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Abstract

Cirone, Alessandro; Vargas, Eurípedes (Advisor); de Campos, Tá-
cio (Co-Advisor). Theory and implementation of constitutive
models for geomaterials. Rio de Janeiro, 2020. 164p. Tese de
doutorado – Departamento de Engenharia Civil e Ambiental, Pon-
tifícia Universidade Católica do Rio de Janeiro.

A theoretical and numerical study was developed to simulate the stress-
strain behavior of soils and rocks, formulating constitutive models able to
catch the peculiarities inherent to the behavior of these materials under
large strains and structure degradation. Within the Brazilian geotechnical
context, the objective of the research was also to investigate constitutive
approaches to model the behavior of soft soils, residual soils and sedimentary
rocks. The work is divided into the following topics: literature review;
study of strain measurements and objective stress rates; definition and
development of the constitutive models to be tested; definition of the return
mapping algorithms for integrating the constitutive equations; finite element
implementation; and simulation of the behavior observed in laboratory tests.
Results indicate that the viscous behavior of the Sarapuí soft clay can be
correctly reproduced by adopting a viscoplastic constitutive model. The
structured soil approach appears to be consistent with the behavior of
Vila Velha sandstone. Finally, a decomposition of irreversible strains was
proposed to model the behavior of residual soils within a novel constitutive
framework.

Keywords
Numerical modeling; Constitutive modeling; Large Strains; Bon-

ded Geomaterials; Viscoplasticity;
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Resumo

Cirone, Alessandro; Vargas, Eurípedes; de Campos, Tácio. Teoria
e implementação de modelos constitutivos para geomateri-
ais. Rio de Janeiro, 2020. 164p. Tese de Doutorado – Departamento
de Engenharia Civil e Ambiental, Pontifícia Universidade Católica
do Rio de Janeiro.

Desenvolveu-se estudo teórico e numérico para simular o comporta-
mento tensão-deformação de solos e rochas. Procurou-se estabelecer mode-
lagem constitutiva apta a representar as peculiaridades inerentes ao com-
portamento destes materiais sob grandes deformações e degradação da es-
trutura. Dentro do contexto geotécnico brasileiro, o objetivo da pesquisa
foi, também, investigar uma nova abordagem constitutiva para modelar o
comportamento de solos moles, solos residuais e rochas sedimentares. O
trabalho está dividido nos seguintes tópicos: revisão bibliográfica; estudo de
medidas de deformações e taxas objetivas de tensões; definição e desenvolvi-
mento dos modelos constitutivos a serem testados; definição dos algoritmos
de retorno para integração das equações constitutivas; implementação em
elementos finitos; simulação do comportamento observado em ensaios de la-
boratório. Os resultados da pesquisa indicam que o comportamento viscoso
da argila mole do Sarapuí pode ser reproduzido corretamente adotando-se
modelo constitutivo viscoplástico. A abordagem de solo estruturado está
condizente com o comportamento do arenito de Vila Velha. Por fim, para
modelar o comportamento de solos residuais dentro de um novo quadro
constitutivo, foi proposta uma separação das deformações irreversíveis.

Palavras-chave
Modelagem numérica; Modelagem constitutiva; Grandes deforma-

ções; Geomateriais cimentados; Viscoplasticidade;

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



Table of contents

1 Introduction 14

2 Stresses and strains in deforming bodies 17
2.1 Description of deformation 17
2.1.1 Analysis of strain measures 20
2.2 Multiplicative decomposition 22
2.3 Approaches, numerical implementation and algorithms in large strains

and plasticity 29

3 Constitutive modeling 33
3.1 Modeling the mechanical and chemical degradation 33
3.1.1 Yield function 35
3.1.2 Plastic potential 37
3.2 Viscoplasticity 46
3.2.1 Undrained Hydrostatic Relaxation Test 48
3.3 Summary 54

4 Numerical integration of constitutive equations 55
4.1 Overview of integration schemes 55
4.2 Implicit integration: backward Euler algorithm 58
4.2.1 Nonlinear elastic integration 61
4.2.2 Viscoplastic integration 61
4.3 Forward integration 63
4.3.1 Standard procedure 63
4.3.2 Alternative procedure 65
4.3.3 Crossing the yield surface 66
4.4 Integration under mixed control 67

5 Constitutive models formulation and implementation in finite elements 70
5.1 A model accounting for viscous behavior and non-linear elasticity:

Viscous Modified Cam Clay 70
5.1.1 Preliminaries 70
5.1.2 Elastic behavior 74
5.1.3 Plastic potential derivatives 75
5.1.4 Yield function derivatives 75
5.1.5 Hardening rule 76
5.1.6 Integration in the space of triaxial invariants 76
5.2 R-Soil: a constitutive model for soil and rock 77
5.2.1 Elastic Deformations 77
5.2.2 Failure Criterion 77
5.2.3 Yield surface 79
5.2.4 Plastic Potential 81
5.2.5 Destructuration behavior 82
5.2.6 Hardening law 84

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



5.2.7 Softening law 85
5.2.8 Model parameters and their identification 85
5.3 Implementation in Plaxis 86
5.3.1 Main subroutine 87
5.3.2 Automatic substepping 90

6 Application of advanced soil models to tropical soils 92
6.1 Laboratory behavior of Sarapuí soft clay using the finite element method 92
6.1.1 Viscous behavior of Sarapuí clay 93
6.1.2 Numerical simulations 94
6.1.3 Conclusion 100
6.2 R-Soil model parameters of Vila Velha sandstone from laboratory tests 102
6.2.1 Case description 102
6.2.2 Experimental results and model calibration 103
6.2.3 Final remarks 108

7 Attached Papers 110
7.1 Constitutive modeling of residual soils based on the decomposition of

irreversible strains 110
7.2 Compression models from elementary incremental laws 142

8 Conclusion 151
8.1 Recommendations for future work 153

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



List of figures

Figure 2.1 Description of deformation in a moving continuum body. 17
Figure 2.2 Schematic representation of the polar decomposition of

deformation gradient. Material element is first stretched by U
and then rotated by R, or first rotated by R and then stretched
by V. The principal directions of U are Ni, and those of V are
ni = R ·Ni. (Lubarda, 2001) 19

Figure 2.3 Deformation of an element of infinitesimal length. 21
Figure 2.4 Multiplicative decomposition. The previous configura-

tion is known and is described by the deformation gradients
Fn = Fe

n Fp
n. The vector v∆t gives the displacement of the par-

ticle xn from its previous place to its updated place xn+1 in
the spatial configuration B. Similarly, the vector vp ∆t gives the
displacement of the intermediate configuration Bp from previous
xpn to updated xpn+1 state. 25

Figure 3.1 Evolution of yield surface during destructuration. After
Nova et al. (2003). 34

Figure 3.2 Definition of yield function parameters for the general
case. 36

Figure 3.3 Comparison with Original Cam Clay (M = 1.2, p0 =
100 kPa). 40

Figure 3.4 Comparison with Modified Cam Clay (M = 1.2, p0 =
100 kPa). 40

Figure 3.5 Comparison with Rowe’s model, employed in CASM
(M = 1.2, p0 = 100 kPa, ψ = 2). 43

Figure 3.6 Comparison with Lade-Kim model (M = 1.2, p0 =
100 kPa, ψ = 0.21). 43

Figure 3.7 Comparison with Tear Shape model from Milan research
group (M = 1.2, p0 = 100 kPa, β = 2, k = 2). 44

Figure 3.8 Comparison of yield surface, plastic potential and related
stress-dilatancy curve from different constitutive models. 45

Figure 3.9 Undrained Hydrostatic Relaxation Test 49

Figure 4.1 Return mapping directions (Borja and Lee, 1990): 1.
Hydrostatic return, 2. central return, 3. closest point projection,
4. radial return. 57

Figure 4.2 Representation of Backward Euler method. 58
Figure 4.3 Representation of Forward Euler method. 64

Figure 5.1 Extension of Modified Cam Clay model to Perzyna’s
theory of viscoplasticity. 71

Figure 5.2 Schematic behavior of the model during undrained tri-
axial stress relaxation. 72

Figure 5.3 Numerically simulated undrained triaxial creep. 73

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



Figure 5.4 Yield function in stress space. (φc = 30◦, r = 4 and p0 =
100 kPa) 80

Figure 5.5 Contours of plastic potential and corresponding stress-
dilatancy relations with ψ = 1 and varying M . 82

Figure 5.6 Contours of plastic potential and corresponding stress-
dilatancy relations with M = 1 and varying ψ. 83

Figure 5.7 Evolution of yield surface during destructuration.
Adapted from Nova et al. (2003). 83

Figure 5.8 Flowchart for automatic substepping integration. 91

Figure 6.1 Finite element mesh used for numerical simulation of
consolidation tests on Sarapuí clay. 95

Figure 6.2 Calibration of viscous nucleus. Data points from Aguiar
(2014). 97

Figure 6.3 Simulated and measured increase of pore pressure after
closing the drainage at the end of primary consolidation. Data
points from Aguiar (2014). 98

Figure 6.4 Simulated and measured compression curves and pore
pressures of CRS tests (Carvalho, 1989). 98

Figure 6.5 Simulated and measured long term one-dimensional con-
solidation tests on Sarapuí clay (Vieira, 1988). 100

Figure 6.6 Simulated and measured increase of pore pressure after
closing the drainage at the end of primary consolidation (Lima,
1993). 101

Figure 6.7 Volumetric strains after unloading of Sarapuí clay: (a)
experimental curves from (Feijó, 1991); (b) simulated volumetric
expansion. 101

Figure 6.8 Test results of stress–dilatancy relation obtained from
drained triaxial tests on Vila Velha sandtone (Barroso, 2002),
and R-Soil formulation with Eq. 5-39 and M,ψ from Tab. 6.4. 105

Figure 6.9 Calibration of the R-Soil yield function for Vila Velha
sandstone. 106

Figure 6.10 Simulated and measured hydrostatic loading on Vila
Velha sandstone. 106

Figure 6.11 Simulated and measured drained triaxial compression
tests on Vila Velha sandstone. 107

Figure 6.12 Simulated and measured behavior in constant-s′ test. 108

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



List of tables

Table 2.1 Strain measures 23
Table 2.2 Summary of relations among stress measures (Nemat-

Nasser, 2003). 23

Table 3.1 Parameters in Eq. (3-8) to represent models from literature. 38
Table 3.2 Yield functions from literature. 39
Table 3.3 Parameters in Eq. (3-24) to represent models from literature. 41
Table 3.4 Plastic potentials and related stress-dilatancy relations. 42
Table 3.5 Model parameters used in Single Hardening model. 43
Table 3.6 Model parameters used in Tear Shape model. 44
Table 3.7 Viscous nucleus from literature. Modified from Yin et al.

(2010). 47

Table 6.1 Summary of the main experimental studies. 94
Table 6.2 Adopted model parameters for Sarapuí clay. 96
Table 6.3 Mineralogical composition and experimental parameters

of Vila Velha sandstone (Barroso, 2002). 103
Table 6.4 R-Soil model parameters for Vila Velha sandstone. 104

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



List of Symbols

xi Current position of a point
ai , Xi Reference (initial) configuration
ui = xi −Xi Displacement

vi =
dui

dt
=
dxi

dt
Velocity vector

σij Cauchy stress
τij Kirchhoff stress
Pij First Piola-Kirchhoff stress
Sij Second Piola-Kirchhoff stress
σ̂ij Co-rotational stress

εij Small strain tensor
Eij Green-Lagrange strain tensor
eij Euler-Almansi strain tensor
Hij Hencky, logarithmic or natural strain tensor

F Deformation gradient
R Rotation tensor
U Right stretch tensor
V Left stretch tensor
B Right Cauchy-Green tensor
C Left Cauchy-Green tensor
J = detF Jacobian determinant
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1
Introduction

Constitutive modeling is a keystone of successful engineering analysis.
The description of material response under certain loading conditions and
natural phenomena is mathematically formulated by means of the constitutive
equations. Soils and rocks are characterized by strongly non-linear and time-
dependent mechanical behavior, including the presence of pore water, micro
and macro structure. There are no apparent limitations to the use of standard
or commercially available constitutive models for the solution of special engi-
neering problems, if one recognizes that the reliability of the result will depend
on the essential material features involved. Clearly, no model can account for
all natural phenomena without sophistication. Multiple natural processes may
occur simultaneously and the use of advanced constitutive model is, in this
case, necessary for reliable calculation results.

It is appropriate, at this point, to put this topic in the specific context of
soils and soft rocks existing in Brazil. As a matter of fact, residual soils cover
large parts of the Brazilian territory, while soft clay dominates along the coast.
These soils, which have been object of research and interest during the last
four decades in the Brazilian geotechnical community, need the development
of ad hoc constitutive models that are capable of reproduce satisfactorily
their peculiarities, such as the pronounced creep behavior or the structure
degradation typical of soft clay and residual soil, respectively.

This research mainly focused on the idealization, formulation and imple-
mentation of new constitutive models ina commercial finite element software
(PLAXIS) to make them available to practitioners. Although the developed
models do not include all the features of these geomaterials, they involve most
of the essential characteristics observed in laboratory testing and engineering
experience. The model construction tried to avoid unnecessary sophistication
and did not miss the physical meaning of each parameter, as well as the easy
obtainment by means of conventional geotechnical tests. For instance, a novel
interpretation of the Undrained Hydrostatic Relaxation Test was developed
within the context of viscoplastic parameters determination. Moreover, con-
stitutive modeling involved research in the field of continuum mechanics and
numerical implementation. Accurate and stable numerical algorithms for the
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Chapter 1. Introduction 15

integration of visco-elasto-plastic constitutive relations were also investigated
and implemented. In summary, the work consisted of theoretical formulation
of constitutive laws, implementation in commercial finite elements code and
the final validation against laboratory test data.

The main contributions of the research are the following:

1. A comprehensive literature survey was conducted on the continuum
mechanics theory in the context of large strain elastoplasticity.

2. Novel expressions for the yield function and plastic potential were
formulated.

3. The Viscous Modified Cam Clay model was formulated, implemented and
verified against the laboratory behavior of Sarapuí soft clay, with an un-
precedented and consistent interpretation of the Undrained Hydrostatic
Relaxation Test in light of Perzyna’s classical theory of viscoplasticity
(overstress theory).

4. R-Soil, an elastoplastic constitutive model for bonded geomaterials,
incorporating the best features of several remarkable literature models,
was developed, implemented and validated.

5. A novel approach to constitutive modeling of residual soils based on the
decomposition of irreversible strains was proposed.

6. Adopting elementary incremental laws, a family of one-dimensional com-
pression models was theoretically derived for describing the compaction
of sediments, capturing the interrelationships between compressibility,
porosity and depth of burial and accounting for pore closure under high
stress levels.

Chapter 2 presents a review of large deformation theory and elements of
continuum mechanics, including definitions of strain measures and details on
the multiplicative decomposition. Brief reviews of numerical procedures used
in large strain elastoplasticity are presented at the end of this chapter.

Chapter 3 presents general concepts of plasticity theory, constitutive
formulations and theoretical assumptions used to model bonded soils and
rate-dependent behavior. Several models from literature are also reviewed and
trends in yield function and plastic potential are drawn. This chapter includes
the experimental determination of the viscous nucleus.

Chapter 4 covers details of elastoplastic integration algorithms. Various
return mapping schemes for the integration of constitutive equations are
presented, including the integration under mixed control.

DBD
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Chapter 1. Introduction 16

Chapter 5 gives detailed descriptions of the constitutive models developed
throughout this doctoral research, i.e. the Viscous Modified Cam Clay and
the R-Soil model. Their implementation in commercial finite element code is
outlined.

Chapter 6 presents the validation of the models against a number of labo-
ratory test results. The behavior of Sarapuí soft clay and Vila Velha sandstone
is simulated using finite elements. Determination of model parameters is also
discussed.

Two papers are attached in Chapter 7. The former addresses the consti-
tutive modeling of residual soils in triaxial compression, based on the decom-
position of irreversible strains. The latter presents the development of several
compression models for granular materials derived from elementary incremen-
tal laws.
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2
Stresses and strains in deforming bodies

Some fundamentals of continuum mechanics are briefly reviewed with
particular attention to large deformation theory. The kinematics of motion
and the notion of strain are reformulated to account for the distinction
between the undeformed and deformed configuration. Different stress measure
are also presented. Methods for large strains analysis in elastoplasticity are
summarized, allowing for the extension of constitutive models developed in
the context of small strains to the large strains regime.

2.1
Description of deformation

Given here is the mathematical description of a deforming continuum
body. Consider the motion of a body in a Cartesian coordinate system as
shown in Figure 2.1. The deformation can be interpreted as a geometrical
transformation, in which the equation of transformation is assumed to be a
continuous function in the form:

xi = x̂(a1, a2, a3, t) (2-1)

where:
ai = position of point in reference (initial or undeformed) configuration
xi = position of point in current (deformed) configuration

P

Γ0

s Q

Reference (initial) 
configuration

a2, x2

Γ (t)

Current (deformed) 
configuration

a1, x1

a3, x3

P (a1 , a2 , a3 )

Q (x1 , x2 , x3 )

Q = P + s

Figure 2.1: Description of deformation in a moving continuum body.
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Chapter 2. Stresses and strains in deforming bodies 18

Deformation gradient The Jacobian matrix of the transformation is usually
referred as the deformation gradient tensor, defined as:

Fij = ∂xi
∂aj

or F = ∂x
∂a

(2-2)

The deformation gradient can also be expressed as a function of the displace-
ment vector, noting that the position of points in the current (deformed) con-
figuration is given by the initial (reference) position plus the displacement:

xi(a1, a2, a3, t) = ai + si(a1, a2, a3, t)

If the vector fields xi(a1, a2, a3, t) and si(a1, a2, a3, t) are assumed to be contin-
uous and differentiable, meaning that no laceration or solid penetration occurs,
then the following identity holds:

Fij = ∂xi
∂aj

= δij + ∂si
∂aj

or F = ∂x
∂a

= I + ∂s
∂a

(2-3)

An important remark is that the displacement vector can be treated as a
function either of ai (undeformed configuration) or xi (deformed configuration).

Jacobian The determinant of the deformation gradient tensor is usually
referred simply as the Jacobian:

J = det F (2-4)

It represents the volume ratio of the material element, i.e. J = V/V0. For
realistic deformations, it follows that the Jacobian must be always positive; in
addition, volume contraction occurs when 0 < J < 1, whereas J > 1 means
expansion and J = 1 material incompressibility.

Polar decomposition The deformation gradient contains information about
both stretch and rotation.

Theorem 2.1 (Truesdell and Noll, 2004) Any invertible linear transfor-
mation F has two unique multiplicative decompositions (see Fig. 2.2):

F = R U, F = V R (2-5)

in which R is the rotation tensor (orthogonal), U the right-stretch tensor and
V the left-stretch tensor, that are both symmetric and positive-definite. The
following relations hold:

U2 = C = FT F, V2 = B = F FT
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Chapter 2. Stresses and strains in deforming bodies 19

Figure 2.2: Schematic representation of the polar decomposition of deformation
gradient. Material element is first stretched by U and then rotated by R, or
first rotated by R and then stretched by V. The principal directions of U are
Ni, and those of V are ni = R ·Ni. (Lubarda, 2001)

in which C and B are called the right and left Cauchy-Green tensors, respec-
tively.

Principal stretches To determine U, it is necessary to evaluate
√

C. Alge-
braic calculations are needed to calculate the square root of a matrix (tensor).
A common procedure is to diagonalize C and take the square roots of the
diagonal entries:

C = diag(λ2
1, λ

2
2, λ

2
3)

where λi are the eigenvalues of U, usually referred as principal stretches of the
deformation. It can be shown that the determinants of the stretch tensors and
Cauchy-Green tensors are related to the Jacobian (Truesdell and Noll, 2004):

J =λ1λ2λ3 = det U = det V

J2 =λ2
1λ

2
2λ

2
3 = det B = det C

(2-6)

Velocity gradient According to Fung and Tong (2001), the velocity field is
the time derivative of the trajectory x̂(a1, a2, a3, t), given in Equation 2-1:

v(x, t) = ẋi = ∂x(a, t)
∂t

= ds
dt

(2-7)

Then the material time derivative of deformation gradient is:

Ḟ = DF
Dt

= ∂ẋ
∂a

= ∂ẋ
∂x
· ∂x
∂a

= L F (2-8)
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Chapter 2. Stresses and strains in deforming bodies 20

It follows that L is nothing but the spatial gradient of the velocity field
(Truesdell and Noll, 2004):

L = Ḟ F−1 = ∂ẋ
∂x

= ∂v
∂x

or Lij = ∂vi
∂xj

(2-9)

Both velocity field and velocity gradient are Eulerian descriptions of motion.

Rate of deformation and Spin The velocity gradient L is not necessarily
symmetric; it is possible to express it as the sum of its symmetric and
antisymmetric parts:

L = D + W

The symmetric part of L is the rate of deformation tensor, also called as
velocity strain tensor or stretching tensor (Bathe, 2006):

D = 1
2(L + LT) (2-10)

while the spin tensor, also called as rate of rotation or vorticity tensor, is the
antisymmetric (skew) part:

W = 1
2(L− LT) (2-11)

According to Truesdell (1966), W is generally different from Ṙ and the
stretching D is entirely different from U̇. As a matter of fact, the following
formulae can be derived from the polar decomposition (Eq. 2-5):

W =Ṙ RT + 1
2R(U̇ U−1 −U−1U̇)RT

D =1
2R(U̇ U−1 + U−1U̇)R−1

(2-12)

The product Ṙ RT is a skew-symmetric spin, called as rate of rotation tensor,
polar spin or body spin:

Ω = Ṙ RT (2-13)
and represents the angular velocity associated with the local rotation R
(Johnson and Bammann, 1984). From Equations 2-5, 2-9 and 2-13, the
following equalities can be derived (Dienes, 1979; Reinhardt and Dubey, 1996):

L = V̇ V−1 + VΩ V−1

(W−Ω)V + V(W−Ω) = VD−DV
(2-14)

2.1.1
Analysis of strain measures

Strain is a measure of deformation. There are various strain measures
that can be utilized in order to quantify the amount of deformation suffered
by the body. Consider the the deformation shown in Figure 2.3. Following
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Chapter 2. Stresses and strains in deforming bodies 21

P'

P (a1 , a2 , a3 )

dL0

Γ0
s (P')

s (P)

Q'

Q (x1 , x2 , x3 )

Reference (initial) 
configuration

a1 

a3

a2

Γ (t)

dL

Current (deformed) 
configuration

Figure 2.3: Deformation of an element of infinitesimal length.

Fung and Tong (2001), in the initial (reference) configuration, the square of
the length of the infinitesimal element, connecting the point P (a1, a2, a3) to
P ′(a1 + da1, a2 + da2, a3 + da3), is:

dl20 = δij dai daj = δij
∂ai
∂xl

∂aj
∂xm

dxl dxm

where δij is Kronecker delta. In the current (deformed) configuration, the body
is described by new coordinates x1, x2, x3; the point P is moved to Q and P ′

to Q′. Then, the element length becomes:

dl2 = δij dxi dxj = δij
∂xi
∂al

∂xj
∂am

dal dam

The difference between the squares of the length elements may be written
either as:

dl2 − dl20 =
(
δlm

∂xl
∂ai

∂xm
∂aj
− δij

)
︸ ︷︷ ︸

2Eij : Green strain

dai daj

or as
dl2 − dl20 =

(
δij − δlm

∂al
∂xi

∂am
∂xj

)
︸ ︷︷ ︸

2eij : Almansi strain

dxi dxj

The components of the Green-Lagrange and Almansi-Euler strain tensor can
be defined in a number of different but completely equivalent way:

E = 1
2(FTF− I) = 1

2(C− I) = 1
2(U2 − I)

e = 1
2(I− F−TF−1) = 1

2(I−B−1) = 1
2(I−V−2)
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Where the Cauchy-Green left and right tensors, respectively C and B, have
been already introduced. They are both symmetric and positive definite (Fung
and Tong, 2001). Strain tensors are more commonly expressed in terms of
derivatives of the displacement vector:

Eij = 1
2

(
∂sj
∂ai

+ ∂si
∂aj

+ ∂sk
∂ai

∂sk
∂aj

)
(2-15)

eij = 1
2

(
∂sj
∂xi

+ ∂si
∂xj
− ∂sk
∂xi

∂sk
∂xj

)
(2-16)

Note that the displacement vector si = (s1, s2, s3) can be treated as a
function either of ai or xi. The position of points in the body in reference
(undeformed) configuration is considered when the Green-Lagrange strain
tensor is evaluated. Whereas, the position of points in the current (deformed)
configuration is considered when the Almansi-Euler strain tensor is evaluated.

If first derivatives of s are so small that the squares and products are
negligible, then one derives the definition of Cauchy infinitesimal strain tensor:

εij = 1
2

(
∂sj
∂xi

+ ∂si
∂xj

)
(2-17)

It means that in infinitesimal displacement case, since ai ' xi, the distinction
between the Lagrangian and Eulerian strain tensors disappears (Fung and
Tong, 2001)[p. 102].

Another popular strain measure is the logarithmic strain, defined as:

H = ln U = 1
2 ln C

H̄ = ln V = 1
2 ln B

(2-18)

they are also referred as the logarithmic strain tensors of Hencky (Wang and
Truesdell, 1973).

In the interests of completeness of the information, fundamental strain
and stress measures are provided in Tables 2.1 and 2.2, to enable the reader
to follow the implications and discussions described in the next sections.

2.2
Multiplicative decomposition

The polar decomposition in Eq. 2-5 states that any deformation process
can be decomposed in stretch and rotation. For the case of finite elastoplastic
deformation, a product decomposition is applied in a similar fashion, assuming
that the deformation gradient (F) can be decomposed as the product of elastic
(Fe) and plastic (Fp) contributions:

F = Fe Fp = F̂e · F̂p (2-19)
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Table 2.1: Strain measures
Strain Measure Definition Reference frame

Green-Lagrange E = 1
2(C− I) Lagrangian (unde-

formed)
Almansi-Euler e = 1

2(I−B−1) Eulerian (deformed)

Natural (logarithmic)
H = ln U
H̄ = ln V

Lagrangian - Eulerian

Engineering εij = 1
2( ∂si

∂aj
+ ∂sj

∂ai
) Lagrangian

Cauchy εij = 1
2( ∂si

∂xj
+ ∂sj

∂xi
) Eulerian

Deformation gradient Fij = ∂xi
∂aj

= δij + ∂si
∂aj

Lagrangian-Eulerian
"Two-point tensor"

Table 2.2: Summary of relations among stress measures (Nemat-Nasser, 2003).
Name, notation σ τ P S

Cauchy, σ σ 1
J
τ 1

J
P FT 1

J
F S FT

Kirchhoff, τ Jσ τ P FT F S FT

1st Piola-Kirchhoff, P JσF−T τF−T P F S
2nd Piola-Kirchhoff, S J F−1 σF−T F−1 τF−T F-1 P S

that is themultiplicative decomposition of the deformation gradient, introduced
by Lee (1969) and Lee and Liu (1967). As shown in Figure 2.4, the plastic
deformation gradient Fp defines a local unstressed intermediate configuration,
mapping from the initial state to the intermediate configuration, while the
elastic deformation gradient Fe maps from the intermediate state to the final
configuration. The order of factors in Eq. 2-19 reflects this particular sequence
of deformations: the first deformation is purely plastic and the second is purely
elastic. In this manner, the plastic configuration may be recovered from current
configuration by reversing the elastic deformation:

Fp = (Fe)−1 F (2-20)

As the elastic strains are removed, in the plastic configuration the stresses
acting on the body Bp are zero. Moreover, Fe and Fp are not uniquely defined
because the intermediate unstressed configuration is not unique, since arbitrary
rotations can be locally superposed preserving it unstressed (Lubarda, 2001).
The elastic gradient Fe can be imagined as the rotation Re followed by elastic
stretch Ve; and the plastic gradient Fp as the plastic stretch Up followed by
the rotation Rp. Therefore, there exists a decomposition:

F = Ve Rep Up (2-21)
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such that Rep = R̂ep = Re ·Rp = R̂e · R̂p is unique (Lubarda, 2001). In this
decomposition the material element is first stretched by Up and then rotated
by Rep and finally stretched by Ve according to the polar decomposition
(see Fig. 2.2). As discussed by Weber and Anand (1990), the definition of
intermediate configuration can also be specified by requiring that the elastic
unloading takes place without rotation,

F̄p = (Ve)−1 F (2-22)

the configuration determined in this manner has been referred as favored
unstressed configuration. Then, comparing Eqs. 2-20 and 2-22, it is possible
to make the connection that

F̄p = Re Fp (2-23)

showing that the favored unstressed configuration F̄p differs from the pure
plastic deformation Fp by the rotation Re.

