of its uses
includes: the computation of estimates for the variance, distribution function,
critical values, and confidence intervals [35]. With regard to how it can be
performed, B artificial data sets are generated by sampling the original data
with replacement. Each of these replications has the same dimensions of
original dataset [46]. This enables the tool to be flexible enough to be used
in a wide variety of learning methods, some of which would be difficult to
directly compute measures of variability or the software does not provide an
automatic output [47].

Bagging — short for bootstrap aggregating — is an ensemble method
closely associated with the bootstrap, used to reduce the variance of a sta-
tistical learning method. When applied to numeric data, after B bootstrap
replicates are generated, data is aggregated by averaging the ensemble. How-
ever, it is possible to use other reducing functions such as the median or the
trimmed mean [5, 47, 34, 8]. While the method in itself is simple, good per-
formance can be attained with fairly unreliable data [49]. When working with
time series data, there is experimental evidence that bagging is capable of han-
dling the uncertainty that arises from the data itself, the forecasting model,
and the parameter selection when dealing with time series forecasting [10], al-
though modifications to the IID bootstrap need to be made in order to cater
for the serial correlation present. With the relevant adjustments to the boot-
strap procedure, application of bagging has resulted in increased forecasting
accuracy [19, 3, 6, 4].

2.3.2
Bootstrap for dependent data

As noted in the literature, the IID bootstrap does not work properly for
time series data since it does not take into account the dependence structure
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of the observations, and when the data re-sampling occurs, this information
is lost – i.e. the dependence structure is not preserved, failing to account
for lag-covariance terms [35, 36]. A different approach is then required in
order to satisfactorily treat dependent data. Research on re-sampling methods
that preserve this structure have been conducted since the late 1980s, and an
assortment of bootstrapping methods for dependent data has been developed.
Examples of this include the moving block bootstrap, the circular block
bootstrap, and the sieve bootstrap [35, 50, 36, 35, 51]. These methods employ
different sampling strategies to safeguard the previously mentioned dependence
structure, but most come with a common restriction — in order to be properly
deployed, data must be stationary [35]. Hence, ancillary methods that can
transform data from non-stationary to stationary might be required. A non-
exhaustive description of re-sampling methods is detailed here, followed by an
overview of decomposition methods that can provide the required.
Moving block bootstrap (MBB) Instead of sampling with reposition a

single point n times, blocks of size l observations are re-sampled. The
setup guarantees that a total of n − l + 1 overlapping blocks exist. The
procedure makes it possible to preserve the autocorrelation structure
within each block [35, 8]. The original IID bootstrap can be seen as a
special case of the MBB when the block size l is equal to 1.

Non-overlapping block bootstrap (NBB) While blocks of size l are still
used for this method, in the same fashion as MBB, the method does not
allow for overlaps, resulting in distinct distributional properties when the
samples are not sufficiently large [35].

Circular block bootstrap (CBB) An extension of MBB, where the series
data is wrapped around a circle, resulting in additional blocks due to
the geometry [36]. The method should theoretically be superior to MBB,
since the latter under-samples the l− 1 first and l− 1 last observations,
for a block size l [10]. Another property that arises from this formulation
is that “the conditional expectation of the bootstrap sample mean under
CBB equals the sample mean of the data [...], a property not shared by
MBB or NBB” [35, p. 34].

Stationary Block Bootstrap (SBB) This method uses a random length
for the block length l, distinguishing it from previous block-based meth-
ods (i.e. MBB, NBB, CBB), where the block size is a fixed value, defined
before the method is run. An alternative implementation sees the method
behaving as a series of binary trials when selecting values for the sample.
A key property of the SBB is that the bootstrap innovations are station-
ary, conditional on the original dataset [35, 36]. For further details on
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the implementation, check [35, 34-36] or [36, p. 1070].
Sieve bootstrap (SB) The procedure consist of adjusting an autoregressive

model of order p, – an information criterion such as the AIC can be used
to choose the adequate order. From this AR(p) model, the empirical dis-
tribution is extracted, and the residuals centred. The bootstrap replicates
are constructed by sampling from the empirical distribution and plugging
the values into the adjusted AR(p) model [35, 7]. While the model itself
is parametric, where the parameters are approximated through the Yule-
Walker equations, the residuals from the resulting model are IID [35, 7].
Concerning its properties, while a sieve can be chosen for its more accu-
rate bootstrap estimator, especially when compared to the block-based
bootstraps, due to the nature of the method, applicability is restricted
to a reduced class of processes [35].

Linear process bootstrap (LPB) One possible alternative to the AR-
based sieve would be to deploy a Moving Average (MA) one. This
alternative would model a given time series Yt with MA(q) processes,
in the same manner an AR sieve would, by fitting increasingly high
order MA(q) processes. There are complications to deliver this kind
of implementation due to the computational requirements to adjust
MA(q) models for large values of q [50]. An alternative would see the
development of an estimator for the covariance matrix. By proposing a
way to construct the covariance matrix, the authors have managed to
generate MA processes without knowledge of its coefficients, and they
note that its performance is similar to that of the “block bootstrap” [50].
As previously mentioned, these methods require stationary data in order

to operate properly, otherwise statistical assumptions are violated. When it
comes to real-world applications, these rarely produce stationary data [20].
To surmount this limitation, a decomposition procedure can be employed,
where the series Yt is disassembled into independent trend Tt, seasonality St
and remainder Rt components. These procedures can be either additive or
multiplicative, i.e. in order to recreate the series, the individual components
are either added or multiplied together, as seen in the equations 2-1 and 2-2.
Once the series is taken apart, the aforementioned bootstrapping methods can
be applied to the remainder. Given how the remainder is constructed, as what
is leftover from removing the trend and, if there is any, seasonality, it might
still hold some serial correlation — which would invalidate the use of the IID
bootstrap. Examples of decomposition procedures include the ARIMA-based
X11-ARIMA, X12-ARIMA, and TRAMO-SEATS, and the Loess-based STL
decomposition [52, 53]. STL decomposition has an advantage over X12-ARIMA
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and TRAMO-SEATS, as it can be used for time series of any frequency (i.e.,
yearly, monthly, quarterly, etc.), where the first two can only be deployed for
quarterly and monthly data [52, 53].

Yt = Tt + St +Rt (2-1)

Yt = Tt × St ×Rt (2-2)

STL decomposition was designed to be simple and straightforward to use,
while still being flexible when considering trend and seasonality. Authors also
aimed to make it resilient to missing values and to anomalous behaviour in the
data when generating trend and seasonality components [53]. It is important
to note that for this method the obtained trend Tt is smoothed [16]. The
method has a total of six parameters that have to be inputted in order to
be used, and some of these can be tweaked or fine-tuned by a user, including
the rate of change for the the seasonal component and the smoothness of the
trend-cycle [16, 53]. Some disadvantages include not being able to deal with
multiplicative decompositions — unless a log transformation is applied to the
data, such as the Box-Cox transformation1 —, and it does not automatically
take into consideration trading day or other calendar variations [16]. While
the procedure available in R has some automated settings for convenience, for
some time series the method parameters may need to be tweaked in order to fit
the structure of any given series [16]. This is done by adjusting the smoothing
parameter for the seasonal component [53, p. 9].

A procedure combining the Box-Cox transformation, STL decomposition,
Moving Block Bootstrap, and Exponential Smoothing was proposed by [8]
under the moniker Bagged.BLD.MBB.ETS. The model was tested with
2829 times series from the M3 competition data set. Breaking them down by
frequency, the authors employed 645 series with yearly frequency, 756 with
quarterly, and 1428 with monthly. The proposed model delivered improved
forecasts, especially on monthly data. The authors also noted that the size of
the time series might have had an impact on the performance of the model [8].