Alternatively, the intermediate configuration may be specified according
to the crystal plasticity theory (Asaro, 1983), assuming that plastic distortion
takes place without rotation,

F̃p = Up = Vp (2-24)

in this case the intermediate configuration is isoclinic and the orientation of
the lattice is fixed, through a triad of orthogonal vectors attached to the initial
configuration.

The velocity gradients L and Lp, corresponding to the fields v and vp

shown in Figure 2.4, are related as follows:

L = ḞF−1 = Ḟe(Fe)−1 + FeLp(Fe)−1 = Le + L̄p (2-25)

where Lp represents the plastic velocity gradient of the intermediate configu-
ration:

Lp = Ḟp(Fp)−1 = ∂vpi /∂x
p
j

It should not be confused with L̄p, that is the spatial plastic velocity gradient
additive to Le. It carries the combined effects of elastic and plastic deforma-
tions. The pure plastic velocity gradient Lp is interconnected to L̄p by the
elastic pull-back transformation:

Lp = (Fe)−1L̄p Fe (2-26)

The multiplicative decomposition does not prevent the additivity of the
strains. However, it affects the way any observer - the lagrangian, eulerian and
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x1 

x3

x2

𝑥𝑛+1
𝑝

𝑥𝑛
𝑝𝑥0 𝑥𝑛

𝑥𝑛+1

Current (spatial) 
configuration

Intermediate (plastic) 
configuration

Initial (material) 
configuration

𝐹𝑛
𝑝 𝐹𝑛

𝑒

𝐹𝑛+1
𝑝

𝐹𝑛+1
𝑒

𝑣𝑝∆𝑡

𝑣 ∆𝑡

Updated

Previous

𝜎𝑛

𝜎𝑛+1

ℬ0

ℬ

ℬ𝑝

𝐸𝑝 𝐸𝑒

Figure 2.4: Multiplicative decomposition. The previous configuration is known
and is described by the deformation gradients Fn = Fe

n Fp
n. The vector v∆t

gives the displacement of the particle xn from its previous place to its updated
place xn+1 in the spatial configuration B. Similarly, the vector vp ∆t gives the
displacement of the intermediate configuration Bp from previous xpn to updated
xpn+1 state.

intermediary - measures the total strain and its elastic and plastic parts. The
eulerian observer, as instance, measures the Almansi strain:

e = 1
2(I− F−T

e F−T
p F−1

p F−1
e ) = 1

2(I− F−T
e F−1

e ) + F−T
e epF−1

e = ee + ēp (2-27)

in which the pure plastic Almansi strain has been introduced according to the
definition F−T

p F−1
p = I − 2ep. Whereas the lagrangian observer measures the

Green strain:

E = 1
2(FT

pFT
e FeFp − I) = FT

pEeFp + 1
2(FT

pFp − I) = Ēe + Ep (2-28)

in which the pure elastic Green strain has been introduced according to the
definition FT

e Fe = 2Ee + I. In the intermediate configuration, the observer
decomposes additively the strains into a pure elastic Green tensor and a pure
plastic Almansi tensor. The summation of these two pure strains gives the
intermediate total strain tensor. This is outlined herein according to Haupt
(2000). The strain tensor which acts on the intermediate configuration is:

γ = (Fp)−TE(Fp)−1 (2-29)

and decomposes according to the multiplicative decomposition (Eq. 2-19) and
the definition of Green strain (Eq. 2-15) as follows:
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γ = 1
2F−T

p (FTF− I)F−1
p = 1

2(FT
e Fe − F−T

p F−1
p ) (2-30)

This equation suggests the additive decomposition of the total strain

γ = γe + γp (2-31)

into a pure elastic Green part

γe = 1
2(FT

e Fe − I) = Ee (2-32)

and a pure plastic Almansi part

γp = 1
2(I− F−T

p F−1
p ) = ep (2-33)

Strain rates As a result, the corresponding rate tensors in the intermediate
configuration are obtained by material time differentiation of the Green strain
defined in Equation 2-28. For the plastic part, the rate of strain in the material
configuration is:

Ėp = 1
2(ḞT

pFp + FT
p Ḟp) (2-34)

and recalling the definition of velocity gradient and rate of deformation
(provided in Eqs. 2-9 and 2-10), the pure plastic rate of deformation tensor is
obtained by the same transformation applied to the plastic strain tensor itself:

Dp = F−T
p ĖpF−1

p = ėp + LT
p ep + epLp = Oep (2-35)

In other words, the plastic rate of deformation Dp = O
γp corresponds to the

objective Oldroyd rate of the plastic Almansi tensor. Analogously, the elastic
rate of deformation in the intermediate configuration is:

D̄e = F−T
p

˙̄EeF−1
p = Ėe + LT

pEe + EeLp =
O
Ee (2-36)

And for the strain rate, the following decomposition is obtained (Haupt, 2000):

O
γ = O

γe + O
γp = D̄e + Dp (2-37)

Work conjugacy Finally, all that remains is to define the stress tensor τ
acting on the intermediate configuration that is work-conjugate to γ. According
to Hoger (1987), the concept of conjugate stress and strain was introduced by
Hill, who first stated that a stress S and a strain measure E are said to be a
conjugate pair if the product ` := 1

ρ0
S · Ė gives the rate of work done per unit

mass. The physical scalar product 1
ρ0

S · Ė remains invariant because the rate
of work input per unit mass is the same for every observer:

ρ0 ` := S · Ė = Jσ ·D = τ · Oγ (2-38)
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where S and Ė are, respectively, the 2nd Piola-Kirchhoff stress and the Green
strain rate operating on the initial (material) configuration; Jσ and D are,
respectively, the weighted Cauchy stress - that is equivalent to the Kirchhoff
stress - and the rate of deformation acting on the current (spatial) configura-
tion; τ and O

γ are, respectively, the 2nd Piola-Kirchhoff stress and the objective
strain rate acting on the intermediate (plastic) configuration. Between the
foregoing stresses, the following relations hold (Haupt, 2000)[p.320]:

S = F−1JσF−T = F−1
p τF−T

p

τ = FpSFT
p = F−1

e JσF−T
e

(2-39)

Exponential mapping For an implicit backward Euler integration scheme, Lp

can be assumed constant and fixed (evaluated in the updated configuration at
the end of the integration step), leading to the following exponential integration
of the plastic deformation gradient:

Fp
n+1 = exp(Lp∆t)Fp

n (2-40)

The proof of Eq. 2-40 is presented herein according to Pipkin (1972). By
definition (see Eq. 2-9), the material derivative of the deformation gradient is:

Ḟ = L F (2-41)
if L is a constant matrix, then∫ tn+1

tn

Ḟ
F
dt =

∫ tn+1

tn
L dt → Fn+1 = exp(L ∆t)Fn (2-42)

with the exponential matrix defined by

exp(L ∆t) =
∞∑
n=0

1
n!∆t

n Ln (2-43)

Flow rule The exponential integration of the velocity gradient Lp = Ḟp(Fp)−1

(Eq. 2-40) gives the plastic configuration of the body Bp, at any time, by
product superposition of ∆Fp = exp(Lp ∆t) over the previous plastic state Fp

n.
The response function for Lp is taken to be governed by a flow rule (Weber
and Anand, 1990), in general derived from a dissipation function (Ziegler and
Wehrli, 1987). In general, the plastic behavior is assumed to be isotropic,
therefore the skew part of the plastic velocity gradient is kept zero. In the
infinitesimal theory, the flow rule is formulated in terms of Cauchy stress and
plastic rate of strain, but it could be also in terms of Kirchhoff stress and
plastic rate of strain if the dissipated energy is taken per unit undeformed (or
unstressed) volume. Therefore, a first option is to prescribe the flow rule in the

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



Chapter 2. Stresses and strains in deforming bodies 28

spatial configuration, preserving the structure of the infinitesimal theory:

D̄p = sym L̄p = λ̇
∂g

∂σ
(2-44)

and exploiting the additivity with De. The second option is to specify a flow
rule for the intermediate plastic configuration itself:

Dp = symLp = λ̇
∂g

∂τ
(2-45)

where τ = (Fe)−1Jσ(Fe)−T is the pull-back of the Kirchhoff stress, i.e. the 2nd

Piola-Kirchhoff stress. As shown previously, this stress is work-conjugated to
the objective elastic Green-Strain rate D̄e = (Fe)TDeFe, that is the pull-back
of the elastic rate of deformation tensor. In this case, recall that τ and D̄e

operate on the intermediate (unstressed) configuration.

Constitutive model formulation The thermomechanical framework devel-
oped by Ziegler and Wehrli (1987) permits to derive the constitutive equations
of any material directly from thermodynamic principles (see also Houlsby and
Puzrin, 2000a,b; Collins and Houlsby, 1997; for a specific discussion on granu-
lar materials refer to Collins and Muhunthan, 2003). The central result of the
theory is that in an isothermal process the input rate of work (i.e. the power
of deformation) is equal to the sum of the rate of change of free energy and
the mechanical dissipation:

Ẇ = ψ̇ + φ̇ (2-46)
where ψ̇ represents the rate of change of recoverable energy and φ̇ is the rate
at which energy is dissipated. For an elastoplastic material, the free energy
function depends on a set of independent state variables γij, γpij, θ - i.e two
strain tensors and the temperature - provided that γij − γpij = γeij is the elastic
strain (Ziegler and Wehrli, 1987). In addition, for rate-independent behavior
the dissipation function is homogeneous of the first degree in the plastic strain
rates Dp

ij and may be a function of the state variables, too. Under these
assumptions, the elastic rate of work per unit intial (undeformed) volume is:

τijD̄
e
ij = ∂ψ

∂γij
D̄e
ij (2-47)

and the plastic rate of work is:

τijD
p
ij =

(
∂ψ

∂γpij
+ ∂φ̇

∂Dp
ij

)
Dp
ij (2-48)

Implications of the multiplicative decomposition Simo and Hughes (1998)
point out the implications of the multiplicative decomposition (Eq. 2-19):
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(i) the stress-strain relationships derive from a stored function formulated
relative to the intermediate configuration;

(ii) the exponential integration of the flow rule, in conjunction with the use
of logarithmic strain measures (Cuitino and Ortiz, 1992), reduce to the
classical return mapping algorithm of the infinitesimal theory (Haupt,
2000):

Strain Decomposition

F = FeFp ⇐⇒ γ = γe + γp

Hyperelastic Relations

τ = ∂ψ

∂γe
⇐⇒ O

τ = ∂2ψ

∂γe∂γe

O
γe

Flow Rule

Fp
n+1 = exp(Lp∆t)Fp

n ⇐⇒
O
γp = Dp = λ̇

∂g

∂τ

Yield Function
f(τ −α, k) = 0

Kinematic Hardening
O
α = cDp − bṡp(t)α

Isotropic Hardening
k = k(sp)

Plastic Arclength
ṡp(t) = ‖Dp‖

(iii) the entire algorithmic procedure can be linearized leading to a closed-
form expression for the consistent tangent elastoplastic moduli.

2.3
Approaches, numerical implementation and algorithms in large strains and
plasticity

This section aims to address some important formulations presented in
the literature, providing an overview of the different algorithms that has been
implemented especially in the context of finite elements.

(i) Use the total formulation:
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t
0Sij = t

0Cijhk
t
0Ehk (2-49)

In a Lagrangian description of motion, all static and kinematic variables
are referred to the initial configuration. For this reason, the formulation
involves the 2nd Piola-Kirchhoff stress and the Green-Lagrange strain
tensor, both referred to the configuration at time 0 (Bathe et al., 1975).

(ii) Use the rate formulation:

tOτ ij = tCijrs tDrs (2-50)

where tOτ ij is an objective stress rate, tCijrs is the constitutive tensor and
Drs = sym(Lrs) is the rate of deformation tensor, i.e. the symmetric part
of the velocity gradient. The rate formulation is an Eulerian description
of motion. Most solution schemes have followed a formulation similar to
that of McMeeking and Rice (1975), whose theoretical development was
largely based on the work of Hill (1959). The Jaumann rate of Kirchhoff
stress has been used in practice because, unlike Cauchy stress, its use
leads to a symmetric tangent stiffness matrix (Lubliner, 2008), although
it results in numerical integration errors and a nonphysical "oscillatory"
behavior in the elastic range (Bathe, 2006). The rate formulations derive
from the time differentiation of the stress field:

σ̇ij = ∂σij
∂xk

∂xk
∂t

+ ∂σij
∂t

= vk∂kσij + ∂tσij (2-51)

According to Prager (2004), σ̇ij represents the material rate of change
of the stress components with respect to a fixed coordinate system. The
first term on the right side is the "convective part" and the second is the
"local part". The tensor σ̇ij cannot be used to represent the stress rate in
constitutive equation, because the stress components change if the body
undergoes a rigid body rotation.

To account for rigid body rotation, several objective stress rates have
been proposed in the past such as, among others, the Jaumann rate,
Oldroyd rate, Truesdell rate, Green-Naghdi rate (Bruhns et al., 1999).
The aforementioned rates cannot be exactly integrated for purely elastic
deformation, i.e. Dij = De

ij, and fail to represent any elastic behavior
in the nonlinear range, resulting in the so-called oscillatory phenomenon
and in dissipation of energy in a closed loading cycle (Bruhns et al., 1999,
2004).

The Truesdell rate, as instance, is related to the material derivative of
the 2nd Piola-Kirchhoff stress. Following Crisfield (1997), considering the
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identity:
τ = Jσ = F S FT (2-52)

differentiation
τ̇ = FṠFT + ḞSFT + FSḞT (2-53)

and fast substitution of S = F−1 τ F−T lead to:

τ̇ = FṠFT + ḞF−1τ + τF−TḞT (2-54)

recalling the definition of velocity gradient L = ḞF−1 (Eq. 2-9), the
relationship can be reexpressed as:

τ̇ = FṠFT + Lτ + τLT = F(C̄Ė)FT + Lτ + τLT (2-55)

where FṠFT = O
τ ij is the Truesdell rate of Kirchhoff stress and may

be viewed as the Lie derivative of Kirchhoff stress (Simo and Hughes,
1998); and C̄ is the tangent constitutive matrix to use with the 2nd Piola-
Kirchhoff stress rate Ṡ (that is per se objective) and the Green-Lagrange
strain rate Ė. The conclusion is that a constitutive model formulated
in terms of the Truesdell rate of Kirchhoff stress O

τ ij and the rate of
deformation tensorDrs is completely equivalent to a formulation in terms
of the 2nd Piola-Kirchhoff stress rate Ṡab and the Green-Lagrange strain
rate Ėcd, as long as:

tCijrs = Fia Fjb Frc Fsd tC̄abcd (2-56)

Obviously, when the strains are small, the two tangent stress-strain ma-
trices are practically equivalent because the gradient of the deformation
is approximately F ≈ I. However, when the strains are large, they differ.

Perić (1992) pointed out that the Jaumann rate of Kirchhoff stress
approximates within the second order the Green-Nagdhi rate of Kirchhoff
with relative error less than 1% as long as the ratios of principal stretches
is within 0.80 ≤ λ(j)/λ(i) = 1.20 .

(iii) Use the updated lagrangian formulation:

t∆Sij = tC̄ijhk t∆Ehk (2-57)

where t∆Sij are the Cartesian components of the 2nd Piola-Kirchhoff
stress (Truesdell increments) and tC̄ijhk is the constitutive tensor. Both
are referred to previous configuration. According to Bathe et al. (1975),
the incremental stress decomposition used in the U.L. formulation is:

t+∆t
t Sij = tσij + t∆Sij (2-58)

(iv) Use the updated Hencky formulation (de Souza Neto et al., 2009; de Borst
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et al., 2012): Assuming the existence of the strain energy function
in terms of logarithmic strain measure, the constitutive equation for
hyperelastic material takes the form:

tτij = ρ0
∂Ψe

∂εeij
(2-59)

where τij are the Kirchhoff stresses, which are conjugate to the logarith-
mic strains for an isotropic material:

ln V = ln Ve + φef ln Vp (2-60)

where φef ln Vp is the push-forward of the plastic strain over the elastic
deformation. Under these assumptions, the principal axes of the Kirch-
hoff stress tensor coincide with the principal axes of deformation. The
result is a return mapping algorithm constructed in the spatial config-
uration that preserve the format of infinitesimal theory. The flow rule
is pulled-back to the intermediate configuration and then exponentially
integrated:

Fp
n+1 = exp[∆λReT

n+1
∂G

∂τ

n+1
Re
n+1]Fp

n (2-61)

(v) Use the co-rotational Kirchhoff stress formulation (Eterovic and Bathe,
1990; Weber and Anand, 1990; de Souza Neto and Perić, 1996; Bathe,
2006):

τ̂ = ReTJσRe (2-62)
Regarding the stress conjugate to logarithmic strain rate ˙(ln U), the
rotated Kirchhoff stress τ̂ represents a good approximation, that is exact
for an isotropic response. Crisfield (1997)[Sec.10.8] shows that if a similar
procedure is applied to Jσ = Rτ̂RT, as it was done with τ = FSFT, it
is obtained:

˙(Jσ) = R ˙̂τRT + Ṙτ̂RT + Rτ̂ ṘT = ◦
τGN + Ωτ − τΩ (2-63)

where Ω = ṘRT suggests the use of Green-Naghdi rate of the Kirchhoff
stress. Logarithmic strains - and their objective rates - are additive:

φeb ln V = ln Ue + ln Vp (2-64)

where φeb ln V stands for the pull-back of the total eulerian logarithmic
strain obtained by purging the rotation alone. As usual, a backward expo-
nential integrator is employed to update the intermediate configuration:

Fp
n+1 = exp

[
∆λ ∂g

∂τ̂

n+1 ]
Fp
n (2-65)

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



3
Constitutive modeling

3.1
Modeling the mechanical and chemical degradation

Experimental observations (Leroueil and Vaughan, 1990) have shown
that the behavior of structured materials falls in between soil and rock
mechanics. Bonding can have both geological or artificial origin (ex. grouted
sands). Main features of these materials are (Gens and Nova, 1993):

– tensile strength and real cohesion provided by bonding;

– structure is responsible for increasing the compressive strength by an
amount somewhat proportional to the tensile strength;

– after yielding, bond degradation occurs in a gradual manner;

– gradual transition from brittle/dilatant to ductile/compressive behavior
as confining stress increases;

– after a marked yield, virgin compression line tends to converge towards
the curve for the unbonded material.

The fundamental hypothesis to model the behavior of structured soils
and weak rocks is to make the yield surface dependent on a set of constitutive
parameters intended to represent the degree of bonding between solid particles.
In this sense, as shown in Figure 3.1, structure is responsible for enlarging the
yield locus (Gens and Nova, 1993), increasing the conventional preconsolidation
pressure, p0 = pt+ps+pc, resulting from the sum of three contributions: tensile,
compressive and intrinsic soil properties. In addition, its evolution is assumed
to vary with mechanical degradation (i.e. crushing) or chemical weathering,
according to a hardening rule and a disintegration law, each of them describing
how the yield surface changes the size in the (q, p) plane.

A particular choice is made when compressive and tensile strength are set
proportional to each other, by assuming pm = αpt, with α a constant usually
between 10 and 20 (Nova, 2005). In this case, it is postulated that the size of the
yield function is controlled only by two variables, ps and pt, whose evolution
is assumed to depend on plastic strains and degree of chemical weathering
(Castellanza and Nova, 2004):
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q

p

pspt pc

η* = M

p0 = pt + ps + pc

p* = p + pt

η* = q /p*

Notation:

parent  
rock

intrinsic
soil 

partially 
destructured

Figure 3.1: Evolution of yield surface during destructuration. After Nova et al.
(2003).

f = f
(
σij, ps(εphk), pt(ε

p
lm, χ)

)
= 0 (3-1)

where:
ps = internal variable related to soil hardening. It acts as common

strain hardening parameter for the intrinsic soil matrix and is
affected only by plastic strain history (εphk).

pt = internal variable related to the interparticle bonds and cemen-
tation, suffering mechanical damage and chemical weathering
from combined physical actions (εplm) and chemical agents (χ)).

The consistency rule states that plastic strain may occur when f = 0, that in
differential form becomes:

df = ∂f

∂σij
dσij + ∂f

∂ps
dps + ∂f

∂pt
dpt = 0 (3-2)

The hardening rule states the relation between ps and plastic strains:

dps = ∂ps
∂εphk

dεphk (3-3)

while the disintegration law sets the consequences of mechanical damage and
chemical weathering on interparticle bonds:

dpt = ∂pt
∂εplm

dεplm + ∂pt
∂χ

dχ (3-4)

where εplm are suitable destructuring plastic strains and χ is the degree of
chemical weathering, a scalar varying between 0 and 1, that maps the transition
from hard rock (χ = 0) to totally weathered soil (χ = 1).

Plastic strain increments are derived from plastic potential according to
the flow rule:

dεprs = λ
∂g

∂σrs
(3-5)
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combining all the previous equations, it is possible to calculate the plastic
multiplier:

λ = −

∂f

∂σij
dσij +

∂f

∂pt

∂pt

∂χ
dχ

∂f

∂ps

∂ps

∂εphk

∂g

∂σhk
+
∂f

∂pt

∂pt

∂εplm

∂g

∂σlm

(3-6)

and the hardening modulus:

H = Hs +Ht = −
∂f

∂ps

∂ps

∂εphk

∂g

∂σhk
−
∂f

∂pt

∂pt

∂εplm

∂g

∂σlm
(3-7)

The hardening modulus consists of two competing terms expanding or shrink-
ing the elastic domain (Gens and Nova, 1993). The former is related to the
intrinsic soil behavior, the latter to the interparticle bonds.

The fundamental concepts stated above, related to the modeling of
structured soils, require the choice of mathematical expressions for each of
the following aspects.

3.1.1
Yield function

Experimental observations have shown that, at a first approximation,
the yield surface is shaped like a teardrop, centered along the hydrostatic axis.
A review of mathematical expressions from literature (they are resumed in
Table 3.2 and Figure 3.8) reflects that the final shape of the yield function
depends on three criteria: (1) the failure associated to shear (2) the moving
cap due to compression (3) the eventual cohesion.

The previous considerations can be generalized by assuming a family of
yield surfaces given by the expression:(

p∗

p0

)n
+
(
η∗

η0

)α
= 1 (3-8)

where p0 is the preconsolidation pressure and η0 the maximum stress
ratio, i.e. the slope of the curve at the origin; n and α are model parameters that
control the shape of the curve in stress space. Stress invariants are normalized
by their respective maximum (or reference) values. The ratios p∗/p0 and η∗/η0

may be defined as the normalized mean stress and the normalized stress ratio,
respectively. Equation 3-8 states that yielding will occur when the sum of
powers of normalized stresses is equal to 1. The yield function in the (p, q) space
is shown in Figure 3.2. By selecting appropriate parameters in Equation 3-
8, one can mimic the yield function of other literature models, as shown in
Table 3.1.

For the proposed general yield function, the following stress–dilatancy
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relation holds:
d = (n+ α) m

α − ηα

αηα−1 (3-9)

where m is the stress-ratio at peak deviator stress, given by the following
identity:

ηα0 = mα n+ α

n
(3-10)

It is worth noting that m and ηα0 are real numbers, while η0 may not. This
aspect must be taken into account in numerical implementation to avoid
undesirable instabilities.

q

p

CSL
η = M

η = η0

p0p0

r

peak 
η = m

critical 
state

Figure 3.2: Definition of yield function parameters for the general case.

Furthermore, as pointed out by Yu (1998), the critical state may not
coincide with peak deviatoric stress. Under this assumption, the intersection
of the critical state line with the yield surface can be arbitrarily set by means
of a fixed spacing ratio, r = p0/pcs, as shown in Figure 3.2. Then, the following
relations hold:

ηα0 = Mα

1− (1
r
)n or r =

[
1− Mα

ηα0

]−1/n

(3-11)

n = − ln[1−Mα/ηα0 ]
ln r (3-12)

Therefore, partial derivatives can be written as:

∂f

∂p
= n

p

[
1−

(
η

m

)α ]
(3-13)

∂f

∂q
= α

p

ηα−1

ηα0
(3-14)

∂f

∂p0
= − n

p0

(
p

p0

)n
= −n

p

[
1−

(
η

η0

)α ]1+1/n

(3-15)

In three dimensional stress space it follows immediately (Van Eekelen,
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1980): (
p

p0

)n
+
(
η

η0

)α (1 +B sin 3θ
1−B

)α/4
= 1

with the following partial derivatives

∂f

∂p
= n

p

1−
(
η

m

)α (1 +B sin 3θ
1−B

)α/4 (3-16)

∂f

∂q
= α

p

ηα−1

ηα0

(
1 +B sin 3θ

1−B

)α/4
(3-17)

∂f

∂θ
= α

4

(
η

η0

)α 3B cos 3θ
1 +B sin 3θ

(
1 +B sin 3θ

1−B

)α/4
(3-18)

∂f

∂p0
= −n

p

1−
(
η

η0

)α (1 +B sin 3θ
1−B

)α/4 1+1/n

(3-19)

3.1.2
Plastic potential

Following Lagioia et al. (1996), the mathematical expression of the plastic
potential can be derived from a suitable stress-dilatancy relationship:

d =
dεpp
dεpq

= −dq
dp

(3-20)

by substitution into (Desai and Siriwardane, 1984)[Chap. 11, p. 290]:

dp

p
= − dη

d+ η
(3-21)

Two suitable stress-dilatancy relations may serve for the purpose of establishing
the plastic potential for the structured soil model. The first is a slight
modification of Nakai and Hinokio (2004) expression:

d = α
Mβ − ηβ

βηβ−1 (3-22)

The second has been inspired by Kim and Lade (1988):

d =
(M2 − η2)(η2 + ψ)

βη
(3-23)

The plastic potential adopted in this study is the hybrid resulting from
combining the above two expressions. It is reported with other models from
literature in Table 3.4. In the triaxial plane (p, q), the general expression is:(

ψ1 + ηβ

ψ2 − ηβ

)(
p

p0

)µ
= ψ1

ψ2
(3-24)
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Table 3.2: Yield functions from literature.

Name Yield function

Original Cam Clay
η

M
+ ln

p

p0
= 0

Modified Cam Clay
 η

M

2

+ 1−
p0

p
= 0

CASM
 η

M

n = −
ln(p/p0)

ln r

Single Hardening (*) fp =
ψ1

I3
1

I3
−
I2

1

I2

 I1

pa

heq
Sinfonietta Classica (**) 9(γ − 3) ln

p

p0
− γJ3η +

9
4(γ − 1)J2η = 0

Tear Shape
p

p0
− e−

η/M
1−α

1− α
α

η

M
+ 1

α/(1−α)2

= 0

Present study (1)
(
p

p0

)n
+
(
η

η0

)α
= 1

(*) Lade (1990)
(**) Lagioia and Nova (1995)

where (β, ψ1, ψ2, µ) are parameters of the model. With the above plastic
potential, it is possible to derive the following stress-dilatancy relation:

d =
dε

p
p

dεp
q

= α
(Mβ − ηβ)(ηβ + ψ)

βηβ−1 (3-25)

in which the following identities have been introduced:

ψ1 = 1
2

[√
(Mβ + β/α− ψ)2 + 4Mβψ − (Mβ + β/α− ψ)

]
(3-26)

ψ2 = Mβ + β/α− ψ + ψ1 (3-27)

µ = α(ψ1 + ψ2) (3-28)

The input parameters are (α, β,M, ψ), while (ψ1, ψ2, µ) are derived. Eventu-
ally, imposing the tension cut-off condition, d(η = 3) = −3, the input param-
eters for the plastic potential may be reduced from four to three, since α is
given by:

α =
β3β

(3β −Mβ)(3β + ψ) (3-29)

Table 3.3 lists specific combinations of parameters (α, β,M, ψ) that allow
to reproduce different literature models from the general expression given in
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Equation 3-25. Resulting plots are shown hereafter.

a) Original Cam Clay

Adopt β = 1 and ψ = 1
α

= 106

The stress-dilatancy relation is that of Original Cam Clay: d = M − η

η = M
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Figure 3.3: Comparison with Original Cam Clay (M = 1.2, p0 = 100 kPa).

b) Modified Cam Clay

Adopt β = 2 and ψ = 1
α

= 106

The stress-dilatancy relation is that of Modified Cam Clay: d = M2−η2

2η

η = M
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Figure 3.4: Comparison with Modified Cam Clay (M = 1.2, p0 = 100 kPa).

c) Rowe stress-dilatancy (CASM)

Adopt β = 1 and α = 3
(3−M)(3+ψ)

The stress-dilatancy relation becomes: d = α(M − η)(η + ψ)
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Figure 3.5: Comparison with Rowe’s model, employed in CASM (M =
1.2, p0 = 100 kPa, ψ = 2).

d) Single Hardening (Lade-Kim)

Adopt β = 2 and α = 18
(9−M2)(9+ψ)

The stress-dilatancy relation becomes: d = α (M2−η2)(η2+ψ)
2η
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Figure 3.6: Comparison with Lade-Kim model (M = 1.2, p0 = 100 kPa, ψ =
0.21).

Table 3.5: Model parameters used in Single Hardening model.
Failure criterion Yield Function Plastic Potential

η1 = 48 p0 = 100 kPa ψ1 = 0.00339
m = 0.54 h = 0.81 ψ2 = −3.08
pa = 100 α = 0.5 µ = 2.38

e) Tear Shape (Lagioia et al., 1996)

Adopt ψ = k
α

= 106

The stress-dilatancy relation becomes: d = kM
β−ηβ

βηβ−1
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Figure 3.7: Comparison with Tear Shape model from Milan research group
(M = 1.2, p0 = 100 kPa, β = 2, k = 2).

Table 3.6: Model parameters used in Tear Shape model.
Yield Function

α = 0.99
M = 1.2

p0 = 100 kPa

Finally, constitutive modeling is completed by considering the following
remaining components:

Elastic constitutive relations. The behavior of soil is elastic within the
yield surface. In general, isotropic hypoelasticity is chosen for the elastic
stress-strain relationships. Some authors (Yu et al., 2007; Rios et al.,
2016) have also made elastic stiffness dependent on bonding. A possible
choice is:

K = p+ pt
κ∗

= ṗ

ε̇ev
(3-30)

Hardening law. For soils and rocks, the law is generally assumed to be strain
hardening, resulting from accumulated plastic strains.

Disintegration law. Destructuration is a chemo-mechanical-softening pro-
cess. According to Koliji et al. (2008), mechanical degradation is con-
trolled by a suitable destructuring strain, a general plastic strain that,
depending on loading condition, can be volumetric, deviatoric or a com-
bination of both. Disintegration of interparticle bonds by chemical degra-
dation may be included in the formulation, as shown by Nova et al. (2003)
and Castellanza and Nova (2004).
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Figure 3.8: Comparison of yield surface, plastic potential and related stress-
dilatancy curve from different constitutive models.
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3.2
Viscoplasticity

This section presents the framework of elastic viscoplastic modelling
proposed by Perzyna (1963, 1966). The theory has been extended to geologic
materials by Adachi and Oka (1982); Borja and Kavazanjian (1985); Desai and
Zhang (1987); Borja (1992); Kutter and Sathialingam (1992); Liang and Ma
(1992); Rowe and Hinchberger (1998); Yin and Graham (1999); Hinchberger
and Rowe (2005); Leoni et al. (2008) among others. Models haves been
applied to both cohesive and granular materials to reproduce drained and
undrained creep, stress relaxation and strain-rate effects on strength. Most
of the applications aimed to reproduce phenomena of considerable interest in
geomechanics, such as secondary compression (i.e. deformation under constant
effective stress), influence of strain rate on undrained strength, constant rate of
strain oedometer test, long-term deformations of foundations and excavations,
creep behavior of rocks (Hickman and Gutierrez, 2007; Chang and Zoback,
2010) and salt rock, delayed failure of embankments built on soft soils,
undrained triaxial stress relaxation, slow landslides and fast landslides of
fluidized materials (Pastor et al., 2015).

Perzyna’s theory is a straightforward extension of the classical rate-
independent plasticity theory. It is assumed that the (total) strain rate can
be decoupled into an elastic (recoverable) and a visco-plastic part:

ε̇ij = ε̇eij + ε̇vpij (3-31)

the viscoplastic part represents combined viscous and plastic effects. According
to Zienkiewicz and Cormeau (1974), creep and plastic strains cannot be
treated separately as only the combined effect is measurable and the idea
of instantaneous permanent (plastic) strain is only a convenient mathematical
fiction.

A static yield function defines the elastic domain, where the material has
no viscous behavior, i.e. the viscoplastic strain rates vanish. However, this does
not mean that all state variable rates are zero in the elastic region (Lubliner,
2008). The yield function has the form:

F (σij, qk) = σe
σ0
− 1 (3-32)

where σe is the equivalent stress and σ0 is the reference stress, which may be a
hardening parameter. A special case is when the equivalent stress is a function
of the state of stress only, i.e. σe = f(σij).

Perzyna proposed the following viscoplastic strain rate in case of infinites-
imal strain field:
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Table 3.7: Viscous nucleus from literature. Modified from Yin et al. (2010).
No. Type φ(F ) Reference
1 Expon 1 ebF di Prisco and Imposimato (1996)
2 Expon 2 ebF − 1 Fodil et al. (1997)
3 Power 1 FN Zienkiewicz and Cormeau (1974)
4 Power 2 (F + 1)N Rowe and Hinchberger (1998)
5 Power 3 (F + 1)N − 1 Perić (1993)

ε̇vpij = 1
µ
〈φ(F )〉 ∂g

∂σij
(3-33)

where µ is a "fluidity parameter", that may vary with temperature, g is a
plastic potential-like function defining the direction of inelastic flow and 〈.〉 is
the Macauley bracket, defined such that:

〈φ〉 =

0, if φ ≤ 0

φ, if φ > 0
(3-34)

Equation 3-33 indicates that the rate in which inelastic deformation takes
place increases with the distance from the yield surface. The function φ(F )
is a positive monotonic increasing function (Owen and Hinton, 1980) whose
mathematical form is chosen in the light of experimental data (Perzyna, 1966).
It has been called by different names: viscous flow function (e.g., Katona, 1984),
scaling function (e.g., Yin et al., 2010) and viscous nucleus (e.g., di Prisco and
Imposimato, 1996). In this work, the term viscous nucleus will be preferably
used to not cause confusion with the general concept of flow rule. Many
mathematical expressions have been proposed in the literature. Some are
summarized in Table 3.7. According to Owen and Hinton (1980), recommended
forms for the viscous nucleus are:

φ = FN (3-35)

φ = ebF − 1 (3-36)

Finally, squaring both sides of Equation 3-33 and combining it with
Equation 3-32, the following inverse relation is obtained:

σe = σ0

[
1 + φ−1

(
µ

(ε̇vpij ε̇
vp
ij )1/2

(∂g/∂σij · ∂g/∂σij)1/2

)]
(3-37)

the above expression implicitly represents the dynamic yield condition for
rate-dependent viscoplastic materials, and describes the dependence of yield
condition on the strain rate.
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3.2.1
Undrained Hydrostatic Relaxation Test

Rate-dependent behavior may also appear in the form of stress relaxation,
that is, a decrease in stress under constant level of strain. To investigate the
viscous behavior of geomaterials, the tests that may be carried out are:

1. Monotonic loading at various strain rates

2. Monotonic loading at various effective stress rates

3. Creep test at constant effective stress

4. Stress relaxation at constant strain

In author’s opinion, relaxation tests provide a better insight into the
mechanisms that control the rate-dependent behavior than creep test, because
they reflect in a clearer manner the characteristics of the viscous nucleus.

This section presents a new theoretical interpretation of the Undrained
Hydrostatic Relaxation Test (HRU). The analysis is performed in the light of
the classical theory of viscoplasticity of Perzyna (1963, 1966). The test provides
a clear examination of the viscous properties of clays on the relaxation stage
and allows a separate (subsequent) check on the secondary (creep) settlement
measured in conventional oedometer tests.

The test is performed in the triaxial apparatus to investigate the
undrained relaxation behavior of clay under a hydrostatic state of stress. Fig-
ure 3.9 shows a schematic of the experimental apparatus and the results of an
idealized experiment. For the initial consolidation phase, a confining pressure
is applied to the specimen that is allowed to drain. Once the consolidation
is completed, the drainage is closed and the relaxation test is performed at
constant cell pressure. Because water cannot escape from pores, the volume of
the soil specimen does not change throughout the relaxation process. Instead,
an excess pore water pressure develops.

Hypothesis In order to derive an analytical solution for the interpretation of
this test, the following assumptions are introduced:

1. The specimen is consolidated under a uniform cell pressure, σc, that is
kept constant during all stages. The specimen is therefore submitted to
a hydrostatic state of stress. No shear stress exists.

2. The average mean effective stress, p′, is the difference between cell
pressure and pore pressure, p′ = σc − u.
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Figure 3.9: Undrained Hydrostatic Relaxation Test

3. The consolidation phase ends when the excess pore pressure is completely
dissipated. This condition is usually referred as End of Primary (EOP)
consolidation. The time required to achieve 100% degree of consolidation
can be estimated according to Taylor’s method.

4. Still after pore pressure dissipation, specimen continues to deform under
constant effective stress essentially due to creep.

5. As drainage is closed, the total volumetric strain rate instantly drops to
zero, i.e. ε̇v = 0.

6. The total strain rate is assumed as the sum of the elastic and the
viscoplastic parts. This means that during the relaxation process, the
terms sum to zero.

7. Viscoplastic strain rate is calculated according to Perzyna’s theory:

ε̇p = 1
µ
φ(F ) = 1

µ
(ebF − 1) (3-38)

where

– µ = µ(T ) is a temperature-dependent fluidity parameter
– b is a rate-sensitivity parameter

and F is the "overstress" function, equal to the ratio between the mean
effective stress and the preconsolidation pressure minus one:

F = p′

py
− 1 (3-39)

The total viscoplastic strain is calculated by integrating the viscoplastic
strain rate over time:

εp =
∫ t

0
ε̇p dt (3-40)

Obviously, time integration requires a numerical quadrature.
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List of symbols For clarity, the following list of symbols is provided:
εv, ε̇v Total volumetric strain and rate
εe, ε̇e Elastic volumetric strain and rate
εp, ε̇p Viscoplastic volumetric strain and rate
σc Cell pressure
p′ Effective mean stress
u Excess pore pressure
py Yield stress (preconsolidation pressure)

Boundary conditions Assuming no overall volume change during relaxation,
the elastic and plastic parts must sum to zero:

εv = εe + εp = 0 and ε̇v = ε̇e + ε̇p = 0 (3-41)

The condition of no overall change in volume places no restriction on the
individual components that make up that overall change. Elastic and plastic
components exactly balance each other to give zero resultant total volumetric
strain.

Cell pressure is kept constant: σc = p′ + u = const, then ṗ′ = −u̇

Initial conditions According to the experimental procedure, the drainage is
closed at 100% degree of consolidation. Thus, the initial conditions are well
established:

u(0) = 0 Drainage is closed when pore pressure is completely
dissipated

p′(0) = σc From the definition of effective stress, at the beginning
of the relaxation process the effective mean stress
equals the total applied cell pressure

Final conditions (equilibrium) The excess pore pressure generated after
drainage closure converges to an asymptotic value as time approaches infinity:

lim
t→∞

u(t) = u∞ (3-42)

Governing equations From hypothesis No.1, it follows that the point repre-
senting the state of stress moves solely along the hydrostatic axis. Then, the
"overstress" is:

F = p′

py
− 1 (3-43)

Where p′ = σc − u is the mean effective stress and py is the yield stress
(preconsolidation pressure).
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From hypothesis No.5, it follows that the overall volume of the specimen
does not change during the undrained relaxation:

εv = 0 and ε̇v = 0 (3-44)

However, according to hypothesis No.6, no particular restriction is imposed on
the elastic and/or plastic parts. Indeed:

εv = εev + εpv and ε̇v = ε̇ev + ε̇pv (3-45)

that yields εev = −εpv and ε̇ev = −ε̇pv.
After closing the drainage valve, the cell pressure in the triaxial chamber

is held constant while the pore pressure is monitored. The following relations
hold at any time:

σc = p′ + u and ṗ′ = −u̇ (3-46)
This means that an increase of pore pressure corresponds to an equal decrease
in mean effective stress. Therefore, the relaxation is an undrained (no overall
volume change) unloading process at constant total stress (σc = const.).

The decrease in mean effective stress results in an elastic expansion such
that:

ε̇e = κ∗
ṗ′

p′
= −κ∗ u̇

σc − u
(3-47)

where, as usual in practice, the elastic volumetric strain has been related to the
effective mean stress through a pressure-dependent bulk modulus K ′ = p′/κ∗.

Recalling hypothesis No.3, the above differential equation can be inte-
grated over the interval [0, t] to express the elastic volumetric strain as function
of generated pore pressure:

εe = κ∗ ln
(

1− u

σc

)
(3-48)

Obs: consider that εe(0) = 0 and u(0) = 0. As expected, an elastic volumetric
expansion occurs as a result of the reduction of mean effective stress. In
contrast, the viscoplastic strain is positive, meaning that creep causes volume
contraction. This occurs because elastic and viscoplastic strain rates are equal
and opposite, as the drainage is closed, the rate of overall volume change is
set to zero. The fundamental result is that elastic (and therefore viscoplastic)
strains can be calculated by means of Equation 3-48 from the excess pore
pressure monitored during the relaxation stage.

If the sample is allowed to "relax" for a very long time, the excess pore
pressure generated after drainage closure will reach a steady state. This means
that it converges to an asymptotic value as time approaches to infinity:

lim
t→∞

u(t) = u∞ (3-49)
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lim
t→∞

εe(t) = εe∞ = κ∗ ln
(

1− u∞
σc

)
(3-50)

and the condition
lim
t→∞

ε̇e = 0 (3-51)
is necessary because the steady state condition is reached when all the
partial derivatives with respect to time becomes zero and remains so. As a
consequence, the viscoplastic strain rate also becomes zero at a time equal to
infinity and, in turn, the “overstress” is zero, too:

F∞ = p′∞
py∞
− 1 = 0 → py∞ = p′∞ = σc − u∞ (3-52)

In other words, the yield stress becomes equal to the effective mean stress and
the “overstress” is zero at the final stationary condition.

The preconsolidation pressure changes with viscoplastic volumetric
strains according to the strain-hardening rule of Cam Clay models:

ṗy
py

= ε̇p

λ∗ − κ∗
→ py = py0 exp

(
εp

λ∗ − κ∗
)

(3-53)

for t→∞ yields:

py0 exp
[
− κ∗

λ∗ − κ∗
ln
(

1− u∞
σc

)]
= σc − u∞ (3-54)

And after some manipulations, it results in the following:

py0 = σc

(
1− u∞

σc

)1/Λ
(3-55)

or, equivalently
u∞ = σc

[
1−

(
py0

σc

)Λ
]

(3-56)

where Λ = λ∗−κ∗
λ∗

. It follows that the value of the preconsolidation pressure at
the beginning of the relaxation stage (py0) is directly related to the asymptotic
value of the excess pore pressure (u∞) at the final steady state. In other words,
the final excess pore pressure depends solely on the "initial" condition that is
imposed at the beginning of the relaxation stage. As a matter of fact, the
magnitude and rate of excess pore pressure are larger for higher volumetric
strain (ε̇v) occurring when the drainage valve is closed.

If one knows py0 or u∞ , then the relaxation stage is fully described by
the following governing equations:

εe + εp = 0 σc = p′ + u

εe = κ∗ ln
(

1− u

σc

)
py = py0e

εp/(λ∗−κ∗)
(3-57)

Calibration via least-square method Given the set of observations
εe0, ε

e
1, ..., ε

e
n made at times t0, t1, ..., tn, the viscoplastic model parameters
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(µ, b) are calibrated from experimental data via a least-square minimization
procedure.

Model predictions
yci = εpi =

∫ ti

0
ε̇p dt (3-58)

are fitted to the experimental data yei = −εei via the following numerical
procedure:

Residual vector ri = yci − yei
Fitting parameters αj = {µ, b}
Jacobian matrix Jij = ∂yci

∂αj
∂εpi
∂µ

= ∂
∂µ

∫ ti
0

1
µ
(ebF − 1)dt = − 1

µ
εpi

∂εpi
∂b

= ∂
∂b

∫ ti
0

1
µ
(ebF − 1)dt = 1

µ

∫ ti
0 F (1 + φ)dt

Algorithm 1 Least-square procedure for calibration of model parameters
1: Set k = 1
2: Use a set of physical admissible parameters as a guess α∗j

α
(k)
j ← α∗j

3: Do for k=1, nitMax

1. Calculate yci and the residual vector ri = yci − yci

2. Compute the Jacobian matrix

Jij = ∂yci (α(k))
∂αj

3. Solve
∆α = −(JTJ)−1 JT(yc − ye)

4. Update model parameters

αnew = αold + ∆α
k = k + 1

5. Compute the error
error = ‖y

c − ye‖
‖ye‖

6. Check if the error is below a given tolerance. If so, return the
calibrated parameters.
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3.3
Summary

This chapter dealt with the mathematical formulation of material be-
havior by means of the constitutive relations. After an initial review of several
literature elastoplastic models, new expressions of the yield function and plas-
tic potential were derived. Those expressions are very general and can mimic
a number of existing constitutive models. They were formulated using the tri-
axial invariants (p, q), which brought several advantages in the mathematical
derivations and graphical representations.

The elastoplastic framework to model bonded geomaterials was reviewed.
The conceptual basis presented by Gens and Nova (1993) was recalled along
with the upgrade proposed by Nova et al. (2003) to introduce chemical
weathering effects in the formulation.

In addition, the mathematical framework of elastic viscoplastic modeling,
based on Perzyna’s overstress theory, was briefly outlined. A unprecedented
interpretation of the undrained hydrostatic relaxation test was proposed to
calibrate the viscous nucleus functional.

The application of these concepts to simulate the behavior of geomaterials
will be presented in Chapter 6.
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4
Numerical integration of constitutive equations

4.1
Overview of integration schemes

A wide range of geological materials can be characterized by means of a
set of constitutive relations of the general form

εj = εej + εpj (4-1)

σ̇i = De
ij ε̇

e
j (4-2)

ε̇pj = λ̇
∂g

∂σj
(4-3)

hk = hk(εpj) (4-4)

where, according to Ortiz and Popov (1985); Ortiz and Simo (1986),
εj, εej and εpj denote the vectors total, elastic and plastic strains, σi is the
vector of Cauchy stresses and hk is a set of hardening variables. Equation 4-1
expresses the commonly assumed additive strain decomposition. Equation 4-
2 represents the generalized Hooke’s law, with the material stiffness matrix
De
ij that may vary during loading. Equation 4-3 states that the plastic strain

rates are derived from a flow rule, that is expressed in rate form and is not
necessarily associated, and Equation 4-4 signifies that a strain hardening rule is
assumed, in which the evolution of the yield surface depends on the history of
the plastic deformations. The plastic multiplier, λ̇, has to be determined with
the aid of the loading-unloading criterion. This can be expressed in Kuhn-
Tucker conditions:

f(σi, hk) ≤ 0 (4-5)

λ̇ ≥ 0 (4-6)

f λ̇ = 0 (4-7)

where f(σi, hk) is the yield function of the material. Plastic strains are activated
if the yield criterion is violated. Along any process of loading, the Kuhn-
Tucker conditions must hold simultaneously. The plastic multiplier is obtained
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enforcing the so-called plastic consistency condition:

df = ∂f

∂σi
dσi + ∂f

∂hk
dhk = 0 (4-8)

Integration of rate constitutive equation is performed at Gauss-point
level, requiring the time integration of the flow rule in Equation 4-3. The
procedure is discrete in time, with small increments of plastic strains calculated
according to the following time integration scheme over ∆t:

∆εpi =
∫ t+∆t

t
λ̇
∂g

∂σi
≈ ∆λ bi (4-9)

A numerical algorithm is often necessary to evaluate the components of vector
bi, because finding an analytical solution is not trivial. The trapezoidal rule or
the midpoint rule are common choices. They are also referred as the θ-method:

bi = (1− θ) ∂g
∂σi

t

+ θ
∂g

∂σi

t+∆t
= ∂g

∂σi

t+θ∆t
(4-10)

The values most commonly assigned to θ correspond to the following schemes:

– θ = 0 Forward Euler (Explicit or semi-implicit)

– θ = 1
2 Crank-Nicholson

– θ = 2
3 Galerkin

– θ = 1 Backward Euler (Fully implicit)

Various geometric return mapping schemes for the integration of rate
constitutive equations applicable to soil constitutive models are depicted in
Figure 4.1. All consist of a return to the yield surface. Here, three alternative
procedures are outlined:

1. Implicit Backward Euler Scheme.

2. Semi-implicit Forward Euler Scheme.

3. Explicit integration with substepping.
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Figure 4.1: Return mapping directions (Borja and Lee, 1990): 1. Hydrostatic
return, 2. central return, 3. closest point projection, 4. radial return.

Implicit Backward Euler Scheme

In the fully implicit backward Euler method (Crisfield, 1991; Simo and
Hughes, 1998; de Souza Neto et al., 2009; de Borst et al., 2012; Belytschko
et al., 2013), the increments in plastic strain are calculated with the flow rule
evaluated at the end of the time step. Thus the integration scheme is implicit
in plastic flow directions and in the plastic multiplier. An iterative procedure
for the solution of the implicit Backward Euler Scheme is necessary and, in
general, the standard Newton–Raphson method is employed. Implicit methods
are attractive because they are unconditionally stable and the resulting stresses
automatically satisfy the yield criterion to a specified tolerance. Furthermore,
they do not require the intersection with the yield surface to be computed if
the stress point changes from an elastic state to a plastic state.

Semi-implicit Forward Euler Scheme

The semi-implicit Euler scheme (Belytschko et al., 2013) is implicit in the
plasticity parameter and explicit in the plastic flow direction. In other words,
the plastic multiplier is calculated by enforcing the consistency condition at
the end of the step to avoid drift from the yield surface.

Explicit integration with substepping

Explicit algorithms for integrating the elastoplastic constitutive relations
have been provided by Sloan (1987); Sloan et al. (2001). In the explicit scheme,
the applied strain increment is automatically divided into subincrements using
an estimate of the local error and attempt to control the global integration
error in the stresses. For a given scheme, the number of substeps used is a
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function of the error tolerance specified, the magnitude of the imposed strain
increment, and the non-linearity of the constitutive relations. Notable examples
are the modified Euler scheme with substeps of variable size and the classical
Runge-Kutta scheme.

4.2
Implicit integration: backward Euler algorithm

The backward Euler elastoplastic integration algorithm is given in the
general form (Ortiz and Popov, 1985; Tamagnini et al., 2002a,b):

{∆ε} = {∆εe}+ {∆εp} (4-11)

{∆εp} = ∆λ {t+∆tb} (4-12)

{σE} = {tσ}+ [CE] {∆ε} (4-13)

{t+∆tσ} = {σE} −∆λ [CE] {t+∆tb} (4-14)

{t+∆tpo} = {tpo}+ ∆λ {t+∆th}+ ∆Xd {tw} (4-15)
t+∆tf = 0 (4-16)

The Backward Euler algorithm involves the vectors {t+∆tb}, {t+∆th} that
are evaluated at the final position {t+∆tσ}, {t+∆tpo}, for which the state of
stress satisfy the consistency condition t+∆tf = 0. Because these quantities
cannot be directly computed from the current state of stress, an iterative
procedure must be used to solve the non-linear equations (Crisfield, 1991).

Initial yield 
surface

tσ t+Δtσ

σ E

Updated yield 
surface

f ( tσ, tpo ) = 0
f ( t+Δtσ, t+Δtpo ) = 0

ELASTIC 
DOMAIN

Plastic potential
t+Δt g = 0

Δλ [CE] { t+Δt b}

Figure 4.2: Representation of Backward Euler method.

The return mapping algorithm can be conveniently defined based on the
elastic-plastic split by first integrating the elastic equations to obtain an elastic
predictor, which is the taken as an initial condition for the plastic corrector
phase (Ortiz and Simo, 1986).
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The algorithm starts with freezing the plastic strain and applying the
elastic predictor:

{σE} = {tσ}+ [CE] {∆ε} (4-17)

{pEo } = {tpo}+ ∆Xd{tw} (4-18)

if yield criterion is violated after trial elastic increment, i.e. f(σE,pEo ) > 0,
then the state of stress is outside the yield locus and plastic strains must be
computed by solving the non-linear constitutive equations (Eqs. 4-14 to 4-16)
according to Newton-Raphson procedure. Rewriting the system of equations,
the residuals are defined as follows:

{rσ} = {σE} − {t+∆tσ} −∆λ [CE] {t+∆tb} (4-19)

{rpo} = {pEo } − {t+∆tpo}+ ∆λ {t+∆th} (4-20)

rf = −t+∆tf (4-21)

iterations are performed to reduce the residuals to (almost) zero. With
the trial elastic stress, {σE}, being kept fixed, a truncated Taylor expansion
is applied in order to minimize the residuals at each iteration:

{r(k)
σ } = {r(k−1)

σ } − {dσ} − dλ [CE] {t+∆tb} −∆λ [CE] {db} (4-22)

{r(k)
po } = {r(k−1)

po } − {dpo}+ dλ {t+∆th}+ ∆λ {dh} (4-23)

r
(k)
f = r

(k−1)
f − df (4-24)

in which the following differentials can be introduced:

{db} =
[
∂b

∂σ

]
{dσ}+

[
∂b

∂po

]
{dpo} (4-25)

{dh} =
[
∂h

∂σ

]
{dσ}+

[
∂h

∂po

]
{dpo} (4-26)

df = {a}T{dσ}+ {∂f/∂po}T{dpo} (4-27)

Setting {r(k)} = 0 and after some algebraic manipulations, it is possible
to solve the previous equations to obtain the iterative changes:
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
dσ

dpo

dλ

 =
[
Q(k−1)

]−1


r(k−1)
σ

r(k−1)
po

r
(k−1)
f

 (4-28)

where the matrix [Q] can be evaluated as (Tamagnini et al., 2002a,b):

[Q] =



[ I ] + ∆λ [CE]
 ∂b
∂σ

 ∆λ [CE]
 ∂b
∂po

 [CE] {b}

−∆λ
∂h
∂σ

 [ I ]−∆λ
 ∂h
∂po

 −{h}

{a}T {∂f/∂po}T 0


This iterative procedure is continued until convergence given a certain

tolerance, at the final stress state. Stresses, hardening parameters and plastic
multiplier are updated at each iteration according to:

{t+∆tσ(k)} = {t+∆tσ(k−1)}+ {dσ(k)} (4-29)

{t+∆tpo
(k)} = {t+∆tpo

(k−1)}+ {dpo(k)} (4-30)

∆λ(k) = ∆λ(k−1) + dλ(k) (4-31)

A starting estimate for the iterative procedure can be obtained evaluating all
quantities at trial elastic stress. A first guess for the plastic multiplier is:

∆λ(0) = fE

{aE}T[CE] {bE}+HE

(4-32)

then, starting stresses are evaluated:

{t+∆tσ(0)} = {σE} −∆λ(0) [CE] {bE} (4-33)

as well as hardening variables:

{t+∆tpo
(0)} = {σE}+ ∆λ(0) {hE} (4-34)

Iterative procedure simply consists in evaluating the residuals and the [Q] ma-
trix taking stresses, hardening parameters and plastic multiplier from previous
iteration. However, the calculation of the second derivatives of hardening laws
and plastic potential may difficult the implementation of the method.
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4.2.1
Nonlinear elastic integration

Non-linear elasticity involves the integration of rate equations:

σ̇i = De
ij ε̇

e
j → ∆σi =

∫ t+∆t

t
De
ij ε̇

e
jdt ≈ D̄e

ij ∆εej (4-35)

where De
ij is the tangent material stiffness matrix, D̄e

ij is the secant (average)
material stiffness matrix within the time step and ∆εej are the elastic strain
increments, assumed to be equal to the total strains in a purely elastic step.
The material stress-strain behavior is usually expressed in terms of tangent
(instantaneous) stiffness, as the laws are expressed in rate of stress to rate of
strain form. In nonlinear elasticity the coefficients of matrix De

ij are assumed
to be dependent on the state of stress (or strain). If an analytical expression
for D̄e

ij is not available, a numerical procedure is needed for time integration.
As instance, the secant stiffness may be approximated with the trapezoidal
rule

D̄e
ij = (1− θ)(De

ij)t + θ(De
ij)t+∆t (4-36)

and the the nonlinear system D̄e
ij ∆εej −∆σi = 0 can be solved by means, for

example, of Newton-Raphson method. In this case, the system is reduced to
its residual form:

ri = D̄e
ij ∆εej −∆σi (4-37)

and applying a truncated Taylor expansion:

ri + dri = ri + dD̄e
ij ∆εej − dσi (4-38)

with dD̄e
ij = ∂D̄eij

∂σk
dσk one obtains:

ri +
(
∂D̄e

ij

∂σk
∆εej − δik

)
dσk = 0 (4-39)

with the predictor Qik = δik −
∂D̄eij
∂σk

∆εej . This means that for nonlinear elastic
behavior, an iterative solution may be necessary.