Concerning the block length l for the block-based methods, there are
some considerations to be made. While there are discussions on how to
calculate the optimal block length l for the block-based methods presented
above (MBB, CBB and SBB) [54], an alternative is considered. When working
with Bagged.BLD.MBB.ETS, in order to specify the length l of the blocks,

1The Box-Cox transformation is also used to stabilise the series variance when it changes
over time [1, 16], to approximate normality, or improve linearity [1].
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the following heuristics was found in literature [8]: l is set to l = 8 for both
yearly and quarterly data, and l = 24 for monthly data, in order to seize any
seasonal behaviour in the data. Then, in order to ensure that the values from
the original time series can be arranged in any position within the bootstrap
replicates, bn/lc+ 2 blocks are drawn; a random amount of points, between 0
and l− 1 are removed from the start of the series; after sampling the blocks, a
number of points at the end are dropped until the replicate has the same length
n of the original series. The CBB and LPB procedures were later considered
for Bagged.BLD.MBB.ETS, but test results for these alternatives did not
identify any significant impact on forecasting quality [10].

Considering that data needs to be stationary in order to use the MBB,
and data from real world applications is a mixture of stationary and non-
stationary processes, upholding the stationarity assumption can be problem-
atic. The Maximum Entropy Bootstrap (MEB), proposed by Vinod and López-
de-Lacalle, can be directly applied to data, without the strategies described
previously to obtain a stationary series [20] — i.e. it can be applied to “any
arbitrary stochastic process, including those that are non-stationary and het-
eroscedastic” [55, p. 6].

The procedure first sorts all the data points in increasing order, while
keeping count of the original ordering index. Intermediate points are then
calculated for the order statistics, and within each interval the maximum
entropy density is computed. A sample of size N is drawn from a uniform
distribution [0, 1], where N is the same size of the original time series. These
samples enable the computation of the sample quantiles, and are sorted using
the original ordering index, recovering the dependence structure of the original
dataset [21]. Replicates generated through MEB retain the shape of the original
series, and their time and frequency domains remain close to the original
ones. The whole procedure is non-parametric, which avoids any parametric
restrictions or constrictions altogether.

Additionally, the method guarantees that both the central limit and er-
godic theorems are upheld. As an additional benefit, unlike the IID bootstrap,
the procedure allows limited extrapolation — the sampling range is not re-
strained to the closed interval [min(yt), max(yt)], [20, 21, 23, 24]. As noted in
the previous section, at the time of writing, no studies employing a modified
version of the Bagged.BLD.MBB.ETS, where the MBB is replaced with
the MEB, were identified.
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2.4
Clustering

Due to how bootstrap innovations are generated, there might be a high
covariance in the ensemble, which can in turn impact the mean squared forecast
error (MSFE). Equation 2-3 showcases the three components of the error: the
first term represents the fluctuations inherent to the data itself — meaning
it cannot be reduced or controlled. The remaining two are associated to the
predictor, and therefore to the forecasting method applied to a time series yt
— these two terms, added together, result in the mean square error (MSE).
[6, p. 749].

MSFE = Var(yt+1|t) + bias(ŷt+1|t)2 + Var(ŷt+1|t) (2-3)
When bagging is used for time series forecasting, the average forecast

can be computed as described in 2-4. To compute the bias and the variance,
equations 2-5 and 2-6 can be employed. For the former, when a forecast is
unbiased, bootstrapping will not generate improvements. For the latter, much
of the research on bagging for time series focused on the first term, while
ignoring the second term [6]. There is a trade-off, since it is hardly possible to
reduce both bias and variance, this leads to opt for a biased estimator as long
as it reduces the variance [56, 57].

ỹt+1|t = 1
B

B∑
i=1

ŷ∗(i)t+1|t (2-4)

bias(ỹt+1|t) = 1
B

B∑
i=1

bias(ŷ∗(i)t+1|t) (2-5)

Var(ỹt+1|t) = 1
B

B∑
i=1

Var(ŷ∗(i)t+1|t) + 1
B2

∑
i 6=i′

Cov[ŷ∗(i)t+1|t, ŷ
∗
(i′)t+1|t] (2-6)

Dantas and Oliveira [6] also highlight that previous works focused on
the reduction of variance (the first term of equation 2-6), but no work was
done to address the covariance effect when forecasting with bagging — the
second component of equation 2-6. Nor there was any formulation to restrict
the selection of biased forecasts. To address and reduce this effect, a clustering
component was added to Bagged.BLD.MBB.ETS, after the bootstrap
step of the method. The authors employed the Partitioning Around Medoids
(PAM), due to its celerity and resilience to outliers [6].

Given how ubiquitous time series data are in domains such as engineering,
environmental science, business finance, energy, health care, and government.
Clustering these high dimensional — and often times large in size — datasets,
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can be advantageous, leading to the discovery of relevant patterns for appli-
cations in the above-mentioned fields [15, 13, 28]. Thus, understanding of the
methods available is crucial for application.

2.4.1
Taxonomy

Clustering is an unsupervised machine learning method that aims to
identify disjoint subsets (clusters) in a set of data points or objects, without
previous knowledge of the groups’ make up. For any one cluster, elements
within it are highly similar, while they are highly dissimilar when compared to
elements belonging to other clusters [58, 15]. How this partitioning is achieved
and what the optimal number of cluster should be is not a steadfast concept —
the former depends on the data and a practitioner’s needs, and the latter can
be assessed through criteria that use information extracted from data itself.
Clustering can also be the core of a process in itself, or a secondary aspect (as
seen in the preprocessing done by Dantas and Oliveira [6]). When it comes to
time series data clustering has procedures that are significantly different when
compared to the ones for static data [58, 14, 32, 47, 13].

How these methods can be classified varies depending on how data is
handled and how the clusters are formed. For static data, where the values
do not change over time, there are five categories to put any one method in:
partitioning, hierarchical, density-based, grid-based, and model-based [14, 32].
[15, 29-30] includes a sixth category called multi-step clustering, where different
clustering methods are applied in sequence to the available data. A description
of these items follows [14, 32, 15, 59, 60, 61]:
Partitioning methods n unlabelled objects are split into k partitions,

guaranteeing that each group contains at least one object. These can
be either crisp, where one object belongs to only one group, or fuzzy,
where an object belongs to more than one group to varying degrees.

Hierarchical methods trees of clusters are generated and can be classified
by the way the tree structure is created: agglomerative methods start
from the bottom, considering each object as a cluster in itself, merging
then gradually. Divisive methods do the reverse, starting with all objects
into a single cluster, splitting until there is only one object per cluster.

Density-based methods Dense areas are separated by low-density, sparser
areas. These circumvent methods that normally expect data originated
from a probability distribution of a certain type, such as k-means. These
methods are non-parametric and can detect outliers and remove noise,
being suitable for datasets that present arbitrary shapes. Two well known
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algorithms for this category are DBSCAN and OPTICS. While this
family of methods has not found broad applications for time series data
due to its high complexity [15], a more recent application implements
DBSCAN and OPTICS for energy consumption forecast [11].

Grid-based methods Data is quantised into a finite number of cells, form-
ing a grid upon which clustering operations are performed. [15] remarks
that, at the time their article was written, no cluster-based application
for time series clustering was identified.

Model-based methods This probabilistic approach attempts to optimise
the fit between observed data and some mathematical model — e.g. a
mixture of probability models. An assumption of this approach is that,
for each cluster, a model is assumed, and the procedure is to find data
that best fits that model. An alternative approach uses neural networks
instead of probabilistic models.
For time series clustering, how models are classified varies. They can be

labelled based on the representation of the available data. This yields three
types: observation-based, model-based, and feature-based. Alternatively, con-
sidering how clusters are constructed based on the available data, an alternate
set of labels can be used: hierarchical, partitioning, and fuzzy clustering. Con-
sidering the latter categorisation — i.e. hierarchical, partitioning and fuzzy
clustering — the descriptions for the first two are the same as the ones pre-
sented at the start of this subsection. Fuzzy clustering creates overlapping
groups, contrasting with crisp clustering (i.e. partitioning) where a series can
be in more than one group, to varying degrees, making overlapping divisions
[32, 15, 14, 13].