4.2.2
Viscoplastic integration

The Perzyna’s viscoplastic strain rate (Eq. 3-33) is integrated over time
either using the generalized trapezoidal rule or the generalized midpoint rule:

∆εvp =
∫ t+∆t

t
ε̇vpdt ≈

[
(1− θ)(ε̇vp)t + θ(ε̇vp)t+∆t

]
∆t (4-40)

≈ (ε̇vp)t+θ∆t∆t (4-41)

The values most commonly assigned to θ correspond to the following methods:
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– θ = 0 Forward Euler (explicit)

– θ = 1
2 Crank-Nicholson

– θ = 2
3 Galerkin

– θ = 1 Backward Euler

It is assumed that total strains can be decoupled into an elastic (recov-
erable) and a viscoplastic part. Then, they may be written in vectorial form
as:

∆εi = ∆εei + ∆εvpi (4-42)
where the Perzyna’s viscoplastic strains are integrated according to a Backward
Euler scheme:

∆εvpi = ∆t
µ
φt+∆t ∂g

∂σi

t+∆t
(4-43)

Stress increments are computed according to non-linear elastic constitutive
equations:

∆σi = D̄e
ij∆εej (4-44)

and state variables are updated according to a strain-hardening rule:

ht+∆t
k = hk(εvpj ) = hk(εj − εej)t+∆t (4-45)

For a given time step, increments in total strains are kept fixed while the elastic
parts are set unknown. Therefore, to perform the viscoplastic integration, we
define the residuals:

ri = ∆εi −∆εei −∆εvpi (4-46)
As a matter of fact, viscoplastic strains are treated as functions of stresses,
which in turn are functions of elastic strains:

dεvpi = ∆t
µ

(bi dφ+ φ dbi) = ∆t
µ

(bifj + φBij) dεej (4-47)

where the following differentials have been introduced:

dφ = dφ

dF

(
∂F

∂σi
dσi + ∂F

∂hk
dhk

)
= dφ

dF

(
∂F

∂σi
De
ij + ∂F

∂hk

∂hk
∂εej

)
dεej = fj dε

e
j

(4-48)

dbi = ∂bi
∂σk

dσk + ∂bi
∂hm

dhm =
(
∂bi
∂σk

De
kj + ∂bi

∂hm

∂hm
∂εej

)
dεej = Bij dε

e
j (4-49)

Finally, applying a truncated Taylor expansion to the residuals, defined in
Eq. 4-46:

ri + dri = ri − dεei − dε
vp
i (4-50)

the following linear system is obtained for Newton-Raphson iterations:

ri + dri = ri −
[
δij + ∆t

µ
(bifj + φBij)

]
dεej = 0 (4-51)

thus, introducing the predictor
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Qij = δij + ∆t
µ

(bifj + φBij) (4-52)

where δij is the the Kronecker delta, the iterative solution is:

dεei = Q−1
ij rj (4-53)

In general, the inversion of matrix Qij is not necessary. The linear system can
be easily solved with algebraic methods. At most, a 6x6 linear system has to
be solved.

4.3
Forward integration

4.3.1
Standard procedure

The Forward Euler elastoplastic integration algorithm is given in the
general form:

{∆ε} = {∆εe}+ {∆εp} (4-54)

{∆εp} = ∆λ {bX} (4-55)

{σE} = {tσ}+ [CE] {∆ε} (4-56)

{t+∆tσ} = {σE} −∆λ [CE] {bX} (4-57)

{t+∆tpo} = {tpo}+ ∆λ {hX}+ ∆Xd {tw} (4-58)
t+∆tf = 0 (4-59)

The Forward Euler algorithm involves the vectors {bX}, {hX} that are
evaluated at the intersection point of the elastic predictor with the yield
function. Hence, having computed {σX} and {poX}, enforcing consistency
allows to determine the plastic multiplier, the only unknown quantity.

The algorithm starts with applying the elastic predictor:

{σE} = {tσ}+ [CE] {∆ε} (4-60)

{pEo } = {tpo}+ ∆Xd{tw} (4-61)

if yield criterion is violated after trial chemo-elastic increment, i.e.
f(σE,pEo ) > 0, then the state of stress is outside the yield locus and the
elastic predictor crosses the yield function at a certain point. In this case,
stresses must be calculated elastoplastically.
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Initial yield 
surface

tσ
t+Δtσ

σ E

Updated yield 
surface

f ( tσ, tpo ) = 0 f ( t+Δtσ, t+Δtpo ) = 0
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DOMAIN

Δλ [CE] {bX}

σX

{bX}

f (σX, po
X ) = 0

Cross yield 
surface

Plastic 
potential

gX = 0

po
X = tpo + αp Δpo

E

{σX = tσ + αs Δσ
E

Figure 4.3: Representation of Forward Euler method.

Integrating the constitutive requires computing the vectors {bX}, {hX}
at intersection point. Chemical effects are applied first. Stresses are kept fixed
during trial hardening/softening and yield criterion is checked. If the stress
point is outside the elastic domain, i.e. f(tσ,pEo ) > 0, then yield surface
intersection is found by solving the non-linear equation in the variable αp:

f(tσ, tpo + αp ∆Xd
tw) = 0

On the other hand, if the stress point is still within the elastic domain
after chemical attack, the intersection point is found by solving the non-linear
equation in the variable αs:

f(tσ + αsC
E ∆ε, pEo ) = 0

A Pegasus procedure is ideally suited to solving the yield surface inter-
section problem since it is unconditionally convergent, does not require the use
of derivatives, and typically converges in four or five iterations (Sloan et al.,
2001).

The intersection point is finally:

{σX} = {tσ}+ αs [CE] {∆ε} (4-62)

{pX
o } = {tpo}+ αp ∆Xd{tw} (4-63)

and the vectors {bX}, {hX} can be calculated at once.
The forward integration starts with a first guess for the plastic multiplier

with a first-order tailor expansion of the yield function at the intersection
point:

t+∆tf = fX︸︷︷︸
=0

+{aX}T{∆σ}+ {∂f/∂poX}T{∆po} = 0
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with

{∆σ} = (1− αs){∆σE} −∆λ [CE] {bX}

{∆po} = (1− αp){∆poE}+ ∆λ {hX}

yields:

∆λ(0) =
(1− αs){aX}T{∆σE}+ (1− αp){∂f/∂poX}T{∆poE}

{aX}T [CE] {bX}+HX
(4-64)

With this initial estimation, the stress point will not always lies on the
yield surface. Therefore, an iterative procedure is needed to refine the value of
the plastic multiplier. The iterative change is obtained with a Newton-Raphson
procedure:

dλ(k) =
t+∆t

f (k−1)

{aX}T [CE] {bX}+HX
(4-65)

where
t+∆tf (k) = f

(
σE −∆λ(k)CE bX , po

E + ∆λ(k) hX

)
(4-66)

4.3.2
Alternative procedure

Elastic and plastic strains are set unknown. Within the time step, the
following relation holds:

∆εi = ∆εei + ∆εpi (4-67)
differentiating the above strain decomposition gives:

dεei = −dεpi (4-68)

that is equivalent to say that the sum of elastic and plastic strains is a constant,
because the increments in total strains are fixed, their value given from the
global equilibrium solution. The plastic strains are calculated according to flow
rule:

∆εpi = ∆λ bi (4-69)
where bi is the vector containing the components of plastic flow rule, i.e. the
partial derivatives of plastic potential with respect the stresses. Because the
method is forward, partial derivatives are calculated at once at the beginning
of time step or at crossing point. Nonlinear elastic behavior can be accounted
by introducing the secant elastic stiffness matrix:

∆σi = D̄e
ij ∆εej (4-70)

Hardening behavior is simply described by a suitable strain hardening rule:
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ht+∆t
k = hk(εpj)t+∆t (4-71)

With all these requirements, the value of plastic multiplier is finally obtained
by enforcing the consistency rule f t+∆t = 0 at the end of time step. It is
a nonlinear equation in the plastic multiplier. The Newton-Raphson method
can be employed to find the root. Applying a truncated Taylor expansion:

f (k) + df (k) = f (k) + ∂f

∂σi
dσi + ∂f

∂hm
dhm = 0 (4-72)

the following incremental forms
dσi = De

ij dε
e
j = −De

ij dε
p
j = −De

ij dλ bj

dhm =
∂hm

∂εpj
dεpj =

∂hm

∂εpj
dλ bj

(4-73)

are substituted into Eq 4-72 to obtain the iterative update for the plastic
multiplier:

dλ(k) = f (k)

aiDe
ij bj +H

(4-74)

where:

ai = ∂f

∂σi

bj = ∂g

∂σj

H = − ∂f

∂hm

∂hm
∂εpj

bj

and De
ij is the tangent material stiffness. The plastic multiplier is updated at

each iteration
∆λ(k+1) = ∆λ(k) + dλ(k)

and the Newton-Raphson loop is repeated until the error reduces below a given
tolerance. The first guess for the plastic multiplier may be, as usual, the trial
elastic solution ∆λ(0) = 0.

4.3.3
Crossing the yield surface

Newton-Raphson method can also be employed to solving the yield
surface intersection problem. Crisfield (1991) presents the standard procedure
for the location of the intersection of the elastic stress vector with the yield
surface. In this case the strains (not the stresses) are opportunely scaled by a
factor, α, that is ∆εej = α∆εj, for which it is required that f(α) = 0.

For a general yield function, the truncated Taylor expansion is:
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f + df = f + ∂f

∂σi
dσi +

�
�
�
�∂f

∂p0
dp0 = ∂f

∂σi
De
ij dε

e
j = ∂f

∂σi
De
ij ∆εj dα (4-75)

Hardening parameters do not vary in this circumstance because plastic strains
are not activated. The scalar α is iteratively updated using α(k+1) = α(k)+dα(k)

with:
dα(k) = −f (k)

aiDe
ij ∆εj

(4-76)

The first guess for α may be α(0) = −f t
fe−f t . Consequently, stresses are updated

according to nonlinear elasticity ∆σi = D̄e
ij ∆εej . The remaining part of total

strain increments (1− α)∆εj, violating the yield condition, will be integrated
in an elastoplastic manner.

4.4
Integration under mixed control

Implicit and explicit stress integration schemes have been addressed in
previous sections considering the analysis of the strain-driven problems, which
are merely special cases of the general mixed control. For the calibration and
evaluation of soil constitutive models, one may need to simulate a number
of laboratory experiments performed under stress control, strain control and
under mixed control. Mixed control is encountered in most laboratory exper-
iments. The drained triaxial compression tests is an example where the axial
strain and the cell pressure are the controlled variables. In other words, mixed
control occurs when a suitable combination of strain and stress components are
given a prescribed variation (Alawaji et al., 1992). Then, it seems to be useful
to develop a ready-to-use integration algorithm in elastoplasticity to deal with
mixed control when developing soil constitutive models, at a first stage before
finite element implementation.

The integration of constitutive equation under mixed control involves
the solution of the following problem: given a deviatoric strain increment,
∆εs, compute ∆εv and ∆λ and the stresses at the end of time step pt+∆t and
qt+∆t enforcing the stress ratio mr = ∆q/∆p (mr = 3 for a drained triaxial
compression test).

It is worth noting that an implicit integration can be adopted for mixed
control, however, for simplicity, a forward integration scheme is employed
herein to solve the following nonlinear system of constitutive equations:

pt+∆t = pt +K∆εv −∆λK ∂g

∂p

t

(4-77)

qt+∆t = qt + 3G∆εs −∆λ 3G ∂g

∂q

t

(4-78)
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In order to compute ∆εv and ∆λ, given ∆εs andmr, the condition ∆q = mr ∆p
is to be enforced:

3G
mr

(
∆εs −∆λ∂g

∂q

t
)

= K∆εv −∆λK ∂g

∂p

t

(4-79)

along with the consistency condition f t+∆t = 0. The system of equation is then
written in its residual form:rσ = 3G

mr

(
∆εs −∆λ∂g

∂q

t
)
−K

(
∆εv −∆λ ∂g

∂p

t
)

rλ = f t+∆t
(4-80)

which is a nonlinear system whose solution consists in minimizing the residuals
below a given tolerance. The numerical solution is developed applying the
Newton-Raphson method. A truncated Taylor expansion is applied:rσ + drσ = rσ − 3G

mr

∂g
∂q

t
dλ−K dεv +K ∂g

∂p

t
dλ = 0

rλ + drλ = f + df = 0
(4-81)

The differential form of the yield function is computed as:

df = {∂f/∂σ}T{dσ}+ {∂f/∂po}T{dpo} (4-82)

where {dσ} = {dp, dq} is the vector of stress increments and {dpo} is
the vector of hardening/softening, containing the increments in hardening
variables. The components of vector {dσ} corresponds to the differential form
of constitutive equations in 4-77 and 4-78:

dp = Kdεv −K
∂g

∂p

t

dλ (4-83)

dq = −3G ∂g

∂q

t

dλ (4-84)

and {dpo} = {ht} dλ. Finally, the linear system becomes, in matrix form:
K −K ∂g

∂p

t

+ 3G
mr

∂g

∂q

t

−K
∂f

∂p
{a}T[CE]{b}+H


dεvdλ

 =

rσrλ
 (4-85)

where:
{a}T[CE]{b} =

{
∂f

∂σ

}T {
K
∂g

∂p

t

, 3G∂g
∂q

t
}

(4-86)

the hardening modulus

H = −{∂f/∂po}T{ht} (4-87)

and vectors {∂f/∂σ}, {∂f/∂po} are computed at each iteration.
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As usual, the first guess is the elastic predictor. The trivial solution is:
∆q = ∆qe = 3G∆εs and ∆pe = ∆qe

mr
. The volumetric strain is, then, the elastic:

∆εev = 3G
mrK

∆εs (4-88)

If the yield function is violated, the elastoplastic Newton-Raphson itera-
tions may start with the following first guess for the plastic multiplier:

∆λ(0) = (1− αs)

√
(∆εev)2 + (∆εs)2

‖b‖
(4-89)

and volumetric strain:

∆ε(0)
v = 3G

mrK

(
∆εs −∆λ∂g

∂q

t
)

+ ∆λ∂g
∂p

t

(4-90)

Alternatively, the trial elastic solution (∆λ = 0 and ∆εv = ∆εev) may be
assumed as starting point for the Newton-Raphson iterations.
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5
Constitutive models formulation and implementation in finite
elements

5.1
A model accounting for viscous behavior and non-linear elasticity: Viscous
Modified Cam Clay

5.1.1
Preliminaries

The Modified Cam Clay is expressed in terms of stress invariants, being
p the "mean stress" and q the "deviator stress":

p = 1
3(σ1 + σ2 + σ3) (5-1)

q =
√

1
2[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (5-2)

A convenient expression for the yield function of Modified Cam Clay is:

p (p− p0) + q2

M2 = 0 (5-3)

where M is the critical state parameter and p0 is the hardening parameter,
usually referred as the preconsolidation pressure. The model is associated. In
other words, yield function and plastic potential coincide. The corresponding
viscoplastic adaptation, according to Perzyna (1963, 1966) approach, arises
from rearranging Eq. 5-3, in the form F = f(σij)

k
− 1, as follows:

F = pe
p0
− 1, pe = p+ q2

M2p
(5-4)

where F is the yield function based on the concept of "overstress" and pe is the
corresponding "equivalent stress". Figure 5.1 shows the model in the space of
stress invariants.

The viscoplastic strain rates are calculated according to Equation 3-33,
adopting a viscous nucleus of the exponential type:

φ(F ) = ebF − 1 = exp
[
b

(
pe
p0
− 1

)]
− 1 (5-5)
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Figure 5.1: Extension of Modified Cam Clay model to Perzyna’s theory of
viscoplasticity.

As will be seen later in Chapter 6, the choice of the viscous nucleus expression
to be exponential is supported by experimental evidence. Finally, the total
strain rates of the material can be calculated according to the following
expressions:ε̇v

ε̇s

 =
 ṗ/K
q̇/3G

+ 1
µ
〈 exp

[
b

(
pe
p0
− 1

)]
− 1〉

1− (η/M)2

2η/M2

 (5-6)

These constitutive equations immediately produce the following results:

1. In a hydrostatic stress relaxation test, under undrained conditions, which
imply no distortion, no volume change and no shear stress, the sum of
the elastic and viscoplastic volumetric deformations is zero. Moreover,
since the stress state is represented by a point, which moves along the
hydrostatic axis in the principal stress space, the direction of the plastic
flow is fixed and aligned with η = 0. Under the simplifying assumption
of a constant bulk modulus, the evolution of the mean effective stress
over time can then be calculated by the following integral:

p(t) = p(0)−K
∫ t

0

1
µ
〈φ(F )〉dt

that demonstrates, in the relaxation test, the reduction of the mean
effective stress over time. As a result, excess pore pressure develops. This
is justified because 〈φ(F )〉 is always greater than or equal to zero and
the respective component of the plastic flow vector is positive, constant
and unitary.

2. Analogously, the stress relaxation during an undrained triaxial compres-
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Figure 5.2: Schematic behavior of the model during undrained triaxial stress
relaxation.

sion test is:
q(t) = q(0)− 3G

∫ t

0

1
µ
〈φ(F )〉∂g

∂q
dt

p(t) = p(0)−K
∫ t

0

1
µ
〈φ(F )〉∂g

∂p
dt

Figure 5.2 shows a schematic of the test and its interpretation according
to the present theoretical model. First, the soil is consolidated under
hydrostatic state of stress (point A). Then, the drainage valve is closed
and a deviator stress is applied by deforming the sample with a constant
strain rate. At the desired initial stress the motor of the machine is
stopped, thus beginning the stress relaxation (point B) and the vertical
load, as well as the pore pressure, are continuosly monitored. The test
is carried out on the "wet" side of the domain. The vector of plastic
flow is directed outward and is associated to the yield surface. As a
consequence, both deviatoric and and mean effective stress will decrease;
under constant total stress, pore pressure will raise, accordingly. At
point D, the soil has reached equilibrium following the stress relaxation.
This behavior is in accordance with experimental findings of Lacerda
and Houston (1973). On the "dry" side, the model will predict negative
pore pressure development because of dilatancy. In this case, the mean
effective stress will raise during a relaxation test, while the deviator stress
still continues to decrease.

3. In a creep test, a constant load is maintained and the material exhibits
progressive deformation under constant deviator stress (q̇ = 0). In this
case, the constitutive equations takes the form:

ε̇s = 1
µ
〈φ(F )〉∂g

∂q

As shown in Figure 5.3, depending on the deviatoric stress level, fail-
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Figure 5.3: Numerically simulated undrained triaxial creep.

ure occurs if the stress point reaches the critical state condition. The
application of a higher deviatoric stress causes both greater excess pore
pressures and axial strains. When the applied stress cannot be sustained
by the material, the equilibrium condition cannot be reached and the
axial strain vs time curves show a upward concavity. In this case, the
model predicts tertiary creep prior to failure.

4. In an undrained triaxial compression test, performed with a constant
strain rate, at failure condition, that is, at critical state (η = M), the
following relation holds:

su = 1
2Mpe = 1

2Mp0

[
1 + 1

b
ln
(

1 + 1
2Mµε̇s

)]

which points out the relationship between undrained strength and strain
rate. Moreover, the expression shows that the undrained strength is the
sum of two parts. The former can be defined as "static" because it is
independent of the strain rate. The latter arises as a dynamic effect and
represents the influence of strain rate on the strength of the material.
Taking as an example the results of Kulhawy and Mayne (1990), who
concluded that each log cycle increase in strain rate is accompanied by a
10% increse in undrained strength, it can be concluded that the log-linear
relationship predicted by the theory is appropriate for clays.
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5. In a constant rate of volumetric strain test, the apparent preconsolidation
pressure and the volumetric strain rate are related by:

σ′p = p0

[
1 + 1

b
ln(1 + µε̇vpv )

]
(5-7)

Where, again, one can see the static and dynamic contributions. The
theory seems to be in accordance with experimental findings reported
by Leroueil et al. (1985), who have observed the trend of the apparent
preconsolidation pressure to increase with the volumetric strain rate.

5.1.2
Elastic behavior

Nonlinear elastic behavior is incorporated in the model according to
the formulation proposed by Borja (1991). The bulk modulus is pressure-
dependent and the Poisson’s ratio is constant. The elastic stress-strain re-
lationships are (in rate form):

σ̇i = De
ij ε̇

e
j = Kε̇ev + 2Gėei (5-8)

where ε̇ev = ε̇e1 + ε̇e2 + ε̇e3 is the rate of volume deformation and ėeij = ε̇eij − 1
3 ε̇
e
vδij

is the deviatoric strain rate tensor. For models like Cam Clay, Hooke’s law can
be written in matrix form, according to Plaxis (2019) manual, as:

σ̇xx

σ̇yy

σ̇zz

σ̇xy

σ̇yz

σ̇zx


= K



c1 c2 c2 0 0 0
c2 c1 c2 0 0 0
c2 c2 c1 0 0 0
0 0 0 c3 0 0
0 0 0 0 c3 0
0 0 0 0 0 c3





ε̇xx

ε̇yy

ε̇zz

γ̇xy

γ̇yz

γ̇zx


(5-9)

c1 = 3− 3ν
1 + ν

, c2 = 3ν
1 + ν

, c3 = 3− 6ν
2 + 2ν (5-10)

meaning that the elastic stiffness matrix is the product between the bulk
modulus and a matrix with only constant terms, i.e. De

ij = Kĉij. The bulk
modulus is proportional to the mean effective stress:

K = p

κ∗
= ṗ

ε̇ev
(5-11)

Integrating the above relation over a finite time increment gives:∫ t+∆t

t
κ∗
ṗ

p
dt =

∫ t+∆t

t
ε̇evdt→ κ∗ ln(pt+∆t/pt) = ∆εev (5-12)

after some manipulations, since ∆p = K̄∆εev, the secant bulk modulus is
analytically calculated as:
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K̄ = pt

∆εev
(e∆εev/κ∗ − 1) (5-13)

when ∆εev ' 0, the secant and tangent bulk moduli approach the value K̄ ∼ pt

κ∗
.

This aspect must be included in the numerical computations to avoid division
by zero.

Therefore, the stress increments are calculated using a secant material
stiffness matrix:

∆σi = K̄∆εev + 2Ḡ∆eei (5-14)
in which the shear modulus is related to the bulk modulus by means of a
constant Poisson’s ratio:

Ḡ = K̄
3(1− 2ν)
2(1 + ν) (5-15)

Working in terms of triaxial stress invariants, the elastic response can be
written in compact form using the mean stress, p, the deviator stress, q, the
volumetric strain, εv and the deviatoric strain, εs:ṗ

q̇

 =
K 0

0 3G

 ε̇ev
ε̇es

 (5-16)

The off-diagonal zeros indicate the absence of coupling between volumetric and
distortional effects for isotropic elastic material (Wood, 1990).

5.1.3
Plastic potential derivatives

To compute the viscoplastic strains, the derivatives of plastic potential
must be computed. First derivatives are:

∂g

∂σi
=
[
∂g

∂p

∂g

∂q

]
=
[
1− η2

M2 ,
2η
M2

]
(5-17)

where η = q/p is the stress ratio. The adoption of an implicit integration
scheme requires the second order derivatives of plastic potential, which are:

∂2g

∂σi∂σj
=
 ∂2g/∂p2 ∂2g/∂p∂q

∂2g/∂q∂p ∂2g/∂q2

 = 2
M2p

 η2 −η
−η 1

 (5-18)

Note that all derivations are performed with respect to stress invariants.

5.1.4
Yield function derivatives

In order to build up the Newton-Raphson predictor, the calculation
of yield function derivatives must be performed considering associated flow.
Therefore:
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∂F

∂σi
= 1
p0

∂g

∂σi
,

∂F

∂p0
= −pe

p2
0

(5-19)

5.1.5
Hardening rule

As aforementioned, p0 is the hardening parameter, function of viscoplas-
tic volumetric strain. This means that, in general, the hardening rule is ex-
pressed in terms of viscoplastic strains. By replacing them with elastic strains,
the rule becomes:

pt+∆t
0 = p0,1 e

εvpv /(λ∗−κ∗) = p0,1 e
(εv−εev)/(λ∗−κ∗) (5-20)

therefore, the partial derivatives with respect to elastic strains are:

∂p0

∂εev
= − pt+∆t

0
λ∗ − κ∗

(5-21)

For a given strain increment, the hardening parameter can be analytically
calculated as (Borja and Lee, 1990):

pt+∆t
0 = pt0 e

(∆εv−∆εev)/(λ∗−κ∗) (5-22)

5.1.6
Integration in the space of triaxial invariants

For the Modified Cam Clay, the return map can be performed in the
space of (p, q) invariants thanks to a particular feature resulting from plastic
potential. As illustrated by Kojic and Bathe (2005)[Chap. 6], recalling the
classic elastic predictor/plastic corrector scheme, the following equation can
be written for the deviatoric stress components:

st+∆t
i = sei −∆λ 2Ḡ ∂g

∂si

t+∆t
(5-23)

The flow rule with respect to deviatoric stress components can be calculated
applying the chain rule:

∂g

∂si
= ∂g

∂p

∂p

∂si
+ ∂g

∂q

∂q

∂si
(5-24)

noting that ∂q
∂si

= 3si
2q and ∂p

∂si
= 0, one obtains:

∂g

∂si

t+∆t
= 3
M2 ·

st+∆t
i

pt+∆t (5-25)

that substituted in the elastic predictor/plastic corrector formula (Eq. 5-23)
yields:

st+∆t
i = M2

M2 + 6Ḡ∆λ/pt+∆t
sei (5-26)
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This means that the viscoplastic correction has to provide only the means stress
pt+∆t and the plastic multiplier ∆λ at the end of the time step. Final deviatoric
stress components are computed by "scaling" the corresponding (deviatoric)
elastic predictor.

For completeness, algorithm 2 provides all the necessary calculation steps
to integrate the constitutive model, accounting for non-linear elasticity.

5.2
R-Soil: a constitutive model for soil and rock

R-Soil (Rock and Soil Model) was developed throughout this doctoral
research. It is a constitutive model for both soil and rock. The main feature of
R-Soil is that it accounts for non-associated flow rule, intermediate stress influ-
ence, structure degradation, metastable behavior, soil sensitivity, weathering,
chemical attack and static liquefaction.

This model uses concepts from Critical State Theory (Schofield and
Wroth, 1968; Wood, 1990), Single Hardening model (Kim and Lade, 1988;
Lade and Kim, 1988), CASM model (Yu, 1998), and bonded soil model (Gens
and Nova, 1993; Lagioia and Nova, 1995; Nova et al., 2003) for describing the
general material response under various loading conditions.

5.2.1
Elastic Deformations

Recoverable elastic strains are calculated from isotropic elasticity accord-
ing to the general elastic stress-strain relationship: dεep

dεeq

 =
 1/K

1/3G

 dp

dq

 (5-27)

as in the Cam-clay models, the elastic bulk modulus (K) and shear modulus
(G) are functions of mean effective stress and related through a constant
Poisson’s ratio (ν).

5.2.2
Failure Criterion

Failure is assumed to occur when the soil reaches the critical state:

q = M p (5-28)

The above expression has been generalized for three dimensional stress space
by setting the slope of the critical state line, M , as a function of Lode’s angle,
θ, according to the Lade-Duncan failure criterion, as suggested by Van Eekelen
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Algorithm 2 Implicit numerical integration of Viscous Modified Cam Clay
accounting for non-linear elasticity

1: Given the previous stresses σtij compute the corresponding stress invariants
pt, qt

2: Given the tensor of strain increments ∆εij compute the volumetric strain
increment ∆εv

3: Perform a purely elastic step (null viscoplastic strains):

a. Compute the secant bulk modulus K̄ assuming ∆εev = ∆εv
b. Compute the trial Cartesian elastic stresses σei = σti + D̄e

ij∆εj, where
D̄e
ij is the stiffness matrix in Eq. 5-9 obtained with the secant bulk

modulus.
c. Compute the corresponding stress invariants pe, qe

4: Check the yield criterion: if φ(pe, qe) < FTOL , then RETURN σt+∆t
ij = σeij

and pt+∆t
0 = pt0. Otherwise, perform the viscoplastic correction.

5: Assume as starting point for Newton-Raphson loop the trial elastic state,
assigning ∆εev = ∆εv and ∆εes = (qe−qt)/3Ḡ. At first iteration: pt+∆t = pe,
qt+∆t = qe, pt+∆t

0 = pt0
6: Compute the viscoplastic strains ∆εvpi = ∆t

µ
φt+∆t bt+∆t

i

7: Evaluate residuals ri = ∆εi −∆εei −∆εvpi and check if the error is below a
given tolerance: if |ri| < RTOL , then EXIT LOOP and go to 13.

8: Limit the number of iterations. If counter reaches a prescribed maximum
(nitMAX), integration has failed. ABORT calculations.

9: Build the Newton-Raphson predictor Qij = δij + ∆t
µ

(bifj + φBij) with all
quantities evaluated at current time t+ ∆t.

10: Solve the linear system∗ dεe = Q−1r and update the elastic strains:
∆εe,newi = ∆εe,oldi + dεei

11: Update stress invariants and the hardening variable:

pt+∆t = pt exp(∆εev/k∗)
qt+∆t = qt + 3Ḡ∆εes
pt+∆t

0 = pt0 exp[(∆εv −∆εev)/(λ∗ − κ∗)]

12: Go back to 6.
13: RETURN the Cartesian stresses combining the mean stress with the

deviatoric components:

σt+∆t = pt+∆tδij + M2

M2 + 6Ḡ∆λ/pt+∆t
seij

with ∆λ = ∆t
µ
φt+∆t

* Since the integration is performed in the space of invariants, only a 2x2 linear system
has to be solved. For a very general non-associative anisotropic elasto-plastic material, the
system may become 6x6 because integration must comprise all tensorial components. This
means that the second derivatives of plastic potential generate a 6x6 matrix that may not
be easy to compute.
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(1980):
M = Mc

( 1−B
1 +B sin 3θ

)1/4
(5-29)

where

B = 1−
(

3
3 + sinφc

)4

is a model parameter that controls the curvature of the failure criterion in the
octahedral plane and

Mc = 6 sinφc
3− sinφc

is the slope of the critical state line in triaxial compression, with φc the
respective effective friction angle. According to Van Eekelen (1980), the model
is convex if B < 0.756, that is always the case.

5.2.3
Yield surface

The R-Soil yield surface function can be expressed in terms of the con-
ventional triaxial parameters. The contribution of Lode’s angle is introduced
to include the effect of third stress invariant. The yield surface is:(

q

3p

)2 (1 +B sin 3θ
1−B

)1/2

+
(
p

p0

)n
= 1 (5-30)

where

p = I1/3

q =
√

3J2

sin 3θ = 27
2
J3

q3 = J3

2

( 3
J2

)3/2

The exponent n depends on the spacing ratio, r = p0/pcs, according to the
following expression:

n = − ln(1−M2
c /9)

ln r (5-31)
The parameter n determines the shape of the yield surface in the meridian
plane and r is the spacing ratio used to control the intersection point of the
critical state line and the yield surface.

The shape of the R-Soil yield surface is a teardrop and its contours, with
φc = 30◦, r = 4 and p0 = 100 kPa), are plotted in Figure 5.4.

During elastoplastic loading the soil is yielding and the size of the yield
surface changes. The change in size of the yield locus is linked to changes
in effective stresses and hardening parameters. To ensure consistency, it is
necessary that the new state of stress remains on the yield surface, fulfilling
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Figure 5.4: Yield function in stress space. (φc = 30◦, r = 4 and p0 = 100 kPa)

the differential form of the yield function:

df = ∂f

∂σij
dσij + ∂f

∂p0
dp0 = 0 (5-32)

The partial derivatives with respect to the stresses
(
∂f
∂σij

)
are calculated

applying the chain rule to Equation 5-30, rewritten as f(I1, J2, J3), to obtain:

∂f

∂σij
= 1

3
∂f

∂p

∂I1

∂σij
+ ∂f

∂J2

∂J2

∂σij
+ ∂f

∂J3

∂J3

∂σij
(5-33)

where (Crisfield, 1997)[p.105]:

∂I1

∂σij
= (1, 1, 1, 0, 0, 0)

∂J2

∂σij
= (sx, sy, sz, 2τxy, 2τyz, 2τzx)

∂J3

∂σij
= ((sysz − τ 2

yz + J2/3), (sxsz − τ 2
xz + J2/3), (sxsy − τ 2

xy + J2/3),

2(τyzτxz − szτxy), 2(τxzτxy − sxτyz), 2(τxyτyz − syτxz))

(5-34)

The derivatives of the yield function, given in Equation 5-30, can be written
as:

∂f

∂p
= n

p

1− η2

m2

(
1 +B sin 3θ

1−B

)1/2
 (5-35)

∂f

∂J2
=

1 + 1
4B sin 3θ

3p2
√

1−B
√

1 +B sin 3θ
(5-36)

∂f

∂J3
= 9B/4q

3p2
√

1−B
√

1 +B sin 3θ
(5-37)

∂f

∂p0
= − n

p0

(
p

p0

)n
(5-38)

where m = 3
√

n
2+n . A value of B equal to zero in the above expressions gives
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back their original form, as they were conceived in triaxial compression. In this
special case, the yield function becomes symmetric with respect the hydrostatic
axis (i.e. a circle in the octahedral plane) and the failure occurs according to
Von Mises’s criterion.

5.2.4
Plastic Potential

The following expression is assumed for the stress-dilatancy relation:

d = (M2 − η2)(η2 + ψ)
βη

(5-39)

imposing the tension cut-off condition, d(η = 3) = −3, it gives:

β = −1
9(M2 − 9)(9 + ψ) (5-40)

meaning that only two independent parameters are needed to fully describe
the plastic flow rule. As shown by Lagioia and Nova (1995), the related plastic
potential can be obtained by substitution of Equation 5-39 into the differential
equation: dp

p
= − dη

d+ η
(5-41)

whose integration gives the mathematical expression for the plastic potential:

g :
(
ψ1 + η2

ψ2 − η2

)(
p

p0

)µ
= ψ1

ψ2
(5-42)

that is a simplified version of the plastic potential proposed by Kim and Lade
(1988). It is possible to demonstrate the existence of simple relations between
parameters (M,ψ, β) and (ψ1, ψ2, µ):

ψ1 = M2ψ

9 = 1
2

[√
(M2 + β − ψ)2 + 4M2ψ − (M2 + β − ψ)

]
(5-43)

ψ2 = 9 = M2 + β − ψ + ψ1 (5-44)

µ = 2
β

(
M2ψ

9 + 9
)

= 2
β

(ψ1 + ψ2) (5-45)

These identities allow to calibrate the plastic potential parameters directly
from the stress-dilatancy relation.

The first derivatives of plastic potential are:

∂g

∂p
= ψ1(2 + µ) p

 p

p0

µ + µ
q2

p

 p

p0

µ − 2ψ1p

∂g

∂q
= 2q

 p

p0

µ + 2
ψ1

ψ2
q

(5-46)
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If a backward Euler return is chosen for stress integration, the calculation of
second partial derivatives is necessary to perform numerical iterations:

∂2g

∂p2 = ψ1(2 + µ)(1 + µ)
 p

p0

µ + µ(µ− 1)
q2

p2

 p

p0

µ − 2ψ1

∂2g

∂q2 = 2
 p

p0

µ + 2
ψ1

ψ2

∂2g

∂p∂q
= 2µ

q

p

 p

p0

µ
(5-47)

where (
p

p0

)µ
= ψ1

ψ2
· ψ2 − η2

ψ1 + η2

can be substituted in the previous expressions to avoid the evaluation of p0.
The shapes of R-Soil plastic potential with different values of M and

ψ are plotted in Figures 5.5 and 5.6. The parameter M controls the stress
ratio corresponding to critical state (as in Cam Clay models), while ψ is a
parameter related to dilatancy and K0-condition. The shape of the plastic
potential is assumed to be a circle in the deviatoric plane. This means that the
partial derivative of the plastic potential with respect to the Lode’s angle is
implicitly set to zero, i.e. ∂g/∂θ = 0. However, the slope of critical state line,
M , must be updated according to Equation 5-29, in order to correctly predict
dilatancy depending on state of stress.

η = M

0

0,1

0,2

0,3

0,4

0,5

0 0,2 0,4 0,6 0,8 1

q/
M

p 0

p/p0

0

1

2

3

-3 -2 -1 0 1 2 3

η
= 

q/
p

d = dϵp / dϵq
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Figure 5.5: Contours of plastic potential and corresponding stress-dilatancy
relations with ψ = 1 and varying M .

5.2.5
Destructuration behavior

The fundamental hypothesis to model the destructuration of structured
soils and weathered rocks is to make the size of yield surface dependent on a
set of constitutive parameters sensitive to chemical weathering and mechanical
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Figure 5.6: Contours of plastic potential and corresponding stress-dilatancy
relations with M = 1 and varying ψ.
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Figure 5.7: Evolution of yield surface during destructuration. Adapted from
Nova et al. (2003).

damage. In this sense, the conventional preconsolidation pressure is assumed
to be the sum of three contributions, p0 = pt + pc + ps, associated to the
tensile, compressive and intrinsic soil strength. As shown in Figure 5.7, those
parameters are responsible for enlarging and shrinking the yield locus (Gens
and Nova, 1993) according to predetermined hardening and softening laws,
based on plastic strains and degree of weathering (Castellanza and Nova, 2004).

The expression of the yield function is, therefore, modified to account the
new hardening parameters: (

η∗

3

)2
+
(
p∗

p0

)n
= 1 (5-48)

where p∗ = p+ pt, p0 = pt + ps + pc and η∗ = q/p∗.
A particular choice is made when compressive and tensile strength are

set proportional to each other, by assuming a constant factor, R = (pc/pt),
usually between 10 and 20 (Nova, 2005). In this case, it is postulated that the
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size of the yield function is controlled only by two variables, ps and pt, with:

ps = internal variable related to soil hardening. It acts as common
strain hardening parameter for the intrinsic soil matrix and is
affected only by plastic strain history.

pt = internal variable related to the interparticle bonds and cemen-
tation, suffering mechanical damage and chemical weathering
from combined physical actions and chemical agents.

Enforcing the consistency rule, that is df = 0:

df = ∂f

∂p∗
dp+ ∂f

∂q
dq + ∂f

∂p0
dps +

[
∂f

∂p∗
+ ∂f

∂p0
(1 +R)

]
dpt = 0 (5-49)

it follows that

∂f

∂p
= ∂f

∂p∗
(5-50)

∂f

∂ps
= ∂f

∂p0
(5-51)

∂f

∂pt
= ∂f

∂p∗
+ ∂f

∂p0
(1 +R) (5-52)

5.2.6
Hardening law

The yield surface size of the soil matrix is governed by the preconsolida-
tion pressure (ps), which is taken as one of the hardening parameters and is
related to both plastic volumetric and plastic deviatoric strains as stated by
the hardening law:

dps = ∂ps
∂εp

p

dε
p

p + ∂ps
∂εp

q

dε
p

q (5-53)

It is well understood that whilst volumetric hardening models are normally
sufficient to describe the behaviour of clays, it is necessary to additionally
introduce shear hardening to model the observed behaviour of sands (Nova
and Wood, 1978, 1979). Then, the hardening law can be written as follows:

∂ps
∂εp

p

= ps
λ∗ − κ∗

(5-54)

∂ps
∂εp

q

= Bq
ps

λ∗ − κ∗
(5-55)

where λ∗ and κ∗ are the modified loading/unloading indexes, and Bq is the
parameter controlling the deviatoric hardening.
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5.2.7
Softening law

The softening law sets the consequences of mechanical damage and chem-
ical weathering on interparticle bonds (Lagioia and Nova, 1995; Castellanza
and Nova, 2004):

pt = pt0(1−Xd)C e−ω ε
d (5-56)

where εd is a suitable destructuring plastic strain and Xd is the degree of
chemical weathering, a scalar varying between 0 and 1, that maps the transition
from hard rock (Xd = 0) to totally weathered soil (Xd = 1). The parameter ω
controls the destruction rate of bonds. The differential form of the softening
law establishes the evolution of the parameter pt:

dpt = −pt
[
ωdεd + C

1−Xd

dXd

]
(5-57)

According to Koliji et al. (2008), mechanical degradation is controlled
by a suitable destructuring strain, a general plastic strain that, depending on
loading condition, can be volumetric, deviatoric or a combination of both:

dεd = (1−Bd)‖dε
p

p‖+Bd dε
p

q (5-58)

where Bd acts as damage weighting factor.

5.2.8
Model parameters and their identification

It can be seen that there are a total of 10 model constants required in
R-Soil, all of which can be determined in the laboratory. They are λ∗, κ∗, ν,
M , ψ, r, Bq, ω, Bd and R. It is desirable to have a number of laboratory tests
under different stress paths and confining pressures to evaluate reliable values
of material constants.

– The elastic behavior is modelled by the Poisson’ ratio (ν) and the slope
of the swelling line (κ∗).

– The critical state line is defined by the critical state parameter (M) in
triaxial compression. The curvature of the plastic potential is controlled
by ψ, that has consequences on dilatancy and K0-condition. From the
stress-dilatancy relationship (Eq. 5-39), one can derive the expression
relating the K0-condition and the dilatancy parameter (ψ):

ψ ≈ 3
2

(
1− κ∗

λ∗

)
βηK0

M2 − η2
K0

− η2
K0
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where ηK0 = 3(1−K0)
1+2K0

is the stress ratio corresponding to virgin loading in
oedometric compression.

– The spacing ratio (r) is used to locate the critical state along the yield
function. In the original and modified Cam Clay models, r is fixed at
2,718 and 2, respectively. As in CASM model (Yu, 1998), the assumption
of a variable r is adopted.

– Isotropic hardening is controlled by the modified compression index (λ∗).
Deviatoric hardening is introduced by setting Bq 6= 0.

– The parameters ω, Bd and R are related to bonds degradation.

The code requires six non-null parameters (λ∗, κ∗, ν,M, ψ, r) related to
the critical state model. The remaining entries introduce, to the model, the de-
viatoric hardening and the bonds degradation. It is advisable to make a "rough"
calibration with the first six parameters and, only then, add more complexity,
introducing additional parameters. Again, the spacing ratio (r) controls the
position of the critical state on the yield surface. The deviatoric hardening
coefficient (Bq) produces hardening at critical state. In author’s opinion, both
parameters can be easily visualized with a series of undrained triaxial compres-
sion tests run at different confining pressures. Bonds degradation parameters
(ω, Bd, R) are calibrated similarly to Lagioia and Nova (1995). At the end of
the day, a specific experimental procedure has to be adopted to determine all
model parameters.

5.3
Implementation in Plaxis

In this section, an algorithm is presented for the implementation of soil
constitutive models in finite element (FE) analysis, based on the displacement
approach. Plaxis has a facility that allows to implement a user-defined soil
model (UDSM) into the finite element code. This requires programming a
Fortran subroutine that must be compiled into a Dynamic Link Library (DLL)
and then added to the Plaxis program directory.

The compilers employed to make the DLL file were g95 or MinGW
(https://www.g95.org/) and gfortran or GNU Fortran gfortran (https:
//gcc.gnu.org/). G95 was used to make the 32-bit DLL file with the following
command:
g95 usrmod.for -o usrmod.dll -shared -fcase-upper -fno-underscoring
-mrtd
GNU Fortran (GFortran) was used to make the 64-bit DLL file with the
following command:

https://www.g95.org/
https://gcc.gnu.org/
https://gcc.gnu.org/
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gfortran usrmod.for -o usermod64.dll -shared -fno-underscoring
-static

The USDM is called at Gauss-points to return the stress increment ac-
cording to the constitutive equations of the model. Plaxis provides information
about the previous stresses, pore pressure and state variables, and also strain
and time increments:

σti Sig0(6) array with previous stresses
ptw Swp0 previous pore pressure
htk StVar0(*) array with previous state variables
∆t dTime time increment
∆εj dEps(6) array with strain increments

The user-defined subroutine returns the updated constitutive stresses, pore
pressures, state variables and material stiffness matrix:

σt+∆t
i Sig(6) array with updated stresses
pt+∆t
w Swp updated pore pressure
ht+∆t
k StVar(*) array with updated state variables
Dij D(6,6) material stiffness matrix

The subroutine is governed by an input parameter to the subroutine, the
IDTask-parameter. There are six IDTask defined. For each, PLAXIS assigns
different tasks that the global calculation needs at different stages in the
calculation process:

IDTask Task description

1 Initialize state variables
2 Integrate constitutive relations (Sig(6),StVar(*) and Swp)
3 Create D(6,6) (tangent material stiffness matrix)
4 Return the number of state variables
5 Inquire Matrix attributes NonSym, iStrsDep, iTimeDep, iTang
6 Create De(6,6) (elastic material stiffness matrix)

5.3.1
Main subroutine

The structure of the main subroutine is designed to manage the six
IDTasks independently of the chosen constitutive model. After declaring the
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properties inherent to the constitutive model stored in the array Props (which
allows max. 50 entries), the subroutine is comprised by the following tasks:

Task #1. In IDTask 1, state variables are initialized. When starting a new
calculation phase, the initial value of the state variables is read from the
output file of the previous calculation step. However, in the very first
calculation step, the STVar0 should be initialized, otherwise it would
contain only zeros. In this case, the Task #1 generates the initial value
of the state variables based on the actual stress state at the beginning of
the step. The equivalent stress (peq) is calculated from the initial effective
stress state generated using the K0-condition. Based on the shape of the
yield surface, the user defines the expression for peq and the initial value
of the equivalent overconsolidation ratio. Then, the preconsolidation
pressure is calculated simply as p0 = peq ·OCR.

Task #2. In IDTask 2, the constitutive stresses are calculated with an au-
tomatic substepping algorithm (Sloan, 1987; Sloan et al., 2001) to stabi-
lize stress integration. Substepping starts with applying a subincrement
equal to the total strain increment and calling an external subroutine,
the so-called stress integrator, to integrate stresses and hardening vari-
ables according to backward (implicit) or a forward (semi-implicit) Euler
schemes. If integration fails, the size of the subincrement is reduced and
the procedure continues until the total strain increment is applied (see
Algorithm 3).

Moreover, under undrained conditions (i.e. if IsUndr=1), changes in pore
water pressure are calculated from the equivalent bulk stiffness and the
total volumetric strain increment:

∆pw = Kf ∆εv

Kf = Ku −K ′ =
2G
3

(
1 + νu
1− 2νu

− 1 + ν ′

1− 2ν ′

)

The bulk modulus of the soil under undrained condition (Ku) is calcu-
lated using the undrained Poisson’s ratio νu = 0.495.

Control of substepping procedure is made by using two indicators. The
first is the plasticity indicator ipl (for output purpose). According
to Plaxis manual, ipl=0 for elastic points, ipl=1 for plastic points
and ipl=2 for tension cut-off points. The second is the user-defined
iConv (convergence flag). This control variable allows the substepping
algorithm to recognize if the stress integration has succeeded (iConv
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= 1) or failed (iConv = 0) within a prescribed number of iterations
(nitMAX=15) given a specified tolerance (TOL=1e-9).

Task #3. and #6. In IDTask 3, the material stiffness matrix (D) is cre-
ated. It may contain only the elastic components of the stress-strain
relationship (as it is the case for the existing soil models in Plaxis) or
the full elastoplastic material stiffness matrix (tangent stiffness matrix).
The models that have been implemented do not use a tangent stiffness
matrix, which means that both IDTask 3 and IDTask 6 return the elas-
tic material stiffness matrix of the current stress point. In any case, the
elastic tangent (instantaneous) stiffness is considered.

If undrained behavior is considered (isUndr=1), then a bulk stiffness
for water (BulkW) must be specified at the end of Task 3. Plaxis will
automatically add the stiffness of water to the stiffness matrix (see Naylor
and Pande, 1981; Potts and Zdravkovic, 1999).

Task #4. This task allows the program to know the number of state variables
by means of the parameter nStat.

Task #5. Task 5 returns the matrix attributes. Four attributes need to be
declared:

1. NonSym indicates if the material stiffness matrix is symmetrical. For
NonSym=0 only one half of the global stiffness matrix is stored,
whereas for NonSym=1 the full matrix is stored.

2. iStrDep indicates if the material stiffness matrix is stress-
dependent. For iStrDep=1 the stiffness matrix is created and de-
composed at the beginning of each calculation step based on the
actual stress state.

3. iTimeDep indicates if the stiffness is time-dependent. For
iTimeDep=1 the stiffness matrix is created and decomposed when
the time step changes.

4. iTang indicates if the tangent stiffness matrix is utilized in global
finite element Newton-Raphson procedure. If the elastic stiffness is
employed as N-R predictor, one should declare iTang=0.
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5.3.2
Automatic substepping

Constitutive equations are integrated over the time interval ∆t assuming
that strain rates are constant throughout the time interval. Substepping with
error control (Sloan, 1987; Sloan et al., 2001) is adopted in this implementation.
The "dimensionless time" is introduced, a scalar quantity such that T (t) =
0 and T (t + ∆t) = 1. Considering a pseudo time increment ∆Tn, the
corresponding strain subincrement is {∆εn} = ∆Tn {∆ε}, and the values for
the stresses {σ} and hardening variables {k} at the end of ∆Tn are:

{σn} = {σn−1}+ {∆σn}

{kn} = {kn−1}+ {∆kn}

The current strain subincrement {∆εn} is rejected if the residual norm (Rn) is
greater than a prescribed tolerance (TOL) within a defined maximum number of
iterations (nitMAX). If so, the size of the subincrement is automatically reduced
and new substeps are repeated until T = 1. The complete substepping inte-
gration algorithm is presented in details in Algorithm 3 and in flowchart 5.8.

Algorithm 3 Automatic substepping algorithm
1: Get the previous information at the start of time increment:

Read {σt} Sig0 , {kt} StVar0, ∆t dTime, {∆ε} dEps
2: Assume T0 = 0 and ∆T1 = 1, then {∆ε1} = ∆T1{∆ε}
3: Call the stress integrator subroutine to compute updated {σn} and {kn}.

If the stress integrator fails to converge, try with a smaller substep
∆Tn = q ·∆Tn where q = max{0.8

√
TOL
Rn

, 0.1}.
4: Repeat until the subincrement is successful. Update stresses and state

variables:
Sig←Sig_n StVar←StVar_n

5: Estimate a new subincrement size q = min{0.8
√

TOL
Rn

, 2.0} and then set
∆Tn+1 = q ·∆Tn.

6: Before returning to step 3, update time and check that integration does
not proceed beyond t+ ∆t:

T = T + ∆Tn
∆Tn+1 = min{∆Tn+1, 1− T}

7: Exit with stresses {σt+∆t} and state variables {kt+∆t} at the end of time
step.
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Flowchart for automatic substepping integration 

 
Get the previous information at the 

start of time increment 
Read σt, κt, Δε, Δt 

Begin loop assuming T = 0, ΔT = 1 and NSUB = 1 
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dε = ΔT ∙ Δε 
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with    0.25,rTOL/0.8maxq ε  

NSUB = NSUB + 1 

Update time 
T = T + ΔT 

Estimate size of new substep 
 2.0,rTOL/0.8minq ε  

 ΔT = min(q ∙ ΔT, 1 - T) 
 

Update stresses and 
hardening variables 
σt = σt+Δt , κt = κt+Δt 
NSUB = NSUB + 1 

Exit with 
σt+Δt and κt+Δt  

Check max substeps 
NSUB < NSMAX ? 

No 

Yes 

Stop calculations 
iAbort = 1 

Figure 5.8: Flowchart for automatic substepping integration.
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6
Application of advanced soil models to tropical soils

6.1
Laboratory behavior of Sarapuí soft clay using the finite element method

Creep and consolidation substantially influence the mechanical behavior
of clay soils. They influence each other, too. Long-term deformations caused by
these processes may be expressive and difficult to quantify. Moreover, though
related, such phenomena have very distinct origin.

Soil deforms under chemical, thermal and mechanical effects. As instance,
it is known that it can expand/shrink due to changes of salt content in
interstitial fluid, temperature variations or by changing the state of effective
stresses.

Strains occurring instantaneously, and proportionally to the variation of
the effective stress state, are called "elastic". Those occurring subsequently, and
over time, are called "viscous" ("viscoelatic" or "viscoplastic"). Therefore,creep
is considered herein as the viscous phenomenon of mechanical nature, which
produces time-dependent inelastic deformations after loading the material.

Consolidation is understood only as the process of dissipation of excess
pore pressure that generates a variation in the state of effective stresses.
Its duration essentially depends on the permeability, compressibility and
the drainage condition (boundary condition) of the soil. For this reason,
deformations induced by the consolidation can be elastic, viscoplastic or a
combination of both.

Creep can be observed in all materials, whether crystalline, fibrous,
granular or polymeric. In metals and polymers, for example, the effective stress
is equal to the total stress because there is no fluid phase. In saturated soils,
for stresses below 1 MPa, according to the principles of soil mechanics, the
effective stress was defined by Terzaghi (1943):

σ′ = σ − u (6-1)
from now on, this definition will be adopted to describe the behavior of

soil. Elastic strains will occur due to effective stress variations:

ε̇eij = Cijkl σ̇
′
kl (6-2)
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where Cijkl is the compressibility tensor. On the other hand, viscoplastic
strains will be activated by means of a yield criterion, f(σ′ij, hk), being their
direction given by the flow rule:

ε̇vpij = λ̇
∂g

∂σij
(6-3)

where λ is the so-called plastic multiplier, a scalar that quantifies plastic
strains (i.e. the module of ε̇vpij ), whereas ∂g

∂σij
gives the direction. The way λ is

calculated will determine the evolution of viscoplastic strains. Models that can
be adopted are those proposed by Perzyna (1963, 1966), Duvaut and Lions
(1972) and Wang et al. (1997).