Representation-based models are also labelled as observation-based or
raw-data-based methods due to the use of raw data, or due to the transfor-
mation of the observed process. Data can be represented either in the time or
frequency domain. These methods lend themselves to a more geometric ap-
proach when clustering series. When working with raw data, a large amount
of observations introduces noise, ignores the autocorrelation structure present
in time series, and can be a high-dimensional task [14, 13, 40].

Feature-based clustering addresses these issues. These methods lead
to dimensional reduction, which can improve computational times, and can
be applied to series of different sizes. Features can be extracted from the
time domain, frequency domain, or wavelet decomposition of a time series.
Care needs to be taken, as a given feature might work well for a given
implementation, but might not be useful in other contexts. Stationarity also
plays a role: features obtained from stationary data are not necessarily the
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same as those obtained from non-stationary data [14, 13, 40]. Features from
the time domain include autocorrelations, partial autocorrelations, and cross-
correlations. Frequency domain features include a series periodogram and its
spectral ordinates. From the last one, the wavelet domain, discrete wavelet
transform (DWT) can compute wavelet variances and correlations are also
found in the literature [13].

Model-based approaches assume that the time series of interest were
generated by a certain probability model or by a mixture of probability models.
Series are clustered thorough parameter estimation or through the residuals of
fitted models. Two challenges in this type of clustering include the handling
of heteroskedastic time-series, and the posibility that the analysed time series
data includes data that is not associated with the same number of parameter
estimates [14, 13, 40].

Authors might use additional labels or other descriptions. [13] goes
further and lists supervised feature-based clustering approaches and other
methods for time series data. [38] posits two categories: correlation-based on-
line clustering, and shape-based off-line clustering. The former is done in real
time, where clusters are constructed in real time, based on the correlations
between the different series. The latter uses the observations to cluster data of
similar shapes through the use of a similarity function. [62] considers three
categories for clustering methods: non-overlapping, overlapping, and fuzzy
algorithms.

2.4.2
Dissimilarity measures

To enable partitioning, it is necessary to numerically measure the differ-
ences between the elements. Distances lend themselves to what is needed for
analysis, where conventional distances, such as the Euclidean or Manhattan,
can be used to compare profiles. Feature-based measures use concepts such as
autocorrelations, spectral ordinates, or others, and in fact lead to a reduction
of dimensionality. A third set of measures consider an approximation of the
underlying models for the observed data, and evaluation of the dissimilarity is
conducted based on what models are fit [31, 13].

Starting with distances based on raw data, a common dissimilarity mea-
sure used is the distance class of Minkowski, where the Manhattan Euclidean
distances are special cases for this class, when a parameter r is set to r = 1
or r = 2 respectively. An alternative formulation for the distance can consider
a weighing component [13, 38]. Other methods include the Canberra distance,
Pearson correlation, and angular separation [63, p. 50]. Two other different
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formulations for the a Pearson correlation-based distance include the use of
square roots and a parameter β to control how fast the distance decreases [31].

Another alternative includes the Fréchet distance. While the method,
at its inception in 1906 by Fréchet, considered only continuous curves, it
is also possible to implement the distance for discrete cases. This distance
measures the proximity of a curve as a whole, taking into consideration the
ordering of the observations, and not just as two sets of points [31]. For details
on the implementation, see [31, p. 5]. Other measures include the dynamic
time warping distance (DTW) and its derivatives, which aim to identify the
optimum warping path between two series under a certain constraint. Global
alignment kernel distance (GAK) evaluates two series based on their kernels.
Shape-based distance (SBD) is a faster alternative to DTW, and is used for
the k-shape clustering method [32]. Regarding the computational cost for a
selection of these measures, DTW, GAK, and SBD are considered to have
medium, high, and low costs respectively [32]. For the Fréchet distance, the
cost is also high, since it creates a set of all possible sequences of pairs that
preserve the observation order [31].

Other authors have used features of the time series themselves in order
to construct the dissimilarity matrix, including the autocorrelation and partial
autocorrelation functions — ACF, PACF respectively – with uniform and geo-
metric weights, periodogram ordinates and normalised periodogram ordinates,
and spectral estimators [31]. However, use of ACF for clustering seems to be
controversial. [64] mention that the metric is good to classify stationary and
non-stationary processes, but performance is not the best when used to clus-
ter ARMA and non-linear processes. [65] proposed an autocorrelation fuzzy
c-means, and noted that AR(1) coefficients were used for clustering, yielding
better results than k-Means, and comparable to hierarchical methods.

For periodogram-based measures, a selection of distances is available.
A first collection of metrics can be built starting with the Euclidean distance
between the periodogram ordinates for two series. From this metric, two others,
a normalised and a logarithmic normalised versions can be derived. [64].

Given that the spectrum of a series is normally not known, it needs
to be estimated. The estimators for the spectra lead to the construction
of three different dissimilarity measures. The first metric substitutes the
spectra for local linear smoothers of the periodograms generated through least
squares. The second applies an exponential transformation to the least squares
generated local linear smoothers of the log-periodograms to substitute the
spectra. A third metric uses the previously described formulation, but makes
use of the maximum local likelihood criterion instead of the least squares [64].
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In addition to these metrics, [64] propose and test two additional non-
parametric metrics, variations based on the log-spectra. One based on a
generalised likelihood ratio distance, which is a significance test between the
equality of two log-spectra. The other uses the integrated squared differences
between these estimators.

In conjunction with the dissimilarity measures, the computation of
prototypes are an important step, and it is directly related to the quality of
the clusters. A prototype summarises the characteristics of the series contained
within a cluster. Terms for this construct include average series, prototypes or
centroids [32, 15].

When using a medoid as a prototype, “the centre of a cluster is defined
as a sequence which minimises the sum of squared distances to other objects
within the cluster” [15, p. 25]. Since the medoid itself is also a member of the
original data set, this preserves the structure of the data and enables the reuse
of the distance matrix for each iteration. One significant drawback is when
such method is applied to larger datasets — the matrix needs to computed at
the start of the procedure [32]. In the alternative, the averaging prototype, the
object is constructed by averaging the data [15, p. 25].

2.4.3
Overview of clustering methods

k-Means As indicated in the query results, k-means is one of the most widely
available clustering methods available, and it has also been used for time series
clustering. The procedure has a random start, where k random objects are
selected and allocated to a cluster using a dissimilarity measure. The centres
are then recalculated. This is repeated until a convergence criteria is achieved
[38]. Given the random start, some implementations enable multiple starts to
use the method [66]. The algorithm has O(k ·n·r ·D) complexity, where k is the
number of clusters (defined by the user, before the algorithm is run), n is the
size of the dataset, r is the number of iterations until convergence is achieved,
and D refers to the dimensionality of the object space. A modification of the
k-means algorithm leads to the k-medoids [38].

Partitioning Around Medoids k-medoids historically has its roots in opera-
tions research, the method has been proposed several times, but the primary
reference and implementation is the one by Kaufman and Rousseeuw [30],
named Partitioning Around Medoids (PAM) [39]. Since medoids are used in
this method, PAM is periodically preferred over methods where centroids are
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created through the mean or the median — i.e., the centroids come from the
data set itself [32]. Another advantage that comes with it is the reuse of the
whole distance matrix for the entire clustering process [32]. When it comes to
the clustering of large time series, both k-means and k-medoids are preferred
as an alternative to other clustering methods due to their complexity, although
it should be noted that both are hill-climbing algorithms, which converge on
a local optimum [38].