6.1.1
Viscous behavior of Sarapuí clay

Samples of soft fluvial-marine clay from Sarapuí experimental site have
been widely used for theoretical and experimental studies by Brazilian re-
searchers. Almeida and Marques (2003) provide a summary of laboratory and
in situ tests carried out in the last 30 years at the Sarapuí site, describing the
clay in terms of its geological origin, index properties, stress history, compress-
ibility, consolidation and strength properties, and viscous behaviour, a feature
here addressed in details. The large number of tests carried out allowed to
establish important experimental evidences, which led to the conclusion that
Sarapuí clay has a marked viscous behavior, whose characteristics can be sum-
marized as follows:

1. Secondary compression is caused by creep, with deformations that de-
velop under constant effective stress.

2. During secondary compression the lateral earth pressure coefficient K0

increases gradually until it stabilizes within a region of indifferent equi-
librium.

3. At lower load increment ratios, the effect of secondary compression
is predominant in the development of deformation. By increasing the
loading ratio (∆σ/σ), the importance of secondary compression becomes
smaller compared to the primary consolidation.

4. The residence time of the previous loading influences the soil response in
the next loading stage.

5. If during a test all deformations are interrupted (there is no volume
variation or distortion), the soil undergoes stress relaxation. Effective
stresses "relax", that is, decrease.
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6. If the total stress is kept constant during the relaxation phase, the
reduction in the effective stress corresponds to an equal increase in pore
pressure, called excess.

7. The higher the rate of deformation, the greater the resistance mobilized
under loading.

A list of selected researches at COPPE/UFRJ on the rheological be-
haviour of saturated clays is given in Table 6.1.

Table 6.1: Summary of the main experimental studies.
Author Tests Purpose

Vieira
(1988)

Long-term conventional
oedometer test

Observe the influence of load in-
crement ratio ∆σ/σ on the devel-
opment of consolidation curves

Carvalho
(1989)

Constant rate of strain
oedometer test

Establish a standard experimental
procedure

Feijó
(1991)

Long-term conventional
oedometer test

Observe long-term behavior of
samples subjected to different
OCRs

Lima
(1993)

Stress-controlled oe-
dometer test with
bottom pore pressure
measurement

Monitor pore pressures during con-
solidation and stress relaxation un-
der undrained conditions

Garcia
(1996)

Conventional oedome-
ter test with relaxation
stages

Show that that both stress relax-
ation and secondary compression
proceed towards the line of end of
secondary

Guimarães
(2000)

Undrained triaxial
creep

Study porepressures and strains
during the secondary and tertiary
creep

Aguiar
(2014)

Undrained hydrostatic
relaxation test

Monitor the increase in porepres-
sure during the relaxation process
under constant total hydrostatic
stress and undrained conditions

6.1.2
Numerical simulations

Numerical simulations were performed using Plaxis 2D finite element
software. Figure 6.1 shows the axisymmetric finite element mesh used to
simulate the conventional and CRS consolidation tests. Model dimensions and
assumed boundary conditions are briefly discussed. There are 14 elements, 145
nodes and 168 integration points. The model consist of a soil column with a
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Figure 6.1: Finite element mesh used for numerical simulation of consolidation
tests on Sarapuí clay.

load and/or a prescribed displacement on its top. Evidently, the prescribed
displacement on the top of the sample is used to simulate constant strain
rate tests, as shown hereafter. Drainage is allowed only from the upper face.
In all cases, the height of the column is equal to the drainage path (Hd). In
the edometric consolidation tests with bottom pore pressure measurement, the
drainage path is Hd = 2 cm instead of Hd = 1 cm, the latter value being used
for conventional edometric tests.

The elongated mesh used in the numerical analyses is justified by the
nature of the problem, which consists of a one-dimensional (vertical) fluid
flow-coupled deformation. Consequently, horizontal displacement are avoided,
but the vertical ones are free along both sides. In the laboratory, the diameter
of the sample is much larger than its height to minimize the undesired effects
arising from side friction. That is not the case in the numerical simulations.

The behavior of Sarapuí clay was simulated with the Viscous Modified
Cam Clay constitutive model, which was implemented in Plaxis 2D through
the User Defined Soil Models (UDSM) facility. To this aim, it was necessary
to compile a specific routine written in FORTRAN, following the instructions
provided by the Plaxis software developer himself (Brinkgreve et al., 2016).
In the numerical simulations, the specific weight was kept null and Undrained
option was selected to represent the material behavior. The constitutive model
parameters used in finite element numerical simulations are shown in Table 6.2.
The critical state parameters were derived from Almeida (1982, 1986). The
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law of variation of permeability with the void ratio follows the experimental
results of Lacerda et al. (1977) apud Almeida and Ferreira (1992); Almeida and
Marques (2003). The parameters, µ and b, related to the viscous behavior of
the material were calibrated against the hydrostatic relaxation tests performed
by Aguiar (2014). It is noteworthy that the fluidity parameter was determined
at constant room temperature (21 ◦C).

Table 6.2: Adopted model parameters for Sarapuí clay.
Symbol Description Value
λ∗ Modified compression index 0.235
κ∗ Modified swelling index 0.025
ν Poisson’s ratio 0.20
M Slope of critical state line 1.14
µ Fluidity parameter 22760 days
b Rate sensitivity index 10.73
p0 Initial isotropic preconsolidation

pressure
15 kPa

ky Vertical hydraulic conductivity 2× 10−3 m/day
e0 In-situ void ratio 4.2
ck Permeability reduction factor

with the void ratio
1.03

*OBS: µ and b were calibrated in undrained hydrostatic relaxation.

This section will not illustrate the theoretical derivation used to interpret
the undrained hydrostatic relaxation test, nor the least-squares formulation
used to calibrate the viscous behavior parameters. It has been alredy done
in Section 3.2.1. However, it is worth to mention that this type of test
allows to observe, indirectly, the shape of the viscous nucleus down to very
low viscoplastic strain rates (of the order of 5 × 10−10 s−1) by monitoring
the increase in pore pressure for a few days. In fact, there is a closed-form
solution that allows to derive the accumulated viscoplastic volumetric strains
by observing the increase of excess pore pressure over time. For an infinite time,
the pore pressure excess reaches a stable maximum corresponding to the steady
state condition. The value will be u∞, which is a value to be extrapolated from
the experimental data. The estimation of u∞ depends on the length of the
observation period, which in the available laboratory tests was approximately
15 days. Of course, the longer the test, the more reliable the value of u∞ will be.
For calculation purposes, the value of u∞ was estimated by the experimental
adjustment curve proposed by Aguiar (2014). The equations that describe the
stress relaxation test in the undrained hydrostatic condition are reported in
the following. Viscoplastic strains can be calculated as:
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Figure 6.2: Calibration of viscous nucleus. Data points from Aguiar (2014).

εp =
∫ t

0
ε̇pdt = −κ∗ ln

(
1− u

σc

)
(6-4)

and the value of the preconsolidation pressure (position of the reference ellipse)
is given by:

py = σc

(
1− u∞

σc

) λ∗
λ∗−κ∗

exp
(

εp

λ∗ − κ∗
)

(6-5)

Figure 6.2 shows the experimental data from tests 1.1, 2.1 and 3.1
performed by Aguiar (2014), which have been processed by means of Eqs. 6-4
and 6-5. Experimental points are well aligned, tracing an almost linear trend.
Thus, one can even fit a regression line, according to a relationship such as:

ln ε̇p = bF − lnµ (6-6)
that immediately yields ε̇p = 1

µ
ebF , suggesting a function of the exponential

type for the viscous nucleus like φ(F ) = ebF . An inconvenient related to such an
approximation is that the value of the viscoplastic strain rate does not cancel
out, although it should, when the viscous nucleus is zero (F = 0). Then, a
slight modification is done, adopting:

ε̇p = 1
µ

(ebF − 1)→ φ(F ) = ebF − 1 (6-7)

this expression has already been proposed by different authors (see for example
Fodil et al., 1997 ) and is considered one of the most common by Owen and
Hinton (1980). The viscoplastic nucleus of the exponential type can reproduce
the experimental data in an excellent way. Calibration involves two parameters,
µ and b, which can be determined by least squares method or, simply, by linear
regression (at least at first estimate). The calibrated viscous nucleus, with the
parameters in Table 6.2, provides the predictions shown in Figures 6.2 and 6.3.

The next step was to simulate the CRS tests performed by Carvalho
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drainage at the end of primary consolidation. Data points from Aguiar (2014).
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Figure 6.4: Simulated and measured compression curves and pore pressures of
CRS tests (Carvalho, 1989).

(1989); Almeida et al. (1992). The model overall behavior got better by acti-
vating Plaxis Update Mesh and Update Pore Pressures options by performing
a Consolidation Analysis. It was noted that the response of pore pressures
was substantially affected by permeability variations during the consolidation
process, but following the experimental results of Lacerda et al. (1977), the
prediction was consistent, although slightly shifted to the right, as shown in
Figure 6.4.

The initial value of the preconsolidation pressure also generally influences
the model response. It is worth remembering that the preconsolidation pres-
sure observed in the CRS test increases with the imposed strain rate. This
phenomenon was evidenced by Leroueil et al. (1985) by means of CRS tests
performed on Batiscan clay. Those authors have shown the trend of the ap-
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parent preconsolidation pressure to increase with the volumetric strain rate.
The experimental trend is reflected by the theory. As a matter of fact,

according to the elasto-viscoplastic constitutive model presented in Section 5.1,
one can demonstrate that exists a direct relationship between the apparent
preconsolidation pressure and the volumetric strain rate, given by:

σ′p = p0

[
1 + 1

b
ln(1 + µε̇vpv )

]
(6-8)

In the above equation there are two contributions, one static and one dynamic.
The value actual value of the in-situ preconsolidation pressure, p0, probably
cannot be directly observed in any test, as one should carry out a quasi-
static loading program. Moreover, p0 can assume whatever value, as the soil
may be unconsolidated (OCR < 1), normally consolidated (OCR = 1) or
overconsolidated (OCR > 1).

After that, it was tried to reproduce the long-term behavior (creep
behavior) observed in conventional oedometric tests. Figure 6.5 shows the tests
performed by Vieira (1988) on Sarapuí clay plotted as settlement versus time
curve (time in log scale). One can observe in these curves practically all the
characteristics of the theoretical curves: the primary consolidation branch is
followed by the secondary compression phase. The effect of different loading
ratios is investigated on the development of settlement curves, showing that the
primary consolidation becomes more predominant with increasing the loading
ratio (Leonards and Girault, 1961). And the model predictions (red, blue,
yellow and green curves in Figure 6.5) are satisfactory with respect to the
stabilization time and the magnitude of the secondary settlement.

Afterward, one of the experiences reported by Lima (1993) was simulated.
In test no. 08, at the end of the primary consolidation, Lima (1993) observed
that the pore pressure began to increase after drainage closure. Thus, he
concluded that excess pore pressure may develop in absence of deformations of
the sample. The test is, indeed, a stress relaxation test under constant vertical
total stress.

In Plaxis 2D, drainage closure was activated by imposing undrained
conditions at the same time as Lima (1993). Switching from a Consolidation
Analysis to a simple Plastic fully undrained option, the numerical model
prediction was appropriate, with pore pressure starting to rise consistently.
Figure 6.6 shows the pore pressure experimental curve for the one-dimensional
consolidation test performed by Lima (1993) and its comparison with the
numerical simulation.

Feijó (1991) carried out a series of edometric tests to study the phe-
nomenon of secondary expansion in specimens subjected to different unloading
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Figure 6.5: Simulated and measured long term one-dimensional consolidation
tests on Sarapuí clay (Vieira, 1988).

ratios. In this case, the numerical model greatly underestimated the volumet-
ric expansion for highest OCRs (Figure 6.7). However, the model was able to
predict the overall characteristics of the experimental curves, including sec-
ondary expansion. It was concluded that for OCR < 2, model predictions were
acceptable.

6.1.3
Conclusion

In this section, the capability of a viscoplastic constitutive model to
reproduce the viscous behavior of Sarapuí clay was evaluated. It was adopted
an elasto-viscoplastic constitutive model based on Modified Cam Clay and
Perzyna’s classical theory of viscoplasticity. The model was implemented in
Plaxis 2D to simulate several consolidation and stress relaxation tests reported
in the literature.

Particular attention was given to the stress relaxation test under
undrained hydrostatic condition. The equations that govern the problem and
the viscoplastic parameters related to the pore pressure increase were pre-
sented, allowing the experimental determination of the viscous nucleus func-
tion. The adoption of a viscous nucleus of the exponential type was able to
reproduce the experimental data in an excellent way. Since the constitutive
model was conceived to exhibit isotropic hardening with volumetric viscoplas-
tic strain, hydrostatic tests were considered the most favorable for the calibra-
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Figure 6.7: Volumetric strains after unloading of Sarapuí clay: (a) experimental
curves from (Feijó, 1991); (b) simulated volumetric expansion.

tion of the parameters λ∗, µ and b. The remaining parameters were obtained
similarly as for ordinary Modified Cam Clay.

Finite element numerical simulations were performed in order to repro-
duce the laboratory tests reported by Vieira (1988), Carvalho (1989), Feijó
(1991) and Lima (1993). When necessary, a consolidation analysis was per-
formed in order to account for the hydro-mechanical coupling. Unfortunately,
the numerical model greatly underestimated the volumetric expansion for high
OCRs and is therefore not recommended for highly overconsolidated clays.

The results of the numerical simulations indicated that the proposed
constitutive model is capable of reproducing practically all the characteristics
of the experimental curves, requiring only two additional parameters compared
to Modified Cam Clay.
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6.2
R-Soil model parameters of Vila Velha sandstone from laboratory tests

The mechanical behavior of hard soils and soft rocks can be modeled
under the unified framework proposed by Gens and Nova (1993) since critical
state models accounting for bonds degradation have been satisfactorily applied
for predicting the mechanical behavior of calcarenite (Lagioia and Nova, 1995),
chalk (Hickman et al., 2008), weathered granite (Nova, 2000), artificially
cemented sands (Yu et al., 2007) and structured clays (Suebsuk et al., 2010).

On the basis that the sandstone can be regarded as belonging to this
category, this section addresses the laboratory tests carried out on Vila Velha
sandstone by Barroso (2002), which are simulated with finite elements to
examine the performance of the R-Soil model (proposed in Sec. 5.2) for
predicting the mechanical behavior of the soft sedimentary rock under different
stress paths. In addition to validating the basic formulation and numerical
implementation, this study aims to provide a new tool for the oil industry to
model adequately the oil production to more profitable operations. Although
simplex, the simulations presented herein are seen as laying the basis for more
complex analysis, such as the wellbore instability and sand production in
weakly consolidated to unconsolidated sandstone formations.

6.2.1
Case description

Barroso (2002) reports an extensive experimental program comprising
33 tests carried out on samples from sandstone outcrops of Vila Velha and
Rio Bonito from Paraná Basin, Brazil. The tests were performed at the rock
mechanics laboratory of the Petrobrás S.A. Research Center (Cenpes) in Rio
de Janeiro. The hydro-mechanical behavior of these weak sedimentary rocks is
considered analogous to oil reservoir formations usually encountered in Brazil.
Tests consisted of:

1. Complete physical and mineralogical characterization.

2. Uniaxial (unconfined) compression tests.

3. Drained triaxial compression tests.

4. Hydrostatic compression tests.

5. Constant s′ = σ′1+σ′3
2 stress tests.

This study will focus on the laboratory tests conducted on Vila Velha
sandstone retrieved from the outcrop of Vila Velha, that is a sandstone ruini-
form relief of the ltararé Group in the Paraná Basin, Brazil. The sandstone is a
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Table 6.3: Mineralogical composition and experimental parameters of Vila
Velha sandstone (Barroso, 2002).

Element Content
Quartz 56.4%
Feldspar 5.4%
Rock fragments 1.6%
Matrix 8.7%
Silica cement 4.6%
Iron oxide cement 2.4%
Pores 20.7%

Peak strength envelope
φ = 53.7◦, c = 0.72 MPa

Elastic behavior
E (GPa) ν Test
1.3 0.25 Uniaxial
8.8 0.26 TXCD 5 MPa
10.9 0.17 TXCD 10 MPa

homogeneous weak rock with very low permeability (k = 10.7mD), character-
ized by a porosity around 20%, a granular matrix predominantly composed by
quartzitic grains and clay minerals of kaolinite and illite. Mineralogical compo-
sition, strength and stiffness characteristics of the sandstone are synthetically
presented in Table 6.3.

The presence of cementation filling the intergranular space arises from
mineral cements (silica) and iron oxides at inter-particle contacts. The high
packing density (70.74%) - a textural parameter defined by Kahn (1956) -
indicates that the material has a compact internal structure, that leads to
improved geomechanical properties, like higher strength, lower deformability
and lower permeability.

Mineralogy and petrographical characteristics have remarkable conse-
quences on the geomechanical properties and, as it will be shown in the next
section, the behavior of Vila Velha sandstone is similar to that of a very-dense
(or heavily overconsolidated) weakly-cemented sand.

6.2.2
Experimental results and model calibration

Table 6.4 lists the material parameters involved in the model. Compared
to the original Cam Clay model, seven additional parameters are introduced.
For calibrating them, a staged approach is applied, as follows:

1. Calibration of the Basic R-Soil parameters for the uncemented reference
material (λ∗, κ∗, ν,M, p0).

2. Calibration of advanced parameters controlling the yield function (r),
plastic potential (ψ) and deviatoric hardening (Bq).

3. Calibration of the parameters related to bond strengths (pt0, R) and the
corresponding degradation law (ω,Bd).
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Table 6.4: R-Soil model parameters for Vila Velha sandstone.
Model setup Parameters Physical meaning

Basic Critical
State Model
(associated)

λ∗ = 0.024 Modified compression index
κ∗ = 0.004 Modified swelling index
ν = 0.227 Poisson’s ratio
M = 1.85 Critical state parameter
p0 = 130.077 MPa Isotropic preconsolidation stress

Nonassociative
Model

ψ = 106 Dilatancy parameter
r = 2.037 Spacing ratio
Bq = 0 Deviatoric hardening coefficient

Structured
Model

ω = 300 Destructuring rate
pt0 = 0.209 MPa Initial value of tensile yield stress
Bd = 0.33 Weighting factor for destructuring strain
R = 20 Compressive/tensile bonds strength ratio

The Basic R-Soil parameters are those shared with classical critical state
models. The critical state parameter (M) may be obtained from the ultimate
strength or directly from the stress-dilatancy behavior. The former approach
assumes an ultimate state associated with large strains, where the geomaterial
behaves in conditions of perfect plasticity (Nova, 2010). The latter consists
of fitting Eq. 5-39 against the experimental stress-dilatancy behavior (see
Fig. 6.8), in order to correctly predict the evolution of plastic strains and
the stress ratio at critical state. Ideally, the calibration of M should be carried
out as a compromise between all "situations" allowing to the model to simulate
real behavior and economize on parameters.

As shown in details in Figure 6.9(a), the envelope corresponding to
the ultimate state is assumed to coincide with the critical state line. This
straight line passes through the origin because, at the ultimate state, there
is a significant reduction in cohesion associated to the destruction of natural
bonds. The ultimate friction angle is φu = 45◦, because M = 6 sinφ

3−sinφ = 1.85.
Figure 6.9(b) shows the whole theoretical yield locus obtained by curve

fitting the peak strength points with the expression given in Eq. 5-48. The
yield locus is idealized as a tear-drop aligned with the hydrostatic axis. The
calibrated values of p0, pt0 and n provide the best fit to experimental peak
strengths along the shear failure surface. Although there is a lack of information
about the position of the cap, the isotropic preconsolidation pressure (p0) is
automatically extrapolated by means of the curve fitting process. Obviously,
to make a more reliable estimation about the position of the cap, one should
run additional drained triaxial tests at higher confining pressures or, at
least, a hydrostatic compression beyond the elastic threshold. Figure 6.10

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



Chapter 6. Application of advanced soil models to tropical soils 105

0

0,5

1

1,5

2

2,5

3

-3 -2 -1 0 1 2 3 4 5

St
re

ss
 r

at
io

, η
= 

q
/p

Dilatancy, d = dεvol /dεdev

CID 5 MPa

CID 10 MPa

s' 10 MPa

R-Soil

Figure 6.8: Test results of stress–dilatancy relation obtained from drained
triaxial tests on Vila Velha sandtone (Barroso, 2002), and R-Soil formulation
with Eq. 5-39 and M,ψ from Tab. 6.4.

shows the compression behavior of Vila Velha sandstone up to a pressure
of about 80 MPa. There is no evident sign of the preconsolidation pressure
in the experimental curve, therefore, it is assumed that the material was not
sufficiently loaded to reach the elasto-plastic regime.

The second set of parameters (ψ, r, Bq) determines the stress-dilatancy
behavior, location of critical state and deviatoric hardening. In Table 6.4,
there are default values corresponding to the trivial choices of neglecting the
deviatoric hardening (Bq = 0) and assuming a plastic potential similar to
Modified Cam Clay, with M and n given, then:

ψ = 106 and r =
[
1− M2

9

]−1/n

Another possibility could have been keeping the plastic flow associated:

ψ = 106 and r =
[
1− M2

9

] 1
2−

9
2M2

but a lower values for M should be used instead.
The third set of parameters (ω, pt0, Bd, R) is used to model the mechanical

degradation. Calibration of these parameters is made along post-peak (soft-
ening) response, taking into account all the considerations made by Nova and
coworkers (Lagioia and Nova, 1995; Castellanza and Nova, 2004; Navarro et al.,
2010; Rios et al., 2016; Ciantia et al., 2018).

The magnitude of cementation is expressed by the bond strength (pt). If
this quantity is simply set to zero, the structured model is deactivated. The
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Figure 6.9: Calibration of the R-Soil yield function for Vila Velha sandstone.
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Figure 6.11: Simulated and measured drained triaxial compression tests on
Vila Velha sandstone.

softening law can be assumed equal to the hardening law, either in relative
(i.e. dps

ps
≈ dpt

pt
) or in absolute variations (i.e. dps ≈ dpt). At a first attempt, a

trial value for the rate of bond degradation may be ω = 1
λ∗−κ∗ .

The comparison between the simulated and measured stress-strain be-
havior in drained compression is shown in Figs. 6.10, 6.11 and 6.12. In triaxial
compression, Vila Velha sandstone shows brittle failure with well pronounced
peak deviatoric stress within the range of applied confining pressures. Failure
occurs at around 1% of axial strain. In Figure 6.11, the initial part of the
curve is elastic and concave upward. The post-peak response is dilatant with
a sudden drop in shear strength accompanied by progressive softening until a
stable (ultimate) condition is reached.

In Figure 6.12, the stress-strain curve under constant s′-compression does
not show a post-peak behavior because the test was performed under loading
control. It can be seen from the figures that the simulated response is in good
agreement with the experimental data.
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Figure 6.12: Simulated and measured behavior in constant-s′ test.

6.2.3
Final remarks

The laboratory tests reported by Barroso (2002) were used to calibrate
the R-Soil model parameters in order to reproduce the mechanical behavior of
Vila Velha sandstone. From test results, the post-peak response was accurately
calibrated according to the characteristics of strength and dilatancy. On
the basis that the sandstone can be regarded as a heavily overconsolidated
cemented sand, the overall predicted stress-strain behavior coincided well with
test results.

The overconsolidation ratio is high (OCR=12-25) and its effect is signif-
icant. However, the influence of cementing elements is prominent close to the
origin, introducing a tensile yield strength or, equivalently, a cohesive intercept
with the q-axis, given by the following expression:

qt = 3pt

√√√√1−
(
pt
p0

)n
(6-9)
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For Vila Velha sandstone qt = 0.623 MPa, that is a value approximately three
times the yield stress in pure tension (pt).
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ABSTRACT 13 

 14 
A constitutive model is proposed for describing the stress-strain behavior of 15 

saturated residual soils based on experimental observations from oedometer testing, 16 

triaxial and direct shear testing. The model is formulated within the classical theory of 17 

plasticity with a non-associated flow rule. In order to reproduce particular features of 18 

residual soils, inelastic strains are decomposed in two components, namely the plastic 19 

dilation due to the rearrangement of grains and the volumetric collapse resulting from 20 

bonds degradation. The yield surface is tear-drop shaped and obeys an isotropic 21 

volumetric strain-hardening rule related to collapse strains, along with a shear 22 

softening with developing plastic deviatoric strains. Comparison with published 23 

experimental data confirms the capability of the model of reproducing observed 24 

behavior of tropical residual soils in consolidated drained and undrained triaxial 25 

compression. 26 

 27 

Keywords: constitutive relations, plasticity, residual soil,  28 

 29 

 30 
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INTRODUCTION 31 
 32 

The term residual soil is widely used in contrast to sedimentary (or transported) soil 33 

to designate those soils that do not derive from erosion, transport and deposition of 34 

sediments, but result substantially from the in place weathering of the parent rock 35 

(Duarte and Rodrigues, 2017). This origin-based definition reflects the importance of 36 

lithological characteristics and environmental conditions on the engineering behavior 37 

of residual soils, whose description and study cannot be dissociated from the 38 

respective weathering history of the parent rock. 39 

Occurring in many regions of Brazil, residual soils may derive from the 40 

weathering of granite, gneiss, basalt or sandstone. In southern Brazil residual soils 41 

from basalt are dominant (Consoli et al., 1998), whereas weathering profiles of 42 

granite-gneiss are commonly encountered around São Paulo and Rio de Janeiro (de 43 

Mello, 1972).  Martins et al. (2005) have also reported a residual soil originated from 44 

the weathering the Aeolian Botucatu sandstone. 45 

The weathering profile reflects the decay of rock towards the residual soil 46 

condition. Typical examples from Brazilian literature have been reported by Viana da 47 

Fonseca and Coutinho (2008). Ideally, the weathering profile consists of different 48 

horizons varying from sound rock, weathered rock to residual soil. If the soil exhibits 49 

features from the parent rock, then it is classified as young residual soil or saprolitic 50 

soil. Otherwise, if there is no detectable relic structure, the expression mature 51 

residual soil is used. On top, one may encounter lateritic soils or transported soils 52 

(colluvium) that may undergo weathering as well. Lateritic soils contains laterite, 53 

which is impregnated with, cemented by or partly replaced by hydrated oxides of iron 54 
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and alluminium (Fookes, 1997). Quite well known by Brazilian engineers, these 55 

denominations were further explained by Vargas (1953) and Barata (1969).   56 

Depending on the weathering grade, residual soils may preserve 57 

macrostructure inherited from the parent rock (schistosity, fissures, joints, litho-relicts 58 

etc.) as well as microstructure (macropores, fabric, bonds between particles). 59 

According to Costa Filho et al. (1989), the presence a weakly bonded structure, 60 

resulting from predominant chemical weathering, provides to the residual soil: 61 

a) true cohesion in terms of effective stress 62 

b) apparent preconsolidation pressure related to structure and bonds strength 63 

c) higher stiffness at lower stresses and plastic behavior at higher stresses, 64 

characterizing a yield surface. 65 

The natural process of weathering influences the composition (clay minerals), 66 

grain shape, grain size, void ratio, structure, permeability, strength and deformability 67 

of residual soils. Obviously, those features strongly affect the overall engineering 68 

behavior of residual soils, as well explained in the general reports provided by Blight 69 

(1989) and Costa Filho et al. (1989). From a mechanical standpoint, weathering is 70 

modeled as a softening process (Vaughan and Kwan, 1984). 71 

During the last four decades an extensive laboratory work has been carried out 72 

mainly at Rio de Janeiro to study the stress-strain relationships of tropical granite-73 

gneiss residual soils. Testing has been carried out on intact and compacted samples of 74 

local lateritic and saprolitic soils, under both saturated and unsaturated conditions. 75 

Strong experimental evidences have been produced and some patterns of the 76 

geotechnical behavior have been established. The research focused mostly on the 77 
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geotechnical and geological characterization, analyzing test results according to the 78 

conventional principles and methods of soil and rock mechanics. Similar studies have 79 

been carried out on residual soils from the São Paulo Metropolitan Area (Futai et al., 80 

2012), North-east of Argentina (Bogado et al., 2019; Franscisca and Bogado, 2019), 81 

Indonesia and New Zealand (Wesley, 2009) and Hong Kong (Rocchi and Coop, 82 

2015), just to cite a few. 83 

The experimental characterization has been accompanied by the need of 84 

developing a modeling framework for predicting the mechanical behavior of residual 85 

soils and the response of related geotechnical structures. Various advanced 86 

constitutive models have been employed and tested. Some researchers used enhanced 87 

versions of Cam Clay, introducing isotropic damage (Puppi et al., 2018), influence of 88 

structure (Mendoza et al., 2014) or the subloading surface (Mendoza and Muniz de 89 

Farias, 2020). Others (Azevedo et al., 2006) have used the Lade’s model (Lade and 90 

Kim, 1988; Kim and Lade, 1988) and the discrete element modeling approach (Ibañez, 91 

2008). Unfortunately, most of the aforementioned models were conceived for 92 

sedimentary soils and then adjusted to residual soils. In contrast, the authors have 93 

developed a constitutive model specifically designed to reproduce the behavior of 94 

residual soils starting from experimental observations. The main assumption is the 95 

decomposition of irreversible strains into two mechanisms: the particle rearrangement 96 

and the bonds degradation. In addition, specific hardening laws have been adopted. 97 

This paper presents the formulation of this new constitutive model within the 98 

framework of classical strain hardening plasticity. In doing so, the behavior of 99 

saturated residual soils observed from oedometer testing, triaxial and direct shear 100 
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testing is firstly examined. Then, the constitutive model is formulated and validated in 101 

drained and undrained triaxial compression tests. 102 

 103 

SHEAR STRENGTH AND STRESS-STRAIN BEHAVIOR OF RESIDUAL 104 

SOILS 105 

 106 
For sake of clarity, results of several tests on residual soils are herein 107 

summarized to establish patterns of the behaviour observed from oedometer testing, 108 

triaxial and direct shear testing. 109 

Figure 1 presents the results of a K0-test on a partially saturated sample of 110 

intact gneissic residual soil carried out by Maccarini (1980, 1987). The sample was 111 

obtained from the slope of an excavation at a depth of 8.05 m, measured from the 112 

original ground level, where the total vertical in situ stress was estimated to be 130 113 

kPa prior the excavation. The sample was incrementally loaded under stress control 114 

allowing drainage from top and bottom against atmospheric pressure.  115 

As shown in Figure 1(a), below a quite pronounced yield stress, σvm, located 116 

around 200-250 kPa, the behavior is stiff and elastic. This first part of the oedometric 117 

curve comprises a reloading stage. As the vertical stress is increased, yield occurs, the 118 

soil becomes more compressible and the behavior is elastoplastic. This is reflected by 119 

the sharp difference of the slopes in the compression curve of Figure 1(a). Figure 1(b) 120 

shows that the same trend is clearly followed by the stress path in the (q, p) plane. 121 

There is an initial elastic response and stress path draws a straight line up to the yield 122 

stress. Further loading deviates the stress path, which gradually approaches the K0-123 

line of the destructured soil (Leroueil and Vaughan, 1990) as the vertical stress is 124 

increased. As shown by Castellanza and Nova (2004), during elastic loading the slope 125 
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of the stress path is directly linked to Poisson’s ratio. Maccarini (1987) measured K0 126 

as low as 0.1 within the elastic domain, corresponding to a Poisson’s ratio of 0.09. At 127 

higher stresses, the same author reported values of K0 6 or 7 times greater, compatible 128 

with the destructured soil. It should be noted that Maccarini (1980, 1987) measured 129 

K0 in terms of stress increments, i.e. K0 = Δσ3/Δσ1, following the definition given by 130 

Andrawes and El-Sohby (1973). 131 

Shearing tests on residual soil give plots of the general shape showed in 132 

Figure 2, where data from a series of direct shear tests performed by Escalaya (2016) 133 

on young granitic residual soil from Duque de Caxias, Rio de Janeiro, are presented. 134 

Intact (undisturbed) samples tested in the direct shear apparatus were first sheared in 135 

submerged condition to obtain the peak shear strength. Afterwards, the residual 136 

strength was determined using the polished cut-plane technique as described by 137 

Garga and Seraphim (1975). 138 

Results from drained shear tests on residual soil reveal that the shear strength 139 

parameters are related to the weathering grade, to the mineralogical content and the 140 

macrofabric resulting from weathering of the parent rock (Garga, 1988; Massey et al., 141 

1989; Lacerda, 2010). The behavior is similar to that of a dense sand, yet with less 142 

pronounced peak strength at low normal stress. The displacement at failure increases 143 

with increasing the applied normal stress and, as shown in Figure 2(a), there is a clear 144 

reduction in dilatancy as the normal stress is increased. The gradual loss of strength 145 

after peak point is passed may be attributed to a gradual decrease in interlocking and 146 

destructuration. 147 
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The failure envelopes are shown in Figure 2(b). High mica content in 148 

mineralogical composition may explain the significant drop in shear strength between 149 

peak and residual condition. The residual shear strength envelope, although passing 150 

through the axis origin, is not linear at low vertical stress. At a first approximation, a 151 

linear envelope with no cohesion intercept has been assumed in Figure 2(b). The peak 152 

strength envelope is markedly curved at lower normal stresses. Adopting a linear 153 

strength envelope from tests run at high stresses underestimates the strengths in the 154 

low stress range (Brand, 1985). Some authors (Massey et al., 1989; Gan and Fredlund, 155 

1996) attribute this additional strength to dilation and weak bonding derived from 156 

weathering. Volume increases which are taking place at failure cause somewhat 157 

greater values of shearing strength along the curved portion of the envelope, whereas 158 

volume decrease takes place along the straight line portion of the envelope. For the 159 

case under consideration, the deviation from a straight line occurs at normal stress of 160 

about 100 kPa. This point is often referred as the “critical normal stress” that marks 161 

the transition from dilatant to contractant behavior during shear.  162 

Figure 3 shows the result of a set of standard drained triaxial tests performed 163 

by De Oliveira (2000) on intact young residual soil derived from biotite-gneiss, 164 

collected in Alto Leblon, a neighbourhood in the city of Rio de Janeiro. Specimens 165 

were isotropically consolidated to effective stresses of 25, 70 and 150 kPa, and then 166 

sheared at constant axial strain rate equal to 8.2 x 10-5 mm/s. It is possible to identify 167 

a general trend in the stress-strain behavior under different confining stresses: 168 

a) at low confining pressure, after reaching a well defined peak deviator stress at 169 

an axial strain less than 3%, the specimens exhibits brittle failure associated 170 
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with dilatant behavior. Softening occurs until a stable deviator stress is 171 

reached. Additionally, the lower the confining pressure the more dilatant is the 172 

behaviour. 173 

b) at the highest confining pressure, equal to 150 kPa, no peak stress is observed. 174 

The stress-strain curve resembles that for an elastic–perfectly plastic material. 175 

However, the soil still exhibits the tendency to dilate at failure. 176 

According to De Oliveira (2000), such behavior is typical of soils with bonded 177 

structure in the sense described by Leroueil and Vaughan (1990): at low confining 178 

stress, peak strength is due to structure, yield is abrupt and the material very brittle; as 179 

the confining pressure is increased, the behavior changes from brittle to ductile. De 180 

Oliveira (2000) attributed the presence of natural bonding agents between particles to 181 

the precipitation of iron oxides between quartz, feldspar and garnet. 182 

Behavior in drained triaxial compression may also follow the trend shown in 183 

Figure 4, which is quite different from the one presented in Figure 3. Data are taken 184 

from Reis (2004), who tested a gneissic young residual soil from the city of Viçosa, 185 

Minas Gerais State, under confining effective stresses ranging from 50 to 400 kPa and 186 

obeying the natural banding inclination. The resulting stress-strain curves exhibited 187 

less marked peaks and a gradual change from dilatant to contractive behavior with 188 

increasing confining stress, which also increased the axial strain at peak. Remarkable 189 

was the fact that at the highest confining stress, the soil contracted reaching a peak 190 

stress and then it softened at constant volume. This behavior can be explained 191 

considering destructuration during the shearing phase, which implies shear strength 192 

degradation. Similar results have been presented by Santos et al. (2020), who 193 
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attributed this kind of behavior to the structure inherited from the parent rock. 194 

According to them, the observed peak strength should be attributed to the structural 195 

effects, as there is no geological evidence of past overconsolidation in this soil. 196 

Other experimental evidences for the existence of bonded structure in residual 197 

soils were given by Consoli et al. (1998). They have shown that prestressing a soil 198 

sample produces substantial damage to the bonds, deteriorating its strength and 199 

stiffness. According to them, this experimental evidence contrasts with ordinary 200 

patterns observed on clay, for which overconsolidation has a positive impact on 201 

strength and stiffness.  202 

 203 

CONSTITUTIVE MODEL FORMULATION – MATHEMATICAL 204 

TREATEMENT OF SOIL BEHAVIOR 205 
 206 

In the proposed model the irreversible strains are decomposed into two parts, 207 

namely the strains resulting from the rearrangement of the grains (plastic strains) and 208 

those resulting from damage of structure (collapse strains). Therefore, the total strain 209 

rate is decomposed into elastic, plastic and collapse components: 210 

c

vij

p

ij

e

ijij  
3
1        (1) 211 

where 
ij  is the Kronecker delta. The additive strain decomposition holds under the 212 

small strain hypothesis. The elastic strains are, by definition, recoverable and 213 

uniquely related to stresses by Hooke’s law. Irrecoverable strains are decoupled into 214 

those resulting from plastic deformation of the granular matrix, p

ij , and those 215 

resulting from volume change due to structure collapse, c

v . Both are calculated 216 
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according to the classical theory of plasticity by assuming the existence of a yield 217 

criterion and a flow rule. 218 

The decomposition of irreversible strains into two parts (plastic collapse strain 219 

and plastic expansive strain) is not novel in constitutive modeling. As instance, Lade 220 

(1977) used distinct yield surfaces and flow rules to calculate plastic and collapse 221 

strains in modeling the behavior of Sacramento River Sand.  222 

Within the framework of modeling the behavior of residual soils, the collapse 223 

strains are assumed as the volumetric contraction caused by structure degradation. On 224 

the other hand, the plastic strains are associated uniquely to grain rearrangement as 225 

described by Chandler (1985). 226 

A suitable stress space to describe the triaxial stress state is (p',q), where p' = 227 

(σ'1 + 2σ'3)/3 is the effective mean stress and q = σ'1 - σ'3 is the deviator stress. The 228 

corresponding strain invariants are εv = ε1+2ε3, the volumetric strain, and εd = 2/3*(ε1 229 

- ε3), the deviatoric strain. Furthermore, the ratio between the deviator and effective 230 

mean stress, η' = q/p' , is very useful in calculations and is referred to as the stress 231 

ratio. For simplicity, only saturated behavior is considered, being the aim of the 232 

model to reproduce the soil response under drained and undrained triaxial 233 

compression. 234 

The assumed expression to describe a teardrop shaped yield locus for a 235 

residual soil is: 236 

1:

2

0

2

0

























'

p

p'
f       (2) 237 

Figure 5 shows that the model has a single yield function with two portions 238 

clearly distinguishable: the compression cap and the shear failure envelope. The 239 
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transition between the two parts is smooth and occurs at 2/0 ' . The parameter 240 

0p  controls the position of the cap, while 0  is the maximum stress ratio associated 241 

to shear failure. They are treated as hardening parameters and both depend on 242 

irrecoverable strains. 243 

To develop simple and suitable hardening laws to describe the evolution of the 244 

yield surface during loading, the following assumptions are introduced: 245 

1. when soil is loaded under isotropic compression, the irreversible volume 246 

strain is only caused by structure collapse. In this sense, the cap hardening 247 

depends solely on collapse strains resulting from yielding of soil structure, i.e. 248 

 c

vpp 00  .  249 

2. the shear failure envelope is related to frictional strength and grain 250 

rearrangement and, consequently, to plastic strains, i.e.  p

ij 00  . 251 

The dependence on 0p  of the collapse volumetric strain can be derived by 252 

assuming convenient expressions for the calculation of total and elastic volumetric 253 

strain increments in isotropic loading. The elastic volumetric response associated with 254 

changes in mean effective stress may be described by an equation in the form: 255 

p'ee k ln        (3) 256 

where ek is the intercept of the unloading-reloading line at p = 1 and κ is its 257 

slope in the e – ln p' plot. Equation (3) is a common description of soil elastic 258 

behavior and provides the shape of the unloading-reloading lines in the (e,p') plane 259 

for stress states within the elastic domain. 260 
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For loading beyond the elastic threshold, it is assumed that the reduction in 261 

void ratio is directly proportional to the void ratio itself and the increase in mean 262 

effective stress: 263 

dp'
C

e
de

b

          (4) 264 

in which a constant of proportionality, Cb, has been introduced. Such constant 265 

has the dimension of a stress. It has the role of a stiffness and will be referred herein 266 

as the “compaction modulus”. Equation (4) may also be regarded as the constitutive 267 

law for hydrostatic compaction. It states that that the compressibility, β = dεv /dp', is 268 

proportional to the current porosity, ϕ = e/(1+e). Indeed, dividing both sides of 269 

Equation (4) by 1+e and recalling that dεv = – de/(1+e), one obtains: 270 

b

v

Cdp'

d 
          (5) 271 

It is worth noting that this result is valid under the hypothesis of 272 

incompressible solids (dVs = 0). Equation (4) and (5) are both written in incremental 273 

form and are formally identical. Equation (4) can be easily integrated to obtain the 274 

equation for the normal compression line: 275 













 


bC

pp'
ee 0

0 exp         (6) 276 

that provides a simple description of the shape of the normal compression line, 277 

in the (e,p') compression plane, accounting for non-linearity of stress-strain response 278 

under applied isotropic compression. 279 
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The cap hardening law arises from assumption 1. If plastic volumetric strain 280 

are neglected in isotropic compression, then the total volumetric strain resulting from 281 

the change in 0p  is just elastic and collapse:  282 

c

v

e

vv ddd          (7) 283 

recalling Equations (3) and (4), it yields 284 

c

v

b

d
p

dp

eC

dp

e

e








 0

00

11
      (8) 285 

from which the cap hardening law is derived: 286 

''

00

 


p

d

dp
c

v

  with 
bC

p

e

e 0

1
'


    and 

e


1
'


  (9) 287 

where '  is the slope of the normal compression line and '  that of the unloading-288 

reloading line in the ( p'v ln, ) plane. It is worth noting that 0, pe and, therefore, '  289 

change as the soil undergoes volumetric deformation. 290 

As introduced in Equation (1), plastic deviatoric strains are assumed to derive 291 

from rearrangement of the grains and, thus, are related to grain alignment on a 292 

possible slip surface. This latter mechanism is responsible for decreasing the shear 293 

strength and will be modeled as an exponential decay of the maximum stress ratio 294 

with plastic deviatoric strain: 295 

)( 0
0

rqp

d

B
d

d





        (10) 296 

where Bq is the stress ratio decay rate, r  is a reference value and 0  tends 297 

asymptotically to it at failure. Equation (10) is the hardening law of the shear failure 298 

envelope. 299 
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In general, inelastic flow is not normal to the yield surface. This means that 300 

the flow rule is non-associated. Plastic strains are derived from a plastic potential, 301 

whereas volumetric collapse is derived from a collapse potential. The flow rule is: 302 

A
p'

g

'
q

g

'B
p'

g

c
c
v

p
d

p
v































       (11) 303 

where   is the plastic multiplier, η' is the stress ratio, A and B are parameters of the 304 

model. Following Chandler (1985), the rate of plastic volumetric change resulting 305 

from grains rearrangement is assumed to be proportional to the plastic deviatoric rate 306 

by a factor, B, that is a generalization of the angle of dilatancy. In other words, the 307 

plastic volumetric strain rate is the expansion necessary for shearing distortion; 308 

conversely, the volume collapse is, by definition, the volume contraction due to bonds 309 

breakage and mechanical damage. With such a separation, the proposed model has 310 

two mechanisms and one criterion (2M1C) according to Chaboche’s (2008) 311 

classification. 312 

The stress-dilatancy relationship corresponding to Equations (11) is: 313 

'

'BA
d

p

d

p
v

c
v







 








      (12) 314 

that indicates no irreversible volume change at BA' / , that is the so-called “critical 315 

state”. Hence, the parameters A and B characterize dilatancy, structure collapse and 316 

critical state. 317 
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The plastic multiplier, for a given stress increment, is derived according to the 318 

consistency condition, 0f . From Equation (2), the differential form of the yield 319 

function is: 320 

0

0

0

0

0 























f
p

p

f
q

q

f
'p

p'

f
f     (13) 321 

which combined with Equations (9), (10) and (11), gives the expression for the plastic 322 

multiplier: 323 


















 q

q

f
'p

p'

f

H
 1

        (14) 324 

where H is the hardening modulus: 325 



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


































q

gf

p'

gp

p

f
H

p
d

c

c
v 





0

0

0

0

     (15) 326 

The overall value of H depends on two competing terms, each one related to a 327 

different mechanism: the first term is linked to volumetric collapse, the second to 328 

deviatoric plastic strains. 329 

 330 

SUMMARY OF MODEL PARAMETERS - THEIR PHYSICAL MENANING 331 

AND EXPERIMENTAL DETERMINATION  332 
 333 

Elastic constants 334 

The parameter κ, the so-called “swelling index”, coincides with the slope of 335 

the unloading-reloading line in the (e, ln p') plot. It can be determined with an 336 

isotropic compression test performing unloading-reloading cycles. 337 

The Poisson’s ratio relates the bulk modulus, K, with the shear modulus, G, 338 

according to the following expression: 339 
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)1(2

)21(3










K

G
       (16) 340 

The ratio G/K coincides with the gradient of the volume change curve for a 341 

conventional drained compression test (Wood, 1990) if the confining pressure is 342 

below the in-situ preconsolidation pressure. 343 

Inelastic flow 344 

The parameters A and B control the inelastic flow. They can be determined 345 

using the expression for the stress-dilatancy relationship given in Equation (12). 346 

Figure 6 shows the dilatancy ratio ( devvol dd  / ) obtained from drained triaxial 347 

compression tests under different confining stresses plotted against the stress ratio 348 

(q/p'). Data points were derived from total strain increments. For this reason, the 349 

initial branch of the stress-dilatancy curve is strongly affected by elastic strains and is 350 

not recommended for calibration. Data points taken from the final branch should be 351 

favored because they lies on (or are closer to) the critical state. The intercept with the 352 

vertical axis corresponds to M = A/B = 1.32, denoting the critical state. In the present 353 

analysis, B was taken equal to M, giving a satisfactory description of the stress-354 

dilatancy relationship. The value of parameter A is the result of the estimation of M 355 

and B. Therefore, the selected values are of A = 1.74 and B = 1.32. 356 

The influence of the parameters A and B on the predicted response for a 357 

drained triaxial test is shown in Figure 7. The results can be summarized as follows. 358 

Increasing B shifts the volume change curve upwards, so greater volume dilation is 359 

predicted. Higher and sharper peaks also occur in the stress-strain curve. Conversely, 360 

lowering B increases the volume contraction and reduces the peak strength. Since 361 

calculations were made with constant M, the ultimate strength is not affected. 362 
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Volumetric hardening 363 

The volumetric hardening law is calibrated by means of an isotropic 364 

compression test. Taking logarithms of both sides in Equation (6), a linear 365 

relationship is predicted between the mean effective stress and the logarithm of void 366 

ratio: 367 
















0

0 ln
e

e
Cpp' b         (17) 368 

Therefore, the compaction modulus, Cb, equals the slope of the straight line 369 

obtained from experimental data if ln e is plotted against p', as indicated in Figure 8. 370 

The estimation of the preconsolidation pressure should not follow 371 

conventional graphical methods, such as the Casagrande’s method. Several authors 372 

(Vargas, 1953; Vaughan et al., 1988; Wesley, 1990) questioned the validity of those 373 

“conventional” approaches arguing that they were not conceived for residual soils, for 374 

which the common definition of “preconsolidation” pressure should not be applied 375 

because they do not undergo loading-unloading processes in their formation. 376 

Imposing the continuity of the gradient along the compression curve may be 377 

an alternative method to estimate the preconsolidation pressure. If it is assumed that 378 

at elastic threshold the unloading-reloading line and the normal compression line 379 

have the same slope, one obtains: 380 

bC

e

p

0

0




         (18) 381 

from which the in-situ 0p  is easily found, known the swelling index, κ, the in-situ 382 

void ratio, e0, and the compression modulus Cb.  383 

Deviatoric softening 384 
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The softening rule is a function of plastic deviatoric strains and is calibrated 385 

along the post-peak portion of the stress-strain curve for a drained triaxial 386 

compression test conducted at low confining pressure.  387 

From Equation (10), it is clear that the relationship between  Mln  and 388 

p

d  is linear, being the parameter Bq equal to the slope of straight line that best fits the 389 

experimental data. The diagram of Figure 9 is obtained using data taken from post-390 

peak branch of the stress-strain curves of the drained triaxial compression tests 391 

conducted at low confining pressures. Results clearly suggest that Bq depends on the 392 

effective confining stress. However, for simplicity, Bq is taken as constant and equal 393 

to the average of the slopes. 394 

A general indication of the influence of the value of Bq on the response in the 395 

conventional drained triaxial compression test is shown in Figure 10. Increasing Bq 396 

increases the rate of deviatoric softening, so the stress-strain relationship shows a 397 

lower peak strength and the critical state is quickly reached. On the other hand, when 398 

Bq is small, a more ductile behavior is predicted and the model shows higher shear 399 

strength. Moreover, the model needs larger deformations to reach the critical state, 400 

the volumetric response is strongly affected and the behavior is much more dilative. 401 

 402 

MODEL PREDICTIONS AND COMPARISON WITH EXPERIMENTAL 403 

RESULTS 404 
 405 

The model has been employed for predicting the triaxial behavior of Ouro 406 

Preto residual soil in drained and undrained conditions. The experimental data have 407 

been provided by Futai (2002), who performed isotropic consolidation, consolidated-408 
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drained and undrained triaxial compression tests at different cell pressures. Futai et al. 409 

(2004) described the testing procedure in detail. The measured stress-strain curves, 410 

strain paths and pore pressures responses are presented in the following along with 411 

predictions from the present model. 412 

The value of the parameters for Ouro Preto residual soil have been determined 413 

from consolidated-drained triaxial compression tests. They are listed in Table 1. A 414 

python code was developed to integrate the constitutive relations using a semi-415 

implicit algorithm. 416 

The results of the drained triaxial tests are shown in Figure 11(a), together 417 

with the predictions of the model. Points indicate the measured soil behavior and 418 

solid lines are model predictions. The comparison shows a good agreement between 419 

the predicted behavior and the experimental observations. The model is able to 420 

predict satisfactorily the stress-strain curves, including the gradual change from 421 

dilative to contractive behavior, accompanied by a more ductile response, when 422 

confining stress is increased. However, the model overpredicts the volume 423 

contraction in the beginning of the loading; a drawback attributable to the chosen 424 

flow rule, which is very basic. 425 

The results of the consolidated undrained triaxial compression tests are 426 

compared with the predictions in Figure 11(b). The predicted response is less accurate, 427 

but still good. Although the model parameters were calibrated from the results of the 428 

drained triaxial tests, the model reflects the particular trend in the undrained behavior, 429 

especially for the stress paths (Figure 12) and the pore-pressure response, which are 430 

reasonably predicted. The response switches from initially contractive (increasing 431 
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pore pressure, decreasing mean effective stress) to dilative (reducing pore pressure, 432 

increasing mean effective stress). The rearrangement mechanism is predominant at 433 

low confining stress and high stress ratio, so negative pore pressure are consistently 434 

predicted for the tests run at 25 kPa and 100 kPa. At higher confining pressures, the 435 

dilatancy is suppressed and positive pore pressures are developed. One negative 436 

outcome is the stiffer response of the model compared with the test run at 400 kPa of 437 

confining pressure. 438 

 439 

CONCLUSION 440 
 441 

A summary of relevant Brazilian experimental work was presented, involving 442 

the main geotechnical laboratory tests, in order to address typical patterns of the 443 

mechanical behavior of residual soils. The data were used to develop a constitutive 444 

model for residual soils based on the assumption that incremental strains consist of 445 

elastic, plastic and collapse components. Decomposition of inelastic strains allowed 446 

to distinguish the deformations arising from particle rearrangement from those 447 

resulting from bonds degradation and particle breakdown. A non-associated flow rule 448 

was assumed by adopting two distinct potential functions, from which each individual 449 

inelastic strain was derived. The yield surface, a single continuous function shaped as 450 

a teardrop, was expressed in terms of two stress invariants – the mean effective stress 451 

and the stress ratio. The hardening laws were developed in order to reproduce the 452 

non-linear volumetric response in the (e, ln p') plane, under purely isotropic 453 

compression, and the softening behaviour associated with shearing strains. The model 454 

is characterized by nine parameters that can be determined from simple laboratory 455 
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tests, such as isotropic compression and conventional consolidated drained triaxial 456 

compression tests. 457 

The novel feature of the model is the treatment of bond degradation as a 458 

strain-inducing process causing primarily volume contraction. Loss of interlocking is 459 

modeled as a softening process related to the particle alignment along a slip plane. 460 

The description of those two mechanisms is unified under a single yield criterion. 461 

Such an approach is pioneer and some generalizations are still under development. 462 

The model may be enhanced to account some aspects of the engineering 463 

behavior of residual soils that were not included in this work. Possible improvements 464 

are: extension to partially saturated states, elastic stiffness degradation with 465 

mechanical damage, influence of the third stress invariant, addition of a true cohesion 466 

and modeling the anisotropic behavior due to structural discontinuities inherited from 467 

the parent rock. In addition, the model should also be tested under loading paths that 468 

are more complex than conventional CID and CIU triaxial tests. 469 

The comparison made between published experimental behavior and model 470 

predictions is overall acceptable and encouraging. The model was validated in 471 

conventional triaxial drained and undrained compression tests by comparing the 472 

predicted and observed behavior of Ouro Preto residual soil. In particular, trends in 473 

stress-strain, dilatancy and pore pressure behavior, as well as the effective stress paths 474 

were reasonably captured under a wide range of confining stresses. 475 

 476 

477 

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



 22 

REFERENCES 478 

 479 
K.Z. Andrawes, M.A. El-Sohby (1973). Factors Affecting Coefficient of Earth 480 

Pressure Ko. Journal of Soil Mechanics and Foundation Engineering Division, 481 

Proceedings ASCE, 99, SM7, 527-539 482 

Azevedo, R. F., Reis, R. M., & Vilar, O. M. (2006). Elasto-Plastic Modeling of a 483 

Young Gneiss Residual Soil in Saturated and Non-Saturated Conditions. In 484 

Unsaturated Soils 2006 (pp. 1968-1979). 485 

Barata, F.E. (1969). Landslides in the tropical region of Rio de Janeiro. 7th Int. 486 

Confer. on Soil Mech. and Found. Eng., Mexico. ISSMFE, London, pp. 507 – 487 

516 488 

Blight, G.E. (1989) Design assessment of saprolites and laterites. Invited Lecture, 489 

Session 6, 12th ICSMFE. Rio de Janeiro. Vol. 4, 2477–2484. 490 

Bogado, G. O., Reinert, H. O. & Francisca, F. M. (2019). Geotechnical properties of 491 

residual soils from the North-east of Argentina. International Journal of 492 

Geotechnical Engineering, 13(2), 112-121. 493 

Brand, E.W. (1985) Predicting the performance of residual soil slopes, in Proceedings 494 

of the Eleventh International Conference on Soil Mechanics and Foundation 495 

Engineering, San Francisco, pp. 2541-78. 496 

Castellanza, R., & Nova, R. (2004). Oedometric tests on artificially weathered 497 

carbonatic soft rocks. Journal of geotechnical and geoenvironmental 498 

engineering, 130(7), 728-739. 499 

Chaboche, J. L. (2008). A review of some plasticity and viscoplasticity constitutive 500 

theories. International Journal of Plasticity, 24, pp. 1642–1693 501 

Chandler, H. W. (1985). A plasticity theory without Drucker's postulate, suitable for 502 

granular materials. Journal of the Mechanics and Physics of Solids, 33(3), 503 

215-226. 504 

Consoli, N. C., Schnaid, F., & Milititsky, J. (1998). Interpretation of plate load tests 505 

on residual soil site. Journal of Geotechnical and Geoenvironmental 506 

Engineering, 124(9), 857-867. 507 

Costa Filho, L. M., Doebereiner, L., De Campos, T. M. P. & Vargas Jr., E. (1989). 508 