Fuzzy c-Means The Fuzzy c-Means (FcM) clustering method was introduced
by two researchers, independently in 1974, and at a later point extended
and formalised [41]. Fuzzy clustering can be taken as an extension of crisp
clustering, where the constraint of non-overlapping groups is removed, making
data points belong to more than one cluster to varying degrees. This degree
of membership is constrained in such a manner that its sum equals 1 across
all clusters. For k clusters, the membership of n objects can be represented
through a matrix u, where all rows sum to 1 [32, 41]. Additonally, there is a
fuzziness parameter m that needs to be adjusted before running the method,
which can be set to any number in the open interval (1,∞) and needs to be
tailored to the application. Numbers too close to one will result in a quasi-crisp
partition, with membership degrees close to either 0 or 1, and exceedingly large
values result in excessive overlap. While there are heuristics for the best choice
of m, the most acceptable value seems to be m = 2 [41].

Fuzzy Analysis Proposed by Kaufman and Rousseeuw [30], this fuzzy clus-
tering implementation does not use prototypes to construct the clusters —
instead it aims to minimise the total dispersion of the dataset, which results
in an algorithm not as sensitive to outliers, and which is robust to the spheri-
cal clustering assumption [30, 63]. The method also requires a parameter r to
be set. This membership exponent can be any number on the open interval
(1,∞). While the default is r = 2, complete fuzziness might ensue, and it is
not possible to determine the best value for this method without prior testing
[67, 30].

DBSCAN, OPTICS In DBSCAN, a cluster continues to grow as long as its
density exceeds a certain threshold for a fixed-radius neighbourhood. Points are
considered connected if they are located within each others’ neighbourhoods
[59]. Its implementation includes two parameters: a minimum number of points
and the size of the neighbourhood [68]. OPTICS functions are an extended
version of the DBSCAN algorithm, differing in operations — OPTICS does not
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assign cluster memberships, but stores the order in which points are processed,
and uses two other pieces of information, the core-distance and the reachability-
distance. The latter enables the plot of the clustering structure [59].

2.4.4
Cluster validity indices

The assessment of cluster quality is a key component and enabler of
successful clustering applications. This assessment is done through what are
called cluster validity indices (CVIs), which take into consideration two factors,
compactness and separation. The former is a measure of the proximity of
objects within a cluster and the latter measures the degree of separation
between clusters [69].

CVIs fall into two classes, internal and external. Internal indices only
consider the divisions and the already clustered data, and it is also possible to
combine them with significance testing. External indices evaluate the goodness
of fit between the output of a given clustering method and a predefined,
external structure. External indices are seldomly used, as such information
is scarcely obtainable [69, 70, 32].

A third class of indices, called relative criteria, has also been put forward
— these enable the comparison of different clustering produced by a given
method under different parameters, in order to decide on which is the best
[70]. There are alternatives to evaluate clustering output, with at least one
approach based on cluster ensembles, where instead of evaluating the methods
themselves, several clustering results are used to derive consensus [32].

It is not possible to infer which CVI will work best, thus they should be
assessed for each particular case [32]. While much research has been devoted
to the topic, there is an abundance of indices and approaches, with new indices
regularly being created. It is also noted that there are no clear guidelines on
choosing an index are readily available [69, 70]. There are also cases where
such validation criteria have limitations to fulfil their task. Examples include
the absence of external indices and the presence of internal indices that are not
robust, the existence of subjective assessments such as case studies, or when
there are structural idiosyncrasies in a dataset [69].

CVIs are described in detail in [32, p. 17], where they are identified as
either Internal or External, whether a given index should be applied to evaluate
crisp or fuzzy clusterings, whether the computed measure should be maximised
or minimised, along with further considerations on computation. The relevant
information for internal indices is summarised in table 2.11.
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Index Type Target Description

Silhouette Crisp Maximised Requires cross-distance matrix.
Dunn Crisp Maximised Requires cross-distance matrix.
COP Crisp Minimised Requires cross-distance matrix.
Davies-Bouldin Crisp Minimised Uses the distances to the com-

puted cluster centroids.
Modified
Davies-Bouldin

Crisp Minimised Uses the distances to the com-
puted cluster centroids.

Calinski-
Harabasz

Crisp Maximised Uses the distance to a global
centroid.

Score function Crisp Maximised Uses the distance to a global
centroid.

MPC Fuzzy Maximised —
K Fuzzy Minimised Computes a global centroid.
T Fuzzy Minimised Computes a global centroid.
SC Fuzzy Maximised —
PBMF Fuzzy Maximised Computes a global centroid.

Table 2.11: Selection of Crispy and Fuzzy cluster validity indices (Adapted
from [32, p. 17])

2.4.5
Tools for times series clustering

For this research, the R language was the language of choice, given the
readily available libraries and implementations of clustering methods. Out
of four libraries identified, this research leverages two of them, cluster and
TSclust.
stats Part of the base R program. Contains base partitioning (k-Means) and

hierarchical clustering functions [66].
cluster Implementation of partitioning and hierarchical clustering methods,

as proposed by Kaufman and Rousseeuw [30]. PAM is also available in
this library [67].

dtwclust Implements a variety of clustering methods and cluster validity
indices. For full details on the implementation, see [32].

TSclust Library implementing different dissimilarity measures for time series
clustering. Methods generate a dissimilarity matrix that can be used for
methods in the cluster library. Includes feature and observation-based
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functions, and a density-based forecast clustering algorithm [31]. The
library is compatible with the cluster and dtwclust libraries.
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3
Method

3.1
Proposed algorithms

Given the state of the art – as seen through the queries results –
in association with the materials gathered in chapter 2, this research puts
forward models that explore variations on the bootstrap component of
Bagged.BLD.MBB.ETS [8] and on the bootstrap and clustering compo-
nents of the model proposed by Dantas and Oliveira [6, 71]. These are go-
ing to be referred from this point onwards as, respectively, BaggedETS and
BaggedClusterETS.

Considering that most bootstrap procedures need extra steps in order
to resample time series data, in order to ensure stationarity in the original
method, an initial proposal is to use the Maximum Entropy Bootstrap (MEB)
to simplify the procedure. Also, as noted in the previous chapter, the method
was successfully used in other problems with dependent data. Since the queries
have returned no results for the combination of Exponential Smoothing with
MEB, experiments to check the effects of MEB-generated bootstraps have
on BaggedETS should be checked. The method was implemented as the
BaggedETS.MEB procedure.

The second proposal is to change the metric distances when computing
the dissimilarity matrix required for PAM. Four dissimilarity distances were
picked: one based on the Pearson Correlation (cor), another based on the
discrete wavelet transform (dwt), a third using the least squares estimation
of the log spectra of the series (llr), and a fourth build on the generalised
likelihood (glk) ratio distance. While in the original method the dissimilarity
matrix was built by using the raw data, through the computation of the
distance between the series via Euclidean distance (eucl), this proposal aims
to evaluate the impacts on forecast quality when using metrics derived from
features during the clustering step. The choice to use feature-based metrics
aims to also check, by effectively reducing the dimensionality of the data,
whether the noise from the bootstrap replicates affects clustering. These
dissimilarity measures are also available in the TSclust library [31].

Equations 3-1 to 3-5 detail the workings of each of the distances used.
Equation 3-1 is the Euclidean distance [13, 31]. Equation 3-2 is an implemen-
tation described in [31], using the square root of one minus the correlation
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between two series. Equation 3-3 describes the metric based on the discrete
wavelet transform (DWT) for two series, where the algorithm computes the
sum of differences between the elements of the approximation coefficients A(u)

j?

and A(v)
j? , where u, v ∈ {1, . . . ,m} and u 6= v. The parameter j? is a scale pa-

rameter obtained by minimising the sum of square errors between the original
series and its approximation [31].

Concerning spectra-estimator-based metrics, as seen in equations 3-4 and
3-5: dLLR uses a divergence function W defined as W (x) = log(αx+ (1 +α))−
αlogx, where α is a value in the open interval (0, 1). Since the spectra fXT

,
fYT

are unknown, the ought to be estimated. For this study, the spectra were
obtained via least squares approximations of the exponential transformation
of local linear smoothers of the log-periodograms [31]. For this study, α is set
to 0.5 (the TSclust package default [31]).

The generalised likelihood described in equation 3-5, has the log dif-
ference of the periodograms Zk = log(IX(λk)) − log(IY (λk)). The difference
between the log-spectra is defined as µ(λk) = mX(λk) − mY (λk), where
mX(λ) = log(fX(λ)) [31, 64].

dEUCL =
(

T∑
t=1

(Xt − Yt)2
) 1

2

(3-1)

dCOR =
√

2(1− r) , r = COR(XT , YT ) (3-2)

dDWT =
√∑

k

(
a

(u)
k,j? − a(v)

k,j?

)2
(3-3)

dLLR = 1
4π

∫ π

−π
W

 f̂XT
(λ)

f̂YT
(λ)

 dλ (3-4)

dGLK =
n∑
k=1

[
Zk − µ̂(λk)− 2log

(
1 + eZk−µ̂(λk)

)]
−

n∑
k=1

[
Zk − 2log

(
1 + eZk

)]
(3-5)

And the third and last proposal aims to remove the validation step of
the BaggedClusterETS. Instead of creating an internal train-validation split
inside the algorithm, as in the original model, to adjust a model for each of
the B replicates and comput the error, the proposal instead identifies the
best clustering and extracts its medoids to do the forecast. For this method,
the dissimilarity matrix is built with the raw data, using the dissimilarity
measures as in the previous method. This method is referred henceforth as
BaggedMedoidETS.

For this study, the Partitioning Around Medoids (PAM) clustering
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algorithm is kept, alongside the Silhouette criterion to determine the optimal
number of clusters, as it also uses the same cross distance matrix input to
PAM. The method was kept due to its fast execution and resistance to outliers
[6], and due to its simplicity, given that other methods require one or more
parameters to be set before the algorithm is executed, as discussed in the
previous chapter. The same applies for some distances, which need some sort
of parameter to be defined beforehand.

Figure 3.1 is a side by side comparison of the base methods for
this research, i.e. BaggedETS and BaggedClusterETS. Figure 3.2 dis-
plays the functioning of the proposed methods for this study. On the left,
the BaggedETS.MEB model, and on the right, the BaggedMedoidETS
model. For BaggedClusterETS and BaggedMedoidETS, changes in the
clustering distance when running under PAM are not visually identified, as
it is an inherent part of clustering procedure. The ETS, BaggedETS, and
BaggedClusterETS methods are also going to be used as a reference when
comparing error and computational performance for the proposed variations.

For each proposal, the number B of replicates is set as follows: B =
100 for BaggedETS and BaggedETS.MEB, and B = 1000 for both
BaggedClusterETS and BaggedMedoidETS, as indicated in the relevant
literature [8, 6].

Table 3.1 offers a highlight of the methods, where changes are applied
for each of the experiments. The column indicating the bootstrap method also
implies the choice for transformation and decomposition. Thus, for any method
that uses MBB, the Box-Cox Transformation and STL/Loess decomposition
is applied to the data, as described in figures 3.1 and 3.2. The Forecast column
also highlights how the forecasts are produced.

Model Bootstrap Clustering Forecast

BaggedETS MBB — Bagging of the boot-
strapped series.

BaggedETS.MEB MEB — Bagging of the boot-
strapped series.

BaggedClusterETS MBB PAM Bagging of the selected
clustered series.

BaggedMedoidETS MBB PAM Bagging of the proto-
types.

Table 3.1: Model overview
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Figure 3.1: Flowcharts for BaggedETS (left), BaggedClusterETS (right)
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Figure 3.2: Flowcharts for BaggedETS.MEB (left) and BaggedMe-
doidETS (right)

3.2
Evaluation

To compare the quality and answer the first question outlined in the
introduction – i.e. whether the proposed methods can generate improvement
in forecasting quality when compared to the already established algorithms –
two error measures are used. The sMAPE and the MASE.

The first, the symmetric mean absolute percentage error (sMAPE),
penalises positive and negative values, and is dimensionless, making it possible
to compare the results for different time series [72]. Equation 3-6 displays the
formula used to compute the error measure, where ŷt is a forecasted value
at time t, yt is the actual value at time t, and n is the forecast horizon.

DBD
PUC-Rio - Certificação Digital Nº 1821102/CA



Chapter 3. Method 49

This measure was also included due to its wide usage to evaluate forecasting
methods [16].

The second, the mean absolute scaled error (MASE), is presented as an
alternative that enables the comparison of forecast accuracy for series with
different measurements, as shown in equations 3-7 and 3-8. The training mean
absolute error (MAE) is used to compute the metric, and the computation
differs between seasonal and non-seasonal series [16]. This metric (i.e. MASE)
is used in addition to the previously defined sMAPE.

sMAPE = 200
n

n∑
t=1

|yt − ŷt|
|yt|+ |ŷt|

(3-6)

MASE = yt − ŷt
1

T − 1
T∑
t=2
|yt − yt−1|

(3-7)

MASES = yt − ŷt
1

T −m
T∑

t=m+1
|yt − yt−m|

(3-8)

3.3
Performance

To answer the second question in the introduction – i.e. whether the
methods introduce any computational overhead. The question is a bit nuanced:
if any of the proposed methods offer the same forecast quality of a established
method with shorter computational times, this can be interpreted as an
improvement. The reverse, i.e. same or worse forecast quality with longer
computational times, can be understood as a regression.

To enable such analysis, data on the execution time was also collected
for the experiments to evaluate how the models behave and how performance
is impacted when tweaking the clustering methods, the bootstrap procedure,
or when removing the validation step entirely.

While the code for BaggedClusterETS [71] requires paralellisation to
be deployed in a timely fashion, a finer evaluation on the performance gains
for a range of cores is out of scope for this study. Neither benchmarks are
produced on a finer level for internal components of the used methods.
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4
Results

4.1
Datasets

For this research, data was gathered from different sources. Based on the
works of [3] and [4], the same datasets are going to be used albeit with more
recent, updated data.

The first set of series represents energy consumption from selected OECD
countries and Brazil. For Brazil, data was downloaded from the country’s
Central Bank data service page [73, 74]. This dataset consists of 7 time
series, covering the period between January 2000 and February 2020. The
second set consist of 14 aviation data on passenger enplanements from selected
European countries, the United States, Brazil, and Australia. For Brazil, only
domestic flights were considered, and for Australia only international flights
were gathered. Data covers the period from May 2004 to August 2019, with
monthly frequency. European data was downloaded through the eurostat
library, while data for the three other countries was obtained online from
the pages of the Bureau of Infrastructure, Transport and Regional Economics
(Australia), the National Civil Aviation Agency (Brazil), and the Bureau of
Transportation Statistics (United States) [75, 76, 77, 78].

The energy dataset is displayed in figure 4.1 also displays a strong
seasonal pattern throughtout the different countries. Canada and France
exhibit a more stable behaviour, with almost no trend. Italy and Japan display
structural changes in the trend and level, while still stable. Mexico, Turkey
and Brazil exhibit a clear, upwards trend. But Brazil displays some dents
between 2000-2005, and then again around 2010. Also, the series seems to
have a reduced trend after 2015.