Fabric and engineering properties of saprolites and laterites. General 509 

report/Discussion Session 6 - Invited lecture. Proc. 12th ICSMFE. Rio de 510 

Janeiro. Vol. 4, 2463–2476 . 511 

De Mello, V. F. B. (1972). Thoughts on soil engineering applicable to residual soils. 512 

Proc. 3rd Southeast Asian Conf. on Soil Engineering, Hong Kong, 5–34. 513 

De Oliveira, C. P. (2000). Estudo do comportamento tensão-deformação-resistência 514 

de um solo residual de biotita gnaisse saturado. Dissertação (Mestrado em 515 

Engenharia) – Curso de Pós-Graduação em Engenharia Civil . Pontifícia 516 

Universidade Católica do Rio de Janeiro, Rio de Janeiro, 114 p. 517 

Duarte I.M.R., Rodrigues C.M.G. (2017) Residual Soils. In: Bobrowsky P., Marker B. 518 

(eds) Encyclopedia of Engineering Geology. Encyclopedia of Earth Sciences 519 

Series. Springer, Cham 520 

Escalaya, M. R. A. (2016). Avaliação do efeito de aumento de poropressão nas 521 

características de resistência de três solos tropicais. Tese de Doutorado – 522 

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



 23 

Curso de Pós-Graduação em Engenharia Civil . Pontifícia Universidade 523 

Católica do Rio de Janeiro, Rio de Janeiro, 278 p. 524 

Fookes, P. G. (Ed.). (1997). Tropical residual soils: A Geological Society 525 

Engineering Group working party revised report. Geological Society of 526 

London. 527 

Francisca, F. M., & Bogado, G. O. (2019). Weathering effect on the small strains 528 

elastic properties of a residual soil. Geotechnical and Geological Engineering, 529 

37(5), 4031-4041. 530 

Futai, M. M. (2002). “Theoretical and experimental study of unsaturated tropical soil 531 

behavior: Applied a gully case.” PhD thesis, COPPE Federal University of 532 

Rio de Janeiro (in Portuguese). 533 

Futai, M. M, Almeida, M. S. S. & Lacerda, W. A. (2004). Yield, strength and critical 534 

state conditions of a tropical saturated soil. J. Geotech. Geoenviron. Engng 535 

130, No. 11, 1169–1179. 536 

Futai, M. M., Cecilio , M. O. & Abramento, M. (2012). Shear Strength and 537 

Deformability of Residual Soils from the Sao Paulo Metropolitan Area. In 538 

Negro, A. et al. (eds.) Twin Cities - Soils from Sao Paulo and Curitiba 539 

Metropolitan Areas, Chapter 7, D'Livros. 540 

Gan, J. K., & Fredlund, D. G. (1996). Shear strength characteristics of two saprolitic 541 

soils. Canadian Geotechnical Journal, 33(4), 595-609. 542 

Garga, V. K. (1988). Effect of sample size on shear strength of basaltic residual soils. 543 

Canadian Geotechnical Journal, 25(3), 478-487. 544 

Garga, V. K., & Seraphim, L. A. (1975). A note on some observations on a 545 

migmatitic residual soil from Rio de Janeiro. Soils and foundations, 15(4), 1-546 

11. 547 

Ibañez, J. P. (2008). Modelagem micro-mecânica discreta de solos residuais, Tese 548 

(Doutorado em Engenharia Civil) – Curso de Pós-Graduação em Engenharia 549 

Civil. Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 394 550 

p. 551 

Kim, M. K., & Lade, P. V. (1988). Single hardening constitutive model for frictional 552 

materials: I. Plastic potential function. Computers and Geotechnics, 5(4), 307-553 

324. 554 

Lacerda, W. A. (2010). Shear strength of soils derived from the weathering of granite 555 

and gneiss in Brazil. in Calcaterra, D. & Parise, M. (eds) Weathering as a 556 

Predisposing Factor to Slope Movements. Geological Society, London, 557 

Engineering Geology Special Publications, 23, 167–182. 558 

Lade, P. V. (1977). Elasto-plastic stress-strain theory for cohesionless soil with 559 

curved yield surfaces. International Journal of Solids and Structures, 13(11), 560 

1019-1035. 561 

Lade, P. V., & Kim, M. K. (1988). Single hardening constitutive model for frictional 562 

materials II. Yield critirion and plastic work contours. Computers and 563 

geotechnics, 6(1), 13-29. 564 

Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure 565 

in natural soils and weak rocks. Géotechnique, 40(3), 467-488. 566 

Maccarini, M. (1980). Ensaios triaxiais e cisalhamentos direto de um solo residual 567 
jovem, derivado de gneisse. Dissertação (Mestrado em Engenharia) – Curso 568 

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



 24 

de Pós-Graduação em Engenharia Civil. Pontifícia Universidade Católica do 569 

Rio de Janeiro, Rio de Janeiro, 276 p. 570 

Maccarini, M. (1987).  Laboratory Studies of a weakly bonded artificial soil. Ph. D. 571 

Thesis, Imperial College of Science and Technology, London U.K. 323 p. 572 

Martins, F. B., Ferreira, P. M. V., Flores, J. A. A., Bressani, L. A., & Bica, A. V. D. 573 

(2005). Interaction between geological and geotechnical investigations of a 574 

sandstone residual soil. Engineering Geology, 78(1–2), 1–9. 575 

Massey, J. B., Irfan, T. Y. & Cipullo, A. (1989). The characterization of granitic 576 

saprolitic soils. 12th ICSMFE. Rio de Janeiro, vol. 6, pp 533-542. 577 

Mendoza, C., Farias, M. & P. da Cunha, R. (2014). Validación de modelos 578 

constitutivos avanzados de comportamiento mecánico para la arcilla 579 

estructurada de Brasilia. Obras y Proyectos 15, 52-70 580 

Mendoza, C., Muniz de Farias, M. (2020). Critical state model for structured soil. 581 

Journal of Rock Mechanics and Geotechnical Engineering, 12, pp. 630-641. 582 

Puppi, R. F. K., Hecke, M. B., & Romanel, C. (2018). MCC Hyperplastic constitutive 583 

model with coupled damage applied to structured soils. Geotecnia, 142, pp. 584 

35-61. (in Portuguese) 585 

Reis, R. M. (2004) Comportamento tensão-deformação de dois horizontes de um solo 586 

residual de gnaisse. Tese (Doutorado) – Escola Politécnica de São Carlos-587 

Universidade de São Paulo, São Carlos, 198 p. 588 

Rocchi, I., & Coop, M. R. (2015). The effects of weathering on the physical and 589 

mechanical properties of a granitic saprolite. Géotechnique, 65(6), 482-493. 590 

Santos, O.F., Lacerda, W.A. & Ehrlich, M. (2020). Effects of Cyclic Variations of 591 

Pore Pressure on the Behaviour of a Gneiss Residual Soil. Geotech Geol Eng  592 

Vargas, M. (1953): Some engineering properties of residual clay softs occuring in 593 

Southern Brazil, Proc. 3rd int. conf. S.M.F.E. Zurich 1, 67-71 594 

Vaughan, P. R., & Kwan, C. W. (1984). Weathering, structure and in situ stress in 595 

residual soils. Géotechnique, 34(1), 43-59. 596 

Vaughan, P. R., Maccarini, M., & Mokhtar, S. M. (1988). Indexing the engineering 597 

properties of residual soil. Quarterly Journal of Engineering Geology and 598 

Hydrogeology, 21(1), 69-84. 599 

Viana da Fonseca, A. & Coutnho, R. Q. (2008). Characterization of residual soils. 600 

Keynote Lecture, in: Huang, A-B & Mayne, P. (eds.) Proceedings of the 3rd 601 

International Conference on Site Characterization (ISC’3), 1–4 April 2008, 602 

Taiwan. 195–248. 603 

Wesley, L. D. (1990). Influence of structure and composition on residual soils. 604 

Journal of geotechnical engineering, 116(4), 589-603. 605 

Wesley, L. (2009). Behaviour and geotechnical properties of residual soils and 606 

allophane clays. Obras y proyectos, 6, 5-10. 607 

Wood, D. M. (1990). Soil behaviour and critical state soil mechanics. Cambridge 608 

university press. 609 

 610 

 611 

 612 

DBD
PUC-Rio - Certificação Digital Nº 1621984/CA



 25 

0

1

2

3

4

5

6

7

8

10 100 1000

V
er

ti
ca

l s
tr

ai
n

, ε
v

(%
)

Vertical stress, σv (kPa)

σvm
σv0

e0 = 0.90
Sr = 56.7 %

0

100

200

300

400

500

600

0 100 200 300 400 500 600

D
ev

ia
to

r 
st

re
ss

, q
 (

kP
a)

Mean stress, p (kPa)

K0 - line
(destructured)

yield
stress

elastic 
domain

 613 
      (a)      (b) 614 

Figure 1. K0 compression test on gneissic residual soil. Adapted from Maccarini 615 

(1980, 1987).   616 
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   (a)     (b) 621 

Figure 2. Drained direct shear test on granite saprolitc soil from Duque de 622 

Caxias, Rio de Janeiro (after Escalaya, 2016). (a) Stress-displacement curves. (b) 623 

Peak and residual strength envelopes. 624 
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 627 
Figure 3. Drained triaxial compression test on intact young residual soil derived 628 

from biotite-gneiss. Adapted from De Oliveira (2000).   629 

 630 

 631 
Figure 4. Drained triaxial compression test on young residual soil from gneiss 632 

with bands oriented as in the field. Adapted from Reis (2004).   633 
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Figure 5. Yield surface, flow vectors and stress-dilatancy relationship. 635 
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Figure 6. Determination of model parameters A = 1.74 and B = 1.32 from the 639 

stress-dilatancy relationship of Ouro Preto residual soil. 640 
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 642 
Figure 7. Effect of parametric variation on comparison of model simulations and 643 

experimental results for drained triaxial compression under 75 kPa of confining 644 

pressure. 645 
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Figure 8. Calibration of compression modulus and comparison with 648 

experimental results for Ouro Preto residual soil. Data points are taken from 649 

triaxial experiments at the end of isotropic consolidation stage. 650 
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Figure 9. Calibration of softening rule with post-peak reponses from drained 652 

triaxial tests conducted at low confining pressures. 653 
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Figure 10. Effect of parametric variation on comparison of model simulations 656 
and experimental results for drained triaxial compression under 75 kPa of 657 

confining pressure. 658 
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 659 

     660 
   (a)      (b) 661 

Figure 11. Comparison between experimental data from Futai et al. (2004) and 662 

model simulations for Ouro Preto residual soil. (a) Consolidated drained triaxial 663 

compression tests. (b) Consolidated undrained triaxial compression tests. 664 
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 666 

Figure 12. Comparison of measured and predicted effective stress paths for 667 

consolidated undrained triaxial compression tests on Ouro Preto residual soil. 668 
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Table 1. Summary of parameter values for Ouro Preto residual soil.   670 

Model component Parameters 

Elastic behavior 
κ' = 0.018 

ν' = 0.15 

Hardening parameters 0p = 61 kPa 

0  = 1.9 

Inelastic flow 
A = 1.74 

B = 1.32 

Hardening/softening law 

Cb ,= 1555 kPa 

e0 = 0.947 

Bq = 16.5 

 671 

 672 
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Abstract Five compression laws were formulated using simple incremental relation-
ships involving fundamental index properties of porous media such as porosity and 
void ratio. Models are presented in terms of void ratio-effective stress relationship and 
porosity-depth trends. All theoretical expressions were derived by assuming suitable 
incremental compression laws. Comparison with experimental data indicates that the 
models can describe a number of features of the behavior of sand and sedimentary 
rocks. 
 
Keywords: compressibility, porosity, constitutive relations 
 
 
1   Introduction 

Under the assumption that solid particles are incompressible, a porous material com-
presses if the volume of its pores reduces. Volumetric strains occurring in such a way 
result in a change of porosity or, equivalently, change of void ratio. Sometimes some 
simplification results from working in terms of the void ratio rather than the porosity, 
yet both index properties quantify the same soil phase, i.e. the volume of voids, and 
the use of one respect to another is indifferent. The final goal of the proposed approach 
is to derive a new class of compression models based on simple index properties suita-
ble for porous materials.  

2   Some remarks on the relationship between void ratio and effec-
tive stress 

2.1 Definitions 

Experimental data are usually presented in terms of void ratio (or strain) versus effec-
tive stress, using the logarithmic scale for the stress. The gradient of the compression 
curve in the e – ln σ plot is: 
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





d

de

d

de


ln
       (1) 

that depends on the current effective stress and on the derivative of the void ratio-
effective stress relation. 
The compressibility is defined as the change in bulk volume resulting from the effec-
tive pressure applied to the soil with respect to its bulk volume, that is: 

  
dp

d

dp

dV

V
v 

1
      (2) 

where the sign convention adopts strains and stresses as positive in compression. The 
minus sign is introduced because an increase in effective pressure results in a reduc-
tion of the entire bulk volume of the soil. The compressibility, in general, is not con-
stant and decreases as the effective stress increases. 
 
2.2 Compression models from literature 

The most used relation to describe the results of oedometer tests on normally consoli-
dated soils is: 

 
0

0
0

100 lnlog
p

p
eCee c 




     (3) 

the slope 10log/  eCc  is the compression index and 3.2/cC  is the slope of 

the normal compression line when natural logarithm is assumed for the effective 
stress. It is well established that a relation of this type adequately describes the behav-
ior of most clays. However, over a wide range of values of pressures, the e – log σ 
compression curve is non-linear, and Cc (or λ) decreases continuously with increasing 
the consolidation pressure (Terzaghi et al., 1996). Butterfield (1979) and Hashiguchi 
(1995) pointed the limitations of Equation (3). The major shortcoming is that the void 
ratio becomes negative for effective stresses greater than )/exp( 00  e .  

Based on empirical evidence, Butterfield (1979) showed that this problem can be par-
tially overcome by using a bilogarithmic expression between the specific volume,

ev  1 , and the effective stress: 

 )/ln(lnln 00 ppvv        (4) 

although the linearity between ln(1+e) and ln p does not generate negative specific 
volumes for large values of pressures, Equation (3) still forecasts negative void ratios 

beyond  /1
00 e .  

Following the same rationale, Pestana and Whittle (1995) and Sheng et al. (2008) pro-
posed an isotropic compression model based on a double logarithmic relationship be-
tween the void ratio and the mean stress, ensuring that the void ratio never becomes 
negative at high stresses. Actually, there exist a number of different empirical-based 
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formulations in literature. They are listed in Table 1, which provides an overview of 
the available effective stress-void ratio relationships to model the compression behav-
ior of clays, sands and mine tailings.  
 

Table 1 Void ratio-effective stress relationships from literature.  

Type Equation Slope (a) Reference 

e – ln p pNe ln    Schofield and Wroth (1964) 

ln v – ln p 

















00

lnln
p

p

v

v   v  Butterfield (1979) 

ln e – ln p  rppNe  lnlnln   e  Sheng et al. (2008) 

e – exp(-σ)   eeee )exp()( 0    )(  ee  Gibson et al. (1981) 

power law (1) BAe    eB  Carrier et al. (1983) 

power law (2) BZAe  )(  
Z

eB

  Liu and Znidarcic (1991) 

e – exp(-pn) ])/3(exp[0
n

ss hpee   N/A Bauer (1996) 

(a) Gradient of the plot of void ratio against natural logarithm of effective stress. 

3   Incremental laws to derive a new class of relationships 

The first compression law is derived by assuming that the reduction in void ratio, – de, 
due to the application of an infinitesimal increase in mean effective stress, dp, is pro-
portional to current value of the void ratio itself, e. The incremental law is then written 
as follows: 

 dp
K

e
de

b

        (5) 

where a constant of proportionality has been introduced, Kb, with the dimension of a 
stress. According to Equation (1), the corresponding gradient of the compression curve 
in the e – ln p plot is λ = e p/Kb. Dividing both sides of Equation (5) by 1+e and re-
calling that dεv = – de/(1+e), the expression for the compressibility is obtained: 

 
bKdp

d
v 

         (6) 

which states that the compressibility, β = dεv /dp, as defined in Equation (2), is propor-
tional to the current porosity, ϕ = e/(1+e). This is equivalent to say that a porous mate-
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rial with a denser granular pack is stiffer. Equation (5) can be easily integrated togeth-
er with the initial condition e(p0) = e0, to obtain the equation for the normal compres-
sion line: 

 






 


bK

pp
ee 0

0 exp       (7) 

This void ratio-effective stress relationship is of exponential type, resembles those 
proposed by Gibson et al. (1981) and Bauer (1996) and arises from the simple assump-
tion that the compressibility of a porous material is proportional to its porosity. Equa-
tion (7) predicts a linear relationship between the mean effective stress and the loga-
rithm of void ratio. The value of modulus Kb coincides with the slope of the straight 
line obtained from isotropic compression test if ln e is plotted against p. This experi-
mental procedure can be applied to intact or reconstituted soil samples for geotech-
nical analyses purpose.  
The model can be also calibrated from measured porosity-depth trends of normally 
consolidated sediments. To derive an expression relating the depth of burial to the po-
rosity, consider the vertical indefinite equilibrium of a submerged material in which 
the vertical stress acts as principal stress: 

 
edz

d ws
ws

z





1

)1)(('


    (8) 

the effective stress change is equal to the change of the lithostatic minus the hydrostat-
ic pressure. Equations (5) and (8) may be combined and easily integrated if the coeffi-
cient of earth pressure at rest, K0, is assumed constant along the normal compression 
line. For sake of clarity, the step-by-step calculations are herein presented. From Equa-
tions (5) and (8), the following identity holds: 

 
e

dz
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dK

K
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
13

21

3

21 00 
   

and introducing 

 
b

ws

K

K
b

 





3

21 0        

the integral 

  
 ze

e
dzbde

e

e
00

1
        

results in the following: 

 zb
e

e
ee 










0
0 ln       (9) 
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The analytical expression for the void ratio-depth relation is very advantageous to de-
termine the compression laws parameters when log or well data are available in terms 
of porosity versus depth rather than for porosity versus effective stress. 
Analogously, the expressions listed in Table 2 were derived according to the same 
theoretical framework by assuming an incremental law as starting point for all the 
mathematical derivations. Remarkable results are: 

 analytical expressions consist of a family of functions suitable to describe the 
behavior of porous materials in hydrostatic compression (Figure 1 shows that 
they have similar shape); 

 as shown previously, the Model 1 predicts a void ratio-effective stress rela-
tionship of exponential type similar to those proposed by Gibson et al. (1981) 
and Bauer (1996); 

 Model 3 results in simple exponential expressions for the normal compres-
sion line and depth profile. The porosity–effective stress function is similar to 
that proposed by Smith (1971); 

 Model 4 predicts a simple exponential decrease of porosity with depth as 
stated by Athy’s law (Athy, 1930). 

 

Table 2. Summary of derived compression models. 

No. Compression law Compressibility Normal compression line Depth profile 
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4   Comparison with experimental data 

Due to their simplicity, Models 1 and 3, which are presented in Table 2, are compared 
and validated against experimental data to show their flexibility in capturing the ob-
served experimental behavior. The void ratio-effective stress relationship predicted by 
Model 3 is compared with a series of hydrostatic compression tests on Sacramento 
River sand carried out by Lee and Seed (1967). The soil was tested under four differ-
ent initial relative densities. For each of them, calibration consisted in applying a sim-
ple linear regression (y = mx +q) to the straight portion of the experimental curve in 
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the ln ϕ – p plot, as shown in Figure 2(a). The modulus Kb coincides with the slope of 
the straight line, while the initial porosity is simply calculated as )/exp(0 mq . 

Figure 2(b) shows that the predictions are in very good agreement with the measured 
data. 
A comparison between compressibility data on limestones from Vajdova et al. (2004) 
and predictions according to Model 1 and Model 3 is shown in Figure 3. It can be seen 
that the overall trend for compressibility to increase with increasing porosity is well 
predicted. Model No. 1 gives a linear approximation, while Model No. 3 gives a non-
linear trend.  
Figure 4 shows a theoretical porosity-depth trend according to Model 3 compared with 
observed porosities (data points from Ramm, 1991) in near hydrostatically pressured 
muddy sandstones from the Norwegian continental shelf. It is shown that the predic-
tions are again in relatively good agreement with the measured data. 
 
 

 
Fig. 1  Comparison of compression models from present work. (a) Normal compaction curves and (b) 
compressibility curves with the following parameters: ϕ0 = 0.7, p0 = 1 kPa, Kb = 1500 kPa, γs = 26 
kN/m³, γw = 10 kN/m³, K0 = 0.7. 

 

  

Fig. 2  Behavior of Sacramento River sand in hydrostatic compression (data from Lee and Seed, 
1967). (a) Calibration of Model No.3. (b) Comparison between observed and predicted behavior. 
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Fig. 3  Compressibility of limestones as function of porosity. Data from Vajdova et al. (2004) are 
compared with predictions based on Model No. 1 and Model No. 3. 

 

Fig. 4  Predicted and measured porosity-depth curve for muddy sandstones from the Norwegian con-
tinental shelf. The data points included (from Ramm, 1991) are 75 percentile porosity versus mean 
depth. 

5   Conclusion 

A family of compression curves were proposed for modeling the hydrostatic compres-
sion of porous materials. The elementary compression laws have been formulated in 
terms of fundamental index properties such as porosity and void ratio. The determina-
tion of the model parameters can be made by means of a hydrostatic compression test 
or from measured porosity-depth trends. In particular, calibration is trivial for Model 1 
and Model 3. From comparison presented in the paper, it appears that the proposed 
models are suitable for the description of volume behavior of sands and sedimentary 
rocks, capturing the observed interrelationships between compressibility, porosity and 
depth of burial. Extension and further elaboration of the proposed model may be 
achieved by rejecting the assumption of incompressible solid grains, especially for 
modeling the volume behavior under high stress levels. 
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8
Conclusion

The work described in this thesis had the main purpose of developing
constitutive models specific for regional soils and soft rocks encountered in
Brazil. In doing so, four main topics were addressed. Firstly, the fundamentals
of large deformation analysis were critically reviewed; secondly, the work
focused on modeling the structure degradation according to the bonded
soil model; thirdly, viscoplasticity theory was explored to account for creep
behavior of soft clay and, lastly, a comprehensive finite element implementation
was formulated to perform pertinent numerical analyses. The main results
obtained during this doctoral research are summarized in the following, along
with final remarks and recommendations for future works.

The review of large deformation theory included in this thesis is far from
complete or even comprehensive, but rather is intended to be representative of
the areas of agreement between several existing schools of plasticity. At first,
an important difference with regard to the infinitesimal theory is the introduc-
tion of the deformation gradient for the description of a deforming body, along
with the distinction between the undeformed and deformed configurations. In
this manner, the notion of the unstressed intermediate configuration to repre-
sent the permanent (plastic) deformation gained popularity and became well
established in terms of the multiplicative decomposition of the deformation
gradient. Issues regarding the nonuniqueness of the multiplicative decomposi-
tion have been discussed. This approach to finite strain elastoplasticity does
not prevent the additivity of strains, provided that all strains – the total, the
elastic and plastic parts – are measured with respect to the same configura-
tion. Moreover, some basic ingredients in the presence of finite elastoplastic
deformation were addressed – such as the exponential integration of the flow
rule – and existing computational formulations that preserve the small strain
format were summarized. In the light of these remarks, a constitutive model
developed in the framework of the infinitesimal strain theory can be extended
to include finite strains by the choice of an appropriate kinematic description
of motion, specific hardening laws and suitable strain measures conjugate to
the operating stresses.

Concerning the constitutive modeling of geomaterials, a review of math-
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ematical expressions from literature has shown that, at a first approximation,
the yield surface has the shape of a teardrop and the plastic potential is non-
associated and well represented by Rowe’s stress-dilatancy relation. Two gen-
eral expressions for the yield function and plastic potential were proposed by
the author. They are reported in Eqs. 3-8 and 3-24. Destructuration, i.e. the
disintegration of interparticle bonds, was included according to the fundamen-
tal concepts introduced by Gens and Nova (1993). This led to the formulation
of the R-Soil model as a constitutive model for both soils and rock. The model
has a number of features such as non-associated behavior, intermediate stress
influence and structure degradation. The R-Soil model was validated against
experimental data from laboratory tests conducted on Vila Velha sandstone.
The determination of model parameters was illustrated step-by-step. However,
to distinguish the deformations arising from particle rearrangement from those
resulting from bonds degradation and particle breakdown, two flow rules were
introduced and inelastic strains were decomposed accordingly. This approach
was used to model the behavior of Ouro Preto residual soil in triaxial com-
pression resulting in appreciable predictions as displayed in the results section
of the attached paper. Shear strength degradation was modeled by means of a
softening law associated to plastic deviatoric strains in the shear failure enve-
lope. Behavior in hydrostatic compression was modeled with a novel hardening
law associated solely to collapse strains resulting from yielding of soil structure.

An elasto-viscoplastic constitutive model based on Modified Cam Clay
and Perzyna’s viscoplasticity theory was adopted to simulate the laboratory
behavior of Sarapuí soft clay. Perzyna’s approach was chosen because it pre-
dicts all distinctive features deriving from the pronounced viscous behavior
of the soft clay, i.e. stress relaxation, creep and rate-dependent behavior in
both drained and undrained compression. A novel closed form solution for
the theoretical interpretation of the Undrained Hydrostatic Relaxation Test
was developed. This provided a better insight into the creep characteristics
of Sarapuí clay and allowed a clear examination of the viscous nucleus down
to very low viscoplastic strain rates. Analysis of the experimental data sug-
gested a viscous nucleus of the exponential type. The results of the numerical
simulations indicated that the proposed constitutive model is capable of repro-
ducing pratically all the characteristics of the experimental curves, requiring
only two additional parameters compared to ordinary Modified Cam Clay. It
should be noted that the model does not provide reliable prediction for highly
overconsolidated states.

Emphasis was placed on the algorithms for the integration of constitutive
equations. After a detailed study of the various return mapping schemes
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proposed in the literature, forward and backward Euler integration schemes
were formulated in order to account for nonlinear elastic behavior, bond
degradation and viscoplastic behavior. Numerical integration in the presence
of a nonlinear elastic predictor was performed by means of the secant elastic
material stiffness matrix. Specific integration schemes were developed for the
integration of viscoplastic strains. Implicit and explicit integration scheme have
been addressed under the usual strain-driven problem. To simulate laboratory
experiments without the aid of finite elements, integration under mixed control
was also addressed. The work culminated with the implementation of the
aforementioned constitutive models in the commercial finite elements software
PLAXIS.

8.1
Recommendations for future work

The studies conducted in this thesis dealt with the idealization, formu-
lation, implementation and verification of constitutive models. A number of
features were modeled and implemented, some of which have come from ex-
isting constitutive models, others have been originated from author’s research.
Further improvements are still possible to produce very general constitutive
models, for both soft clay and residual soil. These include, for example, the ex-
tension to unsaturated state, the implementation of intrinsic and structural
anisotopy and the elastic stiffness degradation due to mechanical damage.
Moreover, a viscoplastic structured soil model could have been developed join-
ing together Perzyna’s and Nova’s approaches. Because in this thesis only
laboratory test data were used, future research could be directed towards the
application of these constitutive models to large scale geotechnical problems,
validating numerical predictions against field monitoring data. In the context
of the stability analysis of mine tailings, it is interesting to note that metastable
soils could have been modeled with the R-Soil model.
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