The aviation dataset can visualised in figure 4.2. All series display a clear
seasonal pattern. For some European countries (e.g. Germany, Denmark), it
is possible to observe the adverse effects of the 2010 Eyjafjallajökull eruption
in the data, which caused disruptions to the European air traffic, grounding
flights [79]. Changes in the level and trend between 2008 and 2010, due to
the economic crisis, can be seen in different series for European countries
(Netherlands, United Kingdom, Spain, Ireland, Portugal) and the United
States. The series for Australia displays a a sharp upwards trend since 2009-
2010. Last, but not least, the time series for Brazil displays a more erratic
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behaviour, where its slope gets steeper after 2009, but with a structural change
around 2014, where the series oscillates with a seasonal pattern around a level.

Figure 4.1: Energy time series

Figure 4.2: Aviation time series

To further verify and confirm the non-stationary nature of the datasets,
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the Augmented Dickey–Fuller (ADF) Test to check for unit roots [1] and
Autocorrelation Function (ACF) plots [1, 16] were used.

Table 4.1 contains the p-values for the ADF Test. The test was run with
the library tseries. The null hypothesis H0 he series has a unit root, and the
alternative hypothesis H1 is that the series is stationary [80]. For each series,
k = 50 lags were used to run the test, with a level of significance α = 0.05.
Since none of the p-values fall below α, the null is not rejected for any of the
series.

Dataset Country p−value

Energy Canada 0.159
Energy France 0.777
Energy Italy 0.489
Energy Japan 0.786
Energy Mexico 0.746
Energy Turkey 0.219
Energy Brazil 0.961

Aviation Czechia 0.990
Aviation Germany 0.990
Aviation Denmark 0.260
Aviation Netherlands 0.482
Aviation United Kingdom 0.104
Aviation Greece 0.381
Aviation Spain 0.979
Aviation Ireland 0.325
Aviation Portugal 0.986
Aviation Belgium 0.607
Aviation Italy 0.990
Aviation Australia 0.342
Aviation Brazil 0.825
Aviation United States 0.541

Table 4.1: p-values for the ADF test by series and dataset

This non-stationary behaviour can also be visualised in the Autocorrela-
tion Function (ACF) plots in figures 4.3 and 4.4. Where the autocorrelations
for a given lag k either fall off slowly drop, display a sine-like behaviour, or a
combination of both. Both figures use k = 36 lags to compute the ACF.

DBD
PUC-Rio - Certificação Digital Nº 1821102/CA



Chapter 4. Results 53

Figure 4.3: ACF plots for the Energy time series

Figure 4.4: ACF plots for the Aviation time series

4.2
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Computational environment

Code was run on a machine powered by a Intel Core i5-8500 3GHz, with
8GB RAM, Windows 10 Pro, running R version 3.6.3. The libraries used are
detailed in table 4.2, alongside their versions and their uses. For each series,
the random seed was set to 17071830. Parallelisation was used to speed up the
forecasts for BaggedClusterETS, using three cores.

Library Version Description

cluster 2.1.0 Implementation of Partitioning Around
Medoids.

forecast 8.12 ETS models and moving block bootstrap im-
plementation.

meboot 1.4-7 Maximum entropy bootstrap implementation.
TSclust 1.2.4 Dissimilarity measures.

Table 4.2: Libraries used

4.3
Experiments

Experiment A focuses on evaluating the effects of changing the bootstrap
procedure for BaggedETS, implements the Maximum Entropy Bootstrap
(MEB) from the meboot package, with its default settings. Experiment B
uses four different dissimilarity measures to conduct BaggedClusterETS,
using the original method as a baseline. Experiment C removes the validation
steps implemented by [6]. Models here use only the euclidean distance. The
baseline models vary for each of the experiments: In experiment A, both ETS
and BaggedETS are used, in order to assess where the model stands. In
experiments B and C, BaggedClusterETS with the clustering distance set
to Euclidean is the sole baseline used. For all experiments, execution time was
logged in order to evaluate computational performance. Table 4.3 contains a
summary of the conducted experiments. Error tables for this chapter highlight
the best models in bold.

Forecasts were computed for a horizon of 12 months. For both datasets,
data was split into training and validation sets. All models were adjusted to
the former, and their forecasts were compared to the latter. For the aviation
dataset, data from May 2004 until August 2018 was used in the training set,
and from September 2018 to August 2019 for the validation set. For the energy
dataset, the tranining set consisted of data from January 2020 to February
2019, and from March 2019 to February 2020 for the validation set.
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Experiment Evaluated model Details

A BaggedETS.MEB Bootstraped series generated
through MEB are input into
the BaggedETS function.

B BaggedClusterETS Applies four different feature-
based dissimilarity measures to
cluster data.

C BaggedMedoidETS Removes the validation step for
clustering. Uses only the Eu-
clidean distance.

Table 4.3: Experiment overview

4.3.1
Experiment A: Maximum Entropy Bootstrap

Tables 4.4 and 4.5 showcase the error for the three models ETS,
BaggedETS and BaggedETS.MEB . The last two are tagged as MBB
and MEB in the tables due to the bootstrap method employed in each. When
looking at the sMAPE for comparisons, the first model is picked 2 times; the
second, 11 times; and the third, 7 times. When using the MASE, the number
of times each model is select is 3, 11, and 7, respectively. The metrics give a
different choice of model for all series, except for the Dutch, British, Spanish,
Portuguese and Australian aviation series.

When BaggedETS.MEB is compared to the default MBB implemen-
tation, the former only outperforms the latter in 8 of the 21 series. One possible
explanation for such behaviour might lie in the replicates generated through
the MEB. Although the sampling range is increased, the actual range of gen-
erated by the MEB replicates is much closer to the original series than the
ones generated by the MBB. The co-variance effect, discussed in the literature
review, seems to be the cause for the weaker performance across both sMAPE
and MASE – the method does not introduce enough variability to reduce the
co-variance between the replicates. This can be seen in figures 4.5, 4.6, and
4.7, where it can be seen that the MBB replicates (in grey) covers a wider area
than the MEB replicates (in red). The original series is the continuous black
line over the replicates.
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sMAPE (%) MASE
ETS MBB MEB ETS MBB MEB

Canada 2.172 1.997 2.121 0.741 0.691 0.774
France 2.841 2.386 2.562 0.681 0.551 0.638
Italy 2.025 3.228 1.991 0.712 1.129 0.701
Japan 3.638 2.615 3.526 0.868 0.628 0.834
Mexico 7.800 6.860 7.782 2.589 2.316 2.563
Turkey 1.955 2.152 1.964 0.529 0.556 0.539
Brazil 2.642 1.671 3.139 0.732 0.466 0.975

Table 4.4: Experiment A error table: Energy series

sMAPE (%) MASE
ETS MBB MEB ETS MBB MEB

Czechia 12.487 8.031 9.171 1.884 1.958 1.456
Germany 1.656 1.448 1.676 0.477 0.409 0.369
Denmark 2.610 3.003 2.423 0.581 0.722 0.587
Netherlands 4.476 3.108 2.341 1.007 0.678 0.445
United Kingdom 2.244 1.574 1.773 0.602 0.414 0.649
Greece 5.215 2.843 3.639 0.972 0.589 0.555
Spain 5.781 2.566 4.860 1.141 0.532 0.786
Ireland 5.322 2.537 2.251 0.800 0.328 0.350
Portugal 10.341 5.284 6.558 1.948 1.034 1.126
Belgium 3.372 2.688 3.258 0.630 0.561 0.534
Italy 4.343 2.902 3.201 1.015 0.686 0.603
Australia 2.004 2.491 3.295 0.506 0.639 0.915
Brazil 4.123 3.200 4.240 0.618 0.467 0.640
United States 2.167 0.916 1.614 0.745 0.327 0.635

Table 4.5: Experiment A error table: Aviation series
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Figure 4.5: Experiment A: Replicates for the French Energy series

Figure 4.6: Experiment A: Replicates for the Japanese Energy series
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Figure 4.7: Experiment A: Replicates for the Spanish Aviation series

Looking at the errors produced by BaggedETS.MEB, these are more
evenly spread in comparison, covering roughly the range of both ETS and
BaggedETS models – probably a side-effect of the boostrap method not
being able to introduce sufficient variability to tackle the co-variance effect.
All distributions are leptokurtic, skewed to the left (with some striking outliers
aboe the third quartile), as seen in figure 4.8. Although, performing a partial
evaluation of performance, and comparing the results for BaggedETS.MEB
models against the base ETS, the former displays a good performance for
almost all series, as expected from the usage of bagging to improve predictor
accuracy.

Figure 4.8: Experiment A: MASE distribution

Considering execution times between the bagged Models, there is no
clearcut difference. Both implementations have displayed similar performance,
as seen in figure 4.9, with a median roughly below 50s. Performance for ETS
is not shown given that, for each of the 21 series, the models were adjusted
and forecasted in less than 1 second.
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Figure 4.9: Experiment A: Execution times

4.3.2
Experiment B: Dissimilarity matrix construction

As previously discussed, this experiment aims to check whether the
choice of clustering distance has any impact in forecast accuracy. Additionally,
there is interest in checking how these impact cluster construction. Tables 4.6
and 4.7 showcase the sMAPE and MASE for each of the series and models.
BaggedClusterETS, which employs the Euclidean distance [6], is listed as
eucl. The other four measures are dwt (based on the wavelet transform), cor
(correlation based), llr (spectral distance, least squares), glk (generalized
likelihood ratio). At a first glance, using sMAPE as a reference, feature-based
models performed better in 15 out of the 21 series used. eucl and dwt display
the best performance for 6 series. llr leads in 5 series. cor and glk based
forecasts had the best performance each for two series.

When looking at MASE evaluation is different. Here, the eucl model is
chosen for 4 of the 21 series. cor displays a better performance, with the best
performance in 5 series. dwt rises from 3 to 6, and glk drops from 4 to 2.
Starting at the Energy series, Canada sees a change from dwt to eucl, France
from eucl to llr and Brazil from cor to eucl. For the Aviation dataset, the
only models that do not change are Czechia, Greece, Spain, Portugal, Italy
and Brazil – for all others, widely different models are chosen under MASE.
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sMAPE (%) MASE
EUCL COR DWT LLR GLK EUCL COR DWT LLR GLK

Canada 1.896 1.899 1.890 1.890 1.900 0.678 0.680 0.678 0.678 0.679
France 2.248 2.248 2.272 2.266 2.281 0.529 0.529 0.525 0.525 0.529
Italy 3.003 2.998 2.990 3.026 2.998 1.074 1.072 1.069 1.079 1.070
Japan 2.577 2.560 2.577 2.511 2.560 0.613 0.611 0.616 0.596 0.614
Mexico 6.618 6.618 6.607 6.583 6.548 2.239 2.239 2.239 2.232 2.224
Turkey 1.948 1.954 1.923 1.915 1.924 0.522 0.523 0.506 0.505 0.509
Brazil 1.568 1.574 1.572 1.568 1.621 0.440 0.439 0.439 0.444 0.450

Table 4.6: Experiment B error table: Energy series
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sMAPE (%) MASE
EUCL COR DWT LLR GLK EUCL COR DWT LLR GLK

Czechia 7.499 7.823 7.430 7.301 7.376 1.655 1.688 1.648 1.437 1.460
Germany 1.604 1.588 1.583 1.616 1.585 0.448 0.433 0.438 0.439 0.435
Denmark 2.680 2.703 2.632 2.611 2.603 0.666 0.651 0.649 0.655 0.659
Netherlands 3.045 3.088 3.055 3.073 3.047 0.705 0.712 0.718 0.705 0.701
United Kingdom 1.724 1.716 1.775 1.725 1.735 0.497 0.489 0.491 0.484 0.482
Greece 2.612 2.708 2.757 2.762 2.685 0.561 0.590 0.604 0.592 0.590
Spain 2.582 2.607 2.694 2.658 2.686 0.539 0.540 0.549 0.544 0.546
Ireland 2.397 2.294 2.351 2.272 2.287 0.404 0.382 0.390 0.383 0.390
Portugal 4.639 4.659 4.648 4.625 4.651 0.926 0.937 0.928 0.923 0.929
Belgium 2.528 2.537 2.609 2.549 2.528 0.522 0.524 0.529 0.526 0.521
Italy 2.569 2.390 2.764 2.506 2.539 0.643 0.604 0.669 0.637 0.634
Australia 2.365 2.370 2.358 2.374 2.358 0.587 0.590 0.589 0.589 0.589
Brazil 2.957 2.957 2.834 3.038 2.939 0.442 0.442 0.430 0.445 0.437
United States 0.878 0.885 0.850 0.904 0.882 0.302 0.298 0.301 0.302 0.299

Table 4.7: Experiment B error table: Aviation series
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Overall, the error distributions for all methods are very similar, as
depicted in Figure 4.10.

Figure 4.10: Experiment B: MASE distribution

The metrics have an impact on how clusters are formed. For most of the
series in the Energy dataset, two clusters seem to be the norm, with some
series displaying 3 or 4 clusters. There are extreme cases – Turkey has 75 and
72 clusters for eucl and cor models, respectively, and Brazil displays 100
clusters under glk. Tables 4.8 and 4.9 highlights these findings, where bold
numbers indicate best model by MASE. While in table 4.8 showcases that only
two clusters were picked for each series and modesl, with exceptions for the
Turkey series using the eucl and cor distances, and for Brazil using the glk
distance, table 4.9 depicts a more varied scenario. Models which used the eucl
and cor distances present a greater number of clusters for 9 of the 14 series.
dwt for only 6 series. llr and glk have lower numbers – glk does not go
above 3 for this dataset.

The low number of clusters for spectral distances — with the exception of
the Brazilian energy series — might highlight the dissimilarities picked by other
distances, when analysed in the frequency domain, do not alter significantly
the spectral properties of the series.

EUCL COR DWT LLR GLK
Canada 2 2 2 2 2
France 2 2 2 2 2
Italy 2 2 2 4 2
Japan 2 2 2 4 2
Mexico 2 2 2 2 2
Turkey 75 72 2 2 2
Brazil 2 2 2 3 100

Table 4.8: Experiment B: Number of clusters by model (best models for Energy
series, according to MASE, in bold)
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EUCL COR DWT LLR GLK
Czechia 63 89 59 2 2
Germany 40 34 73 8 2
Denmark 32 73 91 2 2
Netherlands 61 89 99 8 2
United Kingdom 95 47 42 5 2
Greece 2 3 2 14 3
Spain 2 2 2 3 2
Ireland 45 41 2 2 2
Portugal 2 17 2 2 2
Belgium 66 74 64 2 2
Italy 2 2 2 2 2
Australia 57 57 2 2 2
Brazil 2 2 2 2 2
United States 100 2 2 3 2

Table 4.9: Experiment B: Number of clusters by model (best models for
Aviation series, according to MASE, in bold)

Execution times are roughly the same for eucl, cor and dwt imple-
mentations. The higher computational cost is apparent for the spectral-based
methods. llr displays a slightly higher variance when compared to the first
three methods, and glk has its lower end on the same level as the median for
llr. These times can be visualised in figure 4.11.

Figure 4.11: Experiment B: Execution times

4.3.3
Experiment C: Clustering without validation

Tables 4.10 and 4.11 display the sMAPE and MASE for the models. In the
tables, the names cluster and medoid refer to theBaggedClusterETS and
BaggedMedoidETS models, respectively. Considering sMAPE, the latter is
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picked three times for the French and Japanese energy series, and the Span-
ish aviation series. When using MASE to evaluate performance, BaggedMe-
doidETS is the chosen model for 7 out of the 21 series – series that change
models are Mexico (Energy), and Denmark, Greece, and Italy (Aviation). The
removal of the Validation and Ranking step (see Figure 3.1) has an impact in
the quality of the forecast but it is not clear what can influence such change in
behaviour. Evaluating performance for each of the methods, the differences are
sometimes small (e.g. the MASE for Mexico and Turkey in the Energy series;
the MASE for the United Kingdom, Australia in the Aviation series), some-
times these are larger (e.g. the sMAPE for Czechia and Brazil in the Aviation
series).

Extending the comparison to other models, it displays a similar error
dispersion to ETS, but performs better in 15 series out of 21. When compared
to BaggedETS, BaggedMedoidETS offers better performance in 9 series
out of 21 series. SinceBaggedMedoidETS does not include the original series
in the process, only the medoids obtained through clustering, it seems to not
introduce enough variability to diminish the effects of the co-variance than
both BaggedETS and BaggedClusterETS. The accuracy improvements
seen when comparing it against ETS are due to the effects of bagging.

sMAPE (%) MASE
cluster medoid cluster medoid

Canada 1.896 2.257 0.678 0.767
France 2.248 2.068 0.529 0.462
Italy 3.003 3.354 1.074 1.177
Japan 2.577 2.246 0.613 0.531
Mexico 6.618 6.627 2.239 2.231
Turkey 1.948 2.093 0.522 0.562
Brazil 1.568 1.679 0.440 0.462

Table 4.10: Experiment C error table: Energy series

sMAPE (%) MASE
cluster medoid cluster medoid

Czechia 7.499 10.690 1.655 2.513
Germany 1.604 1.682 0.448 0.506
Denmark 2.680 2.809 0.666 0.599
Netherlands 3.045 3.354 0.705 0.804
United Kingdom 1.724 1.756 0.497 0.505

Continues on the next page
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Continued from the previous page
sMAPE (%) MASE

cluster medoid cluster medoid
Greece 2.612 2.615 0.561 0.501
Spain 2.582 2.443 0.539 0.528
Ireland 2.397 3.140 0.404 0.525
Portugal 4.639 5.741 0.926 1.106
Belgium 2.528 2.821 0.522 0.552
Italy 2.569 2.693 0.643 0.617
Australia 2.365 2.437 0.587 0.619
Brazil 2.957 3.900 0.442 0.584
United States 0.878 1.120 0.302 0.405

Table 4.11: Experiment C error table: Aviation series

Figure 4.12: Experiment C: MASE distribution

Looking at the number of clusters picked by both methods, in Tables
4.12 and 4.13, BaggedMedoidETS picks a larger number of clusters than
BaggedClusterETS, excluding the cases where both methods only pick two
clusters, and the aberrant behaviour for the Australian and American aviation
series.

cluster medoid
Canada 2 2
France 2 2
Italy 2 2
Japan 2 2
Mexico 2 2
Turkey 75 92
Brazil 2 2

Table 4.12: Experiment C: Number of clusters by model (best models for
Energy series, according to MASE, in bold)
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cluster medoid
Czechia 63 83

Germany 40 92
Denmark 32 74

Netherlands 61 86
United Kingdom 95 97

Greece 2 2
Spain 2 2

Ireland 45 96
Portugal 2 2
Belgium 66 98

Italy 2 2
Australia 57 2

Brazil 2 2
United States 100 2

Table 4.13: Experiment C: Number of clusters by model (best models for
Aviation series, according to MASE, in bold)

When it comes to performance (Figure 4.13), BaggedMedoidETS was
implemented without parallelisation, thus processing times scale when a large
number of medoids is present. BaggedClusterETS was parellelised for this
experiment, but its execution times on a single core are signficantly higher. In
the same manner, improvements can be made by using more cores.

Figure 4.13: Experiment C: Execution times
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Conclusion

This work presented extensions based on the works of Bergmeir, Hynd-
man, and Benítez [8] and Dantas and Oliveira [6], where different bagging and
clustering procedures were combined with exponential smoothing, aiming to
improve forecast accuracy. This covers a gap in the literature, by studying the
application of a different bootstrap method and experimenting with different
clustering measures. Three strategies were tested with real world data from the
energy and aviation domains, where small improvements still have significant
orders of magnitude for decision making.

The first experiment roughly expanded the ideas in Petropoulos, Hynd-
man, and Bermeir [10], by employing the framework proposed by Bergmeir,
Hyndman, and Benítez [8], the BaggedETS. The results for the 21 series seem
to give a slight advantage to the original proposal, which employs the MBB,
over the one where the MEB was applied to the series. This slight advantage
might not be significant, but the MEB seems to not introduce sufficient vari-
ability in the replicates to tackle the co-variance effect, which is reflected in
the forecasts. Whether there is some structural pattern that might influence
such behaviour and help identify when it is better to use this or that bootstrap
method, it is not possible to tell from this study.

The second experiment, where feature-based metrics – i.e. the clusters
built using the correlation, discrete wavelet transform of the series – were used
to construct the dissimilarity matrix, saw an improvement in forecast accuracy,
especially when evaluating the models with the MASE. Picking a different
metric does not alter the results, and feature-based models still maintain
the best performance under sMAPE.It seems possible that these measures
reduce the effect of the noise during the clustering, but such reduction is not
sufficient to improve the quality of the process. This is can be observed in some
of the error measures where there is minimal or no difference, which might
be an evidence of the weak influence of this noise-reducing effect. While the
accuracy gains are minor, given the scale of the applications (energy demand
in thousands of GWh, millions of monthly passengers carried), these might
have an impact during decision making processes. The same cannot be said
for smaller applications, where such gains might not make a difference. The
change of metrics did not lead to improvements in computational times, and
spectral measures, given how they are computed, actually increased execution
times.
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The third and last experiment employed only the medoids obtained
through PAM to conduct the forecasts and compared it to the original
BaggedClusterETS proposal. The usage of medoids led to a reduction of
computation times, but at a cost of decreasing forecast quality. It could
be argued that, for smaller applications, a regression in accuracy might be
acceptable, especially since further gains in performance can be made by
adding parallelisation to adjust the methods. But there is not a consistent
drop in accuracy across the board to consider it, especially when the method
does not consistently outperforms BaggedETS.

A limitation for this study was the low ammount of series used. While
the findings do shed light on the workings of these models, they do not enable
broader analysis, such as the ones done by Bergmeir, Hyndman, and Benítez
[8] and Petropoulos, Hyndman, and Bermeir [10]. A recommendation would be
to re-run the models here with M3 and M4 competition data, in order to also
include series with yearly and quarterly frequencies. The volume of data would
also enable a better, statistics-based evaluation and profiling of the procedures
herein discussed. Neither this study occupied itself with an in-depth verification
about which structural properties of the series lead to performance differences.
While one might expect similar performance from similar shape series using
the same methods, this was not the case.

On clustering methods, this study only made use the Partitioning Around
Medoids algorithm, but other methods could be explored, especially fuzzy
methods such as Fuzzy c-means and density-based methods such as DBSCAN
– since these methods require parameters to be set before the clustering, a
thorough exploration on methods or heuristics to set appropriate paramters is
required. K-means has not been applied under this model, so it might warrant
testing. There is also the possibility to study other decomposition methods,
and verify the effects that TRAMO-SEATS and X-12 ARIMA, for example,
have when decomposing series, even though these methods can only be applied
to monthly and quarterly series. Yet another possibility is to explore the effects
of different CVIs to choose the proper number of clusters.
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